xref: /freebsd/sys/vm/swap_pager.c (revision 99e8005137088aafb1350e23b113d69b01b0820f)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_zone.h>
101 #include <vm/swap_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 /*
108  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
109  * in the old system.
110  */
111 
112 extern int vm_swap_size;	/* number of free swap blocks, in pages */
113 
114 int swap_pager_full;		/* swap space exhaustion (task killing) */
115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
116 static int nsw_rcount;		/* free read buffers			*/
117 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
118 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
119 static int nsw_wcount_async_max;/* assigned maximum			*/
120 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
121 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 
128 /* from vm_swap.c */
129 extern struct vnode *swapdev_vp;
130 extern struct swdevt *swdevt;
131 extern int nswdev;
132 
133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
134         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
135 
136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
137 
138 /*
139  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
140  * of searching a named list by hashing it just a little.
141  */
142 
143 #define NOBJLISTS		8
144 
145 #define NOBJLIST(handle)	\
146 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
147 
148 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
149 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
150 struct pagerlst		swap_pager_un_object_list;
151 vm_zone_t		swap_zone;
152 
153 /*
154  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
155  * calls hooked from other parts of the VM system and do not appear here.
156  * (see vm/swap_pager.h).
157  */
158 
159 static vm_object_t
160 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
161 				      vm_prot_t prot, vm_ooffset_t offset));
162 static void	swap_pager_dealloc __P((vm_object_t object));
163 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
164 static void	swap_pager_init __P((void));
165 static void	swap_pager_unswapped __P((vm_page_t));
166 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
167 
168 struct pagerops swappagerops = {
169 	swap_pager_init,	/* early system initialization of pager	*/
170 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
171 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
172 	swap_pager_getpages,	/* pagein				*/
173 	swap_pager_putpages,	/* pageout				*/
174 	swap_pager_haspage,	/* get backing store status for page	*/
175 	swap_pager_unswapped,	/* remove swap related to page		*/
176 	swap_pager_strategy	/* pager strategy call			*/
177 };
178 
179 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
180 static void flushchainbuf(struct buf *nbp);
181 static void waitchainbuf(struct bio *bp, int count, int done);
182 
183 /*
184  * dmmax is in page-sized chunks with the new swap system.  It was
185  * dev-bsized chunks in the old.  dmmax is always a power of 2.
186  *
187  * swap_*() routines are externally accessible.  swp_*() routines are
188  * internal.
189  */
190 
191 int dmmax;
192 static int dmmax_mask;
193 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
194 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
195 
196 SYSCTL_INT(_vm, OID_AUTO, dmmax,
197 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
198 
199 static __inline void	swp_sizecheck __P((void));
200 static void	swp_pager_sync_iodone __P((struct buf *bp));
201 static void	swp_pager_async_iodone __P((struct buf *bp));
202 
203 /*
204  * Swap bitmap functions
205  */
206 
207 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
208 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
209 
210 /*
211  * Metadata functions
212  */
213 
214 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
215 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
216 static void swp_pager_meta_free_all __P((vm_object_t));
217 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
218 
219 /*
220  * SWP_SIZECHECK() -	update swap_pager_full indication
221  *
222  *	update the swap_pager_almost_full indication and warn when we are
223  *	about to run out of swap space, using lowat/hiwat hysteresis.
224  *
225  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
226  *
227  *	No restrictions on call
228  *	This routine may not block.
229  *	This routine must be called at splvm()
230  */
231 
232 static __inline void
233 swp_sizecheck()
234 {
235 
236 	mtx_assert(&vm_mtx, MA_OWNED);
237 	if (vm_swap_size < nswap_lowat) {
238 		if (swap_pager_almost_full == 0) {
239 			printf("swap_pager: out of swap space\n");
240 			swap_pager_almost_full = 1;
241 		}
242 	} else {
243 		swap_pager_full = 0;
244 		if (vm_swap_size > nswap_hiwat)
245 			swap_pager_almost_full = 0;
246 	}
247 }
248 
249 /*
250  * SWAP_PAGER_INIT() -	initialize the swap pager!
251  *
252  *	Expected to be started from system init.  NOTE:  This code is run
253  *	before much else so be careful what you depend on.  Most of the VM
254  *	system has yet to be initialized at this point.
255  */
256 
257 static void
258 swap_pager_init()
259 {
260 	/*
261 	 * Initialize object lists
262 	 */
263 	int i;
264 
265 	for (i = 0; i < NOBJLISTS; ++i)
266 		TAILQ_INIT(&swap_pager_object_list[i]);
267 	TAILQ_INIT(&swap_pager_un_object_list);
268 	mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF);
269 
270 	/*
271 	 * Device Stripe, in PAGE_SIZE'd blocks
272 	 */
273 
274 	dmmax = SWB_NPAGES * 2;
275 	dmmax_mask = ~(dmmax - 1);
276 }
277 
278 /*
279  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
280  *
281  *	Expected to be started from pageout process once, prior to entering
282  *	its main loop.
283  */
284 
285 void
286 swap_pager_swap_init()
287 {
288 	int n, n2;
289 
290 	/*
291 	 * Number of in-transit swap bp operations.  Don't
292 	 * exhaust the pbufs completely.  Make sure we
293 	 * initialize workable values (0 will work for hysteresis
294 	 * but it isn't very efficient).
295 	 *
296 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
297 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
298 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
299 	 * constrained by the swap device interleave stripe size.
300 	 *
301 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
302 	 * designed to prevent other I/O from having high latencies due to
303 	 * our pageout I/O.  The value 4 works well for one or two active swap
304 	 * devices but is probably a little low if you have more.  Even so,
305 	 * a higher value would probably generate only a limited improvement
306 	 * with three or four active swap devices since the system does not
307 	 * typically have to pageout at extreme bandwidths.   We will want
308 	 * at least 2 per swap devices, and 4 is a pretty good value if you
309 	 * have one NFS swap device due to the command/ack latency over NFS.
310 	 * So it all works out pretty well.
311 	 */
312 
313 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
314 
315 	nsw_rcount = (nswbuf + 1) / 2;
316 	nsw_wcount_sync = (nswbuf + 3) / 4;
317 	nsw_wcount_async = 4;
318 	nsw_wcount_async_max = nsw_wcount_async;
319 
320 	/*
321 	 * Initialize our zone.  Right now I'm just guessing on the number
322 	 * we need based on the number of pages in the system.  Each swblock
323 	 * can hold 16 pages, so this is probably overkill.
324 	 */
325 
326 	n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2;
327 	n2 = n;
328 
329 	while (n > 0
330 	       && (swap_zone = zinit(
331 		       "SWAPMETA",
332 		       sizeof(struct swblock),
333 		       n,
334 		       ZONE_INTERRUPT,
335 		       1
336 		       )) == NULL)
337 		n >>= 1;
338 	if (swap_zone == NULL)
339 		printf("WARNING: failed to init swap_zone!\n");
340 	if (n2 != n)
341 		printf("Swap zone entries reduced to %d.\n", n);
342 	n2 = n;
343 
344 	/*
345 	 * Initialize our meta-data hash table.  The swapper does not need to
346 	 * be quite as efficient as the VM system, so we do not use an
347 	 * oversized hash table.
348 	 *
349 	 * 	n: 		size of hash table, must be power of 2
350 	 *	swhash_mask:	hash table index mask
351 	 */
352 
353 	for (n = 1; n < n2 ; n <<= 1)
354 		;
355 
356 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
357 
358 	swhash_mask = n - 1;
359 }
360 
361 /*
362  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
363  *			its metadata structures.
364  *
365  *	This routine is called from the mmap and fork code to create a new
366  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
367  *	and then converting it with swp_pager_meta_build().
368  *
369  *	This routine may block in vm_object_allocate() and create a named
370  *	object lookup race, so we must interlock.   We must also run at
371  *	splvm() for the object lookup to handle races with interrupts, but
372  *	we do not have to maintain splvm() in between the lookup and the
373  *	add because (I believe) it is not possible to attempt to create
374  *	a new swap object w/handle when a default object with that handle
375  *	already exists.
376  */
377 
378 static vm_object_t
379 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
380 		 vm_ooffset_t offset)
381 {
382 	vm_object_t object;
383 
384 	mtx_assert(&vm_mtx, MA_OWNED);
385 	if (handle) {
386 		/*
387 		 * Reference existing named region or allocate new one.  There
388 		 * should not be a race here against swp_pager_meta_build()
389 		 * as called from vm_page_remove() in regards to the lookup
390 		 * of the handle.
391 		 */
392 
393 		while (sw_alloc_interlock) {
394 			sw_alloc_interlock = -1;
395 			msleep(&sw_alloc_interlock, &vm_mtx, PVM, "swpalc", 0);
396 		}
397 		sw_alloc_interlock = 1;
398 
399 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
400 
401 		if (object != NULL) {
402 			vm_object_reference(object);
403 		} else {
404 			object = vm_object_allocate(OBJT_DEFAULT,
405 				OFF_TO_IDX(offset + PAGE_MASK + size));
406 			object->handle = handle;
407 
408 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
409 		}
410 
411 		if (sw_alloc_interlock == -1)
412 			wakeup(&sw_alloc_interlock);
413 		sw_alloc_interlock = 0;
414 	} else {
415 		object = vm_object_allocate(OBJT_DEFAULT,
416 			OFF_TO_IDX(offset + PAGE_MASK + size));
417 
418 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
419 	}
420 
421 	return (object);
422 }
423 
424 /*
425  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
426  *
427  *	The swap backing for the object is destroyed.  The code is
428  *	designed such that we can reinstantiate it later, but this
429  *	routine is typically called only when the entire object is
430  *	about to be destroyed.
431  *
432  *	This routine may block, but no longer does.
433  *
434  *	The object must be locked or unreferenceable.
435  */
436 
437 static void
438 swap_pager_dealloc(object)
439 	vm_object_t object;
440 {
441 	int s;
442 
443 	mtx_assert(&vm_mtx, MA_OWNED);
444 	/*
445 	 * Remove from list right away so lookups will fail if we block for
446 	 * pageout completion.
447 	 */
448 
449 	mtx_lock(&sw_alloc_mtx);
450 	if (object->handle == NULL) {
451 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
452 	} else {
453 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
454 	}
455 	mtx_unlock(&sw_alloc_mtx);
456 
457 	vm_object_pip_wait(object, "swpdea");
458 
459 	/*
460 	 * Free all remaining metadata.  We only bother to free it from
461 	 * the swap meta data.  We do not attempt to free swapblk's still
462 	 * associated with vm_page_t's for this object.  We do not care
463 	 * if paging is still in progress on some objects.
464 	 */
465 	s = splvm();
466 	swp_pager_meta_free_all(object);
467 	splx(s);
468 }
469 
470 /************************************************************************
471  *			SWAP PAGER BITMAP ROUTINES			*
472  ************************************************************************/
473 
474 /*
475  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
476  *
477  *	Allocate swap for the requested number of pages.  The starting
478  *	swap block number (a page index) is returned or SWAPBLK_NONE
479  *	if the allocation failed.
480  *
481  *	Also has the side effect of advising that somebody made a mistake
482  *	when they configured swap and didn't configure enough.
483  *
484  *	Must be called at splvm() to avoid races with bitmap frees from
485  *	vm_page_remove() aka swap_pager_page_removed().
486  *
487  *	This routine may not block
488  *	This routine must be called at splvm().
489  *	vm_mtx should be held
490  */
491 
492 static __inline daddr_t
493 swp_pager_getswapspace(npages)
494 	int npages;
495 {
496 	daddr_t blk;
497 
498 	mtx_assert(&vm_mtx, MA_OWNED);
499 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
500 		if (swap_pager_full != 2) {
501 			printf("swap_pager_getswapspace: failed\n");
502 			swap_pager_full = 2;
503 			swap_pager_almost_full = 1;
504 		}
505 	} else {
506 		vm_swap_size -= npages;
507 		/* per-swap area stats */
508 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
509 		swp_sizecheck();
510 	}
511 	return(blk);
512 }
513 
514 /*
515  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
516  *
517  *	This routine returns the specified swap blocks back to the bitmap.
518  *
519  *	Note:  This routine may not block (it could in the old swap code),
520  *	and through the use of the new blist routines it does not block.
521  *
522  *	We must be called at splvm() to avoid races with bitmap frees from
523  *	vm_page_remove() aka swap_pager_page_removed().
524  *
525  *	This routine may not block
526  *	This routine must be called at splvm().
527  *	vm_mtx should be held
528  */
529 
530 static __inline void
531 swp_pager_freeswapspace(blk, npages)
532 	daddr_t blk;
533 	int npages;
534 {
535 
536 	mtx_assert(&vm_mtx, MA_OWNED);
537 	blist_free(swapblist, blk, npages);
538 	vm_swap_size += npages;
539 	/* per-swap area stats */
540 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
541 	swp_sizecheck();
542 }
543 
544 /*
545  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
546  *				range within an object.
547  *
548  *	This is a globally accessible routine.
549  *
550  *	This routine removes swapblk assignments from swap metadata.
551  *
552  *	The external callers of this routine typically have already destroyed
553  *	or renamed vm_page_t's associated with this range in the object so
554  *	we should be ok.
555  *
556  *	This routine may be called at any spl.  We up our spl to splvm temporarily
557  *	in order to perform the metadata removal.
558  */
559 
560 void
561 swap_pager_freespace(object, start, size)
562 	vm_object_t object;
563 	vm_pindex_t start;
564 	vm_size_t size;
565 {
566 	int s = splvm();
567 
568 	mtx_assert(&vm_mtx, MA_OWNED);
569 
570 	swp_pager_meta_free(object, start, size);
571 	splx(s);
572 }
573 
574 /*
575  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
576  *
577  *	Assigns swap blocks to the specified range within the object.  The
578  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
579  *
580  *	Returns 0 on success, -1 on failure.
581  */
582 
583 int
584 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
585 {
586 	int s;
587 	int n = 0;
588 	daddr_t blk = SWAPBLK_NONE;
589 	vm_pindex_t beg = start;	/* save start index */
590 
591 	s = splvm();
592 	while (size) {
593 		if (n == 0) {
594 			n = BLIST_MAX_ALLOC;
595 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
596 				n >>= 1;
597 				if (n == 0) {
598 					swp_pager_meta_free(object, beg, start - beg);
599 					splx(s);
600 					return(-1);
601 				}
602 			}
603 		}
604 		swp_pager_meta_build(object, start, blk);
605 		--size;
606 		++start;
607 		++blk;
608 		--n;
609 	}
610 	swp_pager_meta_free(object, start, n);
611 	splx(s);
612 	return(0);
613 }
614 
615 /*
616  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
617  *			and destroy the source.
618  *
619  *	Copy any valid swapblks from the source to the destination.  In
620  *	cases where both the source and destination have a valid swapblk,
621  *	we keep the destination's.
622  *
623  *	This routine is allowed to block.  It may block allocating metadata
624  *	indirectly through swp_pager_meta_build() or if paging is still in
625  *	progress on the source.
626  *
627  *	This routine can be called at any spl
628  *
629  *	XXX vm_page_collapse() kinda expects us not to block because we
630  *	supposedly do not need to allocate memory, but for the moment we
631  *	*may* have to get a little memory from the zone allocator, but
632  *	it is taken from the interrupt memory.  We should be ok.
633  *
634  *	The source object contains no vm_page_t's (which is just as well)
635  *
636  *	The source object is of type OBJT_SWAP.
637  *
638  *	The source and destination objects must be locked or
639  *	inaccessible (XXX are they ?)
640  */
641 
642 void
643 swap_pager_copy(srcobject, dstobject, offset, destroysource)
644 	vm_object_t srcobject;
645 	vm_object_t dstobject;
646 	vm_pindex_t offset;
647 	int destroysource;
648 {
649 	vm_pindex_t i;
650 	int s;
651 
652 	s = splvm();
653 
654 	mtx_assert(&vm_mtx, MA_OWNED);
655 
656 	/*
657 	 * If destroysource is set, we remove the source object from the
658 	 * swap_pager internal queue now.
659 	 */
660 
661 	if (destroysource) {
662 		mtx_lock(&sw_alloc_mtx);
663 		if (srcobject->handle == NULL) {
664 			TAILQ_REMOVE(
665 			    &swap_pager_un_object_list,
666 			    srcobject,
667 			    pager_object_list
668 			);
669 		} else {
670 			TAILQ_REMOVE(
671 			    NOBJLIST(srcobject->handle),
672 			    srcobject,
673 			    pager_object_list
674 			);
675 		}
676 		mtx_unlock(&sw_alloc_mtx);
677 	}
678 
679 	/*
680 	 * transfer source to destination.
681 	 */
682 
683 	for (i = 0; i < dstobject->size; ++i) {
684 		daddr_t dstaddr;
685 
686 		/*
687 		 * Locate (without changing) the swapblk on the destination,
688 		 * unless it is invalid in which case free it silently, or
689 		 * if the destination is a resident page, in which case the
690 		 * source is thrown away.
691 		 */
692 
693 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
694 
695 		if (dstaddr == SWAPBLK_NONE) {
696 			/*
697 			 * Destination has no swapblk and is not resident,
698 			 * copy source.
699 			 */
700 			daddr_t srcaddr;
701 
702 			srcaddr = swp_pager_meta_ctl(
703 			    srcobject,
704 			    i + offset,
705 			    SWM_POP
706 			);
707 
708 			if (srcaddr != SWAPBLK_NONE)
709 				swp_pager_meta_build(dstobject, i, srcaddr);
710 		} else {
711 			/*
712 			 * Destination has valid swapblk or it is represented
713 			 * by a resident page.  We destroy the sourceblock.
714 			 */
715 
716 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
717 		}
718 	}
719 
720 	/*
721 	 * Free left over swap blocks in source.
722 	 *
723 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
724 	 * double-remove the object from the swap queues.
725 	 */
726 
727 	if (destroysource) {
728 		swp_pager_meta_free_all(srcobject);
729 		/*
730 		 * Reverting the type is not necessary, the caller is going
731 		 * to destroy srcobject directly, but I'm doing it here
732 		 * for consistency since we've removed the object from its
733 		 * queues.
734 		 */
735 		srcobject->type = OBJT_DEFAULT;
736 	}
737 	splx(s);
738 }
739 
740 /*
741  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
742  *				the requested page.
743  *
744  *	We determine whether good backing store exists for the requested
745  *	page and return TRUE if it does, FALSE if it doesn't.
746  *
747  *	If TRUE, we also try to determine how much valid, contiguous backing
748  *	store exists before and after the requested page within a reasonable
749  *	distance.  We do not try to restrict it to the swap device stripe
750  *	(that is handled in getpages/putpages).  It probably isn't worth
751  *	doing here.
752  */
753 
754 boolean_t
755 swap_pager_haspage(object, pindex, before, after)
756 	vm_object_t object;
757 	vm_pindex_t pindex;
758 	int *before;
759 	int *after;
760 {
761 	daddr_t blk0;
762 	int s;
763 
764 	/*
765 	 * do we have good backing store at the requested index ?
766 	 */
767 
768 	s = splvm();
769 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
770 
771 	if (blk0 == SWAPBLK_NONE) {
772 		splx(s);
773 		if (before)
774 			*before = 0;
775 		if (after)
776 			*after = 0;
777 		return (FALSE);
778 	}
779 
780 	/*
781 	 * find backwards-looking contiguous good backing store
782 	 */
783 
784 	if (before != NULL) {
785 		int i;
786 
787 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
788 			daddr_t blk;
789 
790 			if (i > pindex)
791 				break;
792 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
793 			if (blk != blk0 - i)
794 				break;
795 		}
796 		*before = (i - 1);
797 	}
798 
799 	/*
800 	 * find forward-looking contiguous good backing store
801 	 */
802 
803 	if (after != NULL) {
804 		int i;
805 
806 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
807 			daddr_t blk;
808 
809 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
810 			if (blk != blk0 + i)
811 				break;
812 		}
813 		*after = (i - 1);
814 	}
815 	splx(s);
816 	return (TRUE);
817 }
818 
819 /*
820  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
821  *
822  *	This removes any associated swap backing store, whether valid or
823  *	not, from the page.
824  *
825  *	This routine is typically called when a page is made dirty, at
826  *	which point any associated swap can be freed.  MADV_FREE also
827  *	calls us in a special-case situation
828  *
829  *	NOTE!!!  If the page is clean and the swap was valid, the caller
830  *	should make the page dirty before calling this routine.  This routine
831  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
832  *	depends on it.
833  *
834  *	This routine may not block
835  *	This routine must be called at splvm()
836  */
837 
838 static void
839 swap_pager_unswapped(m)
840 	vm_page_t m;
841 {
842 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
843 }
844 
845 /*
846  * SWAP_PAGER_STRATEGY() - read, write, free blocks
847  *
848  *	This implements the vm_pager_strategy() interface to swap and allows
849  *	other parts of the system to directly access swap as backing store
850  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
851  *	cacheless interface ( i.e. caching occurs at higher levels ).
852  *	Therefore we do not maintain any resident pages.  All I/O goes
853  *	directly to and from the swap device.
854  *
855  *	Note that b_blkno is scaled for PAGE_SIZE
856  *
857  *	We currently attempt to run I/O synchronously or asynchronously as
858  *	the caller requests.  This isn't perfect because we loose error
859  *	sequencing when we run multiple ops in parallel to satisfy a request.
860  *	But this is swap, so we let it all hang out.
861  */
862 
863 static void
864 swap_pager_strategy(vm_object_t object, struct bio *bp)
865 {
866 	vm_pindex_t start;
867 	int count;
868 	int s;
869 	char *data;
870 	struct buf *nbp = NULL;
871 
872 	mtx_assert(&Giant, MA_OWNED);
873 	mtx_assert(&vm_mtx, MA_NOTOWNED);
874 	/* XXX: KASSERT instead ? */
875 	if (bp->bio_bcount & PAGE_MASK) {
876 		biofinish(bp, NULL, EINVAL);
877 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
878 		return;
879 	}
880 
881 	/*
882 	 * Clear error indication, initialize page index, count, data pointer.
883 	 */
884 
885 	bp->bio_error = 0;
886 	bp->bio_flags &= ~BIO_ERROR;
887 	bp->bio_resid = bp->bio_bcount;
888 
889 	start = bp->bio_pblkno;
890 	count = howmany(bp->bio_bcount, PAGE_SIZE);
891 	data = bp->bio_data;
892 
893 	s = splvm();
894 
895 	/*
896 	 * Deal with BIO_DELETE
897 	 */
898 
899 	if (bp->bio_cmd == BIO_DELETE) {
900 		/*
901 		 * FREE PAGE(s) - destroy underlying swap that is no longer
902 		 *		  needed.
903 		 */
904 		mtx_lock(&vm_mtx);
905 		swp_pager_meta_free(object, start, count);
906 		mtx_unlock(&vm_mtx);
907 		splx(s);
908 		bp->bio_resid = 0;
909 		biodone(bp);
910 		return;
911 	}
912 
913 	/*
914 	 * Execute read or write
915 	 */
916 
917 	mtx_lock(&vm_mtx);
918 	while (count > 0) {
919 		daddr_t blk;
920 
921 		/*
922 		 * Obtain block.  If block not found and writing, allocate a
923 		 * new block and build it into the object.
924 		 */
925 
926 		blk = swp_pager_meta_ctl(object, start, 0);
927 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
928 			blk = swp_pager_getswapspace(1);
929 			if (blk == SWAPBLK_NONE) {
930 				bp->bio_error = ENOMEM;
931 				bp->bio_flags |= BIO_ERROR;
932 				break;
933 			}
934 			swp_pager_meta_build(object, start, blk);
935 		}
936 
937 		/*
938 		 * Do we have to flush our current collection?  Yes if:
939 		 *
940 		 *	- no swap block at this index
941 		 *	- swap block is not contiguous
942 		 *	- we cross a physical disk boundry in the
943 		 *	  stripe.
944 		 */
945 
946 		if (
947 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
948 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
949 		    )
950 		) {
951 			splx(s);
952 			if (bp->bio_cmd == BIO_READ) {
953 				++cnt.v_swapin;
954 				cnt.v_swappgsin += btoc(nbp->b_bcount);
955 			} else {
956 				++cnt.v_swapout;
957 				cnt.v_swappgsout += btoc(nbp->b_bcount);
958 				nbp->b_dirtyend = nbp->b_bcount;
959 			}
960 			mtx_unlock(&vm_mtx);
961 			flushchainbuf(nbp);
962 			mtx_lock(&vm_mtx);
963 			s = splvm();
964 			nbp = NULL;
965 		}
966 
967 		/*
968 		 * Add new swapblk to nbp, instantiating nbp if necessary.
969 		 * Zero-fill reads are able to take a shortcut.
970 		 */
971 
972 		if (blk == SWAPBLK_NONE) {
973 			/*
974 			 * We can only get here if we are reading.  Since
975 			 * we are at splvm() we can safely modify b_resid,
976 			 * even if chain ops are in progress.
977 			 */
978 			bzero(data, PAGE_SIZE);
979 			bp->bio_resid -= PAGE_SIZE;
980 		} else {
981 			if (nbp == NULL) {
982 				mtx_unlock(&vm_mtx);
983 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
984 				mtx_lock(&vm_mtx);
985 				nbp->b_blkno = blk;
986 				nbp->b_bcount = 0;
987 				nbp->b_data = data;
988 			}
989 			nbp->b_bcount += PAGE_SIZE;
990 		}
991 		--count;
992 		++start;
993 		data += PAGE_SIZE;
994 	}
995 
996 	/*
997 	 *  Flush out last buffer
998 	 */
999 
1000 	splx(s);
1001 
1002 	if (nbp) {
1003 		if (nbp->b_iocmd == BIO_READ) {
1004 			++cnt.v_swapin;
1005 			cnt.v_swappgsin += btoc(nbp->b_bcount);
1006 		} else {
1007 			++cnt.v_swapout;
1008 			cnt.v_swappgsout += btoc(nbp->b_bcount);
1009 			nbp->b_dirtyend = nbp->b_bcount;
1010 		}
1011 		mtx_unlock(&vm_mtx);
1012 		flushchainbuf(nbp);
1013 		/* nbp = NULL; */
1014 	} else
1015 		mtx_unlock(&vm_mtx);
1016 	/*
1017 	 * Wait for completion.
1018 	 */
1019 
1020 	waitchainbuf(bp, 0, 1);
1021 }
1022 
1023 /*
1024  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1025  *
1026  *	Attempt to retrieve (m, count) pages from backing store, but make
1027  *	sure we retrieve at least m[reqpage].  We try to load in as large
1028  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1029  *	belongs to the same object.
1030  *
1031  *	The code is designed for asynchronous operation and
1032  *	immediate-notification of 'reqpage' but tends not to be
1033  *	used that way.  Please do not optimize-out this algorithmic
1034  *	feature, I intend to improve on it in the future.
1035  *
1036  *	The parent has a single vm_object_pip_add() reference prior to
1037  *	calling us and we should return with the same.
1038  *
1039  *	The parent has BUSY'd the pages.  We should return with 'm'
1040  *	left busy, but the others adjusted.
1041  */
1042 
1043 static int
1044 swap_pager_getpages(object, m, count, reqpage)
1045 	vm_object_t object;
1046 	vm_page_t *m;
1047 	int count, reqpage;
1048 {
1049 	struct buf *bp;
1050 	vm_page_t mreq;
1051 	int s;
1052 	int i;
1053 	int j;
1054 	daddr_t blk;
1055 	vm_offset_t kva;
1056 	vm_pindex_t lastpindex;
1057 
1058 	mtx_assert(&Giant, MA_OWNED);
1059 	mreq = m[reqpage];
1060 
1061 	if (mreq->object != object) {
1062 		panic("swap_pager_getpages: object mismatch %p/%p",
1063 		    object,
1064 		    mreq->object
1065 		);
1066 	}
1067 	/*
1068 	 * Calculate range to retrieve.  The pages have already been assigned
1069 	 * their swapblks.  We require a *contiguous* range that falls entirely
1070 	 * within a single device stripe.   If we do not supply it, bad things
1071 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1072 	 * loops are set up such that the case(s) are handled implicitly.
1073 	 *
1074 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1075 	 * not need to be, but it will go a little faster if it is.
1076 	 */
1077 
1078 	s = splvm();
1079 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1080 
1081 	for (i = reqpage - 1; i >= 0; --i) {
1082 		daddr_t iblk;
1083 
1084 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1085 		if (blk != iblk + (reqpage - i))
1086 			break;
1087 		if ((blk ^ iblk) & dmmax_mask)
1088 			break;
1089 	}
1090 	++i;
1091 
1092 	for (j = reqpage + 1; j < count; ++j) {
1093 		daddr_t jblk;
1094 
1095 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1096 		if (blk != jblk - (j - reqpage))
1097 			break;
1098 		if ((blk ^ jblk) & dmmax_mask)
1099 			break;
1100 	}
1101 
1102 	/*
1103 	 * free pages outside our collection range.   Note: we never free
1104 	 * mreq, it must remain busy throughout.
1105 	 */
1106 
1107 	{
1108 		int k;
1109 
1110 		for (k = 0; k < i; ++k)
1111 			vm_page_free(m[k]);
1112 		for (k = j; k < count; ++k)
1113 			vm_page_free(m[k]);
1114 	}
1115 	splx(s);
1116 
1117 
1118 	/*
1119 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1120 	 * still busy, but the others unbusied.
1121 	 */
1122 
1123 	if (blk == SWAPBLK_NONE)
1124 		return(VM_PAGER_FAIL);
1125 
1126 	/*
1127 	 * Get a swap buffer header to perform the IO
1128 	 */
1129 
1130 	bp = getpbuf(&nsw_rcount);
1131 	kva = (vm_offset_t) bp->b_data;
1132 
1133 	/*
1134 	 * map our page(s) into kva for input
1135 	 *
1136 	 * NOTE: B_PAGING is set by pbgetvp()
1137 	 */
1138 
1139 	pmap_qenter(kva, m + i, j - i);
1140 
1141 	bp->b_iocmd = BIO_READ;
1142 	bp->b_iodone = swp_pager_async_iodone;
1143 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1144 	bp->b_data = (caddr_t) kva;
1145 	crhold(bp->b_rcred);
1146 	crhold(bp->b_wcred);
1147 	bp->b_blkno = blk - (reqpage - i);
1148 	bp->b_bcount = PAGE_SIZE * (j - i);
1149 	bp->b_bufsize = PAGE_SIZE * (j - i);
1150 	bp->b_pager.pg_reqpage = reqpage - i;
1151 
1152 	{
1153 		int k;
1154 
1155 		for (k = i; k < j; ++k) {
1156 			bp->b_pages[k - i] = m[k];
1157 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1158 		}
1159 	}
1160 	bp->b_npages = j - i;
1161 
1162 	pbgetvp(swapdev_vp, bp);
1163 
1164 	cnt.v_swapin++;
1165 	cnt.v_swappgsin += bp->b_npages;
1166 
1167 	/*
1168 	 * We still hold the lock on mreq, and our automatic completion routine
1169 	 * does not remove it.
1170 	 */
1171 
1172 	vm_object_pip_add(mreq->object, bp->b_npages);
1173 	lastpindex = m[j-1]->pindex;
1174 
1175 	/*
1176 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1177 	 * this point because we automatically release it on completion.
1178 	 * Instead, we look at the one page we are interested in which we
1179 	 * still hold a lock on even through the I/O completion.
1180 	 *
1181 	 * The other pages in our m[] array are also released on completion,
1182 	 * so we cannot assume they are valid anymore either.
1183 	 *
1184 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1185 	 */
1186 	mtx_unlock(&vm_mtx);
1187 	BUF_KERNPROC(bp);
1188 	BUF_STRATEGY(bp);
1189 	mtx_lock(&vm_mtx);
1190 
1191 	/*
1192 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1193 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1194 	 * is set in the meta-data.
1195 	 */
1196 
1197 	s = splvm();
1198 
1199 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1200 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1201 		cnt.v_intrans++;
1202 		if (msleep(mreq, &vm_mtx, PSWP, "swread", hz*20)) {
1203 			printf(
1204 			    "swap_pager: indefinite wait buffer: device:"
1205 				" %s, blkno: %ld, size: %ld\n",
1206 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1207 			    bp->b_bcount
1208 			);
1209 		}
1210 	}
1211 
1212 	splx(s);
1213 
1214 	/*
1215 	 * mreq is left bussied after completion, but all the other pages
1216 	 * are freed.  If we had an unrecoverable read error the page will
1217 	 * not be valid.
1218 	 */
1219 
1220 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1221 		return(VM_PAGER_ERROR);
1222 	} else {
1223 		return(VM_PAGER_OK);
1224 	}
1225 
1226 	/*
1227 	 * A final note: in a low swap situation, we cannot deallocate swap
1228 	 * and mark a page dirty here because the caller is likely to mark
1229 	 * the page clean when we return, causing the page to possibly revert
1230 	 * to all-zero's later.
1231 	 */
1232 }
1233 
1234 /*
1235  *	swap_pager_putpages:
1236  *
1237  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1238  *
1239  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1240  *	are automatically converted to SWAP objects.
1241  *
1242  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1243  *	vm_page reservation system coupled with properly written VFS devices
1244  *	should ensure that no low-memory deadlock occurs.  This is an area
1245  *	which needs work.
1246  *
1247  *	The parent has N vm_object_pip_add() references prior to
1248  *	calling us and will remove references for rtvals[] that are
1249  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1250  *	completion.
1251  *
1252  *	The parent has soft-busy'd the pages it passes us and will unbusy
1253  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1254  *	We need to unbusy the rest on I/O completion.
1255  */
1256 
1257 void
1258 swap_pager_putpages(object, m, count, sync, rtvals)
1259 	vm_object_t object;
1260 	vm_page_t *m;
1261 	int count;
1262 	boolean_t sync;
1263 	int *rtvals;
1264 {
1265 	int i;
1266 	int n = 0;
1267 
1268 	mtx_assert(&Giant, MA_OWNED);
1269 	if (count && m[0]->object != object) {
1270 		panic("swap_pager_getpages: object mismatch %p/%p",
1271 		    object,
1272 		    m[0]->object
1273 		);
1274 	}
1275 	/*
1276 	 * Step 1
1277 	 *
1278 	 * Turn object into OBJT_SWAP
1279 	 * check for bogus sysops
1280 	 * force sync if not pageout process
1281 	 */
1282 
1283 	if (object->type != OBJT_SWAP)
1284 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1285 
1286 	if (curproc != pageproc)
1287 		sync = TRUE;
1288 
1289 	/*
1290 	 * Step 2
1291 	 *
1292 	 * Update nsw parameters from swap_async_max sysctl values.
1293 	 * Do not let the sysop crash the machine with bogus numbers.
1294 	 */
1295 
1296 	if (swap_async_max != nsw_wcount_async_max) {
1297 		int n;
1298 		int s;
1299 
1300 		/*
1301 		 * limit range
1302 		 */
1303 		if ((n = swap_async_max) > nswbuf / 2)
1304 			n = nswbuf / 2;
1305 		if (n < 1)
1306 			n = 1;
1307 		swap_async_max = n;
1308 
1309 		/*
1310 		 * Adjust difference ( if possible ).  If the current async
1311 		 * count is too low, we may not be able to make the adjustment
1312 		 * at this time.
1313 		 */
1314 		s = splvm();
1315 		mtx_unlock(&vm_mtx);
1316 		mtx_lock(&pbuf_mtx);
1317 		n -= nsw_wcount_async_max;
1318 		if (nsw_wcount_async + n >= 0) {
1319 			nsw_wcount_async += n;
1320 			nsw_wcount_async_max += n;
1321 			wakeup(&nsw_wcount_async);
1322 		}
1323 		mtx_unlock(&pbuf_mtx);
1324 		mtx_lock(&vm_mtx);
1325 		splx(s);
1326 	}
1327 
1328 	/*
1329 	 * Step 3
1330 	 *
1331 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1332 	 * The page is left dirty until the pageout operation completes
1333 	 * successfully.
1334 	 */
1335 
1336 	for (i = 0; i < count; i += n) {
1337 		int s;
1338 		int j;
1339 		struct buf *bp;
1340 		daddr_t blk;
1341 
1342 		/*
1343 		 * Maximum I/O size is limited by a number of factors.
1344 		 */
1345 
1346 		n = min(BLIST_MAX_ALLOC, count - i);
1347 		n = min(n, nsw_cluster_max);
1348 
1349 		s = splvm();
1350 
1351 		/*
1352 		 * Get biggest block of swap we can.  If we fail, fall
1353 		 * back and try to allocate a smaller block.  Don't go
1354 		 * overboard trying to allocate space if it would overly
1355 		 * fragment swap.
1356 		 */
1357 		while (
1358 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1359 		    n > 4
1360 		) {
1361 			n >>= 1;
1362 		}
1363 		if (blk == SWAPBLK_NONE) {
1364 			for (j = 0; j < n; ++j)
1365 				rtvals[i+j] = VM_PAGER_FAIL;
1366 			splx(s);
1367 			continue;
1368 		}
1369 
1370 		/*
1371 		 * The I/O we are constructing cannot cross a physical
1372 		 * disk boundry in the swap stripe.  Note: we are still
1373 		 * at splvm().
1374 		 */
1375 		if ((blk ^ (blk + n)) & dmmax_mask) {
1376 			j = ((blk + dmmax) & dmmax_mask) - blk;
1377 			swp_pager_freeswapspace(blk + j, n - j);
1378 			n = j;
1379 		}
1380 
1381 		/*
1382 		 * All I/O parameters have been satisfied, build the I/O
1383 		 * request and assign the swap space.
1384 		 *
1385 		 * NOTE: B_PAGING is set by pbgetvp()
1386 		 */
1387 
1388 		if (sync == TRUE) {
1389 			bp = getpbuf(&nsw_wcount_sync);
1390 		} else {
1391 			bp = getpbuf(&nsw_wcount_async);
1392 			bp->b_flags = B_ASYNC;
1393 		}
1394 		bp->b_iocmd = BIO_WRITE;
1395 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1396 
1397 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1398 
1399 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1400 		bp->b_bcount = PAGE_SIZE * n;
1401 		bp->b_bufsize = PAGE_SIZE * n;
1402 		bp->b_blkno = blk;
1403 
1404 		crhold(bp->b_rcred);
1405 		crhold(bp->b_wcred);
1406 
1407 		pbgetvp(swapdev_vp, bp);
1408 
1409 		for (j = 0; j < n; ++j) {
1410 			vm_page_t mreq = m[i+j];
1411 
1412 			swp_pager_meta_build(
1413 			    mreq->object,
1414 			    mreq->pindex,
1415 			    blk + j
1416 			);
1417 			vm_page_dirty(mreq);
1418 			rtvals[i+j] = VM_PAGER_OK;
1419 
1420 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1421 			bp->b_pages[j] = mreq;
1422 		}
1423 		bp->b_npages = n;
1424 		/*
1425 		 * Must set dirty range for NFS to work.
1426 		 */
1427 		bp->b_dirtyoff = 0;
1428 		bp->b_dirtyend = bp->b_bcount;
1429 
1430 		cnt.v_swapout++;
1431 		cnt.v_swappgsout += bp->b_npages;
1432 		swapdev_vp->v_numoutput++;
1433 
1434 		splx(s);
1435 		mtx_unlock(&vm_mtx);
1436 
1437 		/*
1438 		 * asynchronous
1439 		 *
1440 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1441 		 */
1442 
1443 		if (sync == FALSE) {
1444 			bp->b_iodone = swp_pager_async_iodone;
1445 			BUF_KERNPROC(bp);
1446 			BUF_STRATEGY(bp);
1447 			mtx_lock(&vm_mtx);
1448 
1449 			for (j = 0; j < n; ++j)
1450 				rtvals[i+j] = VM_PAGER_PEND;
1451 			/* restart outter loop */
1452 			continue;
1453 		}
1454 
1455 		/*
1456 		 * synchronous
1457 		 *
1458 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1459 		 */
1460 
1461 		bp->b_iodone = swp_pager_sync_iodone;
1462 		BUF_STRATEGY(bp);
1463 
1464 		/*
1465 		 * Wait for the sync I/O to complete, then update rtvals.
1466 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1467 		 * our async completion routine at the end, thus avoiding a
1468 		 * double-free.
1469 		 */
1470 		s = splbio();
1471 
1472 		while ((bp->b_flags & B_DONE) == 0) {
1473 			tsleep(bp, PVM, "swwrt", 0);
1474 		}
1475 
1476 		for (j = 0; j < n; ++j)
1477 			rtvals[i+j] = VM_PAGER_PEND;
1478 
1479 		/*
1480 		 * Now that we are through with the bp, we can call the
1481 		 * normal async completion, which frees everything up.
1482 		 */
1483 
1484 		swp_pager_async_iodone(bp);
1485 		mtx_lock(&vm_mtx);
1486 
1487 		splx(s);
1488 	}
1489 }
1490 
1491 /*
1492  *	swap_pager_sync_iodone:
1493  *
1494  *	Completion routine for synchronous reads and writes from/to swap.
1495  *	We just mark the bp is complete and wake up anyone waiting on it.
1496  *
1497  *	This routine may not block.  This routine is called at splbio() or better.
1498  */
1499 
1500 static void
1501 swp_pager_sync_iodone(bp)
1502 	struct buf *bp;
1503 {
1504 	bp->b_flags |= B_DONE;
1505 	bp->b_flags &= ~B_ASYNC;
1506 	wakeup(bp);
1507 }
1508 
1509 /*
1510  *	swp_pager_async_iodone:
1511  *
1512  *	Completion routine for asynchronous reads and writes from/to swap.
1513  *	Also called manually by synchronous code to finish up a bp.
1514  *
1515  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1516  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1517  *	unbusy all pages except the 'main' request page.  For WRITE
1518  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1519  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1520  *
1521  *	This routine may not block.
1522  *	This routine is called at splbio() or better
1523  *
1524  *	We up ourselves to splvm() as required for various vm_page related
1525  *	calls.
1526  */
1527 
1528 static void
1529 swp_pager_async_iodone(bp)
1530 	register struct buf *bp;
1531 {
1532 	int s;
1533 	int i;
1534 	vm_object_t object = NULL;
1535 
1536 	mtx_assert(&vm_mtx, MA_NOTOWNED);
1537 	bp->b_flags |= B_DONE;
1538 
1539 	/*
1540 	 * report error
1541 	 */
1542 
1543 	if (bp->b_ioflags & BIO_ERROR) {
1544 		printf(
1545 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1546 			"size %ld, error %d\n",
1547 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1548 		    (long)bp->b_blkno,
1549 		    (long)bp->b_bcount,
1550 		    bp->b_error
1551 		);
1552 	}
1553 
1554 	/*
1555 	 * set object, raise to splvm().
1556 	 */
1557 
1558 	if (bp->b_npages)
1559 		object = bp->b_pages[0]->object;
1560 	s = splvm();
1561 
1562 	/*
1563 	 * remove the mapping for kernel virtual
1564 	 */
1565 	mtx_lock(&vm_mtx);
1566 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1567 
1568 	/*
1569 	 * cleanup pages.  If an error occurs writing to swap, we are in
1570 	 * very serious trouble.  If it happens to be a disk error, though,
1571 	 * we may be able to recover by reassigning the swap later on.  So
1572 	 * in this case we remove the m->swapblk assignment for the page
1573 	 * but do not free it in the rlist.  The errornous block(s) are thus
1574 	 * never reallocated as swap.  Redirty the page and continue.
1575 	 */
1576 
1577 	for (i = 0; i < bp->b_npages; ++i) {
1578 		vm_page_t m = bp->b_pages[i];
1579 
1580 		vm_page_flag_clear(m, PG_SWAPINPROG);
1581 
1582 		if (bp->b_ioflags & BIO_ERROR) {
1583 			/*
1584 			 * If an error occurs I'd love to throw the swapblk
1585 			 * away without freeing it back to swapspace, so it
1586 			 * can never be used again.  But I can't from an
1587 			 * interrupt.
1588 			 */
1589 
1590 			if (bp->b_iocmd == BIO_READ) {
1591 				/*
1592 				 * When reading, reqpage needs to stay
1593 				 * locked for the parent, but all other
1594 				 * pages can be freed.  We still want to
1595 				 * wakeup the parent waiting on the page,
1596 				 * though.  ( also: pg_reqpage can be -1 and
1597 				 * not match anything ).
1598 				 *
1599 				 * We have to wake specifically requested pages
1600 				 * up too because we cleared PG_SWAPINPROG and
1601 				 * someone may be waiting for that.
1602 				 *
1603 				 * NOTE: for reads, m->dirty will probably
1604 				 * be overridden by the original caller of
1605 				 * getpages so don't play cute tricks here.
1606 				 *
1607 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1608 				 * AS THIS MESSES WITH object->memq, and it is
1609 				 * not legal to mess with object->memq from an
1610 				 * interrupt.
1611 				 */
1612 
1613 				m->valid = 0;
1614 				vm_page_flag_clear(m, PG_ZERO);
1615 
1616 				if (i != bp->b_pager.pg_reqpage)
1617 					vm_page_free(m);
1618 				else
1619 					vm_page_flash(m);
1620 				/*
1621 				 * If i == bp->b_pager.pg_reqpage, do not wake
1622 				 * the page up.  The caller needs to.
1623 				 */
1624 			} else {
1625 				/*
1626 				 * If a write error occurs, reactivate page
1627 				 * so it doesn't clog the inactive list,
1628 				 * then finish the I/O.
1629 				 */
1630 				vm_page_dirty(m);
1631 				vm_page_activate(m);
1632 				vm_page_io_finish(m);
1633 			}
1634 		} else if (bp->b_iocmd == BIO_READ) {
1635 			/*
1636 			 * For read success, clear dirty bits.  Nobody should
1637 			 * have this page mapped but don't take any chances,
1638 			 * make sure the pmap modify bits are also cleared.
1639 			 *
1640 			 * NOTE: for reads, m->dirty will probably be
1641 			 * overridden by the original caller of getpages so
1642 			 * we cannot set them in order to free the underlying
1643 			 * swap in a low-swap situation.  I don't think we'd
1644 			 * want to do that anyway, but it was an optimization
1645 			 * that existed in the old swapper for a time before
1646 			 * it got ripped out due to precisely this problem.
1647 			 *
1648 			 * clear PG_ZERO in page.
1649 			 *
1650 			 * If not the requested page then deactivate it.
1651 			 *
1652 			 * Note that the requested page, reqpage, is left
1653 			 * busied, but we still have to wake it up.  The
1654 			 * other pages are released (unbusied) by
1655 			 * vm_page_wakeup().  We do not set reqpage's
1656 			 * valid bits here, it is up to the caller.
1657 			 */
1658 
1659 			pmap_clear_modify(m);
1660 			m->valid = VM_PAGE_BITS_ALL;
1661 			vm_page_undirty(m);
1662 			vm_page_flag_clear(m, PG_ZERO);
1663 
1664 			/*
1665 			 * We have to wake specifically requested pages
1666 			 * up too because we cleared PG_SWAPINPROG and
1667 			 * could be waiting for it in getpages.  However,
1668 			 * be sure to not unbusy getpages specifically
1669 			 * requested page - getpages expects it to be
1670 			 * left busy.
1671 			 */
1672 			if (i != bp->b_pager.pg_reqpage) {
1673 				vm_page_deactivate(m);
1674 				vm_page_wakeup(m);
1675 			} else {
1676 				vm_page_flash(m);
1677 			}
1678 		} else {
1679 			/*
1680 			 * For write success, clear the modify and dirty
1681 			 * status, then finish the I/O ( which decrements the
1682 			 * busy count and possibly wakes waiter's up ).
1683 			 */
1684 			pmap_clear_modify(m);
1685 			vm_page_undirty(m);
1686 			vm_page_io_finish(m);
1687 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1688 				vm_page_protect(m, VM_PROT_READ);
1689 		}
1690 	}
1691 
1692 	/*
1693 	 * adjust pip.  NOTE: the original parent may still have its own
1694 	 * pip refs on the object.
1695 	 */
1696 
1697 	if (object)
1698 		vm_object_pip_wakeupn(object, bp->b_npages);
1699 
1700 	mtx_unlock(&vm_mtx);
1701 	/*
1702 	 * release the physical I/O buffer
1703 	 */
1704 
1705 	relpbuf(
1706 	    bp,
1707 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1708 		((bp->b_flags & B_ASYNC) ?
1709 		    &nsw_wcount_async :
1710 		    &nsw_wcount_sync
1711 		)
1712 	    )
1713 	);
1714 	splx(s);
1715 }
1716 
1717 /************************************************************************
1718  *				SWAP META DATA 				*
1719  ************************************************************************
1720  *
1721  *	These routines manipulate the swap metadata stored in the
1722  *	OBJT_SWAP object.  All swp_*() routines must be called at
1723  *	splvm() because swap can be freed up by the low level vm_page
1724  *	code which might be called from interrupts beyond what splbio() covers.
1725  *
1726  *	Swap metadata is implemented with a global hash and not directly
1727  *	linked into the object.  Instead the object simply contains
1728  *	appropriate tracking counters.
1729  */
1730 
1731 /*
1732  * SWP_PAGER_HASH() -	hash swap meta data
1733  *
1734  *	This is an inline helper function which hashes the swapblk given
1735  *	the object and page index.  It returns a pointer to a pointer
1736  *	to the object, or a pointer to a NULL pointer if it could not
1737  *	find a swapblk.
1738  *
1739  *	This routine must be called at splvm().
1740  */
1741 
1742 static __inline struct swblock **
1743 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1744 {
1745 	struct swblock **pswap;
1746 	struct swblock *swap;
1747 
1748 	index &= ~SWAP_META_MASK;
1749 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1750 
1751 	while ((swap = *pswap) != NULL) {
1752 		if (swap->swb_object == object &&
1753 		    swap->swb_index == index
1754 		) {
1755 			break;
1756 		}
1757 		pswap = &swap->swb_hnext;
1758 	}
1759 	return(pswap);
1760 }
1761 
1762 /*
1763  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1764  *
1765  *	We first convert the object to a swap object if it is a default
1766  *	object.
1767  *
1768  *	The specified swapblk is added to the object's swap metadata.  If
1769  *	the swapblk is not valid, it is freed instead.  Any previously
1770  *	assigned swapblk is freed.
1771  *
1772  *	This routine must be called at splvm(), except when used to convert
1773  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1774  *
1775  *	Requires vm_mtx.
1776  */
1777 
1778 static void
1779 swp_pager_meta_build(
1780 	vm_object_t object,
1781 	vm_pindex_t index,
1782 	daddr_t swapblk
1783 ) {
1784 	struct swblock *swap;
1785 	struct swblock **pswap;
1786 
1787 	mtx_assert(&vm_mtx, MA_OWNED);
1788 	/*
1789 	 * Convert default object to swap object if necessary
1790 	 */
1791 
1792 	if (object->type != OBJT_SWAP) {
1793 		object->type = OBJT_SWAP;
1794 		object->un_pager.swp.swp_bcount = 0;
1795 
1796 		mtx_lock(&sw_alloc_mtx);
1797 		if (object->handle != NULL) {
1798 			TAILQ_INSERT_TAIL(
1799 			    NOBJLIST(object->handle),
1800 			    object,
1801 			    pager_object_list
1802 			);
1803 		} else {
1804 			TAILQ_INSERT_TAIL(
1805 			    &swap_pager_un_object_list,
1806 			    object,
1807 			    pager_object_list
1808 			);
1809 		}
1810 		mtx_unlock(&sw_alloc_mtx);
1811 	}
1812 
1813 	/*
1814 	 * Locate hash entry.  If not found create, but if we aren't adding
1815 	 * anything just return.  If we run out of space in the map we wait
1816 	 * and, since the hash table may have changed, retry.
1817 	 */
1818 
1819 retry:
1820 	pswap = swp_pager_hash(object, index);
1821 
1822 	if ((swap = *pswap) == NULL) {
1823 		int i;
1824 
1825 		if (swapblk == SWAPBLK_NONE)
1826 			return;
1827 
1828 		swap = *pswap = zalloc(swap_zone);
1829 		if (swap == NULL) {
1830 			VM_WAIT;
1831 			goto retry;
1832 		}
1833 		swap->swb_hnext = NULL;
1834 		swap->swb_object = object;
1835 		swap->swb_index = index & ~SWAP_META_MASK;
1836 		swap->swb_count = 0;
1837 
1838 		++object->un_pager.swp.swp_bcount;
1839 
1840 		for (i = 0; i < SWAP_META_PAGES; ++i)
1841 			swap->swb_pages[i] = SWAPBLK_NONE;
1842 	}
1843 
1844 	/*
1845 	 * Delete prior contents of metadata
1846 	 */
1847 
1848 	index &= SWAP_META_MASK;
1849 
1850 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1851 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1852 		--swap->swb_count;
1853 	}
1854 
1855 	/*
1856 	 * Enter block into metadata
1857 	 */
1858 
1859 	swap->swb_pages[index] = swapblk;
1860 	if (swapblk != SWAPBLK_NONE)
1861 		++swap->swb_count;
1862 }
1863 
1864 /*
1865  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1866  *
1867  *	The requested range of blocks is freed, with any associated swap
1868  *	returned to the swap bitmap.
1869  *
1870  *	This routine will free swap metadata structures as they are cleaned
1871  *	out.  This routine does *NOT* operate on swap metadata associated
1872  *	with resident pages.
1873  *
1874  * 	vm_mtx must be held
1875  *	This routine must be called at splvm()
1876  */
1877 
1878 static void
1879 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1880 {
1881 
1882 	mtx_assert(&vm_mtx, MA_OWNED);
1883 
1884 	if (object->type != OBJT_SWAP)
1885 		return;
1886 
1887 	while (count > 0) {
1888 		struct swblock **pswap;
1889 		struct swblock *swap;
1890 
1891 		pswap = swp_pager_hash(object, index);
1892 
1893 		if ((swap = *pswap) != NULL) {
1894 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1895 
1896 			if (v != SWAPBLK_NONE) {
1897 				swp_pager_freeswapspace(v, 1);
1898 				swap->swb_pages[index & SWAP_META_MASK] =
1899 					SWAPBLK_NONE;
1900 				if (--swap->swb_count == 0) {
1901 					*pswap = swap->swb_hnext;
1902 					zfree(swap_zone, swap);
1903 					--object->un_pager.swp.swp_bcount;
1904 				}
1905 			}
1906 			--count;
1907 			++index;
1908 		} else {
1909 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1910 			count -= n;
1911 			index += n;
1912 		}
1913 	}
1914 }
1915 
1916 /*
1917  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1918  *
1919  *	This routine locates and destroys all swap metadata associated with
1920  *	an object.
1921  *
1922  *	This routine must be called at splvm()
1923  *	Requires vm_mtx.
1924  */
1925 
1926 static void
1927 swp_pager_meta_free_all(vm_object_t object)
1928 {
1929 	daddr_t index = 0;
1930 
1931 	mtx_assert(&vm_mtx, MA_OWNED);
1932 
1933 	if (object->type != OBJT_SWAP)
1934 		return;
1935 
1936 	while (object->un_pager.swp.swp_bcount) {
1937 		struct swblock **pswap;
1938 		struct swblock *swap;
1939 
1940 		pswap = swp_pager_hash(object, index);
1941 		if ((swap = *pswap) != NULL) {
1942 			int i;
1943 
1944 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1945 				daddr_t v = swap->swb_pages[i];
1946 				if (v != SWAPBLK_NONE) {
1947 					--swap->swb_count;
1948 					swp_pager_freeswapspace(v, 1);
1949 				}
1950 			}
1951 			if (swap->swb_count != 0)
1952 				panic("swap_pager_meta_free_all: swb_count != 0");
1953 			*pswap = swap->swb_hnext;
1954 			zfree(swap_zone, swap);
1955 			--object->un_pager.swp.swp_bcount;
1956 		}
1957 		index += SWAP_META_PAGES;
1958 		if (index > 0x20000000)
1959 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1960 	}
1961 }
1962 
1963 /*
1964  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1965  *
1966  *	This routine is capable of looking up, popping, or freeing
1967  *	swapblk assignments in the swap meta data or in the vm_page_t.
1968  *	The routine typically returns the swapblk being looked-up, or popped,
1969  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1970  *	was invalid.  This routine will automatically free any invalid
1971  *	meta-data swapblks.
1972  *
1973  *	It is not possible to store invalid swapblks in the swap meta data
1974  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1975  *
1976  *	When acting on a busy resident page and paging is in progress, we
1977  *	have to wait until paging is complete but otherwise can act on the
1978  *	busy page.
1979  *
1980  *	This routine must be called at splvm().
1981  *	Requires vm_mtx.
1982  *
1983  *	SWM_FREE	remove and free swap block from metadata
1984  *	SWM_POP		remove from meta data but do not free.. pop it out
1985  */
1986 
1987 static daddr_t
1988 swp_pager_meta_ctl(
1989 	vm_object_t object,
1990 	vm_pindex_t index,
1991 	int flags
1992 ) {
1993 	struct swblock **pswap;
1994 	struct swblock *swap;
1995 	daddr_t r1;
1996 
1997 	mtx_assert(&vm_mtx, MA_OWNED);
1998 	/*
1999 	 * The meta data only exists of the object is OBJT_SWAP
2000 	 * and even then might not be allocated yet.
2001 	 */
2002 
2003 	if (object->type != OBJT_SWAP)
2004 		return(SWAPBLK_NONE);
2005 
2006 	r1 = SWAPBLK_NONE;
2007 	pswap = swp_pager_hash(object, index);
2008 
2009 	if ((swap = *pswap) != NULL) {
2010 		index &= SWAP_META_MASK;
2011 		r1 = swap->swb_pages[index];
2012 
2013 		if (r1 != SWAPBLK_NONE) {
2014 			if (flags & SWM_FREE) {
2015 				swp_pager_freeswapspace(r1, 1);
2016 				r1 = SWAPBLK_NONE;
2017 			}
2018 			if (flags & (SWM_FREE|SWM_POP)) {
2019 				swap->swb_pages[index] = SWAPBLK_NONE;
2020 				if (--swap->swb_count == 0) {
2021 					*pswap = swap->swb_hnext;
2022 					zfree(swap_zone, swap);
2023 					--object->un_pager.swp.swp_bcount;
2024 				}
2025 			}
2026 		}
2027 	}
2028 	return(r1);
2029 }
2030 
2031 /********************************************************
2032  *		CHAINING FUNCTIONS			*
2033  ********************************************************
2034  *
2035  *	These functions support recursion of I/O operations
2036  *	on bp's, typically by chaining one or more 'child' bp's
2037  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2038  *	chaining is possible.
2039  */
2040 
2041 /*
2042  *	vm_pager_chain_iodone:
2043  *
2044  *	io completion routine for child bp.  Currently we fudge a bit
2045  *	on dealing with b_resid.   Since users of these routines may issue
2046  *	multiple children simultaneously, sequencing of the error can be lost.
2047  */
2048 
2049 static void
2050 vm_pager_chain_iodone(struct buf *nbp)
2051 {
2052 	struct bio *bp;
2053 	u_int *count;
2054 
2055 	bp = nbp->b_caller1;
2056 	count = (u_int *)&(bp->bio_caller1);
2057 	if (bp != NULL) {
2058 		if (nbp->b_ioflags & BIO_ERROR) {
2059 			bp->bio_flags |= BIO_ERROR;
2060 			bp->bio_error = nbp->b_error;
2061 		} else if (nbp->b_resid != 0) {
2062 			bp->bio_flags |= BIO_ERROR;
2063 			bp->bio_error = EINVAL;
2064 		} else {
2065 			bp->bio_resid -= nbp->b_bcount;
2066 		}
2067 		nbp->b_caller1 = NULL;
2068 		--(*count);
2069 		if (bp->bio_flags & BIO_FLAG1) {
2070 			bp->bio_flags &= ~BIO_FLAG1;
2071 			wakeup(bp);
2072 		}
2073 	}
2074 	nbp->b_flags |= B_DONE;
2075 	nbp->b_flags &= ~B_ASYNC;
2076 	relpbuf(nbp, NULL);
2077 }
2078 
2079 /*
2080  *	getchainbuf:
2081  *
2082  *	Obtain a physical buffer and chain it to its parent buffer.  When
2083  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2084  *	automatically propagated to the parent
2085  *
2086  *	vm_mtx can't be held
2087  */
2088 
2089 struct buf *
2090 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2091 {
2092 	struct buf *nbp;
2093 	u_int *count;
2094 
2095 	mtx_assert(&vm_mtx, MA_NOTOWNED);
2096 	mtx_assert(&Giant, MA_OWNED);
2097 	nbp = getpbuf(NULL);
2098 	count = (u_int *)&(bp->bio_caller1);
2099 
2100 	nbp->b_caller1 = bp;
2101 	++(*count);
2102 
2103 	if (*count > 4)
2104 		waitchainbuf(bp, 4, 0);
2105 
2106 	nbp->b_iocmd = bp->bio_cmd;
2107 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2108 	nbp->b_flags = flags;
2109 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2110 	nbp->b_iodone = vm_pager_chain_iodone;
2111 
2112 	crhold(nbp->b_rcred);
2113 	crhold(nbp->b_wcred);
2114 
2115 	if (vp)
2116 		pbgetvp(vp, nbp);
2117 	return(nbp);
2118 }
2119 
2120 void
2121 flushchainbuf(struct buf *nbp)
2122 {
2123 
2124 	mtx_assert(&vm_mtx, MA_NOTOWNED);
2125 	mtx_assert(&Giant, MA_OWNED);
2126 	if (nbp->b_bcount) {
2127 		nbp->b_bufsize = nbp->b_bcount;
2128 		if (nbp->b_iocmd == BIO_WRITE)
2129 			nbp->b_dirtyend = nbp->b_bcount;
2130 		BUF_KERNPROC(nbp);
2131 		BUF_STRATEGY(nbp);
2132 	} else {
2133 		bufdone(nbp);
2134 	}
2135 }
2136 
2137 static void
2138 waitchainbuf(struct bio *bp, int limit, int done)
2139 {
2140  	int s;
2141 	u_int *count;
2142 
2143 	mtx_assert(&vm_mtx, MA_NOTOWNED);
2144 	mtx_assert(&Giant, MA_OWNED);
2145 	count = (u_int *)&(bp->bio_caller1);
2146 	s = splbio();
2147 	while (*count > limit) {
2148 		bp->bio_flags |= BIO_FLAG1;
2149 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2150 	}
2151 	if (done) {
2152 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2153 			bp->bio_flags |= BIO_ERROR;
2154 			bp->bio_error = EINVAL;
2155 		}
2156 		biodone(bp);
2157 	}
2158 	splx(s);
2159 }
2160 
2161