1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_compat.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/bio.h> 83 #include <sys/buf.h> 84 #include <sys/disk.h> 85 #include <sys/fcntl.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/vnode.h> 89 #include <sys/malloc.h> 90 #include <sys/racct.h> 91 #include <sys/resource.h> 92 #include <sys/resourcevar.h> 93 #include <sys/rwlock.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysproto.h> 96 #include <sys/blist.h> 97 #include <sys/lock.h> 98 #include <sys/sx.h> 99 #include <sys/vmmeter.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #include <vm/vm.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_pager.h> 110 #include <vm/vm_pageout.h> 111 #include <vm/vm_param.h> 112 #include <vm/swap_pager.h> 113 #include <vm/vm_extern.h> 114 #include <vm/uma.h> 115 116 #include <geom/geom.h> 117 118 /* 119 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 120 * or 32 pages per allocation. 121 * The 32-page limit is due to the radix code (kern/subr_blist.c). 122 */ 123 #ifndef MAX_PAGEOUT_CLUSTER 124 #define MAX_PAGEOUT_CLUSTER 16 125 #endif 126 127 #if !defined(SWB_NPAGES) 128 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 129 #endif 130 131 /* 132 * The swblock structure maps an object and a small, fixed-size range 133 * of page indices to disk addresses within a swap area. 134 * The collection of these mappings is implemented as a hash table. 135 * Unused disk addresses within a swap area are allocated and managed 136 * using a blist. 137 */ 138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 139 #define SWAP_META_PAGES (SWB_NPAGES * 2) 140 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 141 142 struct swblock { 143 struct swblock *swb_hnext; 144 vm_object_t swb_object; 145 vm_pindex_t swb_index; 146 int swb_count; 147 daddr_t swb_pages[SWAP_META_PAGES]; 148 }; 149 150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 151 static struct mtx sw_dev_mtx; 152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 153 static struct swdevt *swdevhd; /* Allocate from here next */ 154 static int nswapdev; /* Number of swap devices */ 155 int swap_pager_avail; 156 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 157 158 static vm_ooffset_t swap_total; 159 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 160 "Total amount of available swap storage."); 161 static vm_ooffset_t swap_reserved; 162 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 163 "Amount of swap storage needed to back all allocated anonymous memory."); 164 static int overcommit = 0; 165 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 166 "Configure virtual memory overcommit behavior. See tuning(7) " 167 "for details."); 168 static unsigned long swzone; 169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 170 "Actual size of swap metadata zone"); 171 static unsigned long swap_maxpages; 172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 173 "Maximum amount of swap supported"); 174 175 /* bits from overcommit */ 176 #define SWAP_RESERVE_FORCE_ON (1 << 0) 177 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 178 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 179 180 int 181 swap_reserve(vm_ooffset_t incr) 182 { 183 184 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 185 } 186 187 int 188 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 189 { 190 vm_ooffset_t r, s; 191 int res, error; 192 static int curfail; 193 static struct timeval lastfail; 194 struct uidinfo *uip; 195 196 uip = cred->cr_ruidinfo; 197 198 if (incr & PAGE_MASK) 199 panic("swap_reserve: & PAGE_MASK"); 200 201 #ifdef RACCT 202 if (racct_enable) { 203 PROC_LOCK(curproc); 204 error = racct_add(curproc, RACCT_SWAP, incr); 205 PROC_UNLOCK(curproc); 206 if (error != 0) 207 return (0); 208 } 209 #endif 210 211 res = 0; 212 mtx_lock(&sw_dev_mtx); 213 r = swap_reserved + incr; 214 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 215 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 216 s *= PAGE_SIZE; 217 } else 218 s = 0; 219 s += swap_total; 220 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 221 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 222 res = 1; 223 swap_reserved = r; 224 } 225 mtx_unlock(&sw_dev_mtx); 226 227 if (res) { 228 UIDINFO_VMSIZE_LOCK(uip); 229 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 230 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 231 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 232 res = 0; 233 else 234 uip->ui_vmsize += incr; 235 UIDINFO_VMSIZE_UNLOCK(uip); 236 if (!res) { 237 mtx_lock(&sw_dev_mtx); 238 swap_reserved -= incr; 239 mtx_unlock(&sw_dev_mtx); 240 } 241 } 242 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 243 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 244 uip->ui_uid, curproc->p_pid, incr); 245 } 246 247 #ifdef RACCT 248 if (!res) { 249 PROC_LOCK(curproc); 250 racct_sub(curproc, RACCT_SWAP, incr); 251 PROC_UNLOCK(curproc); 252 } 253 #endif 254 255 return (res); 256 } 257 258 void 259 swap_reserve_force(vm_ooffset_t incr) 260 { 261 struct uidinfo *uip; 262 263 mtx_lock(&sw_dev_mtx); 264 swap_reserved += incr; 265 mtx_unlock(&sw_dev_mtx); 266 267 #ifdef RACCT 268 PROC_LOCK(curproc); 269 racct_add_force(curproc, RACCT_SWAP, incr); 270 PROC_UNLOCK(curproc); 271 #endif 272 273 uip = curthread->td_ucred->cr_ruidinfo; 274 PROC_LOCK(curproc); 275 UIDINFO_VMSIZE_LOCK(uip); 276 uip->ui_vmsize += incr; 277 UIDINFO_VMSIZE_UNLOCK(uip); 278 PROC_UNLOCK(curproc); 279 } 280 281 void 282 swap_release(vm_ooffset_t decr) 283 { 284 struct ucred *cred; 285 286 PROC_LOCK(curproc); 287 cred = curthread->td_ucred; 288 swap_release_by_cred(decr, cred); 289 PROC_UNLOCK(curproc); 290 } 291 292 void 293 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 294 { 295 struct uidinfo *uip; 296 297 uip = cred->cr_ruidinfo; 298 299 if (decr & PAGE_MASK) 300 panic("swap_release: & PAGE_MASK"); 301 302 mtx_lock(&sw_dev_mtx); 303 if (swap_reserved < decr) 304 panic("swap_reserved < decr"); 305 swap_reserved -= decr; 306 mtx_unlock(&sw_dev_mtx); 307 308 UIDINFO_VMSIZE_LOCK(uip); 309 if (uip->ui_vmsize < decr) 310 printf("negative vmsize for uid = %d\n", uip->ui_uid); 311 uip->ui_vmsize -= decr; 312 UIDINFO_VMSIZE_UNLOCK(uip); 313 314 racct_sub_cred(cred, RACCT_SWAP, decr); 315 } 316 317 #define SWM_FREE 0x02 /* free, period */ 318 #define SWM_POP 0x04 /* pop out */ 319 320 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 321 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 322 static int nsw_rcount; /* free read buffers */ 323 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 324 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 325 static int nsw_wcount_async_max;/* assigned maximum */ 326 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 327 328 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 329 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 330 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 331 "Maximum running async swap ops"); 332 333 static struct swblock **swhash; 334 static int swhash_mask; 335 static struct mtx swhash_mtx; 336 337 static struct sx sw_alloc_sx; 338 339 /* 340 * "named" and "unnamed" anon region objects. Try to reduce the overhead 341 * of searching a named list by hashing it just a little. 342 */ 343 344 #define NOBJLISTS 8 345 346 #define NOBJLIST(handle) \ 347 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 348 349 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 350 static uma_zone_t swap_zone; 351 352 /* 353 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 354 * calls hooked from other parts of the VM system and do not appear here. 355 * (see vm/swap_pager.h). 356 */ 357 static vm_object_t 358 swap_pager_alloc(void *handle, vm_ooffset_t size, 359 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 360 static void swap_pager_dealloc(vm_object_t object); 361 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 362 int *); 363 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 364 int *, pgo_getpages_iodone_t, void *); 365 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 366 static boolean_t 367 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 368 static void swap_pager_init(void); 369 static void swap_pager_unswapped(vm_page_t); 370 static void swap_pager_swapoff(struct swdevt *sp); 371 372 struct pagerops swappagerops = { 373 .pgo_init = swap_pager_init, /* early system initialization of pager */ 374 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 375 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 376 .pgo_getpages = swap_pager_getpages, /* pagein */ 377 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 378 .pgo_putpages = swap_pager_putpages, /* pageout */ 379 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 380 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 381 }; 382 383 /* 384 * swap_*() routines are externally accessible. swp_*() routines are 385 * internal. 386 */ 387 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 388 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 389 390 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 391 "Maximum size of a swap block in pages"); 392 393 static void swp_sizecheck(void); 394 static void swp_pager_async_iodone(struct buf *bp); 395 static int swapongeom(struct vnode *); 396 static int swaponvp(struct thread *, struct vnode *, u_long); 397 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 398 399 /* 400 * Swap bitmap functions 401 */ 402 static void swp_pager_freeswapspace(daddr_t blk, int npages); 403 static daddr_t swp_pager_getswapspace(int npages); 404 405 /* 406 * Metadata functions 407 */ 408 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 409 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 410 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 411 static void swp_pager_meta_free_all(vm_object_t); 412 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 413 414 /* 415 * SWP_SIZECHECK() - update swap_pager_full indication 416 * 417 * update the swap_pager_almost_full indication and warn when we are 418 * about to run out of swap space, using lowat/hiwat hysteresis. 419 * 420 * Clear swap_pager_full ( task killing ) indication when lowat is met. 421 * 422 * No restrictions on call 423 * This routine may not block. 424 */ 425 static void 426 swp_sizecheck(void) 427 { 428 429 if (swap_pager_avail < nswap_lowat) { 430 if (swap_pager_almost_full == 0) { 431 printf("swap_pager: out of swap space\n"); 432 swap_pager_almost_full = 1; 433 } 434 } else { 435 swap_pager_full = 0; 436 if (swap_pager_avail > nswap_hiwat) 437 swap_pager_almost_full = 0; 438 } 439 } 440 441 /* 442 * SWP_PAGER_HASH() - hash swap meta data 443 * 444 * This is an helper function which hashes the swapblk given 445 * the object and page index. It returns a pointer to a pointer 446 * to the object, or a pointer to a NULL pointer if it could not 447 * find a swapblk. 448 */ 449 static struct swblock ** 450 swp_pager_hash(vm_object_t object, vm_pindex_t index) 451 { 452 struct swblock **pswap; 453 struct swblock *swap; 454 455 index &= ~(vm_pindex_t)SWAP_META_MASK; 456 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 457 while ((swap = *pswap) != NULL) { 458 if (swap->swb_object == object && 459 swap->swb_index == index 460 ) { 461 break; 462 } 463 pswap = &swap->swb_hnext; 464 } 465 return (pswap); 466 } 467 468 /* 469 * SWAP_PAGER_INIT() - initialize the swap pager! 470 * 471 * Expected to be started from system init. NOTE: This code is run 472 * before much else so be careful what you depend on. Most of the VM 473 * system has yet to be initialized at this point. 474 */ 475 static void 476 swap_pager_init(void) 477 { 478 /* 479 * Initialize object lists 480 */ 481 int i; 482 483 for (i = 0; i < NOBJLISTS; ++i) 484 TAILQ_INIT(&swap_pager_object_list[i]); 485 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 486 sx_init(&sw_alloc_sx, "swspsx"); 487 sx_init(&swdev_syscall_lock, "swsysc"); 488 } 489 490 /* 491 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 492 * 493 * Expected to be started from pageout process once, prior to entering 494 * its main loop. 495 */ 496 void 497 swap_pager_swap_init(void) 498 { 499 unsigned long n, n2; 500 501 /* 502 * Number of in-transit swap bp operations. Don't 503 * exhaust the pbufs completely. Make sure we 504 * initialize workable values (0 will work for hysteresis 505 * but it isn't very efficient). 506 * 507 * The nsw_cluster_max is constrained by the bp->b_pages[] 508 * array (MAXPHYS/PAGE_SIZE) and our locally defined 509 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 510 * constrained by the swap device interleave stripe size. 511 * 512 * Currently we hardwire nsw_wcount_async to 4. This limit is 513 * designed to prevent other I/O from having high latencies due to 514 * our pageout I/O. The value 4 works well for one or two active swap 515 * devices but is probably a little low if you have more. Even so, 516 * a higher value would probably generate only a limited improvement 517 * with three or four active swap devices since the system does not 518 * typically have to pageout at extreme bandwidths. We will want 519 * at least 2 per swap devices, and 4 is a pretty good value if you 520 * have one NFS swap device due to the command/ack latency over NFS. 521 * So it all works out pretty well. 522 */ 523 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 524 525 mtx_lock(&pbuf_mtx); 526 nsw_rcount = (nswbuf + 1) / 2; 527 nsw_wcount_sync = (nswbuf + 3) / 4; 528 nsw_wcount_async = 4; 529 nsw_wcount_async_max = nsw_wcount_async; 530 mtx_unlock(&pbuf_mtx); 531 532 /* 533 * Initialize our zone. Right now I'm just guessing on the number 534 * we need based on the number of pages in the system. Each swblock 535 * can hold 32 pages, so this is probably overkill. This reservation 536 * is typically limited to around 32MB by default. 537 */ 538 n = vm_cnt.v_page_count / 2; 539 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 540 n = maxswzone / sizeof(struct swblock); 541 n2 = n; 542 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 543 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 544 if (swap_zone == NULL) 545 panic("failed to create swap_zone."); 546 do { 547 if (uma_zone_reserve_kva(swap_zone, n)) 548 break; 549 /* 550 * if the allocation failed, try a zone two thirds the 551 * size of the previous attempt. 552 */ 553 n -= ((n + 2) / 3); 554 } while (n > 0); 555 if (n2 != n) 556 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 557 swap_maxpages = n * SWAP_META_PAGES; 558 swzone = n * sizeof(struct swblock); 559 n2 = n; 560 561 /* 562 * Initialize our meta-data hash table. The swapper does not need to 563 * be quite as efficient as the VM system, so we do not use an 564 * oversized hash table. 565 * 566 * n: size of hash table, must be power of 2 567 * swhash_mask: hash table index mask 568 */ 569 for (n = 1; n < n2 / 8; n *= 2) 570 ; 571 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 572 swhash_mask = n - 1; 573 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 574 } 575 576 static vm_object_t 577 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 578 vm_ooffset_t offset) 579 { 580 vm_object_t object; 581 582 if (cred != NULL) { 583 if (!swap_reserve_by_cred(size, cred)) 584 return (NULL); 585 crhold(cred); 586 } 587 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 588 PAGE_MASK + size)); 589 object->handle = handle; 590 if (cred != NULL) { 591 object->cred = cred; 592 object->charge = size; 593 } 594 object->un_pager.swp.swp_bcount = 0; 595 return (object); 596 } 597 598 /* 599 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 600 * its metadata structures. 601 * 602 * This routine is called from the mmap and fork code to create a new 603 * OBJT_SWAP object. 604 * 605 * This routine must ensure that no live duplicate is created for 606 * the named object request, which is protected against by 607 * holding the sw_alloc_sx lock in case handle != NULL. 608 */ 609 static vm_object_t 610 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 611 vm_ooffset_t offset, struct ucred *cred) 612 { 613 vm_object_t object; 614 615 if (handle != NULL) { 616 /* 617 * Reference existing named region or allocate new one. There 618 * should not be a race here against swp_pager_meta_build() 619 * as called from vm_page_remove() in regards to the lookup 620 * of the handle. 621 */ 622 sx_xlock(&sw_alloc_sx); 623 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 624 if (object == NULL) { 625 object = swap_pager_alloc_init(handle, cred, size, 626 offset); 627 if (object != NULL) { 628 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 629 object, pager_object_list); 630 } 631 } 632 sx_xunlock(&sw_alloc_sx); 633 } else { 634 object = swap_pager_alloc_init(handle, cred, size, offset); 635 } 636 return (object); 637 } 638 639 /* 640 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 641 * 642 * The swap backing for the object is destroyed. The code is 643 * designed such that we can reinstantiate it later, but this 644 * routine is typically called only when the entire object is 645 * about to be destroyed. 646 * 647 * The object must be locked. 648 */ 649 static void 650 swap_pager_dealloc(vm_object_t object) 651 { 652 653 VM_OBJECT_ASSERT_WLOCKED(object); 654 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 655 656 /* 657 * Remove from list right away so lookups will fail if we block for 658 * pageout completion. 659 */ 660 if (object->handle != NULL) { 661 VM_OBJECT_WUNLOCK(object); 662 sx_xlock(&sw_alloc_sx); 663 TAILQ_REMOVE(NOBJLIST(object->handle), object, 664 pager_object_list); 665 sx_xunlock(&sw_alloc_sx); 666 VM_OBJECT_WLOCK(object); 667 } 668 669 vm_object_pip_wait(object, "swpdea"); 670 671 /* 672 * Free all remaining metadata. We only bother to free it from 673 * the swap meta data. We do not attempt to free swapblk's still 674 * associated with vm_page_t's for this object. We do not care 675 * if paging is still in progress on some objects. 676 */ 677 swp_pager_meta_free_all(object); 678 object->handle = NULL; 679 object->type = OBJT_DEAD; 680 } 681 682 /************************************************************************ 683 * SWAP PAGER BITMAP ROUTINES * 684 ************************************************************************/ 685 686 /* 687 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 688 * 689 * Allocate swap for the requested number of pages. The starting 690 * swap block number (a page index) is returned or SWAPBLK_NONE 691 * if the allocation failed. 692 * 693 * Also has the side effect of advising that somebody made a mistake 694 * when they configured swap and didn't configure enough. 695 * 696 * This routine may not sleep. 697 * 698 * We allocate in round-robin fashion from the configured devices. 699 */ 700 static daddr_t 701 swp_pager_getswapspace(int npages) 702 { 703 daddr_t blk; 704 struct swdevt *sp; 705 int i; 706 707 blk = SWAPBLK_NONE; 708 mtx_lock(&sw_dev_mtx); 709 sp = swdevhd; 710 for (i = 0; i < nswapdev; i++) { 711 if (sp == NULL) 712 sp = TAILQ_FIRST(&swtailq); 713 if (!(sp->sw_flags & SW_CLOSING)) { 714 blk = blist_alloc(sp->sw_blist, npages); 715 if (blk != SWAPBLK_NONE) { 716 blk += sp->sw_first; 717 sp->sw_used += npages; 718 swap_pager_avail -= npages; 719 swp_sizecheck(); 720 swdevhd = TAILQ_NEXT(sp, sw_list); 721 goto done; 722 } 723 } 724 sp = TAILQ_NEXT(sp, sw_list); 725 } 726 if (swap_pager_full != 2) { 727 printf("swap_pager_getswapspace(%d): failed\n", npages); 728 swap_pager_full = 2; 729 swap_pager_almost_full = 1; 730 } 731 swdevhd = NULL; 732 done: 733 mtx_unlock(&sw_dev_mtx); 734 return (blk); 735 } 736 737 static int 738 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 739 { 740 741 return (blk >= sp->sw_first && blk < sp->sw_end); 742 } 743 744 static void 745 swp_pager_strategy(struct buf *bp) 746 { 747 struct swdevt *sp; 748 749 mtx_lock(&sw_dev_mtx); 750 TAILQ_FOREACH(sp, &swtailq, sw_list) { 751 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 752 mtx_unlock(&sw_dev_mtx); 753 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 754 unmapped_buf_allowed) { 755 bp->b_data = unmapped_buf; 756 bp->b_offset = 0; 757 } else { 758 pmap_qenter((vm_offset_t)bp->b_data, 759 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 760 } 761 sp->sw_strategy(bp, sp); 762 return; 763 } 764 } 765 panic("Swapdev not found"); 766 } 767 768 769 /* 770 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 771 * 772 * This routine returns the specified swap blocks back to the bitmap. 773 * 774 * This routine may not sleep. 775 */ 776 static void 777 swp_pager_freeswapspace(daddr_t blk, int npages) 778 { 779 struct swdevt *sp; 780 781 mtx_lock(&sw_dev_mtx); 782 TAILQ_FOREACH(sp, &swtailq, sw_list) { 783 if (blk >= sp->sw_first && blk < sp->sw_end) { 784 sp->sw_used -= npages; 785 /* 786 * If we are attempting to stop swapping on 787 * this device, we don't want to mark any 788 * blocks free lest they be reused. 789 */ 790 if ((sp->sw_flags & SW_CLOSING) == 0) { 791 blist_free(sp->sw_blist, blk - sp->sw_first, 792 npages); 793 swap_pager_avail += npages; 794 swp_sizecheck(); 795 } 796 mtx_unlock(&sw_dev_mtx); 797 return; 798 } 799 } 800 panic("Swapdev not found"); 801 } 802 803 /* 804 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 805 * range within an object. 806 * 807 * This is a globally accessible routine. 808 * 809 * This routine removes swapblk assignments from swap metadata. 810 * 811 * The external callers of this routine typically have already destroyed 812 * or renamed vm_page_t's associated with this range in the object so 813 * we should be ok. 814 * 815 * The object must be locked. 816 */ 817 void 818 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 819 { 820 821 swp_pager_meta_free(object, start, size); 822 } 823 824 /* 825 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 826 * 827 * Assigns swap blocks to the specified range within the object. The 828 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 829 * 830 * Returns 0 on success, -1 on failure. 831 */ 832 int 833 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 834 { 835 int n = 0; 836 daddr_t blk = SWAPBLK_NONE; 837 vm_pindex_t beg = start; /* save start index */ 838 839 VM_OBJECT_WLOCK(object); 840 while (size) { 841 if (n == 0) { 842 n = BLIST_MAX_ALLOC; 843 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 844 n >>= 1; 845 if (n == 0) { 846 swp_pager_meta_free(object, beg, start - beg); 847 VM_OBJECT_WUNLOCK(object); 848 return (-1); 849 } 850 } 851 } 852 swp_pager_meta_build(object, start, blk); 853 --size; 854 ++start; 855 ++blk; 856 --n; 857 } 858 swp_pager_meta_free(object, start, n); 859 VM_OBJECT_WUNLOCK(object); 860 return (0); 861 } 862 863 /* 864 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 865 * and destroy the source. 866 * 867 * Copy any valid swapblks from the source to the destination. In 868 * cases where both the source and destination have a valid swapblk, 869 * we keep the destination's. 870 * 871 * This routine is allowed to sleep. It may sleep allocating metadata 872 * indirectly through swp_pager_meta_build() or if paging is still in 873 * progress on the source. 874 * 875 * The source object contains no vm_page_t's (which is just as well) 876 * 877 * The source object is of type OBJT_SWAP. 878 * 879 * The source and destination objects must be locked. 880 * Both object locks may temporarily be released. 881 */ 882 void 883 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 884 vm_pindex_t offset, int destroysource) 885 { 886 vm_pindex_t i; 887 888 VM_OBJECT_ASSERT_WLOCKED(srcobject); 889 VM_OBJECT_ASSERT_WLOCKED(dstobject); 890 891 /* 892 * If destroysource is set, we remove the source object from the 893 * swap_pager internal queue now. 894 */ 895 if (destroysource && srcobject->handle != NULL) { 896 vm_object_pip_add(srcobject, 1); 897 VM_OBJECT_WUNLOCK(srcobject); 898 vm_object_pip_add(dstobject, 1); 899 VM_OBJECT_WUNLOCK(dstobject); 900 sx_xlock(&sw_alloc_sx); 901 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 902 pager_object_list); 903 sx_xunlock(&sw_alloc_sx); 904 VM_OBJECT_WLOCK(dstobject); 905 vm_object_pip_wakeup(dstobject); 906 VM_OBJECT_WLOCK(srcobject); 907 vm_object_pip_wakeup(srcobject); 908 } 909 910 /* 911 * transfer source to destination. 912 */ 913 for (i = 0; i < dstobject->size; ++i) { 914 daddr_t dstaddr; 915 916 /* 917 * Locate (without changing) the swapblk on the destination, 918 * unless it is invalid in which case free it silently, or 919 * if the destination is a resident page, in which case the 920 * source is thrown away. 921 */ 922 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 923 924 if (dstaddr == SWAPBLK_NONE) { 925 /* 926 * Destination has no swapblk and is not resident, 927 * copy source. 928 */ 929 daddr_t srcaddr; 930 931 srcaddr = swp_pager_meta_ctl( 932 srcobject, 933 i + offset, 934 SWM_POP 935 ); 936 937 if (srcaddr != SWAPBLK_NONE) { 938 /* 939 * swp_pager_meta_build() can sleep. 940 */ 941 vm_object_pip_add(srcobject, 1); 942 VM_OBJECT_WUNLOCK(srcobject); 943 vm_object_pip_add(dstobject, 1); 944 swp_pager_meta_build(dstobject, i, srcaddr); 945 vm_object_pip_wakeup(dstobject); 946 VM_OBJECT_WLOCK(srcobject); 947 vm_object_pip_wakeup(srcobject); 948 } 949 } else { 950 /* 951 * Destination has valid swapblk or it is represented 952 * by a resident page. We destroy the sourceblock. 953 */ 954 955 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 956 } 957 } 958 959 /* 960 * Free left over swap blocks in source. 961 * 962 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 963 * double-remove the object from the swap queues. 964 */ 965 if (destroysource) { 966 swp_pager_meta_free_all(srcobject); 967 /* 968 * Reverting the type is not necessary, the caller is going 969 * to destroy srcobject directly, but I'm doing it here 970 * for consistency since we've removed the object from its 971 * queues. 972 */ 973 srcobject->type = OBJT_DEFAULT; 974 } 975 } 976 977 /* 978 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 979 * the requested page. 980 * 981 * We determine whether good backing store exists for the requested 982 * page and return TRUE if it does, FALSE if it doesn't. 983 * 984 * If TRUE, we also try to determine how much valid, contiguous backing 985 * store exists before and after the requested page. 986 */ 987 static boolean_t 988 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 989 int *after) 990 { 991 daddr_t blk, blk0; 992 int i; 993 994 VM_OBJECT_ASSERT_LOCKED(object); 995 996 /* 997 * do we have good backing store at the requested index ? 998 */ 999 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1000 if (blk0 == SWAPBLK_NONE) { 1001 if (before) 1002 *before = 0; 1003 if (after) 1004 *after = 0; 1005 return (FALSE); 1006 } 1007 1008 /* 1009 * find backwards-looking contiguous good backing store 1010 */ 1011 if (before != NULL) { 1012 for (i = 1; i < SWB_NPAGES; i++) { 1013 if (i > pindex) 1014 break; 1015 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1016 if (blk != blk0 - i) 1017 break; 1018 } 1019 *before = i - 1; 1020 } 1021 1022 /* 1023 * find forward-looking contiguous good backing store 1024 */ 1025 if (after != NULL) { 1026 for (i = 1; i < SWB_NPAGES; i++) { 1027 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1028 if (blk != blk0 + i) 1029 break; 1030 } 1031 *after = i - 1; 1032 } 1033 return (TRUE); 1034 } 1035 1036 /* 1037 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1038 * 1039 * This removes any associated swap backing store, whether valid or 1040 * not, from the page. 1041 * 1042 * This routine is typically called when a page is made dirty, at 1043 * which point any associated swap can be freed. MADV_FREE also 1044 * calls us in a special-case situation 1045 * 1046 * NOTE!!! If the page is clean and the swap was valid, the caller 1047 * should make the page dirty before calling this routine. This routine 1048 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1049 * depends on it. 1050 * 1051 * This routine may not sleep. 1052 * 1053 * The object containing the page must be locked. 1054 */ 1055 static void 1056 swap_pager_unswapped(vm_page_t m) 1057 { 1058 1059 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1060 } 1061 1062 /* 1063 * swap_pager_getpages() - bring pages in from swap 1064 * 1065 * Attempt to page in the pages in array "m" of length "count". The caller 1066 * may optionally specify that additional pages preceding and succeeding 1067 * the specified range be paged in. The number of such pages is returned 1068 * in the "rbehind" and "rahead" parameters, and they will be in the 1069 * inactive queue upon return. 1070 * 1071 * The pages in "m" must be busied and will remain busied upon return. 1072 */ 1073 static int 1074 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 1075 int *rahead) 1076 { 1077 struct buf *bp; 1078 vm_page_t mpred, msucc, p; 1079 vm_pindex_t pindex; 1080 daddr_t blk; 1081 int i, j, maxahead, maxbehind, reqcount, shift; 1082 1083 reqcount = count; 1084 1085 VM_OBJECT_WUNLOCK(object); 1086 bp = getpbuf(&nsw_rcount); 1087 VM_OBJECT_WLOCK(object); 1088 1089 if (!swap_pager_haspage(object, m[0]->pindex, &maxbehind, &maxahead)) { 1090 relpbuf(bp, &nsw_rcount); 1091 return (VM_PAGER_FAIL); 1092 } 1093 1094 /* 1095 * Clip the readahead and readbehind ranges to exclude resident pages. 1096 */ 1097 if (rahead != NULL) { 1098 KASSERT(reqcount - 1 <= maxahead, 1099 ("page count %d extends beyond swap block", reqcount)); 1100 *rahead = imin(*rahead, maxahead - (reqcount - 1)); 1101 pindex = m[reqcount - 1]->pindex; 1102 msucc = TAILQ_NEXT(m[reqcount - 1], listq); 1103 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1104 *rahead = msucc->pindex - pindex - 1; 1105 } 1106 if (rbehind != NULL) { 1107 *rbehind = imin(*rbehind, maxbehind); 1108 pindex = m[0]->pindex; 1109 mpred = TAILQ_PREV(m[0], pglist, listq); 1110 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1111 *rbehind = pindex - mpred->pindex - 1; 1112 } 1113 1114 /* 1115 * Allocate readahead and readbehind pages. 1116 */ 1117 shift = rbehind != NULL ? *rbehind : 0; 1118 if (shift != 0) { 1119 for (i = 1; i <= shift; i++) { 1120 p = vm_page_alloc(object, m[0]->pindex - i, 1121 VM_ALLOC_NORMAL); 1122 if (p == NULL) { 1123 /* Shift allocated pages to the left. */ 1124 for (j = 0; j < i - 1; j++) 1125 bp->b_pages[j] = 1126 bp->b_pages[j + shift - i + 1]; 1127 break; 1128 } 1129 bp->b_pages[shift - i] = p; 1130 } 1131 shift = i - 1; 1132 *rbehind = shift; 1133 } 1134 for (i = 0; i < reqcount; i++) 1135 bp->b_pages[i + shift] = m[i]; 1136 if (rahead != NULL) { 1137 for (i = 0; i < *rahead; i++) { 1138 p = vm_page_alloc(object, 1139 m[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); 1140 if (p == NULL) 1141 break; 1142 bp->b_pages[shift + reqcount + i] = p; 1143 } 1144 *rahead = i; 1145 } 1146 if (rbehind != NULL) 1147 count += *rbehind; 1148 if (rahead != NULL) 1149 count += *rahead; 1150 1151 vm_object_pip_add(object, count); 1152 1153 for (i = 0; i < count; i++) 1154 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1155 1156 pindex = bp->b_pages[0]->pindex; 1157 blk = swp_pager_meta_ctl(object, pindex, 0); 1158 KASSERT(blk != SWAPBLK_NONE, 1159 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1160 1161 VM_OBJECT_WUNLOCK(object); 1162 1163 bp->b_flags |= B_PAGING; 1164 bp->b_iocmd = BIO_READ; 1165 bp->b_iodone = swp_pager_async_iodone; 1166 bp->b_rcred = crhold(thread0.td_ucred); 1167 bp->b_wcred = crhold(thread0.td_ucred); 1168 bp->b_blkno = blk; 1169 bp->b_bcount = PAGE_SIZE * count; 1170 bp->b_bufsize = PAGE_SIZE * count; 1171 bp->b_npages = count; 1172 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1173 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1174 1175 VM_CNT_INC(v_swapin); 1176 VM_CNT_ADD(v_swappgsin, count); 1177 1178 /* 1179 * perform the I/O. NOTE!!! bp cannot be considered valid after 1180 * this point because we automatically release it on completion. 1181 * Instead, we look at the one page we are interested in which we 1182 * still hold a lock on even through the I/O completion. 1183 * 1184 * The other pages in our m[] array are also released on completion, 1185 * so we cannot assume they are valid anymore either. 1186 * 1187 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1188 */ 1189 BUF_KERNPROC(bp); 1190 swp_pager_strategy(bp); 1191 1192 /* 1193 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1194 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1195 * is set in the metadata for each page in the request. 1196 */ 1197 VM_OBJECT_WLOCK(object); 1198 while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { 1199 m[0]->oflags |= VPO_SWAPSLEEP; 1200 VM_CNT_INC(v_intrans); 1201 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1202 "swread", hz * 20)) { 1203 printf( 1204 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1205 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1206 } 1207 } 1208 1209 /* 1210 * If we had an unrecoverable read error pages will not be valid. 1211 */ 1212 for (i = 0; i < reqcount; i++) 1213 if (m[i]->valid != VM_PAGE_BITS_ALL) 1214 return (VM_PAGER_ERROR); 1215 1216 return (VM_PAGER_OK); 1217 1218 /* 1219 * A final note: in a low swap situation, we cannot deallocate swap 1220 * and mark a page dirty here because the caller is likely to mark 1221 * the page clean when we return, causing the page to possibly revert 1222 * to all-zero's later. 1223 */ 1224 } 1225 1226 /* 1227 * swap_pager_getpages_async(): 1228 * 1229 * Right now this is emulation of asynchronous operation on top of 1230 * swap_pager_getpages(). 1231 */ 1232 static int 1233 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1234 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1235 { 1236 int r, error; 1237 1238 r = swap_pager_getpages(object, m, count, rbehind, rahead); 1239 VM_OBJECT_WUNLOCK(object); 1240 switch (r) { 1241 case VM_PAGER_OK: 1242 error = 0; 1243 break; 1244 case VM_PAGER_ERROR: 1245 error = EIO; 1246 break; 1247 case VM_PAGER_FAIL: 1248 error = EINVAL; 1249 break; 1250 default: 1251 panic("unhandled swap_pager_getpages() error %d", r); 1252 } 1253 (iodone)(arg, m, count, error); 1254 VM_OBJECT_WLOCK(object); 1255 1256 return (r); 1257 } 1258 1259 /* 1260 * swap_pager_putpages: 1261 * 1262 * Assign swap (if necessary) and initiate I/O on the specified pages. 1263 * 1264 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1265 * are automatically converted to SWAP objects. 1266 * 1267 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1268 * vm_page reservation system coupled with properly written VFS devices 1269 * should ensure that no low-memory deadlock occurs. This is an area 1270 * which needs work. 1271 * 1272 * The parent has N vm_object_pip_add() references prior to 1273 * calling us and will remove references for rtvals[] that are 1274 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1275 * completion. 1276 * 1277 * The parent has soft-busy'd the pages it passes us and will unbusy 1278 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1279 * We need to unbusy the rest on I/O completion. 1280 */ 1281 static void 1282 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1283 int flags, int *rtvals) 1284 { 1285 int i, n; 1286 boolean_t sync; 1287 1288 if (count && m[0]->object != object) { 1289 panic("swap_pager_putpages: object mismatch %p/%p", 1290 object, 1291 m[0]->object 1292 ); 1293 } 1294 1295 /* 1296 * Step 1 1297 * 1298 * Turn object into OBJT_SWAP 1299 * check for bogus sysops 1300 * force sync if not pageout process 1301 */ 1302 if (object->type != OBJT_SWAP) 1303 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1304 VM_OBJECT_WUNLOCK(object); 1305 1306 n = 0; 1307 if (curproc != pageproc) 1308 sync = TRUE; 1309 else 1310 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1311 1312 /* 1313 * Step 2 1314 * 1315 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1316 * The page is left dirty until the pageout operation completes 1317 * successfully. 1318 */ 1319 for (i = 0; i < count; i += n) { 1320 int j; 1321 struct buf *bp; 1322 daddr_t blk; 1323 1324 /* 1325 * Maximum I/O size is limited by a number of factors. 1326 */ 1327 n = min(BLIST_MAX_ALLOC, count - i); 1328 n = min(n, nsw_cluster_max); 1329 1330 /* 1331 * Get biggest block of swap we can. If we fail, fall 1332 * back and try to allocate a smaller block. Don't go 1333 * overboard trying to allocate space if it would overly 1334 * fragment swap. 1335 */ 1336 while ( 1337 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1338 n > 4 1339 ) { 1340 n >>= 1; 1341 } 1342 if (blk == SWAPBLK_NONE) { 1343 for (j = 0; j < n; ++j) 1344 rtvals[i+j] = VM_PAGER_FAIL; 1345 continue; 1346 } 1347 1348 /* 1349 * All I/O parameters have been satisfied, build the I/O 1350 * request and assign the swap space. 1351 */ 1352 if (sync == TRUE) { 1353 bp = getpbuf(&nsw_wcount_sync); 1354 } else { 1355 bp = getpbuf(&nsw_wcount_async); 1356 bp->b_flags = B_ASYNC; 1357 } 1358 bp->b_flags |= B_PAGING; 1359 bp->b_iocmd = BIO_WRITE; 1360 1361 bp->b_rcred = crhold(thread0.td_ucred); 1362 bp->b_wcred = crhold(thread0.td_ucred); 1363 bp->b_bcount = PAGE_SIZE * n; 1364 bp->b_bufsize = PAGE_SIZE * n; 1365 bp->b_blkno = blk; 1366 1367 VM_OBJECT_WLOCK(object); 1368 for (j = 0; j < n; ++j) { 1369 vm_page_t mreq = m[i+j]; 1370 1371 swp_pager_meta_build( 1372 mreq->object, 1373 mreq->pindex, 1374 blk + j 1375 ); 1376 vm_page_dirty(mreq); 1377 mreq->oflags |= VPO_SWAPINPROG; 1378 bp->b_pages[j] = mreq; 1379 } 1380 VM_OBJECT_WUNLOCK(object); 1381 bp->b_npages = n; 1382 /* 1383 * Must set dirty range for NFS to work. 1384 */ 1385 bp->b_dirtyoff = 0; 1386 bp->b_dirtyend = bp->b_bcount; 1387 1388 VM_CNT_INC(v_swapout); 1389 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1390 1391 /* 1392 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1393 * can call the async completion routine at the end of a 1394 * synchronous I/O operation. Otherwise, our caller would 1395 * perform duplicate unbusy and wakeup operations on the page 1396 * and object, respectively. 1397 */ 1398 for (j = 0; j < n; j++) 1399 rtvals[i + j] = VM_PAGER_PEND; 1400 1401 /* 1402 * asynchronous 1403 * 1404 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1405 */ 1406 if (sync == FALSE) { 1407 bp->b_iodone = swp_pager_async_iodone; 1408 BUF_KERNPROC(bp); 1409 swp_pager_strategy(bp); 1410 continue; 1411 } 1412 1413 /* 1414 * synchronous 1415 * 1416 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1417 */ 1418 bp->b_iodone = bdone; 1419 swp_pager_strategy(bp); 1420 1421 /* 1422 * Wait for the sync I/O to complete. 1423 */ 1424 bwait(bp, PVM, "swwrt"); 1425 1426 /* 1427 * Now that we are through with the bp, we can call the 1428 * normal async completion, which frees everything up. 1429 */ 1430 swp_pager_async_iodone(bp); 1431 } 1432 VM_OBJECT_WLOCK(object); 1433 } 1434 1435 /* 1436 * swp_pager_async_iodone: 1437 * 1438 * Completion routine for asynchronous reads and writes from/to swap. 1439 * Also called manually by synchronous code to finish up a bp. 1440 * 1441 * This routine may not sleep. 1442 */ 1443 static void 1444 swp_pager_async_iodone(struct buf *bp) 1445 { 1446 int i; 1447 vm_object_t object = NULL; 1448 1449 /* 1450 * report error 1451 */ 1452 if (bp->b_ioflags & BIO_ERROR) { 1453 printf( 1454 "swap_pager: I/O error - %s failed; blkno %ld," 1455 "size %ld, error %d\n", 1456 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1457 (long)bp->b_blkno, 1458 (long)bp->b_bcount, 1459 bp->b_error 1460 ); 1461 } 1462 1463 /* 1464 * remove the mapping for kernel virtual 1465 */ 1466 if (buf_mapped(bp)) 1467 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1468 else 1469 bp->b_data = bp->b_kvabase; 1470 1471 if (bp->b_npages) { 1472 object = bp->b_pages[0]->object; 1473 VM_OBJECT_WLOCK(object); 1474 } 1475 1476 /* 1477 * cleanup pages. If an error occurs writing to swap, we are in 1478 * very serious trouble. If it happens to be a disk error, though, 1479 * we may be able to recover by reassigning the swap later on. So 1480 * in this case we remove the m->swapblk assignment for the page 1481 * but do not free it in the rlist. The errornous block(s) are thus 1482 * never reallocated as swap. Redirty the page and continue. 1483 */ 1484 for (i = 0; i < bp->b_npages; ++i) { 1485 vm_page_t m = bp->b_pages[i]; 1486 1487 m->oflags &= ~VPO_SWAPINPROG; 1488 if (m->oflags & VPO_SWAPSLEEP) { 1489 m->oflags &= ~VPO_SWAPSLEEP; 1490 wakeup(&object->paging_in_progress); 1491 } 1492 1493 if (bp->b_ioflags & BIO_ERROR) { 1494 /* 1495 * If an error occurs I'd love to throw the swapblk 1496 * away without freeing it back to swapspace, so it 1497 * can never be used again. But I can't from an 1498 * interrupt. 1499 */ 1500 if (bp->b_iocmd == BIO_READ) { 1501 /* 1502 * NOTE: for reads, m->dirty will probably 1503 * be overridden by the original caller of 1504 * getpages so don't play cute tricks here. 1505 */ 1506 m->valid = 0; 1507 } else { 1508 /* 1509 * If a write error occurs, reactivate page 1510 * so it doesn't clog the inactive list, 1511 * then finish the I/O. 1512 */ 1513 vm_page_dirty(m); 1514 vm_page_lock(m); 1515 vm_page_activate(m); 1516 vm_page_unlock(m); 1517 vm_page_sunbusy(m); 1518 } 1519 } else if (bp->b_iocmd == BIO_READ) { 1520 /* 1521 * NOTE: for reads, m->dirty will probably be 1522 * overridden by the original caller of getpages so 1523 * we cannot set them in order to free the underlying 1524 * swap in a low-swap situation. I don't think we'd 1525 * want to do that anyway, but it was an optimization 1526 * that existed in the old swapper for a time before 1527 * it got ripped out due to precisely this problem. 1528 */ 1529 KASSERT(!pmap_page_is_mapped(m), 1530 ("swp_pager_async_iodone: page %p is mapped", m)); 1531 KASSERT(m->dirty == 0, 1532 ("swp_pager_async_iodone: page %p is dirty", m)); 1533 1534 m->valid = VM_PAGE_BITS_ALL; 1535 if (i < bp->b_pgbefore || 1536 i >= bp->b_npages - bp->b_pgafter) 1537 vm_page_readahead_finish(m); 1538 } else { 1539 /* 1540 * For write success, clear the dirty 1541 * status, then finish the I/O ( which decrements the 1542 * busy count and possibly wakes waiter's up ). 1543 * A page is only written to swap after a period of 1544 * inactivity. Therefore, we do not expect it to be 1545 * reused. 1546 */ 1547 KASSERT(!pmap_page_is_write_mapped(m), 1548 ("swp_pager_async_iodone: page %p is not write" 1549 " protected", m)); 1550 vm_page_undirty(m); 1551 vm_page_lock(m); 1552 vm_page_deactivate_noreuse(m); 1553 vm_page_unlock(m); 1554 vm_page_sunbusy(m); 1555 } 1556 } 1557 1558 /* 1559 * adjust pip. NOTE: the original parent may still have its own 1560 * pip refs on the object. 1561 */ 1562 if (object != NULL) { 1563 vm_object_pip_wakeupn(object, bp->b_npages); 1564 VM_OBJECT_WUNLOCK(object); 1565 } 1566 1567 /* 1568 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1569 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1570 * trigger a KASSERT in relpbuf(). 1571 */ 1572 if (bp->b_vp) { 1573 bp->b_vp = NULL; 1574 bp->b_bufobj = NULL; 1575 } 1576 /* 1577 * release the physical I/O buffer 1578 */ 1579 relpbuf( 1580 bp, 1581 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1582 ((bp->b_flags & B_ASYNC) ? 1583 &nsw_wcount_async : 1584 &nsw_wcount_sync 1585 ) 1586 ) 1587 ); 1588 } 1589 1590 /* 1591 * swap_pager_isswapped: 1592 * 1593 * Return 1 if at least one page in the given object is paged 1594 * out to the given swap device. 1595 * 1596 * This routine may not sleep. 1597 */ 1598 int 1599 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1600 { 1601 daddr_t index = 0; 1602 int bcount; 1603 int i; 1604 1605 VM_OBJECT_ASSERT_WLOCKED(object); 1606 if (object->type != OBJT_SWAP) 1607 return (0); 1608 1609 mtx_lock(&swhash_mtx); 1610 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1611 struct swblock *swap; 1612 1613 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1614 for (i = 0; i < SWAP_META_PAGES; ++i) { 1615 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1616 mtx_unlock(&swhash_mtx); 1617 return (1); 1618 } 1619 } 1620 } 1621 index += SWAP_META_PAGES; 1622 } 1623 mtx_unlock(&swhash_mtx); 1624 return (0); 1625 } 1626 1627 int 1628 swap_pager_nswapdev(void) 1629 { 1630 1631 return (nswapdev); 1632 } 1633 1634 /* 1635 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1636 * 1637 * This routine dissociates the page at the given index within an object 1638 * from its backing store, paging it in if it does not reside in memory. 1639 * If the page is paged in, it is marked dirty and placed in the laundry 1640 * queue. The page is marked dirty because it no longer has backing 1641 * store. It is placed in the laundry queue because it has not been 1642 * accessed recently. Otherwise, it would already reside in memory. 1643 * 1644 * We also attempt to swap in all other pages in the swap block. 1645 * However, we only guarantee that the one at the specified index is 1646 * paged in. 1647 * 1648 * XXX - The code to page the whole block in doesn't work, so we 1649 * revert to the one-by-one behavior for now. Sigh. 1650 */ 1651 static inline void 1652 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1653 { 1654 vm_page_t m; 1655 1656 vm_object_pip_add(object, 1); 1657 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1658 if (m->valid == VM_PAGE_BITS_ALL) { 1659 vm_object_pip_wakeup(object); 1660 vm_page_dirty(m); 1661 vm_page_lock(m); 1662 vm_page_activate(m); 1663 vm_page_unlock(m); 1664 vm_page_xunbusy(m); 1665 vm_pager_page_unswapped(m); 1666 return; 1667 } 1668 1669 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1670 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1671 vm_object_pip_wakeup(object); 1672 vm_page_dirty(m); 1673 vm_page_lock(m); 1674 vm_page_launder(m); 1675 vm_page_unlock(m); 1676 vm_page_xunbusy(m); 1677 vm_pager_page_unswapped(m); 1678 } 1679 1680 /* 1681 * swap_pager_swapoff: 1682 * 1683 * Page in all of the pages that have been paged out to the 1684 * given device. The corresponding blocks in the bitmap must be 1685 * marked as allocated and the device must be flagged SW_CLOSING. 1686 * There may be no processes swapped out to the device. 1687 * 1688 * This routine may block. 1689 */ 1690 static void 1691 swap_pager_swapoff(struct swdevt *sp) 1692 { 1693 struct swblock *swap; 1694 vm_object_t locked_obj, object; 1695 vm_pindex_t pindex; 1696 int i, j, retries; 1697 1698 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1699 1700 retries = 0; 1701 locked_obj = NULL; 1702 full_rescan: 1703 mtx_lock(&swhash_mtx); 1704 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1705 restart: 1706 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1707 object = swap->swb_object; 1708 pindex = swap->swb_index; 1709 for (j = 0; j < SWAP_META_PAGES; ++j) { 1710 if (!swp_pager_isondev(swap->swb_pages[j], sp)) 1711 continue; 1712 if (locked_obj != object) { 1713 if (locked_obj != NULL) 1714 VM_OBJECT_WUNLOCK(locked_obj); 1715 locked_obj = object; 1716 if (!VM_OBJECT_TRYWLOCK(object)) { 1717 mtx_unlock(&swhash_mtx); 1718 /* Depends on type-stability. */ 1719 VM_OBJECT_WLOCK(object); 1720 mtx_lock(&swhash_mtx); 1721 goto restart; 1722 } 1723 } 1724 MPASS(locked_obj == object); 1725 mtx_unlock(&swhash_mtx); 1726 swp_pager_force_pagein(object, pindex + j); 1727 mtx_lock(&swhash_mtx); 1728 goto restart; 1729 } 1730 } 1731 } 1732 mtx_unlock(&swhash_mtx); 1733 if (locked_obj != NULL) { 1734 VM_OBJECT_WUNLOCK(locked_obj); 1735 locked_obj = NULL; 1736 } 1737 if (sp->sw_used) { 1738 /* 1739 * Objects may be locked or paging to the device being 1740 * removed, so we will miss their pages and need to 1741 * make another pass. We have marked this device as 1742 * SW_CLOSING, so the activity should finish soon. 1743 */ 1744 retries++; 1745 if (retries > 100) { 1746 panic("swapoff: failed to locate %d swap blocks", 1747 sp->sw_used); 1748 } 1749 pause("swpoff", hz / 20); 1750 goto full_rescan; 1751 } 1752 EVENTHANDLER_INVOKE(swapoff, sp); 1753 } 1754 1755 /************************************************************************ 1756 * SWAP META DATA * 1757 ************************************************************************ 1758 * 1759 * These routines manipulate the swap metadata stored in the 1760 * OBJT_SWAP object. 1761 * 1762 * Swap metadata is implemented with a global hash and not directly 1763 * linked into the object. Instead the object simply contains 1764 * appropriate tracking counters. 1765 */ 1766 1767 /* 1768 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1769 * 1770 * We first convert the object to a swap object if it is a default 1771 * object. 1772 * 1773 * The specified swapblk is added to the object's swap metadata. If 1774 * the swapblk is not valid, it is freed instead. Any previously 1775 * assigned swapblk is freed. 1776 */ 1777 static void 1778 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1779 { 1780 static volatile int exhausted; 1781 struct swblock *swap; 1782 struct swblock **pswap; 1783 int idx; 1784 1785 VM_OBJECT_ASSERT_WLOCKED(object); 1786 /* 1787 * Convert default object to swap object if necessary 1788 */ 1789 if (object->type != OBJT_SWAP) { 1790 object->type = OBJT_SWAP; 1791 object->un_pager.swp.swp_bcount = 0; 1792 KASSERT(object->handle == NULL, ("default pager with handle")); 1793 } 1794 1795 /* 1796 * Locate hash entry. If not found create, but if we aren't adding 1797 * anything just return. If we run out of space in the map we wait 1798 * and, since the hash table may have changed, retry. 1799 */ 1800 retry: 1801 mtx_lock(&swhash_mtx); 1802 pswap = swp_pager_hash(object, pindex); 1803 1804 if ((swap = *pswap) == NULL) { 1805 int i; 1806 1807 if (swapblk == SWAPBLK_NONE) 1808 goto done; 1809 1810 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1811 (curproc == pageproc ? M_USE_RESERVE : 0)); 1812 if (swap == NULL) { 1813 mtx_unlock(&swhash_mtx); 1814 VM_OBJECT_WUNLOCK(object); 1815 if (uma_zone_exhausted(swap_zone)) { 1816 if (atomic_cmpset_int(&exhausted, 0, 1)) 1817 printf("swap zone exhausted, " 1818 "increase kern.maxswzone\n"); 1819 vm_pageout_oom(VM_OOM_SWAPZ); 1820 pause("swzonex", 10); 1821 } else 1822 VM_WAIT; 1823 VM_OBJECT_WLOCK(object); 1824 goto retry; 1825 } 1826 1827 if (atomic_cmpset_int(&exhausted, 1, 0)) 1828 printf("swap zone ok\n"); 1829 1830 swap->swb_hnext = NULL; 1831 swap->swb_object = object; 1832 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1833 swap->swb_count = 0; 1834 1835 ++object->un_pager.swp.swp_bcount; 1836 1837 for (i = 0; i < SWAP_META_PAGES; ++i) 1838 swap->swb_pages[i] = SWAPBLK_NONE; 1839 } 1840 1841 /* 1842 * Delete prior contents of metadata 1843 */ 1844 idx = pindex & SWAP_META_MASK; 1845 1846 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1847 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1848 --swap->swb_count; 1849 } 1850 1851 /* 1852 * Enter block into metadata 1853 */ 1854 swap->swb_pages[idx] = swapblk; 1855 if (swapblk != SWAPBLK_NONE) 1856 ++swap->swb_count; 1857 done: 1858 mtx_unlock(&swhash_mtx); 1859 } 1860 1861 /* 1862 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1863 * 1864 * The requested range of blocks is freed, with any associated swap 1865 * returned to the swap bitmap. 1866 * 1867 * This routine will free swap metadata structures as they are cleaned 1868 * out. This routine does *NOT* operate on swap metadata associated 1869 * with resident pages. 1870 */ 1871 static void 1872 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count) 1873 { 1874 struct swblock **pswap, *swap; 1875 vm_pindex_t c; 1876 daddr_t v; 1877 int n, sidx; 1878 1879 VM_OBJECT_ASSERT_LOCKED(object); 1880 if (object->type != OBJT_SWAP || count == 0) 1881 return; 1882 1883 mtx_lock(&swhash_mtx); 1884 for (c = 0; c < count;) { 1885 pswap = swp_pager_hash(object, index); 1886 sidx = index & SWAP_META_MASK; 1887 n = SWAP_META_PAGES - sidx; 1888 index += n; 1889 if ((swap = *pswap) == NULL) { 1890 c += n; 1891 continue; 1892 } 1893 for (; c < count && sidx < SWAP_META_PAGES; ++c, ++sidx) { 1894 if ((v = swap->swb_pages[sidx]) == SWAPBLK_NONE) 1895 continue; 1896 swp_pager_freeswapspace(v, 1); 1897 swap->swb_pages[sidx] = SWAPBLK_NONE; 1898 if (--swap->swb_count == 0) { 1899 *pswap = swap->swb_hnext; 1900 uma_zfree(swap_zone, swap); 1901 --object->un_pager.swp.swp_bcount; 1902 c += SWAP_META_PAGES - sidx; 1903 break; 1904 } 1905 } 1906 } 1907 mtx_unlock(&swhash_mtx); 1908 } 1909 1910 /* 1911 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1912 * 1913 * This routine locates and destroys all swap metadata associated with 1914 * an object. 1915 */ 1916 static void 1917 swp_pager_meta_free_all(vm_object_t object) 1918 { 1919 struct swblock **pswap, *swap; 1920 vm_pindex_t index; 1921 daddr_t v; 1922 int i; 1923 1924 VM_OBJECT_ASSERT_WLOCKED(object); 1925 if (object->type != OBJT_SWAP) 1926 return; 1927 1928 index = 0; 1929 while (object->un_pager.swp.swp_bcount != 0) { 1930 mtx_lock(&swhash_mtx); 1931 pswap = swp_pager_hash(object, index); 1932 if ((swap = *pswap) != NULL) { 1933 for (i = 0; i < SWAP_META_PAGES; ++i) { 1934 v = swap->swb_pages[i]; 1935 if (v != SWAPBLK_NONE) { 1936 --swap->swb_count; 1937 swp_pager_freeswapspace(v, 1); 1938 } 1939 } 1940 if (swap->swb_count != 0) 1941 panic( 1942 "swap_pager_meta_free_all: swb_count != 0"); 1943 *pswap = swap->swb_hnext; 1944 uma_zfree(swap_zone, swap); 1945 --object->un_pager.swp.swp_bcount; 1946 } 1947 mtx_unlock(&swhash_mtx); 1948 index += SWAP_META_PAGES; 1949 } 1950 } 1951 1952 /* 1953 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1954 * 1955 * This routine is capable of looking up, popping, or freeing 1956 * swapblk assignments in the swap meta data or in the vm_page_t. 1957 * The routine typically returns the swapblk being looked-up, or popped, 1958 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1959 * was invalid. This routine will automatically free any invalid 1960 * meta-data swapblks. 1961 * 1962 * It is not possible to store invalid swapblks in the swap meta data 1963 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1964 * 1965 * When acting on a busy resident page and paging is in progress, we 1966 * have to wait until paging is complete but otherwise can act on the 1967 * busy page. 1968 * 1969 * SWM_FREE remove and free swap block from metadata 1970 * SWM_POP remove from meta data but do not free.. pop it out 1971 */ 1972 static daddr_t 1973 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1974 { 1975 struct swblock **pswap; 1976 struct swblock *swap; 1977 daddr_t r1; 1978 int idx; 1979 1980 VM_OBJECT_ASSERT_LOCKED(object); 1981 /* 1982 * The meta data only exists of the object is OBJT_SWAP 1983 * and even then might not be allocated yet. 1984 */ 1985 if (object->type != OBJT_SWAP) 1986 return (SWAPBLK_NONE); 1987 1988 r1 = SWAPBLK_NONE; 1989 mtx_lock(&swhash_mtx); 1990 pswap = swp_pager_hash(object, pindex); 1991 1992 if ((swap = *pswap) != NULL) { 1993 idx = pindex & SWAP_META_MASK; 1994 r1 = swap->swb_pages[idx]; 1995 1996 if (r1 != SWAPBLK_NONE) { 1997 if (flags & SWM_FREE) { 1998 swp_pager_freeswapspace(r1, 1); 1999 r1 = SWAPBLK_NONE; 2000 } 2001 if (flags & (SWM_FREE|SWM_POP)) { 2002 swap->swb_pages[idx] = SWAPBLK_NONE; 2003 if (--swap->swb_count == 0) { 2004 *pswap = swap->swb_hnext; 2005 uma_zfree(swap_zone, swap); 2006 --object->un_pager.swp.swp_bcount; 2007 } 2008 } 2009 } 2010 } 2011 mtx_unlock(&swhash_mtx); 2012 return (r1); 2013 } 2014 2015 /* 2016 * Returns the least page index which is greater than or equal to the 2017 * parameter pindex and for which there is a swap block allocated. 2018 * Returns object's size if the object's type is not swap or if there 2019 * are no allocated swap blocks for the object after the requested 2020 * pindex. 2021 */ 2022 vm_pindex_t 2023 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex) 2024 { 2025 struct swblock **pswap, *swap; 2026 vm_pindex_t i, j, lim; 2027 int idx; 2028 2029 VM_OBJECT_ASSERT_LOCKED(object); 2030 if (object->type != OBJT_SWAP || object->un_pager.swp.swp_bcount == 0) 2031 return (object->size); 2032 2033 mtx_lock(&swhash_mtx); 2034 for (j = pindex; j < object->size; j = lim) { 2035 pswap = swp_pager_hash(object, j); 2036 lim = rounddown2(j + SWAP_META_PAGES, SWAP_META_PAGES); 2037 if (lim > object->size) 2038 lim = object->size; 2039 if ((swap = *pswap) != NULL) { 2040 for (idx = j & SWAP_META_MASK, i = j; i < lim; 2041 i++, idx++) { 2042 if (swap->swb_pages[idx] != SWAPBLK_NONE) 2043 goto found; 2044 } 2045 } 2046 } 2047 i = object->size; 2048 found: 2049 mtx_unlock(&swhash_mtx); 2050 return (i); 2051 } 2052 2053 /* 2054 * System call swapon(name) enables swapping on device name, 2055 * which must be in the swdevsw. Return EBUSY 2056 * if already swapping on this device. 2057 */ 2058 #ifndef _SYS_SYSPROTO_H_ 2059 struct swapon_args { 2060 char *name; 2061 }; 2062 #endif 2063 2064 /* 2065 * MPSAFE 2066 */ 2067 /* ARGSUSED */ 2068 int 2069 sys_swapon(struct thread *td, struct swapon_args *uap) 2070 { 2071 struct vattr attr; 2072 struct vnode *vp; 2073 struct nameidata nd; 2074 int error; 2075 2076 error = priv_check(td, PRIV_SWAPON); 2077 if (error) 2078 return (error); 2079 2080 sx_xlock(&swdev_syscall_lock); 2081 2082 /* 2083 * Swap metadata may not fit in the KVM if we have physical 2084 * memory of >1GB. 2085 */ 2086 if (swap_zone == NULL) { 2087 error = ENOMEM; 2088 goto done; 2089 } 2090 2091 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2092 uap->name, td); 2093 error = namei(&nd); 2094 if (error) 2095 goto done; 2096 2097 NDFREE(&nd, NDF_ONLY_PNBUF); 2098 vp = nd.ni_vp; 2099 2100 if (vn_isdisk(vp, &error)) { 2101 error = swapongeom(vp); 2102 } else if (vp->v_type == VREG && 2103 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2104 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2105 /* 2106 * Allow direct swapping to NFS regular files in the same 2107 * way that nfs_mountroot() sets up diskless swapping. 2108 */ 2109 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2110 } 2111 2112 if (error) 2113 vrele(vp); 2114 done: 2115 sx_xunlock(&swdev_syscall_lock); 2116 return (error); 2117 } 2118 2119 /* 2120 * Check that the total amount of swap currently configured does not 2121 * exceed half the theoretical maximum. If it does, print a warning 2122 * message and return -1; otherwise, return 0. 2123 */ 2124 static int 2125 swapon_check_swzone(unsigned long npages) 2126 { 2127 unsigned long maxpages; 2128 2129 /* absolute maximum we can handle assuming 100% efficiency */ 2130 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2131 2132 /* recommend using no more than half that amount */ 2133 if (npages > maxpages / 2) { 2134 printf("warning: total configured swap (%lu pages) " 2135 "exceeds maximum recommended amount (%lu pages).\n", 2136 npages, maxpages / 2); 2137 printf("warning: increase kern.maxswzone " 2138 "or reduce amount of swap.\n"); 2139 return (-1); 2140 } 2141 return (0); 2142 } 2143 2144 static void 2145 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2146 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2147 { 2148 struct swdevt *sp, *tsp; 2149 swblk_t dvbase; 2150 u_long mblocks; 2151 2152 /* 2153 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2154 * First chop nblks off to page-align it, then convert. 2155 * 2156 * sw->sw_nblks is in page-sized chunks now too. 2157 */ 2158 nblks &= ~(ctodb(1) - 1); 2159 nblks = dbtoc(nblks); 2160 2161 /* 2162 * If we go beyond this, we get overflows in the radix 2163 * tree bitmap code. 2164 */ 2165 mblocks = 0x40000000 / BLIST_META_RADIX; 2166 if (nblks > mblocks) { 2167 printf( 2168 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2169 mblocks / 1024 / 1024 * PAGE_SIZE); 2170 nblks = mblocks; 2171 } 2172 2173 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2174 sp->sw_vp = vp; 2175 sp->sw_id = id; 2176 sp->sw_dev = dev; 2177 sp->sw_flags = 0; 2178 sp->sw_nblks = nblks; 2179 sp->sw_used = 0; 2180 sp->sw_strategy = strategy; 2181 sp->sw_close = close; 2182 sp->sw_flags = flags; 2183 2184 sp->sw_blist = blist_create(nblks, M_WAITOK); 2185 /* 2186 * Do not free the first two block in order to avoid overwriting 2187 * any bsd label at the front of the partition 2188 */ 2189 blist_free(sp->sw_blist, 2, nblks - 2); 2190 2191 dvbase = 0; 2192 mtx_lock(&sw_dev_mtx); 2193 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2194 if (tsp->sw_end >= dvbase) { 2195 /* 2196 * We put one uncovered page between the devices 2197 * in order to definitively prevent any cross-device 2198 * I/O requests 2199 */ 2200 dvbase = tsp->sw_end + 1; 2201 } 2202 } 2203 sp->sw_first = dvbase; 2204 sp->sw_end = dvbase + nblks; 2205 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2206 nswapdev++; 2207 swap_pager_avail += nblks; 2208 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2209 swapon_check_swzone(swap_total / PAGE_SIZE); 2210 swp_sizecheck(); 2211 mtx_unlock(&sw_dev_mtx); 2212 EVENTHANDLER_INVOKE(swapon, sp); 2213 } 2214 2215 /* 2216 * SYSCALL: swapoff(devname) 2217 * 2218 * Disable swapping on the given device. 2219 * 2220 * XXX: Badly designed system call: it should use a device index 2221 * rather than filename as specification. We keep sw_vp around 2222 * only to make this work. 2223 */ 2224 #ifndef _SYS_SYSPROTO_H_ 2225 struct swapoff_args { 2226 char *name; 2227 }; 2228 #endif 2229 2230 /* 2231 * MPSAFE 2232 */ 2233 /* ARGSUSED */ 2234 int 2235 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2236 { 2237 struct vnode *vp; 2238 struct nameidata nd; 2239 struct swdevt *sp; 2240 int error; 2241 2242 error = priv_check(td, PRIV_SWAPOFF); 2243 if (error) 2244 return (error); 2245 2246 sx_xlock(&swdev_syscall_lock); 2247 2248 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2249 td); 2250 error = namei(&nd); 2251 if (error) 2252 goto done; 2253 NDFREE(&nd, NDF_ONLY_PNBUF); 2254 vp = nd.ni_vp; 2255 2256 mtx_lock(&sw_dev_mtx); 2257 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2258 if (sp->sw_vp == vp) 2259 break; 2260 } 2261 mtx_unlock(&sw_dev_mtx); 2262 if (sp == NULL) { 2263 error = EINVAL; 2264 goto done; 2265 } 2266 error = swapoff_one(sp, td->td_ucred); 2267 done: 2268 sx_xunlock(&swdev_syscall_lock); 2269 return (error); 2270 } 2271 2272 static int 2273 swapoff_one(struct swdevt *sp, struct ucred *cred) 2274 { 2275 u_long nblks, dvbase; 2276 #ifdef MAC 2277 int error; 2278 #endif 2279 2280 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2281 #ifdef MAC 2282 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2283 error = mac_system_check_swapoff(cred, sp->sw_vp); 2284 (void) VOP_UNLOCK(sp->sw_vp, 0); 2285 if (error != 0) 2286 return (error); 2287 #endif 2288 nblks = sp->sw_nblks; 2289 2290 /* 2291 * We can turn off this swap device safely only if the 2292 * available virtual memory in the system will fit the amount 2293 * of data we will have to page back in, plus an epsilon so 2294 * the system doesn't become critically low on swap space. 2295 */ 2296 if (vm_cnt.v_free_count + swap_pager_avail < nblks + nswap_lowat) 2297 return (ENOMEM); 2298 2299 /* 2300 * Prevent further allocations on this device. 2301 */ 2302 mtx_lock(&sw_dev_mtx); 2303 sp->sw_flags |= SW_CLOSING; 2304 for (dvbase = 0; dvbase < nblks; dvbase += BLIST_BMAP_RADIX) { 2305 /* 2306 * blist_fill() cannot allocate more than BLIST_BMAP_RADIX 2307 * blocks per call. 2308 */ 2309 swap_pager_avail -= blist_fill(sp->sw_blist, 2310 dvbase, ulmin(nblks - dvbase, BLIST_BMAP_RADIX)); 2311 } 2312 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2313 mtx_unlock(&sw_dev_mtx); 2314 2315 /* 2316 * Page in the contents of the device and close it. 2317 */ 2318 swap_pager_swapoff(sp); 2319 2320 sp->sw_close(curthread, sp); 2321 mtx_lock(&sw_dev_mtx); 2322 sp->sw_id = NULL; 2323 TAILQ_REMOVE(&swtailq, sp, sw_list); 2324 nswapdev--; 2325 if (nswapdev == 0) { 2326 swap_pager_full = 2; 2327 swap_pager_almost_full = 1; 2328 } 2329 if (swdevhd == sp) 2330 swdevhd = NULL; 2331 mtx_unlock(&sw_dev_mtx); 2332 blist_destroy(sp->sw_blist); 2333 free(sp, M_VMPGDATA); 2334 return (0); 2335 } 2336 2337 void 2338 swapoff_all(void) 2339 { 2340 struct swdevt *sp, *spt; 2341 const char *devname; 2342 int error; 2343 2344 sx_xlock(&swdev_syscall_lock); 2345 2346 mtx_lock(&sw_dev_mtx); 2347 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2348 mtx_unlock(&sw_dev_mtx); 2349 if (vn_isdisk(sp->sw_vp, NULL)) 2350 devname = devtoname(sp->sw_vp->v_rdev); 2351 else 2352 devname = "[file]"; 2353 error = swapoff_one(sp, thread0.td_ucred); 2354 if (error != 0) { 2355 printf("Cannot remove swap device %s (error=%d), " 2356 "skipping.\n", devname, error); 2357 } else if (bootverbose) { 2358 printf("Swap device %s removed.\n", devname); 2359 } 2360 mtx_lock(&sw_dev_mtx); 2361 } 2362 mtx_unlock(&sw_dev_mtx); 2363 2364 sx_xunlock(&swdev_syscall_lock); 2365 } 2366 2367 void 2368 swap_pager_status(int *total, int *used) 2369 { 2370 struct swdevt *sp; 2371 2372 *total = 0; 2373 *used = 0; 2374 mtx_lock(&sw_dev_mtx); 2375 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2376 *total += sp->sw_nblks; 2377 *used += sp->sw_used; 2378 } 2379 mtx_unlock(&sw_dev_mtx); 2380 } 2381 2382 int 2383 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2384 { 2385 struct swdevt *sp; 2386 const char *tmp_devname; 2387 int error, n; 2388 2389 n = 0; 2390 error = ENOENT; 2391 mtx_lock(&sw_dev_mtx); 2392 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2393 if (n != name) { 2394 n++; 2395 continue; 2396 } 2397 xs->xsw_version = XSWDEV_VERSION; 2398 xs->xsw_dev = sp->sw_dev; 2399 xs->xsw_flags = sp->sw_flags; 2400 xs->xsw_nblks = sp->sw_nblks; 2401 xs->xsw_used = sp->sw_used; 2402 if (devname != NULL) { 2403 if (vn_isdisk(sp->sw_vp, NULL)) 2404 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2405 else 2406 tmp_devname = "[file]"; 2407 strncpy(devname, tmp_devname, len); 2408 } 2409 error = 0; 2410 break; 2411 } 2412 mtx_unlock(&sw_dev_mtx); 2413 return (error); 2414 } 2415 2416 #if defined(COMPAT_FREEBSD11) 2417 #define XSWDEV_VERSION_11 1 2418 struct xswdev11 { 2419 u_int xsw_version; 2420 uint32_t xsw_dev; 2421 int xsw_flags; 2422 int xsw_nblks; 2423 int xsw_used; 2424 }; 2425 #endif 2426 2427 static int 2428 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2429 { 2430 struct xswdev xs; 2431 #if defined(COMPAT_FREEBSD11) 2432 struct xswdev11 xs11; 2433 #endif 2434 int error; 2435 2436 if (arg2 != 1) /* name length */ 2437 return (EINVAL); 2438 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2439 if (error != 0) 2440 return (error); 2441 #if defined(COMPAT_FREEBSD11) 2442 if (req->oldlen == sizeof(xs11)) { 2443 xs11.xsw_version = XSWDEV_VERSION_11; 2444 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 2445 xs11.xsw_flags = xs.xsw_flags; 2446 xs11.xsw_nblks = xs.xsw_nblks; 2447 xs11.xsw_used = xs.xsw_used; 2448 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 2449 } else 2450 #endif 2451 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2452 return (error); 2453 } 2454 2455 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2456 "Number of swap devices"); 2457 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2458 sysctl_vm_swap_info, 2459 "Swap statistics by device"); 2460 2461 /* 2462 * vmspace_swap_count() - count the approximate swap usage in pages for a 2463 * vmspace. 2464 * 2465 * The map must be locked. 2466 * 2467 * Swap usage is determined by taking the proportional swap used by 2468 * VM objects backing the VM map. To make up for fractional losses, 2469 * if the VM object has any swap use at all the associated map entries 2470 * count for at least 1 swap page. 2471 */ 2472 long 2473 vmspace_swap_count(struct vmspace *vmspace) 2474 { 2475 vm_map_t map; 2476 vm_map_entry_t cur; 2477 vm_object_t object; 2478 long count, n; 2479 2480 map = &vmspace->vm_map; 2481 count = 0; 2482 2483 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2484 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2485 (object = cur->object.vm_object) != NULL) { 2486 VM_OBJECT_WLOCK(object); 2487 if (object->type == OBJT_SWAP && 2488 object->un_pager.swp.swp_bcount != 0) { 2489 n = (cur->end - cur->start) / PAGE_SIZE; 2490 count += object->un_pager.swp.swp_bcount * 2491 SWAP_META_PAGES * n / object->size + 1; 2492 } 2493 VM_OBJECT_WUNLOCK(object); 2494 } 2495 } 2496 return (count); 2497 } 2498 2499 /* 2500 * GEOM backend 2501 * 2502 * Swapping onto disk devices. 2503 * 2504 */ 2505 2506 static g_orphan_t swapgeom_orphan; 2507 2508 static struct g_class g_swap_class = { 2509 .name = "SWAP", 2510 .version = G_VERSION, 2511 .orphan = swapgeom_orphan, 2512 }; 2513 2514 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2515 2516 2517 static void 2518 swapgeom_close_ev(void *arg, int flags) 2519 { 2520 struct g_consumer *cp; 2521 2522 cp = arg; 2523 g_access(cp, -1, -1, 0); 2524 g_detach(cp); 2525 g_destroy_consumer(cp); 2526 } 2527 2528 /* 2529 * Add a reference to the g_consumer for an inflight transaction. 2530 */ 2531 static void 2532 swapgeom_acquire(struct g_consumer *cp) 2533 { 2534 2535 mtx_assert(&sw_dev_mtx, MA_OWNED); 2536 cp->index++; 2537 } 2538 2539 /* 2540 * Remove a reference from the g_consumer. Post a close event if all 2541 * references go away, since the function might be called from the 2542 * biodone context. 2543 */ 2544 static void 2545 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2546 { 2547 2548 mtx_assert(&sw_dev_mtx, MA_OWNED); 2549 cp->index--; 2550 if (cp->index == 0) { 2551 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2552 sp->sw_id = NULL; 2553 } 2554 } 2555 2556 static void 2557 swapgeom_done(struct bio *bp2) 2558 { 2559 struct swdevt *sp; 2560 struct buf *bp; 2561 struct g_consumer *cp; 2562 2563 bp = bp2->bio_caller2; 2564 cp = bp2->bio_from; 2565 bp->b_ioflags = bp2->bio_flags; 2566 if (bp2->bio_error) 2567 bp->b_ioflags |= BIO_ERROR; 2568 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2569 bp->b_error = bp2->bio_error; 2570 bufdone(bp); 2571 sp = bp2->bio_caller1; 2572 mtx_lock(&sw_dev_mtx); 2573 swapgeom_release(cp, sp); 2574 mtx_unlock(&sw_dev_mtx); 2575 g_destroy_bio(bp2); 2576 } 2577 2578 static void 2579 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2580 { 2581 struct bio *bio; 2582 struct g_consumer *cp; 2583 2584 mtx_lock(&sw_dev_mtx); 2585 cp = sp->sw_id; 2586 if (cp == NULL) { 2587 mtx_unlock(&sw_dev_mtx); 2588 bp->b_error = ENXIO; 2589 bp->b_ioflags |= BIO_ERROR; 2590 bufdone(bp); 2591 return; 2592 } 2593 swapgeom_acquire(cp); 2594 mtx_unlock(&sw_dev_mtx); 2595 if (bp->b_iocmd == BIO_WRITE) 2596 bio = g_new_bio(); 2597 else 2598 bio = g_alloc_bio(); 2599 if (bio == NULL) { 2600 mtx_lock(&sw_dev_mtx); 2601 swapgeom_release(cp, sp); 2602 mtx_unlock(&sw_dev_mtx); 2603 bp->b_error = ENOMEM; 2604 bp->b_ioflags |= BIO_ERROR; 2605 bufdone(bp); 2606 return; 2607 } 2608 2609 bio->bio_caller1 = sp; 2610 bio->bio_caller2 = bp; 2611 bio->bio_cmd = bp->b_iocmd; 2612 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2613 bio->bio_length = bp->b_bcount; 2614 bio->bio_done = swapgeom_done; 2615 if (!buf_mapped(bp)) { 2616 bio->bio_ma = bp->b_pages; 2617 bio->bio_data = unmapped_buf; 2618 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2619 bio->bio_ma_n = bp->b_npages; 2620 bio->bio_flags |= BIO_UNMAPPED; 2621 } else { 2622 bio->bio_data = bp->b_data; 2623 bio->bio_ma = NULL; 2624 } 2625 g_io_request(bio, cp); 2626 return; 2627 } 2628 2629 static void 2630 swapgeom_orphan(struct g_consumer *cp) 2631 { 2632 struct swdevt *sp; 2633 int destroy; 2634 2635 mtx_lock(&sw_dev_mtx); 2636 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2637 if (sp->sw_id == cp) { 2638 sp->sw_flags |= SW_CLOSING; 2639 break; 2640 } 2641 } 2642 /* 2643 * Drop reference we were created with. Do directly since we're in a 2644 * special context where we don't have to queue the call to 2645 * swapgeom_close_ev(). 2646 */ 2647 cp->index--; 2648 destroy = ((sp != NULL) && (cp->index == 0)); 2649 if (destroy) 2650 sp->sw_id = NULL; 2651 mtx_unlock(&sw_dev_mtx); 2652 if (destroy) 2653 swapgeom_close_ev(cp, 0); 2654 } 2655 2656 static void 2657 swapgeom_close(struct thread *td, struct swdevt *sw) 2658 { 2659 struct g_consumer *cp; 2660 2661 mtx_lock(&sw_dev_mtx); 2662 cp = sw->sw_id; 2663 sw->sw_id = NULL; 2664 mtx_unlock(&sw_dev_mtx); 2665 2666 /* 2667 * swapgeom_close() may be called from the biodone context, 2668 * where we cannot perform topology changes. Delegate the 2669 * work to the events thread. 2670 */ 2671 if (cp != NULL) 2672 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2673 } 2674 2675 static int 2676 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2677 { 2678 struct g_provider *pp; 2679 struct g_consumer *cp; 2680 static struct g_geom *gp; 2681 struct swdevt *sp; 2682 u_long nblks; 2683 int error; 2684 2685 pp = g_dev_getprovider(dev); 2686 if (pp == NULL) 2687 return (ENODEV); 2688 mtx_lock(&sw_dev_mtx); 2689 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2690 cp = sp->sw_id; 2691 if (cp != NULL && cp->provider == pp) { 2692 mtx_unlock(&sw_dev_mtx); 2693 return (EBUSY); 2694 } 2695 } 2696 mtx_unlock(&sw_dev_mtx); 2697 if (gp == NULL) 2698 gp = g_new_geomf(&g_swap_class, "swap"); 2699 cp = g_new_consumer(gp); 2700 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2701 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2702 g_attach(cp, pp); 2703 /* 2704 * XXX: Every time you think you can improve the margin for 2705 * footshooting, somebody depends on the ability to do so: 2706 * savecore(8) wants to write to our swapdev so we cannot 2707 * set an exclusive count :-( 2708 */ 2709 error = g_access(cp, 1, 1, 0); 2710 if (error != 0) { 2711 g_detach(cp); 2712 g_destroy_consumer(cp); 2713 return (error); 2714 } 2715 nblks = pp->mediasize / DEV_BSIZE; 2716 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2717 swapgeom_close, dev2udev(dev), 2718 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2719 return (0); 2720 } 2721 2722 static int 2723 swapongeom(struct vnode *vp) 2724 { 2725 int error; 2726 2727 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2728 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2729 error = ENOENT; 2730 } else { 2731 g_topology_lock(); 2732 error = swapongeom_locked(vp->v_rdev, vp); 2733 g_topology_unlock(); 2734 } 2735 VOP_UNLOCK(vp, 0); 2736 return (error); 2737 } 2738 2739 /* 2740 * VNODE backend 2741 * 2742 * This is used mainly for network filesystem (read: probably only tested 2743 * with NFS) swapfiles. 2744 * 2745 */ 2746 2747 static void 2748 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2749 { 2750 struct vnode *vp2; 2751 2752 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2753 2754 vp2 = sp->sw_id; 2755 vhold(vp2); 2756 if (bp->b_iocmd == BIO_WRITE) { 2757 if (bp->b_bufobj) 2758 bufobj_wdrop(bp->b_bufobj); 2759 bufobj_wref(&vp2->v_bufobj); 2760 } 2761 if (bp->b_bufobj != &vp2->v_bufobj) 2762 bp->b_bufobj = &vp2->v_bufobj; 2763 bp->b_vp = vp2; 2764 bp->b_iooffset = dbtob(bp->b_blkno); 2765 bstrategy(bp); 2766 return; 2767 } 2768 2769 static void 2770 swapdev_close(struct thread *td, struct swdevt *sp) 2771 { 2772 2773 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2774 vrele(sp->sw_vp); 2775 } 2776 2777 2778 static int 2779 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2780 { 2781 struct swdevt *sp; 2782 int error; 2783 2784 if (nblks == 0) 2785 return (ENXIO); 2786 mtx_lock(&sw_dev_mtx); 2787 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2788 if (sp->sw_id == vp) { 2789 mtx_unlock(&sw_dev_mtx); 2790 return (EBUSY); 2791 } 2792 } 2793 mtx_unlock(&sw_dev_mtx); 2794 2795 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2796 #ifdef MAC 2797 error = mac_system_check_swapon(td->td_ucred, vp); 2798 if (error == 0) 2799 #endif 2800 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2801 (void) VOP_UNLOCK(vp, 0); 2802 if (error) 2803 return (error); 2804 2805 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2806 NODEV, 0); 2807 return (0); 2808 } 2809 2810 static int 2811 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2812 { 2813 int error, new, n; 2814 2815 new = nsw_wcount_async_max; 2816 error = sysctl_handle_int(oidp, &new, 0, req); 2817 if (error != 0 || req->newptr == NULL) 2818 return (error); 2819 2820 if (new > nswbuf / 2 || new < 1) 2821 return (EINVAL); 2822 2823 mtx_lock(&pbuf_mtx); 2824 while (nsw_wcount_async_max != new) { 2825 /* 2826 * Adjust difference. If the current async count is too low, 2827 * we will need to sqeeze our update slowly in. Sleep with a 2828 * higher priority than getpbuf() to finish faster. 2829 */ 2830 n = new - nsw_wcount_async_max; 2831 if (nsw_wcount_async + n >= 0) { 2832 nsw_wcount_async += n; 2833 nsw_wcount_async_max += n; 2834 wakeup(&nsw_wcount_async); 2835 } else { 2836 nsw_wcount_async_max -= nsw_wcount_async; 2837 nsw_wcount_async = 0; 2838 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2839 "swpsysctl", 0); 2840 } 2841 } 2842 mtx_unlock(&pbuf_mtx); 2843 2844 return (0); 2845 } 2846