xref: /freebsd/sys/vm/swap_pager.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/resource.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysproto.h>
93 #include <sys/blist.h>
94 #include <sys/lock.h>
95 #include <sys/sx.h>
96 #include <sys/vmmeter.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/vm.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_param.h>
109 #include <vm/swap_pager.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 
113 #include <geom/geom.h>
114 
115 /*
116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
117  * pages per allocation.  We recommend you stick with the default of 8.
118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
119  */
120 #ifndef MAX_PAGEOUT_CLUSTER
121 #define MAX_PAGEOUT_CLUSTER 16
122 #endif
123 
124 #if !defined(SWB_NPAGES)
125 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
126 #endif
127 
128 /*
129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
130  *
131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
133  * 32K worth of data, two levels represent 256K, three levels represent
134  * 2 MBytes.   This is acceptable.
135  *
136  * Overall memory utilization is about the same as the old swap structure.
137  */
138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
139 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
140 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
141 
142 struct swblock {
143 	struct swblock	*swb_hnext;
144 	vm_object_t	swb_object;
145 	vm_pindex_t	swb_index;
146 	int		swb_count;
147 	daddr_t		swb_pages[SWAP_META_PAGES];
148 };
149 
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 
168 /* bits from overcommit */
169 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
170 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
171 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
172 
173 int
174 swap_reserve(vm_ooffset_t incr)
175 {
176 
177 	return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo));
178 }
179 
180 int
181 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip)
182 {
183 	vm_ooffset_t r, s;
184 	int res, error;
185 	static int curfail;
186 	static struct timeval lastfail;
187 
188 	if (incr & PAGE_MASK)
189 		panic("swap_reserve: & PAGE_MASK");
190 
191 	res = 0;
192 	mtx_lock(&sw_dev_mtx);
193 	r = swap_reserved + incr;
194 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
195 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
196 		s *= PAGE_SIZE;
197 	} else
198 		s = 0;
199 	s += swap_total;
200 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
201 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
202 		res = 1;
203 		swap_reserved = r;
204 	}
205 	mtx_unlock(&sw_dev_mtx);
206 
207 	if (res) {
208 		PROC_LOCK(curproc);
209 		UIDINFO_VMSIZE_LOCK(uip);
210 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
211 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
212 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
213 			res = 0;
214 		else
215 			uip->ui_vmsize += incr;
216 		UIDINFO_VMSIZE_UNLOCK(uip);
217 		PROC_UNLOCK(curproc);
218 		if (!res) {
219 			mtx_lock(&sw_dev_mtx);
220 			swap_reserved -= incr;
221 			mtx_unlock(&sw_dev_mtx);
222 		}
223 	}
224 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
225 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
226 		    curproc->p_pid, uip->ui_uid, incr);
227 	}
228 
229 	return (res);
230 }
231 
232 void
233 swap_reserve_force(vm_ooffset_t incr)
234 {
235 	struct uidinfo *uip;
236 
237 	mtx_lock(&sw_dev_mtx);
238 	swap_reserved += incr;
239 	mtx_unlock(&sw_dev_mtx);
240 
241 	uip = curthread->td_ucred->cr_ruidinfo;
242 	PROC_LOCK(curproc);
243 	UIDINFO_VMSIZE_LOCK(uip);
244 	uip->ui_vmsize += incr;
245 	UIDINFO_VMSIZE_UNLOCK(uip);
246 	PROC_UNLOCK(curproc);
247 }
248 
249 void
250 swap_release(vm_ooffset_t decr)
251 {
252 	struct uidinfo *uip;
253 
254 	PROC_LOCK(curproc);
255 	uip = curthread->td_ucred->cr_ruidinfo;
256 	swap_release_by_uid(decr, uip);
257 	PROC_UNLOCK(curproc);
258 }
259 
260 void
261 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip)
262 {
263 
264 	if (decr & PAGE_MASK)
265 		panic("swap_release: & PAGE_MASK");
266 
267 	mtx_lock(&sw_dev_mtx);
268 	if (swap_reserved < decr)
269 		panic("swap_reserved < decr");
270 	swap_reserved -= decr;
271 	mtx_unlock(&sw_dev_mtx);
272 
273 	UIDINFO_VMSIZE_LOCK(uip);
274 	if (uip->ui_vmsize < decr)
275 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
276 	uip->ui_vmsize -= decr;
277 	UIDINFO_VMSIZE_UNLOCK(uip);
278 }
279 
280 static void swapdev_strategy(struct buf *, struct swdevt *sw);
281 
282 #define SWM_FREE	0x02	/* free, period			*/
283 #define SWM_POP		0x04	/* pop out			*/
284 
285 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
286 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
287 static int nsw_rcount;		/* free read buffers			*/
288 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
289 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
290 static int nsw_wcount_async_max;/* assigned maximum			*/
291 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
292 
293 static struct swblock **swhash;
294 static int swhash_mask;
295 static struct mtx swhash_mtx;
296 
297 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
298 static struct sx sw_alloc_sx;
299 
300 
301 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
302         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
303 
304 /*
305  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
306  * of searching a named list by hashing it just a little.
307  */
308 
309 #define NOBJLISTS		8
310 
311 #define NOBJLIST(handle)	\
312 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
313 
314 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
315 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
316 static uma_zone_t	swap_zone;
317 static struct vm_object	swap_zone_obj;
318 
319 /*
320  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
321  * calls hooked from other parts of the VM system and do not appear here.
322  * (see vm/swap_pager.h).
323  */
324 static vm_object_t
325 		swap_pager_alloc(void *handle, vm_ooffset_t size,
326 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
327 static void	swap_pager_dealloc(vm_object_t object);
328 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
329 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
330 static boolean_t
331 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
332 static void	swap_pager_init(void);
333 static void	swap_pager_unswapped(vm_page_t);
334 static void	swap_pager_swapoff(struct swdevt *sp);
335 
336 struct pagerops swappagerops = {
337 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
338 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
339 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
340 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
341 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
342 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
343 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
344 };
345 
346 /*
347  * dmmax is in page-sized chunks with the new swap system.  It was
348  * dev-bsized chunks in the old.  dmmax is always a power of 2.
349  *
350  * swap_*() routines are externally accessible.  swp_*() routines are
351  * internal.
352  */
353 static int dmmax;
354 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
355 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
356 
357 SYSCTL_INT(_vm, OID_AUTO, dmmax,
358 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
359 
360 static void	swp_sizecheck(void);
361 static void	swp_pager_async_iodone(struct buf *bp);
362 static int	swapongeom(struct thread *, struct vnode *);
363 static int	swaponvp(struct thread *, struct vnode *, u_long);
364 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
365 
366 /*
367  * Swap bitmap functions
368  */
369 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
370 static daddr_t	swp_pager_getswapspace(int npages);
371 
372 /*
373  * Metadata functions
374  */
375 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
376 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
377 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
378 static void swp_pager_meta_free_all(vm_object_t);
379 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
380 
381 static void
382 swp_pager_free_nrpage(vm_page_t m)
383 {
384 
385 	vm_page_lock(m);
386 	if (m->wire_count == 0)
387 		vm_page_free(m);
388 	vm_page_unlock(m);
389 }
390 
391 /*
392  * SWP_SIZECHECK() -	update swap_pager_full indication
393  *
394  *	update the swap_pager_almost_full indication and warn when we are
395  *	about to run out of swap space, using lowat/hiwat hysteresis.
396  *
397  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
398  *
399  *	No restrictions on call
400  *	This routine may not block.
401  *	This routine must be called at splvm()
402  */
403 static void
404 swp_sizecheck(void)
405 {
406 
407 	if (swap_pager_avail < nswap_lowat) {
408 		if (swap_pager_almost_full == 0) {
409 			printf("swap_pager: out of swap space\n");
410 			swap_pager_almost_full = 1;
411 		}
412 	} else {
413 		swap_pager_full = 0;
414 		if (swap_pager_avail > nswap_hiwat)
415 			swap_pager_almost_full = 0;
416 	}
417 }
418 
419 /*
420  * SWP_PAGER_HASH() -	hash swap meta data
421  *
422  *	This is an helper function which hashes the swapblk given
423  *	the object and page index.  It returns a pointer to a pointer
424  *	to the object, or a pointer to a NULL pointer if it could not
425  *	find a swapblk.
426  *
427  *	This routine must be called at splvm().
428  */
429 static struct swblock **
430 swp_pager_hash(vm_object_t object, vm_pindex_t index)
431 {
432 	struct swblock **pswap;
433 	struct swblock *swap;
434 
435 	index &= ~(vm_pindex_t)SWAP_META_MASK;
436 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
437 	while ((swap = *pswap) != NULL) {
438 		if (swap->swb_object == object &&
439 		    swap->swb_index == index
440 		) {
441 			break;
442 		}
443 		pswap = &swap->swb_hnext;
444 	}
445 	return (pswap);
446 }
447 
448 /*
449  * SWAP_PAGER_INIT() -	initialize the swap pager!
450  *
451  *	Expected to be started from system init.  NOTE:  This code is run
452  *	before much else so be careful what you depend on.  Most of the VM
453  *	system has yet to be initialized at this point.
454  */
455 static void
456 swap_pager_init(void)
457 {
458 	/*
459 	 * Initialize object lists
460 	 */
461 	int i;
462 
463 	for (i = 0; i < NOBJLISTS; ++i)
464 		TAILQ_INIT(&swap_pager_object_list[i]);
465 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
466 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
467 
468 	/*
469 	 * Device Stripe, in PAGE_SIZE'd blocks
470 	 */
471 	dmmax = SWB_NPAGES * 2;
472 }
473 
474 /*
475  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
476  *
477  *	Expected to be started from pageout process once, prior to entering
478  *	its main loop.
479  */
480 void
481 swap_pager_swap_init(void)
482 {
483 	int n, n2;
484 
485 	/*
486 	 * Number of in-transit swap bp operations.  Don't
487 	 * exhaust the pbufs completely.  Make sure we
488 	 * initialize workable values (0 will work for hysteresis
489 	 * but it isn't very efficient).
490 	 *
491 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
492 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
493 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
494 	 * constrained by the swap device interleave stripe size.
495 	 *
496 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
497 	 * designed to prevent other I/O from having high latencies due to
498 	 * our pageout I/O.  The value 4 works well for one or two active swap
499 	 * devices but is probably a little low if you have more.  Even so,
500 	 * a higher value would probably generate only a limited improvement
501 	 * with three or four active swap devices since the system does not
502 	 * typically have to pageout at extreme bandwidths.   We will want
503 	 * at least 2 per swap devices, and 4 is a pretty good value if you
504 	 * have one NFS swap device due to the command/ack latency over NFS.
505 	 * So it all works out pretty well.
506 	 */
507 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
508 
509 	mtx_lock(&pbuf_mtx);
510 	nsw_rcount = (nswbuf + 1) / 2;
511 	nsw_wcount_sync = (nswbuf + 3) / 4;
512 	nsw_wcount_async = 4;
513 	nsw_wcount_async_max = nsw_wcount_async;
514 	mtx_unlock(&pbuf_mtx);
515 
516 	/*
517 	 * Initialize our zone.  Right now I'm just guessing on the number
518 	 * we need based on the number of pages in the system.  Each swblock
519 	 * can hold 16 pages, so this is probably overkill.  This reservation
520 	 * is typically limited to around 32MB by default.
521 	 */
522 	n = cnt.v_page_count / 2;
523 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
524 		n = maxswzone / sizeof(struct swblock);
525 	n2 = n;
526 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
527 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
528 	if (swap_zone == NULL)
529 		panic("failed to create swap_zone.");
530 	do {
531 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
532 			break;
533 		/*
534 		 * if the allocation failed, try a zone two thirds the
535 		 * size of the previous attempt.
536 		 */
537 		n -= ((n + 2) / 3);
538 	} while (n > 0);
539 	if (n2 != n)
540 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
541 	n2 = n;
542 
543 	/*
544 	 * Initialize our meta-data hash table.  The swapper does not need to
545 	 * be quite as efficient as the VM system, so we do not use an
546 	 * oversized hash table.
547 	 *
548 	 * 	n: 		size of hash table, must be power of 2
549 	 *	swhash_mask:	hash table index mask
550 	 */
551 	for (n = 1; n < n2 / 8; n *= 2)
552 		;
553 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
554 	swhash_mask = n - 1;
555 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
556 }
557 
558 /*
559  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
560  *			its metadata structures.
561  *
562  *	This routine is called from the mmap and fork code to create a new
563  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
564  *	and then converting it with swp_pager_meta_build().
565  *
566  *	This routine may block in vm_object_allocate() and create a named
567  *	object lookup race, so we must interlock.   We must also run at
568  *	splvm() for the object lookup to handle races with interrupts, but
569  *	we do not have to maintain splvm() in between the lookup and the
570  *	add because (I believe) it is not possible to attempt to create
571  *	a new swap object w/handle when a default object with that handle
572  *	already exists.
573  *
574  * MPSAFE
575  */
576 static vm_object_t
577 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
578     vm_ooffset_t offset, struct ucred *cred)
579 {
580 	vm_object_t object;
581 	vm_pindex_t pindex;
582 	struct uidinfo *uip;
583 
584 	uip = NULL;
585 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
586 	if (handle) {
587 		mtx_lock(&Giant);
588 		/*
589 		 * Reference existing named region or allocate new one.  There
590 		 * should not be a race here against swp_pager_meta_build()
591 		 * as called from vm_page_remove() in regards to the lookup
592 		 * of the handle.
593 		 */
594 		sx_xlock(&sw_alloc_sx);
595 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
596 		if (object == NULL) {
597 			if (cred != NULL) {
598 				uip = cred->cr_ruidinfo;
599 				if (!swap_reserve_by_uid(size, uip)) {
600 					sx_xunlock(&sw_alloc_sx);
601 					mtx_unlock(&Giant);
602 					return (NULL);
603 				}
604 				uihold(uip);
605 			}
606 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
607 			VM_OBJECT_LOCK(object);
608 			object->handle = handle;
609 			if (cred != NULL) {
610 				object->uip = uip;
611 				object->charge = size;
612 			}
613 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
614 			VM_OBJECT_UNLOCK(object);
615 		}
616 		sx_xunlock(&sw_alloc_sx);
617 		mtx_unlock(&Giant);
618 	} else {
619 		if (cred != NULL) {
620 			uip = cred->cr_ruidinfo;
621 			if (!swap_reserve_by_uid(size, uip))
622 				return (NULL);
623 			uihold(uip);
624 		}
625 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
626 		VM_OBJECT_LOCK(object);
627 		if (cred != NULL) {
628 			object->uip = uip;
629 			object->charge = size;
630 		}
631 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
632 		VM_OBJECT_UNLOCK(object);
633 	}
634 	return (object);
635 }
636 
637 /*
638  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
639  *
640  *	The swap backing for the object is destroyed.  The code is
641  *	designed such that we can reinstantiate it later, but this
642  *	routine is typically called only when the entire object is
643  *	about to be destroyed.
644  *
645  *	This routine may block, but no longer does.
646  *
647  *	The object must be locked or unreferenceable.
648  */
649 static void
650 swap_pager_dealloc(vm_object_t object)
651 {
652 
653 	/*
654 	 * Remove from list right away so lookups will fail if we block for
655 	 * pageout completion.
656 	 */
657 	if (object->handle != NULL) {
658 		mtx_lock(&sw_alloc_mtx);
659 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
660 		mtx_unlock(&sw_alloc_mtx);
661 	}
662 
663 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
664 	vm_object_pip_wait(object, "swpdea");
665 
666 	/*
667 	 * Free all remaining metadata.  We only bother to free it from
668 	 * the swap meta data.  We do not attempt to free swapblk's still
669 	 * associated with vm_page_t's for this object.  We do not care
670 	 * if paging is still in progress on some objects.
671 	 */
672 	swp_pager_meta_free_all(object);
673 }
674 
675 /************************************************************************
676  *			SWAP PAGER BITMAP ROUTINES			*
677  ************************************************************************/
678 
679 /*
680  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
681  *
682  *	Allocate swap for the requested number of pages.  The starting
683  *	swap block number (a page index) is returned or SWAPBLK_NONE
684  *	if the allocation failed.
685  *
686  *	Also has the side effect of advising that somebody made a mistake
687  *	when they configured swap and didn't configure enough.
688  *
689  *	Must be called at splvm() to avoid races with bitmap frees from
690  *	vm_page_remove() aka swap_pager_page_removed().
691  *
692  *	This routine may not block
693  *	This routine must be called at splvm().
694  *
695  *	We allocate in round-robin fashion from the configured devices.
696  */
697 static daddr_t
698 swp_pager_getswapspace(int npages)
699 {
700 	daddr_t blk;
701 	struct swdevt *sp;
702 	int i;
703 
704 	blk = SWAPBLK_NONE;
705 	mtx_lock(&sw_dev_mtx);
706 	sp = swdevhd;
707 	for (i = 0; i < nswapdev; i++) {
708 		if (sp == NULL)
709 			sp = TAILQ_FIRST(&swtailq);
710 		if (!(sp->sw_flags & SW_CLOSING)) {
711 			blk = blist_alloc(sp->sw_blist, npages);
712 			if (blk != SWAPBLK_NONE) {
713 				blk += sp->sw_first;
714 				sp->sw_used += npages;
715 				swap_pager_avail -= npages;
716 				swp_sizecheck();
717 				swdevhd = TAILQ_NEXT(sp, sw_list);
718 				goto done;
719 			}
720 		}
721 		sp = TAILQ_NEXT(sp, sw_list);
722 	}
723 	if (swap_pager_full != 2) {
724 		printf("swap_pager_getswapspace(%d): failed\n", npages);
725 		swap_pager_full = 2;
726 		swap_pager_almost_full = 1;
727 	}
728 	swdevhd = NULL;
729 done:
730 	mtx_unlock(&sw_dev_mtx);
731 	return (blk);
732 }
733 
734 static int
735 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
736 {
737 
738 	return (blk >= sp->sw_first && blk < sp->sw_end);
739 }
740 
741 static void
742 swp_pager_strategy(struct buf *bp)
743 {
744 	struct swdevt *sp;
745 
746 	mtx_lock(&sw_dev_mtx);
747 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
748 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
749 			mtx_unlock(&sw_dev_mtx);
750 			sp->sw_strategy(bp, sp);
751 			return;
752 		}
753 	}
754 	panic("Swapdev not found");
755 }
756 
757 
758 /*
759  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
760  *
761  *	This routine returns the specified swap blocks back to the bitmap.
762  *
763  *	Note:  This routine may not block (it could in the old swap code),
764  *	and through the use of the new blist routines it does not block.
765  *
766  *	We must be called at splvm() to avoid races with bitmap frees from
767  *	vm_page_remove() aka swap_pager_page_removed().
768  *
769  *	This routine may not block
770  *	This routine must be called at splvm().
771  */
772 static void
773 swp_pager_freeswapspace(daddr_t blk, int npages)
774 {
775 	struct swdevt *sp;
776 
777 	mtx_lock(&sw_dev_mtx);
778 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
779 		if (blk >= sp->sw_first && blk < sp->sw_end) {
780 			sp->sw_used -= npages;
781 			/*
782 			 * If we are attempting to stop swapping on
783 			 * this device, we don't want to mark any
784 			 * blocks free lest they be reused.
785 			 */
786 			if ((sp->sw_flags & SW_CLOSING) == 0) {
787 				blist_free(sp->sw_blist, blk - sp->sw_first,
788 				    npages);
789 				swap_pager_avail += npages;
790 				swp_sizecheck();
791 			}
792 			mtx_unlock(&sw_dev_mtx);
793 			return;
794 		}
795 	}
796 	panic("Swapdev not found");
797 }
798 
799 /*
800  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
801  *				range within an object.
802  *
803  *	This is a globally accessible routine.
804  *
805  *	This routine removes swapblk assignments from swap metadata.
806  *
807  *	The external callers of this routine typically have already destroyed
808  *	or renamed vm_page_t's associated with this range in the object so
809  *	we should be ok.
810  *
811  *	This routine may be called at any spl.  We up our spl to splvm temporarily
812  *	in order to perform the metadata removal.
813  */
814 void
815 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
816 {
817 
818 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
819 	swp_pager_meta_free(object, start, size);
820 }
821 
822 /*
823  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
824  *
825  *	Assigns swap blocks to the specified range within the object.  The
826  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
827  *
828  *	Returns 0 on success, -1 on failure.
829  */
830 int
831 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
832 {
833 	int n = 0;
834 	daddr_t blk = SWAPBLK_NONE;
835 	vm_pindex_t beg = start;	/* save start index */
836 
837 	VM_OBJECT_LOCK(object);
838 	while (size) {
839 		if (n == 0) {
840 			n = BLIST_MAX_ALLOC;
841 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
842 				n >>= 1;
843 				if (n == 0) {
844 					swp_pager_meta_free(object, beg, start - beg);
845 					VM_OBJECT_UNLOCK(object);
846 					return (-1);
847 				}
848 			}
849 		}
850 		swp_pager_meta_build(object, start, blk);
851 		--size;
852 		++start;
853 		++blk;
854 		--n;
855 	}
856 	swp_pager_meta_free(object, start, n);
857 	VM_OBJECT_UNLOCK(object);
858 	return (0);
859 }
860 
861 /*
862  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
863  *			and destroy the source.
864  *
865  *	Copy any valid swapblks from the source to the destination.  In
866  *	cases where both the source and destination have a valid swapblk,
867  *	we keep the destination's.
868  *
869  *	This routine is allowed to block.  It may block allocating metadata
870  *	indirectly through swp_pager_meta_build() or if paging is still in
871  *	progress on the source.
872  *
873  *	This routine can be called at any spl
874  *
875  *	XXX vm_page_collapse() kinda expects us not to block because we
876  *	supposedly do not need to allocate memory, but for the moment we
877  *	*may* have to get a little memory from the zone allocator, but
878  *	it is taken from the interrupt memory.  We should be ok.
879  *
880  *	The source object contains no vm_page_t's (which is just as well)
881  *
882  *	The source object is of type OBJT_SWAP.
883  *
884  *	The source and destination objects must be locked or
885  *	inaccessible (XXX are they ?)
886  */
887 void
888 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
889     vm_pindex_t offset, int destroysource)
890 {
891 	vm_pindex_t i;
892 
893 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
894 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
895 
896 	/*
897 	 * If destroysource is set, we remove the source object from the
898 	 * swap_pager internal queue now.
899 	 */
900 	if (destroysource) {
901 		if (srcobject->handle != NULL) {
902 			mtx_lock(&sw_alloc_mtx);
903 			TAILQ_REMOVE(
904 			    NOBJLIST(srcobject->handle),
905 			    srcobject,
906 			    pager_object_list
907 			);
908 			mtx_unlock(&sw_alloc_mtx);
909 		}
910 	}
911 
912 	/*
913 	 * transfer source to destination.
914 	 */
915 	for (i = 0; i < dstobject->size; ++i) {
916 		daddr_t dstaddr;
917 
918 		/*
919 		 * Locate (without changing) the swapblk on the destination,
920 		 * unless it is invalid in which case free it silently, or
921 		 * if the destination is a resident page, in which case the
922 		 * source is thrown away.
923 		 */
924 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
925 
926 		if (dstaddr == SWAPBLK_NONE) {
927 			/*
928 			 * Destination has no swapblk and is not resident,
929 			 * copy source.
930 			 */
931 			daddr_t srcaddr;
932 
933 			srcaddr = swp_pager_meta_ctl(
934 			    srcobject,
935 			    i + offset,
936 			    SWM_POP
937 			);
938 
939 			if (srcaddr != SWAPBLK_NONE) {
940 				/*
941 				 * swp_pager_meta_build() can sleep.
942 				 */
943 				vm_object_pip_add(srcobject, 1);
944 				VM_OBJECT_UNLOCK(srcobject);
945 				vm_object_pip_add(dstobject, 1);
946 				swp_pager_meta_build(dstobject, i, srcaddr);
947 				vm_object_pip_wakeup(dstobject);
948 				VM_OBJECT_LOCK(srcobject);
949 				vm_object_pip_wakeup(srcobject);
950 			}
951 		} else {
952 			/*
953 			 * Destination has valid swapblk or it is represented
954 			 * by a resident page.  We destroy the sourceblock.
955 			 */
956 
957 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
958 		}
959 	}
960 
961 	/*
962 	 * Free left over swap blocks in source.
963 	 *
964 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
965 	 * double-remove the object from the swap queues.
966 	 */
967 	if (destroysource) {
968 		swp_pager_meta_free_all(srcobject);
969 		/*
970 		 * Reverting the type is not necessary, the caller is going
971 		 * to destroy srcobject directly, but I'm doing it here
972 		 * for consistency since we've removed the object from its
973 		 * queues.
974 		 */
975 		srcobject->type = OBJT_DEFAULT;
976 	}
977 }
978 
979 /*
980  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
981  *				the requested page.
982  *
983  *	We determine whether good backing store exists for the requested
984  *	page and return TRUE if it does, FALSE if it doesn't.
985  *
986  *	If TRUE, we also try to determine how much valid, contiguous backing
987  *	store exists before and after the requested page within a reasonable
988  *	distance.  We do not try to restrict it to the swap device stripe
989  *	(that is handled in getpages/putpages).  It probably isn't worth
990  *	doing here.
991  */
992 static boolean_t
993 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
994 {
995 	daddr_t blk0;
996 
997 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
998 	/*
999 	 * do we have good backing store at the requested index ?
1000 	 */
1001 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1002 
1003 	if (blk0 == SWAPBLK_NONE) {
1004 		if (before)
1005 			*before = 0;
1006 		if (after)
1007 			*after = 0;
1008 		return (FALSE);
1009 	}
1010 
1011 	/*
1012 	 * find backwards-looking contiguous good backing store
1013 	 */
1014 	if (before != NULL) {
1015 		int i;
1016 
1017 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1018 			daddr_t blk;
1019 
1020 			if (i > pindex)
1021 				break;
1022 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1023 			if (blk != blk0 - i)
1024 				break;
1025 		}
1026 		*before = (i - 1);
1027 	}
1028 
1029 	/*
1030 	 * find forward-looking contiguous good backing store
1031 	 */
1032 	if (after != NULL) {
1033 		int i;
1034 
1035 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1036 			daddr_t blk;
1037 
1038 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1039 			if (blk != blk0 + i)
1040 				break;
1041 		}
1042 		*after = (i - 1);
1043 	}
1044 	return (TRUE);
1045 }
1046 
1047 /*
1048  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1049  *
1050  *	This removes any associated swap backing store, whether valid or
1051  *	not, from the page.
1052  *
1053  *	This routine is typically called when a page is made dirty, at
1054  *	which point any associated swap can be freed.  MADV_FREE also
1055  *	calls us in a special-case situation
1056  *
1057  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1058  *	should make the page dirty before calling this routine.  This routine
1059  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1060  *	depends on it.
1061  *
1062  *	This routine may not block
1063  *	This routine must be called at splvm()
1064  */
1065 static void
1066 swap_pager_unswapped(vm_page_t m)
1067 {
1068 
1069 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1070 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1071 }
1072 
1073 /*
1074  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1075  *
1076  *	Attempt to retrieve (m, count) pages from backing store, but make
1077  *	sure we retrieve at least m[reqpage].  We try to load in as large
1078  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1079  *	belongs to the same object.
1080  *
1081  *	The code is designed for asynchronous operation and
1082  *	immediate-notification of 'reqpage' but tends not to be
1083  *	used that way.  Please do not optimize-out this algorithmic
1084  *	feature, I intend to improve on it in the future.
1085  *
1086  *	The parent has a single vm_object_pip_add() reference prior to
1087  *	calling us and we should return with the same.
1088  *
1089  *	The parent has BUSY'd the pages.  We should return with 'm'
1090  *	left busy, but the others adjusted.
1091  */
1092 static int
1093 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1094 {
1095 	struct buf *bp;
1096 	vm_page_t mreq;
1097 	int i;
1098 	int j;
1099 	daddr_t blk;
1100 
1101 	mreq = m[reqpage];
1102 
1103 	KASSERT(mreq->object == object,
1104 	    ("swap_pager_getpages: object mismatch %p/%p",
1105 	    object, mreq->object));
1106 
1107 	/*
1108 	 * Calculate range to retrieve.  The pages have already been assigned
1109 	 * their swapblks.  We require a *contiguous* range but we know it to
1110 	 * not span devices.   If we do not supply it, bad things
1111 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1112 	 * loops are set up such that the case(s) are handled implicitly.
1113 	 *
1114 	 * The swp_*() calls must be made with the object locked.
1115 	 */
1116 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1117 
1118 	for (i = reqpage - 1; i >= 0; --i) {
1119 		daddr_t iblk;
1120 
1121 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1122 		if (blk != iblk + (reqpage - i))
1123 			break;
1124 	}
1125 	++i;
1126 
1127 	for (j = reqpage + 1; j < count; ++j) {
1128 		daddr_t jblk;
1129 
1130 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1131 		if (blk != jblk - (j - reqpage))
1132 			break;
1133 	}
1134 
1135 	/*
1136 	 * free pages outside our collection range.   Note: we never free
1137 	 * mreq, it must remain busy throughout.
1138 	 */
1139 	if (0 < i || j < count) {
1140 		int k;
1141 
1142 		for (k = 0; k < i; ++k)
1143 			swp_pager_free_nrpage(m[k]);
1144 		for (k = j; k < count; ++k)
1145 			swp_pager_free_nrpage(m[k]);
1146 	}
1147 
1148 	/*
1149 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1150 	 * still busy, but the others unbusied.
1151 	 */
1152 	if (blk == SWAPBLK_NONE)
1153 		return (VM_PAGER_FAIL);
1154 
1155 	/*
1156 	 * Getpbuf() can sleep.
1157 	 */
1158 	VM_OBJECT_UNLOCK(object);
1159 	/*
1160 	 * Get a swap buffer header to perform the IO
1161 	 */
1162 	bp = getpbuf(&nsw_rcount);
1163 	bp->b_flags |= B_PAGING;
1164 
1165 	/*
1166 	 * map our page(s) into kva for input
1167 	 */
1168 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1169 
1170 	bp->b_iocmd = BIO_READ;
1171 	bp->b_iodone = swp_pager_async_iodone;
1172 	bp->b_rcred = crhold(thread0.td_ucred);
1173 	bp->b_wcred = crhold(thread0.td_ucred);
1174 	bp->b_blkno = blk - (reqpage - i);
1175 	bp->b_bcount = PAGE_SIZE * (j - i);
1176 	bp->b_bufsize = PAGE_SIZE * (j - i);
1177 	bp->b_pager.pg_reqpage = reqpage - i;
1178 
1179 	VM_OBJECT_LOCK(object);
1180 	{
1181 		int k;
1182 
1183 		for (k = i; k < j; ++k) {
1184 			bp->b_pages[k - i] = m[k];
1185 			m[k]->oflags |= VPO_SWAPINPROG;
1186 		}
1187 	}
1188 	bp->b_npages = j - i;
1189 
1190 	PCPU_INC(cnt.v_swapin);
1191 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1192 
1193 	/*
1194 	 * We still hold the lock on mreq, and our automatic completion routine
1195 	 * does not remove it.
1196 	 */
1197 	vm_object_pip_add(object, bp->b_npages);
1198 	VM_OBJECT_UNLOCK(object);
1199 
1200 	/*
1201 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1202 	 * this point because we automatically release it on completion.
1203 	 * Instead, we look at the one page we are interested in which we
1204 	 * still hold a lock on even through the I/O completion.
1205 	 *
1206 	 * The other pages in our m[] array are also released on completion,
1207 	 * so we cannot assume they are valid anymore either.
1208 	 *
1209 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1210 	 */
1211 	BUF_KERNPROC(bp);
1212 	swp_pager_strategy(bp);
1213 
1214 	/*
1215 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1216 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1217 	 * is set in the meta-data.
1218 	 */
1219 	VM_OBJECT_LOCK(object);
1220 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1221 		mreq->oflags |= VPO_WANTED;
1222 		PCPU_INC(cnt.v_intrans);
1223 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1224 			printf(
1225 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1226 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * mreq is left busied after completion, but all the other pages
1232 	 * are freed.  If we had an unrecoverable read error the page will
1233 	 * not be valid.
1234 	 */
1235 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1236 		return (VM_PAGER_ERROR);
1237 	} else {
1238 		return (VM_PAGER_OK);
1239 	}
1240 
1241 	/*
1242 	 * A final note: in a low swap situation, we cannot deallocate swap
1243 	 * and mark a page dirty here because the caller is likely to mark
1244 	 * the page clean when we return, causing the page to possibly revert
1245 	 * to all-zero's later.
1246 	 */
1247 }
1248 
1249 /*
1250  *	swap_pager_putpages:
1251  *
1252  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1253  *
1254  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1255  *	are automatically converted to SWAP objects.
1256  *
1257  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1258  *	vm_page reservation system coupled with properly written VFS devices
1259  *	should ensure that no low-memory deadlock occurs.  This is an area
1260  *	which needs work.
1261  *
1262  *	The parent has N vm_object_pip_add() references prior to
1263  *	calling us and will remove references for rtvals[] that are
1264  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1265  *	completion.
1266  *
1267  *	The parent has soft-busy'd the pages it passes us and will unbusy
1268  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1269  *	We need to unbusy the rest on I/O completion.
1270  */
1271 void
1272 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1273     boolean_t sync, int *rtvals)
1274 {
1275 	int i;
1276 	int n = 0;
1277 
1278 	if (count && m[0]->object != object) {
1279 		panic("swap_pager_putpages: object mismatch %p/%p",
1280 		    object,
1281 		    m[0]->object
1282 		);
1283 	}
1284 
1285 	/*
1286 	 * Step 1
1287 	 *
1288 	 * Turn object into OBJT_SWAP
1289 	 * check for bogus sysops
1290 	 * force sync if not pageout process
1291 	 */
1292 	if (object->type != OBJT_SWAP)
1293 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1294 	VM_OBJECT_UNLOCK(object);
1295 
1296 	if (curproc != pageproc)
1297 		sync = TRUE;
1298 
1299 	/*
1300 	 * Step 2
1301 	 *
1302 	 * Update nsw parameters from swap_async_max sysctl values.
1303 	 * Do not let the sysop crash the machine with bogus numbers.
1304 	 */
1305 	mtx_lock(&pbuf_mtx);
1306 	if (swap_async_max != nsw_wcount_async_max) {
1307 		int n;
1308 
1309 		/*
1310 		 * limit range
1311 		 */
1312 		if ((n = swap_async_max) > nswbuf / 2)
1313 			n = nswbuf / 2;
1314 		if (n < 1)
1315 			n = 1;
1316 		swap_async_max = n;
1317 
1318 		/*
1319 		 * Adjust difference ( if possible ).  If the current async
1320 		 * count is too low, we may not be able to make the adjustment
1321 		 * at this time.
1322 		 */
1323 		n -= nsw_wcount_async_max;
1324 		if (nsw_wcount_async + n >= 0) {
1325 			nsw_wcount_async += n;
1326 			nsw_wcount_async_max += n;
1327 			wakeup(&nsw_wcount_async);
1328 		}
1329 	}
1330 	mtx_unlock(&pbuf_mtx);
1331 
1332 	/*
1333 	 * Step 3
1334 	 *
1335 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1336 	 * The page is left dirty until the pageout operation completes
1337 	 * successfully.
1338 	 */
1339 	for (i = 0; i < count; i += n) {
1340 		int j;
1341 		struct buf *bp;
1342 		daddr_t blk;
1343 
1344 		/*
1345 		 * Maximum I/O size is limited by a number of factors.
1346 		 */
1347 		n = min(BLIST_MAX_ALLOC, count - i);
1348 		n = min(n, nsw_cluster_max);
1349 
1350 		/*
1351 		 * Get biggest block of swap we can.  If we fail, fall
1352 		 * back and try to allocate a smaller block.  Don't go
1353 		 * overboard trying to allocate space if it would overly
1354 		 * fragment swap.
1355 		 */
1356 		while (
1357 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1358 		    n > 4
1359 		) {
1360 			n >>= 1;
1361 		}
1362 		if (blk == SWAPBLK_NONE) {
1363 			for (j = 0; j < n; ++j)
1364 				rtvals[i+j] = VM_PAGER_FAIL;
1365 			continue;
1366 		}
1367 
1368 		/*
1369 		 * All I/O parameters have been satisfied, build the I/O
1370 		 * request and assign the swap space.
1371 		 */
1372 		if (sync == TRUE) {
1373 			bp = getpbuf(&nsw_wcount_sync);
1374 		} else {
1375 			bp = getpbuf(&nsw_wcount_async);
1376 			bp->b_flags = B_ASYNC;
1377 		}
1378 		bp->b_flags |= B_PAGING;
1379 		bp->b_iocmd = BIO_WRITE;
1380 
1381 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1382 
1383 		bp->b_rcred = crhold(thread0.td_ucred);
1384 		bp->b_wcred = crhold(thread0.td_ucred);
1385 		bp->b_bcount = PAGE_SIZE * n;
1386 		bp->b_bufsize = PAGE_SIZE * n;
1387 		bp->b_blkno = blk;
1388 
1389 		VM_OBJECT_LOCK(object);
1390 		for (j = 0; j < n; ++j) {
1391 			vm_page_t mreq = m[i+j];
1392 
1393 			swp_pager_meta_build(
1394 			    mreq->object,
1395 			    mreq->pindex,
1396 			    blk + j
1397 			);
1398 			vm_page_dirty(mreq);
1399 			rtvals[i+j] = VM_PAGER_OK;
1400 
1401 			mreq->oflags |= VPO_SWAPINPROG;
1402 			bp->b_pages[j] = mreq;
1403 		}
1404 		VM_OBJECT_UNLOCK(object);
1405 		bp->b_npages = n;
1406 		/*
1407 		 * Must set dirty range for NFS to work.
1408 		 */
1409 		bp->b_dirtyoff = 0;
1410 		bp->b_dirtyend = bp->b_bcount;
1411 
1412 		PCPU_INC(cnt.v_swapout);
1413 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1414 
1415 		/*
1416 		 * asynchronous
1417 		 *
1418 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1419 		 */
1420 		if (sync == FALSE) {
1421 			bp->b_iodone = swp_pager_async_iodone;
1422 			BUF_KERNPROC(bp);
1423 			swp_pager_strategy(bp);
1424 
1425 			for (j = 0; j < n; ++j)
1426 				rtvals[i+j] = VM_PAGER_PEND;
1427 			/* restart outter loop */
1428 			continue;
1429 		}
1430 
1431 		/*
1432 		 * synchronous
1433 		 *
1434 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1435 		 */
1436 		bp->b_iodone = bdone;
1437 		swp_pager_strategy(bp);
1438 
1439 		/*
1440 		 * Wait for the sync I/O to complete, then update rtvals.
1441 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1442 		 * our async completion routine at the end, thus avoiding a
1443 		 * double-free.
1444 		 */
1445 		bwait(bp, PVM, "swwrt");
1446 		for (j = 0; j < n; ++j)
1447 			rtvals[i+j] = VM_PAGER_PEND;
1448 		/*
1449 		 * Now that we are through with the bp, we can call the
1450 		 * normal async completion, which frees everything up.
1451 		 */
1452 		swp_pager_async_iodone(bp);
1453 	}
1454 	VM_OBJECT_LOCK(object);
1455 }
1456 
1457 /*
1458  *	swp_pager_async_iodone:
1459  *
1460  *	Completion routine for asynchronous reads and writes from/to swap.
1461  *	Also called manually by synchronous code to finish up a bp.
1462  *
1463  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1464  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1465  *	unbusy all pages except the 'main' request page.  For WRITE
1466  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1467  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1468  *
1469  *	This routine may not block.
1470  */
1471 static void
1472 swp_pager_async_iodone(struct buf *bp)
1473 {
1474 	int i;
1475 	vm_object_t object = NULL;
1476 
1477 	/*
1478 	 * report error
1479 	 */
1480 	if (bp->b_ioflags & BIO_ERROR) {
1481 		printf(
1482 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1483 			"size %ld, error %d\n",
1484 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1485 		    (long)bp->b_blkno,
1486 		    (long)bp->b_bcount,
1487 		    bp->b_error
1488 		);
1489 	}
1490 
1491 	/*
1492 	 * remove the mapping for kernel virtual
1493 	 */
1494 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1495 
1496 	if (bp->b_npages) {
1497 		object = bp->b_pages[0]->object;
1498 		VM_OBJECT_LOCK(object);
1499 	}
1500 
1501 	/*
1502 	 * cleanup pages.  If an error occurs writing to swap, we are in
1503 	 * very serious trouble.  If it happens to be a disk error, though,
1504 	 * we may be able to recover by reassigning the swap later on.  So
1505 	 * in this case we remove the m->swapblk assignment for the page
1506 	 * but do not free it in the rlist.  The errornous block(s) are thus
1507 	 * never reallocated as swap.  Redirty the page and continue.
1508 	 */
1509 	for (i = 0; i < bp->b_npages; ++i) {
1510 		vm_page_t m = bp->b_pages[i];
1511 
1512 		m->oflags &= ~VPO_SWAPINPROG;
1513 
1514 		if (bp->b_ioflags & BIO_ERROR) {
1515 			/*
1516 			 * If an error occurs I'd love to throw the swapblk
1517 			 * away without freeing it back to swapspace, so it
1518 			 * can never be used again.  But I can't from an
1519 			 * interrupt.
1520 			 */
1521 			if (bp->b_iocmd == BIO_READ) {
1522 				/*
1523 				 * When reading, reqpage needs to stay
1524 				 * locked for the parent, but all other
1525 				 * pages can be freed.  We still want to
1526 				 * wakeup the parent waiting on the page,
1527 				 * though.  ( also: pg_reqpage can be -1 and
1528 				 * not match anything ).
1529 				 *
1530 				 * We have to wake specifically requested pages
1531 				 * up too because we cleared VPO_SWAPINPROG and
1532 				 * someone may be waiting for that.
1533 				 *
1534 				 * NOTE: for reads, m->dirty will probably
1535 				 * be overridden by the original caller of
1536 				 * getpages so don't play cute tricks here.
1537 				 */
1538 				m->valid = 0;
1539 				if (i != bp->b_pager.pg_reqpage)
1540 					swp_pager_free_nrpage(m);
1541 				else
1542 					vm_page_flash(m);
1543 				/*
1544 				 * If i == bp->b_pager.pg_reqpage, do not wake
1545 				 * the page up.  The caller needs to.
1546 				 */
1547 			} else {
1548 				/*
1549 				 * If a write error occurs, reactivate page
1550 				 * so it doesn't clog the inactive list,
1551 				 * then finish the I/O.
1552 				 */
1553 				vm_page_dirty(m);
1554 				vm_page_lock(m);
1555 				vm_page_activate(m);
1556 				vm_page_unlock(m);
1557 				vm_page_io_finish(m);
1558 			}
1559 		} else if (bp->b_iocmd == BIO_READ) {
1560 			/*
1561 			 * NOTE: for reads, m->dirty will probably be
1562 			 * overridden by the original caller of getpages so
1563 			 * we cannot set them in order to free the underlying
1564 			 * swap in a low-swap situation.  I don't think we'd
1565 			 * want to do that anyway, but it was an optimization
1566 			 * that existed in the old swapper for a time before
1567 			 * it got ripped out due to precisely this problem.
1568 			 *
1569 			 * If not the requested page then deactivate it.
1570 			 *
1571 			 * Note that the requested page, reqpage, is left
1572 			 * busied, but we still have to wake it up.  The
1573 			 * other pages are released (unbusied) by
1574 			 * vm_page_wakeup().
1575 			 */
1576 			KASSERT(!pmap_page_is_mapped(m),
1577 			    ("swp_pager_async_iodone: page %p is mapped", m));
1578 			m->valid = VM_PAGE_BITS_ALL;
1579 			KASSERT(m->dirty == 0,
1580 			    ("swp_pager_async_iodone: page %p is dirty", m));
1581 
1582 			/*
1583 			 * We have to wake specifically requested pages
1584 			 * up too because we cleared VPO_SWAPINPROG and
1585 			 * could be waiting for it in getpages.  However,
1586 			 * be sure to not unbusy getpages specifically
1587 			 * requested page - getpages expects it to be
1588 			 * left busy.
1589 			 */
1590 			if (i != bp->b_pager.pg_reqpage) {
1591 				vm_page_lock(m);
1592 				vm_page_deactivate(m);
1593 				vm_page_unlock(m);
1594 				vm_page_wakeup(m);
1595 			} else
1596 				vm_page_flash(m);
1597 		} else {
1598 			/*
1599 			 * For write success, clear the dirty
1600 			 * status, then finish the I/O ( which decrements the
1601 			 * busy count and possibly wakes waiter's up ).
1602 			 */
1603 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1604 			    ("swp_pager_async_iodone: page %p is not write"
1605 			    " protected", m));
1606 			vm_page_undirty(m);
1607 			vm_page_io_finish(m);
1608 			if (vm_page_count_severe()) {
1609 				vm_page_lock(m);
1610 				vm_page_try_to_cache(m);
1611 				vm_page_unlock(m);
1612 			}
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * adjust pip.  NOTE: the original parent may still have its own
1618 	 * pip refs on the object.
1619 	 */
1620 	if (object != NULL) {
1621 		vm_object_pip_wakeupn(object, bp->b_npages);
1622 		VM_OBJECT_UNLOCK(object);
1623 	}
1624 
1625 	/*
1626 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628 	 * trigger a KASSERT in relpbuf().
1629 	 */
1630 	if (bp->b_vp) {
1631 		    bp->b_vp = NULL;
1632 		    bp->b_bufobj = NULL;
1633 	}
1634 	/*
1635 	 * release the physical I/O buffer
1636 	 */
1637 	relpbuf(
1638 	    bp,
1639 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1640 		((bp->b_flags & B_ASYNC) ?
1641 		    &nsw_wcount_async :
1642 		    &nsw_wcount_sync
1643 		)
1644 	    )
1645 	);
1646 }
1647 
1648 /*
1649  *	swap_pager_isswapped:
1650  *
1651  *	Return 1 if at least one page in the given object is paged
1652  *	out to the given swap device.
1653  *
1654  *	This routine may not block.
1655  */
1656 int
1657 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1658 {
1659 	daddr_t index = 0;
1660 	int bcount;
1661 	int i;
1662 
1663 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1664 	if (object->type != OBJT_SWAP)
1665 		return (0);
1666 
1667 	mtx_lock(&swhash_mtx);
1668 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1669 		struct swblock *swap;
1670 
1671 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1672 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1673 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1674 					mtx_unlock(&swhash_mtx);
1675 					return (1);
1676 				}
1677 			}
1678 		}
1679 		index += SWAP_META_PAGES;
1680 		if (index > 0x20000000)
1681 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1682 	}
1683 	mtx_unlock(&swhash_mtx);
1684 	return (0);
1685 }
1686 
1687 /*
1688  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1689  *
1690  *	This routine dissociates the page at the given index within a
1691  *	swap block from its backing store, paging it in if necessary.
1692  *	If the page is paged in, it is placed in the inactive queue,
1693  *	since it had its backing store ripped out from under it.
1694  *	We also attempt to swap in all other pages in the swap block,
1695  *	we only guarantee that the one at the specified index is
1696  *	paged in.
1697  *
1698  *	XXX - The code to page the whole block in doesn't work, so we
1699  *	      revert to the one-by-one behavior for now.  Sigh.
1700  */
1701 static inline void
1702 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1703 {
1704 	vm_page_t m;
1705 
1706 	vm_object_pip_add(object, 1);
1707 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1708 	if (m->valid == VM_PAGE_BITS_ALL) {
1709 		vm_object_pip_subtract(object, 1);
1710 		vm_page_dirty(m);
1711 		vm_page_lock(m);
1712 		vm_page_activate(m);
1713 		vm_page_unlock(m);
1714 		vm_page_wakeup(m);
1715 		vm_pager_page_unswapped(m);
1716 		return;
1717 	}
1718 
1719 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1720 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1721 	vm_object_pip_subtract(object, 1);
1722 	vm_page_dirty(m);
1723 	vm_page_lock(m);
1724 	vm_page_deactivate(m);
1725 	vm_page_unlock(m);
1726 	vm_page_wakeup(m);
1727 	vm_pager_page_unswapped(m);
1728 }
1729 
1730 /*
1731  *	swap_pager_swapoff:
1732  *
1733  *	Page in all of the pages that have been paged out to the
1734  *	given device.  The corresponding blocks in the bitmap must be
1735  *	marked as allocated and the device must be flagged SW_CLOSING.
1736  *	There may be no processes swapped out to the device.
1737  *
1738  *	This routine may block.
1739  */
1740 static void
1741 swap_pager_swapoff(struct swdevt *sp)
1742 {
1743 	struct swblock *swap;
1744 	int i, j, retries;
1745 
1746 	GIANT_REQUIRED;
1747 
1748 	retries = 0;
1749 full_rescan:
1750 	mtx_lock(&swhash_mtx);
1751 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1752 restart:
1753 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1754 			vm_object_t object = swap->swb_object;
1755 			vm_pindex_t pindex = swap->swb_index;
1756                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1757                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1758 					/* avoid deadlock */
1759 					if (!VM_OBJECT_TRYLOCK(object)) {
1760 						break;
1761 					} else {
1762 						mtx_unlock(&swhash_mtx);
1763 						swp_pager_force_pagein(object,
1764 						    pindex + j);
1765 						VM_OBJECT_UNLOCK(object);
1766 						mtx_lock(&swhash_mtx);
1767 						goto restart;
1768 					}
1769 				}
1770                         }
1771 		}
1772 	}
1773 	mtx_unlock(&swhash_mtx);
1774 	if (sp->sw_used) {
1775 		/*
1776 		 * Objects may be locked or paging to the device being
1777 		 * removed, so we will miss their pages and need to
1778 		 * make another pass.  We have marked this device as
1779 		 * SW_CLOSING, so the activity should finish soon.
1780 		 */
1781 		retries++;
1782 		if (retries > 100) {
1783 			panic("swapoff: failed to locate %d swap blocks",
1784 			    sp->sw_used);
1785 		}
1786 		pause("swpoff", hz / 20);
1787 		goto full_rescan;
1788 	}
1789 }
1790 
1791 /************************************************************************
1792  *				SWAP META DATA 				*
1793  ************************************************************************
1794  *
1795  *	These routines manipulate the swap metadata stored in the
1796  *	OBJT_SWAP object.  All swp_*() routines must be called at
1797  *	splvm() because swap can be freed up by the low level vm_page
1798  *	code which might be called from interrupts beyond what splbio() covers.
1799  *
1800  *	Swap metadata is implemented with a global hash and not directly
1801  *	linked into the object.  Instead the object simply contains
1802  *	appropriate tracking counters.
1803  */
1804 
1805 /*
1806  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1807  *
1808  *	We first convert the object to a swap object if it is a default
1809  *	object.
1810  *
1811  *	The specified swapblk is added to the object's swap metadata.  If
1812  *	the swapblk is not valid, it is freed instead.  Any previously
1813  *	assigned swapblk is freed.
1814  *
1815  *	This routine must be called at splvm(), except when used to convert
1816  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1817  */
1818 static void
1819 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1820 {
1821 	struct swblock *swap;
1822 	struct swblock **pswap;
1823 	int idx;
1824 
1825 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1826 	/*
1827 	 * Convert default object to swap object if necessary
1828 	 */
1829 	if (object->type != OBJT_SWAP) {
1830 		object->type = OBJT_SWAP;
1831 		object->un_pager.swp.swp_bcount = 0;
1832 
1833 		if (object->handle != NULL) {
1834 			mtx_lock(&sw_alloc_mtx);
1835 			TAILQ_INSERT_TAIL(
1836 			    NOBJLIST(object->handle),
1837 			    object,
1838 			    pager_object_list
1839 			);
1840 			mtx_unlock(&sw_alloc_mtx);
1841 		}
1842 	}
1843 
1844 	/*
1845 	 * Locate hash entry.  If not found create, but if we aren't adding
1846 	 * anything just return.  If we run out of space in the map we wait
1847 	 * and, since the hash table may have changed, retry.
1848 	 */
1849 retry:
1850 	mtx_lock(&swhash_mtx);
1851 	pswap = swp_pager_hash(object, pindex);
1852 
1853 	if ((swap = *pswap) == NULL) {
1854 		int i;
1855 
1856 		if (swapblk == SWAPBLK_NONE)
1857 			goto done;
1858 
1859 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1860 		if (swap == NULL) {
1861 			mtx_unlock(&swhash_mtx);
1862 			VM_OBJECT_UNLOCK(object);
1863 			if (uma_zone_exhausted(swap_zone)) {
1864 				printf("swap zone exhausted, increase kern.maxswzone\n");
1865 				vm_pageout_oom(VM_OOM_SWAPZ);
1866 				pause("swzonex", 10);
1867 			} else
1868 				VM_WAIT;
1869 			VM_OBJECT_LOCK(object);
1870 			goto retry;
1871 		}
1872 
1873 		swap->swb_hnext = NULL;
1874 		swap->swb_object = object;
1875 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1876 		swap->swb_count = 0;
1877 
1878 		++object->un_pager.swp.swp_bcount;
1879 
1880 		for (i = 0; i < SWAP_META_PAGES; ++i)
1881 			swap->swb_pages[i] = SWAPBLK_NONE;
1882 	}
1883 
1884 	/*
1885 	 * Delete prior contents of metadata
1886 	 */
1887 	idx = pindex & SWAP_META_MASK;
1888 
1889 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1890 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1891 		--swap->swb_count;
1892 	}
1893 
1894 	/*
1895 	 * Enter block into metadata
1896 	 */
1897 	swap->swb_pages[idx] = swapblk;
1898 	if (swapblk != SWAPBLK_NONE)
1899 		++swap->swb_count;
1900 done:
1901 	mtx_unlock(&swhash_mtx);
1902 }
1903 
1904 /*
1905  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1906  *
1907  *	The requested range of blocks is freed, with any associated swap
1908  *	returned to the swap bitmap.
1909  *
1910  *	This routine will free swap metadata structures as they are cleaned
1911  *	out.  This routine does *NOT* operate on swap metadata associated
1912  *	with resident pages.
1913  *
1914  *	This routine must be called at splvm()
1915  */
1916 static void
1917 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1918 {
1919 
1920 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1921 	if (object->type != OBJT_SWAP)
1922 		return;
1923 
1924 	while (count > 0) {
1925 		struct swblock **pswap;
1926 		struct swblock *swap;
1927 
1928 		mtx_lock(&swhash_mtx);
1929 		pswap = swp_pager_hash(object, index);
1930 
1931 		if ((swap = *pswap) != NULL) {
1932 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1933 
1934 			if (v != SWAPBLK_NONE) {
1935 				swp_pager_freeswapspace(v, 1);
1936 				swap->swb_pages[index & SWAP_META_MASK] =
1937 					SWAPBLK_NONE;
1938 				if (--swap->swb_count == 0) {
1939 					*pswap = swap->swb_hnext;
1940 					uma_zfree(swap_zone, swap);
1941 					--object->un_pager.swp.swp_bcount;
1942 				}
1943 			}
1944 			--count;
1945 			++index;
1946 		} else {
1947 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1948 			count -= n;
1949 			index += n;
1950 		}
1951 		mtx_unlock(&swhash_mtx);
1952 	}
1953 }
1954 
1955 /*
1956  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1957  *
1958  *	This routine locates and destroys all swap metadata associated with
1959  *	an object.
1960  *
1961  *	This routine must be called at splvm()
1962  */
1963 static void
1964 swp_pager_meta_free_all(vm_object_t object)
1965 {
1966 	daddr_t index = 0;
1967 
1968 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1969 	if (object->type != OBJT_SWAP)
1970 		return;
1971 
1972 	while (object->un_pager.swp.swp_bcount) {
1973 		struct swblock **pswap;
1974 		struct swblock *swap;
1975 
1976 		mtx_lock(&swhash_mtx);
1977 		pswap = swp_pager_hash(object, index);
1978 		if ((swap = *pswap) != NULL) {
1979 			int i;
1980 
1981 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1982 				daddr_t v = swap->swb_pages[i];
1983 				if (v != SWAPBLK_NONE) {
1984 					--swap->swb_count;
1985 					swp_pager_freeswapspace(v, 1);
1986 				}
1987 			}
1988 			if (swap->swb_count != 0)
1989 				panic("swap_pager_meta_free_all: swb_count != 0");
1990 			*pswap = swap->swb_hnext;
1991 			uma_zfree(swap_zone, swap);
1992 			--object->un_pager.swp.swp_bcount;
1993 		}
1994 		mtx_unlock(&swhash_mtx);
1995 		index += SWAP_META_PAGES;
1996 		if (index > 0x20000000)
1997 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1998 	}
1999 }
2000 
2001 /*
2002  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2003  *
2004  *	This routine is capable of looking up, popping, or freeing
2005  *	swapblk assignments in the swap meta data or in the vm_page_t.
2006  *	The routine typically returns the swapblk being looked-up, or popped,
2007  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2008  *	was invalid.  This routine will automatically free any invalid
2009  *	meta-data swapblks.
2010  *
2011  *	It is not possible to store invalid swapblks in the swap meta data
2012  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2013  *
2014  *	When acting on a busy resident page and paging is in progress, we
2015  *	have to wait until paging is complete but otherwise can act on the
2016  *	busy page.
2017  *
2018  *	This routine must be called at splvm().
2019  *
2020  *	SWM_FREE	remove and free swap block from metadata
2021  *	SWM_POP		remove from meta data but do not free.. pop it out
2022  */
2023 static daddr_t
2024 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2025 {
2026 	struct swblock **pswap;
2027 	struct swblock *swap;
2028 	daddr_t r1;
2029 	int idx;
2030 
2031 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2032 	/*
2033 	 * The meta data only exists of the object is OBJT_SWAP
2034 	 * and even then might not be allocated yet.
2035 	 */
2036 	if (object->type != OBJT_SWAP)
2037 		return (SWAPBLK_NONE);
2038 
2039 	r1 = SWAPBLK_NONE;
2040 	mtx_lock(&swhash_mtx);
2041 	pswap = swp_pager_hash(object, pindex);
2042 
2043 	if ((swap = *pswap) != NULL) {
2044 		idx = pindex & SWAP_META_MASK;
2045 		r1 = swap->swb_pages[idx];
2046 
2047 		if (r1 != SWAPBLK_NONE) {
2048 			if (flags & SWM_FREE) {
2049 				swp_pager_freeswapspace(r1, 1);
2050 				r1 = SWAPBLK_NONE;
2051 			}
2052 			if (flags & (SWM_FREE|SWM_POP)) {
2053 				swap->swb_pages[idx] = SWAPBLK_NONE;
2054 				if (--swap->swb_count == 0) {
2055 					*pswap = swap->swb_hnext;
2056 					uma_zfree(swap_zone, swap);
2057 					--object->un_pager.swp.swp_bcount;
2058 				}
2059 			}
2060 		}
2061 	}
2062 	mtx_unlock(&swhash_mtx);
2063 	return (r1);
2064 }
2065 
2066 /*
2067  * System call swapon(name) enables swapping on device name,
2068  * which must be in the swdevsw.  Return EBUSY
2069  * if already swapping on this device.
2070  */
2071 #ifndef _SYS_SYSPROTO_H_
2072 struct swapon_args {
2073 	char *name;
2074 };
2075 #endif
2076 
2077 /*
2078  * MPSAFE
2079  */
2080 /* ARGSUSED */
2081 int
2082 swapon(struct thread *td, struct swapon_args *uap)
2083 {
2084 	struct vattr attr;
2085 	struct vnode *vp;
2086 	struct nameidata nd;
2087 	int error;
2088 
2089 	error = priv_check(td, PRIV_SWAPON);
2090 	if (error)
2091 		return (error);
2092 
2093 	mtx_lock(&Giant);
2094 	while (swdev_syscall_active)
2095 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2096 	swdev_syscall_active = 1;
2097 
2098 	/*
2099 	 * Swap metadata may not fit in the KVM if we have physical
2100 	 * memory of >1GB.
2101 	 */
2102 	if (swap_zone == NULL) {
2103 		error = ENOMEM;
2104 		goto done;
2105 	}
2106 
2107 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2108 	    uap->name, td);
2109 	error = namei(&nd);
2110 	if (error)
2111 		goto done;
2112 
2113 	NDFREE(&nd, NDF_ONLY_PNBUF);
2114 	vp = nd.ni_vp;
2115 
2116 	if (vn_isdisk(vp, &error)) {
2117 		error = swapongeom(td, vp);
2118 	} else if (vp->v_type == VREG &&
2119 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2120 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2121 		/*
2122 		 * Allow direct swapping to NFS regular files in the same
2123 		 * way that nfs_mountroot() sets up diskless swapping.
2124 		 */
2125 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2126 	}
2127 
2128 	if (error)
2129 		vrele(vp);
2130 done:
2131 	swdev_syscall_active = 0;
2132 	wakeup_one(&swdev_syscall_active);
2133 	mtx_unlock(&Giant);
2134 	return (error);
2135 }
2136 
2137 static void
2138 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2139 {
2140 	struct swdevt *sp, *tsp;
2141 	swblk_t dvbase;
2142 	u_long mblocks;
2143 
2144 	/*
2145 	 * If we go beyond this, we get overflows in the radix
2146 	 * tree bitmap code.
2147 	 */
2148 	mblocks = 0x40000000 / BLIST_META_RADIX;
2149 	if (nblks > mblocks) {
2150 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2151 			mblocks);
2152 		nblks = mblocks;
2153 	}
2154 	/*
2155 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2156 	 * First chop nblks off to page-align it, then convert.
2157 	 *
2158 	 * sw->sw_nblks is in page-sized chunks now too.
2159 	 */
2160 	nblks &= ~(ctodb(1) - 1);
2161 	nblks = dbtoc(nblks);
2162 
2163 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2164 	sp->sw_vp = vp;
2165 	sp->sw_id = id;
2166 	sp->sw_dev = dev;
2167 	sp->sw_flags = 0;
2168 	sp->sw_nblks = nblks;
2169 	sp->sw_used = 0;
2170 	sp->sw_strategy = strategy;
2171 	sp->sw_close = close;
2172 
2173 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2174 	/*
2175 	 * Do not free the first two block in order to avoid overwriting
2176 	 * any bsd label at the front of the partition
2177 	 */
2178 	blist_free(sp->sw_blist, 2, nblks - 2);
2179 
2180 	dvbase = 0;
2181 	mtx_lock(&sw_dev_mtx);
2182 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2183 		if (tsp->sw_end >= dvbase) {
2184 			/*
2185 			 * We put one uncovered page between the devices
2186 			 * in order to definitively prevent any cross-device
2187 			 * I/O requests
2188 			 */
2189 			dvbase = tsp->sw_end + 1;
2190 		}
2191 	}
2192 	sp->sw_first = dvbase;
2193 	sp->sw_end = dvbase + nblks;
2194 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2195 	nswapdev++;
2196 	swap_pager_avail += nblks;
2197 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2198 	swp_sizecheck();
2199 	mtx_unlock(&sw_dev_mtx);
2200 }
2201 
2202 /*
2203  * SYSCALL: swapoff(devname)
2204  *
2205  * Disable swapping on the given device.
2206  *
2207  * XXX: Badly designed system call: it should use a device index
2208  * rather than filename as specification.  We keep sw_vp around
2209  * only to make this work.
2210  */
2211 #ifndef _SYS_SYSPROTO_H_
2212 struct swapoff_args {
2213 	char *name;
2214 };
2215 #endif
2216 
2217 /*
2218  * MPSAFE
2219  */
2220 /* ARGSUSED */
2221 int
2222 swapoff(struct thread *td, struct swapoff_args *uap)
2223 {
2224 	struct vnode *vp;
2225 	struct nameidata nd;
2226 	struct swdevt *sp;
2227 	int error;
2228 
2229 	error = priv_check(td, PRIV_SWAPOFF);
2230 	if (error)
2231 		return (error);
2232 
2233 	mtx_lock(&Giant);
2234 	while (swdev_syscall_active)
2235 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2236 	swdev_syscall_active = 1;
2237 
2238 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2239 	    td);
2240 	error = namei(&nd);
2241 	if (error)
2242 		goto done;
2243 	NDFREE(&nd, NDF_ONLY_PNBUF);
2244 	vp = nd.ni_vp;
2245 
2246 	mtx_lock(&sw_dev_mtx);
2247 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2248 		if (sp->sw_vp == vp)
2249 			break;
2250 	}
2251 	mtx_unlock(&sw_dev_mtx);
2252 	if (sp == NULL) {
2253 		error = EINVAL;
2254 		goto done;
2255 	}
2256 	error = swapoff_one(sp, td->td_ucred);
2257 done:
2258 	swdev_syscall_active = 0;
2259 	wakeup_one(&swdev_syscall_active);
2260 	mtx_unlock(&Giant);
2261 	return (error);
2262 }
2263 
2264 static int
2265 swapoff_one(struct swdevt *sp, struct ucred *cred)
2266 {
2267 	u_long nblks, dvbase;
2268 #ifdef MAC
2269 	int error;
2270 #endif
2271 
2272 	mtx_assert(&Giant, MA_OWNED);
2273 #ifdef MAC
2274 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2275 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2276 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2277 	if (error != 0)
2278 		return (error);
2279 #endif
2280 	nblks = sp->sw_nblks;
2281 
2282 	/*
2283 	 * We can turn off this swap device safely only if the
2284 	 * available virtual memory in the system will fit the amount
2285 	 * of data we will have to page back in, plus an epsilon so
2286 	 * the system doesn't become critically low on swap space.
2287 	 */
2288 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2289 	    nblks + nswap_lowat) {
2290 		return (ENOMEM);
2291 	}
2292 
2293 	/*
2294 	 * Prevent further allocations on this device.
2295 	 */
2296 	mtx_lock(&sw_dev_mtx);
2297 	sp->sw_flags |= SW_CLOSING;
2298 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2299 		swap_pager_avail -= blist_fill(sp->sw_blist,
2300 		     dvbase, dmmax);
2301 	}
2302 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2303 	mtx_unlock(&sw_dev_mtx);
2304 
2305 	/*
2306 	 * Page in the contents of the device and close it.
2307 	 */
2308 	swap_pager_swapoff(sp);
2309 
2310 	sp->sw_close(curthread, sp);
2311 	sp->sw_id = NULL;
2312 	mtx_lock(&sw_dev_mtx);
2313 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2314 	nswapdev--;
2315 	if (nswapdev == 0) {
2316 		swap_pager_full = 2;
2317 		swap_pager_almost_full = 1;
2318 	}
2319 	if (swdevhd == sp)
2320 		swdevhd = NULL;
2321 	mtx_unlock(&sw_dev_mtx);
2322 	blist_destroy(sp->sw_blist);
2323 	free(sp, M_VMPGDATA);
2324 	return (0);
2325 }
2326 
2327 void
2328 swapoff_all(void)
2329 {
2330 	struct swdevt *sp, *spt;
2331 	const char *devname;
2332 	int error;
2333 
2334 	mtx_lock(&Giant);
2335 	while (swdev_syscall_active)
2336 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2337 	swdev_syscall_active = 1;
2338 
2339 	mtx_lock(&sw_dev_mtx);
2340 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2341 		mtx_unlock(&sw_dev_mtx);
2342 		if (vn_isdisk(sp->sw_vp, NULL))
2343 			devname = sp->sw_vp->v_rdev->si_name;
2344 		else
2345 			devname = "[file]";
2346 		error = swapoff_one(sp, thread0.td_ucred);
2347 		if (error != 0) {
2348 			printf("Cannot remove swap device %s (error=%d), "
2349 			    "skipping.\n", devname, error);
2350 		} else if (bootverbose) {
2351 			printf("Swap device %s removed.\n", devname);
2352 		}
2353 		mtx_lock(&sw_dev_mtx);
2354 	}
2355 	mtx_unlock(&sw_dev_mtx);
2356 
2357 	swdev_syscall_active = 0;
2358 	wakeup_one(&swdev_syscall_active);
2359 	mtx_unlock(&Giant);
2360 }
2361 
2362 void
2363 swap_pager_status(int *total, int *used)
2364 {
2365 	struct swdevt *sp;
2366 
2367 	*total = 0;
2368 	*used = 0;
2369 	mtx_lock(&sw_dev_mtx);
2370 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2371 		*total += sp->sw_nblks;
2372 		*used += sp->sw_used;
2373 	}
2374 	mtx_unlock(&sw_dev_mtx);
2375 }
2376 
2377 static int
2378 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2379 {
2380 	int	*name = (int *)arg1;
2381 	int	error, n;
2382 	struct xswdev xs;
2383 	struct swdevt *sp;
2384 
2385 	if (arg2 != 1) /* name length */
2386 		return (EINVAL);
2387 
2388 	n = 0;
2389 	mtx_lock(&sw_dev_mtx);
2390 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2391 		if (n == *name) {
2392 			mtx_unlock(&sw_dev_mtx);
2393 			xs.xsw_version = XSWDEV_VERSION;
2394 			xs.xsw_dev = sp->sw_dev;
2395 			xs.xsw_flags = sp->sw_flags;
2396 			xs.xsw_nblks = sp->sw_nblks;
2397 			xs.xsw_used = sp->sw_used;
2398 
2399 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2400 			return (error);
2401 		}
2402 		n++;
2403 	}
2404 	mtx_unlock(&sw_dev_mtx);
2405 	return (ENOENT);
2406 }
2407 
2408 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2409     "Number of swap devices");
2410 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2411     "Swap statistics by device");
2412 
2413 /*
2414  * vmspace_swap_count() - count the approximate swap usage in pages for a
2415  *			  vmspace.
2416  *
2417  *	The map must be locked.
2418  *
2419  *	Swap usage is determined by taking the proportional swap used by
2420  *	VM objects backing the VM map.  To make up for fractional losses,
2421  *	if the VM object has any swap use at all the associated map entries
2422  *	count for at least 1 swap page.
2423  */
2424 int
2425 vmspace_swap_count(struct vmspace *vmspace)
2426 {
2427 	vm_map_t map = &vmspace->vm_map;
2428 	vm_map_entry_t cur;
2429 	int count = 0;
2430 
2431 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2432 		vm_object_t object;
2433 
2434 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2435 		    (object = cur->object.vm_object) != NULL) {
2436 			VM_OBJECT_LOCK(object);
2437 			if (object->type == OBJT_SWAP &&
2438 			    object->un_pager.swp.swp_bcount != 0) {
2439 				int n = (cur->end - cur->start) / PAGE_SIZE;
2440 
2441 				count += object->un_pager.swp.swp_bcount *
2442 				    SWAP_META_PAGES * n / object->size + 1;
2443 			}
2444 			VM_OBJECT_UNLOCK(object);
2445 		}
2446 	}
2447 	return (count);
2448 }
2449 
2450 /*
2451  * GEOM backend
2452  *
2453  * Swapping onto disk devices.
2454  *
2455  */
2456 
2457 static g_orphan_t swapgeom_orphan;
2458 
2459 static struct g_class g_swap_class = {
2460 	.name = "SWAP",
2461 	.version = G_VERSION,
2462 	.orphan = swapgeom_orphan,
2463 };
2464 
2465 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2466 
2467 
2468 static void
2469 swapgeom_done(struct bio *bp2)
2470 {
2471 	struct buf *bp;
2472 
2473 	bp = bp2->bio_caller2;
2474 	bp->b_ioflags = bp2->bio_flags;
2475 	if (bp2->bio_error)
2476 		bp->b_ioflags |= BIO_ERROR;
2477 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2478 	bp->b_error = bp2->bio_error;
2479 	bufdone(bp);
2480 	g_destroy_bio(bp2);
2481 }
2482 
2483 static void
2484 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2485 {
2486 	struct bio *bio;
2487 	struct g_consumer *cp;
2488 
2489 	cp = sp->sw_id;
2490 	if (cp == NULL) {
2491 		bp->b_error = ENXIO;
2492 		bp->b_ioflags |= BIO_ERROR;
2493 		bufdone(bp);
2494 		return;
2495 	}
2496 	if (bp->b_iocmd == BIO_WRITE)
2497 		bio = g_new_bio();
2498 	else
2499 		bio = g_alloc_bio();
2500 	if (bio == NULL) {
2501 		bp->b_error = ENOMEM;
2502 		bp->b_ioflags |= BIO_ERROR;
2503 		bufdone(bp);
2504 		return;
2505 	}
2506 
2507 	bio->bio_caller2 = bp;
2508 	bio->bio_cmd = bp->b_iocmd;
2509 	bio->bio_data = bp->b_data;
2510 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2511 	bio->bio_length = bp->b_bcount;
2512 	bio->bio_done = swapgeom_done;
2513 	g_io_request(bio, cp);
2514 	return;
2515 }
2516 
2517 static void
2518 swapgeom_orphan(struct g_consumer *cp)
2519 {
2520 	struct swdevt *sp;
2521 
2522 	mtx_lock(&sw_dev_mtx);
2523 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2524 		if (sp->sw_id == cp)
2525 			sp->sw_id = NULL;
2526 	mtx_unlock(&sw_dev_mtx);
2527 }
2528 
2529 static void
2530 swapgeom_close_ev(void *arg, int flags)
2531 {
2532 	struct g_consumer *cp;
2533 
2534 	cp = arg;
2535 	g_access(cp, -1, -1, 0);
2536 	g_detach(cp);
2537 	g_destroy_consumer(cp);
2538 }
2539 
2540 static void
2541 swapgeom_close(struct thread *td, struct swdevt *sw)
2542 {
2543 
2544 	/* XXX: direct call when Giant untangled */
2545 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2546 }
2547 
2548 
2549 struct swh0h0 {
2550 	struct cdev *dev;
2551 	struct vnode *vp;
2552 	int	error;
2553 };
2554 
2555 static void
2556 swapongeom_ev(void *arg, int flags)
2557 {
2558 	struct swh0h0 *swh;
2559 	struct g_provider *pp;
2560 	struct g_consumer *cp;
2561 	static struct g_geom *gp;
2562 	struct swdevt *sp;
2563 	u_long nblks;
2564 	int error;
2565 
2566 	swh = arg;
2567 	swh->error = 0;
2568 	pp = g_dev_getprovider(swh->dev);
2569 	if (pp == NULL) {
2570 		swh->error = ENODEV;
2571 		return;
2572 	}
2573 	mtx_lock(&sw_dev_mtx);
2574 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2575 		cp = sp->sw_id;
2576 		if (cp != NULL && cp->provider == pp) {
2577 			mtx_unlock(&sw_dev_mtx);
2578 			swh->error = EBUSY;
2579 			return;
2580 		}
2581 	}
2582 	mtx_unlock(&sw_dev_mtx);
2583 	if (gp == NULL)
2584 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2585 	cp = g_new_consumer(gp);
2586 	g_attach(cp, pp);
2587 	/*
2588 	 * XXX: Everytime you think you can improve the margin for
2589 	 * footshooting, somebody depends on the ability to do so:
2590 	 * savecore(8) wants to write to our swapdev so we cannot
2591 	 * set an exclusive count :-(
2592 	 */
2593 	error = g_access(cp, 1, 1, 0);
2594 	if (error) {
2595 		g_detach(cp);
2596 		g_destroy_consumer(cp);
2597 		swh->error = error;
2598 		return;
2599 	}
2600 	nblks = pp->mediasize / DEV_BSIZE;
2601 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2602 	    swapgeom_close, dev2udev(swh->dev));
2603 	swh->error = 0;
2604 	return;
2605 }
2606 
2607 static int
2608 swapongeom(struct thread *td, struct vnode *vp)
2609 {
2610 	int error;
2611 	struct swh0h0 swh;
2612 
2613 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2614 
2615 	swh.dev = vp->v_rdev;
2616 	swh.vp = vp;
2617 	swh.error = 0;
2618 	/* XXX: direct call when Giant untangled */
2619 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2620 	if (!error)
2621 		error = swh.error;
2622 	VOP_UNLOCK(vp, 0);
2623 	return (error);
2624 }
2625 
2626 /*
2627  * VNODE backend
2628  *
2629  * This is used mainly for network filesystem (read: probably only tested
2630  * with NFS) swapfiles.
2631  *
2632  */
2633 
2634 static void
2635 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2636 {
2637 	struct vnode *vp2;
2638 
2639 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2640 
2641 	vp2 = sp->sw_id;
2642 	vhold(vp2);
2643 	if (bp->b_iocmd == BIO_WRITE) {
2644 		if (bp->b_bufobj)
2645 			bufobj_wdrop(bp->b_bufobj);
2646 		bufobj_wref(&vp2->v_bufobj);
2647 	}
2648 	if (bp->b_bufobj != &vp2->v_bufobj)
2649 		bp->b_bufobj = &vp2->v_bufobj;
2650 	bp->b_vp = vp2;
2651 	bp->b_iooffset = dbtob(bp->b_blkno);
2652 	bstrategy(bp);
2653 	return;
2654 }
2655 
2656 static void
2657 swapdev_close(struct thread *td, struct swdevt *sp)
2658 {
2659 
2660 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2661 	vrele(sp->sw_vp);
2662 }
2663 
2664 
2665 static int
2666 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2667 {
2668 	struct swdevt *sp;
2669 	int error;
2670 
2671 	if (nblks == 0)
2672 		return (ENXIO);
2673 	mtx_lock(&sw_dev_mtx);
2674 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2675 		if (sp->sw_id == vp) {
2676 			mtx_unlock(&sw_dev_mtx);
2677 			return (EBUSY);
2678 		}
2679 	}
2680 	mtx_unlock(&sw_dev_mtx);
2681 
2682 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2683 #ifdef MAC
2684 	error = mac_system_check_swapon(td->td_ucred, vp);
2685 	if (error == 0)
2686 #endif
2687 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2688 	(void) VOP_UNLOCK(vp, 0);
2689 	if (error)
2690 		return (error);
2691 
2692 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2693 	    NODEV);
2694 	return (0);
2695 }
2696