1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/vnode.h> 77 #include <sys/malloc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/sysctl.h> 80 #include <sys/blist.h> 81 #include <sys/lock.h> 82 83 #ifndef MAX_PAGEOUT_CLUSTER 84 #define MAX_PAGEOUT_CLUSTER 16 85 #endif 86 87 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 88 89 #include "opt_swap.h" 90 #include <vm/vm.h> 91 #include <vm/vm_prot.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_pageout.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_zone.h> 99 100 #define SWM_FREE 0x02 /* free, period */ 101 #define SWM_POP 0x04 /* pop out */ 102 103 /* 104 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 105 * in the old system. 106 */ 107 108 extern int vm_swap_size; /* number of free swap blocks, in pages */ 109 110 int swap_pager_full; /* swap space exhaustion (task killing) */ 111 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 112 static int nsw_rcount; /* free read buffers */ 113 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 114 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 115 static int nsw_wcount_async_max;/* assigned maximum */ 116 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 117 static int sw_alloc_interlock; /* swap pager allocation interlock */ 118 119 struct blist *swapblist; 120 static struct swblock **swhash; 121 static int swhash_mask; 122 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 123 124 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 125 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 126 127 /* 128 * "named" and "unnamed" anon region objects. Try to reduce the overhead 129 * of searching a named list by hashing it just a little. 130 */ 131 132 #define NOBJLISTS 8 133 134 #define NOBJLIST(handle) \ 135 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 136 137 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 138 struct pagerlst swap_pager_un_object_list; 139 vm_zone_t swap_zone; 140 141 /* 142 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 143 * calls hooked from other parts of the VM system and do not appear here. 144 * (see vm/swap_pager.h). 145 */ 146 147 static vm_object_t 148 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 149 vm_prot_t prot, vm_ooffset_t offset)); 150 static void swap_pager_dealloc __P((vm_object_t object)); 151 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 152 static void swap_pager_init __P((void)); 153 static void swap_pager_unswapped __P((vm_page_t)); 154 static void swap_pager_strategy __P((vm_object_t, struct buf *)); 155 156 struct pagerops swappagerops = { 157 swap_pager_init, /* early system initialization of pager */ 158 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 159 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 160 swap_pager_getpages, /* pagein */ 161 swap_pager_putpages, /* pageout */ 162 swap_pager_haspage, /* get backing store status for page */ 163 swap_pager_unswapped, /* remove swap related to page */ 164 swap_pager_strategy /* pager strategy call */ 165 }; 166 167 /* 168 * dmmax is in page-sized chunks with the new swap system. It was 169 * dev-bsized chunks in the old. 170 * 171 * swap_*() routines are externally accessible. swp_*() routines are 172 * internal. 173 */ 174 175 int dmmax; 176 static int dmmax_mask; 177 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 178 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 179 180 static __inline void swp_sizecheck __P((void)); 181 static void swp_pager_sync_iodone __P((struct buf *bp)); 182 static void swp_pager_async_iodone __P((struct buf *bp)); 183 184 /* 185 * Swap bitmap functions 186 */ 187 188 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 189 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 190 191 /* 192 * Metadata functions 193 */ 194 195 static void swp_pager_meta_build __P((vm_object_t, daddr_t, daddr_t, int)); 196 static void swp_pager_meta_free __P((vm_object_t, daddr_t, daddr_t)); 197 static void swp_pager_meta_free_all __P((vm_object_t)); 198 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 199 200 /* 201 * SWP_SIZECHECK() - update swap_pager_full indication 202 * 203 * update the swap_pager_almost_full indication and warn when we are 204 * about to run out of swap space, using lowat/hiwat hysteresis. 205 * 206 * Clear swap_pager_full ( task killing ) indication when lowat is met. 207 * 208 * No restrictions on call 209 * This routine may not block. 210 * This routine must be called at splvm() 211 */ 212 213 static __inline void 214 swp_sizecheck() 215 { 216 if (vm_swap_size < nswap_lowat) { 217 if (swap_pager_almost_full == 0) { 218 printf("swap_pager: out of swap space\n"); 219 swap_pager_almost_full = 1; 220 } 221 } else { 222 swap_pager_full = 0; 223 if (vm_swap_size > nswap_hiwat) 224 swap_pager_almost_full = 0; 225 } 226 } 227 228 /* 229 * SWAP_PAGER_INIT() - initialize the swap pager! 230 * 231 * Expected to be started from system init. NOTE: This code is run 232 * before much else so be careful what you depend on. Most of the VM 233 * system has yet to be initialized at this point. 234 */ 235 236 static void 237 swap_pager_init() 238 { 239 /* 240 * Initialize object lists 241 */ 242 int i; 243 244 for (i = 0; i < NOBJLISTS; ++i) 245 TAILQ_INIT(&swap_pager_object_list[i]); 246 TAILQ_INIT(&swap_pager_un_object_list); 247 248 /* 249 * Device Stripe, in PAGE_SIZE'd blocks 250 */ 251 252 dmmax = SWB_NPAGES * 2; 253 dmmax_mask = ~(dmmax - 1); 254 } 255 256 /* 257 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 258 * 259 * Expected to be started from pageout process once, prior to entering 260 * its main loop. 261 */ 262 263 void 264 swap_pager_swap_init() 265 { 266 int n; 267 268 /* 269 * Number of in-transit swap bp operations. Don't 270 * exhaust the pbufs completely. Make sure we 271 * initialize workable values (0 will work for hysteresis 272 * but it isn't very efficient). 273 * 274 * The nsw_cluster_max is constrained by the bp->b_pages[] 275 * array (MAXPHYS/PAGE_SIZE) and our locally defined 276 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 277 * constrained by the swap device interleave stripe size. 278 * 279 * Currently we hardwire nsw_wcount_async to 4. This limit is 280 * designed to prevent other I/O from having high latencies due to 281 * our pageout I/O. The value 4 works well for one or two active swap 282 * devices but is probably a little low if you have more. Even so, 283 * a higher value would probably generate only a limited improvement 284 * with three or four active swap devices since the system does not 285 * typically have to pageout at extreme bandwidths. We will want 286 * at least 2 per swap devices, and 4 is a pretty good value if you 287 * have one NFS swap device due to the command/ack latency over NFS. 288 * So it all works out pretty well. 289 */ 290 291 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 292 293 nsw_rcount = (nswbuf + 1) / 2; 294 nsw_wcount_sync = (nswbuf + 3) / 4; 295 nsw_wcount_async = 4; 296 nsw_wcount_async_max = nsw_wcount_async; 297 298 /* 299 * Initialize our zone. Right now I'm just guessing on the number 300 * we need based on the number of pages in the system. Each swblock 301 * can hold 16 pages, so this is probably overkill. 302 */ 303 304 n = cnt.v_page_count * 2; 305 306 swap_zone = zinit( 307 "SWAPMETA", 308 sizeof(struct swblock), 309 n, 310 ZONE_INTERRUPT, 311 1 312 ); 313 314 /* 315 * Initialize our meta-data hash table. The swapper does not need to 316 * be quite as efficient as the VM system, so we do not use an 317 * oversized hash table. 318 * 319 * n: size of hash table, must be power of 2 320 * swhash_mask: hash table index mask 321 */ 322 323 for (n = 1; n < cnt.v_page_count / 4; n <<= 1) 324 ; 325 326 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK); 327 bzero(swhash, sizeof(struct swblock *) * n); 328 329 swhash_mask = n - 1; 330 } 331 332 /* 333 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 334 * its metadata structures. 335 * 336 * This routine is called from the mmap and fork code to create a new 337 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 338 * and then converting it with swp_pager_meta_build(). 339 * 340 * This routine may block in vm_object_allocate() and create a named 341 * object lookup race, so we must interlock. We must also run at 342 * splvm() for the object lookup to handle races with interrupts, but 343 * we do not have to maintain splvm() in between the lookup and the 344 * add because (I believe) it is not possible to attempt to create 345 * a new swap object w/handle when a default object with that handle 346 * already exists. 347 */ 348 349 static vm_object_t 350 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 351 vm_ooffset_t offset) 352 { 353 vm_object_t object; 354 355 if (handle) { 356 /* 357 * Reference existing named region or allocate new one. There 358 * should not be a race here against swp_pager_meta_build() 359 * as called from vm_page_remove() in regards to the lookup 360 * of the handle. 361 */ 362 363 while (sw_alloc_interlock) { 364 sw_alloc_interlock = -1; 365 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0); 366 } 367 sw_alloc_interlock = 1; 368 369 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 370 371 if (object != NULL) { 372 vm_object_reference(object); 373 } else { 374 object = vm_object_allocate(OBJT_DEFAULT, 375 OFF_TO_IDX(offset + PAGE_MASK + size)); 376 object->handle = handle; 377 378 swp_pager_meta_build( 379 object, 380 0, 381 SWAPBLK_NONE, 382 0 383 ); 384 } 385 386 if (sw_alloc_interlock < 0) 387 wakeup(&sw_alloc_interlock); 388 389 sw_alloc_interlock = 0; 390 } else { 391 object = vm_object_allocate(OBJT_DEFAULT, 392 OFF_TO_IDX(offset + PAGE_MASK + size)); 393 394 swp_pager_meta_build( 395 object, 396 0, 397 SWAPBLK_NONE, 398 0 399 ); 400 } 401 402 return (object); 403 } 404 405 /* 406 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 407 * 408 * The swap backing for the object is destroyed. The code is 409 * designed such that we can reinstantiate it later, but this 410 * routine is typically called only when the entire object is 411 * about to be destroyed. 412 * 413 * This routine may block, but no longer does. 414 * 415 * The object must be locked or unreferenceable. 416 */ 417 418 static void 419 swap_pager_dealloc(object) 420 vm_object_t object; 421 { 422 /* 423 * Remove from list right away so lookups will fail if we block for 424 * pageout completion. 425 */ 426 427 if (object->handle == NULL) { 428 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 429 } else { 430 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 431 } 432 433 vm_object_pip_wait(object, "swpdea"); 434 435 /* 436 * Free all remaining metadata. We only bother to free it from 437 * the swap meta data. We do not attempt to free swapblk's still 438 * associated with vm_page_t's for this object. We do not care 439 * if paging is still in progress on some objects. 440 */ 441 442 swp_pager_meta_free_all(object); 443 } 444 445 /************************************************************************ 446 * SWAP PAGER BITMAP ROUTINES * 447 ************************************************************************/ 448 449 /* 450 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 451 * 452 * Allocate swap for the requested number of pages. The starting 453 * swap block number (a page index) is returned or SWAPBLK_NONE 454 * if the allocation failed. 455 * 456 * Also has the side effect of advising that somebody made a mistake 457 * when they configured swap and didn't configure enough. 458 * 459 * Must be called at splvm() to avoid races with bitmap frees from 460 * vm_page_remove() aka swap_pager_page_removed(). 461 * 462 * This routine may not block 463 * This routine must be called at splvm(). 464 */ 465 466 static __inline daddr_t 467 swp_pager_getswapspace(npages) 468 int npages; 469 { 470 daddr_t blk; 471 472 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 473 if (swap_pager_full != 2) { 474 printf("swap_pager_getswapspace: failed\n"); 475 swap_pager_full = 2; 476 swap_pager_almost_full = 1; 477 } 478 } else { 479 vm_swap_size -= npages; 480 swp_sizecheck(); 481 } 482 return(blk); 483 } 484 485 /* 486 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 487 * 488 * This routine returns the specified swap blocks back to the bitmap. 489 * 490 * Note: This routine may not block (it could in the old swap code), 491 * and through the use of the new blist routines it does not block. 492 * 493 * We must be called at splvm() to avoid races with bitmap frees from 494 * vm_page_remove() aka swap_pager_page_removed(). 495 * 496 * This routine may not block 497 * This routine must be called at splvm(). 498 */ 499 500 static __inline void 501 swp_pager_freeswapspace(blk, npages) 502 daddr_t blk; 503 int npages; 504 { 505 blist_free(swapblist, blk, npages); 506 vm_swap_size += npages; 507 swp_sizecheck(); 508 } 509 510 /* 511 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 512 * range within an object. 513 * 514 * This is a globally accessible routine. 515 * 516 * This routine removes swapblk assignments from swap metadata. 517 * 518 * The external callers of this routine typically have already destroyed 519 * or renamed vm_page_t's associated with this range in the object so 520 * we should be ok. 521 */ 522 523 void 524 swap_pager_freespace(object, start, size) 525 vm_object_t object; 526 vm_pindex_t start; 527 vm_size_t size; 528 { 529 swp_pager_meta_free(object, start, size); 530 } 531 532 /* 533 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 534 * and destroy the source. 535 * 536 * Copy any valid swapblks from the source to the destination. In 537 * cases where both the source and destination have a valid swapblk, 538 * we keep the destination's. 539 * 540 * This routine is allowed to block. It may block allocating metadata 541 * indirectly through swp_pager_meta_build() or if paging is still in 542 * progress on the source. 543 * 544 * XXX vm_page_collapse() kinda expects us not to block because we 545 * supposedly do not need to allocate memory, but for the moment we 546 * *may* have to get a little memory from the zone allocator, but 547 * it is taken from the interrupt memory. We should be ok. 548 * 549 * The source object contains no vm_page_t's (which is just as well) 550 * 551 * The source object is of type OBJT_SWAP. 552 * 553 * The source and destination objects must be 554 * locked or inaccessible (XXX are they ?) 555 */ 556 557 void 558 swap_pager_copy(srcobject, dstobject, offset, destroysource) 559 vm_object_t srcobject; 560 vm_object_t dstobject; 561 vm_pindex_t offset; 562 int destroysource; 563 { 564 vm_pindex_t i; 565 566 /* 567 * If destroysource is set, we remove the source object from the 568 * swap_pager internal queue now. 569 */ 570 571 if (destroysource) { 572 if (srcobject->handle == NULL) { 573 TAILQ_REMOVE( 574 &swap_pager_un_object_list, 575 srcobject, 576 pager_object_list 577 ); 578 } else { 579 TAILQ_REMOVE( 580 NOBJLIST(srcobject->handle), 581 srcobject, 582 pager_object_list 583 ); 584 } 585 } 586 587 /* 588 * transfer source to destination. 589 */ 590 591 for (i = 0; i < dstobject->size; ++i) { 592 daddr_t dstaddr; 593 594 /* 595 * Locate (without changing) the swapblk on the destination, 596 * unless it is invalid in which case free it silently, or 597 * if the destination is a resident page, in which case the 598 * source is thrown away. 599 */ 600 601 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 602 603 if (dstaddr == SWAPBLK_NONE) { 604 /* 605 * Destination has no swapblk and is not resident, 606 * copy source. 607 */ 608 daddr_t srcaddr; 609 610 srcaddr = swp_pager_meta_ctl( 611 srcobject, 612 i + offset, 613 SWM_POP 614 ); 615 616 if (srcaddr != SWAPBLK_NONE) 617 swp_pager_meta_build(dstobject, i, srcaddr, 1); 618 } else { 619 /* 620 * Destination has valid swapblk or it is represented 621 * by a resident page. We destroy the sourceblock. 622 */ 623 624 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 625 } 626 } 627 628 /* 629 * Free left over swap blocks in source. 630 * 631 * We have to revert the type to OBJT_DEFAULT so we do not accidently 632 * double-remove the object from the swap queues. 633 */ 634 635 if (destroysource) { 636 swp_pager_meta_free_all(srcobject); 637 /* 638 * Reverting the type is not necessary, the caller is going 639 * to destroy srcobject directly, but I'm doing it here 640 * for consistancy since we've removed the object from its 641 * queues. 642 */ 643 srcobject->type = OBJT_DEFAULT; 644 } 645 return; 646 } 647 648 /* 649 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 650 * the requested page. 651 * 652 * We determine whether good backing store exists for the requested 653 * page and return TRUE if it does, FALSE if it doesn't. 654 * 655 * If TRUE, we also try to determine how much valid, contiguous backing 656 * store exists before and after the requested page within a reasonable 657 * distance. We do not try to restrict it to the swap device stripe 658 * (that is handled in getpages/putpages). It probably isn't worth 659 * doing here. 660 */ 661 662 boolean_t 663 swap_pager_haspage(object, pindex, before, after) 664 vm_object_t object; 665 vm_pindex_t pindex; 666 int *before; 667 int *after; 668 { 669 daddr_t blk0; 670 671 /* 672 * do we have good backing store at the requested index ? 673 */ 674 675 blk0 = swp_pager_meta_ctl(object, pindex, 0); 676 677 if (blk0 & SWAPBLK_NONE) { 678 if (before) 679 *before = 0; 680 if (after) 681 *after = 0; 682 return (FALSE); 683 } 684 685 /* 686 * find backwards-looking contiguous good backing store 687 */ 688 689 if (before != NULL) { 690 int i; 691 692 for (i = 1; i < (SWB_NPAGES/2); ++i) { 693 daddr_t blk; 694 695 if (i > pindex) 696 break; 697 blk = swp_pager_meta_ctl(object, pindex - i, 0); 698 if (blk & SWAPBLK_NONE) 699 break; 700 if (blk != blk0 - i) 701 break; 702 } 703 *before = (i - 1); 704 } 705 706 /* 707 * find forward-looking contiguous good backing store 708 */ 709 710 if (after != NULL) { 711 int i; 712 713 for (i = 1; i < (SWB_NPAGES/2); ++i) { 714 daddr_t blk; 715 716 blk = swp_pager_meta_ctl(object, pindex + i, 0); 717 if (blk & SWAPBLK_NONE) 718 break; 719 if (blk != blk0 + i) 720 break; 721 } 722 *after = (i - 1); 723 } 724 725 return (TRUE); 726 } 727 728 /* 729 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 730 * 731 * This removes any associated swap backing store, whether valid or 732 * not, from the page. 733 * 734 * This routine is typically called when a page is made dirty, at 735 * which point any associated swap can be freed. MADV_FREE also 736 * calls us in a special-case situation 737 * 738 * NOTE!!! If the page is clean and the swap was valid, the caller 739 * should make the page dirty before calling this routine. This routine 740 * does NOT change the m->dirty status of the page. Also: MADV_FREE 741 * depends on it. 742 * 743 * This routine may not block 744 */ 745 746 static void 747 swap_pager_unswapped(m) 748 vm_page_t m; 749 { 750 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 751 } 752 753 /* 754 * SWAP_PAGER_STRATEGY() - read, write, free blocks 755 * 756 * This implements the vm_pager_strategy() interface to swap and allows 757 * other parts of the system to directly access swap as backing store 758 * through vm_objects of type OBJT_SWAP. This is intended to be a 759 * cacheless interface ( i.e. caching occurs at higher levels ). 760 * Therefore we do not maintain any resident pages. All I/O goes 761 * directly from and to the swap device. 762 * 763 * Note that b_blkno is scaled for PAGE_SIZE 764 * 765 * We currently attempt to run I/O synchronously or asynchronously as 766 * the caller requests. This isn't perfect because we loose error 767 * sequencing when we run multiple ops in parallel to satisfy a request. 768 * But this is swap, so we let it all hang out. 769 */ 770 771 static void 772 swap_pager_strategy(vm_object_t object, struct buf *bp) 773 { 774 vm_pindex_t start; 775 int count; 776 char *data; 777 struct buf *nbp = NULL; 778 779 if (bp->b_bcount & PAGE_MASK) { 780 bp->b_error = EINVAL; 781 bp->b_flags |= B_ERROR | B_INVAL; 782 biodone(bp); 783 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount); 784 return; 785 } 786 787 /* 788 * Clear error indication, initialize page index, count, data pointer. 789 */ 790 791 bp->b_error = 0; 792 bp->b_flags &= ~B_ERROR; 793 bp->b_resid = bp->b_bcount; 794 795 start = bp->b_pblkno; 796 count = howmany(bp->b_bcount, PAGE_SIZE); 797 data = bp->b_data; 798 799 /* 800 * Execute strategy function 801 */ 802 803 if (bp->b_flags & B_FREEBUF) { 804 /* 805 * FREE PAGE(s) - destroy underlying swap that is no longer 806 * needed. 807 */ 808 int s; 809 810 s = splvm(); 811 swp_pager_meta_free(object, start, count); 812 splx(s); 813 bp->b_resid = 0; 814 } else if (bp->b_flags & B_READ) { 815 /* 816 * READ FROM SWAP - read directly from swap backing store, 817 * zero-fill as appropriate. 818 * 819 * Note: the count == 0 case is beyond the end of the 820 * buffer. This is a special case to close out any 821 * left over nbp. 822 */ 823 824 while (count > 0) { 825 daddr_t blk; 826 int s; 827 828 s = splvm(); 829 blk = swp_pager_meta_ctl(object, start, 0); 830 splx(s); 831 832 /* 833 * Do we have to flush our current collection? 834 */ 835 836 if ( 837 nbp && ( 838 (blk & SWAPBLK_NONE) || 839 nbp->b_blkno + btoc(nbp->b_bcount) != blk 840 ) 841 ) { 842 ++cnt.v_swapin; 843 cnt.v_swappgsin += btoc(nbp->b_bcount); 844 flushchainbuf(nbp); 845 nbp = NULL; 846 } 847 848 /* 849 * Add to collection 850 */ 851 if (blk & SWAPBLK_NONE) { 852 s = splbio(); 853 bp->b_resid -= PAGE_SIZE; 854 splx(s); 855 bzero(data, PAGE_SIZE); 856 } else { 857 if (nbp == NULL) { 858 nbp = getchainbuf(bp, swapdev_vp, B_READ|B_ASYNC); 859 nbp->b_blkno = blk; 860 nbp->b_data = data; 861 } 862 nbp->b_bcount += PAGE_SIZE; 863 } 864 --count; 865 ++start; 866 data += PAGE_SIZE; 867 } 868 } else { 869 /* 870 * WRITE TO SWAP - [re]allocate swap and write. 871 */ 872 while (count > 0) { 873 int i; 874 int s; 875 int n; 876 daddr_t blk; 877 878 n = min(count, BLIST_MAX_ALLOC); 879 n = min(n, nsw_cluster_max); 880 881 s = splvm(); 882 for (;;) { 883 blk = swp_pager_getswapspace(n); 884 if (blk != SWAPBLK_NONE) 885 break; 886 n >>= 1; 887 if (n == 0) 888 break; 889 } 890 if (n == 0) { 891 bp->b_error = ENOMEM; 892 bp->b_flags |= B_ERROR; 893 splx(s); 894 break; 895 } 896 897 /* 898 * Oops, too big if it crosses a stripe 899 * 900 * 1111000000 901 * 111111 902 * 1000001 903 */ 904 if ((blk ^ (blk + n)) & dmmax_mask) { 905 int j = ((blk + dmmax) & dmmax_mask) - blk; 906 swp_pager_freeswapspace(blk + j, n - j); 907 n = j; 908 } 909 910 swp_pager_meta_free(object, start, n); 911 912 splx(s); 913 914 if (nbp) { 915 ++cnt.v_swapout; 916 cnt.v_swappgsout += btoc(nbp->b_bcount); 917 flushchainbuf(nbp); 918 } 919 920 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 921 922 nbp->b_blkno = blk; 923 nbp->b_data = data; 924 nbp->b_bcount = PAGE_SIZE * n; 925 926 /* 927 * Must set dirty range for NFS to work. dirtybeg & 928 * off are already 0. 929 */ 930 nbp->b_dirtyend = nbp->b_bcount; 931 932 ++cnt.v_swapout; 933 cnt.v_swappgsout += n; 934 935 s = splbio(); 936 for (i = 0; i < n; ++i) { 937 swp_pager_meta_build( 938 object, 939 start + i, 940 blk + i, 941 1 942 ); 943 } 944 splx(s); 945 946 count -= n; 947 start += n; 948 data += PAGE_SIZE * n; 949 } 950 } 951 952 /* 953 * Cleanup. Commit last nbp either async or sync, and either 954 * wait for it synchronously or make it auto-biodone itself and 955 * the parent bp. 956 */ 957 958 if (nbp) { 959 if ((bp->b_flags & B_ASYNC) == 0) 960 nbp->b_flags &= ~B_ASYNC; 961 if (nbp->b_flags & B_READ) { 962 ++cnt.v_swapin; 963 cnt.v_swappgsin += btoc(nbp->b_bcount); 964 } else { 965 ++cnt.v_swapout; 966 cnt.v_swappgsout += btoc(nbp->b_bcount); 967 } 968 flushchainbuf(nbp); 969 } 970 if (bp->b_flags & B_ASYNC) { 971 autochaindone(bp); 972 } else { 973 waitchainbuf(bp, 0, 1); 974 } 975 } 976 977 /* 978 * SWAP_PAGER_GETPAGES() - bring pages in from swap 979 * 980 * Attempt to retrieve (m, count) pages from backing store, but make 981 * sure we retrieve at least m[reqpage]. We try to load in as large 982 * a chunk surrounding m[reqpage] as is contiguous in swap and which 983 * belongs to the same object. 984 * 985 * The code is designed for asynchronous operation and 986 * immediate-notification of 'reqpage' but tends not to be 987 * used that way. Please do not optimize-out this algorithmic 988 * feature, I intend to improve on it in the future. 989 * 990 * The parent has a single vm_object_pip_add() reference prior to 991 * calling us and we should return with the same. 992 * 993 * The parent has BUSY'd the pages. We should return with 'm' 994 * left busy, but the others adjusted. 995 */ 996 997 static int 998 swap_pager_getpages(object, m, count, reqpage) 999 vm_object_t object; 1000 vm_page_t *m; 1001 int count, reqpage; 1002 { 1003 struct buf *bp; 1004 vm_page_t mreq; 1005 int s; 1006 int i; 1007 int j; 1008 daddr_t blk; 1009 vm_offset_t kva; 1010 vm_pindex_t lastpindex; 1011 1012 mreq = m[reqpage]; 1013 1014 #if !defined(MAX_PERF) 1015 if (mreq->object != object) { 1016 panic("swap_pager_getpages: object mismatch %p/%p", 1017 object, 1018 mreq->object 1019 ); 1020 } 1021 #endif 1022 /* 1023 * Calculate range to retrieve. The pages have already been assigned 1024 * their swapblks. We require a *contiguous* range that falls entirely 1025 * within a single device stripe. If we do not supply it, bad things 1026 * happen. 1027 */ 1028 1029 1030 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1031 1032 for (i = reqpage - 1; i >= 0; --i) { 1033 daddr_t iblk; 1034 1035 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1036 if (iblk & SWAPBLK_NONE) 1037 break; 1038 1039 if ((blk ^ iblk) & dmmax_mask) 1040 break; 1041 1042 if (blk != iblk + (reqpage - i)) 1043 break; 1044 } 1045 ++i; 1046 1047 for (j = reqpage + 1; j < count; ++j) { 1048 daddr_t jblk; 1049 1050 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1051 if (jblk & SWAPBLK_NONE) 1052 break; 1053 1054 if ((blk ^ jblk) & dmmax_mask) 1055 break; 1056 1057 if (blk != jblk - (j - reqpage)) 1058 break; 1059 } 1060 1061 /* 1062 * If blk itself is bad, well, we can't do any I/O. This should 1063 * already be covered as a side effect, but I'm making sure. 1064 */ 1065 1066 if (blk & SWAPBLK_NONE) { 1067 i = reqpage; 1068 j = reqpage + 1; 1069 } 1070 1071 /* 1072 * free pages outside our collection range. Note: we never free 1073 * mreq, it must remain busy throughout. 1074 */ 1075 1076 { 1077 int k; 1078 1079 for (k = 0; k < i; ++k) { 1080 vm_page_free(m[k]); 1081 } 1082 for (k = j; k < count; ++k) { 1083 vm_page_free(m[k]); 1084 } 1085 } 1086 1087 /* 1088 * Return VM_PAGER_FAIL if we have nothing 1089 * to do. Return mreq still busy, but the 1090 * others unbusied. 1091 */ 1092 1093 if (blk & SWAPBLK_NONE) 1094 return(VM_PAGER_FAIL); 1095 1096 1097 /* 1098 * Get a swap buffer header to perform the IO 1099 */ 1100 1101 bp = getpbuf(&nsw_rcount); 1102 kva = (vm_offset_t) bp->b_data; 1103 1104 /* 1105 * map our page(s) into kva for input 1106 * 1107 * NOTE: B_PAGING is set by pbgetvp() 1108 */ 1109 1110 pmap_qenter(kva, m + i, j - i); 1111 1112 bp->b_flags = B_READ | B_CALL; 1113 bp->b_iodone = swp_pager_async_iodone; 1114 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1115 bp->b_data = (caddr_t) kva; 1116 crhold(bp->b_rcred); 1117 crhold(bp->b_wcred); 1118 /* 1119 * b_blkno is in page-sized chunks. swapblk is valid, too, so 1120 * we don't have to mask it against SWAPBLK_MASK. 1121 */ 1122 bp->b_blkno = blk - (reqpage - i); 1123 bp->b_bcount = PAGE_SIZE * (j - i); 1124 bp->b_bufsize = PAGE_SIZE * (j - i); 1125 bp->b_pager.pg_reqpage = reqpage - i; 1126 1127 { 1128 int k; 1129 1130 for (k = i; k < j; ++k) { 1131 bp->b_pages[k - i] = m[k]; 1132 vm_page_flag_set(m[k], PG_SWAPINPROG); 1133 } 1134 } 1135 bp->b_npages = j - i; 1136 1137 pbgetvp(swapdev_vp, bp); 1138 1139 cnt.v_swapin++; 1140 cnt.v_swappgsin += bp->b_npages; 1141 1142 /* 1143 * We still hold the lock on mreq, and our automatic completion routine 1144 * does not remove it. 1145 */ 1146 1147 vm_object_pip_add(mreq->object, bp->b_npages); 1148 lastpindex = m[j-1]->pindex; 1149 1150 /* 1151 * perform the I/O. NOTE!!! bp cannot be considered valid after 1152 * this point because we automatically release it on completion. 1153 * Instead, we look at the one page we are interested in which we 1154 * still hold a lock on even through the I/O completion. 1155 * 1156 * The other pages in our m[] array are also released on completion, 1157 * so we cannot assume they are valid anymore either. 1158 * 1159 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1160 */ 1161 1162 BUF_KERNPROC(bp); 1163 VOP_STRATEGY(bp->b_vp, bp); 1164 1165 /* 1166 * wait for the page we want to complete. PG_SWAPINPROG is always 1167 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1168 * is set in the meta-data. 1169 */ 1170 1171 s = splvm(); 1172 1173 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1174 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1175 cnt.v_intrans++; 1176 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1177 printf( 1178 "swap_pager: indefinite wait buffer: device:" 1179 " %s, blkno: %ld, size: %ld\n", 1180 devtoname(bp->b_dev), (long)bp->b_blkno, 1181 bp->b_bcount 1182 ); 1183 } 1184 } 1185 1186 splx(s); 1187 1188 /* 1189 * mreq is left bussied after completion, but all the other pages 1190 * are freed. If we had an unrecoverable read error the page will 1191 * not be valid. 1192 */ 1193 1194 if (mreq->valid != VM_PAGE_BITS_ALL) { 1195 return(VM_PAGER_ERROR); 1196 } else { 1197 return(VM_PAGER_OK); 1198 } 1199 1200 /* 1201 * A final note: in a low swap situation, we cannot deallocate swap 1202 * and mark a page dirty here because the caller is likely to mark 1203 * the page clean when we return, causing the page to possibly revert 1204 * to all-zero's later. 1205 */ 1206 } 1207 1208 /* 1209 * swap_pager_putpages: 1210 * 1211 * Assign swap (if necessary) and initiate I/O on the specified pages. 1212 * 1213 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1214 * are automatically converted to SWAP objects. 1215 * 1216 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1217 * vm_page reservation system coupled with properly written VFS devices 1218 * should ensure that no low-memory deadlock occurs. This is an area 1219 * which needs work. 1220 * 1221 * The parent has N vm_object_pip_add() references prior to 1222 * calling us and will remove references for rtvals[] that are 1223 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1224 * completion. 1225 * 1226 * The parent has soft-busy'd the pages it passes us and will unbusy 1227 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1228 * We need to unbusy the rest on I/O completion. 1229 */ 1230 1231 void 1232 swap_pager_putpages(object, m, count, sync, rtvals) 1233 vm_object_t object; 1234 vm_page_t *m; 1235 int count; 1236 boolean_t sync; 1237 int *rtvals; 1238 { 1239 int i; 1240 int n = 0; 1241 1242 #if !defined(MAX_PERF) 1243 if (count && m[0]->object != object) { 1244 panic("swap_pager_getpages: object mismatch %p/%p", 1245 object, 1246 m[0]->object 1247 ); 1248 } 1249 #endif 1250 /* 1251 * Step 1 1252 * 1253 * Turn object into OBJT_SWAP 1254 * check for bogus sysops 1255 * force sync if not pageout process 1256 */ 1257 1258 if (object->type != OBJT_SWAP) { 1259 swp_pager_meta_build(object, 0, SWAPBLK_NONE, 0); 1260 } 1261 1262 if (curproc != pageproc) 1263 sync = TRUE; 1264 1265 /* 1266 * Step 2 1267 * 1268 * Update nsw parameters from swap_async_max sysctl values. 1269 * Do not let the sysop crash the machine with bogus numbers. 1270 */ 1271 1272 if (swap_async_max != nsw_wcount_async_max) { 1273 int n; 1274 int s; 1275 1276 /* 1277 * limit range 1278 */ 1279 if ((n = swap_async_max) > nswbuf / 2) 1280 n = nswbuf / 2; 1281 if (n < 1) 1282 n = 1; 1283 swap_async_max = n; 1284 1285 /* 1286 * Adjust difference ( if possible ). If the current async 1287 * count is too low, we may not be able to make the adjustment 1288 * at this time. 1289 */ 1290 s = splvm(); 1291 n -= nsw_wcount_async_max; 1292 if (nsw_wcount_async + n >= 0) { 1293 nsw_wcount_async += n; 1294 nsw_wcount_async_max += n; 1295 wakeup(&nsw_wcount_async); 1296 } 1297 splx(s); 1298 } 1299 1300 /* 1301 * Step 3 1302 * 1303 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1304 * The page is left dirty until the pageout operation completes 1305 * successfully. 1306 */ 1307 1308 for (i = 0; i < count; i += n) { 1309 int s; 1310 int j; 1311 struct buf *bp; 1312 daddr_t blk; 1313 1314 /* 1315 * Maximum I/O size is limited by a number of factors. 1316 */ 1317 1318 n = min(BLIST_MAX_ALLOC, count - i); 1319 n = min(n, nsw_cluster_max); 1320 1321 /* 1322 * Get biggest block of swap we can. If we fail, fall 1323 * back and try to allocate a smaller block. Don't go 1324 * overboard trying to allocate space if it would overly 1325 * fragment swap. 1326 */ 1327 while ( 1328 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1329 n > 4 1330 ) { 1331 n >>= 1; 1332 } 1333 if (blk == SWAPBLK_NONE) { 1334 for (j = 0; j < n; ++j) { 1335 rtvals[i+j] = VM_PAGER_FAIL; 1336 } 1337 continue; 1338 } 1339 1340 /* 1341 * Oops, too big if it crosses a stripe 1342 * 1343 * 1111000000 1344 * 111111 1345 * 1000001 1346 */ 1347 if ((blk ^ (blk + n)) & dmmax_mask) { 1348 j = ((blk + dmmax) & dmmax_mask) - blk; 1349 swp_pager_freeswapspace(blk + j, n - j); 1350 n = j; 1351 } 1352 1353 /* 1354 * All I/O parameters have been satisfied, build the I/O 1355 * request and assign the swap space. 1356 * 1357 * NOTE: B_PAGING is set by pbgetvp() 1358 */ 1359 1360 if (sync == TRUE) { 1361 bp = getpbuf(&nsw_wcount_sync); 1362 bp->b_flags = B_CALL; 1363 } else { 1364 bp = getpbuf(&nsw_wcount_async); 1365 bp->b_flags = B_CALL | B_ASYNC; 1366 } 1367 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1368 1369 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1370 1371 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1372 bp->b_bcount = PAGE_SIZE * n; 1373 bp->b_bufsize = PAGE_SIZE * n; 1374 bp->b_blkno = blk; 1375 1376 crhold(bp->b_rcred); 1377 crhold(bp->b_wcred); 1378 1379 pbgetvp(swapdev_vp, bp); 1380 1381 s = splvm(); 1382 1383 for (j = 0; j < n; ++j) { 1384 vm_page_t mreq = m[i+j]; 1385 1386 swp_pager_meta_build( 1387 mreq->object, 1388 mreq->pindex, 1389 blk + j, 1390 0 1391 ); 1392 vm_page_dirty(mreq); 1393 rtvals[i+j] = VM_PAGER_OK; 1394 1395 vm_page_flag_set(mreq, PG_SWAPINPROG); 1396 bp->b_pages[j] = mreq; 1397 } 1398 bp->b_npages = n; 1399 /* 1400 * Must set dirty range for NFS to work. 1401 */ 1402 bp->b_dirtyoff = 0; 1403 bp->b_dirtyend = bp->b_bcount; 1404 1405 cnt.v_swapout++; 1406 cnt.v_swappgsout += bp->b_npages; 1407 swapdev_vp->v_numoutput++; 1408 1409 /* 1410 * asynchronous 1411 * 1412 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1413 */ 1414 1415 if (sync == FALSE) { 1416 bp->b_iodone = swp_pager_async_iodone; 1417 BUF_KERNPROC(bp); 1418 VOP_STRATEGY(bp->b_vp, bp); 1419 1420 for (j = 0; j < n; ++j) 1421 rtvals[i+j] = VM_PAGER_PEND; 1422 1423 splx(s); 1424 continue; 1425 } 1426 1427 /* 1428 * synchronous 1429 * 1430 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1431 */ 1432 1433 bp->b_iodone = swp_pager_sync_iodone; 1434 VOP_STRATEGY(bp->b_vp, bp); 1435 1436 /* 1437 * Wait for the sync I/O to complete, then update rtvals. 1438 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1439 * our async completion routine at the end, thus avoiding a 1440 * double-free. 1441 */ 1442 while ((bp->b_flags & B_DONE) == 0) { 1443 tsleep(bp, PVM, "swwrt", 0); 1444 } 1445 1446 for (j = 0; j < n; ++j) 1447 rtvals[i+j] = VM_PAGER_PEND; 1448 1449 /* 1450 * Now that we are through with the bp, we can call the 1451 * normal async completion, which frees everything up. 1452 */ 1453 1454 swp_pager_async_iodone(bp); 1455 1456 splx(s); 1457 } 1458 } 1459 1460 /* 1461 * swap_pager_sync_iodone: 1462 * 1463 * Completion routine for synchronous reads and writes from/to swap. 1464 * We just mark the bp is complete and wake up anyone waiting on it. 1465 * 1466 * This routine may not block. 1467 */ 1468 1469 static void 1470 swp_pager_sync_iodone(bp) 1471 struct buf *bp; 1472 { 1473 bp->b_flags |= B_DONE; 1474 bp->b_flags &= ~B_ASYNC; 1475 wakeup(bp); 1476 } 1477 1478 /* 1479 * swp_pager_async_iodone: 1480 * 1481 * Completion routine for asynchronous reads and writes from/to swap. 1482 * Also called manually by synchronous code to finish up a bp. 1483 * 1484 * WARNING! This routine may be called from an interrupt. We cannot 1485 * mess with swap metadata unless we want to run all our other routines 1486 * at splbio() too, which I'd rather not do. We up ourselves 1487 * to splvm() because we may call vm_page_free(), which can unlink a 1488 * page from an object. 1489 * 1490 * XXX currently I do not believe any object routines protect 1491 * object->memq at splvm(). The code must be gone over to determine 1492 * the actual state of the problem. 1493 * 1494 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1495 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1496 * unbusy all pages except the 'main' request page. For WRITE 1497 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1498 * because we marked them all VM_PAGER_PEND on return from putpages ). 1499 * 1500 * This routine may not block. 1501 * This routine is called at splbio() 1502 */ 1503 1504 static void 1505 swp_pager_async_iodone(bp) 1506 register struct buf *bp; 1507 { 1508 int s; 1509 int i; 1510 vm_object_t object = NULL; 1511 1512 s = splvm(); 1513 1514 bp->b_flags |= B_DONE; 1515 1516 /* 1517 * report error 1518 */ 1519 1520 if (bp->b_flags & B_ERROR) { 1521 printf( 1522 "swap_pager: I/O error - %s failed; blkno %ld," 1523 "size %ld, error %d\n", 1524 ((bp->b_flags & B_READ) ? "pagein" : "pageout"), 1525 (long)bp->b_blkno, 1526 (long)bp->b_bcount, 1527 bp->b_error 1528 ); 1529 } 1530 1531 /* 1532 * set object. 1533 */ 1534 1535 if (bp->b_npages) 1536 object = bp->b_pages[0]->object; 1537 1538 /* 1539 * remove the mapping for kernel virtual 1540 */ 1541 1542 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1543 1544 /* 1545 * cleanup pages. If an error occurs writing to swap, we are in 1546 * very serious trouble. If it happens to be a disk error, though, 1547 * we may be able to recover by reassigning the swap later on. So 1548 * in this case we remove the m->swapblk assignment for the page 1549 * but do not free it in the rlist. The errornous block(s) are thus 1550 * never reallocated as swap. Redirty the page and continue. 1551 */ 1552 1553 for (i = 0; i < bp->b_npages; ++i) { 1554 vm_page_t m = bp->b_pages[i]; 1555 1556 vm_page_flag_clear(m, PG_SWAPINPROG); 1557 1558 if (bp->b_flags & B_ERROR) { 1559 /* 1560 * If an error occurs I'd love to throw the swapblk 1561 * away without freeing it back to swapspace, so it 1562 * can never be used again. But I can't from an 1563 * interrupt. 1564 */ 1565 1566 if (bp->b_flags & B_READ) { 1567 /* 1568 * When reading, reqpage needs to stay 1569 * locked for the parent, but all other 1570 * pages can be freed. We still want to 1571 * wakeup the parent waiting on the page, 1572 * though. ( also: pg_reqpage can be -1 and 1573 * not match anything ). 1574 * 1575 * We have to wake specifically requested pages 1576 * up too because we cleared PG_SWAPINPROG and 1577 * someone may be waiting for that. 1578 * 1579 * NOTE: for reads, m->dirty will probably 1580 * be overriden by the original caller of 1581 * getpages so don't play cute tricks here. 1582 * 1583 * XXX it may not be legal to free the page 1584 * here as this messes with the object->memq's. 1585 */ 1586 1587 m->valid = 0; 1588 vm_page_flag_clear(m, PG_ZERO); 1589 1590 if (i != bp->b_pager.pg_reqpage) 1591 vm_page_free(m); 1592 else 1593 vm_page_flash(m); 1594 /* 1595 * If i == bp->b_pager.pg_reqpage, do not wake 1596 * the page up. The caller needs to. 1597 */ 1598 } else { 1599 /* 1600 * If a write error occurs, reactivate page 1601 * so it doesn't clog the inactive list, 1602 * then finish the I/O. 1603 */ 1604 vm_page_dirty(m); 1605 vm_page_activate(m); 1606 vm_page_io_finish(m); 1607 } 1608 } else if (bp->b_flags & B_READ) { 1609 /* 1610 * For read success, clear dirty bits. Nobody should 1611 * have this page mapped but don't take any chances, 1612 * make sure the pmap modify bits are also cleared. 1613 * 1614 * NOTE: for reads, m->dirty will probably be 1615 * overriden by the original caller of getpages so 1616 * we cannot set them in order to free the underlying 1617 * swap in a low-swap situation. I don't think we'd 1618 * want to do that anyway, but it was an optimization 1619 * that existed in the old swapper for a time before 1620 * it got ripped out due to precisely this problem. 1621 * 1622 * clear PG_ZERO in page. 1623 * 1624 * If not the requested page then deactivate it. 1625 * 1626 * Note that the requested page, reqpage, is left 1627 * busied, but we still have to wake it up. The 1628 * other pages are released (unbusied) by 1629 * vm_page_wakeup(). We do not set reqpage's 1630 * valid bits here, it is up to the caller. 1631 */ 1632 1633 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1634 m->valid = VM_PAGE_BITS_ALL; 1635 vm_page_undirty(m); 1636 vm_page_flag_clear(m, PG_ZERO); 1637 1638 /* 1639 * We have to wake specifically requested pages 1640 * up too because we cleared PG_SWAPINPROG and 1641 * could be waiting for it in getpages. However, 1642 * be sure to not unbusy getpages specifically 1643 * requested page - getpages expects it to be 1644 * left busy. 1645 */ 1646 if (i != bp->b_pager.pg_reqpage) { 1647 vm_page_deactivate(m); 1648 vm_page_wakeup(m); 1649 } else { 1650 vm_page_flash(m); 1651 } 1652 } else { 1653 /* 1654 * For write success, clear the modify and dirty 1655 * status, then finish the I/O ( which decrements the 1656 * busy count and possibly wakes waiter's up ). 1657 */ 1658 vm_page_protect(m, VM_PROT_READ); 1659 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1660 vm_page_undirty(m); 1661 vm_page_io_finish(m); 1662 } 1663 } 1664 1665 /* 1666 * adjust pip. NOTE: the original parent may still have its own 1667 * pip refs on the object. 1668 */ 1669 1670 if (object) 1671 vm_object_pip_wakeupn(object, bp->b_npages); 1672 1673 /* 1674 * release the physical I/O buffer 1675 */ 1676 1677 relpbuf( 1678 bp, 1679 ((bp->b_flags & B_READ) ? &nsw_rcount : 1680 ((bp->b_flags & B_ASYNC) ? 1681 &nsw_wcount_async : 1682 &nsw_wcount_sync 1683 ) 1684 ) 1685 ); 1686 splx(s); 1687 } 1688 1689 /************************************************************************ 1690 * SWAP META DATA * 1691 ************************************************************************ 1692 * 1693 * These routines manipulate the swap metadata stored in the 1694 * OBJT_SWAP object. 1695 * 1696 * In fact, we just have a few counters in the vm_object_t. The 1697 * metadata is actually stored in a hash table. 1698 */ 1699 1700 /* 1701 * SWP_PAGER_HASH() - hash swap meta data 1702 * 1703 * This is an inline helper function which hash the swapblk given 1704 * the object and page index. It returns a pointer to a pointer 1705 * to the object, or a pointer to a NULL pointer if it could not 1706 * find a swapblk. 1707 */ 1708 1709 static __inline struct swblock ** 1710 swp_pager_hash(vm_object_t object, daddr_t index) 1711 { 1712 struct swblock **pswap; 1713 struct swblock *swap; 1714 1715 index &= ~SWAP_META_MASK; 1716 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1717 1718 while ((swap = *pswap) != NULL) { 1719 if (swap->swb_object == object && 1720 swap->swb_index == index 1721 ) { 1722 break; 1723 } 1724 pswap = &swap->swb_hnext; 1725 } 1726 return(pswap); 1727 } 1728 1729 /* 1730 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1731 * 1732 * We first convert the object to a swap object if it is a default 1733 * object. 1734 * 1735 * The specified swapblk is added to the object's swap metadata. If 1736 * the swapblk is not valid, it is freed instead. Any previously 1737 * assigned swapblk is freed. 1738 */ 1739 1740 static void 1741 swp_pager_meta_build( 1742 vm_object_t object, 1743 daddr_t index, 1744 daddr_t swapblk, 1745 int waitok 1746 ) { 1747 struct swblock *swap; 1748 struct swblock **pswap; 1749 1750 /* 1751 * Convert default object to swap object if necessary 1752 */ 1753 1754 if (object->type != OBJT_SWAP) { 1755 object->type = OBJT_SWAP; 1756 object->un_pager.swp.swp_bcount = 0; 1757 1758 if (object->handle != NULL) { 1759 TAILQ_INSERT_TAIL( 1760 NOBJLIST(object->handle), 1761 object, 1762 pager_object_list 1763 ); 1764 } else { 1765 TAILQ_INSERT_TAIL( 1766 &swap_pager_un_object_list, 1767 object, 1768 pager_object_list 1769 ); 1770 } 1771 } 1772 1773 /* 1774 * Wait for free memory when waitok is TRUE prior to calling the 1775 * zone allocator. 1776 */ 1777 1778 while (waitok && cnt.v_free_count == 0) { 1779 VM_WAIT; 1780 } 1781 1782 /* 1783 * If swapblk being added is invalid, just free it. 1784 */ 1785 1786 if (swapblk & SWAPBLK_NONE) { 1787 if (swapblk != SWAPBLK_NONE) { 1788 swp_pager_freeswapspace( 1789 index, 1790 1 1791 ); 1792 swapblk = SWAPBLK_NONE; 1793 } 1794 } 1795 1796 /* 1797 * Locate hash entry. If not found create, but if we aren't adding 1798 * anything just return. 1799 */ 1800 1801 pswap = swp_pager_hash(object, index); 1802 1803 if ((swap = *pswap) == NULL) { 1804 int i; 1805 1806 if (swapblk == SWAPBLK_NONE) 1807 return; 1808 1809 swap = *pswap = zalloc(swap_zone); 1810 1811 swap->swb_hnext = NULL; 1812 swap->swb_object = object; 1813 swap->swb_index = index & ~SWAP_META_MASK; 1814 swap->swb_count = 0; 1815 1816 ++object->un_pager.swp.swp_bcount; 1817 1818 for (i = 0; i < SWAP_META_PAGES; ++i) 1819 swap->swb_pages[i] = SWAPBLK_NONE; 1820 } 1821 1822 /* 1823 * Delete prior contents of metadata 1824 */ 1825 1826 index &= SWAP_META_MASK; 1827 1828 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1829 swp_pager_freeswapspace( 1830 swap->swb_pages[index] & SWAPBLK_MASK, 1831 1 1832 ); 1833 --swap->swb_count; 1834 } 1835 1836 /* 1837 * Enter block into metadata 1838 */ 1839 1840 swap->swb_pages[index] = swapblk; 1841 ++swap->swb_count; 1842 } 1843 1844 /* 1845 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1846 * 1847 * The requested range of blocks is freed, with any associated swap 1848 * returned to the swap bitmap. 1849 * 1850 * This routine will free swap metadata structures as they are cleaned 1851 * out. This routine does *NOT* operate on swap metadata associated 1852 * with resident pages. 1853 * 1854 * This routine must be called at splvm() 1855 */ 1856 1857 static void 1858 swp_pager_meta_free(vm_object_t object, daddr_t index, daddr_t count) 1859 { 1860 if (object->type != OBJT_SWAP) 1861 return; 1862 1863 while (count > 0) { 1864 struct swblock **pswap; 1865 struct swblock *swap; 1866 1867 pswap = swp_pager_hash(object, index); 1868 1869 if ((swap = *pswap) != NULL) { 1870 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1871 1872 if (v != SWAPBLK_NONE) { 1873 swp_pager_freeswapspace(v, 1); 1874 swap->swb_pages[index & SWAP_META_MASK] = 1875 SWAPBLK_NONE; 1876 if (--swap->swb_count == 0) { 1877 *pswap = swap->swb_hnext; 1878 zfree(swap_zone, swap); 1879 --object->un_pager.swp.swp_bcount; 1880 } 1881 } 1882 --count; 1883 ++index; 1884 } else { 1885 daddr_t n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1886 count -= n; 1887 index += n; 1888 } 1889 } 1890 } 1891 1892 /* 1893 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1894 * 1895 * This routine locates and destroys all swap metadata associated with 1896 * an object. 1897 */ 1898 1899 static void 1900 swp_pager_meta_free_all(vm_object_t object) 1901 { 1902 daddr_t index = 0; 1903 1904 if (object->type != OBJT_SWAP) 1905 return; 1906 1907 while (object->un_pager.swp.swp_bcount) { 1908 struct swblock **pswap; 1909 struct swblock *swap; 1910 1911 pswap = swp_pager_hash(object, index); 1912 if ((swap = *pswap) != NULL) { 1913 int i; 1914 1915 for (i = 0; i < SWAP_META_PAGES; ++i) { 1916 daddr_t v = swap->swb_pages[i]; 1917 if (v != SWAPBLK_NONE) { 1918 #if !defined(MAX_PERF) 1919 --swap->swb_count; 1920 #endif 1921 swp_pager_freeswapspace( 1922 v, 1923 1 1924 ); 1925 } 1926 } 1927 #if !defined(MAX_PERF) 1928 if (swap->swb_count != 0) 1929 panic("swap_pager_meta_free_all: swb_count != 0"); 1930 #endif 1931 *pswap = swap->swb_hnext; 1932 zfree(swap_zone, swap); 1933 --object->un_pager.swp.swp_bcount; 1934 } 1935 index += SWAP_META_PAGES; 1936 #if !defined(MAX_PERF) 1937 if (index > 0x20000000) 1938 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1939 #endif 1940 } 1941 } 1942 1943 /* 1944 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1945 * 1946 * This routine is capable of looking up, popping, or freeing 1947 * swapblk assignments in the swap meta data or in the vm_page_t. 1948 * The routine typically returns the swapblk being looked-up, or popped, 1949 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1950 * was invalid. This routine will automatically free any invalid 1951 * meta-data swapblks. 1952 * 1953 * It is not possible to store invalid swapblks in the swap meta data 1954 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1955 * 1956 * When acting on a busy resident page and paging is in progress, we 1957 * have to wait until paging is complete but otherwise can act on the 1958 * busy page. 1959 * 1960 * SWM_FREE remove and free swap block from metadata 1961 * 1962 * SWM_POP remove from meta data but do not free.. pop it out 1963 */ 1964 1965 static daddr_t 1966 swp_pager_meta_ctl( 1967 vm_object_t object, 1968 vm_pindex_t index, 1969 int flags 1970 ) { 1971 /* 1972 * The meta data only exists of the object is OBJT_SWAP 1973 * and even then might not be allocated yet. 1974 */ 1975 1976 if ( 1977 object->type != OBJT_SWAP || 1978 object->un_pager.swp.swp_bcount == 0 1979 ) { 1980 return(SWAPBLK_NONE); 1981 } 1982 1983 { 1984 struct swblock **pswap; 1985 struct swblock *swap; 1986 daddr_t r1 = SWAPBLK_NONE; 1987 1988 pswap = swp_pager_hash(object, index); 1989 1990 index &= SWAP_META_MASK; 1991 1992 if ((swap = *pswap) != NULL) { 1993 r1 = swap->swb_pages[index]; 1994 1995 if (r1 != SWAPBLK_NONE) { 1996 if (flags & SWM_FREE) { 1997 swp_pager_freeswapspace( 1998 r1, 1999 1 2000 ); 2001 r1 = SWAPBLK_NONE; 2002 } 2003 if (flags & (SWM_FREE|SWM_POP)) { 2004 swap->swb_pages[index] = SWAPBLK_NONE; 2005 if (--swap->swb_count == 0) { 2006 *pswap = swap->swb_hnext; 2007 zfree(swap_zone, swap); 2008 --object->un_pager.swp.swp_bcount; 2009 } 2010 } 2011 } 2012 } 2013 2014 return(r1); 2015 } 2016 /* not reached */ 2017 } 2018 2019