1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysproto.h> 93 #include <sys/blist.h> 94 #include <sys/lock.h> 95 #include <sys/sx.h> 96 #include <sys/vmmeter.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #include <vm/vm.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_param.h> 109 #include <vm/swap_pager.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 113 #include <geom/geom.h> 114 115 /* 116 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 117 * pages per allocation. We recommend you stick with the default of 8. 118 * The 16-page limit is due to the radix code (kern/subr_blist.c). 119 */ 120 #ifndef MAX_PAGEOUT_CLUSTER 121 #define MAX_PAGEOUT_CLUSTER 16 122 #endif 123 124 #if !defined(SWB_NPAGES) 125 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 126 #endif 127 128 /* 129 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 130 * 131 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 132 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 133 * 32K worth of data, two levels represent 256K, three levels represent 134 * 2 MBytes. This is acceptable. 135 * 136 * Overall memory utilization is about the same as the old swap structure. 137 */ 138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 139 #define SWAP_META_PAGES (SWB_NPAGES * 2) 140 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 141 142 struct swblock { 143 struct swblock *swb_hnext; 144 vm_object_t swb_object; 145 vm_pindex_t swb_index; 146 int swb_count; 147 daddr_t swb_pages[SWAP_META_PAGES]; 148 }; 149 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 168 /* bits from overcommit */ 169 #define SWAP_RESERVE_FORCE_ON (1 << 0) 170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 172 173 int 174 swap_reserve(vm_ooffset_t incr) 175 { 176 177 return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo)); 178 } 179 180 int 181 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip) 182 { 183 vm_ooffset_t r, s; 184 int res, error; 185 static int curfail; 186 static struct timeval lastfail; 187 188 if (incr & PAGE_MASK) 189 panic("swap_reserve: & PAGE_MASK"); 190 191 res = 0; 192 mtx_lock(&sw_dev_mtx); 193 r = swap_reserved + incr; 194 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 195 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 196 s *= PAGE_SIZE; 197 } else 198 s = 0; 199 s += swap_total; 200 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 201 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 202 res = 1; 203 swap_reserved = r; 204 } 205 mtx_unlock(&sw_dev_mtx); 206 207 if (res) { 208 PROC_LOCK(curproc); 209 UIDINFO_VMSIZE_LOCK(uip); 210 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 211 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 212 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 213 res = 0; 214 else 215 uip->ui_vmsize += incr; 216 UIDINFO_VMSIZE_UNLOCK(uip); 217 PROC_UNLOCK(curproc); 218 if (!res) { 219 mtx_lock(&sw_dev_mtx); 220 swap_reserved -= incr; 221 mtx_unlock(&sw_dev_mtx); 222 } 223 } 224 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 225 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 226 curproc->p_pid, uip->ui_uid, incr); 227 } 228 229 return (res); 230 } 231 232 void 233 swap_reserve_force(vm_ooffset_t incr) 234 { 235 struct uidinfo *uip; 236 237 mtx_lock(&sw_dev_mtx); 238 swap_reserved += incr; 239 mtx_unlock(&sw_dev_mtx); 240 241 uip = curthread->td_ucred->cr_ruidinfo; 242 PROC_LOCK(curproc); 243 UIDINFO_VMSIZE_LOCK(uip); 244 uip->ui_vmsize += incr; 245 UIDINFO_VMSIZE_UNLOCK(uip); 246 PROC_UNLOCK(curproc); 247 } 248 249 void 250 swap_release(vm_ooffset_t decr) 251 { 252 struct uidinfo *uip; 253 254 PROC_LOCK(curproc); 255 uip = curthread->td_ucred->cr_ruidinfo; 256 swap_release_by_uid(decr, uip); 257 PROC_UNLOCK(curproc); 258 } 259 260 void 261 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip) 262 { 263 264 if (decr & PAGE_MASK) 265 panic("swap_release: & PAGE_MASK"); 266 267 mtx_lock(&sw_dev_mtx); 268 if (swap_reserved < decr) 269 panic("swap_reserved < decr"); 270 swap_reserved -= decr; 271 mtx_unlock(&sw_dev_mtx); 272 273 UIDINFO_VMSIZE_LOCK(uip); 274 if (uip->ui_vmsize < decr) 275 printf("negative vmsize for uid = %d\n", uip->ui_uid); 276 uip->ui_vmsize -= decr; 277 UIDINFO_VMSIZE_UNLOCK(uip); 278 } 279 280 static void swapdev_strategy(struct buf *, struct swdevt *sw); 281 282 #define SWM_FREE 0x02 /* free, period */ 283 #define SWM_POP 0x04 /* pop out */ 284 285 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 286 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 287 static int nsw_rcount; /* free read buffers */ 288 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 289 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 290 static int nsw_wcount_async_max;/* assigned maximum */ 291 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 292 293 static struct swblock **swhash; 294 static int swhash_mask; 295 static struct mtx swhash_mtx; 296 297 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 298 static struct sx sw_alloc_sx; 299 300 301 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 302 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 303 304 /* 305 * "named" and "unnamed" anon region objects. Try to reduce the overhead 306 * of searching a named list by hashing it just a little. 307 */ 308 309 #define NOBJLISTS 8 310 311 #define NOBJLIST(handle) \ 312 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 313 314 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 315 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 316 static uma_zone_t swap_zone; 317 static struct vm_object swap_zone_obj; 318 319 /* 320 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 321 * calls hooked from other parts of the VM system and do not appear here. 322 * (see vm/swap_pager.h). 323 */ 324 static vm_object_t 325 swap_pager_alloc(void *handle, vm_ooffset_t size, 326 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 327 static void swap_pager_dealloc(vm_object_t object); 328 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 329 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 330 static boolean_t 331 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 332 static void swap_pager_init(void); 333 static void swap_pager_unswapped(vm_page_t); 334 static void swap_pager_swapoff(struct swdevt *sp); 335 336 struct pagerops swappagerops = { 337 .pgo_init = swap_pager_init, /* early system initialization of pager */ 338 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 339 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 340 .pgo_getpages = swap_pager_getpages, /* pagein */ 341 .pgo_putpages = swap_pager_putpages, /* pageout */ 342 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 343 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 344 }; 345 346 /* 347 * dmmax is in page-sized chunks with the new swap system. It was 348 * dev-bsized chunks in the old. dmmax is always a power of 2. 349 * 350 * swap_*() routines are externally accessible. swp_*() routines are 351 * internal. 352 */ 353 static int dmmax; 354 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 355 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 356 357 SYSCTL_INT(_vm, OID_AUTO, dmmax, 358 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 359 360 static void swp_sizecheck(void); 361 static void swp_pager_async_iodone(struct buf *bp); 362 static int swapongeom(struct thread *, struct vnode *); 363 static int swaponvp(struct thread *, struct vnode *, u_long); 364 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 365 366 /* 367 * Swap bitmap functions 368 */ 369 static void swp_pager_freeswapspace(daddr_t blk, int npages); 370 static daddr_t swp_pager_getswapspace(int npages); 371 372 /* 373 * Metadata functions 374 */ 375 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 376 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 377 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 378 static void swp_pager_meta_free_all(vm_object_t); 379 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 380 381 static void 382 swp_pager_free_nrpage(vm_page_t m) 383 { 384 385 vm_page_lock(m); 386 if (m->wire_count == 0) 387 vm_page_free(m); 388 vm_page_unlock(m); 389 } 390 391 /* 392 * SWP_SIZECHECK() - update swap_pager_full indication 393 * 394 * update the swap_pager_almost_full indication and warn when we are 395 * about to run out of swap space, using lowat/hiwat hysteresis. 396 * 397 * Clear swap_pager_full ( task killing ) indication when lowat is met. 398 * 399 * No restrictions on call 400 * This routine may not block. 401 * This routine must be called at splvm() 402 */ 403 static void 404 swp_sizecheck(void) 405 { 406 407 if (swap_pager_avail < nswap_lowat) { 408 if (swap_pager_almost_full == 0) { 409 printf("swap_pager: out of swap space\n"); 410 swap_pager_almost_full = 1; 411 } 412 } else { 413 swap_pager_full = 0; 414 if (swap_pager_avail > nswap_hiwat) 415 swap_pager_almost_full = 0; 416 } 417 } 418 419 /* 420 * SWP_PAGER_HASH() - hash swap meta data 421 * 422 * This is an helper function which hashes the swapblk given 423 * the object and page index. It returns a pointer to a pointer 424 * to the object, or a pointer to a NULL pointer if it could not 425 * find a swapblk. 426 * 427 * This routine must be called at splvm(). 428 */ 429 static struct swblock ** 430 swp_pager_hash(vm_object_t object, vm_pindex_t index) 431 { 432 struct swblock **pswap; 433 struct swblock *swap; 434 435 index &= ~(vm_pindex_t)SWAP_META_MASK; 436 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 437 while ((swap = *pswap) != NULL) { 438 if (swap->swb_object == object && 439 swap->swb_index == index 440 ) { 441 break; 442 } 443 pswap = &swap->swb_hnext; 444 } 445 return (pswap); 446 } 447 448 /* 449 * SWAP_PAGER_INIT() - initialize the swap pager! 450 * 451 * Expected to be started from system init. NOTE: This code is run 452 * before much else so be careful what you depend on. Most of the VM 453 * system has yet to be initialized at this point. 454 */ 455 static void 456 swap_pager_init(void) 457 { 458 /* 459 * Initialize object lists 460 */ 461 int i; 462 463 for (i = 0; i < NOBJLISTS; ++i) 464 TAILQ_INIT(&swap_pager_object_list[i]); 465 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 466 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 467 468 /* 469 * Device Stripe, in PAGE_SIZE'd blocks 470 */ 471 dmmax = SWB_NPAGES * 2; 472 } 473 474 /* 475 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 476 * 477 * Expected to be started from pageout process once, prior to entering 478 * its main loop. 479 */ 480 void 481 swap_pager_swap_init(void) 482 { 483 int n, n2; 484 485 /* 486 * Number of in-transit swap bp operations. Don't 487 * exhaust the pbufs completely. Make sure we 488 * initialize workable values (0 will work for hysteresis 489 * but it isn't very efficient). 490 * 491 * The nsw_cluster_max is constrained by the bp->b_pages[] 492 * array (MAXPHYS/PAGE_SIZE) and our locally defined 493 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 494 * constrained by the swap device interleave stripe size. 495 * 496 * Currently we hardwire nsw_wcount_async to 4. This limit is 497 * designed to prevent other I/O from having high latencies due to 498 * our pageout I/O. The value 4 works well for one or two active swap 499 * devices but is probably a little low if you have more. Even so, 500 * a higher value would probably generate only a limited improvement 501 * with three or four active swap devices since the system does not 502 * typically have to pageout at extreme bandwidths. We will want 503 * at least 2 per swap devices, and 4 is a pretty good value if you 504 * have one NFS swap device due to the command/ack latency over NFS. 505 * So it all works out pretty well. 506 */ 507 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 508 509 mtx_lock(&pbuf_mtx); 510 nsw_rcount = (nswbuf + 1) / 2; 511 nsw_wcount_sync = (nswbuf + 3) / 4; 512 nsw_wcount_async = 4; 513 nsw_wcount_async_max = nsw_wcount_async; 514 mtx_unlock(&pbuf_mtx); 515 516 /* 517 * Initialize our zone. Right now I'm just guessing on the number 518 * we need based on the number of pages in the system. Each swblock 519 * can hold 16 pages, so this is probably overkill. This reservation 520 * is typically limited to around 32MB by default. 521 */ 522 n = cnt.v_page_count / 2; 523 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 524 n = maxswzone / sizeof(struct swblock); 525 n2 = n; 526 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 527 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 528 if (swap_zone == NULL) 529 panic("failed to create swap_zone."); 530 do { 531 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 532 break; 533 /* 534 * if the allocation failed, try a zone two thirds the 535 * size of the previous attempt. 536 */ 537 n -= ((n + 2) / 3); 538 } while (n > 0); 539 if (n2 != n) 540 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 541 n2 = n; 542 543 /* 544 * Initialize our meta-data hash table. The swapper does not need to 545 * be quite as efficient as the VM system, so we do not use an 546 * oversized hash table. 547 * 548 * n: size of hash table, must be power of 2 549 * swhash_mask: hash table index mask 550 */ 551 for (n = 1; n < n2 / 8; n *= 2) 552 ; 553 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 554 swhash_mask = n - 1; 555 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 556 } 557 558 /* 559 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 560 * its metadata structures. 561 * 562 * This routine is called from the mmap and fork code to create a new 563 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 564 * and then converting it with swp_pager_meta_build(). 565 * 566 * This routine may block in vm_object_allocate() and create a named 567 * object lookup race, so we must interlock. We must also run at 568 * splvm() for the object lookup to handle races with interrupts, but 569 * we do not have to maintain splvm() in between the lookup and the 570 * add because (I believe) it is not possible to attempt to create 571 * a new swap object w/handle when a default object with that handle 572 * already exists. 573 * 574 * MPSAFE 575 */ 576 static vm_object_t 577 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 578 vm_ooffset_t offset, struct ucred *cred) 579 { 580 vm_object_t object; 581 vm_pindex_t pindex; 582 struct uidinfo *uip; 583 584 uip = NULL; 585 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 586 if (handle) { 587 mtx_lock(&Giant); 588 /* 589 * Reference existing named region or allocate new one. There 590 * should not be a race here against swp_pager_meta_build() 591 * as called from vm_page_remove() in regards to the lookup 592 * of the handle. 593 */ 594 sx_xlock(&sw_alloc_sx); 595 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 596 if (object == NULL) { 597 if (cred != NULL) { 598 uip = cred->cr_ruidinfo; 599 if (!swap_reserve_by_uid(size, uip)) { 600 sx_xunlock(&sw_alloc_sx); 601 mtx_unlock(&Giant); 602 return (NULL); 603 } 604 uihold(uip); 605 } 606 object = vm_object_allocate(OBJT_DEFAULT, pindex); 607 VM_OBJECT_LOCK(object); 608 object->handle = handle; 609 if (cred != NULL) { 610 object->uip = uip; 611 object->charge = size; 612 } 613 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 614 VM_OBJECT_UNLOCK(object); 615 } 616 sx_xunlock(&sw_alloc_sx); 617 mtx_unlock(&Giant); 618 } else { 619 if (cred != NULL) { 620 uip = cred->cr_ruidinfo; 621 if (!swap_reserve_by_uid(size, uip)) 622 return (NULL); 623 uihold(uip); 624 } 625 object = vm_object_allocate(OBJT_DEFAULT, pindex); 626 VM_OBJECT_LOCK(object); 627 if (cred != NULL) { 628 object->uip = uip; 629 object->charge = size; 630 } 631 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 632 VM_OBJECT_UNLOCK(object); 633 } 634 return (object); 635 } 636 637 /* 638 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 639 * 640 * The swap backing for the object is destroyed. The code is 641 * designed such that we can reinstantiate it later, but this 642 * routine is typically called only when the entire object is 643 * about to be destroyed. 644 * 645 * This routine may block, but no longer does. 646 * 647 * The object must be locked or unreferenceable. 648 */ 649 static void 650 swap_pager_dealloc(vm_object_t object) 651 { 652 653 /* 654 * Remove from list right away so lookups will fail if we block for 655 * pageout completion. 656 */ 657 if (object->handle != NULL) { 658 mtx_lock(&sw_alloc_mtx); 659 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 660 mtx_unlock(&sw_alloc_mtx); 661 } 662 663 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 664 vm_object_pip_wait(object, "swpdea"); 665 666 /* 667 * Free all remaining metadata. We only bother to free it from 668 * the swap meta data. We do not attempt to free swapblk's still 669 * associated with vm_page_t's for this object. We do not care 670 * if paging is still in progress on some objects. 671 */ 672 swp_pager_meta_free_all(object); 673 } 674 675 /************************************************************************ 676 * SWAP PAGER BITMAP ROUTINES * 677 ************************************************************************/ 678 679 /* 680 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 681 * 682 * Allocate swap for the requested number of pages. The starting 683 * swap block number (a page index) is returned or SWAPBLK_NONE 684 * if the allocation failed. 685 * 686 * Also has the side effect of advising that somebody made a mistake 687 * when they configured swap and didn't configure enough. 688 * 689 * Must be called at splvm() to avoid races with bitmap frees from 690 * vm_page_remove() aka swap_pager_page_removed(). 691 * 692 * This routine may not block 693 * This routine must be called at splvm(). 694 * 695 * We allocate in round-robin fashion from the configured devices. 696 */ 697 static daddr_t 698 swp_pager_getswapspace(int npages) 699 { 700 daddr_t blk; 701 struct swdevt *sp; 702 int i; 703 704 blk = SWAPBLK_NONE; 705 mtx_lock(&sw_dev_mtx); 706 sp = swdevhd; 707 for (i = 0; i < nswapdev; i++) { 708 if (sp == NULL) 709 sp = TAILQ_FIRST(&swtailq); 710 if (!(sp->sw_flags & SW_CLOSING)) { 711 blk = blist_alloc(sp->sw_blist, npages); 712 if (blk != SWAPBLK_NONE) { 713 blk += sp->sw_first; 714 sp->sw_used += npages; 715 swap_pager_avail -= npages; 716 swp_sizecheck(); 717 swdevhd = TAILQ_NEXT(sp, sw_list); 718 goto done; 719 } 720 } 721 sp = TAILQ_NEXT(sp, sw_list); 722 } 723 if (swap_pager_full != 2) { 724 printf("swap_pager_getswapspace(%d): failed\n", npages); 725 swap_pager_full = 2; 726 swap_pager_almost_full = 1; 727 } 728 swdevhd = NULL; 729 done: 730 mtx_unlock(&sw_dev_mtx); 731 return (blk); 732 } 733 734 static int 735 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 736 { 737 738 return (blk >= sp->sw_first && blk < sp->sw_end); 739 } 740 741 static void 742 swp_pager_strategy(struct buf *bp) 743 { 744 struct swdevt *sp; 745 746 mtx_lock(&sw_dev_mtx); 747 TAILQ_FOREACH(sp, &swtailq, sw_list) { 748 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 749 mtx_unlock(&sw_dev_mtx); 750 sp->sw_strategy(bp, sp); 751 return; 752 } 753 } 754 panic("Swapdev not found"); 755 } 756 757 758 /* 759 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 760 * 761 * This routine returns the specified swap blocks back to the bitmap. 762 * 763 * Note: This routine may not block (it could in the old swap code), 764 * and through the use of the new blist routines it does not block. 765 * 766 * We must be called at splvm() to avoid races with bitmap frees from 767 * vm_page_remove() aka swap_pager_page_removed(). 768 * 769 * This routine may not block 770 * This routine must be called at splvm(). 771 */ 772 static void 773 swp_pager_freeswapspace(daddr_t blk, int npages) 774 { 775 struct swdevt *sp; 776 777 mtx_lock(&sw_dev_mtx); 778 TAILQ_FOREACH(sp, &swtailq, sw_list) { 779 if (blk >= sp->sw_first && blk < sp->sw_end) { 780 sp->sw_used -= npages; 781 /* 782 * If we are attempting to stop swapping on 783 * this device, we don't want to mark any 784 * blocks free lest they be reused. 785 */ 786 if ((sp->sw_flags & SW_CLOSING) == 0) { 787 blist_free(sp->sw_blist, blk - sp->sw_first, 788 npages); 789 swap_pager_avail += npages; 790 swp_sizecheck(); 791 } 792 mtx_unlock(&sw_dev_mtx); 793 return; 794 } 795 } 796 panic("Swapdev not found"); 797 } 798 799 /* 800 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 801 * range within an object. 802 * 803 * This is a globally accessible routine. 804 * 805 * This routine removes swapblk assignments from swap metadata. 806 * 807 * The external callers of this routine typically have already destroyed 808 * or renamed vm_page_t's associated with this range in the object so 809 * we should be ok. 810 * 811 * This routine may be called at any spl. We up our spl to splvm temporarily 812 * in order to perform the metadata removal. 813 */ 814 void 815 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 816 { 817 818 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 819 swp_pager_meta_free(object, start, size); 820 } 821 822 /* 823 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 824 * 825 * Assigns swap blocks to the specified range within the object. The 826 * swap blocks are not zerod. Any previous swap assignment is destroyed. 827 * 828 * Returns 0 on success, -1 on failure. 829 */ 830 int 831 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 832 { 833 int n = 0; 834 daddr_t blk = SWAPBLK_NONE; 835 vm_pindex_t beg = start; /* save start index */ 836 837 VM_OBJECT_LOCK(object); 838 while (size) { 839 if (n == 0) { 840 n = BLIST_MAX_ALLOC; 841 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 842 n >>= 1; 843 if (n == 0) { 844 swp_pager_meta_free(object, beg, start - beg); 845 VM_OBJECT_UNLOCK(object); 846 return (-1); 847 } 848 } 849 } 850 swp_pager_meta_build(object, start, blk); 851 --size; 852 ++start; 853 ++blk; 854 --n; 855 } 856 swp_pager_meta_free(object, start, n); 857 VM_OBJECT_UNLOCK(object); 858 return (0); 859 } 860 861 /* 862 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 863 * and destroy the source. 864 * 865 * Copy any valid swapblks from the source to the destination. In 866 * cases where both the source and destination have a valid swapblk, 867 * we keep the destination's. 868 * 869 * This routine is allowed to block. It may block allocating metadata 870 * indirectly through swp_pager_meta_build() or if paging is still in 871 * progress on the source. 872 * 873 * This routine can be called at any spl 874 * 875 * XXX vm_page_collapse() kinda expects us not to block because we 876 * supposedly do not need to allocate memory, but for the moment we 877 * *may* have to get a little memory from the zone allocator, but 878 * it is taken from the interrupt memory. We should be ok. 879 * 880 * The source object contains no vm_page_t's (which is just as well) 881 * 882 * The source object is of type OBJT_SWAP. 883 * 884 * The source and destination objects must be locked or 885 * inaccessible (XXX are they ?) 886 */ 887 void 888 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 889 vm_pindex_t offset, int destroysource) 890 { 891 vm_pindex_t i; 892 893 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 894 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 895 896 /* 897 * If destroysource is set, we remove the source object from the 898 * swap_pager internal queue now. 899 */ 900 if (destroysource) { 901 if (srcobject->handle != NULL) { 902 mtx_lock(&sw_alloc_mtx); 903 TAILQ_REMOVE( 904 NOBJLIST(srcobject->handle), 905 srcobject, 906 pager_object_list 907 ); 908 mtx_unlock(&sw_alloc_mtx); 909 } 910 } 911 912 /* 913 * transfer source to destination. 914 */ 915 for (i = 0; i < dstobject->size; ++i) { 916 daddr_t dstaddr; 917 918 /* 919 * Locate (without changing) the swapblk on the destination, 920 * unless it is invalid in which case free it silently, or 921 * if the destination is a resident page, in which case the 922 * source is thrown away. 923 */ 924 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 925 926 if (dstaddr == SWAPBLK_NONE) { 927 /* 928 * Destination has no swapblk and is not resident, 929 * copy source. 930 */ 931 daddr_t srcaddr; 932 933 srcaddr = swp_pager_meta_ctl( 934 srcobject, 935 i + offset, 936 SWM_POP 937 ); 938 939 if (srcaddr != SWAPBLK_NONE) { 940 /* 941 * swp_pager_meta_build() can sleep. 942 */ 943 vm_object_pip_add(srcobject, 1); 944 VM_OBJECT_UNLOCK(srcobject); 945 vm_object_pip_add(dstobject, 1); 946 swp_pager_meta_build(dstobject, i, srcaddr); 947 vm_object_pip_wakeup(dstobject); 948 VM_OBJECT_LOCK(srcobject); 949 vm_object_pip_wakeup(srcobject); 950 } 951 } else { 952 /* 953 * Destination has valid swapblk or it is represented 954 * by a resident page. We destroy the sourceblock. 955 */ 956 957 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 958 } 959 } 960 961 /* 962 * Free left over swap blocks in source. 963 * 964 * We have to revert the type to OBJT_DEFAULT so we do not accidently 965 * double-remove the object from the swap queues. 966 */ 967 if (destroysource) { 968 swp_pager_meta_free_all(srcobject); 969 /* 970 * Reverting the type is not necessary, the caller is going 971 * to destroy srcobject directly, but I'm doing it here 972 * for consistency since we've removed the object from its 973 * queues. 974 */ 975 srcobject->type = OBJT_DEFAULT; 976 } 977 } 978 979 /* 980 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 981 * the requested page. 982 * 983 * We determine whether good backing store exists for the requested 984 * page and return TRUE if it does, FALSE if it doesn't. 985 * 986 * If TRUE, we also try to determine how much valid, contiguous backing 987 * store exists before and after the requested page within a reasonable 988 * distance. We do not try to restrict it to the swap device stripe 989 * (that is handled in getpages/putpages). It probably isn't worth 990 * doing here. 991 */ 992 static boolean_t 993 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 994 { 995 daddr_t blk0; 996 997 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 998 /* 999 * do we have good backing store at the requested index ? 1000 */ 1001 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1002 1003 if (blk0 == SWAPBLK_NONE) { 1004 if (before) 1005 *before = 0; 1006 if (after) 1007 *after = 0; 1008 return (FALSE); 1009 } 1010 1011 /* 1012 * find backwards-looking contiguous good backing store 1013 */ 1014 if (before != NULL) { 1015 int i; 1016 1017 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1018 daddr_t blk; 1019 1020 if (i > pindex) 1021 break; 1022 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1023 if (blk != blk0 - i) 1024 break; 1025 } 1026 *before = (i - 1); 1027 } 1028 1029 /* 1030 * find forward-looking contiguous good backing store 1031 */ 1032 if (after != NULL) { 1033 int i; 1034 1035 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1036 daddr_t blk; 1037 1038 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1039 if (blk != blk0 + i) 1040 break; 1041 } 1042 *after = (i - 1); 1043 } 1044 return (TRUE); 1045 } 1046 1047 /* 1048 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1049 * 1050 * This removes any associated swap backing store, whether valid or 1051 * not, from the page. 1052 * 1053 * This routine is typically called when a page is made dirty, at 1054 * which point any associated swap can be freed. MADV_FREE also 1055 * calls us in a special-case situation 1056 * 1057 * NOTE!!! If the page is clean and the swap was valid, the caller 1058 * should make the page dirty before calling this routine. This routine 1059 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1060 * depends on it. 1061 * 1062 * This routine may not block 1063 * This routine must be called at splvm() 1064 */ 1065 static void 1066 swap_pager_unswapped(vm_page_t m) 1067 { 1068 1069 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1070 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1071 } 1072 1073 /* 1074 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1075 * 1076 * Attempt to retrieve (m, count) pages from backing store, but make 1077 * sure we retrieve at least m[reqpage]. We try to load in as large 1078 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1079 * belongs to the same object. 1080 * 1081 * The code is designed for asynchronous operation and 1082 * immediate-notification of 'reqpage' but tends not to be 1083 * used that way. Please do not optimize-out this algorithmic 1084 * feature, I intend to improve on it in the future. 1085 * 1086 * The parent has a single vm_object_pip_add() reference prior to 1087 * calling us and we should return with the same. 1088 * 1089 * The parent has BUSY'd the pages. We should return with 'm' 1090 * left busy, but the others adjusted. 1091 */ 1092 static int 1093 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1094 { 1095 struct buf *bp; 1096 vm_page_t mreq; 1097 int i; 1098 int j; 1099 daddr_t blk; 1100 1101 mreq = m[reqpage]; 1102 1103 KASSERT(mreq->object == object, 1104 ("swap_pager_getpages: object mismatch %p/%p", 1105 object, mreq->object)); 1106 1107 /* 1108 * Calculate range to retrieve. The pages have already been assigned 1109 * their swapblks. We require a *contiguous* range but we know it to 1110 * not span devices. If we do not supply it, bad things 1111 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1112 * loops are set up such that the case(s) are handled implicitly. 1113 * 1114 * The swp_*() calls must be made with the object locked. 1115 */ 1116 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1117 1118 for (i = reqpage - 1; i >= 0; --i) { 1119 daddr_t iblk; 1120 1121 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1122 if (blk != iblk + (reqpage - i)) 1123 break; 1124 } 1125 ++i; 1126 1127 for (j = reqpage + 1; j < count; ++j) { 1128 daddr_t jblk; 1129 1130 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1131 if (blk != jblk - (j - reqpage)) 1132 break; 1133 } 1134 1135 /* 1136 * free pages outside our collection range. Note: we never free 1137 * mreq, it must remain busy throughout. 1138 */ 1139 if (0 < i || j < count) { 1140 int k; 1141 1142 for (k = 0; k < i; ++k) 1143 swp_pager_free_nrpage(m[k]); 1144 for (k = j; k < count; ++k) 1145 swp_pager_free_nrpage(m[k]); 1146 } 1147 1148 /* 1149 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1150 * still busy, but the others unbusied. 1151 */ 1152 if (blk == SWAPBLK_NONE) 1153 return (VM_PAGER_FAIL); 1154 1155 /* 1156 * Getpbuf() can sleep. 1157 */ 1158 VM_OBJECT_UNLOCK(object); 1159 /* 1160 * Get a swap buffer header to perform the IO 1161 */ 1162 bp = getpbuf(&nsw_rcount); 1163 bp->b_flags |= B_PAGING; 1164 1165 /* 1166 * map our page(s) into kva for input 1167 */ 1168 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1169 1170 bp->b_iocmd = BIO_READ; 1171 bp->b_iodone = swp_pager_async_iodone; 1172 bp->b_rcred = crhold(thread0.td_ucred); 1173 bp->b_wcred = crhold(thread0.td_ucred); 1174 bp->b_blkno = blk - (reqpage - i); 1175 bp->b_bcount = PAGE_SIZE * (j - i); 1176 bp->b_bufsize = PAGE_SIZE * (j - i); 1177 bp->b_pager.pg_reqpage = reqpage - i; 1178 1179 VM_OBJECT_LOCK(object); 1180 { 1181 int k; 1182 1183 for (k = i; k < j; ++k) { 1184 bp->b_pages[k - i] = m[k]; 1185 m[k]->oflags |= VPO_SWAPINPROG; 1186 } 1187 } 1188 bp->b_npages = j - i; 1189 1190 PCPU_INC(cnt.v_swapin); 1191 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1192 1193 /* 1194 * We still hold the lock on mreq, and our automatic completion routine 1195 * does not remove it. 1196 */ 1197 vm_object_pip_add(object, bp->b_npages); 1198 VM_OBJECT_UNLOCK(object); 1199 1200 /* 1201 * perform the I/O. NOTE!!! bp cannot be considered valid after 1202 * this point because we automatically release it on completion. 1203 * Instead, we look at the one page we are interested in which we 1204 * still hold a lock on even through the I/O completion. 1205 * 1206 * The other pages in our m[] array are also released on completion, 1207 * so we cannot assume they are valid anymore either. 1208 * 1209 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1210 */ 1211 BUF_KERNPROC(bp); 1212 swp_pager_strategy(bp); 1213 1214 /* 1215 * wait for the page we want to complete. VPO_SWAPINPROG is always 1216 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1217 * is set in the meta-data. 1218 */ 1219 VM_OBJECT_LOCK(object); 1220 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1221 mreq->oflags |= VPO_WANTED; 1222 PCPU_INC(cnt.v_intrans); 1223 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1224 printf( 1225 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1226 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1227 } 1228 } 1229 1230 /* 1231 * mreq is left busied after completion, but all the other pages 1232 * are freed. If we had an unrecoverable read error the page will 1233 * not be valid. 1234 */ 1235 if (mreq->valid != VM_PAGE_BITS_ALL) { 1236 return (VM_PAGER_ERROR); 1237 } else { 1238 return (VM_PAGER_OK); 1239 } 1240 1241 /* 1242 * A final note: in a low swap situation, we cannot deallocate swap 1243 * and mark a page dirty here because the caller is likely to mark 1244 * the page clean when we return, causing the page to possibly revert 1245 * to all-zero's later. 1246 */ 1247 } 1248 1249 /* 1250 * swap_pager_putpages: 1251 * 1252 * Assign swap (if necessary) and initiate I/O on the specified pages. 1253 * 1254 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1255 * are automatically converted to SWAP objects. 1256 * 1257 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1258 * vm_page reservation system coupled with properly written VFS devices 1259 * should ensure that no low-memory deadlock occurs. This is an area 1260 * which needs work. 1261 * 1262 * The parent has N vm_object_pip_add() references prior to 1263 * calling us and will remove references for rtvals[] that are 1264 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1265 * completion. 1266 * 1267 * The parent has soft-busy'd the pages it passes us and will unbusy 1268 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1269 * We need to unbusy the rest on I/O completion. 1270 */ 1271 void 1272 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1273 boolean_t sync, int *rtvals) 1274 { 1275 int i; 1276 int n = 0; 1277 1278 if (count && m[0]->object != object) { 1279 panic("swap_pager_putpages: object mismatch %p/%p", 1280 object, 1281 m[0]->object 1282 ); 1283 } 1284 1285 /* 1286 * Step 1 1287 * 1288 * Turn object into OBJT_SWAP 1289 * check for bogus sysops 1290 * force sync if not pageout process 1291 */ 1292 if (object->type != OBJT_SWAP) 1293 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1294 VM_OBJECT_UNLOCK(object); 1295 1296 if (curproc != pageproc) 1297 sync = TRUE; 1298 1299 /* 1300 * Step 2 1301 * 1302 * Update nsw parameters from swap_async_max sysctl values. 1303 * Do not let the sysop crash the machine with bogus numbers. 1304 */ 1305 mtx_lock(&pbuf_mtx); 1306 if (swap_async_max != nsw_wcount_async_max) { 1307 int n; 1308 1309 /* 1310 * limit range 1311 */ 1312 if ((n = swap_async_max) > nswbuf / 2) 1313 n = nswbuf / 2; 1314 if (n < 1) 1315 n = 1; 1316 swap_async_max = n; 1317 1318 /* 1319 * Adjust difference ( if possible ). If the current async 1320 * count is too low, we may not be able to make the adjustment 1321 * at this time. 1322 */ 1323 n -= nsw_wcount_async_max; 1324 if (nsw_wcount_async + n >= 0) { 1325 nsw_wcount_async += n; 1326 nsw_wcount_async_max += n; 1327 wakeup(&nsw_wcount_async); 1328 } 1329 } 1330 mtx_unlock(&pbuf_mtx); 1331 1332 /* 1333 * Step 3 1334 * 1335 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1336 * The page is left dirty until the pageout operation completes 1337 * successfully. 1338 */ 1339 for (i = 0; i < count; i += n) { 1340 int j; 1341 struct buf *bp; 1342 daddr_t blk; 1343 1344 /* 1345 * Maximum I/O size is limited by a number of factors. 1346 */ 1347 n = min(BLIST_MAX_ALLOC, count - i); 1348 n = min(n, nsw_cluster_max); 1349 1350 /* 1351 * Get biggest block of swap we can. If we fail, fall 1352 * back and try to allocate a smaller block. Don't go 1353 * overboard trying to allocate space if it would overly 1354 * fragment swap. 1355 */ 1356 while ( 1357 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1358 n > 4 1359 ) { 1360 n >>= 1; 1361 } 1362 if (blk == SWAPBLK_NONE) { 1363 for (j = 0; j < n; ++j) 1364 rtvals[i+j] = VM_PAGER_FAIL; 1365 continue; 1366 } 1367 1368 /* 1369 * All I/O parameters have been satisfied, build the I/O 1370 * request and assign the swap space. 1371 */ 1372 if (sync == TRUE) { 1373 bp = getpbuf(&nsw_wcount_sync); 1374 } else { 1375 bp = getpbuf(&nsw_wcount_async); 1376 bp->b_flags = B_ASYNC; 1377 } 1378 bp->b_flags |= B_PAGING; 1379 bp->b_iocmd = BIO_WRITE; 1380 1381 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1382 1383 bp->b_rcred = crhold(thread0.td_ucred); 1384 bp->b_wcred = crhold(thread0.td_ucred); 1385 bp->b_bcount = PAGE_SIZE * n; 1386 bp->b_bufsize = PAGE_SIZE * n; 1387 bp->b_blkno = blk; 1388 1389 VM_OBJECT_LOCK(object); 1390 for (j = 0; j < n; ++j) { 1391 vm_page_t mreq = m[i+j]; 1392 1393 swp_pager_meta_build( 1394 mreq->object, 1395 mreq->pindex, 1396 blk + j 1397 ); 1398 vm_page_dirty(mreq); 1399 rtvals[i+j] = VM_PAGER_OK; 1400 1401 mreq->oflags |= VPO_SWAPINPROG; 1402 bp->b_pages[j] = mreq; 1403 } 1404 VM_OBJECT_UNLOCK(object); 1405 bp->b_npages = n; 1406 /* 1407 * Must set dirty range for NFS to work. 1408 */ 1409 bp->b_dirtyoff = 0; 1410 bp->b_dirtyend = bp->b_bcount; 1411 1412 PCPU_INC(cnt.v_swapout); 1413 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1414 1415 /* 1416 * asynchronous 1417 * 1418 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1419 */ 1420 if (sync == FALSE) { 1421 bp->b_iodone = swp_pager_async_iodone; 1422 BUF_KERNPROC(bp); 1423 swp_pager_strategy(bp); 1424 1425 for (j = 0; j < n; ++j) 1426 rtvals[i+j] = VM_PAGER_PEND; 1427 /* restart outter loop */ 1428 continue; 1429 } 1430 1431 /* 1432 * synchronous 1433 * 1434 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1435 */ 1436 bp->b_iodone = bdone; 1437 swp_pager_strategy(bp); 1438 1439 /* 1440 * Wait for the sync I/O to complete, then update rtvals. 1441 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1442 * our async completion routine at the end, thus avoiding a 1443 * double-free. 1444 */ 1445 bwait(bp, PVM, "swwrt"); 1446 for (j = 0; j < n; ++j) 1447 rtvals[i+j] = VM_PAGER_PEND; 1448 /* 1449 * Now that we are through with the bp, we can call the 1450 * normal async completion, which frees everything up. 1451 */ 1452 swp_pager_async_iodone(bp); 1453 } 1454 VM_OBJECT_LOCK(object); 1455 } 1456 1457 /* 1458 * swp_pager_async_iodone: 1459 * 1460 * Completion routine for asynchronous reads and writes from/to swap. 1461 * Also called manually by synchronous code to finish up a bp. 1462 * 1463 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1464 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1465 * unbusy all pages except the 'main' request page. For WRITE 1466 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1467 * because we marked them all VM_PAGER_PEND on return from putpages ). 1468 * 1469 * This routine may not block. 1470 */ 1471 static void 1472 swp_pager_async_iodone(struct buf *bp) 1473 { 1474 int i; 1475 vm_object_t object = NULL; 1476 1477 /* 1478 * report error 1479 */ 1480 if (bp->b_ioflags & BIO_ERROR) { 1481 printf( 1482 "swap_pager: I/O error - %s failed; blkno %ld," 1483 "size %ld, error %d\n", 1484 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1485 (long)bp->b_blkno, 1486 (long)bp->b_bcount, 1487 bp->b_error 1488 ); 1489 } 1490 1491 /* 1492 * remove the mapping for kernel virtual 1493 */ 1494 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1495 1496 if (bp->b_npages) { 1497 object = bp->b_pages[0]->object; 1498 VM_OBJECT_LOCK(object); 1499 } 1500 1501 /* 1502 * cleanup pages. If an error occurs writing to swap, we are in 1503 * very serious trouble. If it happens to be a disk error, though, 1504 * we may be able to recover by reassigning the swap later on. So 1505 * in this case we remove the m->swapblk assignment for the page 1506 * but do not free it in the rlist. The errornous block(s) are thus 1507 * never reallocated as swap. Redirty the page and continue. 1508 */ 1509 for (i = 0; i < bp->b_npages; ++i) { 1510 vm_page_t m = bp->b_pages[i]; 1511 1512 m->oflags &= ~VPO_SWAPINPROG; 1513 1514 if (bp->b_ioflags & BIO_ERROR) { 1515 /* 1516 * If an error occurs I'd love to throw the swapblk 1517 * away without freeing it back to swapspace, so it 1518 * can never be used again. But I can't from an 1519 * interrupt. 1520 */ 1521 if (bp->b_iocmd == BIO_READ) { 1522 /* 1523 * When reading, reqpage needs to stay 1524 * locked for the parent, but all other 1525 * pages can be freed. We still want to 1526 * wakeup the parent waiting on the page, 1527 * though. ( also: pg_reqpage can be -1 and 1528 * not match anything ). 1529 * 1530 * We have to wake specifically requested pages 1531 * up too because we cleared VPO_SWAPINPROG and 1532 * someone may be waiting for that. 1533 * 1534 * NOTE: for reads, m->dirty will probably 1535 * be overridden by the original caller of 1536 * getpages so don't play cute tricks here. 1537 */ 1538 m->valid = 0; 1539 if (i != bp->b_pager.pg_reqpage) 1540 swp_pager_free_nrpage(m); 1541 else 1542 vm_page_flash(m); 1543 /* 1544 * If i == bp->b_pager.pg_reqpage, do not wake 1545 * the page up. The caller needs to. 1546 */ 1547 } else { 1548 /* 1549 * If a write error occurs, reactivate page 1550 * so it doesn't clog the inactive list, 1551 * then finish the I/O. 1552 */ 1553 vm_page_dirty(m); 1554 vm_page_lock(m); 1555 vm_page_activate(m); 1556 vm_page_unlock(m); 1557 vm_page_io_finish(m); 1558 } 1559 } else if (bp->b_iocmd == BIO_READ) { 1560 /* 1561 * NOTE: for reads, m->dirty will probably be 1562 * overridden by the original caller of getpages so 1563 * we cannot set them in order to free the underlying 1564 * swap in a low-swap situation. I don't think we'd 1565 * want to do that anyway, but it was an optimization 1566 * that existed in the old swapper for a time before 1567 * it got ripped out due to precisely this problem. 1568 * 1569 * If not the requested page then deactivate it. 1570 * 1571 * Note that the requested page, reqpage, is left 1572 * busied, but we still have to wake it up. The 1573 * other pages are released (unbusied) by 1574 * vm_page_wakeup(). 1575 */ 1576 KASSERT(!pmap_page_is_mapped(m), 1577 ("swp_pager_async_iodone: page %p is mapped", m)); 1578 m->valid = VM_PAGE_BITS_ALL; 1579 KASSERT(m->dirty == 0, 1580 ("swp_pager_async_iodone: page %p is dirty", m)); 1581 1582 /* 1583 * We have to wake specifically requested pages 1584 * up too because we cleared VPO_SWAPINPROG and 1585 * could be waiting for it in getpages. However, 1586 * be sure to not unbusy getpages specifically 1587 * requested page - getpages expects it to be 1588 * left busy. 1589 */ 1590 if (i != bp->b_pager.pg_reqpage) { 1591 vm_page_lock(m); 1592 vm_page_deactivate(m); 1593 vm_page_unlock(m); 1594 vm_page_wakeup(m); 1595 } else 1596 vm_page_flash(m); 1597 } else { 1598 /* 1599 * For write success, clear the dirty 1600 * status, then finish the I/O ( which decrements the 1601 * busy count and possibly wakes waiter's up ). 1602 */ 1603 KASSERT((m->flags & PG_WRITEABLE) == 0, 1604 ("swp_pager_async_iodone: page %p is not write" 1605 " protected", m)); 1606 vm_page_undirty(m); 1607 vm_page_io_finish(m); 1608 if (vm_page_count_severe()) { 1609 vm_page_lock(m); 1610 vm_page_try_to_cache(m); 1611 vm_page_unlock(m); 1612 } 1613 } 1614 } 1615 1616 /* 1617 * adjust pip. NOTE: the original parent may still have its own 1618 * pip refs on the object. 1619 */ 1620 if (object != NULL) { 1621 vm_object_pip_wakeupn(object, bp->b_npages); 1622 VM_OBJECT_UNLOCK(object); 1623 } 1624 1625 /* 1626 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1627 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1628 * trigger a KASSERT in relpbuf(). 1629 */ 1630 if (bp->b_vp) { 1631 bp->b_vp = NULL; 1632 bp->b_bufobj = NULL; 1633 } 1634 /* 1635 * release the physical I/O buffer 1636 */ 1637 relpbuf( 1638 bp, 1639 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1640 ((bp->b_flags & B_ASYNC) ? 1641 &nsw_wcount_async : 1642 &nsw_wcount_sync 1643 ) 1644 ) 1645 ); 1646 } 1647 1648 /* 1649 * swap_pager_isswapped: 1650 * 1651 * Return 1 if at least one page in the given object is paged 1652 * out to the given swap device. 1653 * 1654 * This routine may not block. 1655 */ 1656 int 1657 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1658 { 1659 daddr_t index = 0; 1660 int bcount; 1661 int i; 1662 1663 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1664 if (object->type != OBJT_SWAP) 1665 return (0); 1666 1667 mtx_lock(&swhash_mtx); 1668 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1669 struct swblock *swap; 1670 1671 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1672 for (i = 0; i < SWAP_META_PAGES; ++i) { 1673 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1674 mtx_unlock(&swhash_mtx); 1675 return (1); 1676 } 1677 } 1678 } 1679 index += SWAP_META_PAGES; 1680 if (index > 0x20000000) 1681 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1682 } 1683 mtx_unlock(&swhash_mtx); 1684 return (0); 1685 } 1686 1687 /* 1688 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1689 * 1690 * This routine dissociates the page at the given index within a 1691 * swap block from its backing store, paging it in if necessary. 1692 * If the page is paged in, it is placed in the inactive queue, 1693 * since it had its backing store ripped out from under it. 1694 * We also attempt to swap in all other pages in the swap block, 1695 * we only guarantee that the one at the specified index is 1696 * paged in. 1697 * 1698 * XXX - The code to page the whole block in doesn't work, so we 1699 * revert to the one-by-one behavior for now. Sigh. 1700 */ 1701 static inline void 1702 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1703 { 1704 vm_page_t m; 1705 1706 vm_object_pip_add(object, 1); 1707 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1708 if (m->valid == VM_PAGE_BITS_ALL) { 1709 vm_object_pip_subtract(object, 1); 1710 vm_page_dirty(m); 1711 vm_page_lock(m); 1712 vm_page_activate(m); 1713 vm_page_unlock(m); 1714 vm_page_wakeup(m); 1715 vm_pager_page_unswapped(m); 1716 return; 1717 } 1718 1719 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1720 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1721 vm_object_pip_subtract(object, 1); 1722 vm_page_dirty(m); 1723 vm_page_lock(m); 1724 vm_page_deactivate(m); 1725 vm_page_unlock(m); 1726 vm_page_wakeup(m); 1727 vm_pager_page_unswapped(m); 1728 } 1729 1730 /* 1731 * swap_pager_swapoff: 1732 * 1733 * Page in all of the pages that have been paged out to the 1734 * given device. The corresponding blocks in the bitmap must be 1735 * marked as allocated and the device must be flagged SW_CLOSING. 1736 * There may be no processes swapped out to the device. 1737 * 1738 * This routine may block. 1739 */ 1740 static void 1741 swap_pager_swapoff(struct swdevt *sp) 1742 { 1743 struct swblock *swap; 1744 int i, j, retries; 1745 1746 GIANT_REQUIRED; 1747 1748 retries = 0; 1749 full_rescan: 1750 mtx_lock(&swhash_mtx); 1751 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1752 restart: 1753 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1754 vm_object_t object = swap->swb_object; 1755 vm_pindex_t pindex = swap->swb_index; 1756 for (j = 0; j < SWAP_META_PAGES; ++j) { 1757 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1758 /* avoid deadlock */ 1759 if (!VM_OBJECT_TRYLOCK(object)) { 1760 break; 1761 } else { 1762 mtx_unlock(&swhash_mtx); 1763 swp_pager_force_pagein(object, 1764 pindex + j); 1765 VM_OBJECT_UNLOCK(object); 1766 mtx_lock(&swhash_mtx); 1767 goto restart; 1768 } 1769 } 1770 } 1771 } 1772 } 1773 mtx_unlock(&swhash_mtx); 1774 if (sp->sw_used) { 1775 /* 1776 * Objects may be locked or paging to the device being 1777 * removed, so we will miss their pages and need to 1778 * make another pass. We have marked this device as 1779 * SW_CLOSING, so the activity should finish soon. 1780 */ 1781 retries++; 1782 if (retries > 100) { 1783 panic("swapoff: failed to locate %d swap blocks", 1784 sp->sw_used); 1785 } 1786 pause("swpoff", hz / 20); 1787 goto full_rescan; 1788 } 1789 } 1790 1791 /************************************************************************ 1792 * SWAP META DATA * 1793 ************************************************************************ 1794 * 1795 * These routines manipulate the swap metadata stored in the 1796 * OBJT_SWAP object. All swp_*() routines must be called at 1797 * splvm() because swap can be freed up by the low level vm_page 1798 * code which might be called from interrupts beyond what splbio() covers. 1799 * 1800 * Swap metadata is implemented with a global hash and not directly 1801 * linked into the object. Instead the object simply contains 1802 * appropriate tracking counters. 1803 */ 1804 1805 /* 1806 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1807 * 1808 * We first convert the object to a swap object if it is a default 1809 * object. 1810 * 1811 * The specified swapblk is added to the object's swap metadata. If 1812 * the swapblk is not valid, it is freed instead. Any previously 1813 * assigned swapblk is freed. 1814 * 1815 * This routine must be called at splvm(), except when used to convert 1816 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1817 */ 1818 static void 1819 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1820 { 1821 struct swblock *swap; 1822 struct swblock **pswap; 1823 int idx; 1824 1825 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1826 /* 1827 * Convert default object to swap object if necessary 1828 */ 1829 if (object->type != OBJT_SWAP) { 1830 object->type = OBJT_SWAP; 1831 object->un_pager.swp.swp_bcount = 0; 1832 1833 if (object->handle != NULL) { 1834 mtx_lock(&sw_alloc_mtx); 1835 TAILQ_INSERT_TAIL( 1836 NOBJLIST(object->handle), 1837 object, 1838 pager_object_list 1839 ); 1840 mtx_unlock(&sw_alloc_mtx); 1841 } 1842 } 1843 1844 /* 1845 * Locate hash entry. If not found create, but if we aren't adding 1846 * anything just return. If we run out of space in the map we wait 1847 * and, since the hash table may have changed, retry. 1848 */ 1849 retry: 1850 mtx_lock(&swhash_mtx); 1851 pswap = swp_pager_hash(object, pindex); 1852 1853 if ((swap = *pswap) == NULL) { 1854 int i; 1855 1856 if (swapblk == SWAPBLK_NONE) 1857 goto done; 1858 1859 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1860 if (swap == NULL) { 1861 mtx_unlock(&swhash_mtx); 1862 VM_OBJECT_UNLOCK(object); 1863 if (uma_zone_exhausted(swap_zone)) { 1864 printf("swap zone exhausted, increase kern.maxswzone\n"); 1865 vm_pageout_oom(VM_OOM_SWAPZ); 1866 pause("swzonex", 10); 1867 } else 1868 VM_WAIT; 1869 VM_OBJECT_LOCK(object); 1870 goto retry; 1871 } 1872 1873 swap->swb_hnext = NULL; 1874 swap->swb_object = object; 1875 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1876 swap->swb_count = 0; 1877 1878 ++object->un_pager.swp.swp_bcount; 1879 1880 for (i = 0; i < SWAP_META_PAGES; ++i) 1881 swap->swb_pages[i] = SWAPBLK_NONE; 1882 } 1883 1884 /* 1885 * Delete prior contents of metadata 1886 */ 1887 idx = pindex & SWAP_META_MASK; 1888 1889 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1890 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1891 --swap->swb_count; 1892 } 1893 1894 /* 1895 * Enter block into metadata 1896 */ 1897 swap->swb_pages[idx] = swapblk; 1898 if (swapblk != SWAPBLK_NONE) 1899 ++swap->swb_count; 1900 done: 1901 mtx_unlock(&swhash_mtx); 1902 } 1903 1904 /* 1905 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1906 * 1907 * The requested range of blocks is freed, with any associated swap 1908 * returned to the swap bitmap. 1909 * 1910 * This routine will free swap metadata structures as they are cleaned 1911 * out. This routine does *NOT* operate on swap metadata associated 1912 * with resident pages. 1913 * 1914 * This routine must be called at splvm() 1915 */ 1916 static void 1917 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1918 { 1919 1920 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1921 if (object->type != OBJT_SWAP) 1922 return; 1923 1924 while (count > 0) { 1925 struct swblock **pswap; 1926 struct swblock *swap; 1927 1928 mtx_lock(&swhash_mtx); 1929 pswap = swp_pager_hash(object, index); 1930 1931 if ((swap = *pswap) != NULL) { 1932 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1933 1934 if (v != SWAPBLK_NONE) { 1935 swp_pager_freeswapspace(v, 1); 1936 swap->swb_pages[index & SWAP_META_MASK] = 1937 SWAPBLK_NONE; 1938 if (--swap->swb_count == 0) { 1939 *pswap = swap->swb_hnext; 1940 uma_zfree(swap_zone, swap); 1941 --object->un_pager.swp.swp_bcount; 1942 } 1943 } 1944 --count; 1945 ++index; 1946 } else { 1947 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1948 count -= n; 1949 index += n; 1950 } 1951 mtx_unlock(&swhash_mtx); 1952 } 1953 } 1954 1955 /* 1956 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1957 * 1958 * This routine locates and destroys all swap metadata associated with 1959 * an object. 1960 * 1961 * This routine must be called at splvm() 1962 */ 1963 static void 1964 swp_pager_meta_free_all(vm_object_t object) 1965 { 1966 daddr_t index = 0; 1967 1968 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1969 if (object->type != OBJT_SWAP) 1970 return; 1971 1972 while (object->un_pager.swp.swp_bcount) { 1973 struct swblock **pswap; 1974 struct swblock *swap; 1975 1976 mtx_lock(&swhash_mtx); 1977 pswap = swp_pager_hash(object, index); 1978 if ((swap = *pswap) != NULL) { 1979 int i; 1980 1981 for (i = 0; i < SWAP_META_PAGES; ++i) { 1982 daddr_t v = swap->swb_pages[i]; 1983 if (v != SWAPBLK_NONE) { 1984 --swap->swb_count; 1985 swp_pager_freeswapspace(v, 1); 1986 } 1987 } 1988 if (swap->swb_count != 0) 1989 panic("swap_pager_meta_free_all: swb_count != 0"); 1990 *pswap = swap->swb_hnext; 1991 uma_zfree(swap_zone, swap); 1992 --object->un_pager.swp.swp_bcount; 1993 } 1994 mtx_unlock(&swhash_mtx); 1995 index += SWAP_META_PAGES; 1996 if (index > 0x20000000) 1997 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1998 } 1999 } 2000 2001 /* 2002 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2003 * 2004 * This routine is capable of looking up, popping, or freeing 2005 * swapblk assignments in the swap meta data or in the vm_page_t. 2006 * The routine typically returns the swapblk being looked-up, or popped, 2007 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2008 * was invalid. This routine will automatically free any invalid 2009 * meta-data swapblks. 2010 * 2011 * It is not possible to store invalid swapblks in the swap meta data 2012 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2013 * 2014 * When acting on a busy resident page and paging is in progress, we 2015 * have to wait until paging is complete but otherwise can act on the 2016 * busy page. 2017 * 2018 * This routine must be called at splvm(). 2019 * 2020 * SWM_FREE remove and free swap block from metadata 2021 * SWM_POP remove from meta data but do not free.. pop it out 2022 */ 2023 static daddr_t 2024 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2025 { 2026 struct swblock **pswap; 2027 struct swblock *swap; 2028 daddr_t r1; 2029 int idx; 2030 2031 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2032 /* 2033 * The meta data only exists of the object is OBJT_SWAP 2034 * and even then might not be allocated yet. 2035 */ 2036 if (object->type != OBJT_SWAP) 2037 return (SWAPBLK_NONE); 2038 2039 r1 = SWAPBLK_NONE; 2040 mtx_lock(&swhash_mtx); 2041 pswap = swp_pager_hash(object, pindex); 2042 2043 if ((swap = *pswap) != NULL) { 2044 idx = pindex & SWAP_META_MASK; 2045 r1 = swap->swb_pages[idx]; 2046 2047 if (r1 != SWAPBLK_NONE) { 2048 if (flags & SWM_FREE) { 2049 swp_pager_freeswapspace(r1, 1); 2050 r1 = SWAPBLK_NONE; 2051 } 2052 if (flags & (SWM_FREE|SWM_POP)) { 2053 swap->swb_pages[idx] = SWAPBLK_NONE; 2054 if (--swap->swb_count == 0) { 2055 *pswap = swap->swb_hnext; 2056 uma_zfree(swap_zone, swap); 2057 --object->un_pager.swp.swp_bcount; 2058 } 2059 } 2060 } 2061 } 2062 mtx_unlock(&swhash_mtx); 2063 return (r1); 2064 } 2065 2066 /* 2067 * System call swapon(name) enables swapping on device name, 2068 * which must be in the swdevsw. Return EBUSY 2069 * if already swapping on this device. 2070 */ 2071 #ifndef _SYS_SYSPROTO_H_ 2072 struct swapon_args { 2073 char *name; 2074 }; 2075 #endif 2076 2077 /* 2078 * MPSAFE 2079 */ 2080 /* ARGSUSED */ 2081 int 2082 swapon(struct thread *td, struct swapon_args *uap) 2083 { 2084 struct vattr attr; 2085 struct vnode *vp; 2086 struct nameidata nd; 2087 int error; 2088 2089 error = priv_check(td, PRIV_SWAPON); 2090 if (error) 2091 return (error); 2092 2093 mtx_lock(&Giant); 2094 while (swdev_syscall_active) 2095 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2096 swdev_syscall_active = 1; 2097 2098 /* 2099 * Swap metadata may not fit in the KVM if we have physical 2100 * memory of >1GB. 2101 */ 2102 if (swap_zone == NULL) { 2103 error = ENOMEM; 2104 goto done; 2105 } 2106 2107 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2108 uap->name, td); 2109 error = namei(&nd); 2110 if (error) 2111 goto done; 2112 2113 NDFREE(&nd, NDF_ONLY_PNBUF); 2114 vp = nd.ni_vp; 2115 2116 if (vn_isdisk(vp, &error)) { 2117 error = swapongeom(td, vp); 2118 } else if (vp->v_type == VREG && 2119 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2120 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2121 /* 2122 * Allow direct swapping to NFS regular files in the same 2123 * way that nfs_mountroot() sets up diskless swapping. 2124 */ 2125 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2126 } 2127 2128 if (error) 2129 vrele(vp); 2130 done: 2131 swdev_syscall_active = 0; 2132 wakeup_one(&swdev_syscall_active); 2133 mtx_unlock(&Giant); 2134 return (error); 2135 } 2136 2137 static void 2138 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2139 { 2140 struct swdevt *sp, *tsp; 2141 swblk_t dvbase; 2142 u_long mblocks; 2143 2144 /* 2145 * If we go beyond this, we get overflows in the radix 2146 * tree bitmap code. 2147 */ 2148 mblocks = 0x40000000 / BLIST_META_RADIX; 2149 if (nblks > mblocks) { 2150 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2151 mblocks); 2152 nblks = mblocks; 2153 } 2154 /* 2155 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2156 * First chop nblks off to page-align it, then convert. 2157 * 2158 * sw->sw_nblks is in page-sized chunks now too. 2159 */ 2160 nblks &= ~(ctodb(1) - 1); 2161 nblks = dbtoc(nblks); 2162 2163 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2164 sp->sw_vp = vp; 2165 sp->sw_id = id; 2166 sp->sw_dev = dev; 2167 sp->sw_flags = 0; 2168 sp->sw_nblks = nblks; 2169 sp->sw_used = 0; 2170 sp->sw_strategy = strategy; 2171 sp->sw_close = close; 2172 2173 sp->sw_blist = blist_create(nblks, M_WAITOK); 2174 /* 2175 * Do not free the first two block in order to avoid overwriting 2176 * any bsd label at the front of the partition 2177 */ 2178 blist_free(sp->sw_blist, 2, nblks - 2); 2179 2180 dvbase = 0; 2181 mtx_lock(&sw_dev_mtx); 2182 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2183 if (tsp->sw_end >= dvbase) { 2184 /* 2185 * We put one uncovered page between the devices 2186 * in order to definitively prevent any cross-device 2187 * I/O requests 2188 */ 2189 dvbase = tsp->sw_end + 1; 2190 } 2191 } 2192 sp->sw_first = dvbase; 2193 sp->sw_end = dvbase + nblks; 2194 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2195 nswapdev++; 2196 swap_pager_avail += nblks; 2197 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2198 swp_sizecheck(); 2199 mtx_unlock(&sw_dev_mtx); 2200 } 2201 2202 /* 2203 * SYSCALL: swapoff(devname) 2204 * 2205 * Disable swapping on the given device. 2206 * 2207 * XXX: Badly designed system call: it should use a device index 2208 * rather than filename as specification. We keep sw_vp around 2209 * only to make this work. 2210 */ 2211 #ifndef _SYS_SYSPROTO_H_ 2212 struct swapoff_args { 2213 char *name; 2214 }; 2215 #endif 2216 2217 /* 2218 * MPSAFE 2219 */ 2220 /* ARGSUSED */ 2221 int 2222 swapoff(struct thread *td, struct swapoff_args *uap) 2223 { 2224 struct vnode *vp; 2225 struct nameidata nd; 2226 struct swdevt *sp; 2227 int error; 2228 2229 error = priv_check(td, PRIV_SWAPOFF); 2230 if (error) 2231 return (error); 2232 2233 mtx_lock(&Giant); 2234 while (swdev_syscall_active) 2235 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2236 swdev_syscall_active = 1; 2237 2238 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2239 td); 2240 error = namei(&nd); 2241 if (error) 2242 goto done; 2243 NDFREE(&nd, NDF_ONLY_PNBUF); 2244 vp = nd.ni_vp; 2245 2246 mtx_lock(&sw_dev_mtx); 2247 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2248 if (sp->sw_vp == vp) 2249 break; 2250 } 2251 mtx_unlock(&sw_dev_mtx); 2252 if (sp == NULL) { 2253 error = EINVAL; 2254 goto done; 2255 } 2256 error = swapoff_one(sp, td->td_ucred); 2257 done: 2258 swdev_syscall_active = 0; 2259 wakeup_one(&swdev_syscall_active); 2260 mtx_unlock(&Giant); 2261 return (error); 2262 } 2263 2264 static int 2265 swapoff_one(struct swdevt *sp, struct ucred *cred) 2266 { 2267 u_long nblks, dvbase; 2268 #ifdef MAC 2269 int error; 2270 #endif 2271 2272 mtx_assert(&Giant, MA_OWNED); 2273 #ifdef MAC 2274 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2275 error = mac_system_check_swapoff(cred, sp->sw_vp); 2276 (void) VOP_UNLOCK(sp->sw_vp, 0); 2277 if (error != 0) 2278 return (error); 2279 #endif 2280 nblks = sp->sw_nblks; 2281 2282 /* 2283 * We can turn off this swap device safely only if the 2284 * available virtual memory in the system will fit the amount 2285 * of data we will have to page back in, plus an epsilon so 2286 * the system doesn't become critically low on swap space. 2287 */ 2288 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2289 nblks + nswap_lowat) { 2290 return (ENOMEM); 2291 } 2292 2293 /* 2294 * Prevent further allocations on this device. 2295 */ 2296 mtx_lock(&sw_dev_mtx); 2297 sp->sw_flags |= SW_CLOSING; 2298 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2299 swap_pager_avail -= blist_fill(sp->sw_blist, 2300 dvbase, dmmax); 2301 } 2302 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2303 mtx_unlock(&sw_dev_mtx); 2304 2305 /* 2306 * Page in the contents of the device and close it. 2307 */ 2308 swap_pager_swapoff(sp); 2309 2310 sp->sw_close(curthread, sp); 2311 sp->sw_id = NULL; 2312 mtx_lock(&sw_dev_mtx); 2313 TAILQ_REMOVE(&swtailq, sp, sw_list); 2314 nswapdev--; 2315 if (nswapdev == 0) { 2316 swap_pager_full = 2; 2317 swap_pager_almost_full = 1; 2318 } 2319 if (swdevhd == sp) 2320 swdevhd = NULL; 2321 mtx_unlock(&sw_dev_mtx); 2322 blist_destroy(sp->sw_blist); 2323 free(sp, M_VMPGDATA); 2324 return (0); 2325 } 2326 2327 void 2328 swapoff_all(void) 2329 { 2330 struct swdevt *sp, *spt; 2331 const char *devname; 2332 int error; 2333 2334 mtx_lock(&Giant); 2335 while (swdev_syscall_active) 2336 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2337 swdev_syscall_active = 1; 2338 2339 mtx_lock(&sw_dev_mtx); 2340 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2341 mtx_unlock(&sw_dev_mtx); 2342 if (vn_isdisk(sp->sw_vp, NULL)) 2343 devname = sp->sw_vp->v_rdev->si_name; 2344 else 2345 devname = "[file]"; 2346 error = swapoff_one(sp, thread0.td_ucred); 2347 if (error != 0) { 2348 printf("Cannot remove swap device %s (error=%d), " 2349 "skipping.\n", devname, error); 2350 } else if (bootverbose) { 2351 printf("Swap device %s removed.\n", devname); 2352 } 2353 mtx_lock(&sw_dev_mtx); 2354 } 2355 mtx_unlock(&sw_dev_mtx); 2356 2357 swdev_syscall_active = 0; 2358 wakeup_one(&swdev_syscall_active); 2359 mtx_unlock(&Giant); 2360 } 2361 2362 void 2363 swap_pager_status(int *total, int *used) 2364 { 2365 struct swdevt *sp; 2366 2367 *total = 0; 2368 *used = 0; 2369 mtx_lock(&sw_dev_mtx); 2370 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2371 *total += sp->sw_nblks; 2372 *used += sp->sw_used; 2373 } 2374 mtx_unlock(&sw_dev_mtx); 2375 } 2376 2377 static int 2378 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2379 { 2380 int *name = (int *)arg1; 2381 int error, n; 2382 struct xswdev xs; 2383 struct swdevt *sp; 2384 2385 if (arg2 != 1) /* name length */ 2386 return (EINVAL); 2387 2388 n = 0; 2389 mtx_lock(&sw_dev_mtx); 2390 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2391 if (n == *name) { 2392 mtx_unlock(&sw_dev_mtx); 2393 xs.xsw_version = XSWDEV_VERSION; 2394 xs.xsw_dev = sp->sw_dev; 2395 xs.xsw_flags = sp->sw_flags; 2396 xs.xsw_nblks = sp->sw_nblks; 2397 xs.xsw_used = sp->sw_used; 2398 2399 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2400 return (error); 2401 } 2402 n++; 2403 } 2404 mtx_unlock(&sw_dev_mtx); 2405 return (ENOENT); 2406 } 2407 2408 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2409 "Number of swap devices"); 2410 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2411 "Swap statistics by device"); 2412 2413 /* 2414 * vmspace_swap_count() - count the approximate swap usage in pages for a 2415 * vmspace. 2416 * 2417 * The map must be locked. 2418 * 2419 * Swap usage is determined by taking the proportional swap used by 2420 * VM objects backing the VM map. To make up for fractional losses, 2421 * if the VM object has any swap use at all the associated map entries 2422 * count for at least 1 swap page. 2423 */ 2424 int 2425 vmspace_swap_count(struct vmspace *vmspace) 2426 { 2427 vm_map_t map = &vmspace->vm_map; 2428 vm_map_entry_t cur; 2429 int count = 0; 2430 2431 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2432 vm_object_t object; 2433 2434 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2435 (object = cur->object.vm_object) != NULL) { 2436 VM_OBJECT_LOCK(object); 2437 if (object->type == OBJT_SWAP && 2438 object->un_pager.swp.swp_bcount != 0) { 2439 int n = (cur->end - cur->start) / PAGE_SIZE; 2440 2441 count += object->un_pager.swp.swp_bcount * 2442 SWAP_META_PAGES * n / object->size + 1; 2443 } 2444 VM_OBJECT_UNLOCK(object); 2445 } 2446 } 2447 return (count); 2448 } 2449 2450 /* 2451 * GEOM backend 2452 * 2453 * Swapping onto disk devices. 2454 * 2455 */ 2456 2457 static g_orphan_t swapgeom_orphan; 2458 2459 static struct g_class g_swap_class = { 2460 .name = "SWAP", 2461 .version = G_VERSION, 2462 .orphan = swapgeom_orphan, 2463 }; 2464 2465 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2466 2467 2468 static void 2469 swapgeom_done(struct bio *bp2) 2470 { 2471 struct buf *bp; 2472 2473 bp = bp2->bio_caller2; 2474 bp->b_ioflags = bp2->bio_flags; 2475 if (bp2->bio_error) 2476 bp->b_ioflags |= BIO_ERROR; 2477 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2478 bp->b_error = bp2->bio_error; 2479 bufdone(bp); 2480 g_destroy_bio(bp2); 2481 } 2482 2483 static void 2484 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2485 { 2486 struct bio *bio; 2487 struct g_consumer *cp; 2488 2489 cp = sp->sw_id; 2490 if (cp == NULL) { 2491 bp->b_error = ENXIO; 2492 bp->b_ioflags |= BIO_ERROR; 2493 bufdone(bp); 2494 return; 2495 } 2496 if (bp->b_iocmd == BIO_WRITE) 2497 bio = g_new_bio(); 2498 else 2499 bio = g_alloc_bio(); 2500 if (bio == NULL) { 2501 bp->b_error = ENOMEM; 2502 bp->b_ioflags |= BIO_ERROR; 2503 bufdone(bp); 2504 return; 2505 } 2506 2507 bio->bio_caller2 = bp; 2508 bio->bio_cmd = bp->b_iocmd; 2509 bio->bio_data = bp->b_data; 2510 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2511 bio->bio_length = bp->b_bcount; 2512 bio->bio_done = swapgeom_done; 2513 g_io_request(bio, cp); 2514 return; 2515 } 2516 2517 static void 2518 swapgeom_orphan(struct g_consumer *cp) 2519 { 2520 struct swdevt *sp; 2521 2522 mtx_lock(&sw_dev_mtx); 2523 TAILQ_FOREACH(sp, &swtailq, sw_list) 2524 if (sp->sw_id == cp) 2525 sp->sw_id = NULL; 2526 mtx_unlock(&sw_dev_mtx); 2527 } 2528 2529 static void 2530 swapgeom_close_ev(void *arg, int flags) 2531 { 2532 struct g_consumer *cp; 2533 2534 cp = arg; 2535 g_access(cp, -1, -1, 0); 2536 g_detach(cp); 2537 g_destroy_consumer(cp); 2538 } 2539 2540 static void 2541 swapgeom_close(struct thread *td, struct swdevt *sw) 2542 { 2543 2544 /* XXX: direct call when Giant untangled */ 2545 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2546 } 2547 2548 2549 struct swh0h0 { 2550 struct cdev *dev; 2551 struct vnode *vp; 2552 int error; 2553 }; 2554 2555 static void 2556 swapongeom_ev(void *arg, int flags) 2557 { 2558 struct swh0h0 *swh; 2559 struct g_provider *pp; 2560 struct g_consumer *cp; 2561 static struct g_geom *gp; 2562 struct swdevt *sp; 2563 u_long nblks; 2564 int error; 2565 2566 swh = arg; 2567 swh->error = 0; 2568 pp = g_dev_getprovider(swh->dev); 2569 if (pp == NULL) { 2570 swh->error = ENODEV; 2571 return; 2572 } 2573 mtx_lock(&sw_dev_mtx); 2574 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2575 cp = sp->sw_id; 2576 if (cp != NULL && cp->provider == pp) { 2577 mtx_unlock(&sw_dev_mtx); 2578 swh->error = EBUSY; 2579 return; 2580 } 2581 } 2582 mtx_unlock(&sw_dev_mtx); 2583 if (gp == NULL) 2584 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2585 cp = g_new_consumer(gp); 2586 g_attach(cp, pp); 2587 /* 2588 * XXX: Everytime you think you can improve the margin for 2589 * footshooting, somebody depends on the ability to do so: 2590 * savecore(8) wants to write to our swapdev so we cannot 2591 * set an exclusive count :-( 2592 */ 2593 error = g_access(cp, 1, 1, 0); 2594 if (error) { 2595 g_detach(cp); 2596 g_destroy_consumer(cp); 2597 swh->error = error; 2598 return; 2599 } 2600 nblks = pp->mediasize / DEV_BSIZE; 2601 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2602 swapgeom_close, dev2udev(swh->dev)); 2603 swh->error = 0; 2604 return; 2605 } 2606 2607 static int 2608 swapongeom(struct thread *td, struct vnode *vp) 2609 { 2610 int error; 2611 struct swh0h0 swh; 2612 2613 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2614 2615 swh.dev = vp->v_rdev; 2616 swh.vp = vp; 2617 swh.error = 0; 2618 /* XXX: direct call when Giant untangled */ 2619 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2620 if (!error) 2621 error = swh.error; 2622 VOP_UNLOCK(vp, 0); 2623 return (error); 2624 } 2625 2626 /* 2627 * VNODE backend 2628 * 2629 * This is used mainly for network filesystem (read: probably only tested 2630 * with NFS) swapfiles. 2631 * 2632 */ 2633 2634 static void 2635 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2636 { 2637 struct vnode *vp2; 2638 2639 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2640 2641 vp2 = sp->sw_id; 2642 vhold(vp2); 2643 if (bp->b_iocmd == BIO_WRITE) { 2644 if (bp->b_bufobj) 2645 bufobj_wdrop(bp->b_bufobj); 2646 bufobj_wref(&vp2->v_bufobj); 2647 } 2648 if (bp->b_bufobj != &vp2->v_bufobj) 2649 bp->b_bufobj = &vp2->v_bufobj; 2650 bp->b_vp = vp2; 2651 bp->b_iooffset = dbtob(bp->b_blkno); 2652 bstrategy(bp); 2653 return; 2654 } 2655 2656 static void 2657 swapdev_close(struct thread *td, struct swdevt *sp) 2658 { 2659 2660 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2661 vrele(sp->sw_vp); 2662 } 2663 2664 2665 static int 2666 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2667 { 2668 struct swdevt *sp; 2669 int error; 2670 2671 if (nblks == 0) 2672 return (ENXIO); 2673 mtx_lock(&sw_dev_mtx); 2674 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2675 if (sp->sw_id == vp) { 2676 mtx_unlock(&sw_dev_mtx); 2677 return (EBUSY); 2678 } 2679 } 2680 mtx_unlock(&sw_dev_mtx); 2681 2682 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2683 #ifdef MAC 2684 error = mac_system_check_swapon(td->td_ucred, vp); 2685 if (error == 0) 2686 #endif 2687 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2688 (void) VOP_UNLOCK(vp, 0); 2689 if (error) 2690 return (error); 2691 2692 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2693 NODEV); 2694 return (0); 2695 } 2696