1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/bio.h> 76 #include <sys/buf.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sysctl.h> 81 #include <sys/blist.h> 82 #include <sys/lock.h> 83 #include <sys/vmmeter.h> 84 85 #ifndef MAX_PAGEOUT_CLUSTER 86 #define MAX_PAGEOUT_CLUSTER 16 87 #endif 88 89 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 90 91 #include "opt_swap.h" 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_zone.h> 101 #include <vm/swap_pager.h> 102 #include <vm/vm_extern.h> 103 104 #define SWM_FREE 0x02 /* free, period */ 105 #define SWM_POP 0x04 /* pop out */ 106 107 /* 108 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 109 * in the old system. 110 */ 111 112 extern int vm_swap_size; /* number of free swap blocks, in pages */ 113 114 int swap_pager_full; /* swap space exhaustion (task killing) */ 115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 116 static int nsw_rcount; /* free read buffers */ 117 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 118 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 119 static int nsw_wcount_async_max;/* assigned maximum */ 120 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 121 static int sw_alloc_interlock; /* swap pager allocation interlock */ 122 123 struct blist *swapblist; 124 static struct swblock **swhash; 125 static int swhash_mask; 126 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 127 128 /* from vm_swap.c */ 129 extern struct vnode *swapdev_vp; 130 extern struct swdevt *swdevt; 131 extern int nswdev; 132 133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 134 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 135 136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 137 138 /* 139 * "named" and "unnamed" anon region objects. Try to reduce the overhead 140 * of searching a named list by hashing it just a little. 141 */ 142 143 #define NOBJLISTS 8 144 145 #define NOBJLIST(handle) \ 146 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 147 148 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 149 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 150 struct pagerlst swap_pager_un_object_list; 151 vm_zone_t swap_zone; 152 153 /* 154 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 155 * calls hooked from other parts of the VM system and do not appear here. 156 * (see vm/swap_pager.h). 157 */ 158 159 static vm_object_t 160 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 161 vm_prot_t prot, vm_ooffset_t offset)); 162 static void swap_pager_dealloc __P((vm_object_t object)); 163 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 164 static void swap_pager_init __P((void)); 165 static void swap_pager_unswapped __P((vm_page_t)); 166 static void swap_pager_strategy __P((vm_object_t, struct bio *)); 167 168 struct pagerops swappagerops = { 169 swap_pager_init, /* early system initialization of pager */ 170 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 171 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 172 swap_pager_getpages, /* pagein */ 173 swap_pager_putpages, /* pageout */ 174 swap_pager_haspage, /* get backing store status for page */ 175 swap_pager_unswapped, /* remove swap related to page */ 176 swap_pager_strategy /* pager strategy call */ 177 }; 178 179 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 180 static void flushchainbuf(struct buf *nbp); 181 static void waitchainbuf(struct bio *bp, int count, int done); 182 183 /* 184 * dmmax is in page-sized chunks with the new swap system. It was 185 * dev-bsized chunks in the old. dmmax is always a power of 2. 186 * 187 * swap_*() routines are externally accessible. swp_*() routines are 188 * internal. 189 */ 190 191 int dmmax; 192 static int dmmax_mask; 193 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 194 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 195 196 SYSCTL_INT(_vm, OID_AUTO, dmmax, 197 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 198 199 static __inline void swp_sizecheck __P((void)); 200 static void swp_pager_sync_iodone __P((struct buf *bp)); 201 static void swp_pager_async_iodone __P((struct buf *bp)); 202 203 /* 204 * Swap bitmap functions 205 */ 206 207 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 208 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 209 210 /* 211 * Metadata functions 212 */ 213 214 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 215 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 216 static void swp_pager_meta_free_all __P((vm_object_t)); 217 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 218 219 /* 220 * SWP_SIZECHECK() - update swap_pager_full indication 221 * 222 * update the swap_pager_almost_full indication and warn when we are 223 * about to run out of swap space, using lowat/hiwat hysteresis. 224 * 225 * Clear swap_pager_full ( task killing ) indication when lowat is met. 226 * 227 * No restrictions on call 228 * This routine may not block. 229 * This routine must be called at splvm() 230 */ 231 232 static __inline void 233 swp_sizecheck() 234 { 235 236 mtx_assert(&vm_mtx, MA_OWNED); 237 if (vm_swap_size < nswap_lowat) { 238 if (swap_pager_almost_full == 0) { 239 printf("swap_pager: out of swap space\n"); 240 swap_pager_almost_full = 1; 241 } 242 } else { 243 swap_pager_full = 0; 244 if (vm_swap_size > nswap_hiwat) 245 swap_pager_almost_full = 0; 246 } 247 } 248 249 /* 250 * SWAP_PAGER_INIT() - initialize the swap pager! 251 * 252 * Expected to be started from system init. NOTE: This code is run 253 * before much else so be careful what you depend on. Most of the VM 254 * system has yet to be initialized at this point. 255 */ 256 257 static void 258 swap_pager_init() 259 { 260 /* 261 * Initialize object lists 262 */ 263 int i; 264 265 for (i = 0; i < NOBJLISTS; ++i) 266 TAILQ_INIT(&swap_pager_object_list[i]); 267 TAILQ_INIT(&swap_pager_un_object_list); 268 mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF); 269 270 /* 271 * Device Stripe, in PAGE_SIZE'd blocks 272 */ 273 274 dmmax = SWB_NPAGES * 2; 275 dmmax_mask = ~(dmmax - 1); 276 } 277 278 /* 279 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 280 * 281 * Expected to be started from pageout process once, prior to entering 282 * its main loop. 283 */ 284 285 void 286 swap_pager_swap_init() 287 { 288 int n, n2; 289 290 /* 291 * Number of in-transit swap bp operations. Don't 292 * exhaust the pbufs completely. Make sure we 293 * initialize workable values (0 will work for hysteresis 294 * but it isn't very efficient). 295 * 296 * The nsw_cluster_max is constrained by the bp->b_pages[] 297 * array (MAXPHYS/PAGE_SIZE) and our locally defined 298 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 299 * constrained by the swap device interleave stripe size. 300 * 301 * Currently we hardwire nsw_wcount_async to 4. This limit is 302 * designed to prevent other I/O from having high latencies due to 303 * our pageout I/O. The value 4 works well for one or two active swap 304 * devices but is probably a little low if you have more. Even so, 305 * a higher value would probably generate only a limited improvement 306 * with three or four active swap devices since the system does not 307 * typically have to pageout at extreme bandwidths. We will want 308 * at least 2 per swap devices, and 4 is a pretty good value if you 309 * have one NFS swap device due to the command/ack latency over NFS. 310 * So it all works out pretty well. 311 */ 312 313 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 314 315 nsw_rcount = (nswbuf + 1) / 2; 316 nsw_wcount_sync = (nswbuf + 3) / 4; 317 nsw_wcount_async = 4; 318 nsw_wcount_async_max = nsw_wcount_async; 319 320 /* 321 * Initialize our zone. Right now I'm just guessing on the number 322 * we need based on the number of pages in the system. Each swblock 323 * can hold 16 pages, so this is probably overkill. 324 */ 325 326 n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2; 327 n2 = n; 328 329 while (n > 0 330 && (swap_zone = zinit( 331 "SWAPMETA", 332 sizeof(struct swblock), 333 n, 334 ZONE_INTERRUPT, 335 1 336 )) == NULL) 337 n >>= 1; 338 if (swap_zone == NULL) 339 printf("WARNING: failed to init swap_zone!\n"); 340 if (n2 != n) 341 printf("Swap zone entries reduced to %d.\n", n); 342 n2 = n; 343 344 /* 345 * Initialize our meta-data hash table. The swapper does not need to 346 * be quite as efficient as the VM system, so we do not use an 347 * oversized hash table. 348 * 349 * n: size of hash table, must be power of 2 350 * swhash_mask: hash table index mask 351 */ 352 353 for (n = 1; n < n2 ; n <<= 1) 354 ; 355 356 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 357 358 swhash_mask = n - 1; 359 } 360 361 /* 362 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 363 * its metadata structures. 364 * 365 * This routine is called from the mmap and fork code to create a new 366 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 367 * and then converting it with swp_pager_meta_build(). 368 * 369 * This routine may block in vm_object_allocate() and create a named 370 * object lookup race, so we must interlock. We must also run at 371 * splvm() for the object lookup to handle races with interrupts, but 372 * we do not have to maintain splvm() in between the lookup and the 373 * add because (I believe) it is not possible to attempt to create 374 * a new swap object w/handle when a default object with that handle 375 * already exists. 376 */ 377 378 static vm_object_t 379 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 380 vm_ooffset_t offset) 381 { 382 vm_object_t object; 383 384 mtx_assert(&vm_mtx, MA_OWNED); 385 if (handle) { 386 /* 387 * Reference existing named region or allocate new one. There 388 * should not be a race here against swp_pager_meta_build() 389 * as called from vm_page_remove() in regards to the lookup 390 * of the handle. 391 */ 392 393 while (sw_alloc_interlock) { 394 sw_alloc_interlock = -1; 395 msleep(&sw_alloc_interlock, &vm_mtx, PVM, "swpalc", 0); 396 } 397 sw_alloc_interlock = 1; 398 399 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 400 401 if (object != NULL) { 402 vm_object_reference(object); 403 } else { 404 object = vm_object_allocate(OBJT_DEFAULT, 405 OFF_TO_IDX(offset + PAGE_MASK + size)); 406 object->handle = handle; 407 408 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 409 } 410 411 if (sw_alloc_interlock == -1) 412 wakeup(&sw_alloc_interlock); 413 sw_alloc_interlock = 0; 414 } else { 415 object = vm_object_allocate(OBJT_DEFAULT, 416 OFF_TO_IDX(offset + PAGE_MASK + size)); 417 418 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 419 } 420 421 return (object); 422 } 423 424 /* 425 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 426 * 427 * The swap backing for the object is destroyed. The code is 428 * designed such that we can reinstantiate it later, but this 429 * routine is typically called only when the entire object is 430 * about to be destroyed. 431 * 432 * This routine may block, but no longer does. 433 * 434 * The object must be locked or unreferenceable. 435 */ 436 437 static void 438 swap_pager_dealloc(object) 439 vm_object_t object; 440 { 441 int s; 442 443 mtx_assert(&vm_mtx, MA_OWNED); 444 /* 445 * Remove from list right away so lookups will fail if we block for 446 * pageout completion. 447 */ 448 449 mtx_lock(&sw_alloc_mtx); 450 if (object->handle == NULL) { 451 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 452 } else { 453 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 454 } 455 mtx_unlock(&sw_alloc_mtx); 456 457 vm_object_pip_wait(object, "swpdea"); 458 459 /* 460 * Free all remaining metadata. We only bother to free it from 461 * the swap meta data. We do not attempt to free swapblk's still 462 * associated with vm_page_t's for this object. We do not care 463 * if paging is still in progress on some objects. 464 */ 465 s = splvm(); 466 swp_pager_meta_free_all(object); 467 splx(s); 468 } 469 470 /************************************************************************ 471 * SWAP PAGER BITMAP ROUTINES * 472 ************************************************************************/ 473 474 /* 475 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 476 * 477 * Allocate swap for the requested number of pages. The starting 478 * swap block number (a page index) is returned or SWAPBLK_NONE 479 * if the allocation failed. 480 * 481 * Also has the side effect of advising that somebody made a mistake 482 * when they configured swap and didn't configure enough. 483 * 484 * Must be called at splvm() to avoid races with bitmap frees from 485 * vm_page_remove() aka swap_pager_page_removed(). 486 * 487 * This routine may not block 488 * This routine must be called at splvm(). 489 * vm_mtx should be held 490 */ 491 492 static __inline daddr_t 493 swp_pager_getswapspace(npages) 494 int npages; 495 { 496 daddr_t blk; 497 498 mtx_assert(&vm_mtx, MA_OWNED); 499 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 500 if (swap_pager_full != 2) { 501 printf("swap_pager_getswapspace: failed\n"); 502 swap_pager_full = 2; 503 swap_pager_almost_full = 1; 504 } 505 } else { 506 vm_swap_size -= npages; 507 /* per-swap area stats */ 508 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 509 swp_sizecheck(); 510 } 511 return(blk); 512 } 513 514 /* 515 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 516 * 517 * This routine returns the specified swap blocks back to the bitmap. 518 * 519 * Note: This routine may not block (it could in the old swap code), 520 * and through the use of the new blist routines it does not block. 521 * 522 * We must be called at splvm() to avoid races with bitmap frees from 523 * vm_page_remove() aka swap_pager_page_removed(). 524 * 525 * This routine may not block 526 * This routine must be called at splvm(). 527 * vm_mtx should be held 528 */ 529 530 static __inline void 531 swp_pager_freeswapspace(blk, npages) 532 daddr_t blk; 533 int npages; 534 { 535 536 mtx_assert(&vm_mtx, MA_OWNED); 537 blist_free(swapblist, blk, npages); 538 vm_swap_size += npages; 539 /* per-swap area stats */ 540 swdevt[BLK2DEVIDX(blk)].sw_used -= npages; 541 swp_sizecheck(); 542 } 543 544 /* 545 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 546 * range within an object. 547 * 548 * This is a globally accessible routine. 549 * 550 * This routine removes swapblk assignments from swap metadata. 551 * 552 * The external callers of this routine typically have already destroyed 553 * or renamed vm_page_t's associated with this range in the object so 554 * we should be ok. 555 * 556 * This routine may be called at any spl. We up our spl to splvm temporarily 557 * in order to perform the metadata removal. 558 */ 559 560 void 561 swap_pager_freespace(object, start, size) 562 vm_object_t object; 563 vm_pindex_t start; 564 vm_size_t size; 565 { 566 int s = splvm(); 567 568 mtx_assert(&vm_mtx, MA_OWNED); 569 570 swp_pager_meta_free(object, start, size); 571 splx(s); 572 } 573 574 /* 575 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 576 * 577 * Assigns swap blocks to the specified range within the object. The 578 * swap blocks are not zerod. Any previous swap assignment is destroyed. 579 * 580 * Returns 0 on success, -1 on failure. 581 */ 582 583 int 584 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 585 { 586 int s; 587 int n = 0; 588 daddr_t blk = SWAPBLK_NONE; 589 vm_pindex_t beg = start; /* save start index */ 590 591 s = splvm(); 592 while (size) { 593 if (n == 0) { 594 n = BLIST_MAX_ALLOC; 595 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 596 n >>= 1; 597 if (n == 0) { 598 swp_pager_meta_free(object, beg, start - beg); 599 splx(s); 600 return(-1); 601 } 602 } 603 } 604 swp_pager_meta_build(object, start, blk); 605 --size; 606 ++start; 607 ++blk; 608 --n; 609 } 610 swp_pager_meta_free(object, start, n); 611 splx(s); 612 return(0); 613 } 614 615 /* 616 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 617 * and destroy the source. 618 * 619 * Copy any valid swapblks from the source to the destination. In 620 * cases where both the source and destination have a valid swapblk, 621 * we keep the destination's. 622 * 623 * This routine is allowed to block. It may block allocating metadata 624 * indirectly through swp_pager_meta_build() or if paging is still in 625 * progress on the source. 626 * 627 * This routine can be called at any spl 628 * 629 * XXX vm_page_collapse() kinda expects us not to block because we 630 * supposedly do not need to allocate memory, but for the moment we 631 * *may* have to get a little memory from the zone allocator, but 632 * it is taken from the interrupt memory. We should be ok. 633 * 634 * The source object contains no vm_page_t's (which is just as well) 635 * 636 * The source object is of type OBJT_SWAP. 637 * 638 * The source and destination objects must be locked or 639 * inaccessible (XXX are they ?) 640 */ 641 642 void 643 swap_pager_copy(srcobject, dstobject, offset, destroysource) 644 vm_object_t srcobject; 645 vm_object_t dstobject; 646 vm_pindex_t offset; 647 int destroysource; 648 { 649 vm_pindex_t i; 650 int s; 651 652 s = splvm(); 653 654 mtx_assert(&vm_mtx, MA_OWNED); 655 656 /* 657 * If destroysource is set, we remove the source object from the 658 * swap_pager internal queue now. 659 */ 660 661 if (destroysource) { 662 mtx_lock(&sw_alloc_mtx); 663 if (srcobject->handle == NULL) { 664 TAILQ_REMOVE( 665 &swap_pager_un_object_list, 666 srcobject, 667 pager_object_list 668 ); 669 } else { 670 TAILQ_REMOVE( 671 NOBJLIST(srcobject->handle), 672 srcobject, 673 pager_object_list 674 ); 675 } 676 mtx_unlock(&sw_alloc_mtx); 677 } 678 679 /* 680 * transfer source to destination. 681 */ 682 683 for (i = 0; i < dstobject->size; ++i) { 684 daddr_t dstaddr; 685 686 /* 687 * Locate (without changing) the swapblk on the destination, 688 * unless it is invalid in which case free it silently, or 689 * if the destination is a resident page, in which case the 690 * source is thrown away. 691 */ 692 693 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 694 695 if (dstaddr == SWAPBLK_NONE) { 696 /* 697 * Destination has no swapblk and is not resident, 698 * copy source. 699 */ 700 daddr_t srcaddr; 701 702 srcaddr = swp_pager_meta_ctl( 703 srcobject, 704 i + offset, 705 SWM_POP 706 ); 707 708 if (srcaddr != SWAPBLK_NONE) 709 swp_pager_meta_build(dstobject, i, srcaddr); 710 } else { 711 /* 712 * Destination has valid swapblk or it is represented 713 * by a resident page. We destroy the sourceblock. 714 */ 715 716 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 717 } 718 } 719 720 /* 721 * Free left over swap blocks in source. 722 * 723 * We have to revert the type to OBJT_DEFAULT so we do not accidently 724 * double-remove the object from the swap queues. 725 */ 726 727 if (destroysource) { 728 swp_pager_meta_free_all(srcobject); 729 /* 730 * Reverting the type is not necessary, the caller is going 731 * to destroy srcobject directly, but I'm doing it here 732 * for consistency since we've removed the object from its 733 * queues. 734 */ 735 srcobject->type = OBJT_DEFAULT; 736 } 737 splx(s); 738 } 739 740 /* 741 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 742 * the requested page. 743 * 744 * We determine whether good backing store exists for the requested 745 * page and return TRUE if it does, FALSE if it doesn't. 746 * 747 * If TRUE, we also try to determine how much valid, contiguous backing 748 * store exists before and after the requested page within a reasonable 749 * distance. We do not try to restrict it to the swap device stripe 750 * (that is handled in getpages/putpages). It probably isn't worth 751 * doing here. 752 */ 753 754 boolean_t 755 swap_pager_haspage(object, pindex, before, after) 756 vm_object_t object; 757 vm_pindex_t pindex; 758 int *before; 759 int *after; 760 { 761 daddr_t blk0; 762 int s; 763 764 /* 765 * do we have good backing store at the requested index ? 766 */ 767 768 s = splvm(); 769 blk0 = swp_pager_meta_ctl(object, pindex, 0); 770 771 if (blk0 == SWAPBLK_NONE) { 772 splx(s); 773 if (before) 774 *before = 0; 775 if (after) 776 *after = 0; 777 return (FALSE); 778 } 779 780 /* 781 * find backwards-looking contiguous good backing store 782 */ 783 784 if (before != NULL) { 785 int i; 786 787 for (i = 1; i < (SWB_NPAGES/2); ++i) { 788 daddr_t blk; 789 790 if (i > pindex) 791 break; 792 blk = swp_pager_meta_ctl(object, pindex - i, 0); 793 if (blk != blk0 - i) 794 break; 795 } 796 *before = (i - 1); 797 } 798 799 /* 800 * find forward-looking contiguous good backing store 801 */ 802 803 if (after != NULL) { 804 int i; 805 806 for (i = 1; i < (SWB_NPAGES/2); ++i) { 807 daddr_t blk; 808 809 blk = swp_pager_meta_ctl(object, pindex + i, 0); 810 if (blk != blk0 + i) 811 break; 812 } 813 *after = (i - 1); 814 } 815 splx(s); 816 return (TRUE); 817 } 818 819 /* 820 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 821 * 822 * This removes any associated swap backing store, whether valid or 823 * not, from the page. 824 * 825 * This routine is typically called when a page is made dirty, at 826 * which point any associated swap can be freed. MADV_FREE also 827 * calls us in a special-case situation 828 * 829 * NOTE!!! If the page is clean and the swap was valid, the caller 830 * should make the page dirty before calling this routine. This routine 831 * does NOT change the m->dirty status of the page. Also: MADV_FREE 832 * depends on it. 833 * 834 * This routine may not block 835 * This routine must be called at splvm() 836 */ 837 838 static void 839 swap_pager_unswapped(m) 840 vm_page_t m; 841 { 842 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 843 } 844 845 /* 846 * SWAP_PAGER_STRATEGY() - read, write, free blocks 847 * 848 * This implements the vm_pager_strategy() interface to swap and allows 849 * other parts of the system to directly access swap as backing store 850 * through vm_objects of type OBJT_SWAP. This is intended to be a 851 * cacheless interface ( i.e. caching occurs at higher levels ). 852 * Therefore we do not maintain any resident pages. All I/O goes 853 * directly to and from the swap device. 854 * 855 * Note that b_blkno is scaled for PAGE_SIZE 856 * 857 * We currently attempt to run I/O synchronously or asynchronously as 858 * the caller requests. This isn't perfect because we loose error 859 * sequencing when we run multiple ops in parallel to satisfy a request. 860 * But this is swap, so we let it all hang out. 861 */ 862 863 static void 864 swap_pager_strategy(vm_object_t object, struct bio *bp) 865 { 866 vm_pindex_t start; 867 int count; 868 int s; 869 char *data; 870 struct buf *nbp = NULL; 871 872 mtx_assert(&Giant, MA_OWNED); 873 mtx_assert(&vm_mtx, MA_NOTOWNED); 874 /* XXX: KASSERT instead ? */ 875 if (bp->bio_bcount & PAGE_MASK) { 876 biofinish(bp, NULL, EINVAL); 877 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 878 return; 879 } 880 881 /* 882 * Clear error indication, initialize page index, count, data pointer. 883 */ 884 885 bp->bio_error = 0; 886 bp->bio_flags &= ~BIO_ERROR; 887 bp->bio_resid = bp->bio_bcount; 888 889 start = bp->bio_pblkno; 890 count = howmany(bp->bio_bcount, PAGE_SIZE); 891 data = bp->bio_data; 892 893 s = splvm(); 894 895 /* 896 * Deal with BIO_DELETE 897 */ 898 899 if (bp->bio_cmd == BIO_DELETE) { 900 /* 901 * FREE PAGE(s) - destroy underlying swap that is no longer 902 * needed. 903 */ 904 mtx_lock(&vm_mtx); 905 swp_pager_meta_free(object, start, count); 906 mtx_unlock(&vm_mtx); 907 splx(s); 908 bp->bio_resid = 0; 909 biodone(bp); 910 return; 911 } 912 913 /* 914 * Execute read or write 915 */ 916 917 mtx_lock(&vm_mtx); 918 while (count > 0) { 919 daddr_t blk; 920 921 /* 922 * Obtain block. If block not found and writing, allocate a 923 * new block and build it into the object. 924 */ 925 926 blk = swp_pager_meta_ctl(object, start, 0); 927 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 928 blk = swp_pager_getswapspace(1); 929 if (blk == SWAPBLK_NONE) { 930 bp->bio_error = ENOMEM; 931 bp->bio_flags |= BIO_ERROR; 932 break; 933 } 934 swp_pager_meta_build(object, start, blk); 935 } 936 937 /* 938 * Do we have to flush our current collection? Yes if: 939 * 940 * - no swap block at this index 941 * - swap block is not contiguous 942 * - we cross a physical disk boundry in the 943 * stripe. 944 */ 945 946 if ( 947 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 948 ((nbp->b_blkno ^ blk) & dmmax_mask) 949 ) 950 ) { 951 splx(s); 952 if (bp->bio_cmd == BIO_READ) { 953 ++cnt.v_swapin; 954 cnt.v_swappgsin += btoc(nbp->b_bcount); 955 } else { 956 ++cnt.v_swapout; 957 cnt.v_swappgsout += btoc(nbp->b_bcount); 958 nbp->b_dirtyend = nbp->b_bcount; 959 } 960 mtx_unlock(&vm_mtx); 961 flushchainbuf(nbp); 962 mtx_lock(&vm_mtx); 963 s = splvm(); 964 nbp = NULL; 965 } 966 967 /* 968 * Add new swapblk to nbp, instantiating nbp if necessary. 969 * Zero-fill reads are able to take a shortcut. 970 */ 971 972 if (blk == SWAPBLK_NONE) { 973 /* 974 * We can only get here if we are reading. Since 975 * we are at splvm() we can safely modify b_resid, 976 * even if chain ops are in progress. 977 */ 978 bzero(data, PAGE_SIZE); 979 bp->bio_resid -= PAGE_SIZE; 980 } else { 981 if (nbp == NULL) { 982 mtx_unlock(&vm_mtx); 983 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 984 mtx_lock(&vm_mtx); 985 nbp->b_blkno = blk; 986 nbp->b_bcount = 0; 987 nbp->b_data = data; 988 } 989 nbp->b_bcount += PAGE_SIZE; 990 } 991 --count; 992 ++start; 993 data += PAGE_SIZE; 994 } 995 996 /* 997 * Flush out last buffer 998 */ 999 1000 splx(s); 1001 1002 if (nbp) { 1003 if (nbp->b_iocmd == BIO_READ) { 1004 ++cnt.v_swapin; 1005 cnt.v_swappgsin += btoc(nbp->b_bcount); 1006 } else { 1007 ++cnt.v_swapout; 1008 cnt.v_swappgsout += btoc(nbp->b_bcount); 1009 nbp->b_dirtyend = nbp->b_bcount; 1010 } 1011 mtx_unlock(&vm_mtx); 1012 flushchainbuf(nbp); 1013 /* nbp = NULL; */ 1014 } else 1015 mtx_unlock(&vm_mtx); 1016 /* 1017 * Wait for completion. 1018 */ 1019 1020 waitchainbuf(bp, 0, 1); 1021 } 1022 1023 /* 1024 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1025 * 1026 * Attempt to retrieve (m, count) pages from backing store, but make 1027 * sure we retrieve at least m[reqpage]. We try to load in as large 1028 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1029 * belongs to the same object. 1030 * 1031 * The code is designed for asynchronous operation and 1032 * immediate-notification of 'reqpage' but tends not to be 1033 * used that way. Please do not optimize-out this algorithmic 1034 * feature, I intend to improve on it in the future. 1035 * 1036 * The parent has a single vm_object_pip_add() reference prior to 1037 * calling us and we should return with the same. 1038 * 1039 * The parent has BUSY'd the pages. We should return with 'm' 1040 * left busy, but the others adjusted. 1041 */ 1042 1043 static int 1044 swap_pager_getpages(object, m, count, reqpage) 1045 vm_object_t object; 1046 vm_page_t *m; 1047 int count, reqpage; 1048 { 1049 struct buf *bp; 1050 vm_page_t mreq; 1051 int s; 1052 int i; 1053 int j; 1054 daddr_t blk; 1055 vm_offset_t kva; 1056 vm_pindex_t lastpindex; 1057 1058 mtx_assert(&Giant, MA_OWNED); 1059 mreq = m[reqpage]; 1060 1061 if (mreq->object != object) { 1062 panic("swap_pager_getpages: object mismatch %p/%p", 1063 object, 1064 mreq->object 1065 ); 1066 } 1067 /* 1068 * Calculate range to retrieve. The pages have already been assigned 1069 * their swapblks. We require a *contiguous* range that falls entirely 1070 * within a single device stripe. If we do not supply it, bad things 1071 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1072 * loops are set up such that the case(s) are handled implicitly. 1073 * 1074 * The swp_*() calls must be made at splvm(). vm_page_free() does 1075 * not need to be, but it will go a little faster if it is. 1076 */ 1077 1078 s = splvm(); 1079 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1080 1081 for (i = reqpage - 1; i >= 0; --i) { 1082 daddr_t iblk; 1083 1084 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1085 if (blk != iblk + (reqpage - i)) 1086 break; 1087 if ((blk ^ iblk) & dmmax_mask) 1088 break; 1089 } 1090 ++i; 1091 1092 for (j = reqpage + 1; j < count; ++j) { 1093 daddr_t jblk; 1094 1095 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1096 if (blk != jblk - (j - reqpage)) 1097 break; 1098 if ((blk ^ jblk) & dmmax_mask) 1099 break; 1100 } 1101 1102 /* 1103 * free pages outside our collection range. Note: we never free 1104 * mreq, it must remain busy throughout. 1105 */ 1106 1107 { 1108 int k; 1109 1110 for (k = 0; k < i; ++k) 1111 vm_page_free(m[k]); 1112 for (k = j; k < count; ++k) 1113 vm_page_free(m[k]); 1114 } 1115 splx(s); 1116 1117 1118 /* 1119 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1120 * still busy, but the others unbusied. 1121 */ 1122 1123 if (blk == SWAPBLK_NONE) 1124 return(VM_PAGER_FAIL); 1125 1126 /* 1127 * Get a swap buffer header to perform the IO 1128 */ 1129 1130 bp = getpbuf(&nsw_rcount); 1131 kva = (vm_offset_t) bp->b_data; 1132 1133 /* 1134 * map our page(s) into kva for input 1135 * 1136 * NOTE: B_PAGING is set by pbgetvp() 1137 */ 1138 1139 pmap_qenter(kva, m + i, j - i); 1140 1141 bp->b_iocmd = BIO_READ; 1142 bp->b_iodone = swp_pager_async_iodone; 1143 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1144 bp->b_data = (caddr_t) kva; 1145 crhold(bp->b_rcred); 1146 crhold(bp->b_wcred); 1147 bp->b_blkno = blk - (reqpage - i); 1148 bp->b_bcount = PAGE_SIZE * (j - i); 1149 bp->b_bufsize = PAGE_SIZE * (j - i); 1150 bp->b_pager.pg_reqpage = reqpage - i; 1151 1152 { 1153 int k; 1154 1155 for (k = i; k < j; ++k) { 1156 bp->b_pages[k - i] = m[k]; 1157 vm_page_flag_set(m[k], PG_SWAPINPROG); 1158 } 1159 } 1160 bp->b_npages = j - i; 1161 1162 pbgetvp(swapdev_vp, bp); 1163 1164 cnt.v_swapin++; 1165 cnt.v_swappgsin += bp->b_npages; 1166 1167 /* 1168 * We still hold the lock on mreq, and our automatic completion routine 1169 * does not remove it. 1170 */ 1171 1172 vm_object_pip_add(mreq->object, bp->b_npages); 1173 lastpindex = m[j-1]->pindex; 1174 1175 /* 1176 * perform the I/O. NOTE!!! bp cannot be considered valid after 1177 * this point because we automatically release it on completion. 1178 * Instead, we look at the one page we are interested in which we 1179 * still hold a lock on even through the I/O completion. 1180 * 1181 * The other pages in our m[] array are also released on completion, 1182 * so we cannot assume they are valid anymore either. 1183 * 1184 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1185 */ 1186 mtx_unlock(&vm_mtx); 1187 BUF_KERNPROC(bp); 1188 BUF_STRATEGY(bp); 1189 mtx_lock(&vm_mtx); 1190 1191 /* 1192 * wait for the page we want to complete. PG_SWAPINPROG is always 1193 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1194 * is set in the meta-data. 1195 */ 1196 1197 s = splvm(); 1198 1199 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1200 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1201 cnt.v_intrans++; 1202 if (msleep(mreq, &vm_mtx, PSWP, "swread", hz*20)) { 1203 printf( 1204 "swap_pager: indefinite wait buffer: device:" 1205 " %s, blkno: %ld, size: %ld\n", 1206 devtoname(bp->b_dev), (long)bp->b_blkno, 1207 bp->b_bcount 1208 ); 1209 } 1210 } 1211 1212 splx(s); 1213 1214 /* 1215 * mreq is left bussied after completion, but all the other pages 1216 * are freed. If we had an unrecoverable read error the page will 1217 * not be valid. 1218 */ 1219 1220 if (mreq->valid != VM_PAGE_BITS_ALL) { 1221 return(VM_PAGER_ERROR); 1222 } else { 1223 return(VM_PAGER_OK); 1224 } 1225 1226 /* 1227 * A final note: in a low swap situation, we cannot deallocate swap 1228 * and mark a page dirty here because the caller is likely to mark 1229 * the page clean when we return, causing the page to possibly revert 1230 * to all-zero's later. 1231 */ 1232 } 1233 1234 /* 1235 * swap_pager_putpages: 1236 * 1237 * Assign swap (if necessary) and initiate I/O on the specified pages. 1238 * 1239 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1240 * are automatically converted to SWAP objects. 1241 * 1242 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1243 * vm_page reservation system coupled with properly written VFS devices 1244 * should ensure that no low-memory deadlock occurs. This is an area 1245 * which needs work. 1246 * 1247 * The parent has N vm_object_pip_add() references prior to 1248 * calling us and will remove references for rtvals[] that are 1249 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1250 * completion. 1251 * 1252 * The parent has soft-busy'd the pages it passes us and will unbusy 1253 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1254 * We need to unbusy the rest on I/O completion. 1255 */ 1256 1257 void 1258 swap_pager_putpages(object, m, count, sync, rtvals) 1259 vm_object_t object; 1260 vm_page_t *m; 1261 int count; 1262 boolean_t sync; 1263 int *rtvals; 1264 { 1265 int i; 1266 int n = 0; 1267 1268 mtx_assert(&Giant, MA_OWNED); 1269 if (count && m[0]->object != object) { 1270 panic("swap_pager_getpages: object mismatch %p/%p", 1271 object, 1272 m[0]->object 1273 ); 1274 } 1275 /* 1276 * Step 1 1277 * 1278 * Turn object into OBJT_SWAP 1279 * check for bogus sysops 1280 * force sync if not pageout process 1281 */ 1282 1283 if (object->type != OBJT_SWAP) 1284 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1285 1286 if (curproc != pageproc) 1287 sync = TRUE; 1288 1289 /* 1290 * Step 2 1291 * 1292 * Update nsw parameters from swap_async_max sysctl values. 1293 * Do not let the sysop crash the machine with bogus numbers. 1294 */ 1295 1296 if (swap_async_max != nsw_wcount_async_max) { 1297 int n; 1298 int s; 1299 1300 /* 1301 * limit range 1302 */ 1303 if ((n = swap_async_max) > nswbuf / 2) 1304 n = nswbuf / 2; 1305 if (n < 1) 1306 n = 1; 1307 swap_async_max = n; 1308 1309 /* 1310 * Adjust difference ( if possible ). If the current async 1311 * count is too low, we may not be able to make the adjustment 1312 * at this time. 1313 */ 1314 s = splvm(); 1315 mtx_unlock(&vm_mtx); 1316 mtx_lock(&pbuf_mtx); 1317 n -= nsw_wcount_async_max; 1318 if (nsw_wcount_async + n >= 0) { 1319 nsw_wcount_async += n; 1320 nsw_wcount_async_max += n; 1321 wakeup(&nsw_wcount_async); 1322 } 1323 mtx_unlock(&pbuf_mtx); 1324 mtx_lock(&vm_mtx); 1325 splx(s); 1326 } 1327 1328 /* 1329 * Step 3 1330 * 1331 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1332 * The page is left dirty until the pageout operation completes 1333 * successfully. 1334 */ 1335 1336 for (i = 0; i < count; i += n) { 1337 int s; 1338 int j; 1339 struct buf *bp; 1340 daddr_t blk; 1341 1342 /* 1343 * Maximum I/O size is limited by a number of factors. 1344 */ 1345 1346 n = min(BLIST_MAX_ALLOC, count - i); 1347 n = min(n, nsw_cluster_max); 1348 1349 s = splvm(); 1350 1351 /* 1352 * Get biggest block of swap we can. If we fail, fall 1353 * back and try to allocate a smaller block. Don't go 1354 * overboard trying to allocate space if it would overly 1355 * fragment swap. 1356 */ 1357 while ( 1358 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1359 n > 4 1360 ) { 1361 n >>= 1; 1362 } 1363 if (blk == SWAPBLK_NONE) { 1364 for (j = 0; j < n; ++j) 1365 rtvals[i+j] = VM_PAGER_FAIL; 1366 splx(s); 1367 continue; 1368 } 1369 1370 /* 1371 * The I/O we are constructing cannot cross a physical 1372 * disk boundry in the swap stripe. Note: we are still 1373 * at splvm(). 1374 */ 1375 if ((blk ^ (blk + n)) & dmmax_mask) { 1376 j = ((blk + dmmax) & dmmax_mask) - blk; 1377 swp_pager_freeswapspace(blk + j, n - j); 1378 n = j; 1379 } 1380 1381 /* 1382 * All I/O parameters have been satisfied, build the I/O 1383 * request and assign the swap space. 1384 * 1385 * NOTE: B_PAGING is set by pbgetvp() 1386 */ 1387 1388 if (sync == TRUE) { 1389 bp = getpbuf(&nsw_wcount_sync); 1390 } else { 1391 bp = getpbuf(&nsw_wcount_async); 1392 bp->b_flags = B_ASYNC; 1393 } 1394 bp->b_iocmd = BIO_WRITE; 1395 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1396 1397 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1398 1399 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1400 bp->b_bcount = PAGE_SIZE * n; 1401 bp->b_bufsize = PAGE_SIZE * n; 1402 bp->b_blkno = blk; 1403 1404 crhold(bp->b_rcred); 1405 crhold(bp->b_wcred); 1406 1407 pbgetvp(swapdev_vp, bp); 1408 1409 for (j = 0; j < n; ++j) { 1410 vm_page_t mreq = m[i+j]; 1411 1412 swp_pager_meta_build( 1413 mreq->object, 1414 mreq->pindex, 1415 blk + j 1416 ); 1417 vm_page_dirty(mreq); 1418 rtvals[i+j] = VM_PAGER_OK; 1419 1420 vm_page_flag_set(mreq, PG_SWAPINPROG); 1421 bp->b_pages[j] = mreq; 1422 } 1423 bp->b_npages = n; 1424 /* 1425 * Must set dirty range for NFS to work. 1426 */ 1427 bp->b_dirtyoff = 0; 1428 bp->b_dirtyend = bp->b_bcount; 1429 1430 cnt.v_swapout++; 1431 cnt.v_swappgsout += bp->b_npages; 1432 swapdev_vp->v_numoutput++; 1433 1434 splx(s); 1435 mtx_unlock(&vm_mtx); 1436 1437 /* 1438 * asynchronous 1439 * 1440 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1441 */ 1442 1443 if (sync == FALSE) { 1444 bp->b_iodone = swp_pager_async_iodone; 1445 BUF_KERNPROC(bp); 1446 BUF_STRATEGY(bp); 1447 mtx_lock(&vm_mtx); 1448 1449 for (j = 0; j < n; ++j) 1450 rtvals[i+j] = VM_PAGER_PEND; 1451 /* restart outter loop */ 1452 continue; 1453 } 1454 1455 /* 1456 * synchronous 1457 * 1458 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1459 */ 1460 1461 bp->b_iodone = swp_pager_sync_iodone; 1462 BUF_STRATEGY(bp); 1463 1464 /* 1465 * Wait for the sync I/O to complete, then update rtvals. 1466 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1467 * our async completion routine at the end, thus avoiding a 1468 * double-free. 1469 */ 1470 s = splbio(); 1471 1472 while ((bp->b_flags & B_DONE) == 0) { 1473 tsleep(bp, PVM, "swwrt", 0); 1474 } 1475 1476 for (j = 0; j < n; ++j) 1477 rtvals[i+j] = VM_PAGER_PEND; 1478 1479 /* 1480 * Now that we are through with the bp, we can call the 1481 * normal async completion, which frees everything up. 1482 */ 1483 1484 swp_pager_async_iodone(bp); 1485 mtx_lock(&vm_mtx); 1486 1487 splx(s); 1488 } 1489 } 1490 1491 /* 1492 * swap_pager_sync_iodone: 1493 * 1494 * Completion routine for synchronous reads and writes from/to swap. 1495 * We just mark the bp is complete and wake up anyone waiting on it. 1496 * 1497 * This routine may not block. This routine is called at splbio() or better. 1498 */ 1499 1500 static void 1501 swp_pager_sync_iodone(bp) 1502 struct buf *bp; 1503 { 1504 bp->b_flags |= B_DONE; 1505 bp->b_flags &= ~B_ASYNC; 1506 wakeup(bp); 1507 } 1508 1509 /* 1510 * swp_pager_async_iodone: 1511 * 1512 * Completion routine for asynchronous reads and writes from/to swap. 1513 * Also called manually by synchronous code to finish up a bp. 1514 * 1515 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1516 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1517 * unbusy all pages except the 'main' request page. For WRITE 1518 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1519 * because we marked them all VM_PAGER_PEND on return from putpages ). 1520 * 1521 * This routine may not block. 1522 * This routine is called at splbio() or better 1523 * 1524 * We up ourselves to splvm() as required for various vm_page related 1525 * calls. 1526 */ 1527 1528 static void 1529 swp_pager_async_iodone(bp) 1530 register struct buf *bp; 1531 { 1532 int s; 1533 int i; 1534 vm_object_t object = NULL; 1535 1536 mtx_assert(&vm_mtx, MA_NOTOWNED); 1537 bp->b_flags |= B_DONE; 1538 1539 /* 1540 * report error 1541 */ 1542 1543 if (bp->b_ioflags & BIO_ERROR) { 1544 printf( 1545 "swap_pager: I/O error - %s failed; blkno %ld," 1546 "size %ld, error %d\n", 1547 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1548 (long)bp->b_blkno, 1549 (long)bp->b_bcount, 1550 bp->b_error 1551 ); 1552 } 1553 1554 /* 1555 * set object, raise to splvm(). 1556 */ 1557 1558 if (bp->b_npages) 1559 object = bp->b_pages[0]->object; 1560 s = splvm(); 1561 1562 /* 1563 * remove the mapping for kernel virtual 1564 */ 1565 mtx_lock(&vm_mtx); 1566 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1567 1568 /* 1569 * cleanup pages. If an error occurs writing to swap, we are in 1570 * very serious trouble. If it happens to be a disk error, though, 1571 * we may be able to recover by reassigning the swap later on. So 1572 * in this case we remove the m->swapblk assignment for the page 1573 * but do not free it in the rlist. The errornous block(s) are thus 1574 * never reallocated as swap. Redirty the page and continue. 1575 */ 1576 1577 for (i = 0; i < bp->b_npages; ++i) { 1578 vm_page_t m = bp->b_pages[i]; 1579 1580 vm_page_flag_clear(m, PG_SWAPINPROG); 1581 1582 if (bp->b_ioflags & BIO_ERROR) { 1583 /* 1584 * If an error occurs I'd love to throw the swapblk 1585 * away without freeing it back to swapspace, so it 1586 * can never be used again. But I can't from an 1587 * interrupt. 1588 */ 1589 1590 if (bp->b_iocmd == BIO_READ) { 1591 /* 1592 * When reading, reqpage needs to stay 1593 * locked for the parent, but all other 1594 * pages can be freed. We still want to 1595 * wakeup the parent waiting on the page, 1596 * though. ( also: pg_reqpage can be -1 and 1597 * not match anything ). 1598 * 1599 * We have to wake specifically requested pages 1600 * up too because we cleared PG_SWAPINPROG and 1601 * someone may be waiting for that. 1602 * 1603 * NOTE: for reads, m->dirty will probably 1604 * be overridden by the original caller of 1605 * getpages so don't play cute tricks here. 1606 * 1607 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1608 * AS THIS MESSES WITH object->memq, and it is 1609 * not legal to mess with object->memq from an 1610 * interrupt. 1611 */ 1612 1613 m->valid = 0; 1614 vm_page_flag_clear(m, PG_ZERO); 1615 1616 if (i != bp->b_pager.pg_reqpage) 1617 vm_page_free(m); 1618 else 1619 vm_page_flash(m); 1620 /* 1621 * If i == bp->b_pager.pg_reqpage, do not wake 1622 * the page up. The caller needs to. 1623 */ 1624 } else { 1625 /* 1626 * If a write error occurs, reactivate page 1627 * so it doesn't clog the inactive list, 1628 * then finish the I/O. 1629 */ 1630 vm_page_dirty(m); 1631 vm_page_activate(m); 1632 vm_page_io_finish(m); 1633 } 1634 } else if (bp->b_iocmd == BIO_READ) { 1635 /* 1636 * For read success, clear dirty bits. Nobody should 1637 * have this page mapped but don't take any chances, 1638 * make sure the pmap modify bits are also cleared. 1639 * 1640 * NOTE: for reads, m->dirty will probably be 1641 * overridden by the original caller of getpages so 1642 * we cannot set them in order to free the underlying 1643 * swap in a low-swap situation. I don't think we'd 1644 * want to do that anyway, but it was an optimization 1645 * that existed in the old swapper for a time before 1646 * it got ripped out due to precisely this problem. 1647 * 1648 * clear PG_ZERO in page. 1649 * 1650 * If not the requested page then deactivate it. 1651 * 1652 * Note that the requested page, reqpage, is left 1653 * busied, but we still have to wake it up. The 1654 * other pages are released (unbusied) by 1655 * vm_page_wakeup(). We do not set reqpage's 1656 * valid bits here, it is up to the caller. 1657 */ 1658 1659 pmap_clear_modify(m); 1660 m->valid = VM_PAGE_BITS_ALL; 1661 vm_page_undirty(m); 1662 vm_page_flag_clear(m, PG_ZERO); 1663 1664 /* 1665 * We have to wake specifically requested pages 1666 * up too because we cleared PG_SWAPINPROG and 1667 * could be waiting for it in getpages. However, 1668 * be sure to not unbusy getpages specifically 1669 * requested page - getpages expects it to be 1670 * left busy. 1671 */ 1672 if (i != bp->b_pager.pg_reqpage) { 1673 vm_page_deactivate(m); 1674 vm_page_wakeup(m); 1675 } else { 1676 vm_page_flash(m); 1677 } 1678 } else { 1679 /* 1680 * For write success, clear the modify and dirty 1681 * status, then finish the I/O ( which decrements the 1682 * busy count and possibly wakes waiter's up ). 1683 */ 1684 pmap_clear_modify(m); 1685 vm_page_undirty(m); 1686 vm_page_io_finish(m); 1687 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1688 vm_page_protect(m, VM_PROT_READ); 1689 } 1690 } 1691 1692 /* 1693 * adjust pip. NOTE: the original parent may still have its own 1694 * pip refs on the object. 1695 */ 1696 1697 if (object) 1698 vm_object_pip_wakeupn(object, bp->b_npages); 1699 1700 mtx_unlock(&vm_mtx); 1701 /* 1702 * release the physical I/O buffer 1703 */ 1704 1705 relpbuf( 1706 bp, 1707 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1708 ((bp->b_flags & B_ASYNC) ? 1709 &nsw_wcount_async : 1710 &nsw_wcount_sync 1711 ) 1712 ) 1713 ); 1714 splx(s); 1715 } 1716 1717 /************************************************************************ 1718 * SWAP META DATA * 1719 ************************************************************************ 1720 * 1721 * These routines manipulate the swap metadata stored in the 1722 * OBJT_SWAP object. All swp_*() routines must be called at 1723 * splvm() because swap can be freed up by the low level vm_page 1724 * code which might be called from interrupts beyond what splbio() covers. 1725 * 1726 * Swap metadata is implemented with a global hash and not directly 1727 * linked into the object. Instead the object simply contains 1728 * appropriate tracking counters. 1729 */ 1730 1731 /* 1732 * SWP_PAGER_HASH() - hash swap meta data 1733 * 1734 * This is an inline helper function which hashes the swapblk given 1735 * the object and page index. It returns a pointer to a pointer 1736 * to the object, or a pointer to a NULL pointer if it could not 1737 * find a swapblk. 1738 * 1739 * This routine must be called at splvm(). 1740 */ 1741 1742 static __inline struct swblock ** 1743 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1744 { 1745 struct swblock **pswap; 1746 struct swblock *swap; 1747 1748 index &= ~SWAP_META_MASK; 1749 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1750 1751 while ((swap = *pswap) != NULL) { 1752 if (swap->swb_object == object && 1753 swap->swb_index == index 1754 ) { 1755 break; 1756 } 1757 pswap = &swap->swb_hnext; 1758 } 1759 return(pswap); 1760 } 1761 1762 /* 1763 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1764 * 1765 * We first convert the object to a swap object if it is a default 1766 * object. 1767 * 1768 * The specified swapblk is added to the object's swap metadata. If 1769 * the swapblk is not valid, it is freed instead. Any previously 1770 * assigned swapblk is freed. 1771 * 1772 * This routine must be called at splvm(), except when used to convert 1773 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1774 * 1775 * Requires vm_mtx. 1776 */ 1777 1778 static void 1779 swp_pager_meta_build( 1780 vm_object_t object, 1781 vm_pindex_t index, 1782 daddr_t swapblk 1783 ) { 1784 struct swblock *swap; 1785 struct swblock **pswap; 1786 1787 mtx_assert(&vm_mtx, MA_OWNED); 1788 /* 1789 * Convert default object to swap object if necessary 1790 */ 1791 1792 if (object->type != OBJT_SWAP) { 1793 object->type = OBJT_SWAP; 1794 object->un_pager.swp.swp_bcount = 0; 1795 1796 mtx_lock(&sw_alloc_mtx); 1797 if (object->handle != NULL) { 1798 TAILQ_INSERT_TAIL( 1799 NOBJLIST(object->handle), 1800 object, 1801 pager_object_list 1802 ); 1803 } else { 1804 TAILQ_INSERT_TAIL( 1805 &swap_pager_un_object_list, 1806 object, 1807 pager_object_list 1808 ); 1809 } 1810 mtx_unlock(&sw_alloc_mtx); 1811 } 1812 1813 /* 1814 * Locate hash entry. If not found create, but if we aren't adding 1815 * anything just return. If we run out of space in the map we wait 1816 * and, since the hash table may have changed, retry. 1817 */ 1818 1819 retry: 1820 pswap = swp_pager_hash(object, index); 1821 1822 if ((swap = *pswap) == NULL) { 1823 int i; 1824 1825 if (swapblk == SWAPBLK_NONE) 1826 return; 1827 1828 swap = *pswap = zalloc(swap_zone); 1829 if (swap == NULL) { 1830 VM_WAIT; 1831 goto retry; 1832 } 1833 swap->swb_hnext = NULL; 1834 swap->swb_object = object; 1835 swap->swb_index = index & ~SWAP_META_MASK; 1836 swap->swb_count = 0; 1837 1838 ++object->un_pager.swp.swp_bcount; 1839 1840 for (i = 0; i < SWAP_META_PAGES; ++i) 1841 swap->swb_pages[i] = SWAPBLK_NONE; 1842 } 1843 1844 /* 1845 * Delete prior contents of metadata 1846 */ 1847 1848 index &= SWAP_META_MASK; 1849 1850 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1851 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1852 --swap->swb_count; 1853 } 1854 1855 /* 1856 * Enter block into metadata 1857 */ 1858 1859 swap->swb_pages[index] = swapblk; 1860 if (swapblk != SWAPBLK_NONE) 1861 ++swap->swb_count; 1862 } 1863 1864 /* 1865 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1866 * 1867 * The requested range of blocks is freed, with any associated swap 1868 * returned to the swap bitmap. 1869 * 1870 * This routine will free swap metadata structures as they are cleaned 1871 * out. This routine does *NOT* operate on swap metadata associated 1872 * with resident pages. 1873 * 1874 * vm_mtx must be held 1875 * This routine must be called at splvm() 1876 */ 1877 1878 static void 1879 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1880 { 1881 1882 mtx_assert(&vm_mtx, MA_OWNED); 1883 1884 if (object->type != OBJT_SWAP) 1885 return; 1886 1887 while (count > 0) { 1888 struct swblock **pswap; 1889 struct swblock *swap; 1890 1891 pswap = swp_pager_hash(object, index); 1892 1893 if ((swap = *pswap) != NULL) { 1894 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1895 1896 if (v != SWAPBLK_NONE) { 1897 swp_pager_freeswapspace(v, 1); 1898 swap->swb_pages[index & SWAP_META_MASK] = 1899 SWAPBLK_NONE; 1900 if (--swap->swb_count == 0) { 1901 *pswap = swap->swb_hnext; 1902 zfree(swap_zone, swap); 1903 --object->un_pager.swp.swp_bcount; 1904 } 1905 } 1906 --count; 1907 ++index; 1908 } else { 1909 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1910 count -= n; 1911 index += n; 1912 } 1913 } 1914 } 1915 1916 /* 1917 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1918 * 1919 * This routine locates and destroys all swap metadata associated with 1920 * an object. 1921 * 1922 * This routine must be called at splvm() 1923 * Requires vm_mtx. 1924 */ 1925 1926 static void 1927 swp_pager_meta_free_all(vm_object_t object) 1928 { 1929 daddr_t index = 0; 1930 1931 mtx_assert(&vm_mtx, MA_OWNED); 1932 1933 if (object->type != OBJT_SWAP) 1934 return; 1935 1936 while (object->un_pager.swp.swp_bcount) { 1937 struct swblock **pswap; 1938 struct swblock *swap; 1939 1940 pswap = swp_pager_hash(object, index); 1941 if ((swap = *pswap) != NULL) { 1942 int i; 1943 1944 for (i = 0; i < SWAP_META_PAGES; ++i) { 1945 daddr_t v = swap->swb_pages[i]; 1946 if (v != SWAPBLK_NONE) { 1947 --swap->swb_count; 1948 swp_pager_freeswapspace(v, 1); 1949 } 1950 } 1951 if (swap->swb_count != 0) 1952 panic("swap_pager_meta_free_all: swb_count != 0"); 1953 *pswap = swap->swb_hnext; 1954 zfree(swap_zone, swap); 1955 --object->un_pager.swp.swp_bcount; 1956 } 1957 index += SWAP_META_PAGES; 1958 if (index > 0x20000000) 1959 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1960 } 1961 } 1962 1963 /* 1964 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1965 * 1966 * This routine is capable of looking up, popping, or freeing 1967 * swapblk assignments in the swap meta data or in the vm_page_t. 1968 * The routine typically returns the swapblk being looked-up, or popped, 1969 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1970 * was invalid. This routine will automatically free any invalid 1971 * meta-data swapblks. 1972 * 1973 * It is not possible to store invalid swapblks in the swap meta data 1974 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1975 * 1976 * When acting on a busy resident page and paging is in progress, we 1977 * have to wait until paging is complete but otherwise can act on the 1978 * busy page. 1979 * 1980 * This routine must be called at splvm(). 1981 * Requires vm_mtx. 1982 * 1983 * SWM_FREE remove and free swap block from metadata 1984 * SWM_POP remove from meta data but do not free.. pop it out 1985 */ 1986 1987 static daddr_t 1988 swp_pager_meta_ctl( 1989 vm_object_t object, 1990 vm_pindex_t index, 1991 int flags 1992 ) { 1993 struct swblock **pswap; 1994 struct swblock *swap; 1995 daddr_t r1; 1996 1997 mtx_assert(&vm_mtx, MA_OWNED); 1998 /* 1999 * The meta data only exists of the object is OBJT_SWAP 2000 * and even then might not be allocated yet. 2001 */ 2002 2003 if (object->type != OBJT_SWAP) 2004 return(SWAPBLK_NONE); 2005 2006 r1 = SWAPBLK_NONE; 2007 pswap = swp_pager_hash(object, index); 2008 2009 if ((swap = *pswap) != NULL) { 2010 index &= SWAP_META_MASK; 2011 r1 = swap->swb_pages[index]; 2012 2013 if (r1 != SWAPBLK_NONE) { 2014 if (flags & SWM_FREE) { 2015 swp_pager_freeswapspace(r1, 1); 2016 r1 = SWAPBLK_NONE; 2017 } 2018 if (flags & (SWM_FREE|SWM_POP)) { 2019 swap->swb_pages[index] = SWAPBLK_NONE; 2020 if (--swap->swb_count == 0) { 2021 *pswap = swap->swb_hnext; 2022 zfree(swap_zone, swap); 2023 --object->un_pager.swp.swp_bcount; 2024 } 2025 } 2026 } 2027 } 2028 return(r1); 2029 } 2030 2031 /******************************************************** 2032 * CHAINING FUNCTIONS * 2033 ******************************************************** 2034 * 2035 * These functions support recursion of I/O operations 2036 * on bp's, typically by chaining one or more 'child' bp's 2037 * to the parent. Synchronous, asynchronous, and semi-synchronous 2038 * chaining is possible. 2039 */ 2040 2041 /* 2042 * vm_pager_chain_iodone: 2043 * 2044 * io completion routine for child bp. Currently we fudge a bit 2045 * on dealing with b_resid. Since users of these routines may issue 2046 * multiple children simultaneously, sequencing of the error can be lost. 2047 */ 2048 2049 static void 2050 vm_pager_chain_iodone(struct buf *nbp) 2051 { 2052 struct bio *bp; 2053 u_int *count; 2054 2055 bp = nbp->b_caller1; 2056 count = (u_int *)&(bp->bio_caller1); 2057 if (bp != NULL) { 2058 if (nbp->b_ioflags & BIO_ERROR) { 2059 bp->bio_flags |= BIO_ERROR; 2060 bp->bio_error = nbp->b_error; 2061 } else if (nbp->b_resid != 0) { 2062 bp->bio_flags |= BIO_ERROR; 2063 bp->bio_error = EINVAL; 2064 } else { 2065 bp->bio_resid -= nbp->b_bcount; 2066 } 2067 nbp->b_caller1 = NULL; 2068 --(*count); 2069 if (bp->bio_flags & BIO_FLAG1) { 2070 bp->bio_flags &= ~BIO_FLAG1; 2071 wakeup(bp); 2072 } 2073 } 2074 nbp->b_flags |= B_DONE; 2075 nbp->b_flags &= ~B_ASYNC; 2076 relpbuf(nbp, NULL); 2077 } 2078 2079 /* 2080 * getchainbuf: 2081 * 2082 * Obtain a physical buffer and chain it to its parent buffer. When 2083 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 2084 * automatically propagated to the parent 2085 * 2086 * vm_mtx can't be held 2087 */ 2088 2089 struct buf * 2090 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 2091 { 2092 struct buf *nbp; 2093 u_int *count; 2094 2095 mtx_assert(&vm_mtx, MA_NOTOWNED); 2096 mtx_assert(&Giant, MA_OWNED); 2097 nbp = getpbuf(NULL); 2098 count = (u_int *)&(bp->bio_caller1); 2099 2100 nbp->b_caller1 = bp; 2101 ++(*count); 2102 2103 if (*count > 4) 2104 waitchainbuf(bp, 4, 0); 2105 2106 nbp->b_iocmd = bp->bio_cmd; 2107 nbp->b_ioflags = bp->bio_flags & BIO_ORDERED; 2108 nbp->b_flags = flags; 2109 nbp->b_rcred = nbp->b_wcred = proc0.p_ucred; 2110 nbp->b_iodone = vm_pager_chain_iodone; 2111 2112 crhold(nbp->b_rcred); 2113 crhold(nbp->b_wcred); 2114 2115 if (vp) 2116 pbgetvp(vp, nbp); 2117 return(nbp); 2118 } 2119 2120 void 2121 flushchainbuf(struct buf *nbp) 2122 { 2123 2124 mtx_assert(&vm_mtx, MA_NOTOWNED); 2125 mtx_assert(&Giant, MA_OWNED); 2126 if (nbp->b_bcount) { 2127 nbp->b_bufsize = nbp->b_bcount; 2128 if (nbp->b_iocmd == BIO_WRITE) 2129 nbp->b_dirtyend = nbp->b_bcount; 2130 BUF_KERNPROC(nbp); 2131 BUF_STRATEGY(nbp); 2132 } else { 2133 bufdone(nbp); 2134 } 2135 } 2136 2137 static void 2138 waitchainbuf(struct bio *bp, int limit, int done) 2139 { 2140 int s; 2141 u_int *count; 2142 2143 mtx_assert(&vm_mtx, MA_NOTOWNED); 2144 mtx_assert(&Giant, MA_OWNED); 2145 count = (u_int *)&(bp->bio_caller1); 2146 s = splbio(); 2147 while (*count > limit) { 2148 bp->bio_flags |= BIO_FLAG1; 2149 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2150 } 2151 if (done) { 2152 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2153 bp->bio_flags |= BIO_ERROR; 2154 bp->bio_error = EINVAL; 2155 } 2156 biodone(bp); 2157 } 2158 splx(s); 2159 } 2160 2161