xref: /freebsd/sys/vm/swap_pager.c (revision 891b8ed4672a213bbe6f3f10522eeadb34d01b76)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sysctl.h>
93 #include <sys/sysproto.h>
94 #include <sys/blist.h>
95 #include <sys/lock.h>
96 #include <sys/sx.h>
97 #include <sys/vmmeter.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/vm.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_param.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 #include <geom/geom.h>
115 
116 /*
117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
118  * pages per allocation.  We recommend you stick with the default of 8.
119  * The 16-page limit is due to the radix code (kern/subr_blist.c).
120  */
121 #ifndef MAX_PAGEOUT_CLUSTER
122 #define MAX_PAGEOUT_CLUSTER 16
123 #endif
124 
125 #if !defined(SWB_NPAGES)
126 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127 #endif
128 
129 /*
130  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
131  *
132  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
133  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
134  * 32K worth of data, two levels represent 256K, three levels represent
135  * 2 MBytes.   This is acceptable.
136  *
137  * Overall memory utilization is about the same as the old swap structure.
138  */
139 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
140 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
141 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
142 
143 struct swblock {
144 	struct swblock	*swb_hnext;
145 	vm_object_t	swb_object;
146 	vm_pindex_t	swb_index;
147 	int		swb_count;
148 	daddr_t		swb_pages[SWAP_META_PAGES];
149 };
150 
151 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
152 static struct mtx sw_dev_mtx;
153 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
154 static struct swdevt *swdevhd;	/* Allocate from here next */
155 static int nswapdev;		/* Number of swap devices */
156 int swap_pager_avail;
157 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
158 
159 static vm_ooffset_t swap_total;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
161     "Total amount of available swap storage.");
162 static vm_ooffset_t swap_reserved;
163 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 static int overcommit = 0;
166 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
167     "Configure virtual memory overcommit behavior. See tuning(7) "
168     "for details.");
169 
170 /* bits from overcommit */
171 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
172 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
173 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
174 
175 int
176 swap_reserve(vm_ooffset_t incr)
177 {
178 
179 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
180 }
181 
182 int
183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
184 {
185 	vm_ooffset_t r, s;
186 	int res, error;
187 	static int curfail;
188 	static struct timeval lastfail;
189 	struct uidinfo *uip;
190 
191 	uip = cred->cr_ruidinfo;
192 
193 	if (incr & PAGE_MASK)
194 		panic("swap_reserve: & PAGE_MASK");
195 
196 	PROC_LOCK(curproc);
197 	error = racct_add(curproc, RACCT_SWAP, incr);
198 	PROC_UNLOCK(curproc);
199 	if (error != 0)
200 		return (0);
201 
202 	res = 0;
203 	mtx_lock(&sw_dev_mtx);
204 	r = swap_reserved + incr;
205 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
206 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
207 		s *= PAGE_SIZE;
208 	} else
209 		s = 0;
210 	s += swap_total;
211 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
212 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
213 		res = 1;
214 		swap_reserved = r;
215 	}
216 	mtx_unlock(&sw_dev_mtx);
217 
218 	if (res) {
219 		PROC_LOCK(curproc);
220 		UIDINFO_VMSIZE_LOCK(uip);
221 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
222 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
223 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
224 			res = 0;
225 		else
226 			uip->ui_vmsize += incr;
227 		UIDINFO_VMSIZE_UNLOCK(uip);
228 		PROC_UNLOCK(curproc);
229 		if (!res) {
230 			mtx_lock(&sw_dev_mtx);
231 			swap_reserved -= incr;
232 			mtx_unlock(&sw_dev_mtx);
233 		}
234 	}
235 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
236 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
237 		    curproc->p_pid, uip->ui_uid, incr);
238 	}
239 
240 	if (!res) {
241 		PROC_LOCK(curproc);
242 		racct_sub(curproc, RACCT_SWAP, incr);
243 		PROC_UNLOCK(curproc);
244 	}
245 
246 	return (res);
247 }
248 
249 void
250 swap_reserve_force(vm_ooffset_t incr)
251 {
252 	struct uidinfo *uip;
253 
254 	mtx_lock(&sw_dev_mtx);
255 	swap_reserved += incr;
256 	mtx_unlock(&sw_dev_mtx);
257 
258 	PROC_LOCK(curproc);
259 	racct_add_force(curproc, RACCT_SWAP, incr);
260 	PROC_UNLOCK(curproc);
261 
262 	uip = curthread->td_ucred->cr_ruidinfo;
263 	PROC_LOCK(curproc);
264 	UIDINFO_VMSIZE_LOCK(uip);
265 	uip->ui_vmsize += incr;
266 	UIDINFO_VMSIZE_UNLOCK(uip);
267 	PROC_UNLOCK(curproc);
268 }
269 
270 void
271 swap_release(vm_ooffset_t decr)
272 {
273 	struct ucred *cred;
274 
275 	PROC_LOCK(curproc);
276 	cred = curthread->td_ucred;
277 	swap_release_by_cred(decr, cred);
278 	PROC_UNLOCK(curproc);
279 }
280 
281 void
282 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
283 {
284  	struct uidinfo *uip;
285 
286 	uip = cred->cr_ruidinfo;
287 
288 	if (decr & PAGE_MASK)
289 		panic("swap_release: & PAGE_MASK");
290 
291 	mtx_lock(&sw_dev_mtx);
292 	if (swap_reserved < decr)
293 		panic("swap_reserved < decr");
294 	swap_reserved -= decr;
295 	mtx_unlock(&sw_dev_mtx);
296 
297 	UIDINFO_VMSIZE_LOCK(uip);
298 	if (uip->ui_vmsize < decr)
299 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
300 	uip->ui_vmsize -= decr;
301 	UIDINFO_VMSIZE_UNLOCK(uip);
302 
303 	racct_sub_cred(cred, RACCT_SWAP, decr);
304 }
305 
306 static void swapdev_strategy(struct buf *, struct swdevt *sw);
307 
308 #define SWM_FREE	0x02	/* free, period			*/
309 #define SWM_POP		0x04	/* pop out			*/
310 
311 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
312 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
313 static int nsw_rcount;		/* free read buffers			*/
314 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
315 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
316 static int nsw_wcount_async_max;/* assigned maximum			*/
317 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
318 
319 static struct swblock **swhash;
320 static int swhash_mask;
321 static struct mtx swhash_mtx;
322 
323 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
324 static struct sx sw_alloc_sx;
325 
326 
327 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
328         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
329 
330 /*
331  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
332  * of searching a named list by hashing it just a little.
333  */
334 
335 #define NOBJLISTS		8
336 
337 #define NOBJLIST(handle)	\
338 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
339 
340 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
341 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
342 static uma_zone_t	swap_zone;
343 static struct vm_object	swap_zone_obj;
344 
345 /*
346  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
347  * calls hooked from other parts of the VM system and do not appear here.
348  * (see vm/swap_pager.h).
349  */
350 static vm_object_t
351 		swap_pager_alloc(void *handle, vm_ooffset_t size,
352 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
353 static void	swap_pager_dealloc(vm_object_t object);
354 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
355 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
356 static boolean_t
357 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
358 static void	swap_pager_init(void);
359 static void	swap_pager_unswapped(vm_page_t);
360 static void	swap_pager_swapoff(struct swdevt *sp);
361 
362 struct pagerops swappagerops = {
363 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
364 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
365 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
366 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
367 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
368 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
369 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
370 };
371 
372 /*
373  * dmmax is in page-sized chunks with the new swap system.  It was
374  * dev-bsized chunks in the old.  dmmax is always a power of 2.
375  *
376  * swap_*() routines are externally accessible.  swp_*() routines are
377  * internal.
378  */
379 static int dmmax;
380 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
381 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
382 
383 SYSCTL_INT(_vm, OID_AUTO, dmmax,
384 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
385 
386 static void	swp_sizecheck(void);
387 static void	swp_pager_async_iodone(struct buf *bp);
388 static int	swapongeom(struct thread *, struct vnode *);
389 static int	swaponvp(struct thread *, struct vnode *, u_long);
390 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
391 
392 /*
393  * Swap bitmap functions
394  */
395 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
396 static daddr_t	swp_pager_getswapspace(int npages);
397 
398 /*
399  * Metadata functions
400  */
401 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
402 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
403 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
404 static void swp_pager_meta_free_all(vm_object_t);
405 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
406 
407 static void
408 swp_pager_free_nrpage(vm_page_t m)
409 {
410 
411 	vm_page_lock(m);
412 	if (m->wire_count == 0)
413 		vm_page_free(m);
414 	vm_page_unlock(m);
415 }
416 
417 /*
418  * SWP_SIZECHECK() -	update swap_pager_full indication
419  *
420  *	update the swap_pager_almost_full indication and warn when we are
421  *	about to run out of swap space, using lowat/hiwat hysteresis.
422  *
423  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424  *
425  *	No restrictions on call
426  *	This routine may not block.
427  *	This routine must be called at splvm()
428  */
429 static void
430 swp_sizecheck(void)
431 {
432 
433 	if (swap_pager_avail < nswap_lowat) {
434 		if (swap_pager_almost_full == 0) {
435 			printf("swap_pager: out of swap space\n");
436 			swap_pager_almost_full = 1;
437 		}
438 	} else {
439 		swap_pager_full = 0;
440 		if (swap_pager_avail > nswap_hiwat)
441 			swap_pager_almost_full = 0;
442 	}
443 }
444 
445 /*
446  * SWP_PAGER_HASH() -	hash swap meta data
447  *
448  *	This is an helper function which hashes the swapblk given
449  *	the object and page index.  It returns a pointer to a pointer
450  *	to the object, or a pointer to a NULL pointer if it could not
451  *	find a swapblk.
452  *
453  *	This routine must be called at splvm().
454  */
455 static struct swblock **
456 swp_pager_hash(vm_object_t object, vm_pindex_t index)
457 {
458 	struct swblock **pswap;
459 	struct swblock *swap;
460 
461 	index &= ~(vm_pindex_t)SWAP_META_MASK;
462 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
463 	while ((swap = *pswap) != NULL) {
464 		if (swap->swb_object == object &&
465 		    swap->swb_index == index
466 		) {
467 			break;
468 		}
469 		pswap = &swap->swb_hnext;
470 	}
471 	return (pswap);
472 }
473 
474 /*
475  * SWAP_PAGER_INIT() -	initialize the swap pager!
476  *
477  *	Expected to be started from system init.  NOTE:  This code is run
478  *	before much else so be careful what you depend on.  Most of the VM
479  *	system has yet to be initialized at this point.
480  */
481 static void
482 swap_pager_init(void)
483 {
484 	/*
485 	 * Initialize object lists
486 	 */
487 	int i;
488 
489 	for (i = 0; i < NOBJLISTS; ++i)
490 		TAILQ_INIT(&swap_pager_object_list[i]);
491 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
492 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
493 
494 	/*
495 	 * Device Stripe, in PAGE_SIZE'd blocks
496 	 */
497 	dmmax = SWB_NPAGES * 2;
498 }
499 
500 /*
501  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
502  *
503  *	Expected to be started from pageout process once, prior to entering
504  *	its main loop.
505  */
506 void
507 swap_pager_swap_init(void)
508 {
509 	int n, n2;
510 
511 	/*
512 	 * Number of in-transit swap bp operations.  Don't
513 	 * exhaust the pbufs completely.  Make sure we
514 	 * initialize workable values (0 will work for hysteresis
515 	 * but it isn't very efficient).
516 	 *
517 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
518 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
519 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
520 	 * constrained by the swap device interleave stripe size.
521 	 *
522 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
523 	 * designed to prevent other I/O from having high latencies due to
524 	 * our pageout I/O.  The value 4 works well for one or two active swap
525 	 * devices but is probably a little low if you have more.  Even so,
526 	 * a higher value would probably generate only a limited improvement
527 	 * with three or four active swap devices since the system does not
528 	 * typically have to pageout at extreme bandwidths.   We will want
529 	 * at least 2 per swap devices, and 4 is a pretty good value if you
530 	 * have one NFS swap device due to the command/ack latency over NFS.
531 	 * So it all works out pretty well.
532 	 */
533 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
534 
535 	mtx_lock(&pbuf_mtx);
536 	nsw_rcount = (nswbuf + 1) / 2;
537 	nsw_wcount_sync = (nswbuf + 3) / 4;
538 	nsw_wcount_async = 4;
539 	nsw_wcount_async_max = nsw_wcount_async;
540 	mtx_unlock(&pbuf_mtx);
541 
542 	/*
543 	 * Initialize our zone.  Right now I'm just guessing on the number
544 	 * we need based on the number of pages in the system.  Each swblock
545 	 * can hold 16 pages, so this is probably overkill.  This reservation
546 	 * is typically limited to around 32MB by default.
547 	 */
548 	n = cnt.v_page_count / 2;
549 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
550 		n = maxswzone / sizeof(struct swblock);
551 	n2 = n;
552 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
553 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
554 	if (swap_zone == NULL)
555 		panic("failed to create swap_zone.");
556 	do {
557 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
558 			break;
559 		/*
560 		 * if the allocation failed, try a zone two thirds the
561 		 * size of the previous attempt.
562 		 */
563 		n -= ((n + 2) / 3);
564 	} while (n > 0);
565 	if (n2 != n)
566 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
567 	n2 = n;
568 
569 	/*
570 	 * Initialize our meta-data hash table.  The swapper does not need to
571 	 * be quite as efficient as the VM system, so we do not use an
572 	 * oversized hash table.
573 	 *
574 	 * 	n: 		size of hash table, must be power of 2
575 	 *	swhash_mask:	hash table index mask
576 	 */
577 	for (n = 1; n < n2 / 8; n *= 2)
578 		;
579 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580 	swhash_mask = n - 1;
581 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582 }
583 
584 /*
585  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
586  *			its metadata structures.
587  *
588  *	This routine is called from the mmap and fork code to create a new
589  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
590  *	and then converting it with swp_pager_meta_build().
591  *
592  *	This routine may block in vm_object_allocate() and create a named
593  *	object lookup race, so we must interlock.   We must also run at
594  *	splvm() for the object lookup to handle races with interrupts, but
595  *	we do not have to maintain splvm() in between the lookup and the
596  *	add because (I believe) it is not possible to attempt to create
597  *	a new swap object w/handle when a default object with that handle
598  *	already exists.
599  *
600  * MPSAFE
601  */
602 static vm_object_t
603 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
604     vm_ooffset_t offset, struct ucred *cred)
605 {
606 	vm_object_t object;
607 	vm_pindex_t pindex;
608 
609 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
610 	if (handle) {
611 		mtx_lock(&Giant);
612 		/*
613 		 * Reference existing named region or allocate new one.  There
614 		 * should not be a race here against swp_pager_meta_build()
615 		 * as called from vm_page_remove() in regards to the lookup
616 		 * of the handle.
617 		 */
618 		sx_xlock(&sw_alloc_sx);
619 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
620 		if (object == NULL) {
621 			if (cred != NULL) {
622 				if (!swap_reserve_by_cred(size, cred)) {
623 					sx_xunlock(&sw_alloc_sx);
624 					mtx_unlock(&Giant);
625 					return (NULL);
626 				}
627 				crhold(cred);
628 			}
629 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
630 			VM_OBJECT_LOCK(object);
631 			object->handle = handle;
632 			if (cred != NULL) {
633 				object->cred = cred;
634 				object->charge = size;
635 			}
636 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
637 			VM_OBJECT_UNLOCK(object);
638 		}
639 		sx_xunlock(&sw_alloc_sx);
640 		mtx_unlock(&Giant);
641 	} else {
642 		if (cred != NULL) {
643 			if (!swap_reserve_by_cred(size, cred))
644 				return (NULL);
645 			crhold(cred);
646 		}
647 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
648 		VM_OBJECT_LOCK(object);
649 		if (cred != NULL) {
650 			object->cred = cred;
651 			object->charge = size;
652 		}
653 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
654 		VM_OBJECT_UNLOCK(object);
655 	}
656 	return (object);
657 }
658 
659 /*
660  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
661  *
662  *	The swap backing for the object is destroyed.  The code is
663  *	designed such that we can reinstantiate it later, but this
664  *	routine is typically called only when the entire object is
665  *	about to be destroyed.
666  *
667  *	This routine may block, but no longer does.
668  *
669  *	The object must be locked or unreferenceable.
670  */
671 static void
672 swap_pager_dealloc(vm_object_t object)
673 {
674 
675 	/*
676 	 * Remove from list right away so lookups will fail if we block for
677 	 * pageout completion.
678 	 */
679 	if (object->handle != NULL) {
680 		mtx_lock(&sw_alloc_mtx);
681 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
682 		mtx_unlock(&sw_alloc_mtx);
683 	}
684 
685 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
686 	vm_object_pip_wait(object, "swpdea");
687 
688 	/*
689 	 * Free all remaining metadata.  We only bother to free it from
690 	 * the swap meta data.  We do not attempt to free swapblk's still
691 	 * associated with vm_page_t's for this object.  We do not care
692 	 * if paging is still in progress on some objects.
693 	 */
694 	swp_pager_meta_free_all(object);
695 }
696 
697 /************************************************************************
698  *			SWAP PAGER BITMAP ROUTINES			*
699  ************************************************************************/
700 
701 /*
702  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
703  *
704  *	Allocate swap for the requested number of pages.  The starting
705  *	swap block number (a page index) is returned or SWAPBLK_NONE
706  *	if the allocation failed.
707  *
708  *	Also has the side effect of advising that somebody made a mistake
709  *	when they configured swap and didn't configure enough.
710  *
711  *	Must be called at splvm() to avoid races with bitmap frees from
712  *	vm_page_remove() aka swap_pager_page_removed().
713  *
714  *	This routine may not block
715  *	This routine must be called at splvm().
716  *
717  *	We allocate in round-robin fashion from the configured devices.
718  */
719 static daddr_t
720 swp_pager_getswapspace(int npages)
721 {
722 	daddr_t blk;
723 	struct swdevt *sp;
724 	int i;
725 
726 	blk = SWAPBLK_NONE;
727 	mtx_lock(&sw_dev_mtx);
728 	sp = swdevhd;
729 	for (i = 0; i < nswapdev; i++) {
730 		if (sp == NULL)
731 			sp = TAILQ_FIRST(&swtailq);
732 		if (!(sp->sw_flags & SW_CLOSING)) {
733 			blk = blist_alloc(sp->sw_blist, npages);
734 			if (blk != SWAPBLK_NONE) {
735 				blk += sp->sw_first;
736 				sp->sw_used += npages;
737 				swap_pager_avail -= npages;
738 				swp_sizecheck();
739 				swdevhd = TAILQ_NEXT(sp, sw_list);
740 				goto done;
741 			}
742 		}
743 		sp = TAILQ_NEXT(sp, sw_list);
744 	}
745 	if (swap_pager_full != 2) {
746 		printf("swap_pager_getswapspace(%d): failed\n", npages);
747 		swap_pager_full = 2;
748 		swap_pager_almost_full = 1;
749 	}
750 	swdevhd = NULL;
751 done:
752 	mtx_unlock(&sw_dev_mtx);
753 	return (blk);
754 }
755 
756 static int
757 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
758 {
759 
760 	return (blk >= sp->sw_first && blk < sp->sw_end);
761 }
762 
763 static void
764 swp_pager_strategy(struct buf *bp)
765 {
766 	struct swdevt *sp;
767 
768 	mtx_lock(&sw_dev_mtx);
769 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
770 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
771 			mtx_unlock(&sw_dev_mtx);
772 			sp->sw_strategy(bp, sp);
773 			return;
774 		}
775 	}
776 	panic("Swapdev not found");
777 }
778 
779 
780 /*
781  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
782  *
783  *	This routine returns the specified swap blocks back to the bitmap.
784  *
785  *	Note:  This routine may not block (it could in the old swap code),
786  *	and through the use of the new blist routines it does not block.
787  *
788  *	We must be called at splvm() to avoid races with bitmap frees from
789  *	vm_page_remove() aka swap_pager_page_removed().
790  *
791  *	This routine may not block
792  *	This routine must be called at splvm().
793  */
794 static void
795 swp_pager_freeswapspace(daddr_t blk, int npages)
796 {
797 	struct swdevt *sp;
798 
799 	mtx_lock(&sw_dev_mtx);
800 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
801 		if (blk >= sp->sw_first && blk < sp->sw_end) {
802 			sp->sw_used -= npages;
803 			/*
804 			 * If we are attempting to stop swapping on
805 			 * this device, we don't want to mark any
806 			 * blocks free lest they be reused.
807 			 */
808 			if ((sp->sw_flags & SW_CLOSING) == 0) {
809 				blist_free(sp->sw_blist, blk - sp->sw_first,
810 				    npages);
811 				swap_pager_avail += npages;
812 				swp_sizecheck();
813 			}
814 			mtx_unlock(&sw_dev_mtx);
815 			return;
816 		}
817 	}
818 	panic("Swapdev not found");
819 }
820 
821 /*
822  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
823  *				range within an object.
824  *
825  *	This is a globally accessible routine.
826  *
827  *	This routine removes swapblk assignments from swap metadata.
828  *
829  *	The external callers of this routine typically have already destroyed
830  *	or renamed vm_page_t's associated with this range in the object so
831  *	we should be ok.
832  *
833  *	This routine may be called at any spl.  We up our spl to splvm temporarily
834  *	in order to perform the metadata removal.
835  */
836 void
837 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
838 {
839 
840 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
841 	swp_pager_meta_free(object, start, size);
842 }
843 
844 /*
845  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
846  *
847  *	Assigns swap blocks to the specified range within the object.  The
848  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
849  *
850  *	Returns 0 on success, -1 on failure.
851  */
852 int
853 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
854 {
855 	int n = 0;
856 	daddr_t blk = SWAPBLK_NONE;
857 	vm_pindex_t beg = start;	/* save start index */
858 
859 	VM_OBJECT_LOCK(object);
860 	while (size) {
861 		if (n == 0) {
862 			n = BLIST_MAX_ALLOC;
863 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
864 				n >>= 1;
865 				if (n == 0) {
866 					swp_pager_meta_free(object, beg, start - beg);
867 					VM_OBJECT_UNLOCK(object);
868 					return (-1);
869 				}
870 			}
871 		}
872 		swp_pager_meta_build(object, start, blk);
873 		--size;
874 		++start;
875 		++blk;
876 		--n;
877 	}
878 	swp_pager_meta_free(object, start, n);
879 	VM_OBJECT_UNLOCK(object);
880 	return (0);
881 }
882 
883 /*
884  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
885  *			and destroy the source.
886  *
887  *	Copy any valid swapblks from the source to the destination.  In
888  *	cases where both the source and destination have a valid swapblk,
889  *	we keep the destination's.
890  *
891  *	This routine is allowed to block.  It may block allocating metadata
892  *	indirectly through swp_pager_meta_build() or if paging is still in
893  *	progress on the source.
894  *
895  *	This routine can be called at any spl
896  *
897  *	XXX vm_page_collapse() kinda expects us not to block because we
898  *	supposedly do not need to allocate memory, but for the moment we
899  *	*may* have to get a little memory from the zone allocator, but
900  *	it is taken from the interrupt memory.  We should be ok.
901  *
902  *	The source object contains no vm_page_t's (which is just as well)
903  *
904  *	The source object is of type OBJT_SWAP.
905  *
906  *	The source and destination objects must be locked or
907  *	inaccessible (XXX are they ?)
908  */
909 void
910 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
911     vm_pindex_t offset, int destroysource)
912 {
913 	vm_pindex_t i;
914 
915 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
916 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
917 
918 	/*
919 	 * If destroysource is set, we remove the source object from the
920 	 * swap_pager internal queue now.
921 	 */
922 	if (destroysource) {
923 		if (srcobject->handle != NULL) {
924 			mtx_lock(&sw_alloc_mtx);
925 			TAILQ_REMOVE(
926 			    NOBJLIST(srcobject->handle),
927 			    srcobject,
928 			    pager_object_list
929 			);
930 			mtx_unlock(&sw_alloc_mtx);
931 		}
932 	}
933 
934 	/*
935 	 * transfer source to destination.
936 	 */
937 	for (i = 0; i < dstobject->size; ++i) {
938 		daddr_t dstaddr;
939 
940 		/*
941 		 * Locate (without changing) the swapblk on the destination,
942 		 * unless it is invalid in which case free it silently, or
943 		 * if the destination is a resident page, in which case the
944 		 * source is thrown away.
945 		 */
946 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
947 
948 		if (dstaddr == SWAPBLK_NONE) {
949 			/*
950 			 * Destination has no swapblk and is not resident,
951 			 * copy source.
952 			 */
953 			daddr_t srcaddr;
954 
955 			srcaddr = swp_pager_meta_ctl(
956 			    srcobject,
957 			    i + offset,
958 			    SWM_POP
959 			);
960 
961 			if (srcaddr != SWAPBLK_NONE) {
962 				/*
963 				 * swp_pager_meta_build() can sleep.
964 				 */
965 				vm_object_pip_add(srcobject, 1);
966 				VM_OBJECT_UNLOCK(srcobject);
967 				vm_object_pip_add(dstobject, 1);
968 				swp_pager_meta_build(dstobject, i, srcaddr);
969 				vm_object_pip_wakeup(dstobject);
970 				VM_OBJECT_LOCK(srcobject);
971 				vm_object_pip_wakeup(srcobject);
972 			}
973 		} else {
974 			/*
975 			 * Destination has valid swapblk or it is represented
976 			 * by a resident page.  We destroy the sourceblock.
977 			 */
978 
979 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
980 		}
981 	}
982 
983 	/*
984 	 * Free left over swap blocks in source.
985 	 *
986 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
987 	 * double-remove the object from the swap queues.
988 	 */
989 	if (destroysource) {
990 		swp_pager_meta_free_all(srcobject);
991 		/*
992 		 * Reverting the type is not necessary, the caller is going
993 		 * to destroy srcobject directly, but I'm doing it here
994 		 * for consistency since we've removed the object from its
995 		 * queues.
996 		 */
997 		srcobject->type = OBJT_DEFAULT;
998 	}
999 }
1000 
1001 /*
1002  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1003  *				the requested page.
1004  *
1005  *	We determine whether good backing store exists for the requested
1006  *	page and return TRUE if it does, FALSE if it doesn't.
1007  *
1008  *	If TRUE, we also try to determine how much valid, contiguous backing
1009  *	store exists before and after the requested page within a reasonable
1010  *	distance.  We do not try to restrict it to the swap device stripe
1011  *	(that is handled in getpages/putpages).  It probably isn't worth
1012  *	doing here.
1013  */
1014 static boolean_t
1015 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1016 {
1017 	daddr_t blk0;
1018 
1019 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1020 	/*
1021 	 * do we have good backing store at the requested index ?
1022 	 */
1023 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1024 
1025 	if (blk0 == SWAPBLK_NONE) {
1026 		if (before)
1027 			*before = 0;
1028 		if (after)
1029 			*after = 0;
1030 		return (FALSE);
1031 	}
1032 
1033 	/*
1034 	 * find backwards-looking contiguous good backing store
1035 	 */
1036 	if (before != NULL) {
1037 		int i;
1038 
1039 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1040 			daddr_t blk;
1041 
1042 			if (i > pindex)
1043 				break;
1044 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1045 			if (blk != blk0 - i)
1046 				break;
1047 		}
1048 		*before = (i - 1);
1049 	}
1050 
1051 	/*
1052 	 * find forward-looking contiguous good backing store
1053 	 */
1054 	if (after != NULL) {
1055 		int i;
1056 
1057 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1058 			daddr_t blk;
1059 
1060 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1061 			if (blk != blk0 + i)
1062 				break;
1063 		}
1064 		*after = (i - 1);
1065 	}
1066 	return (TRUE);
1067 }
1068 
1069 /*
1070  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1071  *
1072  *	This removes any associated swap backing store, whether valid or
1073  *	not, from the page.
1074  *
1075  *	This routine is typically called when a page is made dirty, at
1076  *	which point any associated swap can be freed.  MADV_FREE also
1077  *	calls us in a special-case situation
1078  *
1079  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1080  *	should make the page dirty before calling this routine.  This routine
1081  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1082  *	depends on it.
1083  *
1084  *	This routine may not block
1085  *	This routine must be called at splvm()
1086  */
1087 static void
1088 swap_pager_unswapped(vm_page_t m)
1089 {
1090 
1091 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1092 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1093 }
1094 
1095 /*
1096  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1097  *
1098  *	Attempt to retrieve (m, count) pages from backing store, but make
1099  *	sure we retrieve at least m[reqpage].  We try to load in as large
1100  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1101  *	belongs to the same object.
1102  *
1103  *	The code is designed for asynchronous operation and
1104  *	immediate-notification of 'reqpage' but tends not to be
1105  *	used that way.  Please do not optimize-out this algorithmic
1106  *	feature, I intend to improve on it in the future.
1107  *
1108  *	The parent has a single vm_object_pip_add() reference prior to
1109  *	calling us and we should return with the same.
1110  *
1111  *	The parent has BUSY'd the pages.  We should return with 'm'
1112  *	left busy, but the others adjusted.
1113  */
1114 static int
1115 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1116 {
1117 	struct buf *bp;
1118 	vm_page_t mreq;
1119 	int i;
1120 	int j;
1121 	daddr_t blk;
1122 
1123 	mreq = m[reqpage];
1124 
1125 	KASSERT(mreq->object == object,
1126 	    ("swap_pager_getpages: object mismatch %p/%p",
1127 	    object, mreq->object));
1128 
1129 	/*
1130 	 * Calculate range to retrieve.  The pages have already been assigned
1131 	 * their swapblks.  We require a *contiguous* range but we know it to
1132 	 * not span devices.   If we do not supply it, bad things
1133 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1134 	 * loops are set up such that the case(s) are handled implicitly.
1135 	 *
1136 	 * The swp_*() calls must be made with the object locked.
1137 	 */
1138 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1139 
1140 	for (i = reqpage - 1; i >= 0; --i) {
1141 		daddr_t iblk;
1142 
1143 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1144 		if (blk != iblk + (reqpage - i))
1145 			break;
1146 	}
1147 	++i;
1148 
1149 	for (j = reqpage + 1; j < count; ++j) {
1150 		daddr_t jblk;
1151 
1152 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1153 		if (blk != jblk - (j - reqpage))
1154 			break;
1155 	}
1156 
1157 	/*
1158 	 * free pages outside our collection range.   Note: we never free
1159 	 * mreq, it must remain busy throughout.
1160 	 */
1161 	if (0 < i || j < count) {
1162 		int k;
1163 
1164 		for (k = 0; k < i; ++k)
1165 			swp_pager_free_nrpage(m[k]);
1166 		for (k = j; k < count; ++k)
1167 			swp_pager_free_nrpage(m[k]);
1168 	}
1169 
1170 	/*
1171 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1172 	 * still busy, but the others unbusied.
1173 	 */
1174 	if (blk == SWAPBLK_NONE)
1175 		return (VM_PAGER_FAIL);
1176 
1177 	/*
1178 	 * Getpbuf() can sleep.
1179 	 */
1180 	VM_OBJECT_UNLOCK(object);
1181 	/*
1182 	 * Get a swap buffer header to perform the IO
1183 	 */
1184 	bp = getpbuf(&nsw_rcount);
1185 	bp->b_flags |= B_PAGING;
1186 
1187 	/*
1188 	 * map our page(s) into kva for input
1189 	 */
1190 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1191 
1192 	bp->b_iocmd = BIO_READ;
1193 	bp->b_iodone = swp_pager_async_iodone;
1194 	bp->b_rcred = crhold(thread0.td_ucred);
1195 	bp->b_wcred = crhold(thread0.td_ucred);
1196 	bp->b_blkno = blk - (reqpage - i);
1197 	bp->b_bcount = PAGE_SIZE * (j - i);
1198 	bp->b_bufsize = PAGE_SIZE * (j - i);
1199 	bp->b_pager.pg_reqpage = reqpage - i;
1200 
1201 	VM_OBJECT_LOCK(object);
1202 	{
1203 		int k;
1204 
1205 		for (k = i; k < j; ++k) {
1206 			bp->b_pages[k - i] = m[k];
1207 			m[k]->oflags |= VPO_SWAPINPROG;
1208 		}
1209 	}
1210 	bp->b_npages = j - i;
1211 
1212 	PCPU_INC(cnt.v_swapin);
1213 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1214 
1215 	/*
1216 	 * We still hold the lock on mreq, and our automatic completion routine
1217 	 * does not remove it.
1218 	 */
1219 	vm_object_pip_add(object, bp->b_npages);
1220 	VM_OBJECT_UNLOCK(object);
1221 
1222 	/*
1223 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1224 	 * this point because we automatically release it on completion.
1225 	 * Instead, we look at the one page we are interested in which we
1226 	 * still hold a lock on even through the I/O completion.
1227 	 *
1228 	 * The other pages in our m[] array are also released on completion,
1229 	 * so we cannot assume they are valid anymore either.
1230 	 *
1231 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1232 	 */
1233 	BUF_KERNPROC(bp);
1234 	swp_pager_strategy(bp);
1235 
1236 	/*
1237 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1238 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1239 	 * is set in the meta-data.
1240 	 */
1241 	VM_OBJECT_LOCK(object);
1242 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1243 		mreq->oflags |= VPO_WANTED;
1244 		PCPU_INC(cnt.v_intrans);
1245 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1246 			printf(
1247 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1248 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * mreq is left busied after completion, but all the other pages
1254 	 * are freed.  If we had an unrecoverable read error the page will
1255 	 * not be valid.
1256 	 */
1257 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1258 		return (VM_PAGER_ERROR);
1259 	} else {
1260 		return (VM_PAGER_OK);
1261 	}
1262 
1263 	/*
1264 	 * A final note: in a low swap situation, we cannot deallocate swap
1265 	 * and mark a page dirty here because the caller is likely to mark
1266 	 * the page clean when we return, causing the page to possibly revert
1267 	 * to all-zero's later.
1268 	 */
1269 }
1270 
1271 /*
1272  *	swap_pager_putpages:
1273  *
1274  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1275  *
1276  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1277  *	are automatically converted to SWAP objects.
1278  *
1279  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1280  *	vm_page reservation system coupled with properly written VFS devices
1281  *	should ensure that no low-memory deadlock occurs.  This is an area
1282  *	which needs work.
1283  *
1284  *	The parent has N vm_object_pip_add() references prior to
1285  *	calling us and will remove references for rtvals[] that are
1286  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1287  *	completion.
1288  *
1289  *	The parent has soft-busy'd the pages it passes us and will unbusy
1290  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1291  *	We need to unbusy the rest on I/O completion.
1292  */
1293 void
1294 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1295     boolean_t sync, int *rtvals)
1296 {
1297 	int i;
1298 	int n = 0;
1299 
1300 	if (count && m[0]->object != object) {
1301 		panic("swap_pager_putpages: object mismatch %p/%p",
1302 		    object,
1303 		    m[0]->object
1304 		);
1305 	}
1306 
1307 	/*
1308 	 * Step 1
1309 	 *
1310 	 * Turn object into OBJT_SWAP
1311 	 * check for bogus sysops
1312 	 * force sync if not pageout process
1313 	 */
1314 	if (object->type != OBJT_SWAP)
1315 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1316 	VM_OBJECT_UNLOCK(object);
1317 
1318 	if (curproc != pageproc)
1319 		sync = TRUE;
1320 
1321 	/*
1322 	 * Step 2
1323 	 *
1324 	 * Update nsw parameters from swap_async_max sysctl values.
1325 	 * Do not let the sysop crash the machine with bogus numbers.
1326 	 */
1327 	mtx_lock(&pbuf_mtx);
1328 	if (swap_async_max != nsw_wcount_async_max) {
1329 		int n;
1330 
1331 		/*
1332 		 * limit range
1333 		 */
1334 		if ((n = swap_async_max) > nswbuf / 2)
1335 			n = nswbuf / 2;
1336 		if (n < 1)
1337 			n = 1;
1338 		swap_async_max = n;
1339 
1340 		/*
1341 		 * Adjust difference ( if possible ).  If the current async
1342 		 * count is too low, we may not be able to make the adjustment
1343 		 * at this time.
1344 		 */
1345 		n -= nsw_wcount_async_max;
1346 		if (nsw_wcount_async + n >= 0) {
1347 			nsw_wcount_async += n;
1348 			nsw_wcount_async_max += n;
1349 			wakeup(&nsw_wcount_async);
1350 		}
1351 	}
1352 	mtx_unlock(&pbuf_mtx);
1353 
1354 	/*
1355 	 * Step 3
1356 	 *
1357 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1358 	 * The page is left dirty until the pageout operation completes
1359 	 * successfully.
1360 	 */
1361 	for (i = 0; i < count; i += n) {
1362 		int j;
1363 		struct buf *bp;
1364 		daddr_t blk;
1365 
1366 		/*
1367 		 * Maximum I/O size is limited by a number of factors.
1368 		 */
1369 		n = min(BLIST_MAX_ALLOC, count - i);
1370 		n = min(n, nsw_cluster_max);
1371 
1372 		/*
1373 		 * Get biggest block of swap we can.  If we fail, fall
1374 		 * back and try to allocate a smaller block.  Don't go
1375 		 * overboard trying to allocate space if it would overly
1376 		 * fragment swap.
1377 		 */
1378 		while (
1379 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1380 		    n > 4
1381 		) {
1382 			n >>= 1;
1383 		}
1384 		if (blk == SWAPBLK_NONE) {
1385 			for (j = 0; j < n; ++j)
1386 				rtvals[i+j] = VM_PAGER_FAIL;
1387 			continue;
1388 		}
1389 
1390 		/*
1391 		 * All I/O parameters have been satisfied, build the I/O
1392 		 * request and assign the swap space.
1393 		 */
1394 		if (sync == TRUE) {
1395 			bp = getpbuf(&nsw_wcount_sync);
1396 		} else {
1397 			bp = getpbuf(&nsw_wcount_async);
1398 			bp->b_flags = B_ASYNC;
1399 		}
1400 		bp->b_flags |= B_PAGING;
1401 		bp->b_iocmd = BIO_WRITE;
1402 
1403 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1404 
1405 		bp->b_rcred = crhold(thread0.td_ucred);
1406 		bp->b_wcred = crhold(thread0.td_ucred);
1407 		bp->b_bcount = PAGE_SIZE * n;
1408 		bp->b_bufsize = PAGE_SIZE * n;
1409 		bp->b_blkno = blk;
1410 
1411 		VM_OBJECT_LOCK(object);
1412 		for (j = 0; j < n; ++j) {
1413 			vm_page_t mreq = m[i+j];
1414 
1415 			swp_pager_meta_build(
1416 			    mreq->object,
1417 			    mreq->pindex,
1418 			    blk + j
1419 			);
1420 			vm_page_dirty(mreq);
1421 			rtvals[i+j] = VM_PAGER_OK;
1422 
1423 			mreq->oflags |= VPO_SWAPINPROG;
1424 			bp->b_pages[j] = mreq;
1425 		}
1426 		VM_OBJECT_UNLOCK(object);
1427 		bp->b_npages = n;
1428 		/*
1429 		 * Must set dirty range for NFS to work.
1430 		 */
1431 		bp->b_dirtyoff = 0;
1432 		bp->b_dirtyend = bp->b_bcount;
1433 
1434 		PCPU_INC(cnt.v_swapout);
1435 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1436 
1437 		/*
1438 		 * asynchronous
1439 		 *
1440 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1441 		 */
1442 		if (sync == FALSE) {
1443 			bp->b_iodone = swp_pager_async_iodone;
1444 			BUF_KERNPROC(bp);
1445 			swp_pager_strategy(bp);
1446 
1447 			for (j = 0; j < n; ++j)
1448 				rtvals[i+j] = VM_PAGER_PEND;
1449 			/* restart outter loop */
1450 			continue;
1451 		}
1452 
1453 		/*
1454 		 * synchronous
1455 		 *
1456 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1457 		 */
1458 		bp->b_iodone = bdone;
1459 		swp_pager_strategy(bp);
1460 
1461 		/*
1462 		 * Wait for the sync I/O to complete, then update rtvals.
1463 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1464 		 * our async completion routine at the end, thus avoiding a
1465 		 * double-free.
1466 		 */
1467 		bwait(bp, PVM, "swwrt");
1468 		for (j = 0; j < n; ++j)
1469 			rtvals[i+j] = VM_PAGER_PEND;
1470 		/*
1471 		 * Now that we are through with the bp, we can call the
1472 		 * normal async completion, which frees everything up.
1473 		 */
1474 		swp_pager_async_iodone(bp);
1475 	}
1476 	VM_OBJECT_LOCK(object);
1477 }
1478 
1479 /*
1480  *	swp_pager_async_iodone:
1481  *
1482  *	Completion routine for asynchronous reads and writes from/to swap.
1483  *	Also called manually by synchronous code to finish up a bp.
1484  *
1485  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1486  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1487  *	unbusy all pages except the 'main' request page.  For WRITE
1488  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1489  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1490  *
1491  *	This routine may not block.
1492  */
1493 static void
1494 swp_pager_async_iodone(struct buf *bp)
1495 {
1496 	int i;
1497 	vm_object_t object = NULL;
1498 
1499 	/*
1500 	 * report error
1501 	 */
1502 	if (bp->b_ioflags & BIO_ERROR) {
1503 		printf(
1504 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1505 			"size %ld, error %d\n",
1506 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1507 		    (long)bp->b_blkno,
1508 		    (long)bp->b_bcount,
1509 		    bp->b_error
1510 		);
1511 	}
1512 
1513 	/*
1514 	 * remove the mapping for kernel virtual
1515 	 */
1516 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1517 
1518 	if (bp->b_npages) {
1519 		object = bp->b_pages[0]->object;
1520 		VM_OBJECT_LOCK(object);
1521 	}
1522 
1523 	/*
1524 	 * cleanup pages.  If an error occurs writing to swap, we are in
1525 	 * very serious trouble.  If it happens to be a disk error, though,
1526 	 * we may be able to recover by reassigning the swap later on.  So
1527 	 * in this case we remove the m->swapblk assignment for the page
1528 	 * but do not free it in the rlist.  The errornous block(s) are thus
1529 	 * never reallocated as swap.  Redirty the page and continue.
1530 	 */
1531 	for (i = 0; i < bp->b_npages; ++i) {
1532 		vm_page_t m = bp->b_pages[i];
1533 
1534 		m->oflags &= ~VPO_SWAPINPROG;
1535 
1536 		if (bp->b_ioflags & BIO_ERROR) {
1537 			/*
1538 			 * If an error occurs I'd love to throw the swapblk
1539 			 * away without freeing it back to swapspace, so it
1540 			 * can never be used again.  But I can't from an
1541 			 * interrupt.
1542 			 */
1543 			if (bp->b_iocmd == BIO_READ) {
1544 				/*
1545 				 * When reading, reqpage needs to stay
1546 				 * locked for the parent, but all other
1547 				 * pages can be freed.  We still want to
1548 				 * wakeup the parent waiting on the page,
1549 				 * though.  ( also: pg_reqpage can be -1 and
1550 				 * not match anything ).
1551 				 *
1552 				 * We have to wake specifically requested pages
1553 				 * up too because we cleared VPO_SWAPINPROG and
1554 				 * someone may be waiting for that.
1555 				 *
1556 				 * NOTE: for reads, m->dirty will probably
1557 				 * be overridden by the original caller of
1558 				 * getpages so don't play cute tricks here.
1559 				 */
1560 				m->valid = 0;
1561 				if (i != bp->b_pager.pg_reqpage)
1562 					swp_pager_free_nrpage(m);
1563 				else
1564 					vm_page_flash(m);
1565 				/*
1566 				 * If i == bp->b_pager.pg_reqpage, do not wake
1567 				 * the page up.  The caller needs to.
1568 				 */
1569 			} else {
1570 				/*
1571 				 * If a write error occurs, reactivate page
1572 				 * so it doesn't clog the inactive list,
1573 				 * then finish the I/O.
1574 				 */
1575 				vm_page_dirty(m);
1576 				vm_page_lock(m);
1577 				vm_page_activate(m);
1578 				vm_page_unlock(m);
1579 				vm_page_io_finish(m);
1580 			}
1581 		} else if (bp->b_iocmd == BIO_READ) {
1582 			/*
1583 			 * NOTE: for reads, m->dirty will probably be
1584 			 * overridden by the original caller of getpages so
1585 			 * we cannot set them in order to free the underlying
1586 			 * swap in a low-swap situation.  I don't think we'd
1587 			 * want to do that anyway, but it was an optimization
1588 			 * that existed in the old swapper for a time before
1589 			 * it got ripped out due to precisely this problem.
1590 			 *
1591 			 * If not the requested page then deactivate it.
1592 			 *
1593 			 * Note that the requested page, reqpage, is left
1594 			 * busied, but we still have to wake it up.  The
1595 			 * other pages are released (unbusied) by
1596 			 * vm_page_wakeup().
1597 			 */
1598 			KASSERT(!pmap_page_is_mapped(m),
1599 			    ("swp_pager_async_iodone: page %p is mapped", m));
1600 			m->valid = VM_PAGE_BITS_ALL;
1601 			KASSERT(m->dirty == 0,
1602 			    ("swp_pager_async_iodone: page %p is dirty", m));
1603 
1604 			/*
1605 			 * We have to wake specifically requested pages
1606 			 * up too because we cleared VPO_SWAPINPROG and
1607 			 * could be waiting for it in getpages.  However,
1608 			 * be sure to not unbusy getpages specifically
1609 			 * requested page - getpages expects it to be
1610 			 * left busy.
1611 			 */
1612 			if (i != bp->b_pager.pg_reqpage) {
1613 				vm_page_lock(m);
1614 				vm_page_deactivate(m);
1615 				vm_page_unlock(m);
1616 				vm_page_wakeup(m);
1617 			} else
1618 				vm_page_flash(m);
1619 		} else {
1620 			/*
1621 			 * For write success, clear the dirty
1622 			 * status, then finish the I/O ( which decrements the
1623 			 * busy count and possibly wakes waiter's up ).
1624 			 */
1625 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1626 			    ("swp_pager_async_iodone: page %p is not write"
1627 			    " protected", m));
1628 			vm_page_undirty(m);
1629 			vm_page_io_finish(m);
1630 			if (vm_page_count_severe()) {
1631 				vm_page_lock(m);
1632 				vm_page_try_to_cache(m);
1633 				vm_page_unlock(m);
1634 			}
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * adjust pip.  NOTE: the original parent may still have its own
1640 	 * pip refs on the object.
1641 	 */
1642 	if (object != NULL) {
1643 		vm_object_pip_wakeupn(object, bp->b_npages);
1644 		VM_OBJECT_UNLOCK(object);
1645 	}
1646 
1647 	/*
1648 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1649 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1650 	 * trigger a KASSERT in relpbuf().
1651 	 */
1652 	if (bp->b_vp) {
1653 		    bp->b_vp = NULL;
1654 		    bp->b_bufobj = NULL;
1655 	}
1656 	/*
1657 	 * release the physical I/O buffer
1658 	 */
1659 	relpbuf(
1660 	    bp,
1661 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1662 		((bp->b_flags & B_ASYNC) ?
1663 		    &nsw_wcount_async :
1664 		    &nsw_wcount_sync
1665 		)
1666 	    )
1667 	);
1668 }
1669 
1670 /*
1671  *	swap_pager_isswapped:
1672  *
1673  *	Return 1 if at least one page in the given object is paged
1674  *	out to the given swap device.
1675  *
1676  *	This routine may not block.
1677  */
1678 int
1679 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1680 {
1681 	daddr_t index = 0;
1682 	int bcount;
1683 	int i;
1684 
1685 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1686 	if (object->type != OBJT_SWAP)
1687 		return (0);
1688 
1689 	mtx_lock(&swhash_mtx);
1690 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1691 		struct swblock *swap;
1692 
1693 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1694 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1695 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1696 					mtx_unlock(&swhash_mtx);
1697 					return (1);
1698 				}
1699 			}
1700 		}
1701 		index += SWAP_META_PAGES;
1702 	}
1703 	mtx_unlock(&swhash_mtx);
1704 	return (0);
1705 }
1706 
1707 /*
1708  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1709  *
1710  *	This routine dissociates the page at the given index within a
1711  *	swap block from its backing store, paging it in if necessary.
1712  *	If the page is paged in, it is placed in the inactive queue,
1713  *	since it had its backing store ripped out from under it.
1714  *	We also attempt to swap in all other pages in the swap block,
1715  *	we only guarantee that the one at the specified index is
1716  *	paged in.
1717  *
1718  *	XXX - The code to page the whole block in doesn't work, so we
1719  *	      revert to the one-by-one behavior for now.  Sigh.
1720  */
1721 static inline void
1722 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1723 {
1724 	vm_page_t m;
1725 
1726 	vm_object_pip_add(object, 1);
1727 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1728 	if (m->valid == VM_PAGE_BITS_ALL) {
1729 		vm_object_pip_subtract(object, 1);
1730 		vm_page_dirty(m);
1731 		vm_page_lock(m);
1732 		vm_page_activate(m);
1733 		vm_page_unlock(m);
1734 		vm_page_wakeup(m);
1735 		vm_pager_page_unswapped(m);
1736 		return;
1737 	}
1738 
1739 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1740 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1741 	vm_object_pip_subtract(object, 1);
1742 	vm_page_dirty(m);
1743 	vm_page_lock(m);
1744 	vm_page_deactivate(m);
1745 	vm_page_unlock(m);
1746 	vm_page_wakeup(m);
1747 	vm_pager_page_unswapped(m);
1748 }
1749 
1750 /*
1751  *	swap_pager_swapoff:
1752  *
1753  *	Page in all of the pages that have been paged out to the
1754  *	given device.  The corresponding blocks in the bitmap must be
1755  *	marked as allocated and the device must be flagged SW_CLOSING.
1756  *	There may be no processes swapped out to the device.
1757  *
1758  *	This routine may block.
1759  */
1760 static void
1761 swap_pager_swapoff(struct swdevt *sp)
1762 {
1763 	struct swblock *swap;
1764 	int i, j, retries;
1765 
1766 	GIANT_REQUIRED;
1767 
1768 	retries = 0;
1769 full_rescan:
1770 	mtx_lock(&swhash_mtx);
1771 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1772 restart:
1773 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1774 			vm_object_t object = swap->swb_object;
1775 			vm_pindex_t pindex = swap->swb_index;
1776                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1777                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1778 					/* avoid deadlock */
1779 					if (!VM_OBJECT_TRYLOCK(object)) {
1780 						break;
1781 					} else {
1782 						mtx_unlock(&swhash_mtx);
1783 						swp_pager_force_pagein(object,
1784 						    pindex + j);
1785 						VM_OBJECT_UNLOCK(object);
1786 						mtx_lock(&swhash_mtx);
1787 						goto restart;
1788 					}
1789 				}
1790                         }
1791 		}
1792 	}
1793 	mtx_unlock(&swhash_mtx);
1794 	if (sp->sw_used) {
1795 		/*
1796 		 * Objects may be locked or paging to the device being
1797 		 * removed, so we will miss their pages and need to
1798 		 * make another pass.  We have marked this device as
1799 		 * SW_CLOSING, so the activity should finish soon.
1800 		 */
1801 		retries++;
1802 		if (retries > 100) {
1803 			panic("swapoff: failed to locate %d swap blocks",
1804 			    sp->sw_used);
1805 		}
1806 		pause("swpoff", hz / 20);
1807 		goto full_rescan;
1808 	}
1809 }
1810 
1811 /************************************************************************
1812  *				SWAP META DATA 				*
1813  ************************************************************************
1814  *
1815  *	These routines manipulate the swap metadata stored in the
1816  *	OBJT_SWAP object.  All swp_*() routines must be called at
1817  *	splvm() because swap can be freed up by the low level vm_page
1818  *	code which might be called from interrupts beyond what splbio() covers.
1819  *
1820  *	Swap metadata is implemented with a global hash and not directly
1821  *	linked into the object.  Instead the object simply contains
1822  *	appropriate tracking counters.
1823  */
1824 
1825 /*
1826  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1827  *
1828  *	We first convert the object to a swap object if it is a default
1829  *	object.
1830  *
1831  *	The specified swapblk is added to the object's swap metadata.  If
1832  *	the swapblk is not valid, it is freed instead.  Any previously
1833  *	assigned swapblk is freed.
1834  *
1835  *	This routine must be called at splvm(), except when used to convert
1836  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1837  */
1838 static void
1839 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1840 {
1841 	struct swblock *swap;
1842 	struct swblock **pswap;
1843 	int idx;
1844 
1845 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1846 	/*
1847 	 * Convert default object to swap object if necessary
1848 	 */
1849 	if (object->type != OBJT_SWAP) {
1850 		object->type = OBJT_SWAP;
1851 		object->un_pager.swp.swp_bcount = 0;
1852 
1853 		if (object->handle != NULL) {
1854 			mtx_lock(&sw_alloc_mtx);
1855 			TAILQ_INSERT_TAIL(
1856 			    NOBJLIST(object->handle),
1857 			    object,
1858 			    pager_object_list
1859 			);
1860 			mtx_unlock(&sw_alloc_mtx);
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * Locate hash entry.  If not found create, but if we aren't adding
1866 	 * anything just return.  If we run out of space in the map we wait
1867 	 * and, since the hash table may have changed, retry.
1868 	 */
1869 retry:
1870 	mtx_lock(&swhash_mtx);
1871 	pswap = swp_pager_hash(object, pindex);
1872 
1873 	if ((swap = *pswap) == NULL) {
1874 		int i;
1875 
1876 		if (swapblk == SWAPBLK_NONE)
1877 			goto done;
1878 
1879 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1880 		if (swap == NULL) {
1881 			mtx_unlock(&swhash_mtx);
1882 			VM_OBJECT_UNLOCK(object);
1883 			if (uma_zone_exhausted(swap_zone)) {
1884 				printf("swap zone exhausted, increase kern.maxswzone\n");
1885 				vm_pageout_oom(VM_OOM_SWAPZ);
1886 				pause("swzonex", 10);
1887 			} else
1888 				VM_WAIT;
1889 			VM_OBJECT_LOCK(object);
1890 			goto retry;
1891 		}
1892 
1893 		swap->swb_hnext = NULL;
1894 		swap->swb_object = object;
1895 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1896 		swap->swb_count = 0;
1897 
1898 		++object->un_pager.swp.swp_bcount;
1899 
1900 		for (i = 0; i < SWAP_META_PAGES; ++i)
1901 			swap->swb_pages[i] = SWAPBLK_NONE;
1902 	}
1903 
1904 	/*
1905 	 * Delete prior contents of metadata
1906 	 */
1907 	idx = pindex & SWAP_META_MASK;
1908 
1909 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1910 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1911 		--swap->swb_count;
1912 	}
1913 
1914 	/*
1915 	 * Enter block into metadata
1916 	 */
1917 	swap->swb_pages[idx] = swapblk;
1918 	if (swapblk != SWAPBLK_NONE)
1919 		++swap->swb_count;
1920 done:
1921 	mtx_unlock(&swhash_mtx);
1922 }
1923 
1924 /*
1925  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1926  *
1927  *	The requested range of blocks is freed, with any associated swap
1928  *	returned to the swap bitmap.
1929  *
1930  *	This routine will free swap metadata structures as they are cleaned
1931  *	out.  This routine does *NOT* operate on swap metadata associated
1932  *	with resident pages.
1933  *
1934  *	This routine must be called at splvm()
1935  */
1936 static void
1937 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1938 {
1939 
1940 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1941 	if (object->type != OBJT_SWAP)
1942 		return;
1943 
1944 	while (count > 0) {
1945 		struct swblock **pswap;
1946 		struct swblock *swap;
1947 
1948 		mtx_lock(&swhash_mtx);
1949 		pswap = swp_pager_hash(object, index);
1950 
1951 		if ((swap = *pswap) != NULL) {
1952 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1953 
1954 			if (v != SWAPBLK_NONE) {
1955 				swp_pager_freeswapspace(v, 1);
1956 				swap->swb_pages[index & SWAP_META_MASK] =
1957 					SWAPBLK_NONE;
1958 				if (--swap->swb_count == 0) {
1959 					*pswap = swap->swb_hnext;
1960 					uma_zfree(swap_zone, swap);
1961 					--object->un_pager.swp.swp_bcount;
1962 				}
1963 			}
1964 			--count;
1965 			++index;
1966 		} else {
1967 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1968 			count -= n;
1969 			index += n;
1970 		}
1971 		mtx_unlock(&swhash_mtx);
1972 	}
1973 }
1974 
1975 /*
1976  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1977  *
1978  *	This routine locates and destroys all swap metadata associated with
1979  *	an object.
1980  *
1981  *	This routine must be called at splvm()
1982  */
1983 static void
1984 swp_pager_meta_free_all(vm_object_t object)
1985 {
1986 	daddr_t index = 0;
1987 
1988 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1989 	if (object->type != OBJT_SWAP)
1990 		return;
1991 
1992 	while (object->un_pager.swp.swp_bcount) {
1993 		struct swblock **pswap;
1994 		struct swblock *swap;
1995 
1996 		mtx_lock(&swhash_mtx);
1997 		pswap = swp_pager_hash(object, index);
1998 		if ((swap = *pswap) != NULL) {
1999 			int i;
2000 
2001 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2002 				daddr_t v = swap->swb_pages[i];
2003 				if (v != SWAPBLK_NONE) {
2004 					--swap->swb_count;
2005 					swp_pager_freeswapspace(v, 1);
2006 				}
2007 			}
2008 			if (swap->swb_count != 0)
2009 				panic("swap_pager_meta_free_all: swb_count != 0");
2010 			*pswap = swap->swb_hnext;
2011 			uma_zfree(swap_zone, swap);
2012 			--object->un_pager.swp.swp_bcount;
2013 		}
2014 		mtx_unlock(&swhash_mtx);
2015 		index += SWAP_META_PAGES;
2016 	}
2017 }
2018 
2019 /*
2020  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2021  *
2022  *	This routine is capable of looking up, popping, or freeing
2023  *	swapblk assignments in the swap meta data or in the vm_page_t.
2024  *	The routine typically returns the swapblk being looked-up, or popped,
2025  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2026  *	was invalid.  This routine will automatically free any invalid
2027  *	meta-data swapblks.
2028  *
2029  *	It is not possible to store invalid swapblks in the swap meta data
2030  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2031  *
2032  *	When acting on a busy resident page and paging is in progress, we
2033  *	have to wait until paging is complete but otherwise can act on the
2034  *	busy page.
2035  *
2036  *	This routine must be called at splvm().
2037  *
2038  *	SWM_FREE	remove and free swap block from metadata
2039  *	SWM_POP		remove from meta data but do not free.. pop it out
2040  */
2041 static daddr_t
2042 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2043 {
2044 	struct swblock **pswap;
2045 	struct swblock *swap;
2046 	daddr_t r1;
2047 	int idx;
2048 
2049 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2050 	/*
2051 	 * The meta data only exists of the object is OBJT_SWAP
2052 	 * and even then might not be allocated yet.
2053 	 */
2054 	if (object->type != OBJT_SWAP)
2055 		return (SWAPBLK_NONE);
2056 
2057 	r1 = SWAPBLK_NONE;
2058 	mtx_lock(&swhash_mtx);
2059 	pswap = swp_pager_hash(object, pindex);
2060 
2061 	if ((swap = *pswap) != NULL) {
2062 		idx = pindex & SWAP_META_MASK;
2063 		r1 = swap->swb_pages[idx];
2064 
2065 		if (r1 != SWAPBLK_NONE) {
2066 			if (flags & SWM_FREE) {
2067 				swp_pager_freeswapspace(r1, 1);
2068 				r1 = SWAPBLK_NONE;
2069 			}
2070 			if (flags & (SWM_FREE|SWM_POP)) {
2071 				swap->swb_pages[idx] = SWAPBLK_NONE;
2072 				if (--swap->swb_count == 0) {
2073 					*pswap = swap->swb_hnext;
2074 					uma_zfree(swap_zone, swap);
2075 					--object->un_pager.swp.swp_bcount;
2076 				}
2077 			}
2078 		}
2079 	}
2080 	mtx_unlock(&swhash_mtx);
2081 	return (r1);
2082 }
2083 
2084 /*
2085  * System call swapon(name) enables swapping on device name,
2086  * which must be in the swdevsw.  Return EBUSY
2087  * if already swapping on this device.
2088  */
2089 #ifndef _SYS_SYSPROTO_H_
2090 struct swapon_args {
2091 	char *name;
2092 };
2093 #endif
2094 
2095 /*
2096  * MPSAFE
2097  */
2098 /* ARGSUSED */
2099 int
2100 swapon(struct thread *td, struct swapon_args *uap)
2101 {
2102 	struct vattr attr;
2103 	struct vnode *vp;
2104 	struct nameidata nd;
2105 	int error;
2106 
2107 	error = priv_check(td, PRIV_SWAPON);
2108 	if (error)
2109 		return (error);
2110 
2111 	mtx_lock(&Giant);
2112 	while (swdev_syscall_active)
2113 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2114 	swdev_syscall_active = 1;
2115 
2116 	/*
2117 	 * Swap metadata may not fit in the KVM if we have physical
2118 	 * memory of >1GB.
2119 	 */
2120 	if (swap_zone == NULL) {
2121 		error = ENOMEM;
2122 		goto done;
2123 	}
2124 
2125 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2126 	    uap->name, td);
2127 	error = namei(&nd);
2128 	if (error)
2129 		goto done;
2130 
2131 	NDFREE(&nd, NDF_ONLY_PNBUF);
2132 	vp = nd.ni_vp;
2133 
2134 	if (vn_isdisk(vp, &error)) {
2135 		error = swapongeom(td, vp);
2136 	} else if (vp->v_type == VREG &&
2137 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2138 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2139 		/*
2140 		 * Allow direct swapping to NFS regular files in the same
2141 		 * way that nfs_mountroot() sets up diskless swapping.
2142 		 */
2143 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2144 	}
2145 
2146 	if (error)
2147 		vrele(vp);
2148 done:
2149 	swdev_syscall_active = 0;
2150 	wakeup_one(&swdev_syscall_active);
2151 	mtx_unlock(&Giant);
2152 	return (error);
2153 }
2154 
2155 static void
2156 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2157 {
2158 	struct swdevt *sp, *tsp;
2159 	swblk_t dvbase;
2160 	u_long mblocks;
2161 
2162 	/*
2163 	 * If we go beyond this, we get overflows in the radix
2164 	 * tree bitmap code.
2165 	 */
2166 	mblocks = 0x40000000 / BLIST_META_RADIX;
2167 	if (nblks > mblocks) {
2168 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2169 			mblocks);
2170 		nblks = mblocks;
2171 	}
2172 	/*
2173 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2174 	 * First chop nblks off to page-align it, then convert.
2175 	 *
2176 	 * sw->sw_nblks is in page-sized chunks now too.
2177 	 */
2178 	nblks &= ~(ctodb(1) - 1);
2179 	nblks = dbtoc(nblks);
2180 
2181 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2182 	sp->sw_vp = vp;
2183 	sp->sw_id = id;
2184 	sp->sw_dev = dev;
2185 	sp->sw_flags = 0;
2186 	sp->sw_nblks = nblks;
2187 	sp->sw_used = 0;
2188 	sp->sw_strategy = strategy;
2189 	sp->sw_close = close;
2190 
2191 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2192 	/*
2193 	 * Do not free the first two block in order to avoid overwriting
2194 	 * any bsd label at the front of the partition
2195 	 */
2196 	blist_free(sp->sw_blist, 2, nblks - 2);
2197 
2198 	dvbase = 0;
2199 	mtx_lock(&sw_dev_mtx);
2200 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2201 		if (tsp->sw_end >= dvbase) {
2202 			/*
2203 			 * We put one uncovered page between the devices
2204 			 * in order to definitively prevent any cross-device
2205 			 * I/O requests
2206 			 */
2207 			dvbase = tsp->sw_end + 1;
2208 		}
2209 	}
2210 	sp->sw_first = dvbase;
2211 	sp->sw_end = dvbase + nblks;
2212 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2213 	nswapdev++;
2214 	swap_pager_avail += nblks;
2215 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2216 	swp_sizecheck();
2217 	mtx_unlock(&sw_dev_mtx);
2218 }
2219 
2220 /*
2221  * SYSCALL: swapoff(devname)
2222  *
2223  * Disable swapping on the given device.
2224  *
2225  * XXX: Badly designed system call: it should use a device index
2226  * rather than filename as specification.  We keep sw_vp around
2227  * only to make this work.
2228  */
2229 #ifndef _SYS_SYSPROTO_H_
2230 struct swapoff_args {
2231 	char *name;
2232 };
2233 #endif
2234 
2235 /*
2236  * MPSAFE
2237  */
2238 /* ARGSUSED */
2239 int
2240 swapoff(struct thread *td, struct swapoff_args *uap)
2241 {
2242 	struct vnode *vp;
2243 	struct nameidata nd;
2244 	struct swdevt *sp;
2245 	int error;
2246 
2247 	error = priv_check(td, PRIV_SWAPOFF);
2248 	if (error)
2249 		return (error);
2250 
2251 	mtx_lock(&Giant);
2252 	while (swdev_syscall_active)
2253 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2254 	swdev_syscall_active = 1;
2255 
2256 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2257 	    td);
2258 	error = namei(&nd);
2259 	if (error)
2260 		goto done;
2261 	NDFREE(&nd, NDF_ONLY_PNBUF);
2262 	vp = nd.ni_vp;
2263 
2264 	mtx_lock(&sw_dev_mtx);
2265 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2266 		if (sp->sw_vp == vp)
2267 			break;
2268 	}
2269 	mtx_unlock(&sw_dev_mtx);
2270 	if (sp == NULL) {
2271 		error = EINVAL;
2272 		goto done;
2273 	}
2274 	error = swapoff_one(sp, td->td_ucred);
2275 done:
2276 	swdev_syscall_active = 0;
2277 	wakeup_one(&swdev_syscall_active);
2278 	mtx_unlock(&Giant);
2279 	return (error);
2280 }
2281 
2282 static int
2283 swapoff_one(struct swdevt *sp, struct ucred *cred)
2284 {
2285 	u_long nblks, dvbase;
2286 #ifdef MAC
2287 	int error;
2288 #endif
2289 
2290 	mtx_assert(&Giant, MA_OWNED);
2291 #ifdef MAC
2292 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2293 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2294 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2295 	if (error != 0)
2296 		return (error);
2297 #endif
2298 	nblks = sp->sw_nblks;
2299 
2300 	/*
2301 	 * We can turn off this swap device safely only if the
2302 	 * available virtual memory in the system will fit the amount
2303 	 * of data we will have to page back in, plus an epsilon so
2304 	 * the system doesn't become critically low on swap space.
2305 	 */
2306 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2307 	    nblks + nswap_lowat) {
2308 		return (ENOMEM);
2309 	}
2310 
2311 	/*
2312 	 * Prevent further allocations on this device.
2313 	 */
2314 	mtx_lock(&sw_dev_mtx);
2315 	sp->sw_flags |= SW_CLOSING;
2316 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2317 		swap_pager_avail -= blist_fill(sp->sw_blist,
2318 		     dvbase, dmmax);
2319 	}
2320 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2321 	mtx_unlock(&sw_dev_mtx);
2322 
2323 	/*
2324 	 * Page in the contents of the device and close it.
2325 	 */
2326 	swap_pager_swapoff(sp);
2327 
2328 	sp->sw_close(curthread, sp);
2329 	sp->sw_id = NULL;
2330 	mtx_lock(&sw_dev_mtx);
2331 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2332 	nswapdev--;
2333 	if (nswapdev == 0) {
2334 		swap_pager_full = 2;
2335 		swap_pager_almost_full = 1;
2336 	}
2337 	if (swdevhd == sp)
2338 		swdevhd = NULL;
2339 	mtx_unlock(&sw_dev_mtx);
2340 	blist_destroy(sp->sw_blist);
2341 	free(sp, M_VMPGDATA);
2342 	return (0);
2343 }
2344 
2345 void
2346 swapoff_all(void)
2347 {
2348 	struct swdevt *sp, *spt;
2349 	const char *devname;
2350 	int error;
2351 
2352 	mtx_lock(&Giant);
2353 	while (swdev_syscall_active)
2354 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2355 	swdev_syscall_active = 1;
2356 
2357 	mtx_lock(&sw_dev_mtx);
2358 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2359 		mtx_unlock(&sw_dev_mtx);
2360 		if (vn_isdisk(sp->sw_vp, NULL))
2361 			devname = sp->sw_vp->v_rdev->si_name;
2362 		else
2363 			devname = "[file]";
2364 		error = swapoff_one(sp, thread0.td_ucred);
2365 		if (error != 0) {
2366 			printf("Cannot remove swap device %s (error=%d), "
2367 			    "skipping.\n", devname, error);
2368 		} else if (bootverbose) {
2369 			printf("Swap device %s removed.\n", devname);
2370 		}
2371 		mtx_lock(&sw_dev_mtx);
2372 	}
2373 	mtx_unlock(&sw_dev_mtx);
2374 
2375 	swdev_syscall_active = 0;
2376 	wakeup_one(&swdev_syscall_active);
2377 	mtx_unlock(&Giant);
2378 }
2379 
2380 void
2381 swap_pager_status(int *total, int *used)
2382 {
2383 	struct swdevt *sp;
2384 
2385 	*total = 0;
2386 	*used = 0;
2387 	mtx_lock(&sw_dev_mtx);
2388 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2389 		*total += sp->sw_nblks;
2390 		*used += sp->sw_used;
2391 	}
2392 	mtx_unlock(&sw_dev_mtx);
2393 }
2394 
2395 static int
2396 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2397 {
2398 	int	*name = (int *)arg1;
2399 	int	error, n;
2400 	struct xswdev xs;
2401 	struct swdevt *sp;
2402 
2403 	if (arg2 != 1) /* name length */
2404 		return (EINVAL);
2405 
2406 	n = 0;
2407 	mtx_lock(&sw_dev_mtx);
2408 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2409 		if (n == *name) {
2410 			mtx_unlock(&sw_dev_mtx);
2411 			xs.xsw_version = XSWDEV_VERSION;
2412 			xs.xsw_dev = sp->sw_dev;
2413 			xs.xsw_flags = sp->sw_flags;
2414 			xs.xsw_nblks = sp->sw_nblks;
2415 			xs.xsw_used = sp->sw_used;
2416 
2417 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2418 			return (error);
2419 		}
2420 		n++;
2421 	}
2422 	mtx_unlock(&sw_dev_mtx);
2423 	return (ENOENT);
2424 }
2425 
2426 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2427     "Number of swap devices");
2428 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2429     "Swap statistics by device");
2430 
2431 /*
2432  * vmspace_swap_count() - count the approximate swap usage in pages for a
2433  *			  vmspace.
2434  *
2435  *	The map must be locked.
2436  *
2437  *	Swap usage is determined by taking the proportional swap used by
2438  *	VM objects backing the VM map.  To make up for fractional losses,
2439  *	if the VM object has any swap use at all the associated map entries
2440  *	count for at least 1 swap page.
2441  */
2442 long
2443 vmspace_swap_count(struct vmspace *vmspace)
2444 {
2445 	vm_map_t map;
2446 	vm_map_entry_t cur;
2447 	vm_object_t object;
2448 	long count, n;
2449 
2450 	map = &vmspace->vm_map;
2451 	count = 0;
2452 
2453 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2454 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2455 		    (object = cur->object.vm_object) != NULL) {
2456 			VM_OBJECT_LOCK(object);
2457 			if (object->type == OBJT_SWAP &&
2458 			    object->un_pager.swp.swp_bcount != 0) {
2459 				n = (cur->end - cur->start) / PAGE_SIZE;
2460 				count += object->un_pager.swp.swp_bcount *
2461 				    SWAP_META_PAGES * n / object->size + 1;
2462 			}
2463 			VM_OBJECT_UNLOCK(object);
2464 		}
2465 	}
2466 	return (count);
2467 }
2468 
2469 /*
2470  * GEOM backend
2471  *
2472  * Swapping onto disk devices.
2473  *
2474  */
2475 
2476 static g_orphan_t swapgeom_orphan;
2477 
2478 static struct g_class g_swap_class = {
2479 	.name = "SWAP",
2480 	.version = G_VERSION,
2481 	.orphan = swapgeom_orphan,
2482 };
2483 
2484 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2485 
2486 
2487 static void
2488 swapgeom_done(struct bio *bp2)
2489 {
2490 	struct buf *bp;
2491 
2492 	bp = bp2->bio_caller2;
2493 	bp->b_ioflags = bp2->bio_flags;
2494 	if (bp2->bio_error)
2495 		bp->b_ioflags |= BIO_ERROR;
2496 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2497 	bp->b_error = bp2->bio_error;
2498 	bufdone(bp);
2499 	g_destroy_bio(bp2);
2500 }
2501 
2502 static void
2503 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2504 {
2505 	struct bio *bio;
2506 	struct g_consumer *cp;
2507 
2508 	cp = sp->sw_id;
2509 	if (cp == NULL) {
2510 		bp->b_error = ENXIO;
2511 		bp->b_ioflags |= BIO_ERROR;
2512 		bufdone(bp);
2513 		return;
2514 	}
2515 	if (bp->b_iocmd == BIO_WRITE)
2516 		bio = g_new_bio();
2517 	else
2518 		bio = g_alloc_bio();
2519 	if (bio == NULL) {
2520 		bp->b_error = ENOMEM;
2521 		bp->b_ioflags |= BIO_ERROR;
2522 		bufdone(bp);
2523 		return;
2524 	}
2525 
2526 	bio->bio_caller2 = bp;
2527 	bio->bio_cmd = bp->b_iocmd;
2528 	bio->bio_data = bp->b_data;
2529 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2530 	bio->bio_length = bp->b_bcount;
2531 	bio->bio_done = swapgeom_done;
2532 	g_io_request(bio, cp);
2533 	return;
2534 }
2535 
2536 static void
2537 swapgeom_orphan(struct g_consumer *cp)
2538 {
2539 	struct swdevt *sp;
2540 
2541 	mtx_lock(&sw_dev_mtx);
2542 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2543 		if (sp->sw_id == cp)
2544 			sp->sw_id = NULL;
2545 	mtx_unlock(&sw_dev_mtx);
2546 }
2547 
2548 static void
2549 swapgeom_close_ev(void *arg, int flags)
2550 {
2551 	struct g_consumer *cp;
2552 
2553 	cp = arg;
2554 	g_access(cp, -1, -1, 0);
2555 	g_detach(cp);
2556 	g_destroy_consumer(cp);
2557 }
2558 
2559 static void
2560 swapgeom_close(struct thread *td, struct swdevt *sw)
2561 {
2562 
2563 	/* XXX: direct call when Giant untangled */
2564 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2565 }
2566 
2567 
2568 struct swh0h0 {
2569 	struct cdev *dev;
2570 	struct vnode *vp;
2571 	int	error;
2572 };
2573 
2574 static void
2575 swapongeom_ev(void *arg, int flags)
2576 {
2577 	struct swh0h0 *swh;
2578 	struct g_provider *pp;
2579 	struct g_consumer *cp;
2580 	static struct g_geom *gp;
2581 	struct swdevt *sp;
2582 	u_long nblks;
2583 	int error;
2584 
2585 	swh = arg;
2586 	swh->error = 0;
2587 	pp = g_dev_getprovider(swh->dev);
2588 	if (pp == NULL) {
2589 		swh->error = ENODEV;
2590 		return;
2591 	}
2592 	mtx_lock(&sw_dev_mtx);
2593 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2594 		cp = sp->sw_id;
2595 		if (cp != NULL && cp->provider == pp) {
2596 			mtx_unlock(&sw_dev_mtx);
2597 			swh->error = EBUSY;
2598 			return;
2599 		}
2600 	}
2601 	mtx_unlock(&sw_dev_mtx);
2602 	if (gp == NULL)
2603 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2604 	cp = g_new_consumer(gp);
2605 	g_attach(cp, pp);
2606 	/*
2607 	 * XXX: Everytime you think you can improve the margin for
2608 	 * footshooting, somebody depends on the ability to do so:
2609 	 * savecore(8) wants to write to our swapdev so we cannot
2610 	 * set an exclusive count :-(
2611 	 */
2612 	error = g_access(cp, 1, 1, 0);
2613 	if (error) {
2614 		g_detach(cp);
2615 		g_destroy_consumer(cp);
2616 		swh->error = error;
2617 		return;
2618 	}
2619 	nblks = pp->mediasize / DEV_BSIZE;
2620 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2621 	    swapgeom_close, dev2udev(swh->dev));
2622 	swh->error = 0;
2623 	return;
2624 }
2625 
2626 static int
2627 swapongeom(struct thread *td, struct vnode *vp)
2628 {
2629 	int error;
2630 	struct swh0h0 swh;
2631 
2632 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2633 
2634 	swh.dev = vp->v_rdev;
2635 	swh.vp = vp;
2636 	swh.error = 0;
2637 	/* XXX: direct call when Giant untangled */
2638 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2639 	if (!error)
2640 		error = swh.error;
2641 	VOP_UNLOCK(vp, 0);
2642 	return (error);
2643 }
2644 
2645 /*
2646  * VNODE backend
2647  *
2648  * This is used mainly for network filesystem (read: probably only tested
2649  * with NFS) swapfiles.
2650  *
2651  */
2652 
2653 static void
2654 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2655 {
2656 	struct vnode *vp2;
2657 
2658 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2659 
2660 	vp2 = sp->sw_id;
2661 	vhold(vp2);
2662 	if (bp->b_iocmd == BIO_WRITE) {
2663 		if (bp->b_bufobj)
2664 			bufobj_wdrop(bp->b_bufobj);
2665 		bufobj_wref(&vp2->v_bufobj);
2666 	}
2667 	if (bp->b_bufobj != &vp2->v_bufobj)
2668 		bp->b_bufobj = &vp2->v_bufobj;
2669 	bp->b_vp = vp2;
2670 	bp->b_iooffset = dbtob(bp->b_blkno);
2671 	bstrategy(bp);
2672 	return;
2673 }
2674 
2675 static void
2676 swapdev_close(struct thread *td, struct swdevt *sp)
2677 {
2678 
2679 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2680 	vrele(sp->sw_vp);
2681 }
2682 
2683 
2684 static int
2685 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2686 {
2687 	struct swdevt *sp;
2688 	int error;
2689 
2690 	if (nblks == 0)
2691 		return (ENXIO);
2692 	mtx_lock(&sw_dev_mtx);
2693 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2694 		if (sp->sw_id == vp) {
2695 			mtx_unlock(&sw_dev_mtx);
2696 			return (EBUSY);
2697 		}
2698 	}
2699 	mtx_unlock(&sw_dev_mtx);
2700 
2701 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2702 #ifdef MAC
2703 	error = mac_system_check_swapon(td->td_ucred, vp);
2704 	if (error == 0)
2705 #endif
2706 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2707 	(void) VOP_UNLOCK(vp, 0);
2708 	if (error)
2709 		return (error);
2710 
2711 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2712 	    NODEV);
2713 	return (0);
2714 }
2715