1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 168 /* bits from overcommit */ 169 #define SWAP_RESERVE_FORCE_ON (1 << 0) 170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 172 173 int 174 swap_reserve(vm_ooffset_t incr) 175 { 176 177 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 178 } 179 180 int 181 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 182 { 183 vm_ooffset_t r, s; 184 int res, error; 185 static int curfail; 186 static struct timeval lastfail; 187 struct uidinfo *uip; 188 189 uip = cred->cr_ruidinfo; 190 191 if (incr & PAGE_MASK) 192 panic("swap_reserve: & PAGE_MASK"); 193 194 #ifdef RACCT 195 PROC_LOCK(curproc); 196 error = racct_add(curproc, RACCT_SWAP, incr); 197 PROC_UNLOCK(curproc); 198 if (error != 0) 199 return (0); 200 #endif 201 202 res = 0; 203 mtx_lock(&sw_dev_mtx); 204 r = swap_reserved + incr; 205 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 206 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 207 s *= PAGE_SIZE; 208 } else 209 s = 0; 210 s += swap_total; 211 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 212 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 213 res = 1; 214 swap_reserved = r; 215 } 216 mtx_unlock(&sw_dev_mtx); 217 218 if (res) { 219 PROC_LOCK(curproc); 220 UIDINFO_VMSIZE_LOCK(uip); 221 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 222 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 223 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 224 res = 0; 225 else 226 uip->ui_vmsize += incr; 227 UIDINFO_VMSIZE_UNLOCK(uip); 228 PROC_UNLOCK(curproc); 229 if (!res) { 230 mtx_lock(&sw_dev_mtx); 231 swap_reserved -= incr; 232 mtx_unlock(&sw_dev_mtx); 233 } 234 } 235 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 236 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 237 uip->ui_uid, curproc->p_pid, incr); 238 } 239 240 #ifdef RACCT 241 if (!res) { 242 PROC_LOCK(curproc); 243 racct_sub(curproc, RACCT_SWAP, incr); 244 PROC_UNLOCK(curproc); 245 } 246 #endif 247 248 return (res); 249 } 250 251 void 252 swap_reserve_force(vm_ooffset_t incr) 253 { 254 struct uidinfo *uip; 255 256 mtx_lock(&sw_dev_mtx); 257 swap_reserved += incr; 258 mtx_unlock(&sw_dev_mtx); 259 260 #ifdef RACCT 261 PROC_LOCK(curproc); 262 racct_add_force(curproc, RACCT_SWAP, incr); 263 PROC_UNLOCK(curproc); 264 #endif 265 266 uip = curthread->td_ucred->cr_ruidinfo; 267 PROC_LOCK(curproc); 268 UIDINFO_VMSIZE_LOCK(uip); 269 uip->ui_vmsize += incr; 270 UIDINFO_VMSIZE_UNLOCK(uip); 271 PROC_UNLOCK(curproc); 272 } 273 274 void 275 swap_release(vm_ooffset_t decr) 276 { 277 struct ucred *cred; 278 279 PROC_LOCK(curproc); 280 cred = curthread->td_ucred; 281 swap_release_by_cred(decr, cred); 282 PROC_UNLOCK(curproc); 283 } 284 285 void 286 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 287 { 288 struct uidinfo *uip; 289 290 uip = cred->cr_ruidinfo; 291 292 if (decr & PAGE_MASK) 293 panic("swap_release: & PAGE_MASK"); 294 295 mtx_lock(&sw_dev_mtx); 296 if (swap_reserved < decr) 297 panic("swap_reserved < decr"); 298 swap_reserved -= decr; 299 mtx_unlock(&sw_dev_mtx); 300 301 UIDINFO_VMSIZE_LOCK(uip); 302 if (uip->ui_vmsize < decr) 303 printf("negative vmsize for uid = %d\n", uip->ui_uid); 304 uip->ui_vmsize -= decr; 305 UIDINFO_VMSIZE_UNLOCK(uip); 306 307 racct_sub_cred(cred, RACCT_SWAP, decr); 308 } 309 310 static void swapdev_strategy(struct buf *, struct swdevt *sw); 311 312 #define SWM_FREE 0x02 /* free, period */ 313 #define SWM_POP 0x04 /* pop out */ 314 315 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 317 static int nsw_rcount; /* free read buffers */ 318 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 319 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 320 static int nsw_wcount_async_max;/* assigned maximum */ 321 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 322 323 static struct swblock **swhash; 324 static int swhash_mask; 325 static struct mtx swhash_mtx; 326 327 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 328 static struct sx sw_alloc_sx; 329 330 331 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 332 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 333 334 /* 335 * "named" and "unnamed" anon region objects. Try to reduce the overhead 336 * of searching a named list by hashing it just a little. 337 */ 338 339 #define NOBJLISTS 8 340 341 #define NOBJLIST(handle) \ 342 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 343 344 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 345 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 346 static uma_zone_t swap_zone; 347 348 /* 349 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 350 * calls hooked from other parts of the VM system and do not appear here. 351 * (see vm/swap_pager.h). 352 */ 353 static vm_object_t 354 swap_pager_alloc(void *handle, vm_ooffset_t size, 355 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 356 static void swap_pager_dealloc(vm_object_t object); 357 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 358 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 359 static boolean_t 360 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 361 static void swap_pager_init(void); 362 static void swap_pager_unswapped(vm_page_t); 363 static void swap_pager_swapoff(struct swdevt *sp); 364 365 struct pagerops swappagerops = { 366 .pgo_init = swap_pager_init, /* early system initialization of pager */ 367 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 368 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 369 .pgo_getpages = swap_pager_getpages, /* pagein */ 370 .pgo_putpages = swap_pager_putpages, /* pageout */ 371 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 372 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 373 }; 374 375 /* 376 * dmmax is in page-sized chunks with the new swap system. It was 377 * dev-bsized chunks in the old. dmmax is always a power of 2. 378 * 379 * swap_*() routines are externally accessible. swp_*() routines are 380 * internal. 381 */ 382 static int dmmax; 383 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 384 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 385 386 SYSCTL_INT(_vm, OID_AUTO, dmmax, 387 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 388 389 static void swp_sizecheck(void); 390 static void swp_pager_async_iodone(struct buf *bp); 391 static int swapongeom(struct thread *, struct vnode *); 392 static int swaponvp(struct thread *, struct vnode *, u_long); 393 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 394 395 /* 396 * Swap bitmap functions 397 */ 398 static void swp_pager_freeswapspace(daddr_t blk, int npages); 399 static daddr_t swp_pager_getswapspace(int npages); 400 401 /* 402 * Metadata functions 403 */ 404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 407 static void swp_pager_meta_free_all(vm_object_t); 408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 409 410 static void 411 swp_pager_free_nrpage(vm_page_t m) 412 { 413 414 vm_page_lock(m); 415 if (m->wire_count == 0) 416 vm_page_free(m); 417 vm_page_unlock(m); 418 } 419 420 /* 421 * SWP_SIZECHECK() - update swap_pager_full indication 422 * 423 * update the swap_pager_almost_full indication and warn when we are 424 * about to run out of swap space, using lowat/hiwat hysteresis. 425 * 426 * Clear swap_pager_full ( task killing ) indication when lowat is met. 427 * 428 * No restrictions on call 429 * This routine may not block. 430 */ 431 static void 432 swp_sizecheck(void) 433 { 434 435 if (swap_pager_avail < nswap_lowat) { 436 if (swap_pager_almost_full == 0) { 437 printf("swap_pager: out of swap space\n"); 438 swap_pager_almost_full = 1; 439 } 440 } else { 441 swap_pager_full = 0; 442 if (swap_pager_avail > nswap_hiwat) 443 swap_pager_almost_full = 0; 444 } 445 } 446 447 /* 448 * SWP_PAGER_HASH() - hash swap meta data 449 * 450 * This is an helper function which hashes the swapblk given 451 * the object and page index. It returns a pointer to a pointer 452 * to the object, or a pointer to a NULL pointer if it could not 453 * find a swapblk. 454 */ 455 static struct swblock ** 456 swp_pager_hash(vm_object_t object, vm_pindex_t index) 457 { 458 struct swblock **pswap; 459 struct swblock *swap; 460 461 index &= ~(vm_pindex_t)SWAP_META_MASK; 462 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 463 while ((swap = *pswap) != NULL) { 464 if (swap->swb_object == object && 465 swap->swb_index == index 466 ) { 467 break; 468 } 469 pswap = &swap->swb_hnext; 470 } 471 return (pswap); 472 } 473 474 /* 475 * SWAP_PAGER_INIT() - initialize the swap pager! 476 * 477 * Expected to be started from system init. NOTE: This code is run 478 * before much else so be careful what you depend on. Most of the VM 479 * system has yet to be initialized at this point. 480 */ 481 static void 482 swap_pager_init(void) 483 { 484 /* 485 * Initialize object lists 486 */ 487 int i; 488 489 for (i = 0; i < NOBJLISTS; ++i) 490 TAILQ_INIT(&swap_pager_object_list[i]); 491 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 492 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 493 494 /* 495 * Device Stripe, in PAGE_SIZE'd blocks 496 */ 497 dmmax = SWB_NPAGES * 2; 498 } 499 500 /* 501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 502 * 503 * Expected to be started from pageout process once, prior to entering 504 * its main loop. 505 */ 506 void 507 swap_pager_swap_init(void) 508 { 509 int n, n2; 510 511 /* 512 * Number of in-transit swap bp operations. Don't 513 * exhaust the pbufs completely. Make sure we 514 * initialize workable values (0 will work for hysteresis 515 * but it isn't very efficient). 516 * 517 * The nsw_cluster_max is constrained by the bp->b_pages[] 518 * array (MAXPHYS/PAGE_SIZE) and our locally defined 519 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 520 * constrained by the swap device interleave stripe size. 521 * 522 * Currently we hardwire nsw_wcount_async to 4. This limit is 523 * designed to prevent other I/O from having high latencies due to 524 * our pageout I/O. The value 4 works well for one or two active swap 525 * devices but is probably a little low if you have more. Even so, 526 * a higher value would probably generate only a limited improvement 527 * with three or four active swap devices since the system does not 528 * typically have to pageout at extreme bandwidths. We will want 529 * at least 2 per swap devices, and 4 is a pretty good value if you 530 * have one NFS swap device due to the command/ack latency over NFS. 531 * So it all works out pretty well. 532 */ 533 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 534 535 mtx_lock(&pbuf_mtx); 536 nsw_rcount = (nswbuf + 1) / 2; 537 nsw_wcount_sync = (nswbuf + 3) / 4; 538 nsw_wcount_async = 4; 539 nsw_wcount_async_max = nsw_wcount_async; 540 mtx_unlock(&pbuf_mtx); 541 542 /* 543 * Initialize our zone. Right now I'm just guessing on the number 544 * we need based on the number of pages in the system. Each swblock 545 * can hold 16 pages, so this is probably overkill. This reservation 546 * is typically limited to around 32MB by default. 547 */ 548 n = cnt.v_page_count / 2; 549 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 550 n = maxswzone / sizeof(struct swblock); 551 n2 = n; 552 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 553 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 554 if (swap_zone == NULL) 555 panic("failed to create swap_zone."); 556 do { 557 if (uma_zone_reserve_kva(swap_zone, n)) 558 break; 559 /* 560 * if the allocation failed, try a zone two thirds the 561 * size of the previous attempt. 562 */ 563 n -= ((n + 2) / 3); 564 } while (n > 0); 565 if (n2 != n) 566 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 567 n2 = n; 568 569 /* 570 * Initialize our meta-data hash table. The swapper does not need to 571 * be quite as efficient as the VM system, so we do not use an 572 * oversized hash table. 573 * 574 * n: size of hash table, must be power of 2 575 * swhash_mask: hash table index mask 576 */ 577 for (n = 1; n < n2 / 8; n *= 2) 578 ; 579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 580 swhash_mask = n - 1; 581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 582 } 583 584 /* 585 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 586 * its metadata structures. 587 * 588 * This routine is called from the mmap and fork code to create a new 589 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 590 * and then converting it with swp_pager_meta_build(). 591 * 592 * This routine may block in vm_object_allocate() and create a named 593 * object lookup race, so we must interlock. 594 * 595 * MPSAFE 596 */ 597 static vm_object_t 598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 599 vm_ooffset_t offset, struct ucred *cred) 600 { 601 vm_object_t object; 602 vm_pindex_t pindex; 603 604 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 605 if (handle) { 606 mtx_lock(&Giant); 607 /* 608 * Reference existing named region or allocate new one. There 609 * should not be a race here against swp_pager_meta_build() 610 * as called from vm_page_remove() in regards to the lookup 611 * of the handle. 612 */ 613 sx_xlock(&sw_alloc_sx); 614 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 615 if (object == NULL) { 616 if (cred != NULL) { 617 if (!swap_reserve_by_cred(size, cred)) { 618 sx_xunlock(&sw_alloc_sx); 619 mtx_unlock(&Giant); 620 return (NULL); 621 } 622 crhold(cred); 623 } 624 object = vm_object_allocate(OBJT_DEFAULT, pindex); 625 VM_OBJECT_WLOCK(object); 626 object->handle = handle; 627 if (cred != NULL) { 628 object->cred = cred; 629 object->charge = size; 630 } 631 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 632 VM_OBJECT_WUNLOCK(object); 633 } 634 sx_xunlock(&sw_alloc_sx); 635 mtx_unlock(&Giant); 636 } else { 637 if (cred != NULL) { 638 if (!swap_reserve_by_cred(size, cred)) 639 return (NULL); 640 crhold(cred); 641 } 642 object = vm_object_allocate(OBJT_DEFAULT, pindex); 643 VM_OBJECT_WLOCK(object); 644 if (cred != NULL) { 645 object->cred = cred; 646 object->charge = size; 647 } 648 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 649 VM_OBJECT_WUNLOCK(object); 650 } 651 return (object); 652 } 653 654 /* 655 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 656 * 657 * The swap backing for the object is destroyed. The code is 658 * designed such that we can reinstantiate it later, but this 659 * routine is typically called only when the entire object is 660 * about to be destroyed. 661 * 662 * The object must be locked. 663 */ 664 static void 665 swap_pager_dealloc(vm_object_t object) 666 { 667 668 /* 669 * Remove from list right away so lookups will fail if we block for 670 * pageout completion. 671 */ 672 if (object->handle != NULL) { 673 mtx_lock(&sw_alloc_mtx); 674 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 675 mtx_unlock(&sw_alloc_mtx); 676 } 677 678 VM_OBJECT_ASSERT_WLOCKED(object); 679 vm_object_pip_wait(object, "swpdea"); 680 681 /* 682 * Free all remaining metadata. We only bother to free it from 683 * the swap meta data. We do not attempt to free swapblk's still 684 * associated with vm_page_t's for this object. We do not care 685 * if paging is still in progress on some objects. 686 */ 687 swp_pager_meta_free_all(object); 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 762 unmapped_buf_allowed) { 763 bp->b_kvaalloc = bp->b_data; 764 bp->b_data = unmapped_buf; 765 bp->b_kvabase = unmapped_buf; 766 bp->b_offset = 0; 767 bp->b_flags |= B_UNMAPPED; 768 } else { 769 pmap_qenter((vm_offset_t)bp->b_data, 770 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 771 } 772 sp->sw_strategy(bp, sp); 773 return; 774 } 775 } 776 panic("Swapdev not found"); 777 } 778 779 780 /* 781 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 782 * 783 * This routine returns the specified swap blocks back to the bitmap. 784 * 785 * This routine may not sleep. 786 */ 787 static void 788 swp_pager_freeswapspace(daddr_t blk, int npages) 789 { 790 struct swdevt *sp; 791 792 mtx_lock(&sw_dev_mtx); 793 TAILQ_FOREACH(sp, &swtailq, sw_list) { 794 if (blk >= sp->sw_first && blk < sp->sw_end) { 795 sp->sw_used -= npages; 796 /* 797 * If we are attempting to stop swapping on 798 * this device, we don't want to mark any 799 * blocks free lest they be reused. 800 */ 801 if ((sp->sw_flags & SW_CLOSING) == 0) { 802 blist_free(sp->sw_blist, blk - sp->sw_first, 803 npages); 804 swap_pager_avail += npages; 805 swp_sizecheck(); 806 } 807 mtx_unlock(&sw_dev_mtx); 808 return; 809 } 810 } 811 panic("Swapdev not found"); 812 } 813 814 /* 815 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 816 * range within an object. 817 * 818 * This is a globally accessible routine. 819 * 820 * This routine removes swapblk assignments from swap metadata. 821 * 822 * The external callers of this routine typically have already destroyed 823 * or renamed vm_page_t's associated with this range in the object so 824 * we should be ok. 825 * 826 * The object must be locked. 827 */ 828 void 829 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 830 { 831 832 swp_pager_meta_free(object, start, size); 833 } 834 835 /* 836 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 837 * 838 * Assigns swap blocks to the specified range within the object. The 839 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 840 * 841 * Returns 0 on success, -1 on failure. 842 */ 843 int 844 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 845 { 846 int n = 0; 847 daddr_t blk = SWAPBLK_NONE; 848 vm_pindex_t beg = start; /* save start index */ 849 850 VM_OBJECT_WLOCK(object); 851 while (size) { 852 if (n == 0) { 853 n = BLIST_MAX_ALLOC; 854 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 855 n >>= 1; 856 if (n == 0) { 857 swp_pager_meta_free(object, beg, start - beg); 858 VM_OBJECT_WUNLOCK(object); 859 return (-1); 860 } 861 } 862 } 863 swp_pager_meta_build(object, start, blk); 864 --size; 865 ++start; 866 ++blk; 867 --n; 868 } 869 swp_pager_meta_free(object, start, n); 870 VM_OBJECT_WUNLOCK(object); 871 return (0); 872 } 873 874 /* 875 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 876 * and destroy the source. 877 * 878 * Copy any valid swapblks from the source to the destination. In 879 * cases where both the source and destination have a valid swapblk, 880 * we keep the destination's. 881 * 882 * This routine is allowed to sleep. It may sleep allocating metadata 883 * indirectly through swp_pager_meta_build() or if paging is still in 884 * progress on the source. 885 * 886 * The source object contains no vm_page_t's (which is just as well) 887 * 888 * The source object is of type OBJT_SWAP. 889 * 890 * The source and destination objects must be locked. 891 * Both object locks may temporarily be released. 892 */ 893 void 894 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 895 vm_pindex_t offset, int destroysource) 896 { 897 vm_pindex_t i; 898 899 VM_OBJECT_ASSERT_WLOCKED(srcobject); 900 VM_OBJECT_ASSERT_WLOCKED(dstobject); 901 902 /* 903 * If destroysource is set, we remove the source object from the 904 * swap_pager internal queue now. 905 */ 906 if (destroysource) { 907 if (srcobject->handle != NULL) { 908 mtx_lock(&sw_alloc_mtx); 909 TAILQ_REMOVE( 910 NOBJLIST(srcobject->handle), 911 srcobject, 912 pager_object_list 913 ); 914 mtx_unlock(&sw_alloc_mtx); 915 } 916 } 917 918 /* 919 * transfer source to destination. 920 */ 921 for (i = 0; i < dstobject->size; ++i) { 922 daddr_t dstaddr; 923 924 /* 925 * Locate (without changing) the swapblk on the destination, 926 * unless it is invalid in which case free it silently, or 927 * if the destination is a resident page, in which case the 928 * source is thrown away. 929 */ 930 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 931 932 if (dstaddr == SWAPBLK_NONE) { 933 /* 934 * Destination has no swapblk and is not resident, 935 * copy source. 936 */ 937 daddr_t srcaddr; 938 939 srcaddr = swp_pager_meta_ctl( 940 srcobject, 941 i + offset, 942 SWM_POP 943 ); 944 945 if (srcaddr != SWAPBLK_NONE) { 946 /* 947 * swp_pager_meta_build() can sleep. 948 */ 949 vm_object_pip_add(srcobject, 1); 950 VM_OBJECT_WUNLOCK(srcobject); 951 vm_object_pip_add(dstobject, 1); 952 swp_pager_meta_build(dstobject, i, srcaddr); 953 vm_object_pip_wakeup(dstobject); 954 VM_OBJECT_WLOCK(srcobject); 955 vm_object_pip_wakeup(srcobject); 956 } 957 } else { 958 /* 959 * Destination has valid swapblk or it is represented 960 * by a resident page. We destroy the sourceblock. 961 */ 962 963 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 964 } 965 } 966 967 /* 968 * Free left over swap blocks in source. 969 * 970 * We have to revert the type to OBJT_DEFAULT so we do not accidently 971 * double-remove the object from the swap queues. 972 */ 973 if (destroysource) { 974 swp_pager_meta_free_all(srcobject); 975 /* 976 * Reverting the type is not necessary, the caller is going 977 * to destroy srcobject directly, but I'm doing it here 978 * for consistency since we've removed the object from its 979 * queues. 980 */ 981 srcobject->type = OBJT_DEFAULT; 982 } 983 } 984 985 /* 986 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 987 * the requested page. 988 * 989 * We determine whether good backing store exists for the requested 990 * page and return TRUE if it does, FALSE if it doesn't. 991 * 992 * If TRUE, we also try to determine how much valid, contiguous backing 993 * store exists before and after the requested page within a reasonable 994 * distance. We do not try to restrict it to the swap device stripe 995 * (that is handled in getpages/putpages). It probably isn't worth 996 * doing here. 997 */ 998 static boolean_t 999 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 1000 { 1001 daddr_t blk0; 1002 1003 VM_OBJECT_ASSERT_LOCKED(object); 1004 /* 1005 * do we have good backing store at the requested index ? 1006 */ 1007 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1008 1009 if (blk0 == SWAPBLK_NONE) { 1010 if (before) 1011 *before = 0; 1012 if (after) 1013 *after = 0; 1014 return (FALSE); 1015 } 1016 1017 /* 1018 * find backwards-looking contiguous good backing store 1019 */ 1020 if (before != NULL) { 1021 int i; 1022 1023 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1024 daddr_t blk; 1025 1026 if (i > pindex) 1027 break; 1028 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1029 if (blk != blk0 - i) 1030 break; 1031 } 1032 *before = (i - 1); 1033 } 1034 1035 /* 1036 * find forward-looking contiguous good backing store 1037 */ 1038 if (after != NULL) { 1039 int i; 1040 1041 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1042 daddr_t blk; 1043 1044 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1045 if (blk != blk0 + i) 1046 break; 1047 } 1048 *after = (i - 1); 1049 } 1050 return (TRUE); 1051 } 1052 1053 /* 1054 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1055 * 1056 * This removes any associated swap backing store, whether valid or 1057 * not, from the page. 1058 * 1059 * This routine is typically called when a page is made dirty, at 1060 * which point any associated swap can be freed. MADV_FREE also 1061 * calls us in a special-case situation 1062 * 1063 * NOTE!!! If the page is clean and the swap was valid, the caller 1064 * should make the page dirty before calling this routine. This routine 1065 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1066 * depends on it. 1067 * 1068 * This routine may not sleep. 1069 * 1070 * The object containing the page must be locked. 1071 */ 1072 static void 1073 swap_pager_unswapped(vm_page_t m) 1074 { 1075 1076 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1077 } 1078 1079 /* 1080 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1081 * 1082 * Attempt to retrieve (m, count) pages from backing store, but make 1083 * sure we retrieve at least m[reqpage]. We try to load in as large 1084 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1085 * belongs to the same object. 1086 * 1087 * The code is designed for asynchronous operation and 1088 * immediate-notification of 'reqpage' but tends not to be 1089 * used that way. Please do not optimize-out this algorithmic 1090 * feature, I intend to improve on it in the future. 1091 * 1092 * The parent has a single vm_object_pip_add() reference prior to 1093 * calling us and we should return with the same. 1094 * 1095 * The parent has BUSY'd the pages. We should return with 'm' 1096 * left busy, but the others adjusted. 1097 */ 1098 static int 1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1100 { 1101 struct buf *bp; 1102 vm_page_t mreq; 1103 int i; 1104 int j; 1105 daddr_t blk; 1106 1107 mreq = m[reqpage]; 1108 1109 KASSERT(mreq->object == object, 1110 ("swap_pager_getpages: object mismatch %p/%p", 1111 object, mreq->object)); 1112 1113 /* 1114 * Calculate range to retrieve. The pages have already been assigned 1115 * their swapblks. We require a *contiguous* range but we know it to 1116 * not span devices. If we do not supply it, bad things 1117 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1118 * loops are set up such that the case(s) are handled implicitly. 1119 * 1120 * The swp_*() calls must be made with the object locked. 1121 */ 1122 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1123 1124 for (i = reqpage - 1; i >= 0; --i) { 1125 daddr_t iblk; 1126 1127 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1128 if (blk != iblk + (reqpage - i)) 1129 break; 1130 } 1131 ++i; 1132 1133 for (j = reqpage + 1; j < count; ++j) { 1134 daddr_t jblk; 1135 1136 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1137 if (blk != jblk - (j - reqpage)) 1138 break; 1139 } 1140 1141 /* 1142 * free pages outside our collection range. Note: we never free 1143 * mreq, it must remain busy throughout. 1144 */ 1145 if (0 < i || j < count) { 1146 int k; 1147 1148 for (k = 0; k < i; ++k) 1149 swp_pager_free_nrpage(m[k]); 1150 for (k = j; k < count; ++k) 1151 swp_pager_free_nrpage(m[k]); 1152 } 1153 1154 /* 1155 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1156 * still busy, but the others unbusied. 1157 */ 1158 if (blk == SWAPBLK_NONE) 1159 return (VM_PAGER_FAIL); 1160 1161 /* 1162 * Getpbuf() can sleep. 1163 */ 1164 VM_OBJECT_WUNLOCK(object); 1165 /* 1166 * Get a swap buffer header to perform the IO 1167 */ 1168 bp = getpbuf(&nsw_rcount); 1169 bp->b_flags |= B_PAGING; 1170 1171 bp->b_iocmd = BIO_READ; 1172 bp->b_iodone = swp_pager_async_iodone; 1173 bp->b_rcred = crhold(thread0.td_ucred); 1174 bp->b_wcred = crhold(thread0.td_ucred); 1175 bp->b_blkno = blk - (reqpage - i); 1176 bp->b_bcount = PAGE_SIZE * (j - i); 1177 bp->b_bufsize = PAGE_SIZE * (j - i); 1178 bp->b_pager.pg_reqpage = reqpage - i; 1179 1180 VM_OBJECT_WLOCK(object); 1181 { 1182 int k; 1183 1184 for (k = i; k < j; ++k) { 1185 bp->b_pages[k - i] = m[k]; 1186 m[k]->oflags |= VPO_SWAPINPROG; 1187 } 1188 } 1189 bp->b_npages = j - i; 1190 1191 PCPU_INC(cnt.v_swapin); 1192 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1193 1194 /* 1195 * We still hold the lock on mreq, and our automatic completion routine 1196 * does not remove it. 1197 */ 1198 vm_object_pip_add(object, bp->b_npages); 1199 VM_OBJECT_WUNLOCK(object); 1200 1201 /* 1202 * perform the I/O. NOTE!!! bp cannot be considered valid after 1203 * this point because we automatically release it on completion. 1204 * Instead, we look at the one page we are interested in which we 1205 * still hold a lock on even through the I/O completion. 1206 * 1207 * The other pages in our m[] array are also released on completion, 1208 * so we cannot assume they are valid anymore either. 1209 * 1210 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1211 */ 1212 BUF_KERNPROC(bp); 1213 swp_pager_strategy(bp); 1214 1215 /* 1216 * wait for the page we want to complete. VPO_SWAPINPROG is always 1217 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1218 * is set in the meta-data. 1219 */ 1220 VM_OBJECT_WLOCK(object); 1221 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1222 mreq->oflags |= VPO_WANTED; 1223 PCPU_INC(cnt.v_intrans); 1224 if (VM_OBJECT_SLEEP(object, mreq, PSWP, "swread", hz * 20)) { 1225 printf( 1226 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1227 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1228 } 1229 } 1230 1231 /* 1232 * mreq is left busied after completion, but all the other pages 1233 * are freed. If we had an unrecoverable read error the page will 1234 * not be valid. 1235 */ 1236 if (mreq->valid != VM_PAGE_BITS_ALL) { 1237 return (VM_PAGER_ERROR); 1238 } else { 1239 return (VM_PAGER_OK); 1240 } 1241 1242 /* 1243 * A final note: in a low swap situation, we cannot deallocate swap 1244 * and mark a page dirty here because the caller is likely to mark 1245 * the page clean when we return, causing the page to possibly revert 1246 * to all-zero's later. 1247 */ 1248 } 1249 1250 /* 1251 * swap_pager_putpages: 1252 * 1253 * Assign swap (if necessary) and initiate I/O on the specified pages. 1254 * 1255 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1256 * are automatically converted to SWAP objects. 1257 * 1258 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1259 * vm_page reservation system coupled with properly written VFS devices 1260 * should ensure that no low-memory deadlock occurs. This is an area 1261 * which needs work. 1262 * 1263 * The parent has N vm_object_pip_add() references prior to 1264 * calling us and will remove references for rtvals[] that are 1265 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1266 * completion. 1267 * 1268 * The parent has soft-busy'd the pages it passes us and will unbusy 1269 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1270 * We need to unbusy the rest on I/O completion. 1271 */ 1272 void 1273 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1274 boolean_t sync, int *rtvals) 1275 { 1276 int i; 1277 int n = 0; 1278 1279 if (count && m[0]->object != object) { 1280 panic("swap_pager_putpages: object mismatch %p/%p", 1281 object, 1282 m[0]->object 1283 ); 1284 } 1285 1286 /* 1287 * Step 1 1288 * 1289 * Turn object into OBJT_SWAP 1290 * check for bogus sysops 1291 * force sync if not pageout process 1292 */ 1293 if (object->type != OBJT_SWAP) 1294 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1295 VM_OBJECT_WUNLOCK(object); 1296 1297 if (curproc != pageproc) 1298 sync = TRUE; 1299 1300 /* 1301 * Step 2 1302 * 1303 * Update nsw parameters from swap_async_max sysctl values. 1304 * Do not let the sysop crash the machine with bogus numbers. 1305 */ 1306 mtx_lock(&pbuf_mtx); 1307 if (swap_async_max != nsw_wcount_async_max) { 1308 int n; 1309 1310 /* 1311 * limit range 1312 */ 1313 if ((n = swap_async_max) > nswbuf / 2) 1314 n = nswbuf / 2; 1315 if (n < 1) 1316 n = 1; 1317 swap_async_max = n; 1318 1319 /* 1320 * Adjust difference ( if possible ). If the current async 1321 * count is too low, we may not be able to make the adjustment 1322 * at this time. 1323 */ 1324 n -= nsw_wcount_async_max; 1325 if (nsw_wcount_async + n >= 0) { 1326 nsw_wcount_async += n; 1327 nsw_wcount_async_max += n; 1328 wakeup(&nsw_wcount_async); 1329 } 1330 } 1331 mtx_unlock(&pbuf_mtx); 1332 1333 /* 1334 * Step 3 1335 * 1336 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1337 * The page is left dirty until the pageout operation completes 1338 * successfully. 1339 */ 1340 for (i = 0; i < count; i += n) { 1341 int j; 1342 struct buf *bp; 1343 daddr_t blk; 1344 1345 /* 1346 * Maximum I/O size is limited by a number of factors. 1347 */ 1348 n = min(BLIST_MAX_ALLOC, count - i); 1349 n = min(n, nsw_cluster_max); 1350 1351 /* 1352 * Get biggest block of swap we can. If we fail, fall 1353 * back and try to allocate a smaller block. Don't go 1354 * overboard trying to allocate space if it would overly 1355 * fragment swap. 1356 */ 1357 while ( 1358 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1359 n > 4 1360 ) { 1361 n >>= 1; 1362 } 1363 if (blk == SWAPBLK_NONE) { 1364 for (j = 0; j < n; ++j) 1365 rtvals[i+j] = VM_PAGER_FAIL; 1366 continue; 1367 } 1368 1369 /* 1370 * All I/O parameters have been satisfied, build the I/O 1371 * request and assign the swap space. 1372 */ 1373 if (sync == TRUE) { 1374 bp = getpbuf(&nsw_wcount_sync); 1375 } else { 1376 bp = getpbuf(&nsw_wcount_async); 1377 bp->b_flags = B_ASYNC; 1378 } 1379 bp->b_flags |= B_PAGING; 1380 bp->b_iocmd = BIO_WRITE; 1381 1382 bp->b_rcred = crhold(thread0.td_ucred); 1383 bp->b_wcred = crhold(thread0.td_ucred); 1384 bp->b_bcount = PAGE_SIZE * n; 1385 bp->b_bufsize = PAGE_SIZE * n; 1386 bp->b_blkno = blk; 1387 1388 VM_OBJECT_WLOCK(object); 1389 for (j = 0; j < n; ++j) { 1390 vm_page_t mreq = m[i+j]; 1391 1392 swp_pager_meta_build( 1393 mreq->object, 1394 mreq->pindex, 1395 blk + j 1396 ); 1397 vm_page_dirty(mreq); 1398 rtvals[i+j] = VM_PAGER_OK; 1399 1400 mreq->oflags |= VPO_SWAPINPROG; 1401 bp->b_pages[j] = mreq; 1402 } 1403 VM_OBJECT_WUNLOCK(object); 1404 bp->b_npages = n; 1405 /* 1406 * Must set dirty range for NFS to work. 1407 */ 1408 bp->b_dirtyoff = 0; 1409 bp->b_dirtyend = bp->b_bcount; 1410 1411 PCPU_INC(cnt.v_swapout); 1412 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1413 1414 /* 1415 * asynchronous 1416 * 1417 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1418 */ 1419 if (sync == FALSE) { 1420 bp->b_iodone = swp_pager_async_iodone; 1421 BUF_KERNPROC(bp); 1422 swp_pager_strategy(bp); 1423 1424 for (j = 0; j < n; ++j) 1425 rtvals[i+j] = VM_PAGER_PEND; 1426 /* restart outter loop */ 1427 continue; 1428 } 1429 1430 /* 1431 * synchronous 1432 * 1433 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1434 */ 1435 bp->b_iodone = bdone; 1436 swp_pager_strategy(bp); 1437 1438 /* 1439 * Wait for the sync I/O to complete, then update rtvals. 1440 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1441 * our async completion routine at the end, thus avoiding a 1442 * double-free. 1443 */ 1444 bwait(bp, PVM, "swwrt"); 1445 for (j = 0; j < n; ++j) 1446 rtvals[i+j] = VM_PAGER_PEND; 1447 /* 1448 * Now that we are through with the bp, we can call the 1449 * normal async completion, which frees everything up. 1450 */ 1451 swp_pager_async_iodone(bp); 1452 } 1453 VM_OBJECT_WLOCK(object); 1454 } 1455 1456 /* 1457 * swp_pager_async_iodone: 1458 * 1459 * Completion routine for asynchronous reads and writes from/to swap. 1460 * Also called manually by synchronous code to finish up a bp. 1461 * 1462 * For READ operations, the pages are VPO_BUSY'd. For WRITE operations, 1463 * the pages are vm_page_t->busy'd. For READ operations, we VPO_BUSY 1464 * unbusy all pages except the 'main' request page. For WRITE 1465 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1466 * because we marked them all VM_PAGER_PEND on return from putpages ). 1467 * 1468 * This routine may not sleep. 1469 */ 1470 static void 1471 swp_pager_async_iodone(struct buf *bp) 1472 { 1473 int i; 1474 vm_object_t object = NULL; 1475 1476 /* 1477 * report error 1478 */ 1479 if (bp->b_ioflags & BIO_ERROR) { 1480 printf( 1481 "swap_pager: I/O error - %s failed; blkno %ld," 1482 "size %ld, error %d\n", 1483 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1484 (long)bp->b_blkno, 1485 (long)bp->b_bcount, 1486 bp->b_error 1487 ); 1488 } 1489 1490 /* 1491 * remove the mapping for kernel virtual 1492 */ 1493 if ((bp->b_flags & B_UNMAPPED) != 0) { 1494 bp->b_data = bp->b_kvaalloc; 1495 bp->b_kvabase = bp->b_kvaalloc; 1496 bp->b_flags &= ~B_UNMAPPED; 1497 } else 1498 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1499 1500 if (bp->b_npages) { 1501 object = bp->b_pages[0]->object; 1502 VM_OBJECT_WLOCK(object); 1503 } 1504 1505 /* 1506 * cleanup pages. If an error occurs writing to swap, we are in 1507 * very serious trouble. If it happens to be a disk error, though, 1508 * we may be able to recover by reassigning the swap later on. So 1509 * in this case we remove the m->swapblk assignment for the page 1510 * but do not free it in the rlist. The errornous block(s) are thus 1511 * never reallocated as swap. Redirty the page and continue. 1512 */ 1513 for (i = 0; i < bp->b_npages; ++i) { 1514 vm_page_t m = bp->b_pages[i]; 1515 1516 m->oflags &= ~VPO_SWAPINPROG; 1517 1518 if (bp->b_ioflags & BIO_ERROR) { 1519 /* 1520 * If an error occurs I'd love to throw the swapblk 1521 * away without freeing it back to swapspace, so it 1522 * can never be used again. But I can't from an 1523 * interrupt. 1524 */ 1525 if (bp->b_iocmd == BIO_READ) { 1526 /* 1527 * When reading, reqpage needs to stay 1528 * locked for the parent, but all other 1529 * pages can be freed. We still want to 1530 * wakeup the parent waiting on the page, 1531 * though. ( also: pg_reqpage can be -1 and 1532 * not match anything ). 1533 * 1534 * We have to wake specifically requested pages 1535 * up too because we cleared VPO_SWAPINPROG and 1536 * someone may be waiting for that. 1537 * 1538 * NOTE: for reads, m->dirty will probably 1539 * be overridden by the original caller of 1540 * getpages so don't play cute tricks here. 1541 */ 1542 m->valid = 0; 1543 if (i != bp->b_pager.pg_reqpage) 1544 swp_pager_free_nrpage(m); 1545 else 1546 vm_page_flash(m); 1547 /* 1548 * If i == bp->b_pager.pg_reqpage, do not wake 1549 * the page up. The caller needs to. 1550 */ 1551 } else { 1552 /* 1553 * If a write error occurs, reactivate page 1554 * so it doesn't clog the inactive list, 1555 * then finish the I/O. 1556 */ 1557 vm_page_dirty(m); 1558 vm_page_lock(m); 1559 vm_page_activate(m); 1560 vm_page_unlock(m); 1561 vm_page_io_finish(m); 1562 } 1563 } else if (bp->b_iocmd == BIO_READ) { 1564 /* 1565 * NOTE: for reads, m->dirty will probably be 1566 * overridden by the original caller of getpages so 1567 * we cannot set them in order to free the underlying 1568 * swap in a low-swap situation. I don't think we'd 1569 * want to do that anyway, but it was an optimization 1570 * that existed in the old swapper for a time before 1571 * it got ripped out due to precisely this problem. 1572 * 1573 * If not the requested page then deactivate it. 1574 * 1575 * Note that the requested page, reqpage, is left 1576 * busied, but we still have to wake it up. The 1577 * other pages are released (unbusied) by 1578 * vm_page_wakeup(). 1579 */ 1580 KASSERT(!pmap_page_is_mapped(m), 1581 ("swp_pager_async_iodone: page %p is mapped", m)); 1582 m->valid = VM_PAGE_BITS_ALL; 1583 KASSERT(m->dirty == 0, 1584 ("swp_pager_async_iodone: page %p is dirty", m)); 1585 1586 /* 1587 * We have to wake specifically requested pages 1588 * up too because we cleared VPO_SWAPINPROG and 1589 * could be waiting for it in getpages. However, 1590 * be sure to not unbusy getpages specifically 1591 * requested page - getpages expects it to be 1592 * left busy. 1593 */ 1594 if (i != bp->b_pager.pg_reqpage) { 1595 vm_page_lock(m); 1596 vm_page_deactivate(m); 1597 vm_page_unlock(m); 1598 vm_page_wakeup(m); 1599 } else 1600 vm_page_flash(m); 1601 } else { 1602 /* 1603 * For write success, clear the dirty 1604 * status, then finish the I/O ( which decrements the 1605 * busy count and possibly wakes waiter's up ). 1606 */ 1607 KASSERT(!pmap_page_is_write_mapped(m), 1608 ("swp_pager_async_iodone: page %p is not write" 1609 " protected", m)); 1610 vm_page_undirty(m); 1611 vm_page_io_finish(m); 1612 if (vm_page_count_severe()) { 1613 vm_page_lock(m); 1614 vm_page_try_to_cache(m); 1615 vm_page_unlock(m); 1616 } 1617 } 1618 } 1619 1620 /* 1621 * adjust pip. NOTE: the original parent may still have its own 1622 * pip refs on the object. 1623 */ 1624 if (object != NULL) { 1625 vm_object_pip_wakeupn(object, bp->b_npages); 1626 VM_OBJECT_WUNLOCK(object); 1627 } 1628 1629 /* 1630 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1631 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1632 * trigger a KASSERT in relpbuf(). 1633 */ 1634 if (bp->b_vp) { 1635 bp->b_vp = NULL; 1636 bp->b_bufobj = NULL; 1637 } 1638 /* 1639 * release the physical I/O buffer 1640 */ 1641 relpbuf( 1642 bp, 1643 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1644 ((bp->b_flags & B_ASYNC) ? 1645 &nsw_wcount_async : 1646 &nsw_wcount_sync 1647 ) 1648 ) 1649 ); 1650 } 1651 1652 /* 1653 * swap_pager_isswapped: 1654 * 1655 * Return 1 if at least one page in the given object is paged 1656 * out to the given swap device. 1657 * 1658 * This routine may not sleep. 1659 */ 1660 int 1661 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1662 { 1663 daddr_t index = 0; 1664 int bcount; 1665 int i; 1666 1667 VM_OBJECT_ASSERT_WLOCKED(object); 1668 if (object->type != OBJT_SWAP) 1669 return (0); 1670 1671 mtx_lock(&swhash_mtx); 1672 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1673 struct swblock *swap; 1674 1675 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1676 for (i = 0; i < SWAP_META_PAGES; ++i) { 1677 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1678 mtx_unlock(&swhash_mtx); 1679 return (1); 1680 } 1681 } 1682 } 1683 index += SWAP_META_PAGES; 1684 } 1685 mtx_unlock(&swhash_mtx); 1686 return (0); 1687 } 1688 1689 /* 1690 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1691 * 1692 * This routine dissociates the page at the given index within a 1693 * swap block from its backing store, paging it in if necessary. 1694 * If the page is paged in, it is placed in the inactive queue, 1695 * since it had its backing store ripped out from under it. 1696 * We also attempt to swap in all other pages in the swap block, 1697 * we only guarantee that the one at the specified index is 1698 * paged in. 1699 * 1700 * XXX - The code to page the whole block in doesn't work, so we 1701 * revert to the one-by-one behavior for now. Sigh. 1702 */ 1703 static inline void 1704 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1705 { 1706 vm_page_t m; 1707 1708 vm_object_pip_add(object, 1); 1709 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY | 1710 VM_ALLOC_NOBUSY); 1711 if (m->valid == VM_PAGE_BITS_ALL) { 1712 vm_object_pip_subtract(object, 1); 1713 vm_page_dirty(m); 1714 vm_page_lock(m); 1715 vm_page_activate(m); 1716 vm_page_unlock(m); 1717 vm_pager_page_unswapped(m); 1718 return; 1719 } 1720 1721 vm_page_busy(m); 1722 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1723 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1724 vm_object_pip_subtract(object, 1); 1725 vm_page_dirty(m); 1726 vm_page_lock(m); 1727 vm_page_deactivate(m); 1728 vm_page_unlock(m); 1729 vm_page_wakeup(m); 1730 vm_pager_page_unswapped(m); 1731 } 1732 1733 /* 1734 * swap_pager_swapoff: 1735 * 1736 * Page in all of the pages that have been paged out to the 1737 * given device. The corresponding blocks in the bitmap must be 1738 * marked as allocated and the device must be flagged SW_CLOSING. 1739 * There may be no processes swapped out to the device. 1740 * 1741 * This routine may block. 1742 */ 1743 static void 1744 swap_pager_swapoff(struct swdevt *sp) 1745 { 1746 struct swblock *swap; 1747 int i, j, retries; 1748 1749 GIANT_REQUIRED; 1750 1751 retries = 0; 1752 full_rescan: 1753 mtx_lock(&swhash_mtx); 1754 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1755 restart: 1756 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1757 vm_object_t object = swap->swb_object; 1758 vm_pindex_t pindex = swap->swb_index; 1759 for (j = 0; j < SWAP_META_PAGES; ++j) { 1760 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1761 /* avoid deadlock */ 1762 if (!VM_OBJECT_TRYWLOCK(object)) { 1763 break; 1764 } else { 1765 mtx_unlock(&swhash_mtx); 1766 swp_pager_force_pagein(object, 1767 pindex + j); 1768 VM_OBJECT_WUNLOCK(object); 1769 mtx_lock(&swhash_mtx); 1770 goto restart; 1771 } 1772 } 1773 } 1774 } 1775 } 1776 mtx_unlock(&swhash_mtx); 1777 if (sp->sw_used) { 1778 /* 1779 * Objects may be locked or paging to the device being 1780 * removed, so we will miss their pages and need to 1781 * make another pass. We have marked this device as 1782 * SW_CLOSING, so the activity should finish soon. 1783 */ 1784 retries++; 1785 if (retries > 100) { 1786 panic("swapoff: failed to locate %d swap blocks", 1787 sp->sw_used); 1788 } 1789 pause("swpoff", hz / 20); 1790 goto full_rescan; 1791 } 1792 } 1793 1794 /************************************************************************ 1795 * SWAP META DATA * 1796 ************************************************************************ 1797 * 1798 * These routines manipulate the swap metadata stored in the 1799 * OBJT_SWAP object. 1800 * 1801 * Swap metadata is implemented with a global hash and not directly 1802 * linked into the object. Instead the object simply contains 1803 * appropriate tracking counters. 1804 */ 1805 1806 /* 1807 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1808 * 1809 * We first convert the object to a swap object if it is a default 1810 * object. 1811 * 1812 * The specified swapblk is added to the object's swap metadata. If 1813 * the swapblk is not valid, it is freed instead. Any previously 1814 * assigned swapblk is freed. 1815 */ 1816 static void 1817 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1818 { 1819 static volatile int exhausted; 1820 struct swblock *swap; 1821 struct swblock **pswap; 1822 int idx; 1823 1824 VM_OBJECT_ASSERT_WLOCKED(object); 1825 /* 1826 * Convert default object to swap object if necessary 1827 */ 1828 if (object->type != OBJT_SWAP) { 1829 object->type = OBJT_SWAP; 1830 object->un_pager.swp.swp_bcount = 0; 1831 1832 if (object->handle != NULL) { 1833 mtx_lock(&sw_alloc_mtx); 1834 TAILQ_INSERT_TAIL( 1835 NOBJLIST(object->handle), 1836 object, 1837 pager_object_list 1838 ); 1839 mtx_unlock(&sw_alloc_mtx); 1840 } 1841 } 1842 1843 /* 1844 * Locate hash entry. If not found create, but if we aren't adding 1845 * anything just return. If we run out of space in the map we wait 1846 * and, since the hash table may have changed, retry. 1847 */ 1848 retry: 1849 mtx_lock(&swhash_mtx); 1850 pswap = swp_pager_hash(object, pindex); 1851 1852 if ((swap = *pswap) == NULL) { 1853 int i; 1854 1855 if (swapblk == SWAPBLK_NONE) 1856 goto done; 1857 1858 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1859 (curproc == pageproc ? M_USE_RESERVE : 0)); 1860 if (swap == NULL) { 1861 mtx_unlock(&swhash_mtx); 1862 VM_OBJECT_WUNLOCK(object); 1863 if (uma_zone_exhausted(swap_zone)) { 1864 if (atomic_cmpset_int(&exhausted, 0, 1)) 1865 printf("swap zone exhausted, " 1866 "increase kern.maxswzone\n"); 1867 vm_pageout_oom(VM_OOM_SWAPZ); 1868 pause("swzonex", 10); 1869 } else 1870 VM_WAIT; 1871 VM_OBJECT_WLOCK(object); 1872 goto retry; 1873 } 1874 1875 if (atomic_cmpset_int(&exhausted, 1, 0)) 1876 printf("swap zone ok\n"); 1877 1878 swap->swb_hnext = NULL; 1879 swap->swb_object = object; 1880 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1881 swap->swb_count = 0; 1882 1883 ++object->un_pager.swp.swp_bcount; 1884 1885 for (i = 0; i < SWAP_META_PAGES; ++i) 1886 swap->swb_pages[i] = SWAPBLK_NONE; 1887 } 1888 1889 /* 1890 * Delete prior contents of metadata 1891 */ 1892 idx = pindex & SWAP_META_MASK; 1893 1894 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1895 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1896 --swap->swb_count; 1897 } 1898 1899 /* 1900 * Enter block into metadata 1901 */ 1902 swap->swb_pages[idx] = swapblk; 1903 if (swapblk != SWAPBLK_NONE) 1904 ++swap->swb_count; 1905 done: 1906 mtx_unlock(&swhash_mtx); 1907 } 1908 1909 /* 1910 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1911 * 1912 * The requested range of blocks is freed, with any associated swap 1913 * returned to the swap bitmap. 1914 * 1915 * This routine will free swap metadata structures as they are cleaned 1916 * out. This routine does *NOT* operate on swap metadata associated 1917 * with resident pages. 1918 */ 1919 static void 1920 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1921 { 1922 1923 VM_OBJECT_ASSERT_LOCKED(object); 1924 if (object->type != OBJT_SWAP) 1925 return; 1926 1927 while (count > 0) { 1928 struct swblock **pswap; 1929 struct swblock *swap; 1930 1931 mtx_lock(&swhash_mtx); 1932 pswap = swp_pager_hash(object, index); 1933 1934 if ((swap = *pswap) != NULL) { 1935 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1936 1937 if (v != SWAPBLK_NONE) { 1938 swp_pager_freeswapspace(v, 1); 1939 swap->swb_pages[index & SWAP_META_MASK] = 1940 SWAPBLK_NONE; 1941 if (--swap->swb_count == 0) { 1942 *pswap = swap->swb_hnext; 1943 uma_zfree(swap_zone, swap); 1944 --object->un_pager.swp.swp_bcount; 1945 } 1946 } 1947 --count; 1948 ++index; 1949 } else { 1950 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1951 count -= n; 1952 index += n; 1953 } 1954 mtx_unlock(&swhash_mtx); 1955 } 1956 } 1957 1958 /* 1959 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1960 * 1961 * This routine locates and destroys all swap metadata associated with 1962 * an object. 1963 */ 1964 static void 1965 swp_pager_meta_free_all(vm_object_t object) 1966 { 1967 daddr_t index = 0; 1968 1969 VM_OBJECT_ASSERT_WLOCKED(object); 1970 if (object->type != OBJT_SWAP) 1971 return; 1972 1973 while (object->un_pager.swp.swp_bcount) { 1974 struct swblock **pswap; 1975 struct swblock *swap; 1976 1977 mtx_lock(&swhash_mtx); 1978 pswap = swp_pager_hash(object, index); 1979 if ((swap = *pswap) != NULL) { 1980 int i; 1981 1982 for (i = 0; i < SWAP_META_PAGES; ++i) { 1983 daddr_t v = swap->swb_pages[i]; 1984 if (v != SWAPBLK_NONE) { 1985 --swap->swb_count; 1986 swp_pager_freeswapspace(v, 1); 1987 } 1988 } 1989 if (swap->swb_count != 0) 1990 panic("swap_pager_meta_free_all: swb_count != 0"); 1991 *pswap = swap->swb_hnext; 1992 uma_zfree(swap_zone, swap); 1993 --object->un_pager.swp.swp_bcount; 1994 } 1995 mtx_unlock(&swhash_mtx); 1996 index += SWAP_META_PAGES; 1997 } 1998 } 1999 2000 /* 2001 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2002 * 2003 * This routine is capable of looking up, popping, or freeing 2004 * swapblk assignments in the swap meta data or in the vm_page_t. 2005 * The routine typically returns the swapblk being looked-up, or popped, 2006 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2007 * was invalid. This routine will automatically free any invalid 2008 * meta-data swapblks. 2009 * 2010 * It is not possible to store invalid swapblks in the swap meta data 2011 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2012 * 2013 * When acting on a busy resident page and paging is in progress, we 2014 * have to wait until paging is complete but otherwise can act on the 2015 * busy page. 2016 * 2017 * SWM_FREE remove and free swap block from metadata 2018 * SWM_POP remove from meta data but do not free.. pop it out 2019 */ 2020 static daddr_t 2021 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2022 { 2023 struct swblock **pswap; 2024 struct swblock *swap; 2025 daddr_t r1; 2026 int idx; 2027 2028 VM_OBJECT_ASSERT_LOCKED(object); 2029 /* 2030 * The meta data only exists of the object is OBJT_SWAP 2031 * and even then might not be allocated yet. 2032 */ 2033 if (object->type != OBJT_SWAP) 2034 return (SWAPBLK_NONE); 2035 2036 r1 = SWAPBLK_NONE; 2037 mtx_lock(&swhash_mtx); 2038 pswap = swp_pager_hash(object, pindex); 2039 2040 if ((swap = *pswap) != NULL) { 2041 idx = pindex & SWAP_META_MASK; 2042 r1 = swap->swb_pages[idx]; 2043 2044 if (r1 != SWAPBLK_NONE) { 2045 if (flags & SWM_FREE) { 2046 swp_pager_freeswapspace(r1, 1); 2047 r1 = SWAPBLK_NONE; 2048 } 2049 if (flags & (SWM_FREE|SWM_POP)) { 2050 swap->swb_pages[idx] = SWAPBLK_NONE; 2051 if (--swap->swb_count == 0) { 2052 *pswap = swap->swb_hnext; 2053 uma_zfree(swap_zone, swap); 2054 --object->un_pager.swp.swp_bcount; 2055 } 2056 } 2057 } 2058 } 2059 mtx_unlock(&swhash_mtx); 2060 return (r1); 2061 } 2062 2063 /* 2064 * System call swapon(name) enables swapping on device name, 2065 * which must be in the swdevsw. Return EBUSY 2066 * if already swapping on this device. 2067 */ 2068 #ifndef _SYS_SYSPROTO_H_ 2069 struct swapon_args { 2070 char *name; 2071 }; 2072 #endif 2073 2074 /* 2075 * MPSAFE 2076 */ 2077 /* ARGSUSED */ 2078 int 2079 sys_swapon(struct thread *td, struct swapon_args *uap) 2080 { 2081 struct vattr attr; 2082 struct vnode *vp; 2083 struct nameidata nd; 2084 int error; 2085 2086 error = priv_check(td, PRIV_SWAPON); 2087 if (error) 2088 return (error); 2089 2090 mtx_lock(&Giant); 2091 while (swdev_syscall_active) 2092 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2093 swdev_syscall_active = 1; 2094 2095 /* 2096 * Swap metadata may not fit in the KVM if we have physical 2097 * memory of >1GB. 2098 */ 2099 if (swap_zone == NULL) { 2100 error = ENOMEM; 2101 goto done; 2102 } 2103 2104 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2105 uap->name, td); 2106 error = namei(&nd); 2107 if (error) 2108 goto done; 2109 2110 NDFREE(&nd, NDF_ONLY_PNBUF); 2111 vp = nd.ni_vp; 2112 2113 if (vn_isdisk(vp, &error)) { 2114 error = swapongeom(td, vp); 2115 } else if (vp->v_type == VREG && 2116 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2117 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2118 /* 2119 * Allow direct swapping to NFS regular files in the same 2120 * way that nfs_mountroot() sets up diskless swapping. 2121 */ 2122 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2123 } 2124 2125 if (error) 2126 vrele(vp); 2127 done: 2128 swdev_syscall_active = 0; 2129 wakeup_one(&swdev_syscall_active); 2130 mtx_unlock(&Giant); 2131 return (error); 2132 } 2133 2134 /* 2135 * Check that the total amount of swap currently configured does not 2136 * exceed half the theoretical maximum. If it does, print a warning 2137 * message and return -1; otherwise, return 0. 2138 */ 2139 static int 2140 swapon_check_swzone(unsigned long npages) 2141 { 2142 unsigned long maxpages; 2143 2144 /* absolute maximum we can handle assuming 100% efficiency */ 2145 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2146 2147 /* recommend using no more than half that amount */ 2148 if (npages > maxpages / 2) { 2149 printf("warning: total configured swap (%lu pages) " 2150 "exceeds maximum recommended amount (%lu pages).\n", 2151 npages, maxpages / 2); 2152 printf("warning: increase kern.maxswzone " 2153 "or reduce amount of swap.\n"); 2154 return (-1); 2155 } 2156 return (0); 2157 } 2158 2159 static void 2160 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2161 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2162 { 2163 struct swdevt *sp, *tsp; 2164 swblk_t dvbase; 2165 u_long mblocks; 2166 2167 /* 2168 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2169 * First chop nblks off to page-align it, then convert. 2170 * 2171 * sw->sw_nblks is in page-sized chunks now too. 2172 */ 2173 nblks &= ~(ctodb(1) - 1); 2174 nblks = dbtoc(nblks); 2175 2176 /* 2177 * If we go beyond this, we get overflows in the radix 2178 * tree bitmap code. 2179 */ 2180 mblocks = 0x40000000 / BLIST_META_RADIX; 2181 if (nblks > mblocks) { 2182 printf( 2183 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2184 mblocks / 1024 / 1024 * PAGE_SIZE); 2185 nblks = mblocks; 2186 } 2187 2188 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2189 sp->sw_vp = vp; 2190 sp->sw_id = id; 2191 sp->sw_dev = dev; 2192 sp->sw_flags = 0; 2193 sp->sw_nblks = nblks; 2194 sp->sw_used = 0; 2195 sp->sw_strategy = strategy; 2196 sp->sw_close = close; 2197 sp->sw_flags = flags; 2198 2199 sp->sw_blist = blist_create(nblks, M_WAITOK); 2200 /* 2201 * Do not free the first two block in order to avoid overwriting 2202 * any bsd label at the front of the partition 2203 */ 2204 blist_free(sp->sw_blist, 2, nblks - 2); 2205 2206 dvbase = 0; 2207 mtx_lock(&sw_dev_mtx); 2208 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2209 if (tsp->sw_end >= dvbase) { 2210 /* 2211 * We put one uncovered page between the devices 2212 * in order to definitively prevent any cross-device 2213 * I/O requests 2214 */ 2215 dvbase = tsp->sw_end + 1; 2216 } 2217 } 2218 sp->sw_first = dvbase; 2219 sp->sw_end = dvbase + nblks; 2220 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2221 nswapdev++; 2222 swap_pager_avail += nblks; 2223 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2224 swapon_check_swzone(swap_total / PAGE_SIZE); 2225 swp_sizecheck(); 2226 mtx_unlock(&sw_dev_mtx); 2227 } 2228 2229 /* 2230 * SYSCALL: swapoff(devname) 2231 * 2232 * Disable swapping on the given device. 2233 * 2234 * XXX: Badly designed system call: it should use a device index 2235 * rather than filename as specification. We keep sw_vp around 2236 * only to make this work. 2237 */ 2238 #ifndef _SYS_SYSPROTO_H_ 2239 struct swapoff_args { 2240 char *name; 2241 }; 2242 #endif 2243 2244 /* 2245 * MPSAFE 2246 */ 2247 /* ARGSUSED */ 2248 int 2249 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2250 { 2251 struct vnode *vp; 2252 struct nameidata nd; 2253 struct swdevt *sp; 2254 int error; 2255 2256 error = priv_check(td, PRIV_SWAPOFF); 2257 if (error) 2258 return (error); 2259 2260 mtx_lock(&Giant); 2261 while (swdev_syscall_active) 2262 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2263 swdev_syscall_active = 1; 2264 2265 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2266 td); 2267 error = namei(&nd); 2268 if (error) 2269 goto done; 2270 NDFREE(&nd, NDF_ONLY_PNBUF); 2271 vp = nd.ni_vp; 2272 2273 mtx_lock(&sw_dev_mtx); 2274 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2275 if (sp->sw_vp == vp) 2276 break; 2277 } 2278 mtx_unlock(&sw_dev_mtx); 2279 if (sp == NULL) { 2280 error = EINVAL; 2281 goto done; 2282 } 2283 error = swapoff_one(sp, td->td_ucred); 2284 done: 2285 swdev_syscall_active = 0; 2286 wakeup_one(&swdev_syscall_active); 2287 mtx_unlock(&Giant); 2288 return (error); 2289 } 2290 2291 static int 2292 swapoff_one(struct swdevt *sp, struct ucred *cred) 2293 { 2294 u_long nblks, dvbase; 2295 #ifdef MAC 2296 int error; 2297 #endif 2298 2299 mtx_assert(&Giant, MA_OWNED); 2300 #ifdef MAC 2301 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2302 error = mac_system_check_swapoff(cred, sp->sw_vp); 2303 (void) VOP_UNLOCK(sp->sw_vp, 0); 2304 if (error != 0) 2305 return (error); 2306 #endif 2307 nblks = sp->sw_nblks; 2308 2309 /* 2310 * We can turn off this swap device safely only if the 2311 * available virtual memory in the system will fit the amount 2312 * of data we will have to page back in, plus an epsilon so 2313 * the system doesn't become critically low on swap space. 2314 */ 2315 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2316 nblks + nswap_lowat) { 2317 return (ENOMEM); 2318 } 2319 2320 /* 2321 * Prevent further allocations on this device. 2322 */ 2323 mtx_lock(&sw_dev_mtx); 2324 sp->sw_flags |= SW_CLOSING; 2325 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2326 swap_pager_avail -= blist_fill(sp->sw_blist, 2327 dvbase, dmmax); 2328 } 2329 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2330 mtx_unlock(&sw_dev_mtx); 2331 2332 /* 2333 * Page in the contents of the device and close it. 2334 */ 2335 swap_pager_swapoff(sp); 2336 2337 sp->sw_close(curthread, sp); 2338 sp->sw_id = NULL; 2339 mtx_lock(&sw_dev_mtx); 2340 TAILQ_REMOVE(&swtailq, sp, sw_list); 2341 nswapdev--; 2342 if (nswapdev == 0) { 2343 swap_pager_full = 2; 2344 swap_pager_almost_full = 1; 2345 } 2346 if (swdevhd == sp) 2347 swdevhd = NULL; 2348 mtx_unlock(&sw_dev_mtx); 2349 blist_destroy(sp->sw_blist); 2350 free(sp, M_VMPGDATA); 2351 return (0); 2352 } 2353 2354 void 2355 swapoff_all(void) 2356 { 2357 struct swdevt *sp, *spt; 2358 const char *devname; 2359 int error; 2360 2361 mtx_lock(&Giant); 2362 while (swdev_syscall_active) 2363 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2364 swdev_syscall_active = 1; 2365 2366 mtx_lock(&sw_dev_mtx); 2367 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2368 mtx_unlock(&sw_dev_mtx); 2369 if (vn_isdisk(sp->sw_vp, NULL)) 2370 devname = devtoname(sp->sw_vp->v_rdev); 2371 else 2372 devname = "[file]"; 2373 error = swapoff_one(sp, thread0.td_ucred); 2374 if (error != 0) { 2375 printf("Cannot remove swap device %s (error=%d), " 2376 "skipping.\n", devname, error); 2377 } else if (bootverbose) { 2378 printf("Swap device %s removed.\n", devname); 2379 } 2380 mtx_lock(&sw_dev_mtx); 2381 } 2382 mtx_unlock(&sw_dev_mtx); 2383 2384 swdev_syscall_active = 0; 2385 wakeup_one(&swdev_syscall_active); 2386 mtx_unlock(&Giant); 2387 } 2388 2389 void 2390 swap_pager_status(int *total, int *used) 2391 { 2392 struct swdevt *sp; 2393 2394 *total = 0; 2395 *used = 0; 2396 mtx_lock(&sw_dev_mtx); 2397 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2398 *total += sp->sw_nblks; 2399 *used += sp->sw_used; 2400 } 2401 mtx_unlock(&sw_dev_mtx); 2402 } 2403 2404 int 2405 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2406 { 2407 struct swdevt *sp; 2408 const char *tmp_devname; 2409 int error, n; 2410 2411 n = 0; 2412 error = ENOENT; 2413 mtx_lock(&sw_dev_mtx); 2414 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2415 if (n != name) { 2416 n++; 2417 continue; 2418 } 2419 xs->xsw_version = XSWDEV_VERSION; 2420 xs->xsw_dev = sp->sw_dev; 2421 xs->xsw_flags = sp->sw_flags; 2422 xs->xsw_nblks = sp->sw_nblks; 2423 xs->xsw_used = sp->sw_used; 2424 if (devname != NULL) { 2425 if (vn_isdisk(sp->sw_vp, NULL)) 2426 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2427 else 2428 tmp_devname = "[file]"; 2429 strncpy(devname, tmp_devname, len); 2430 } 2431 error = 0; 2432 break; 2433 } 2434 mtx_unlock(&sw_dev_mtx); 2435 return (error); 2436 } 2437 2438 static int 2439 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2440 { 2441 struct xswdev xs; 2442 int error; 2443 2444 if (arg2 != 1) /* name length */ 2445 return (EINVAL); 2446 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2447 if (error != 0) 2448 return (error); 2449 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2450 return (error); 2451 } 2452 2453 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2454 "Number of swap devices"); 2455 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2456 "Swap statistics by device"); 2457 2458 /* 2459 * vmspace_swap_count() - count the approximate swap usage in pages for a 2460 * vmspace. 2461 * 2462 * The map must be locked. 2463 * 2464 * Swap usage is determined by taking the proportional swap used by 2465 * VM objects backing the VM map. To make up for fractional losses, 2466 * if the VM object has any swap use at all the associated map entries 2467 * count for at least 1 swap page. 2468 */ 2469 long 2470 vmspace_swap_count(struct vmspace *vmspace) 2471 { 2472 vm_map_t map; 2473 vm_map_entry_t cur; 2474 vm_object_t object; 2475 long count, n; 2476 2477 map = &vmspace->vm_map; 2478 count = 0; 2479 2480 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2481 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2482 (object = cur->object.vm_object) != NULL) { 2483 VM_OBJECT_WLOCK(object); 2484 if (object->type == OBJT_SWAP && 2485 object->un_pager.swp.swp_bcount != 0) { 2486 n = (cur->end - cur->start) / PAGE_SIZE; 2487 count += object->un_pager.swp.swp_bcount * 2488 SWAP_META_PAGES * n / object->size + 1; 2489 } 2490 VM_OBJECT_WUNLOCK(object); 2491 } 2492 } 2493 return (count); 2494 } 2495 2496 /* 2497 * GEOM backend 2498 * 2499 * Swapping onto disk devices. 2500 * 2501 */ 2502 2503 static g_orphan_t swapgeom_orphan; 2504 2505 static struct g_class g_swap_class = { 2506 .name = "SWAP", 2507 .version = G_VERSION, 2508 .orphan = swapgeom_orphan, 2509 }; 2510 2511 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2512 2513 2514 static void 2515 swapgeom_done(struct bio *bp2) 2516 { 2517 struct buf *bp; 2518 2519 bp = bp2->bio_caller2; 2520 bp->b_ioflags = bp2->bio_flags; 2521 if (bp2->bio_error) 2522 bp->b_ioflags |= BIO_ERROR; 2523 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2524 bp->b_error = bp2->bio_error; 2525 bufdone(bp); 2526 g_destroy_bio(bp2); 2527 } 2528 2529 static void 2530 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2531 { 2532 struct bio *bio; 2533 struct g_consumer *cp; 2534 2535 cp = sp->sw_id; 2536 if (cp == NULL) { 2537 bp->b_error = ENXIO; 2538 bp->b_ioflags |= BIO_ERROR; 2539 bufdone(bp); 2540 return; 2541 } 2542 if (bp->b_iocmd == BIO_WRITE) 2543 bio = g_new_bio(); 2544 else 2545 bio = g_alloc_bio(); 2546 if (bio == NULL) { 2547 bp->b_error = ENOMEM; 2548 bp->b_ioflags |= BIO_ERROR; 2549 bufdone(bp); 2550 return; 2551 } 2552 2553 bio->bio_caller2 = bp; 2554 bio->bio_cmd = bp->b_iocmd; 2555 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2556 bio->bio_length = bp->b_bcount; 2557 bio->bio_done = swapgeom_done; 2558 if ((bp->b_flags & B_UNMAPPED) != 0) { 2559 bio->bio_ma = bp->b_pages; 2560 bio->bio_data = unmapped_buf; 2561 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2562 bio->bio_ma_n = bp->b_npages; 2563 bio->bio_flags |= BIO_UNMAPPED; 2564 } else { 2565 bio->bio_data = bp->b_data; 2566 bio->bio_ma = NULL; 2567 } 2568 g_io_request(bio, cp); 2569 return; 2570 } 2571 2572 static void 2573 swapgeom_orphan(struct g_consumer *cp) 2574 { 2575 struct swdevt *sp; 2576 2577 mtx_lock(&sw_dev_mtx); 2578 TAILQ_FOREACH(sp, &swtailq, sw_list) 2579 if (sp->sw_id == cp) 2580 sp->sw_flags |= SW_CLOSING; 2581 mtx_unlock(&sw_dev_mtx); 2582 } 2583 2584 static void 2585 swapgeom_close_ev(void *arg, int flags) 2586 { 2587 struct g_consumer *cp; 2588 2589 cp = arg; 2590 g_access(cp, -1, -1, 0); 2591 g_detach(cp); 2592 g_destroy_consumer(cp); 2593 } 2594 2595 static void 2596 swapgeom_close(struct thread *td, struct swdevt *sw) 2597 { 2598 2599 /* XXX: direct call when Giant untangled */ 2600 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2601 } 2602 2603 2604 struct swh0h0 { 2605 struct cdev *dev; 2606 struct vnode *vp; 2607 int error; 2608 }; 2609 2610 static void 2611 swapongeom_ev(void *arg, int flags) 2612 { 2613 struct swh0h0 *swh; 2614 struct g_provider *pp; 2615 struct g_consumer *cp; 2616 static struct g_geom *gp; 2617 struct swdevt *sp; 2618 u_long nblks; 2619 int error; 2620 2621 swh = arg; 2622 swh->error = 0; 2623 pp = g_dev_getprovider(swh->dev); 2624 if (pp == NULL) { 2625 swh->error = ENODEV; 2626 return; 2627 } 2628 mtx_lock(&sw_dev_mtx); 2629 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2630 cp = sp->sw_id; 2631 if (cp != NULL && cp->provider == pp) { 2632 mtx_unlock(&sw_dev_mtx); 2633 swh->error = EBUSY; 2634 return; 2635 } 2636 } 2637 mtx_unlock(&sw_dev_mtx); 2638 if (gp == NULL) 2639 gp = g_new_geomf(&g_swap_class, "swap"); 2640 cp = g_new_consumer(gp); 2641 g_attach(cp, pp); 2642 /* 2643 * XXX: Everytime you think you can improve the margin for 2644 * footshooting, somebody depends on the ability to do so: 2645 * savecore(8) wants to write to our swapdev so we cannot 2646 * set an exclusive count :-( 2647 */ 2648 error = g_access(cp, 1, 1, 0); 2649 if (error) { 2650 g_detach(cp); 2651 g_destroy_consumer(cp); 2652 swh->error = error; 2653 return; 2654 } 2655 nblks = pp->mediasize / DEV_BSIZE; 2656 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2657 swapgeom_close, dev2udev(swh->dev), 2658 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2659 swh->error = 0; 2660 } 2661 2662 static int 2663 swapongeom(struct thread *td, struct vnode *vp) 2664 { 2665 int error; 2666 struct swh0h0 swh; 2667 2668 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2669 2670 swh.dev = vp->v_rdev; 2671 swh.vp = vp; 2672 swh.error = 0; 2673 /* XXX: direct call when Giant untangled */ 2674 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2675 if (!error) 2676 error = swh.error; 2677 VOP_UNLOCK(vp, 0); 2678 return (error); 2679 } 2680 2681 /* 2682 * VNODE backend 2683 * 2684 * This is used mainly for network filesystem (read: probably only tested 2685 * with NFS) swapfiles. 2686 * 2687 */ 2688 2689 static void 2690 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2691 { 2692 struct vnode *vp2; 2693 2694 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2695 2696 vp2 = sp->sw_id; 2697 vhold(vp2); 2698 if (bp->b_iocmd == BIO_WRITE) { 2699 if (bp->b_bufobj) 2700 bufobj_wdrop(bp->b_bufobj); 2701 bufobj_wref(&vp2->v_bufobj); 2702 } 2703 if (bp->b_bufobj != &vp2->v_bufobj) 2704 bp->b_bufobj = &vp2->v_bufobj; 2705 bp->b_vp = vp2; 2706 bp->b_iooffset = dbtob(bp->b_blkno); 2707 bstrategy(bp); 2708 return; 2709 } 2710 2711 static void 2712 swapdev_close(struct thread *td, struct swdevt *sp) 2713 { 2714 2715 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2716 vrele(sp->sw_vp); 2717 } 2718 2719 2720 static int 2721 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2722 { 2723 struct swdevt *sp; 2724 int error; 2725 2726 if (nblks == 0) 2727 return (ENXIO); 2728 mtx_lock(&sw_dev_mtx); 2729 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2730 if (sp->sw_id == vp) { 2731 mtx_unlock(&sw_dev_mtx); 2732 return (EBUSY); 2733 } 2734 } 2735 mtx_unlock(&sw_dev_mtx); 2736 2737 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2738 #ifdef MAC 2739 error = mac_system_check_swapon(td->td_ucred, vp); 2740 if (error == 0) 2741 #endif 2742 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2743 (void) VOP_UNLOCK(vp, 0); 2744 if (error) 2745 return (error); 2746 2747 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2748 NODEV, 0); 2749 return (0); 2750 } 2751