xref: /freebsd/sys/vm/swap_pager.c (revision 9336e0699bda8a301cd2bfa37106b6ec5e32012e)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/priv.h>
81 #include <sys/proc.h>
82 #include <sys/bio.h>
83 #include <sys/buf.h>
84 #include <sys/disk.h>
85 #include <sys/fcntl.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/vnode.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 #include <vm/vm.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_kern.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pager.h>
106 #include <vm/vm_pageout.h>
107 #include <vm/vm_param.h>
108 #include <vm/swap_pager.h>
109 #include <vm/vm_extern.h>
110 #include <vm/uma.h>
111 
112 #include <geom/geom.h>
113 
114 /*
115  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
116  * pages per allocation.  We recommend you stick with the default of 8.
117  * The 16-page limit is due to the radix code (kern/subr_blist.c).
118  */
119 #ifndef MAX_PAGEOUT_CLUSTER
120 #define MAX_PAGEOUT_CLUSTER 16
121 #endif
122 
123 #if !defined(SWB_NPAGES)
124 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
125 #endif
126 
127 /*
128  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
129  *
130  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
131  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
132  * 32K worth of data, two levels represent 256K, three levels represent
133  * 2 MBytes.   This is acceptable.
134  *
135  * Overall memory utilization is about the same as the old swap structure.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155 
156 static void swapdev_strategy(struct buf *, struct swdevt *sw);
157 
158 #define SWM_FREE	0x02	/* free, period			*/
159 #define SWM_POP		0x04	/* pop out			*/
160 
161 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
162 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 static struct swblock **swhash;
170 static int swhash_mask;
171 static struct mtx swhash_mtx;
172 
173 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
174 static struct sx sw_alloc_sx;
175 
176 
177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
178         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
179 
180 /*
181  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
182  * of searching a named list by hashing it just a little.
183  */
184 
185 #define NOBJLISTS		8
186 
187 #define NOBJLIST(handle)	\
188 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
189 
190 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
191 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
192 static uma_zone_t	swap_zone;
193 static struct vm_object	swap_zone_obj;
194 
195 /*
196  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
197  * calls hooked from other parts of the VM system and do not appear here.
198  * (see vm/swap_pager.h).
199  */
200 static vm_object_t
201 		swap_pager_alloc(void *handle, vm_ooffset_t size,
202 				      vm_prot_t prot, vm_ooffset_t offset);
203 static void	swap_pager_dealloc(vm_object_t object);
204 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
205 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
206 static boolean_t
207 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
208 static void	swap_pager_init(void);
209 static void	swap_pager_unswapped(vm_page_t);
210 static void	swap_pager_swapoff(struct swdevt *sp);
211 
212 struct pagerops swappagerops = {
213 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
214 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
215 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
216 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
217 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
218 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
219 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
220 };
221 
222 /*
223  * dmmax is in page-sized chunks with the new swap system.  It was
224  * dev-bsized chunks in the old.  dmmax is always a power of 2.
225  *
226  * swap_*() routines are externally accessible.  swp_*() routines are
227  * internal.
228  */
229 static int dmmax;
230 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
231 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
232 
233 SYSCTL_INT(_vm, OID_AUTO, dmmax,
234 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
235 
236 static void	swp_sizecheck(void);
237 static void	swp_pager_async_iodone(struct buf *bp);
238 static int	swapongeom(struct thread *, struct vnode *);
239 static int	swaponvp(struct thread *, struct vnode *, u_long);
240 static int	swapoff_one(struct swdevt *sp, struct thread *td);
241 
242 /*
243  * Swap bitmap functions
244  */
245 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
246 static daddr_t	swp_pager_getswapspace(int npages);
247 
248 /*
249  * Metadata functions
250  */
251 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
252 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
253 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
254 static void swp_pager_meta_free_all(vm_object_t);
255 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
256 
257 /*
258  * SWP_SIZECHECK() -	update swap_pager_full indication
259  *
260  *	update the swap_pager_almost_full indication and warn when we are
261  *	about to run out of swap space, using lowat/hiwat hysteresis.
262  *
263  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
264  *
265  *	No restrictions on call
266  *	This routine may not block.
267  *	This routine must be called at splvm()
268  */
269 static void
270 swp_sizecheck(void)
271 {
272 
273 	if (swap_pager_avail < nswap_lowat) {
274 		if (swap_pager_almost_full == 0) {
275 			printf("swap_pager: out of swap space\n");
276 			swap_pager_almost_full = 1;
277 		}
278 	} else {
279 		swap_pager_full = 0;
280 		if (swap_pager_avail > nswap_hiwat)
281 			swap_pager_almost_full = 0;
282 	}
283 }
284 
285 /*
286  * SWP_PAGER_HASH() -	hash swap meta data
287  *
288  *	This is an helper function which hashes the swapblk given
289  *	the object and page index.  It returns a pointer to a pointer
290  *	to the object, or a pointer to a NULL pointer if it could not
291  *	find a swapblk.
292  *
293  *	This routine must be called at splvm().
294  */
295 static struct swblock **
296 swp_pager_hash(vm_object_t object, vm_pindex_t index)
297 {
298 	struct swblock **pswap;
299 	struct swblock *swap;
300 
301 	index &= ~(vm_pindex_t)SWAP_META_MASK;
302 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
303 	while ((swap = *pswap) != NULL) {
304 		if (swap->swb_object == object &&
305 		    swap->swb_index == index
306 		) {
307 			break;
308 		}
309 		pswap = &swap->swb_hnext;
310 	}
311 	return (pswap);
312 }
313 
314 /*
315  * SWAP_PAGER_INIT() -	initialize the swap pager!
316  *
317  *	Expected to be started from system init.  NOTE:  This code is run
318  *	before much else so be careful what you depend on.  Most of the VM
319  *	system has yet to be initialized at this point.
320  */
321 static void
322 swap_pager_init(void)
323 {
324 	/*
325 	 * Initialize object lists
326 	 */
327 	int i;
328 
329 	for (i = 0; i < NOBJLISTS; ++i)
330 		TAILQ_INIT(&swap_pager_object_list[i]);
331 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
332 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
333 
334 	/*
335 	 * Device Stripe, in PAGE_SIZE'd blocks
336 	 */
337 	dmmax = SWB_NPAGES * 2;
338 }
339 
340 /*
341  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
342  *
343  *	Expected to be started from pageout process once, prior to entering
344  *	its main loop.
345  */
346 void
347 swap_pager_swap_init(void)
348 {
349 	int n, n2;
350 
351 	/*
352 	 * Number of in-transit swap bp operations.  Don't
353 	 * exhaust the pbufs completely.  Make sure we
354 	 * initialize workable values (0 will work for hysteresis
355 	 * but it isn't very efficient).
356 	 *
357 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
358 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
359 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
360 	 * constrained by the swap device interleave stripe size.
361 	 *
362 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
363 	 * designed to prevent other I/O from having high latencies due to
364 	 * our pageout I/O.  The value 4 works well for one or two active swap
365 	 * devices but is probably a little low if you have more.  Even so,
366 	 * a higher value would probably generate only a limited improvement
367 	 * with three or four active swap devices since the system does not
368 	 * typically have to pageout at extreme bandwidths.   We will want
369 	 * at least 2 per swap devices, and 4 is a pretty good value if you
370 	 * have one NFS swap device due to the command/ack latency over NFS.
371 	 * So it all works out pretty well.
372 	 */
373 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
374 
375 	mtx_lock(&pbuf_mtx);
376 	nsw_rcount = (nswbuf + 1) / 2;
377 	nsw_wcount_sync = (nswbuf + 3) / 4;
378 	nsw_wcount_async = 4;
379 	nsw_wcount_async_max = nsw_wcount_async;
380 	mtx_unlock(&pbuf_mtx);
381 
382 	/*
383 	 * Initialize our zone.  Right now I'm just guessing on the number
384 	 * we need based on the number of pages in the system.  Each swblock
385 	 * can hold 16 pages, so this is probably overkill.  This reservation
386 	 * is typically limited to around 32MB by default.
387 	 */
388 	n = cnt.v_page_count / 2;
389 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
390 		n = maxswzone / sizeof(struct swblock);
391 	n2 = n;
392 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
393 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
394 	if (swap_zone == NULL)
395 		panic("failed to create swap_zone.");
396 	do {
397 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
398 			break;
399 		/*
400 		 * if the allocation failed, try a zone two thirds the
401 		 * size of the previous attempt.
402 		 */
403 		n -= ((n + 2) / 3);
404 	} while (n > 0);
405 	if (n2 != n)
406 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
407 	n2 = n;
408 
409 	/*
410 	 * Initialize our meta-data hash table.  The swapper does not need to
411 	 * be quite as efficient as the VM system, so we do not use an
412 	 * oversized hash table.
413 	 *
414 	 * 	n: 		size of hash table, must be power of 2
415 	 *	swhash_mask:	hash table index mask
416 	 */
417 	for (n = 1; n < n2 / 8; n *= 2)
418 		;
419 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
420 	swhash_mask = n - 1;
421 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
422 }
423 
424 /*
425  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
426  *			its metadata structures.
427  *
428  *	This routine is called from the mmap and fork code to create a new
429  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
430  *	and then converting it with swp_pager_meta_build().
431  *
432  *	This routine may block in vm_object_allocate() and create a named
433  *	object lookup race, so we must interlock.   We must also run at
434  *	splvm() for the object lookup to handle races with interrupts, but
435  *	we do not have to maintain splvm() in between the lookup and the
436  *	add because (I believe) it is not possible to attempt to create
437  *	a new swap object w/handle when a default object with that handle
438  *	already exists.
439  *
440  * MPSAFE
441  */
442 static vm_object_t
443 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
444 		 vm_ooffset_t offset)
445 {
446 	vm_object_t object;
447 	vm_pindex_t pindex;
448 
449 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
450 
451 	if (handle) {
452 		mtx_lock(&Giant);
453 		/*
454 		 * Reference existing named region or allocate new one.  There
455 		 * should not be a race here against swp_pager_meta_build()
456 		 * as called from vm_page_remove() in regards to the lookup
457 		 * of the handle.
458 		 */
459 		sx_xlock(&sw_alloc_sx);
460 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
461 
462 		if (object == NULL) {
463 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
464 			object->handle = handle;
465 
466 			VM_OBJECT_LOCK(object);
467 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
468 			VM_OBJECT_UNLOCK(object);
469 		}
470 		sx_xunlock(&sw_alloc_sx);
471 		mtx_unlock(&Giant);
472 	} else {
473 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
474 
475 		VM_OBJECT_LOCK(object);
476 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
477 		VM_OBJECT_UNLOCK(object);
478 	}
479 	return (object);
480 }
481 
482 /*
483  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
484  *
485  *	The swap backing for the object is destroyed.  The code is
486  *	designed such that we can reinstantiate it later, but this
487  *	routine is typically called only when the entire object is
488  *	about to be destroyed.
489  *
490  *	This routine may block, but no longer does.
491  *
492  *	The object must be locked or unreferenceable.
493  */
494 static void
495 swap_pager_dealloc(vm_object_t object)
496 {
497 
498 	/*
499 	 * Remove from list right away so lookups will fail if we block for
500 	 * pageout completion.
501 	 */
502 	if (object->handle != NULL) {
503 		mtx_lock(&sw_alloc_mtx);
504 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
505 		mtx_unlock(&sw_alloc_mtx);
506 	}
507 
508 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
509 	vm_object_pip_wait(object, "swpdea");
510 
511 	/*
512 	 * Free all remaining metadata.  We only bother to free it from
513 	 * the swap meta data.  We do not attempt to free swapblk's still
514 	 * associated with vm_page_t's for this object.  We do not care
515 	 * if paging is still in progress on some objects.
516 	 */
517 	swp_pager_meta_free_all(object);
518 }
519 
520 /************************************************************************
521  *			SWAP PAGER BITMAP ROUTINES			*
522  ************************************************************************/
523 
524 /*
525  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
526  *
527  *	Allocate swap for the requested number of pages.  The starting
528  *	swap block number (a page index) is returned or SWAPBLK_NONE
529  *	if the allocation failed.
530  *
531  *	Also has the side effect of advising that somebody made a mistake
532  *	when they configured swap and didn't configure enough.
533  *
534  *	Must be called at splvm() to avoid races with bitmap frees from
535  *	vm_page_remove() aka swap_pager_page_removed().
536  *
537  *	This routine may not block
538  *	This routine must be called at splvm().
539  *
540  *	We allocate in round-robin fashion from the configured devices.
541  */
542 static daddr_t
543 swp_pager_getswapspace(int npages)
544 {
545 	daddr_t blk;
546 	struct swdevt *sp;
547 	int i;
548 
549 	blk = SWAPBLK_NONE;
550 	mtx_lock(&sw_dev_mtx);
551 	sp = swdevhd;
552 	for (i = 0; i < nswapdev; i++) {
553 		if (sp == NULL)
554 			sp = TAILQ_FIRST(&swtailq);
555 		if (!(sp->sw_flags & SW_CLOSING)) {
556 			blk = blist_alloc(sp->sw_blist, npages);
557 			if (blk != SWAPBLK_NONE) {
558 				blk += sp->sw_first;
559 				sp->sw_used += npages;
560 				swap_pager_avail -= npages;
561 				swp_sizecheck();
562 				swdevhd = TAILQ_NEXT(sp, sw_list);
563 				goto done;
564 			}
565 		}
566 		sp = TAILQ_NEXT(sp, sw_list);
567 	}
568 	if (swap_pager_full != 2) {
569 		printf("swap_pager_getswapspace(%d): failed\n", npages);
570 		swap_pager_full = 2;
571 		swap_pager_almost_full = 1;
572 	}
573 	swdevhd = NULL;
574 done:
575 	mtx_unlock(&sw_dev_mtx);
576 	return (blk);
577 }
578 
579 static int
580 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
581 {
582 
583 	return (blk >= sp->sw_first && blk < sp->sw_end);
584 }
585 
586 static void
587 swp_pager_strategy(struct buf *bp)
588 {
589 	struct swdevt *sp;
590 
591 	mtx_lock(&sw_dev_mtx);
592 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
593 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
594 			mtx_unlock(&sw_dev_mtx);
595 			sp->sw_strategy(bp, sp);
596 			return;
597 		}
598 	}
599 	panic("Swapdev not found");
600 }
601 
602 
603 /*
604  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
605  *
606  *	This routine returns the specified swap blocks back to the bitmap.
607  *
608  *	Note:  This routine may not block (it could in the old swap code),
609  *	and through the use of the new blist routines it does not block.
610  *
611  *	We must be called at splvm() to avoid races with bitmap frees from
612  *	vm_page_remove() aka swap_pager_page_removed().
613  *
614  *	This routine may not block
615  *	This routine must be called at splvm().
616  */
617 static void
618 swp_pager_freeswapspace(daddr_t blk, int npages)
619 {
620 	struct swdevt *sp;
621 
622 	mtx_lock(&sw_dev_mtx);
623 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
624 		if (blk >= sp->sw_first && blk < sp->sw_end) {
625 			sp->sw_used -= npages;
626 			/*
627 			 * If we are attempting to stop swapping on
628 			 * this device, we don't want to mark any
629 			 * blocks free lest they be reused.
630 			 */
631 			if ((sp->sw_flags & SW_CLOSING) == 0) {
632 				blist_free(sp->sw_blist, blk - sp->sw_first,
633 				    npages);
634 				swap_pager_avail += npages;
635 				swp_sizecheck();
636 			}
637 			mtx_unlock(&sw_dev_mtx);
638 			return;
639 		}
640 	}
641 	panic("Swapdev not found");
642 }
643 
644 /*
645  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
646  *				range within an object.
647  *
648  *	This is a globally accessible routine.
649  *
650  *	This routine removes swapblk assignments from swap metadata.
651  *
652  *	The external callers of this routine typically have already destroyed
653  *	or renamed vm_page_t's associated with this range in the object so
654  *	we should be ok.
655  *
656  *	This routine may be called at any spl.  We up our spl to splvm temporarily
657  *	in order to perform the metadata removal.
658  */
659 void
660 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
661 {
662 
663 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
664 	swp_pager_meta_free(object, start, size);
665 }
666 
667 /*
668  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
669  *
670  *	Assigns swap blocks to the specified range within the object.  The
671  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
672  *
673  *	Returns 0 on success, -1 on failure.
674  */
675 int
676 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
677 {
678 	int n = 0;
679 	daddr_t blk = SWAPBLK_NONE;
680 	vm_pindex_t beg = start;	/* save start index */
681 
682 	VM_OBJECT_LOCK(object);
683 	while (size) {
684 		if (n == 0) {
685 			n = BLIST_MAX_ALLOC;
686 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
687 				n >>= 1;
688 				if (n == 0) {
689 					swp_pager_meta_free(object, beg, start - beg);
690 					VM_OBJECT_UNLOCK(object);
691 					return (-1);
692 				}
693 			}
694 		}
695 		swp_pager_meta_build(object, start, blk);
696 		--size;
697 		++start;
698 		++blk;
699 		--n;
700 	}
701 	swp_pager_meta_free(object, start, n);
702 	VM_OBJECT_UNLOCK(object);
703 	return (0);
704 }
705 
706 /*
707  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
708  *			and destroy the source.
709  *
710  *	Copy any valid swapblks from the source to the destination.  In
711  *	cases where both the source and destination have a valid swapblk,
712  *	we keep the destination's.
713  *
714  *	This routine is allowed to block.  It may block allocating metadata
715  *	indirectly through swp_pager_meta_build() or if paging is still in
716  *	progress on the source.
717  *
718  *	This routine can be called at any spl
719  *
720  *	XXX vm_page_collapse() kinda expects us not to block because we
721  *	supposedly do not need to allocate memory, but for the moment we
722  *	*may* have to get a little memory from the zone allocator, but
723  *	it is taken from the interrupt memory.  We should be ok.
724  *
725  *	The source object contains no vm_page_t's (which is just as well)
726  *
727  *	The source object is of type OBJT_SWAP.
728  *
729  *	The source and destination objects must be locked or
730  *	inaccessible (XXX are they ?)
731  */
732 void
733 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
734     vm_pindex_t offset, int destroysource)
735 {
736 	vm_pindex_t i;
737 
738 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
739 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
740 
741 	/*
742 	 * If destroysource is set, we remove the source object from the
743 	 * swap_pager internal queue now.
744 	 */
745 	if (destroysource) {
746 		if (srcobject->handle != NULL) {
747 			mtx_lock(&sw_alloc_mtx);
748 			TAILQ_REMOVE(
749 			    NOBJLIST(srcobject->handle),
750 			    srcobject,
751 			    pager_object_list
752 			);
753 			mtx_unlock(&sw_alloc_mtx);
754 		}
755 	}
756 
757 	/*
758 	 * transfer source to destination.
759 	 */
760 	for (i = 0; i < dstobject->size; ++i) {
761 		daddr_t dstaddr;
762 
763 		/*
764 		 * Locate (without changing) the swapblk on the destination,
765 		 * unless it is invalid in which case free it silently, or
766 		 * if the destination is a resident page, in which case the
767 		 * source is thrown away.
768 		 */
769 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
770 
771 		if (dstaddr == SWAPBLK_NONE) {
772 			/*
773 			 * Destination has no swapblk and is not resident,
774 			 * copy source.
775 			 */
776 			daddr_t srcaddr;
777 
778 			srcaddr = swp_pager_meta_ctl(
779 			    srcobject,
780 			    i + offset,
781 			    SWM_POP
782 			);
783 
784 			if (srcaddr != SWAPBLK_NONE) {
785 				/*
786 				 * swp_pager_meta_build() can sleep.
787 				 */
788 				vm_object_pip_add(srcobject, 1);
789 				VM_OBJECT_UNLOCK(srcobject);
790 				vm_object_pip_add(dstobject, 1);
791 				swp_pager_meta_build(dstobject, i, srcaddr);
792 				vm_object_pip_wakeup(dstobject);
793 				VM_OBJECT_LOCK(srcobject);
794 				vm_object_pip_wakeup(srcobject);
795 			}
796 		} else {
797 			/*
798 			 * Destination has valid swapblk or it is represented
799 			 * by a resident page.  We destroy the sourceblock.
800 			 */
801 
802 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
803 		}
804 	}
805 
806 	/*
807 	 * Free left over swap blocks in source.
808 	 *
809 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
810 	 * double-remove the object from the swap queues.
811 	 */
812 	if (destroysource) {
813 		swp_pager_meta_free_all(srcobject);
814 		/*
815 		 * Reverting the type is not necessary, the caller is going
816 		 * to destroy srcobject directly, but I'm doing it here
817 		 * for consistency since we've removed the object from its
818 		 * queues.
819 		 */
820 		srcobject->type = OBJT_DEFAULT;
821 	}
822 }
823 
824 /*
825  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
826  *				the requested page.
827  *
828  *	We determine whether good backing store exists for the requested
829  *	page and return TRUE if it does, FALSE if it doesn't.
830  *
831  *	If TRUE, we also try to determine how much valid, contiguous backing
832  *	store exists before and after the requested page within a reasonable
833  *	distance.  We do not try to restrict it to the swap device stripe
834  *	(that is handled in getpages/putpages).  It probably isn't worth
835  *	doing here.
836  */
837 static boolean_t
838 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
839 {
840 	daddr_t blk0;
841 
842 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
843 	/*
844 	 * do we have good backing store at the requested index ?
845 	 */
846 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
847 
848 	if (blk0 == SWAPBLK_NONE) {
849 		if (before)
850 			*before = 0;
851 		if (after)
852 			*after = 0;
853 		return (FALSE);
854 	}
855 
856 	/*
857 	 * find backwards-looking contiguous good backing store
858 	 */
859 	if (before != NULL) {
860 		int i;
861 
862 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
863 			daddr_t blk;
864 
865 			if (i > pindex)
866 				break;
867 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
868 			if (blk != blk0 - i)
869 				break;
870 		}
871 		*before = (i - 1);
872 	}
873 
874 	/*
875 	 * find forward-looking contiguous good backing store
876 	 */
877 	if (after != NULL) {
878 		int i;
879 
880 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
881 			daddr_t blk;
882 
883 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
884 			if (blk != blk0 + i)
885 				break;
886 		}
887 		*after = (i - 1);
888 	}
889 	return (TRUE);
890 }
891 
892 /*
893  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
894  *
895  *	This removes any associated swap backing store, whether valid or
896  *	not, from the page.
897  *
898  *	This routine is typically called when a page is made dirty, at
899  *	which point any associated swap can be freed.  MADV_FREE also
900  *	calls us in a special-case situation
901  *
902  *	NOTE!!!  If the page is clean and the swap was valid, the caller
903  *	should make the page dirty before calling this routine.  This routine
904  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
905  *	depends on it.
906  *
907  *	This routine may not block
908  *	This routine must be called at splvm()
909  */
910 static void
911 swap_pager_unswapped(vm_page_t m)
912 {
913 
914 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
915 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
916 }
917 
918 /*
919  * SWAP_PAGER_GETPAGES() - bring pages in from swap
920  *
921  *	Attempt to retrieve (m, count) pages from backing store, but make
922  *	sure we retrieve at least m[reqpage].  We try to load in as large
923  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
924  *	belongs to the same object.
925  *
926  *	The code is designed for asynchronous operation and
927  *	immediate-notification of 'reqpage' but tends not to be
928  *	used that way.  Please do not optimize-out this algorithmic
929  *	feature, I intend to improve on it in the future.
930  *
931  *	The parent has a single vm_object_pip_add() reference prior to
932  *	calling us and we should return with the same.
933  *
934  *	The parent has BUSY'd the pages.  We should return with 'm'
935  *	left busy, but the others adjusted.
936  */
937 static int
938 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
939 {
940 	struct buf *bp;
941 	vm_page_t mreq;
942 	int i;
943 	int j;
944 	daddr_t blk;
945 
946 	mreq = m[reqpage];
947 
948 	KASSERT(mreq->object == object,
949 	    ("swap_pager_getpages: object mismatch %p/%p",
950 	    object, mreq->object));
951 
952 	/*
953 	 * Calculate range to retrieve.  The pages have already been assigned
954 	 * their swapblks.  We require a *contiguous* range but we know it to
955 	 * not span devices.   If we do not supply it, bad things
956 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
957 	 * loops are set up such that the case(s) are handled implicitly.
958 	 *
959 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
960 	 * not need to be, but it will go a little faster if it is.
961 	 */
962 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
963 
964 	for (i = reqpage - 1; i >= 0; --i) {
965 		daddr_t iblk;
966 
967 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
968 		if (blk != iblk + (reqpage - i))
969 			break;
970 	}
971 	++i;
972 
973 	for (j = reqpage + 1; j < count; ++j) {
974 		daddr_t jblk;
975 
976 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
977 		if (blk != jblk - (j - reqpage))
978 			break;
979 	}
980 
981 	/*
982 	 * free pages outside our collection range.   Note: we never free
983 	 * mreq, it must remain busy throughout.
984 	 */
985 	if (0 < i || j < count) {
986 		int k;
987 
988 		vm_page_lock_queues();
989 		for (k = 0; k < i; ++k)
990 			vm_page_free(m[k]);
991 		for (k = j; k < count; ++k)
992 			vm_page_free(m[k]);
993 		vm_page_unlock_queues();
994 	}
995 
996 	/*
997 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
998 	 * still busy, but the others unbusied.
999 	 */
1000 	if (blk == SWAPBLK_NONE)
1001 		return (VM_PAGER_FAIL);
1002 
1003 	/*
1004 	 * Getpbuf() can sleep.
1005 	 */
1006 	VM_OBJECT_UNLOCK(object);
1007 	/*
1008 	 * Get a swap buffer header to perform the IO
1009 	 */
1010 	bp = getpbuf(&nsw_rcount);
1011 	bp->b_flags |= B_PAGING;
1012 
1013 	/*
1014 	 * map our page(s) into kva for input
1015 	 */
1016 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1017 
1018 	bp->b_iocmd = BIO_READ;
1019 	bp->b_iodone = swp_pager_async_iodone;
1020 	bp->b_rcred = crhold(thread0.td_ucred);
1021 	bp->b_wcred = crhold(thread0.td_ucred);
1022 	bp->b_blkno = blk - (reqpage - i);
1023 	bp->b_bcount = PAGE_SIZE * (j - i);
1024 	bp->b_bufsize = PAGE_SIZE * (j - i);
1025 	bp->b_pager.pg_reqpage = reqpage - i;
1026 
1027 	VM_OBJECT_LOCK(object);
1028 	{
1029 		int k;
1030 
1031 		for (k = i; k < j; ++k) {
1032 			bp->b_pages[k - i] = m[k];
1033 			m[k]->oflags |= VPO_SWAPINPROG;
1034 		}
1035 	}
1036 	bp->b_npages = j - i;
1037 
1038 	PCPU_INC(cnt.v_swapin);
1039 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1040 
1041 	/*
1042 	 * We still hold the lock on mreq, and our automatic completion routine
1043 	 * does not remove it.
1044 	 */
1045 	vm_object_pip_add(object, bp->b_npages);
1046 	VM_OBJECT_UNLOCK(object);
1047 
1048 	/*
1049 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1050 	 * this point because we automatically release it on completion.
1051 	 * Instead, we look at the one page we are interested in which we
1052 	 * still hold a lock on even through the I/O completion.
1053 	 *
1054 	 * The other pages in our m[] array are also released on completion,
1055 	 * so we cannot assume they are valid anymore either.
1056 	 *
1057 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1058 	 */
1059 	BUF_KERNPROC(bp);
1060 	swp_pager_strategy(bp);
1061 
1062 	/*
1063 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1064 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1065 	 * is set in the meta-data.
1066 	 */
1067 	VM_OBJECT_LOCK(object);
1068 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1069 		mreq->oflags |= VPO_WANTED;
1070 		vm_page_lock_queues();
1071 		vm_page_flag_set(mreq, PG_REFERENCED);
1072 		vm_page_unlock_queues();
1073 		PCPU_INC(cnt.v_intrans);
1074 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1075 			printf(
1076 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1077 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * mreq is left busied after completion, but all the other pages
1083 	 * are freed.  If we had an unrecoverable read error the page will
1084 	 * not be valid.
1085 	 */
1086 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1087 		return (VM_PAGER_ERROR);
1088 	} else {
1089 		return (VM_PAGER_OK);
1090 	}
1091 
1092 	/*
1093 	 * A final note: in a low swap situation, we cannot deallocate swap
1094 	 * and mark a page dirty here because the caller is likely to mark
1095 	 * the page clean when we return, causing the page to possibly revert
1096 	 * to all-zero's later.
1097 	 */
1098 }
1099 
1100 /*
1101  *	swap_pager_putpages:
1102  *
1103  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1104  *
1105  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1106  *	are automatically converted to SWAP objects.
1107  *
1108  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1109  *	vm_page reservation system coupled with properly written VFS devices
1110  *	should ensure that no low-memory deadlock occurs.  This is an area
1111  *	which needs work.
1112  *
1113  *	The parent has N vm_object_pip_add() references prior to
1114  *	calling us and will remove references for rtvals[] that are
1115  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1116  *	completion.
1117  *
1118  *	The parent has soft-busy'd the pages it passes us and will unbusy
1119  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1120  *	We need to unbusy the rest on I/O completion.
1121  */
1122 void
1123 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1124     boolean_t sync, int *rtvals)
1125 {
1126 	int i;
1127 	int n = 0;
1128 
1129 	if (count && m[0]->object != object) {
1130 		panic("swap_pager_putpages: object mismatch %p/%p",
1131 		    object,
1132 		    m[0]->object
1133 		);
1134 	}
1135 
1136 	/*
1137 	 * Step 1
1138 	 *
1139 	 * Turn object into OBJT_SWAP
1140 	 * check for bogus sysops
1141 	 * force sync if not pageout process
1142 	 */
1143 	if (object->type != OBJT_SWAP)
1144 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1145 	VM_OBJECT_UNLOCK(object);
1146 
1147 	if (curproc != pageproc)
1148 		sync = TRUE;
1149 
1150 	/*
1151 	 * Step 2
1152 	 *
1153 	 * Update nsw parameters from swap_async_max sysctl values.
1154 	 * Do not let the sysop crash the machine with bogus numbers.
1155 	 */
1156 	mtx_lock(&pbuf_mtx);
1157 	if (swap_async_max != nsw_wcount_async_max) {
1158 		int n;
1159 
1160 		/*
1161 		 * limit range
1162 		 */
1163 		if ((n = swap_async_max) > nswbuf / 2)
1164 			n = nswbuf / 2;
1165 		if (n < 1)
1166 			n = 1;
1167 		swap_async_max = n;
1168 
1169 		/*
1170 		 * Adjust difference ( if possible ).  If the current async
1171 		 * count is too low, we may not be able to make the adjustment
1172 		 * at this time.
1173 		 */
1174 		n -= nsw_wcount_async_max;
1175 		if (nsw_wcount_async + n >= 0) {
1176 			nsw_wcount_async += n;
1177 			nsw_wcount_async_max += n;
1178 			wakeup(&nsw_wcount_async);
1179 		}
1180 	}
1181 	mtx_unlock(&pbuf_mtx);
1182 
1183 	/*
1184 	 * Step 3
1185 	 *
1186 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1187 	 * The page is left dirty until the pageout operation completes
1188 	 * successfully.
1189 	 */
1190 	for (i = 0; i < count; i += n) {
1191 		int j;
1192 		struct buf *bp;
1193 		daddr_t blk;
1194 
1195 		/*
1196 		 * Maximum I/O size is limited by a number of factors.
1197 		 */
1198 		n = min(BLIST_MAX_ALLOC, count - i);
1199 		n = min(n, nsw_cluster_max);
1200 
1201 		/*
1202 		 * Get biggest block of swap we can.  If we fail, fall
1203 		 * back and try to allocate a smaller block.  Don't go
1204 		 * overboard trying to allocate space if it would overly
1205 		 * fragment swap.
1206 		 */
1207 		while (
1208 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1209 		    n > 4
1210 		) {
1211 			n >>= 1;
1212 		}
1213 		if (blk == SWAPBLK_NONE) {
1214 			for (j = 0; j < n; ++j)
1215 				rtvals[i+j] = VM_PAGER_FAIL;
1216 			continue;
1217 		}
1218 
1219 		/*
1220 		 * All I/O parameters have been satisfied, build the I/O
1221 		 * request and assign the swap space.
1222 		 */
1223 		if (sync == TRUE) {
1224 			bp = getpbuf(&nsw_wcount_sync);
1225 		} else {
1226 			bp = getpbuf(&nsw_wcount_async);
1227 			bp->b_flags = B_ASYNC;
1228 		}
1229 		bp->b_flags |= B_PAGING;
1230 		bp->b_iocmd = BIO_WRITE;
1231 
1232 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1233 
1234 		bp->b_rcred = crhold(thread0.td_ucred);
1235 		bp->b_wcred = crhold(thread0.td_ucred);
1236 		bp->b_bcount = PAGE_SIZE * n;
1237 		bp->b_bufsize = PAGE_SIZE * n;
1238 		bp->b_blkno = blk;
1239 
1240 		VM_OBJECT_LOCK(object);
1241 		for (j = 0; j < n; ++j) {
1242 			vm_page_t mreq = m[i+j];
1243 
1244 			swp_pager_meta_build(
1245 			    mreq->object,
1246 			    mreq->pindex,
1247 			    blk + j
1248 			);
1249 			vm_page_dirty(mreq);
1250 			rtvals[i+j] = VM_PAGER_OK;
1251 
1252 			mreq->oflags |= VPO_SWAPINPROG;
1253 			bp->b_pages[j] = mreq;
1254 		}
1255 		VM_OBJECT_UNLOCK(object);
1256 		bp->b_npages = n;
1257 		/*
1258 		 * Must set dirty range for NFS to work.
1259 		 */
1260 		bp->b_dirtyoff = 0;
1261 		bp->b_dirtyend = bp->b_bcount;
1262 
1263 		PCPU_INC(cnt.v_swapout);
1264 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1265 
1266 		/*
1267 		 * asynchronous
1268 		 *
1269 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1270 		 */
1271 		if (sync == FALSE) {
1272 			bp->b_iodone = swp_pager_async_iodone;
1273 			BUF_KERNPROC(bp);
1274 			swp_pager_strategy(bp);
1275 
1276 			for (j = 0; j < n; ++j)
1277 				rtvals[i+j] = VM_PAGER_PEND;
1278 			/* restart outter loop */
1279 			continue;
1280 		}
1281 
1282 		/*
1283 		 * synchronous
1284 		 *
1285 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1286 		 */
1287 		bp->b_iodone = bdone;
1288 		swp_pager_strategy(bp);
1289 
1290 		/*
1291 		 * Wait for the sync I/O to complete, then update rtvals.
1292 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1293 		 * our async completion routine at the end, thus avoiding a
1294 		 * double-free.
1295 		 */
1296 		bwait(bp, PVM, "swwrt");
1297 		for (j = 0; j < n; ++j)
1298 			rtvals[i+j] = VM_PAGER_PEND;
1299 		/*
1300 		 * Now that we are through with the bp, we can call the
1301 		 * normal async completion, which frees everything up.
1302 		 */
1303 		swp_pager_async_iodone(bp);
1304 	}
1305 	VM_OBJECT_LOCK(object);
1306 }
1307 
1308 /*
1309  *	swp_pager_async_iodone:
1310  *
1311  *	Completion routine for asynchronous reads and writes from/to swap.
1312  *	Also called manually by synchronous code to finish up a bp.
1313  *
1314  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1315  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1316  *	unbusy all pages except the 'main' request page.  For WRITE
1317  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1318  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1319  *
1320  *	This routine may not block.
1321  *	This routine is called at splbio() or better
1322  *
1323  *	We up ourselves to splvm() as required for various vm_page related
1324  *	calls.
1325  */
1326 static void
1327 swp_pager_async_iodone(struct buf *bp)
1328 {
1329 	int i;
1330 	vm_object_t object = NULL;
1331 
1332 	/*
1333 	 * report error
1334 	 */
1335 	if (bp->b_ioflags & BIO_ERROR) {
1336 		printf(
1337 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1338 			"size %ld, error %d\n",
1339 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1340 		    (long)bp->b_blkno,
1341 		    (long)bp->b_bcount,
1342 		    bp->b_error
1343 		);
1344 	}
1345 
1346 	/*
1347 	 * remove the mapping for kernel virtual
1348 	 */
1349 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1350 
1351 	if (bp->b_npages) {
1352 		object = bp->b_pages[0]->object;
1353 		VM_OBJECT_LOCK(object);
1354 	}
1355 	vm_page_lock_queues();
1356 	/*
1357 	 * cleanup pages.  If an error occurs writing to swap, we are in
1358 	 * very serious trouble.  If it happens to be a disk error, though,
1359 	 * we may be able to recover by reassigning the swap later on.  So
1360 	 * in this case we remove the m->swapblk assignment for the page
1361 	 * but do not free it in the rlist.  The errornous block(s) are thus
1362 	 * never reallocated as swap.  Redirty the page and continue.
1363 	 */
1364 	for (i = 0; i < bp->b_npages; ++i) {
1365 		vm_page_t m = bp->b_pages[i];
1366 
1367 		m->oflags &= ~VPO_SWAPINPROG;
1368 
1369 		if (bp->b_ioflags & BIO_ERROR) {
1370 			/*
1371 			 * If an error occurs I'd love to throw the swapblk
1372 			 * away without freeing it back to swapspace, so it
1373 			 * can never be used again.  But I can't from an
1374 			 * interrupt.
1375 			 */
1376 			if (bp->b_iocmd == BIO_READ) {
1377 				/*
1378 				 * When reading, reqpage needs to stay
1379 				 * locked for the parent, but all other
1380 				 * pages can be freed.  We still want to
1381 				 * wakeup the parent waiting on the page,
1382 				 * though.  ( also: pg_reqpage can be -1 and
1383 				 * not match anything ).
1384 				 *
1385 				 * We have to wake specifically requested pages
1386 				 * up too because we cleared VPO_SWAPINPROG and
1387 				 * someone may be waiting for that.
1388 				 *
1389 				 * NOTE: for reads, m->dirty will probably
1390 				 * be overridden by the original caller of
1391 				 * getpages so don't play cute tricks here.
1392 				 */
1393 				m->valid = 0;
1394 				if (i != bp->b_pager.pg_reqpage)
1395 					vm_page_free(m);
1396 				else
1397 					vm_page_flash(m);
1398 				/*
1399 				 * If i == bp->b_pager.pg_reqpage, do not wake
1400 				 * the page up.  The caller needs to.
1401 				 */
1402 			} else {
1403 				/*
1404 				 * If a write error occurs, reactivate page
1405 				 * so it doesn't clog the inactive list,
1406 				 * then finish the I/O.
1407 				 */
1408 				vm_page_dirty(m);
1409 				vm_page_activate(m);
1410 				vm_page_io_finish(m);
1411 			}
1412 		} else if (bp->b_iocmd == BIO_READ) {
1413 			/*
1414 			 * For read success, clear dirty bits.  Nobody should
1415 			 * have this page mapped but don't take any chances,
1416 			 * make sure the pmap modify bits are also cleared.
1417 			 *
1418 			 * NOTE: for reads, m->dirty will probably be
1419 			 * overridden by the original caller of getpages so
1420 			 * we cannot set them in order to free the underlying
1421 			 * swap in a low-swap situation.  I don't think we'd
1422 			 * want to do that anyway, but it was an optimization
1423 			 * that existed in the old swapper for a time before
1424 			 * it got ripped out due to precisely this problem.
1425 			 *
1426 			 * If not the requested page then deactivate it.
1427 			 *
1428 			 * Note that the requested page, reqpage, is left
1429 			 * busied, but we still have to wake it up.  The
1430 			 * other pages are released (unbusied) by
1431 			 * vm_page_wakeup().  We do not set reqpage's
1432 			 * valid bits here, it is up to the caller.
1433 			 */
1434 			pmap_clear_modify(m);
1435 			m->valid = VM_PAGE_BITS_ALL;
1436 			vm_page_undirty(m);
1437 
1438 			/*
1439 			 * We have to wake specifically requested pages
1440 			 * up too because we cleared VPO_SWAPINPROG and
1441 			 * could be waiting for it in getpages.  However,
1442 			 * be sure to not unbusy getpages specifically
1443 			 * requested page - getpages expects it to be
1444 			 * left busy.
1445 			 */
1446 			if (i != bp->b_pager.pg_reqpage) {
1447 				vm_page_deactivate(m);
1448 				vm_page_wakeup(m);
1449 			} else {
1450 				vm_page_flash(m);
1451 			}
1452 		} else {
1453 			/*
1454 			 * For write success, clear the modify and dirty
1455 			 * status, then finish the I/O ( which decrements the
1456 			 * busy count and possibly wakes waiter's up ).
1457 			 */
1458 			pmap_clear_modify(m);
1459 			vm_page_undirty(m);
1460 			vm_page_io_finish(m);
1461 			if (vm_page_count_severe())
1462 				vm_page_try_to_cache(m);
1463 		}
1464 	}
1465 	vm_page_unlock_queues();
1466 
1467 	/*
1468 	 * adjust pip.  NOTE: the original parent may still have its own
1469 	 * pip refs on the object.
1470 	 */
1471 	if (object != NULL) {
1472 		vm_object_pip_wakeupn(object, bp->b_npages);
1473 		VM_OBJECT_UNLOCK(object);
1474 	}
1475 
1476 	/*
1477 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1478 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1479 	 * trigger a KASSERT in relpbuf().
1480 	 */
1481 	if (bp->b_vp) {
1482 		    bp->b_vp = NULL;
1483 		    bp->b_bufobj = NULL;
1484 	}
1485 	/*
1486 	 * release the physical I/O buffer
1487 	 */
1488 	relpbuf(
1489 	    bp,
1490 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1491 		((bp->b_flags & B_ASYNC) ?
1492 		    &nsw_wcount_async :
1493 		    &nsw_wcount_sync
1494 		)
1495 	    )
1496 	);
1497 }
1498 
1499 /*
1500  *	swap_pager_isswapped:
1501  *
1502  *	Return 1 if at least one page in the given object is paged
1503  *	out to the given swap device.
1504  *
1505  *	This routine may not block.
1506  */
1507 int
1508 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1509 {
1510 	daddr_t index = 0;
1511 	int bcount;
1512 	int i;
1513 
1514 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1515 	if (object->type != OBJT_SWAP)
1516 		return (0);
1517 
1518 	mtx_lock(&swhash_mtx);
1519 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1520 		struct swblock *swap;
1521 
1522 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1523 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1524 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1525 					mtx_unlock(&swhash_mtx);
1526 					return (1);
1527 				}
1528 			}
1529 		}
1530 		index += SWAP_META_PAGES;
1531 		if (index > 0x20000000)
1532 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1533 	}
1534 	mtx_unlock(&swhash_mtx);
1535 	return (0);
1536 }
1537 
1538 /*
1539  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1540  *
1541  *	This routine dissociates the page at the given index within a
1542  *	swap block from its backing store, paging it in if necessary.
1543  *	If the page is paged in, it is placed in the inactive queue,
1544  *	since it had its backing store ripped out from under it.
1545  *	We also attempt to swap in all other pages in the swap block,
1546  *	we only guarantee that the one at the specified index is
1547  *	paged in.
1548  *
1549  *	XXX - The code to page the whole block in doesn't work, so we
1550  *	      revert to the one-by-one behavior for now.  Sigh.
1551  */
1552 static inline void
1553 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1554 {
1555 	vm_page_t m;
1556 
1557 	vm_object_pip_add(object, 1);
1558 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1559 	if (m->valid == VM_PAGE_BITS_ALL) {
1560 		vm_object_pip_subtract(object, 1);
1561 		vm_page_lock_queues();
1562 		vm_page_activate(m);
1563 		vm_page_dirty(m);
1564 		vm_page_unlock_queues();
1565 		vm_page_wakeup(m);
1566 		vm_pager_page_unswapped(m);
1567 		return;
1568 	}
1569 
1570 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1571 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1572 	vm_object_pip_subtract(object, 1);
1573 	vm_page_lock_queues();
1574 	vm_page_dirty(m);
1575 	vm_page_dontneed(m);
1576 	vm_page_unlock_queues();
1577 	vm_page_wakeup(m);
1578 	vm_pager_page_unswapped(m);
1579 }
1580 
1581 /*
1582  *	swap_pager_swapoff:
1583  *
1584  *	Page in all of the pages that have been paged out to the
1585  *	given device.  The corresponding blocks in the bitmap must be
1586  *	marked as allocated and the device must be flagged SW_CLOSING.
1587  *	There may be no processes swapped out to the device.
1588  *
1589  *	This routine may block.
1590  */
1591 static void
1592 swap_pager_swapoff(struct swdevt *sp)
1593 {
1594 	struct swblock *swap;
1595 	int i, j, retries;
1596 
1597 	GIANT_REQUIRED;
1598 
1599 	retries = 0;
1600 full_rescan:
1601 	mtx_lock(&swhash_mtx);
1602 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1603 restart:
1604 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1605 			vm_object_t object = swap->swb_object;
1606 			vm_pindex_t pindex = swap->swb_index;
1607                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1608                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1609 					/* avoid deadlock */
1610 					if (!VM_OBJECT_TRYLOCK(object)) {
1611 						break;
1612 					} else {
1613 						mtx_unlock(&swhash_mtx);
1614 						swp_pager_force_pagein(object,
1615 						    pindex + j);
1616 						VM_OBJECT_UNLOCK(object);
1617 						mtx_lock(&swhash_mtx);
1618 						goto restart;
1619 					}
1620 				}
1621                         }
1622 		}
1623 	}
1624 	mtx_unlock(&swhash_mtx);
1625 	if (sp->sw_used) {
1626 		/*
1627 		 * Objects may be locked or paging to the device being
1628 		 * removed, so we will miss their pages and need to
1629 		 * make another pass.  We have marked this device as
1630 		 * SW_CLOSING, so the activity should finish soon.
1631 		 */
1632 		retries++;
1633 		if (retries > 100) {
1634 			panic("swapoff: failed to locate %d swap blocks",
1635 			    sp->sw_used);
1636 		}
1637 		pause("swpoff", hz / 20);
1638 		goto full_rescan;
1639 	}
1640 }
1641 
1642 /************************************************************************
1643  *				SWAP META DATA 				*
1644  ************************************************************************
1645  *
1646  *	These routines manipulate the swap metadata stored in the
1647  *	OBJT_SWAP object.  All swp_*() routines must be called at
1648  *	splvm() because swap can be freed up by the low level vm_page
1649  *	code which might be called from interrupts beyond what splbio() covers.
1650  *
1651  *	Swap metadata is implemented with a global hash and not directly
1652  *	linked into the object.  Instead the object simply contains
1653  *	appropriate tracking counters.
1654  */
1655 
1656 /*
1657  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1658  *
1659  *	We first convert the object to a swap object if it is a default
1660  *	object.
1661  *
1662  *	The specified swapblk is added to the object's swap metadata.  If
1663  *	the swapblk is not valid, it is freed instead.  Any previously
1664  *	assigned swapblk is freed.
1665  *
1666  *	This routine must be called at splvm(), except when used to convert
1667  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1668  */
1669 static void
1670 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1671 {
1672 	struct swblock *swap;
1673 	struct swblock **pswap;
1674 	int idx;
1675 
1676 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1677 	/*
1678 	 * Convert default object to swap object if necessary
1679 	 */
1680 	if (object->type != OBJT_SWAP) {
1681 		object->type = OBJT_SWAP;
1682 		object->un_pager.swp.swp_bcount = 0;
1683 
1684 		if (object->handle != NULL) {
1685 			mtx_lock(&sw_alloc_mtx);
1686 			TAILQ_INSERT_TAIL(
1687 			    NOBJLIST(object->handle),
1688 			    object,
1689 			    pager_object_list
1690 			);
1691 			mtx_unlock(&sw_alloc_mtx);
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Locate hash entry.  If not found create, but if we aren't adding
1697 	 * anything just return.  If we run out of space in the map we wait
1698 	 * and, since the hash table may have changed, retry.
1699 	 */
1700 retry:
1701 	mtx_lock(&swhash_mtx);
1702 	pswap = swp_pager_hash(object, pindex);
1703 
1704 	if ((swap = *pswap) == NULL) {
1705 		int i;
1706 
1707 		if (swapblk == SWAPBLK_NONE)
1708 			goto done;
1709 
1710 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1711 		if (swap == NULL) {
1712 			mtx_unlock(&swhash_mtx);
1713 			VM_OBJECT_UNLOCK(object);
1714 			if (uma_zone_exhausted(swap_zone))
1715 				printf("swap zone exhausted, increase kern.maxswzone\n");
1716 			VM_WAIT;
1717 			VM_OBJECT_LOCK(object);
1718 			goto retry;
1719 		}
1720 
1721 		swap->swb_hnext = NULL;
1722 		swap->swb_object = object;
1723 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1724 		swap->swb_count = 0;
1725 
1726 		++object->un_pager.swp.swp_bcount;
1727 
1728 		for (i = 0; i < SWAP_META_PAGES; ++i)
1729 			swap->swb_pages[i] = SWAPBLK_NONE;
1730 	}
1731 
1732 	/*
1733 	 * Delete prior contents of metadata
1734 	 */
1735 	idx = pindex & SWAP_META_MASK;
1736 
1737 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1738 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1739 		--swap->swb_count;
1740 	}
1741 
1742 	/*
1743 	 * Enter block into metadata
1744 	 */
1745 	swap->swb_pages[idx] = swapblk;
1746 	if (swapblk != SWAPBLK_NONE)
1747 		++swap->swb_count;
1748 done:
1749 	mtx_unlock(&swhash_mtx);
1750 }
1751 
1752 /*
1753  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1754  *
1755  *	The requested range of blocks is freed, with any associated swap
1756  *	returned to the swap bitmap.
1757  *
1758  *	This routine will free swap metadata structures as they are cleaned
1759  *	out.  This routine does *NOT* operate on swap metadata associated
1760  *	with resident pages.
1761  *
1762  *	This routine must be called at splvm()
1763  */
1764 static void
1765 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1766 {
1767 
1768 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1769 	if (object->type != OBJT_SWAP)
1770 		return;
1771 
1772 	while (count > 0) {
1773 		struct swblock **pswap;
1774 		struct swblock *swap;
1775 
1776 		mtx_lock(&swhash_mtx);
1777 		pswap = swp_pager_hash(object, index);
1778 
1779 		if ((swap = *pswap) != NULL) {
1780 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1781 
1782 			if (v != SWAPBLK_NONE) {
1783 				swp_pager_freeswapspace(v, 1);
1784 				swap->swb_pages[index & SWAP_META_MASK] =
1785 					SWAPBLK_NONE;
1786 				if (--swap->swb_count == 0) {
1787 					*pswap = swap->swb_hnext;
1788 					uma_zfree(swap_zone, swap);
1789 					--object->un_pager.swp.swp_bcount;
1790 				}
1791 			}
1792 			--count;
1793 			++index;
1794 		} else {
1795 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1796 			count -= n;
1797 			index += n;
1798 		}
1799 		mtx_unlock(&swhash_mtx);
1800 	}
1801 }
1802 
1803 /*
1804  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1805  *
1806  *	This routine locates and destroys all swap metadata associated with
1807  *	an object.
1808  *
1809  *	This routine must be called at splvm()
1810  */
1811 static void
1812 swp_pager_meta_free_all(vm_object_t object)
1813 {
1814 	daddr_t index = 0;
1815 
1816 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1817 	if (object->type != OBJT_SWAP)
1818 		return;
1819 
1820 	while (object->un_pager.swp.swp_bcount) {
1821 		struct swblock **pswap;
1822 		struct swblock *swap;
1823 
1824 		mtx_lock(&swhash_mtx);
1825 		pswap = swp_pager_hash(object, index);
1826 		if ((swap = *pswap) != NULL) {
1827 			int i;
1828 
1829 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1830 				daddr_t v = swap->swb_pages[i];
1831 				if (v != SWAPBLK_NONE) {
1832 					--swap->swb_count;
1833 					swp_pager_freeswapspace(v, 1);
1834 				}
1835 			}
1836 			if (swap->swb_count != 0)
1837 				panic("swap_pager_meta_free_all: swb_count != 0");
1838 			*pswap = swap->swb_hnext;
1839 			uma_zfree(swap_zone, swap);
1840 			--object->un_pager.swp.swp_bcount;
1841 		}
1842 		mtx_unlock(&swhash_mtx);
1843 		index += SWAP_META_PAGES;
1844 		if (index > 0x20000000)
1845 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1846 	}
1847 }
1848 
1849 /*
1850  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1851  *
1852  *	This routine is capable of looking up, popping, or freeing
1853  *	swapblk assignments in the swap meta data or in the vm_page_t.
1854  *	The routine typically returns the swapblk being looked-up, or popped,
1855  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1856  *	was invalid.  This routine will automatically free any invalid
1857  *	meta-data swapblks.
1858  *
1859  *	It is not possible to store invalid swapblks in the swap meta data
1860  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1861  *
1862  *	When acting on a busy resident page and paging is in progress, we
1863  *	have to wait until paging is complete but otherwise can act on the
1864  *	busy page.
1865  *
1866  *	This routine must be called at splvm().
1867  *
1868  *	SWM_FREE	remove and free swap block from metadata
1869  *	SWM_POP		remove from meta data but do not free.. pop it out
1870  */
1871 static daddr_t
1872 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1873 {
1874 	struct swblock **pswap;
1875 	struct swblock *swap;
1876 	daddr_t r1;
1877 	int idx;
1878 
1879 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1880 	/*
1881 	 * The meta data only exists of the object is OBJT_SWAP
1882 	 * and even then might not be allocated yet.
1883 	 */
1884 	if (object->type != OBJT_SWAP)
1885 		return (SWAPBLK_NONE);
1886 
1887 	r1 = SWAPBLK_NONE;
1888 	mtx_lock(&swhash_mtx);
1889 	pswap = swp_pager_hash(object, pindex);
1890 
1891 	if ((swap = *pswap) != NULL) {
1892 		idx = pindex & SWAP_META_MASK;
1893 		r1 = swap->swb_pages[idx];
1894 
1895 		if (r1 != SWAPBLK_NONE) {
1896 			if (flags & SWM_FREE) {
1897 				swp_pager_freeswapspace(r1, 1);
1898 				r1 = SWAPBLK_NONE;
1899 			}
1900 			if (flags & (SWM_FREE|SWM_POP)) {
1901 				swap->swb_pages[idx] = SWAPBLK_NONE;
1902 				if (--swap->swb_count == 0) {
1903 					*pswap = swap->swb_hnext;
1904 					uma_zfree(swap_zone, swap);
1905 					--object->un_pager.swp.swp_bcount;
1906 				}
1907 			}
1908 		}
1909 	}
1910 	mtx_unlock(&swhash_mtx);
1911 	return (r1);
1912 }
1913 
1914 /*
1915  * System call swapon(name) enables swapping on device name,
1916  * which must be in the swdevsw.  Return EBUSY
1917  * if already swapping on this device.
1918  */
1919 #ifndef _SYS_SYSPROTO_H_
1920 struct swapon_args {
1921 	char *name;
1922 };
1923 #endif
1924 
1925 /*
1926  * MPSAFE
1927  */
1928 /* ARGSUSED */
1929 int
1930 swapon(struct thread *td, struct swapon_args *uap)
1931 {
1932 	struct vattr attr;
1933 	struct vnode *vp;
1934 	struct nameidata nd;
1935 	int error;
1936 
1937 	error = priv_check(td, PRIV_SWAPON);
1938 	if (error)
1939 		return (error);
1940 
1941 	mtx_lock(&Giant);
1942 	while (swdev_syscall_active)
1943 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
1944 	swdev_syscall_active = 1;
1945 
1946 	/*
1947 	 * Swap metadata may not fit in the KVM if we have physical
1948 	 * memory of >1GB.
1949 	 */
1950 	if (swap_zone == NULL) {
1951 		error = ENOMEM;
1952 		goto done;
1953 	}
1954 
1955 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
1956 	    uap->name, td);
1957 	error = namei(&nd);
1958 	if (error)
1959 		goto done;
1960 
1961 	NDFREE(&nd, NDF_ONLY_PNBUF);
1962 	vp = nd.ni_vp;
1963 
1964 	if (vn_isdisk(vp, &error)) {
1965 		error = swapongeom(td, vp);
1966 	} else if (vp->v_type == VREG &&
1967 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1968 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
1969 		/*
1970 		 * Allow direct swapping to NFS regular files in the same
1971 		 * way that nfs_mountroot() sets up diskless swapping.
1972 		 */
1973 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
1974 	}
1975 
1976 	if (error)
1977 		vrele(vp);
1978 done:
1979 	swdev_syscall_active = 0;
1980 	wakeup_one(&swdev_syscall_active);
1981 	mtx_unlock(&Giant);
1982 	return (error);
1983 }
1984 
1985 static void
1986 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
1987 {
1988 	struct swdevt *sp, *tsp;
1989 	swblk_t dvbase;
1990 	u_long mblocks;
1991 
1992 	/*
1993 	 * If we go beyond this, we get overflows in the radix
1994 	 * tree bitmap code.
1995 	 */
1996 	mblocks = 0x40000000 / BLIST_META_RADIX;
1997 	if (nblks > mblocks) {
1998 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
1999 			mblocks);
2000 		nblks = mblocks;
2001 	}
2002 	/*
2003 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2004 	 * First chop nblks off to page-align it, then convert.
2005 	 *
2006 	 * sw->sw_nblks is in page-sized chunks now too.
2007 	 */
2008 	nblks &= ~(ctodb(1) - 1);
2009 	nblks = dbtoc(nblks);
2010 
2011 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2012 	sp->sw_vp = vp;
2013 	sp->sw_id = id;
2014 	sp->sw_dev = dev;
2015 	sp->sw_flags = 0;
2016 	sp->sw_nblks = nblks;
2017 	sp->sw_used = 0;
2018 	sp->sw_strategy = strategy;
2019 	sp->sw_close = close;
2020 
2021 	sp->sw_blist = blist_create(nblks);
2022 	/*
2023 	 * Do not free the first two block in order to avoid overwriting
2024 	 * any bsd label at the front of the partition
2025 	 */
2026 	blist_free(sp->sw_blist, 2, nblks - 2);
2027 
2028 	dvbase = 0;
2029 	mtx_lock(&sw_dev_mtx);
2030 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2031 		if (tsp->sw_end >= dvbase) {
2032 			/*
2033 			 * We put one uncovered page between the devices
2034 			 * in order to definitively prevent any cross-device
2035 			 * I/O requests
2036 			 */
2037 			dvbase = tsp->sw_end + 1;
2038 		}
2039 	}
2040 	sp->sw_first = dvbase;
2041 	sp->sw_end = dvbase + nblks;
2042 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2043 	nswapdev++;
2044 	swap_pager_avail += nblks;
2045 	swp_sizecheck();
2046 	mtx_unlock(&sw_dev_mtx);
2047 }
2048 
2049 /*
2050  * SYSCALL: swapoff(devname)
2051  *
2052  * Disable swapping on the given device.
2053  *
2054  * XXX: Badly designed system call: it should use a device index
2055  * rather than filename as specification.  We keep sw_vp around
2056  * only to make this work.
2057  */
2058 #ifndef _SYS_SYSPROTO_H_
2059 struct swapoff_args {
2060 	char *name;
2061 };
2062 #endif
2063 
2064 /*
2065  * MPSAFE
2066  */
2067 /* ARGSUSED */
2068 int
2069 swapoff(struct thread *td, struct swapoff_args *uap)
2070 {
2071 	struct vnode *vp;
2072 	struct nameidata nd;
2073 	struct swdevt *sp;
2074 	int error;
2075 
2076 	error = priv_check(td, PRIV_SWAPOFF);
2077 	if (error)
2078 		return (error);
2079 
2080 	mtx_lock(&Giant);
2081 	while (swdev_syscall_active)
2082 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2083 	swdev_syscall_active = 1;
2084 
2085 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2086 	    td);
2087 	error = namei(&nd);
2088 	if (error)
2089 		goto done;
2090 	NDFREE(&nd, NDF_ONLY_PNBUF);
2091 	vp = nd.ni_vp;
2092 
2093 	mtx_lock(&sw_dev_mtx);
2094 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2095 		if (sp->sw_vp == vp)
2096 			break;
2097 	}
2098 	mtx_unlock(&sw_dev_mtx);
2099 	if (sp == NULL) {
2100 		error = EINVAL;
2101 		goto done;
2102 	}
2103 	error = swapoff_one(sp, td);
2104 done:
2105 	swdev_syscall_active = 0;
2106 	wakeup_one(&swdev_syscall_active);
2107 	mtx_unlock(&Giant);
2108 	return (error);
2109 }
2110 
2111 static int
2112 swapoff_one(struct swdevt *sp, struct thread *td)
2113 {
2114 	u_long nblks, dvbase;
2115 #ifdef MAC
2116 	int error;
2117 #endif
2118 
2119 	mtx_assert(&Giant, MA_OWNED);
2120 #ifdef MAC
2121 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td);
2122 	error = mac_system_check_swapoff(td->td_ucred, sp->sw_vp);
2123 	(void) VOP_UNLOCK(sp->sw_vp, 0, td);
2124 	if (error != 0)
2125 		return (error);
2126 #endif
2127 	nblks = sp->sw_nblks;
2128 
2129 	/*
2130 	 * We can turn off this swap device safely only if the
2131 	 * available virtual memory in the system will fit the amount
2132 	 * of data we will have to page back in, plus an epsilon so
2133 	 * the system doesn't become critically low on swap space.
2134 	 */
2135 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2136 	    nblks + nswap_lowat) {
2137 		return (ENOMEM);
2138 	}
2139 
2140 	/*
2141 	 * Prevent further allocations on this device.
2142 	 */
2143 	mtx_lock(&sw_dev_mtx);
2144 	sp->sw_flags |= SW_CLOSING;
2145 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2146 		swap_pager_avail -= blist_fill(sp->sw_blist,
2147 		     dvbase, dmmax);
2148 	}
2149 	mtx_unlock(&sw_dev_mtx);
2150 
2151 	/*
2152 	 * Page in the contents of the device and close it.
2153 	 */
2154 	swap_pager_swapoff(sp);
2155 
2156 	sp->sw_close(td, sp);
2157 	sp->sw_id = NULL;
2158 	mtx_lock(&sw_dev_mtx);
2159 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2160 	nswapdev--;
2161 	if (nswapdev == 0) {
2162 		swap_pager_full = 2;
2163 		swap_pager_almost_full = 1;
2164 	}
2165 	if (swdevhd == sp)
2166 		swdevhd = NULL;
2167 	mtx_unlock(&sw_dev_mtx);
2168 	blist_destroy(sp->sw_blist);
2169 	free(sp, M_VMPGDATA);
2170 	return (0);
2171 }
2172 
2173 void
2174 swapoff_all(void)
2175 {
2176 	struct swdevt *sp, *spt;
2177 	const char *devname;
2178 	int error;
2179 
2180 	mtx_lock(&Giant);
2181 	while (swdev_syscall_active)
2182 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2183 	swdev_syscall_active = 1;
2184 
2185 	mtx_lock(&sw_dev_mtx);
2186 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2187 		mtx_unlock(&sw_dev_mtx);
2188 		if (vn_isdisk(sp->sw_vp, NULL))
2189 			devname = sp->sw_vp->v_rdev->si_name;
2190 		else
2191 			devname = "[file]";
2192 		error = swapoff_one(sp, &thread0);
2193 		if (error != 0) {
2194 			printf("Cannot remove swap device %s (error=%d), "
2195 			    "skipping.\n", devname, error);
2196 		} else if (bootverbose) {
2197 			printf("Swap device %s removed.\n", devname);
2198 		}
2199 		mtx_lock(&sw_dev_mtx);
2200 	}
2201 	mtx_unlock(&sw_dev_mtx);
2202 
2203 	swdev_syscall_active = 0;
2204 	wakeup_one(&swdev_syscall_active);
2205 	mtx_unlock(&Giant);
2206 }
2207 
2208 void
2209 swap_pager_status(int *total, int *used)
2210 {
2211 	struct swdevt *sp;
2212 
2213 	*total = 0;
2214 	*used = 0;
2215 	mtx_lock(&sw_dev_mtx);
2216 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2217 		*total += sp->sw_nblks;
2218 		*used += sp->sw_used;
2219 	}
2220 	mtx_unlock(&sw_dev_mtx);
2221 }
2222 
2223 static int
2224 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2225 {
2226 	int	*name = (int *)arg1;
2227 	int	error, n;
2228 	struct xswdev xs;
2229 	struct swdevt *sp;
2230 
2231 	if (arg2 != 1) /* name length */
2232 		return (EINVAL);
2233 
2234 	n = 0;
2235 	mtx_lock(&sw_dev_mtx);
2236 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2237 		if (n == *name) {
2238 			mtx_unlock(&sw_dev_mtx);
2239 			xs.xsw_version = XSWDEV_VERSION;
2240 			xs.xsw_dev = sp->sw_dev;
2241 			xs.xsw_flags = sp->sw_flags;
2242 			xs.xsw_nblks = sp->sw_nblks;
2243 			xs.xsw_used = sp->sw_used;
2244 
2245 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2246 			return (error);
2247 		}
2248 		n++;
2249 	}
2250 	mtx_unlock(&sw_dev_mtx);
2251 	return (ENOENT);
2252 }
2253 
2254 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2255     "Number of swap devices");
2256 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2257     "Swap statistics by device");
2258 
2259 /*
2260  * vmspace_swap_count() - count the approximate swap useage in pages for a
2261  *			  vmspace.
2262  *
2263  *	The map must be locked.
2264  *
2265  *	Swap useage is determined by taking the proportional swap used by
2266  *	VM objects backing the VM map.  To make up for fractional losses,
2267  *	if the VM object has any swap use at all the associated map entries
2268  *	count for at least 1 swap page.
2269  */
2270 int
2271 vmspace_swap_count(struct vmspace *vmspace)
2272 {
2273 	vm_map_t map = &vmspace->vm_map;
2274 	vm_map_entry_t cur;
2275 	int count = 0;
2276 
2277 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2278 		vm_object_t object;
2279 
2280 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2281 		    (object = cur->object.vm_object) != NULL) {
2282 			VM_OBJECT_LOCK(object);
2283 			if (object->type == OBJT_SWAP &&
2284 			    object->un_pager.swp.swp_bcount != 0) {
2285 				int n = (cur->end - cur->start) / PAGE_SIZE;
2286 
2287 				count += object->un_pager.swp.swp_bcount *
2288 				    SWAP_META_PAGES * n / object->size + 1;
2289 			}
2290 			VM_OBJECT_UNLOCK(object);
2291 		}
2292 	}
2293 	return (count);
2294 }
2295 
2296 /*
2297  * GEOM backend
2298  *
2299  * Swapping onto disk devices.
2300  *
2301  */
2302 
2303 static g_orphan_t swapgeom_orphan;
2304 
2305 static struct g_class g_swap_class = {
2306 	.name = "SWAP",
2307 	.version = G_VERSION,
2308 	.orphan = swapgeom_orphan,
2309 };
2310 
2311 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2312 
2313 
2314 static void
2315 swapgeom_done(struct bio *bp2)
2316 {
2317 	struct buf *bp;
2318 
2319 	bp = bp2->bio_caller2;
2320 	bp->b_ioflags = bp2->bio_flags;
2321 	if (bp2->bio_error)
2322 		bp->b_ioflags |= BIO_ERROR;
2323 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2324 	bp->b_error = bp2->bio_error;
2325 	bufdone(bp);
2326 	g_destroy_bio(bp2);
2327 }
2328 
2329 static void
2330 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2331 {
2332 	struct bio *bio;
2333 	struct g_consumer *cp;
2334 
2335 	cp = sp->sw_id;
2336 	if (cp == NULL) {
2337 		bp->b_error = ENXIO;
2338 		bp->b_ioflags |= BIO_ERROR;
2339 		bufdone(bp);
2340 		return;
2341 	}
2342 	bio = g_alloc_bio();
2343 #if 0
2344 	/*
2345 	 * XXX: We shouldn't really sleep here when we run out of buffers
2346 	 * XXX: but the alternative is worse right now.
2347 	 */
2348 	if (bio == NULL) {
2349 		bp->b_error = ENOMEM;
2350 		bp->b_ioflags |= BIO_ERROR;
2351 		bufdone(bp);
2352 		return;
2353 	}
2354 #endif
2355 	bio->bio_caller2 = bp;
2356 	bio->bio_cmd = bp->b_iocmd;
2357 	bio->bio_data = bp->b_data;
2358 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2359 	bio->bio_length = bp->b_bcount;
2360 	bio->bio_done = swapgeom_done;
2361 	g_io_request(bio, cp);
2362 	return;
2363 }
2364 
2365 static void
2366 swapgeom_orphan(struct g_consumer *cp)
2367 {
2368 	struct swdevt *sp;
2369 
2370 	mtx_lock(&sw_dev_mtx);
2371 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2372 		if (sp->sw_id == cp)
2373 			sp->sw_id = NULL;
2374 	mtx_unlock(&sw_dev_mtx);
2375 }
2376 
2377 static void
2378 swapgeom_close_ev(void *arg, int flags)
2379 {
2380 	struct g_consumer *cp;
2381 
2382 	cp = arg;
2383 	g_access(cp, -1, -1, 0);
2384 	g_detach(cp);
2385 	g_destroy_consumer(cp);
2386 }
2387 
2388 static void
2389 swapgeom_close(struct thread *td, struct swdevt *sw)
2390 {
2391 
2392 	/* XXX: direct call when Giant untangled */
2393 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2394 }
2395 
2396 
2397 struct swh0h0 {
2398 	struct cdev *dev;
2399 	struct vnode *vp;
2400 	int	error;
2401 };
2402 
2403 static void
2404 swapongeom_ev(void *arg, int flags)
2405 {
2406 	struct swh0h0 *swh;
2407 	struct g_provider *pp;
2408 	struct g_consumer *cp;
2409 	static struct g_geom *gp;
2410 	struct swdevt *sp;
2411 	u_long nblks;
2412 	int error;
2413 
2414 	swh = arg;
2415 	swh->error = 0;
2416 	pp = g_dev_getprovider(swh->dev);
2417 	if (pp == NULL) {
2418 		swh->error = ENODEV;
2419 		return;
2420 	}
2421 	mtx_lock(&sw_dev_mtx);
2422 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2423 		cp = sp->sw_id;
2424 		if (cp != NULL && cp->provider == pp) {
2425 			mtx_unlock(&sw_dev_mtx);
2426 			swh->error = EBUSY;
2427 			return;
2428 		}
2429 	}
2430 	mtx_unlock(&sw_dev_mtx);
2431 	if (gp == NULL)
2432 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2433 	cp = g_new_consumer(gp);
2434 	g_attach(cp, pp);
2435 	/*
2436 	 * XXX: Everytime you think you can improve the margin for
2437 	 * footshooting, somebody depends on the ability to do so:
2438 	 * savecore(8) wants to write to our swapdev so we cannot
2439 	 * set an exclusive count :-(
2440 	 */
2441 	error = g_access(cp, 1, 1, 0);
2442 	if (error) {
2443 		g_detach(cp);
2444 		g_destroy_consumer(cp);
2445 		swh->error = error;
2446 		return;
2447 	}
2448 	nblks = pp->mediasize / DEV_BSIZE;
2449 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2450 	    swapgeom_close, dev2udev(swh->dev));
2451 	swh->error = 0;
2452 	return;
2453 }
2454 
2455 static int
2456 swapongeom(struct thread *td, struct vnode *vp)
2457 {
2458 	int error;
2459 	struct swh0h0 swh;
2460 
2461 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2462 
2463 	swh.dev = vp->v_rdev;
2464 	swh.vp = vp;
2465 	swh.error = 0;
2466 	/* XXX: direct call when Giant untangled */
2467 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2468 	if (!error)
2469 		error = swh.error;
2470 	VOP_UNLOCK(vp, 0, td);
2471 	return (error);
2472 }
2473 
2474 /*
2475  * VNODE backend
2476  *
2477  * This is used mainly for network filesystem (read: probably only tested
2478  * with NFS) swapfiles.
2479  *
2480  */
2481 
2482 static void
2483 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2484 {
2485 	struct vnode *vp2;
2486 
2487 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2488 
2489 	vp2 = sp->sw_id;
2490 	vhold(vp2);
2491 	if (bp->b_iocmd == BIO_WRITE) {
2492 		if (bp->b_bufobj)
2493 			bufobj_wdrop(bp->b_bufobj);
2494 		bufobj_wref(&vp2->v_bufobj);
2495 	}
2496 	if (bp->b_bufobj != &vp2->v_bufobj)
2497 		bp->b_bufobj = &vp2->v_bufobj;
2498 	bp->b_vp = vp2;
2499 	bp->b_iooffset = dbtob(bp->b_blkno);
2500 	bstrategy(bp);
2501 	return;
2502 }
2503 
2504 static void
2505 swapdev_close(struct thread *td, struct swdevt *sp)
2506 {
2507 
2508 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2509 	vrele(sp->sw_vp);
2510 }
2511 
2512 
2513 static int
2514 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2515 {
2516 	struct swdevt *sp;
2517 	int error;
2518 
2519 	if (nblks == 0)
2520 		return (ENXIO);
2521 	mtx_lock(&sw_dev_mtx);
2522 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2523 		if (sp->sw_id == vp) {
2524 			mtx_unlock(&sw_dev_mtx);
2525 			return (EBUSY);
2526 		}
2527 	}
2528 	mtx_unlock(&sw_dev_mtx);
2529 
2530 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2531 #ifdef MAC
2532 	error = mac_system_check_swapon(td->td_ucred, vp);
2533 	if (error == 0)
2534 #endif
2535 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2536 	(void) VOP_UNLOCK(vp, 0, td);
2537 	if (error)
2538 		return (error);
2539 
2540 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2541 	    NODEV);
2542 	return (0);
2543 }
2544