xref: /freebsd/sys/vm/swap_pager.c (revision 80ff58b89dcacfe07fe20b045890df9db5ca0af0)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sysctl.h>
93 #include <sys/sysproto.h>
94 #include <sys/blist.h>
95 #include <sys/lock.h>
96 #include <sys/sx.h>
97 #include <sys/vmmeter.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/vm.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_param.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 #include <geom/geom.h>
115 
116 /*
117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
118  * or 32 pages per allocation.
119  * The 32-page limit is due to the radix code (kern/subr_blist.c).
120  */
121 #ifndef MAX_PAGEOUT_CLUSTER
122 #define MAX_PAGEOUT_CLUSTER 16
123 #endif
124 
125 #if !defined(SWB_NPAGES)
126 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127 #endif
128 
129 /*
130  * The swblock structure maps an object and a small, fixed-size range
131  * of page indices to disk addresses within a swap area.
132  * The collection of these mappings is implemented as a hash table.
133  * Unused disk addresses within a swap area are allocated and managed
134  * using a blist.
135  */
136 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
137 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
138 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
139 
140 struct swblock {
141 	struct swblock	*swb_hnext;
142 	vm_object_t	swb_object;
143 	vm_pindex_t	swb_index;
144 	int		swb_count;
145 	daddr_t		swb_pages[SWAP_META_PAGES];
146 };
147 
148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
155 
156 static vm_ooffset_t swap_total;
157 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
158     "Total amount of available swap storage.");
159 static vm_ooffset_t swap_reserved;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
161     "Amount of swap storage needed to back all allocated anonymous memory.");
162 static int overcommit = 0;
163 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
164     "Configure virtual memory overcommit behavior. See tuning(7) "
165     "for details.");
166 
167 /* bits from overcommit */
168 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
169 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
170 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
171 
172 int
173 swap_reserve(vm_ooffset_t incr)
174 {
175 
176 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
177 }
178 
179 int
180 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
181 {
182 	vm_ooffset_t r, s;
183 	int res, error;
184 	static int curfail;
185 	static struct timeval lastfail;
186 	struct uidinfo *uip;
187 
188 	uip = cred->cr_ruidinfo;
189 
190 	if (incr & PAGE_MASK)
191 		panic("swap_reserve: & PAGE_MASK");
192 
193 #ifdef RACCT
194 	PROC_LOCK(curproc);
195 	error = racct_add(curproc, RACCT_SWAP, incr);
196 	PROC_UNLOCK(curproc);
197 	if (error != 0)
198 		return (0);
199 #endif
200 
201 	res = 0;
202 	mtx_lock(&sw_dev_mtx);
203 	r = swap_reserved + incr;
204 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
205 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
206 		s *= PAGE_SIZE;
207 	} else
208 		s = 0;
209 	s += swap_total;
210 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
211 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
212 		res = 1;
213 		swap_reserved = r;
214 	}
215 	mtx_unlock(&sw_dev_mtx);
216 
217 	if (res) {
218 		PROC_LOCK(curproc);
219 		UIDINFO_VMSIZE_LOCK(uip);
220 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
221 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
222 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
223 			res = 0;
224 		else
225 			uip->ui_vmsize += incr;
226 		UIDINFO_VMSIZE_UNLOCK(uip);
227 		PROC_UNLOCK(curproc);
228 		if (!res) {
229 			mtx_lock(&sw_dev_mtx);
230 			swap_reserved -= incr;
231 			mtx_unlock(&sw_dev_mtx);
232 		}
233 	}
234 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
235 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
236 		    uip->ui_uid, curproc->p_pid, incr);
237 	}
238 
239 #ifdef RACCT
240 	if (!res) {
241 		PROC_LOCK(curproc);
242 		racct_sub(curproc, RACCT_SWAP, incr);
243 		PROC_UNLOCK(curproc);
244 	}
245 #endif
246 
247 	return (res);
248 }
249 
250 void
251 swap_reserve_force(vm_ooffset_t incr)
252 {
253 	struct uidinfo *uip;
254 
255 	mtx_lock(&sw_dev_mtx);
256 	swap_reserved += incr;
257 	mtx_unlock(&sw_dev_mtx);
258 
259 #ifdef RACCT
260 	PROC_LOCK(curproc);
261 	racct_add_force(curproc, RACCT_SWAP, incr);
262 	PROC_UNLOCK(curproc);
263 #endif
264 
265 	uip = curthread->td_ucred->cr_ruidinfo;
266 	PROC_LOCK(curproc);
267 	UIDINFO_VMSIZE_LOCK(uip);
268 	uip->ui_vmsize += incr;
269 	UIDINFO_VMSIZE_UNLOCK(uip);
270 	PROC_UNLOCK(curproc);
271 }
272 
273 void
274 swap_release(vm_ooffset_t decr)
275 {
276 	struct ucred *cred;
277 
278 	PROC_LOCK(curproc);
279 	cred = curthread->td_ucred;
280 	swap_release_by_cred(decr, cred);
281 	PROC_UNLOCK(curproc);
282 }
283 
284 void
285 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
286 {
287  	struct uidinfo *uip;
288 
289 	uip = cred->cr_ruidinfo;
290 
291 	if (decr & PAGE_MASK)
292 		panic("swap_release: & PAGE_MASK");
293 
294 	mtx_lock(&sw_dev_mtx);
295 	if (swap_reserved < decr)
296 		panic("swap_reserved < decr");
297 	swap_reserved -= decr;
298 	mtx_unlock(&sw_dev_mtx);
299 
300 	UIDINFO_VMSIZE_LOCK(uip);
301 	if (uip->ui_vmsize < decr)
302 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
303 	uip->ui_vmsize -= decr;
304 	UIDINFO_VMSIZE_UNLOCK(uip);
305 
306 	racct_sub_cred(cred, RACCT_SWAP, decr);
307 }
308 
309 static void swapdev_strategy(struct buf *, struct swdevt *sw);
310 
311 #define SWM_FREE	0x02	/* free, period			*/
312 #define SWM_POP		0x04	/* pop out			*/
313 
314 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
315 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
316 static int nsw_rcount;		/* free read buffers			*/
317 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
318 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
319 static int nsw_wcount_async_max;/* assigned maximum			*/
320 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
321 
322 static struct swblock **swhash;
323 static int swhash_mask;
324 static struct mtx swhash_mtx;
325 
326 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
327 static struct sx sw_alloc_sx;
328 
329 
330 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
331 	CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
332 
333 /*
334  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
335  * of searching a named list by hashing it just a little.
336  */
337 
338 #define NOBJLISTS		8
339 
340 #define NOBJLIST(handle)	\
341 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
342 
343 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
344 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
345 static uma_zone_t	swap_zone;
346 
347 /*
348  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
349  * calls hooked from other parts of the VM system and do not appear here.
350  * (see vm/swap_pager.h).
351  */
352 static vm_object_t
353 		swap_pager_alloc(void *handle, vm_ooffset_t size,
354 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
355 static void	swap_pager_dealloc(vm_object_t object);
356 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
357 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
358 static boolean_t
359 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
360 static void	swap_pager_init(void);
361 static void	swap_pager_unswapped(vm_page_t);
362 static void	swap_pager_swapoff(struct swdevt *sp);
363 
364 struct pagerops swappagerops = {
365 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
366 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
367 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
368 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
369 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
370 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
371 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
372 };
373 
374 /*
375  * dmmax is in page-sized chunks with the new swap system.  It was
376  * dev-bsized chunks in the old.  dmmax is always a power of 2.
377  *
378  * swap_*() routines are externally accessible.  swp_*() routines are
379  * internal.
380  */
381 static int dmmax;
382 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
383 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
384 
385 SYSCTL_INT(_vm, OID_AUTO, dmmax,
386 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
387 
388 static void	swp_sizecheck(void);
389 static void	swp_pager_async_iodone(struct buf *bp);
390 static int	swapongeom(struct thread *, struct vnode *);
391 static int	swaponvp(struct thread *, struct vnode *, u_long);
392 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
393 
394 /*
395  * Swap bitmap functions
396  */
397 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
398 static daddr_t	swp_pager_getswapspace(int npages);
399 
400 /*
401  * Metadata functions
402  */
403 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
404 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
405 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
406 static void swp_pager_meta_free_all(vm_object_t);
407 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
408 
409 static void
410 swp_pager_free_nrpage(vm_page_t m)
411 {
412 
413 	vm_page_lock(m);
414 	if (m->wire_count == 0)
415 		vm_page_free(m);
416 	vm_page_unlock(m);
417 }
418 
419 /*
420  * SWP_SIZECHECK() -	update swap_pager_full indication
421  *
422  *	update the swap_pager_almost_full indication and warn when we are
423  *	about to run out of swap space, using lowat/hiwat hysteresis.
424  *
425  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
426  *
427  *	No restrictions on call
428  *	This routine may not block.
429  */
430 static void
431 swp_sizecheck(void)
432 {
433 
434 	if (swap_pager_avail < nswap_lowat) {
435 		if (swap_pager_almost_full == 0) {
436 			printf("swap_pager: out of swap space\n");
437 			swap_pager_almost_full = 1;
438 		}
439 	} else {
440 		swap_pager_full = 0;
441 		if (swap_pager_avail > nswap_hiwat)
442 			swap_pager_almost_full = 0;
443 	}
444 }
445 
446 /*
447  * SWP_PAGER_HASH() -	hash swap meta data
448  *
449  *	This is an helper function which hashes the swapblk given
450  *	the object and page index.  It returns a pointer to a pointer
451  *	to the object, or a pointer to a NULL pointer if it could not
452  *	find a swapblk.
453  */
454 static struct swblock **
455 swp_pager_hash(vm_object_t object, vm_pindex_t index)
456 {
457 	struct swblock **pswap;
458 	struct swblock *swap;
459 
460 	index &= ~(vm_pindex_t)SWAP_META_MASK;
461 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
462 	while ((swap = *pswap) != NULL) {
463 		if (swap->swb_object == object &&
464 		    swap->swb_index == index
465 		) {
466 			break;
467 		}
468 		pswap = &swap->swb_hnext;
469 	}
470 	return (pswap);
471 }
472 
473 /*
474  * SWAP_PAGER_INIT() -	initialize the swap pager!
475  *
476  *	Expected to be started from system init.  NOTE:  This code is run
477  *	before much else so be careful what you depend on.  Most of the VM
478  *	system has yet to be initialized at this point.
479  */
480 static void
481 swap_pager_init(void)
482 {
483 	/*
484 	 * Initialize object lists
485 	 */
486 	int i;
487 
488 	for (i = 0; i < NOBJLISTS; ++i)
489 		TAILQ_INIT(&swap_pager_object_list[i]);
490 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
491 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
492 
493 	/*
494 	 * Device Stripe, in PAGE_SIZE'd blocks
495 	 */
496 	dmmax = SWB_NPAGES * 2;
497 }
498 
499 /*
500  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
501  *
502  *	Expected to be started from pageout process once, prior to entering
503  *	its main loop.
504  */
505 void
506 swap_pager_swap_init(void)
507 {
508 	int n, n2;
509 
510 	/*
511 	 * Number of in-transit swap bp operations.  Don't
512 	 * exhaust the pbufs completely.  Make sure we
513 	 * initialize workable values (0 will work for hysteresis
514 	 * but it isn't very efficient).
515 	 *
516 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
517 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
518 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
519 	 * constrained by the swap device interleave stripe size.
520 	 *
521 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
522 	 * designed to prevent other I/O from having high latencies due to
523 	 * our pageout I/O.  The value 4 works well for one or two active swap
524 	 * devices but is probably a little low if you have more.  Even so,
525 	 * a higher value would probably generate only a limited improvement
526 	 * with three or four active swap devices since the system does not
527 	 * typically have to pageout at extreme bandwidths.   We will want
528 	 * at least 2 per swap devices, and 4 is a pretty good value if you
529 	 * have one NFS swap device due to the command/ack latency over NFS.
530 	 * So it all works out pretty well.
531 	 */
532 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
533 
534 	mtx_lock(&pbuf_mtx);
535 	nsw_rcount = (nswbuf + 1) / 2;
536 	nsw_wcount_sync = (nswbuf + 3) / 4;
537 	nsw_wcount_async = 4;
538 	nsw_wcount_async_max = nsw_wcount_async;
539 	mtx_unlock(&pbuf_mtx);
540 
541 	/*
542 	 * Initialize our zone.  Right now I'm just guessing on the number
543 	 * we need based on the number of pages in the system.  Each swblock
544 	 * can hold 16 pages, so this is probably overkill.  This reservation
545 	 * is typically limited to around 32MB by default.
546 	 */
547 	n = cnt.v_page_count / 2;
548 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
549 		n = maxswzone / sizeof(struct swblock);
550 	n2 = n;
551 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
552 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
553 	if (swap_zone == NULL)
554 		panic("failed to create swap_zone.");
555 	do {
556 		if (uma_zone_reserve_kva(swap_zone, n))
557 			break;
558 		/*
559 		 * if the allocation failed, try a zone two thirds the
560 		 * size of the previous attempt.
561 		 */
562 		n -= ((n + 2) / 3);
563 	} while (n > 0);
564 	if (n2 != n)
565 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
566 	n2 = n;
567 
568 	/*
569 	 * Initialize our meta-data hash table.  The swapper does not need to
570 	 * be quite as efficient as the VM system, so we do not use an
571 	 * oversized hash table.
572 	 *
573 	 * 	n: 		size of hash table, must be power of 2
574 	 *	swhash_mask:	hash table index mask
575 	 */
576 	for (n = 1; n < n2 / 8; n *= 2)
577 		;
578 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
579 	swhash_mask = n - 1;
580 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
581 }
582 
583 /*
584  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
585  *			its metadata structures.
586  *
587  *	This routine is called from the mmap and fork code to create a new
588  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
589  *	and then converting it with swp_pager_meta_build().
590  *
591  *	This routine may block in vm_object_allocate() and create a named
592  *	object lookup race, so we must interlock.
593  *
594  * MPSAFE
595  */
596 static vm_object_t
597 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
598     vm_ooffset_t offset, struct ucred *cred)
599 {
600 	vm_object_t object;
601 	vm_pindex_t pindex;
602 
603 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
604 	if (handle) {
605 		mtx_lock(&Giant);
606 		/*
607 		 * Reference existing named region or allocate new one.  There
608 		 * should not be a race here against swp_pager_meta_build()
609 		 * as called from vm_page_remove() in regards to the lookup
610 		 * of the handle.
611 		 */
612 		sx_xlock(&sw_alloc_sx);
613 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
614 		if (object == NULL) {
615 			if (cred != NULL) {
616 				if (!swap_reserve_by_cred(size, cred)) {
617 					sx_xunlock(&sw_alloc_sx);
618 					mtx_unlock(&Giant);
619 					return (NULL);
620 				}
621 				crhold(cred);
622 			}
623 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
624 			VM_OBJECT_LOCK(object);
625 			object->handle = handle;
626 			if (cred != NULL) {
627 				object->cred = cred;
628 				object->charge = size;
629 			}
630 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
631 			VM_OBJECT_UNLOCK(object);
632 		}
633 		sx_xunlock(&sw_alloc_sx);
634 		mtx_unlock(&Giant);
635 	} else {
636 		if (cred != NULL) {
637 			if (!swap_reserve_by_cred(size, cred))
638 				return (NULL);
639 			crhold(cred);
640 		}
641 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
642 		VM_OBJECT_LOCK(object);
643 		if (cred != NULL) {
644 			object->cred = cred;
645 			object->charge = size;
646 		}
647 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
648 		VM_OBJECT_UNLOCK(object);
649 	}
650 	return (object);
651 }
652 
653 /*
654  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
655  *
656  *	The swap backing for the object is destroyed.  The code is
657  *	designed such that we can reinstantiate it later, but this
658  *	routine is typically called only when the entire object is
659  *	about to be destroyed.
660  *
661  *	The object must be locked.
662  */
663 static void
664 swap_pager_dealloc(vm_object_t object)
665 {
666 
667 	/*
668 	 * Remove from list right away so lookups will fail if we block for
669 	 * pageout completion.
670 	 */
671 	if (object->handle != NULL) {
672 		mtx_lock(&sw_alloc_mtx);
673 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
674 		mtx_unlock(&sw_alloc_mtx);
675 	}
676 
677 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678 	vm_object_pip_wait(object, "swpdea");
679 
680 	/*
681 	 * Free all remaining metadata.  We only bother to free it from
682 	 * the swap meta data.  We do not attempt to free swapblk's still
683 	 * associated with vm_page_t's for this object.  We do not care
684 	 * if paging is still in progress on some objects.
685 	 */
686 	swp_pager_meta_free_all(object);
687 }
688 
689 /************************************************************************
690  *			SWAP PAGER BITMAP ROUTINES			*
691  ************************************************************************/
692 
693 /*
694  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
695  *
696  *	Allocate swap for the requested number of pages.  The starting
697  *	swap block number (a page index) is returned or SWAPBLK_NONE
698  *	if the allocation failed.
699  *
700  *	Also has the side effect of advising that somebody made a mistake
701  *	when they configured swap and didn't configure enough.
702  *
703  *	This routine may not sleep.
704  *
705  *	We allocate in round-robin fashion from the configured devices.
706  */
707 static daddr_t
708 swp_pager_getswapspace(int npages)
709 {
710 	daddr_t blk;
711 	struct swdevt *sp;
712 	int i;
713 
714 	blk = SWAPBLK_NONE;
715 	mtx_lock(&sw_dev_mtx);
716 	sp = swdevhd;
717 	for (i = 0; i < nswapdev; i++) {
718 		if (sp == NULL)
719 			sp = TAILQ_FIRST(&swtailq);
720 		if (!(sp->sw_flags & SW_CLOSING)) {
721 			blk = blist_alloc(sp->sw_blist, npages);
722 			if (blk != SWAPBLK_NONE) {
723 				blk += sp->sw_first;
724 				sp->sw_used += npages;
725 				swap_pager_avail -= npages;
726 				swp_sizecheck();
727 				swdevhd = TAILQ_NEXT(sp, sw_list);
728 				goto done;
729 			}
730 		}
731 		sp = TAILQ_NEXT(sp, sw_list);
732 	}
733 	if (swap_pager_full != 2) {
734 		printf("swap_pager_getswapspace(%d): failed\n", npages);
735 		swap_pager_full = 2;
736 		swap_pager_almost_full = 1;
737 	}
738 	swdevhd = NULL;
739 done:
740 	mtx_unlock(&sw_dev_mtx);
741 	return (blk);
742 }
743 
744 static int
745 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
746 {
747 
748 	return (blk >= sp->sw_first && blk < sp->sw_end);
749 }
750 
751 static void
752 swp_pager_strategy(struct buf *bp)
753 {
754 	struct swdevt *sp;
755 
756 	mtx_lock(&sw_dev_mtx);
757 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
758 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
759 			mtx_unlock(&sw_dev_mtx);
760 			sp->sw_strategy(bp, sp);
761 			return;
762 		}
763 	}
764 	panic("Swapdev not found");
765 }
766 
767 
768 /*
769  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
770  *
771  *	This routine returns the specified swap blocks back to the bitmap.
772  *
773  *	This routine may not sleep.
774  */
775 static void
776 swp_pager_freeswapspace(daddr_t blk, int npages)
777 {
778 	struct swdevt *sp;
779 
780 	mtx_lock(&sw_dev_mtx);
781 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
782 		if (blk >= sp->sw_first && blk < sp->sw_end) {
783 			sp->sw_used -= npages;
784 			/*
785 			 * If we are attempting to stop swapping on
786 			 * this device, we don't want to mark any
787 			 * blocks free lest they be reused.
788 			 */
789 			if ((sp->sw_flags & SW_CLOSING) == 0) {
790 				blist_free(sp->sw_blist, blk - sp->sw_first,
791 				    npages);
792 				swap_pager_avail += npages;
793 				swp_sizecheck();
794 			}
795 			mtx_unlock(&sw_dev_mtx);
796 			return;
797 		}
798 	}
799 	panic("Swapdev not found");
800 }
801 
802 /*
803  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
804  *				range within an object.
805  *
806  *	This is a globally accessible routine.
807  *
808  *	This routine removes swapblk assignments from swap metadata.
809  *
810  *	The external callers of this routine typically have already destroyed
811  *	or renamed vm_page_t's associated with this range in the object so
812  *	we should be ok.
813  */
814 void
815 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
816 {
817 
818 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
819 	swp_pager_meta_free(object, start, size);
820 }
821 
822 /*
823  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
824  *
825  *	Assigns swap blocks to the specified range within the object.  The
826  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
827  *
828  *	Returns 0 on success, -1 on failure.
829  */
830 int
831 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
832 {
833 	int n = 0;
834 	daddr_t blk = SWAPBLK_NONE;
835 	vm_pindex_t beg = start;	/* save start index */
836 
837 	VM_OBJECT_LOCK(object);
838 	while (size) {
839 		if (n == 0) {
840 			n = BLIST_MAX_ALLOC;
841 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
842 				n >>= 1;
843 				if (n == 0) {
844 					swp_pager_meta_free(object, beg, start - beg);
845 					VM_OBJECT_UNLOCK(object);
846 					return (-1);
847 				}
848 			}
849 		}
850 		swp_pager_meta_build(object, start, blk);
851 		--size;
852 		++start;
853 		++blk;
854 		--n;
855 	}
856 	swp_pager_meta_free(object, start, n);
857 	VM_OBJECT_UNLOCK(object);
858 	return (0);
859 }
860 
861 /*
862  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
863  *			and destroy the source.
864  *
865  *	Copy any valid swapblks from the source to the destination.  In
866  *	cases where both the source and destination have a valid swapblk,
867  *	we keep the destination's.
868  *
869  *	This routine is allowed to sleep.  It may sleep allocating metadata
870  *	indirectly through swp_pager_meta_build() or if paging is still in
871  *	progress on the source.
872  *
873  *	The source object contains no vm_page_t's (which is just as well)
874  *
875  *	The source object is of type OBJT_SWAP.
876  *
877  *	The source and destination objects must be locked.
878  *	Both object locks may temporarily be released.
879  */
880 void
881 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
882     vm_pindex_t offset, int destroysource)
883 {
884 	vm_pindex_t i;
885 
886 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
887 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
888 
889 	/*
890 	 * If destroysource is set, we remove the source object from the
891 	 * swap_pager internal queue now.
892 	 */
893 	if (destroysource) {
894 		if (srcobject->handle != NULL) {
895 			mtx_lock(&sw_alloc_mtx);
896 			TAILQ_REMOVE(
897 			    NOBJLIST(srcobject->handle),
898 			    srcobject,
899 			    pager_object_list
900 			);
901 			mtx_unlock(&sw_alloc_mtx);
902 		}
903 	}
904 
905 	/*
906 	 * transfer source to destination.
907 	 */
908 	for (i = 0; i < dstobject->size; ++i) {
909 		daddr_t dstaddr;
910 
911 		/*
912 		 * Locate (without changing) the swapblk on the destination,
913 		 * unless it is invalid in which case free it silently, or
914 		 * if the destination is a resident page, in which case the
915 		 * source is thrown away.
916 		 */
917 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
918 
919 		if (dstaddr == SWAPBLK_NONE) {
920 			/*
921 			 * Destination has no swapblk and is not resident,
922 			 * copy source.
923 			 */
924 			daddr_t srcaddr;
925 
926 			srcaddr = swp_pager_meta_ctl(
927 			    srcobject,
928 			    i + offset,
929 			    SWM_POP
930 			);
931 
932 			if (srcaddr != SWAPBLK_NONE) {
933 				/*
934 				 * swp_pager_meta_build() can sleep.
935 				 */
936 				vm_object_pip_add(srcobject, 1);
937 				VM_OBJECT_UNLOCK(srcobject);
938 				vm_object_pip_add(dstobject, 1);
939 				swp_pager_meta_build(dstobject, i, srcaddr);
940 				vm_object_pip_wakeup(dstobject);
941 				VM_OBJECT_LOCK(srcobject);
942 				vm_object_pip_wakeup(srcobject);
943 			}
944 		} else {
945 			/*
946 			 * Destination has valid swapblk or it is represented
947 			 * by a resident page.  We destroy the sourceblock.
948 			 */
949 
950 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
951 		}
952 	}
953 
954 	/*
955 	 * Free left over swap blocks in source.
956 	 *
957 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
958 	 * double-remove the object from the swap queues.
959 	 */
960 	if (destroysource) {
961 		swp_pager_meta_free_all(srcobject);
962 		/*
963 		 * Reverting the type is not necessary, the caller is going
964 		 * to destroy srcobject directly, but I'm doing it here
965 		 * for consistency since we've removed the object from its
966 		 * queues.
967 		 */
968 		srcobject->type = OBJT_DEFAULT;
969 	}
970 }
971 
972 /*
973  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
974  *				the requested page.
975  *
976  *	We determine whether good backing store exists for the requested
977  *	page and return TRUE if it does, FALSE if it doesn't.
978  *
979  *	If TRUE, we also try to determine how much valid, contiguous backing
980  *	store exists before and after the requested page within a reasonable
981  *	distance.  We do not try to restrict it to the swap device stripe
982  *	(that is handled in getpages/putpages).  It probably isn't worth
983  *	doing here.
984  */
985 static boolean_t
986 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
987 {
988 	daddr_t blk0;
989 
990 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
991 	/*
992 	 * do we have good backing store at the requested index ?
993 	 */
994 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
995 
996 	if (blk0 == SWAPBLK_NONE) {
997 		if (before)
998 			*before = 0;
999 		if (after)
1000 			*after = 0;
1001 		return (FALSE);
1002 	}
1003 
1004 	/*
1005 	 * find backwards-looking contiguous good backing store
1006 	 */
1007 	if (before != NULL) {
1008 		int i;
1009 
1010 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1011 			daddr_t blk;
1012 
1013 			if (i > pindex)
1014 				break;
1015 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1016 			if (blk != blk0 - i)
1017 				break;
1018 		}
1019 		*before = (i - 1);
1020 	}
1021 
1022 	/*
1023 	 * find forward-looking contiguous good backing store
1024 	 */
1025 	if (after != NULL) {
1026 		int i;
1027 
1028 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1029 			daddr_t blk;
1030 
1031 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1032 			if (blk != blk0 + i)
1033 				break;
1034 		}
1035 		*after = (i - 1);
1036 	}
1037 	return (TRUE);
1038 }
1039 
1040 /*
1041  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1042  *
1043  *	This removes any associated swap backing store, whether valid or
1044  *	not, from the page.
1045  *
1046  *	This routine is typically called when a page is made dirty, at
1047  *	which point any associated swap can be freed.  MADV_FREE also
1048  *	calls us in a special-case situation
1049  *
1050  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1051  *	should make the page dirty before calling this routine.  This routine
1052  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1053  *	depends on it.
1054  *
1055  *	This routine may not sleep.
1056  */
1057 static void
1058 swap_pager_unswapped(vm_page_t m)
1059 {
1060 
1061 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1062 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1063 }
1064 
1065 /*
1066  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1067  *
1068  *	Attempt to retrieve (m, count) pages from backing store, but make
1069  *	sure we retrieve at least m[reqpage].  We try to load in as large
1070  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1071  *	belongs to the same object.
1072  *
1073  *	The code is designed for asynchronous operation and
1074  *	immediate-notification of 'reqpage' but tends not to be
1075  *	used that way.  Please do not optimize-out this algorithmic
1076  *	feature, I intend to improve on it in the future.
1077  *
1078  *	The parent has a single vm_object_pip_add() reference prior to
1079  *	calling us and we should return with the same.
1080  *
1081  *	The parent has BUSY'd the pages.  We should return with 'm'
1082  *	left busy, but the others adjusted.
1083  */
1084 static int
1085 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1086 {
1087 	struct buf *bp;
1088 	vm_page_t mreq;
1089 	int i;
1090 	int j;
1091 	daddr_t blk;
1092 
1093 	mreq = m[reqpage];
1094 
1095 	KASSERT(mreq->object == object,
1096 	    ("swap_pager_getpages: object mismatch %p/%p",
1097 	    object, mreq->object));
1098 
1099 	/*
1100 	 * Calculate range to retrieve.  The pages have already been assigned
1101 	 * their swapblks.  We require a *contiguous* range but we know it to
1102 	 * not span devices.   If we do not supply it, bad things
1103 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1104 	 * loops are set up such that the case(s) are handled implicitly.
1105 	 *
1106 	 * The swp_*() calls must be made with the object locked.
1107 	 */
1108 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1109 
1110 	for (i = reqpage - 1; i >= 0; --i) {
1111 		daddr_t iblk;
1112 
1113 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1114 		if (blk != iblk + (reqpage - i))
1115 			break;
1116 	}
1117 	++i;
1118 
1119 	for (j = reqpage + 1; j < count; ++j) {
1120 		daddr_t jblk;
1121 
1122 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1123 		if (blk != jblk - (j - reqpage))
1124 			break;
1125 	}
1126 
1127 	/*
1128 	 * free pages outside our collection range.   Note: we never free
1129 	 * mreq, it must remain busy throughout.
1130 	 */
1131 	if (0 < i || j < count) {
1132 		int k;
1133 
1134 		for (k = 0; k < i; ++k)
1135 			swp_pager_free_nrpage(m[k]);
1136 		for (k = j; k < count; ++k)
1137 			swp_pager_free_nrpage(m[k]);
1138 	}
1139 
1140 	/*
1141 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1142 	 * still busy, but the others unbusied.
1143 	 */
1144 	if (blk == SWAPBLK_NONE)
1145 		return (VM_PAGER_FAIL);
1146 
1147 	/*
1148 	 * Getpbuf() can sleep.
1149 	 */
1150 	VM_OBJECT_UNLOCK(object);
1151 	/*
1152 	 * Get a swap buffer header to perform the IO
1153 	 */
1154 	bp = getpbuf(&nsw_rcount);
1155 	bp->b_flags |= B_PAGING;
1156 
1157 	/*
1158 	 * map our page(s) into kva for input
1159 	 */
1160 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1161 
1162 	bp->b_iocmd = BIO_READ;
1163 	bp->b_iodone = swp_pager_async_iodone;
1164 	bp->b_rcred = crhold(thread0.td_ucred);
1165 	bp->b_wcred = crhold(thread0.td_ucred);
1166 	bp->b_blkno = blk - (reqpage - i);
1167 	bp->b_bcount = PAGE_SIZE * (j - i);
1168 	bp->b_bufsize = PAGE_SIZE * (j - i);
1169 	bp->b_pager.pg_reqpage = reqpage - i;
1170 
1171 	VM_OBJECT_LOCK(object);
1172 	{
1173 		int k;
1174 
1175 		for (k = i; k < j; ++k) {
1176 			bp->b_pages[k - i] = m[k];
1177 			m[k]->oflags |= VPO_SWAPINPROG;
1178 		}
1179 	}
1180 	bp->b_npages = j - i;
1181 
1182 	PCPU_INC(cnt.v_swapin);
1183 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1184 
1185 	/*
1186 	 * We still hold the lock on mreq, and our automatic completion routine
1187 	 * does not remove it.
1188 	 */
1189 	vm_object_pip_add(object, bp->b_npages);
1190 	VM_OBJECT_UNLOCK(object);
1191 
1192 	/*
1193 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1194 	 * this point because we automatically release it on completion.
1195 	 * Instead, we look at the one page we are interested in which we
1196 	 * still hold a lock on even through the I/O completion.
1197 	 *
1198 	 * The other pages in our m[] array are also released on completion,
1199 	 * so we cannot assume they are valid anymore either.
1200 	 *
1201 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1202 	 */
1203 	BUF_KERNPROC(bp);
1204 	swp_pager_strategy(bp);
1205 
1206 	/*
1207 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1208 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1209 	 * is set in the meta-data.
1210 	 */
1211 	VM_OBJECT_LOCK(object);
1212 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1213 		mreq->oflags |= VPO_WANTED;
1214 		PCPU_INC(cnt.v_intrans);
1215 		if (VM_OBJECT_SLEEP(object, mreq, PSWP, "swread", hz * 20)) {
1216 			printf(
1217 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1218 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * mreq is left busied after completion, but all the other pages
1224 	 * are freed.  If we had an unrecoverable read error the page will
1225 	 * not be valid.
1226 	 */
1227 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1228 		return (VM_PAGER_ERROR);
1229 	} else {
1230 		return (VM_PAGER_OK);
1231 	}
1232 
1233 	/*
1234 	 * A final note: in a low swap situation, we cannot deallocate swap
1235 	 * and mark a page dirty here because the caller is likely to mark
1236 	 * the page clean when we return, causing the page to possibly revert
1237 	 * to all-zero's later.
1238 	 */
1239 }
1240 
1241 /*
1242  *	swap_pager_putpages:
1243  *
1244  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1245  *
1246  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1247  *	are automatically converted to SWAP objects.
1248  *
1249  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1250  *	vm_page reservation system coupled with properly written VFS devices
1251  *	should ensure that no low-memory deadlock occurs.  This is an area
1252  *	which needs work.
1253  *
1254  *	The parent has N vm_object_pip_add() references prior to
1255  *	calling us and will remove references for rtvals[] that are
1256  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1257  *	completion.
1258  *
1259  *	The parent has soft-busy'd the pages it passes us and will unbusy
1260  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1261  *	We need to unbusy the rest on I/O completion.
1262  */
1263 void
1264 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1265     boolean_t sync, int *rtvals)
1266 {
1267 	int i;
1268 	int n = 0;
1269 
1270 	if (count && m[0]->object != object) {
1271 		panic("swap_pager_putpages: object mismatch %p/%p",
1272 		    object,
1273 		    m[0]->object
1274 		);
1275 	}
1276 
1277 	/*
1278 	 * Step 1
1279 	 *
1280 	 * Turn object into OBJT_SWAP
1281 	 * check for bogus sysops
1282 	 * force sync if not pageout process
1283 	 */
1284 	if (object->type != OBJT_SWAP)
1285 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1286 	VM_OBJECT_UNLOCK(object);
1287 
1288 	if (curproc != pageproc)
1289 		sync = TRUE;
1290 
1291 	/*
1292 	 * Step 2
1293 	 *
1294 	 * Update nsw parameters from swap_async_max sysctl values.
1295 	 * Do not let the sysop crash the machine with bogus numbers.
1296 	 */
1297 	mtx_lock(&pbuf_mtx);
1298 	if (swap_async_max != nsw_wcount_async_max) {
1299 		int n;
1300 
1301 		/*
1302 		 * limit range
1303 		 */
1304 		if ((n = swap_async_max) > nswbuf / 2)
1305 			n = nswbuf / 2;
1306 		if (n < 1)
1307 			n = 1;
1308 		swap_async_max = n;
1309 
1310 		/*
1311 		 * Adjust difference ( if possible ).  If the current async
1312 		 * count is too low, we may not be able to make the adjustment
1313 		 * at this time.
1314 		 */
1315 		n -= nsw_wcount_async_max;
1316 		if (nsw_wcount_async + n >= 0) {
1317 			nsw_wcount_async += n;
1318 			nsw_wcount_async_max += n;
1319 			wakeup(&nsw_wcount_async);
1320 		}
1321 	}
1322 	mtx_unlock(&pbuf_mtx);
1323 
1324 	/*
1325 	 * Step 3
1326 	 *
1327 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1328 	 * The page is left dirty until the pageout operation completes
1329 	 * successfully.
1330 	 */
1331 	for (i = 0; i < count; i += n) {
1332 		int j;
1333 		struct buf *bp;
1334 		daddr_t blk;
1335 
1336 		/*
1337 		 * Maximum I/O size is limited by a number of factors.
1338 		 */
1339 		n = min(BLIST_MAX_ALLOC, count - i);
1340 		n = min(n, nsw_cluster_max);
1341 
1342 		/*
1343 		 * Get biggest block of swap we can.  If we fail, fall
1344 		 * back and try to allocate a smaller block.  Don't go
1345 		 * overboard trying to allocate space if it would overly
1346 		 * fragment swap.
1347 		 */
1348 		while (
1349 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1350 		    n > 4
1351 		) {
1352 			n >>= 1;
1353 		}
1354 		if (blk == SWAPBLK_NONE) {
1355 			for (j = 0; j < n; ++j)
1356 				rtvals[i+j] = VM_PAGER_FAIL;
1357 			continue;
1358 		}
1359 
1360 		/*
1361 		 * All I/O parameters have been satisfied, build the I/O
1362 		 * request and assign the swap space.
1363 		 */
1364 		if (sync == TRUE) {
1365 			bp = getpbuf(&nsw_wcount_sync);
1366 		} else {
1367 			bp = getpbuf(&nsw_wcount_async);
1368 			bp->b_flags = B_ASYNC;
1369 		}
1370 		bp->b_flags |= B_PAGING;
1371 		bp->b_iocmd = BIO_WRITE;
1372 
1373 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1374 
1375 		bp->b_rcred = crhold(thread0.td_ucred);
1376 		bp->b_wcred = crhold(thread0.td_ucred);
1377 		bp->b_bcount = PAGE_SIZE * n;
1378 		bp->b_bufsize = PAGE_SIZE * n;
1379 		bp->b_blkno = blk;
1380 
1381 		VM_OBJECT_LOCK(object);
1382 		for (j = 0; j < n; ++j) {
1383 			vm_page_t mreq = m[i+j];
1384 
1385 			swp_pager_meta_build(
1386 			    mreq->object,
1387 			    mreq->pindex,
1388 			    blk + j
1389 			);
1390 			vm_page_dirty(mreq);
1391 			rtvals[i+j] = VM_PAGER_OK;
1392 
1393 			mreq->oflags |= VPO_SWAPINPROG;
1394 			bp->b_pages[j] = mreq;
1395 		}
1396 		VM_OBJECT_UNLOCK(object);
1397 		bp->b_npages = n;
1398 		/*
1399 		 * Must set dirty range for NFS to work.
1400 		 */
1401 		bp->b_dirtyoff = 0;
1402 		bp->b_dirtyend = bp->b_bcount;
1403 
1404 		PCPU_INC(cnt.v_swapout);
1405 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1406 
1407 		/*
1408 		 * asynchronous
1409 		 *
1410 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1411 		 */
1412 		if (sync == FALSE) {
1413 			bp->b_iodone = swp_pager_async_iodone;
1414 			BUF_KERNPROC(bp);
1415 			swp_pager_strategy(bp);
1416 
1417 			for (j = 0; j < n; ++j)
1418 				rtvals[i+j] = VM_PAGER_PEND;
1419 			/* restart outter loop */
1420 			continue;
1421 		}
1422 
1423 		/*
1424 		 * synchronous
1425 		 *
1426 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427 		 */
1428 		bp->b_iodone = bdone;
1429 		swp_pager_strategy(bp);
1430 
1431 		/*
1432 		 * Wait for the sync I/O to complete, then update rtvals.
1433 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1434 		 * our async completion routine at the end, thus avoiding a
1435 		 * double-free.
1436 		 */
1437 		bwait(bp, PVM, "swwrt");
1438 		for (j = 0; j < n; ++j)
1439 			rtvals[i+j] = VM_PAGER_PEND;
1440 		/*
1441 		 * Now that we are through with the bp, we can call the
1442 		 * normal async completion, which frees everything up.
1443 		 */
1444 		swp_pager_async_iodone(bp);
1445 	}
1446 	VM_OBJECT_LOCK(object);
1447 }
1448 
1449 /*
1450  *	swp_pager_async_iodone:
1451  *
1452  *	Completion routine for asynchronous reads and writes from/to swap.
1453  *	Also called manually by synchronous code to finish up a bp.
1454  *
1455  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1456  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1457  *	unbusy all pages except the 'main' request page.  For WRITE
1458  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1459  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1460  *
1461  *	This routine may not sleep.
1462  */
1463 static void
1464 swp_pager_async_iodone(struct buf *bp)
1465 {
1466 	int i;
1467 	vm_object_t object = NULL;
1468 
1469 	/*
1470 	 * report error
1471 	 */
1472 	if (bp->b_ioflags & BIO_ERROR) {
1473 		printf(
1474 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1475 			"size %ld, error %d\n",
1476 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1477 		    (long)bp->b_blkno,
1478 		    (long)bp->b_bcount,
1479 		    bp->b_error
1480 		);
1481 	}
1482 
1483 	/*
1484 	 * remove the mapping for kernel virtual
1485 	 */
1486 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1487 
1488 	if (bp->b_npages) {
1489 		object = bp->b_pages[0]->object;
1490 		VM_OBJECT_LOCK(object);
1491 	}
1492 
1493 	/*
1494 	 * cleanup pages.  If an error occurs writing to swap, we are in
1495 	 * very serious trouble.  If it happens to be a disk error, though,
1496 	 * we may be able to recover by reassigning the swap later on.  So
1497 	 * in this case we remove the m->swapblk assignment for the page
1498 	 * but do not free it in the rlist.  The errornous block(s) are thus
1499 	 * never reallocated as swap.  Redirty the page and continue.
1500 	 */
1501 	for (i = 0; i < bp->b_npages; ++i) {
1502 		vm_page_t m = bp->b_pages[i];
1503 
1504 		m->oflags &= ~VPO_SWAPINPROG;
1505 
1506 		if (bp->b_ioflags & BIO_ERROR) {
1507 			/*
1508 			 * If an error occurs I'd love to throw the swapblk
1509 			 * away without freeing it back to swapspace, so it
1510 			 * can never be used again.  But I can't from an
1511 			 * interrupt.
1512 			 */
1513 			if (bp->b_iocmd == BIO_READ) {
1514 				/*
1515 				 * When reading, reqpage needs to stay
1516 				 * locked for the parent, but all other
1517 				 * pages can be freed.  We still want to
1518 				 * wakeup the parent waiting on the page,
1519 				 * though.  ( also: pg_reqpage can be -1 and
1520 				 * not match anything ).
1521 				 *
1522 				 * We have to wake specifically requested pages
1523 				 * up too because we cleared VPO_SWAPINPROG and
1524 				 * someone may be waiting for that.
1525 				 *
1526 				 * NOTE: for reads, m->dirty will probably
1527 				 * be overridden by the original caller of
1528 				 * getpages so don't play cute tricks here.
1529 				 */
1530 				m->valid = 0;
1531 				if (i != bp->b_pager.pg_reqpage)
1532 					swp_pager_free_nrpage(m);
1533 				else
1534 					vm_page_flash(m);
1535 				/*
1536 				 * If i == bp->b_pager.pg_reqpage, do not wake
1537 				 * the page up.  The caller needs to.
1538 				 */
1539 			} else {
1540 				/*
1541 				 * If a write error occurs, reactivate page
1542 				 * so it doesn't clog the inactive list,
1543 				 * then finish the I/O.
1544 				 */
1545 				vm_page_dirty(m);
1546 				vm_page_lock(m);
1547 				vm_page_activate(m);
1548 				vm_page_unlock(m);
1549 				vm_page_io_finish(m);
1550 			}
1551 		} else if (bp->b_iocmd == BIO_READ) {
1552 			/*
1553 			 * NOTE: for reads, m->dirty will probably be
1554 			 * overridden by the original caller of getpages so
1555 			 * we cannot set them in order to free the underlying
1556 			 * swap in a low-swap situation.  I don't think we'd
1557 			 * want to do that anyway, but it was an optimization
1558 			 * that existed in the old swapper for a time before
1559 			 * it got ripped out due to precisely this problem.
1560 			 *
1561 			 * If not the requested page then deactivate it.
1562 			 *
1563 			 * Note that the requested page, reqpage, is left
1564 			 * busied, but we still have to wake it up.  The
1565 			 * other pages are released (unbusied) by
1566 			 * vm_page_wakeup().
1567 			 */
1568 			KASSERT(!pmap_page_is_mapped(m),
1569 			    ("swp_pager_async_iodone: page %p is mapped", m));
1570 			m->valid = VM_PAGE_BITS_ALL;
1571 			KASSERT(m->dirty == 0,
1572 			    ("swp_pager_async_iodone: page %p is dirty", m));
1573 
1574 			/*
1575 			 * We have to wake specifically requested pages
1576 			 * up too because we cleared VPO_SWAPINPROG and
1577 			 * could be waiting for it in getpages.  However,
1578 			 * be sure to not unbusy getpages specifically
1579 			 * requested page - getpages expects it to be
1580 			 * left busy.
1581 			 */
1582 			if (i != bp->b_pager.pg_reqpage) {
1583 				vm_page_lock(m);
1584 				vm_page_deactivate(m);
1585 				vm_page_unlock(m);
1586 				vm_page_wakeup(m);
1587 			} else
1588 				vm_page_flash(m);
1589 		} else {
1590 			/*
1591 			 * For write success, clear the dirty
1592 			 * status, then finish the I/O ( which decrements the
1593 			 * busy count and possibly wakes waiter's up ).
1594 			 */
1595 			KASSERT(!pmap_page_is_write_mapped(m),
1596 			    ("swp_pager_async_iodone: page %p is not write"
1597 			    " protected", m));
1598 			vm_page_undirty(m);
1599 			vm_page_io_finish(m);
1600 			if (vm_page_count_severe()) {
1601 				vm_page_lock(m);
1602 				vm_page_try_to_cache(m);
1603 				vm_page_unlock(m);
1604 			}
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * adjust pip.  NOTE: the original parent may still have its own
1610 	 * pip refs on the object.
1611 	 */
1612 	if (object != NULL) {
1613 		vm_object_pip_wakeupn(object, bp->b_npages);
1614 		VM_OBJECT_UNLOCK(object);
1615 	}
1616 
1617 	/*
1618 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1619 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1620 	 * trigger a KASSERT in relpbuf().
1621 	 */
1622 	if (bp->b_vp) {
1623 		    bp->b_vp = NULL;
1624 		    bp->b_bufobj = NULL;
1625 	}
1626 	/*
1627 	 * release the physical I/O buffer
1628 	 */
1629 	relpbuf(
1630 	    bp,
1631 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1632 		((bp->b_flags & B_ASYNC) ?
1633 		    &nsw_wcount_async :
1634 		    &nsw_wcount_sync
1635 		)
1636 	    )
1637 	);
1638 }
1639 
1640 /*
1641  *	swap_pager_isswapped:
1642  *
1643  *	Return 1 if at least one page in the given object is paged
1644  *	out to the given swap device.
1645  *
1646  *	This routine may not sleep.
1647  */
1648 int
1649 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1650 {
1651 	daddr_t index = 0;
1652 	int bcount;
1653 	int i;
1654 
1655 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1656 	if (object->type != OBJT_SWAP)
1657 		return (0);
1658 
1659 	mtx_lock(&swhash_mtx);
1660 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1661 		struct swblock *swap;
1662 
1663 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1664 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1665 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1666 					mtx_unlock(&swhash_mtx);
1667 					return (1);
1668 				}
1669 			}
1670 		}
1671 		index += SWAP_META_PAGES;
1672 	}
1673 	mtx_unlock(&swhash_mtx);
1674 	return (0);
1675 }
1676 
1677 /*
1678  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1679  *
1680  *	This routine dissociates the page at the given index within a
1681  *	swap block from its backing store, paging it in if necessary.
1682  *	If the page is paged in, it is placed in the inactive queue,
1683  *	since it had its backing store ripped out from under it.
1684  *	We also attempt to swap in all other pages in the swap block,
1685  *	we only guarantee that the one at the specified index is
1686  *	paged in.
1687  *
1688  *	XXX - The code to page the whole block in doesn't work, so we
1689  *	      revert to the one-by-one behavior for now.  Sigh.
1690  */
1691 static inline void
1692 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1693 {
1694 	vm_page_t m;
1695 
1696 	vm_object_pip_add(object, 1);
1697 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1698 	if (m->valid == VM_PAGE_BITS_ALL) {
1699 		vm_object_pip_subtract(object, 1);
1700 		vm_page_dirty(m);
1701 		vm_page_lock(m);
1702 		vm_page_activate(m);
1703 		vm_page_unlock(m);
1704 		vm_page_wakeup(m);
1705 		vm_pager_page_unswapped(m);
1706 		return;
1707 	}
1708 
1709 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1710 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1711 	vm_object_pip_subtract(object, 1);
1712 	vm_page_dirty(m);
1713 	vm_page_lock(m);
1714 	vm_page_deactivate(m);
1715 	vm_page_unlock(m);
1716 	vm_page_wakeup(m);
1717 	vm_pager_page_unswapped(m);
1718 }
1719 
1720 /*
1721  *	swap_pager_swapoff:
1722  *
1723  *	Page in all of the pages that have been paged out to the
1724  *	given device.  The corresponding blocks in the bitmap must be
1725  *	marked as allocated and the device must be flagged SW_CLOSING.
1726  *	There may be no processes swapped out to the device.
1727  *
1728  *	This routine may block.
1729  */
1730 static void
1731 swap_pager_swapoff(struct swdevt *sp)
1732 {
1733 	struct swblock *swap;
1734 	int i, j, retries;
1735 
1736 	GIANT_REQUIRED;
1737 
1738 	retries = 0;
1739 full_rescan:
1740 	mtx_lock(&swhash_mtx);
1741 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1742 restart:
1743 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1744 			vm_object_t object = swap->swb_object;
1745 			vm_pindex_t pindex = swap->swb_index;
1746 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1747 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1748 					/* avoid deadlock */
1749 					if (!VM_OBJECT_TRYLOCK(object)) {
1750 						break;
1751 					} else {
1752 						mtx_unlock(&swhash_mtx);
1753 						swp_pager_force_pagein(object,
1754 						    pindex + j);
1755 						VM_OBJECT_UNLOCK(object);
1756 						mtx_lock(&swhash_mtx);
1757 						goto restart;
1758 					}
1759 				}
1760 			}
1761 		}
1762 	}
1763 	mtx_unlock(&swhash_mtx);
1764 	if (sp->sw_used) {
1765 		/*
1766 		 * Objects may be locked or paging to the device being
1767 		 * removed, so we will miss their pages and need to
1768 		 * make another pass.  We have marked this device as
1769 		 * SW_CLOSING, so the activity should finish soon.
1770 		 */
1771 		retries++;
1772 		if (retries > 100) {
1773 			panic("swapoff: failed to locate %d swap blocks",
1774 			    sp->sw_used);
1775 		}
1776 		pause("swpoff", hz / 20);
1777 		goto full_rescan;
1778 	}
1779 }
1780 
1781 /************************************************************************
1782  *				SWAP META DATA 				*
1783  ************************************************************************
1784  *
1785  *	These routines manipulate the swap metadata stored in the
1786  *	OBJT_SWAP object.
1787  *
1788  *	Swap metadata is implemented with a global hash and not directly
1789  *	linked into the object.  Instead the object simply contains
1790  *	appropriate tracking counters.
1791  */
1792 
1793 /*
1794  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1795  *
1796  *	We first convert the object to a swap object if it is a default
1797  *	object.
1798  *
1799  *	The specified swapblk is added to the object's swap metadata.  If
1800  *	the swapblk is not valid, it is freed instead.  Any previously
1801  *	assigned swapblk is freed.
1802  */
1803 static void
1804 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1805 {
1806 	static volatile int exhausted;
1807 	struct swblock *swap;
1808 	struct swblock **pswap;
1809 	int idx;
1810 
1811 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1812 	/*
1813 	 * Convert default object to swap object if necessary
1814 	 */
1815 	if (object->type != OBJT_SWAP) {
1816 		object->type = OBJT_SWAP;
1817 		object->un_pager.swp.swp_bcount = 0;
1818 
1819 		if (object->handle != NULL) {
1820 			mtx_lock(&sw_alloc_mtx);
1821 			TAILQ_INSERT_TAIL(
1822 			    NOBJLIST(object->handle),
1823 			    object,
1824 			    pager_object_list
1825 			);
1826 			mtx_unlock(&sw_alloc_mtx);
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * Locate hash entry.  If not found create, but if we aren't adding
1832 	 * anything just return.  If we run out of space in the map we wait
1833 	 * and, since the hash table may have changed, retry.
1834 	 */
1835 retry:
1836 	mtx_lock(&swhash_mtx);
1837 	pswap = swp_pager_hash(object, pindex);
1838 
1839 	if ((swap = *pswap) == NULL) {
1840 		int i;
1841 
1842 		if (swapblk == SWAPBLK_NONE)
1843 			goto done;
1844 
1845 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1846 		if (swap == NULL) {
1847 			mtx_unlock(&swhash_mtx);
1848 			VM_OBJECT_UNLOCK(object);
1849 			if (uma_zone_exhausted(swap_zone)) {
1850 				if (atomic_cmpset_int(&exhausted, 0, 1))
1851 					printf("swap zone exhausted, "
1852 					    "increase kern.maxswzone\n");
1853 				vm_pageout_oom(VM_OOM_SWAPZ);
1854 				pause("swzonex", 10);
1855 			} else
1856 				VM_WAIT;
1857 			VM_OBJECT_LOCK(object);
1858 			goto retry;
1859 		}
1860 
1861 		if (atomic_cmpset_int(&exhausted, 1, 0))
1862 			printf("swap zone ok\n");
1863 
1864 		swap->swb_hnext = NULL;
1865 		swap->swb_object = object;
1866 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1867 		swap->swb_count = 0;
1868 
1869 		++object->un_pager.swp.swp_bcount;
1870 
1871 		for (i = 0; i < SWAP_META_PAGES; ++i)
1872 			swap->swb_pages[i] = SWAPBLK_NONE;
1873 	}
1874 
1875 	/*
1876 	 * Delete prior contents of metadata
1877 	 */
1878 	idx = pindex & SWAP_META_MASK;
1879 
1880 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1881 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1882 		--swap->swb_count;
1883 	}
1884 
1885 	/*
1886 	 * Enter block into metadata
1887 	 */
1888 	swap->swb_pages[idx] = swapblk;
1889 	if (swapblk != SWAPBLK_NONE)
1890 		++swap->swb_count;
1891 done:
1892 	mtx_unlock(&swhash_mtx);
1893 }
1894 
1895 /*
1896  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1897  *
1898  *	The requested range of blocks is freed, with any associated swap
1899  *	returned to the swap bitmap.
1900  *
1901  *	This routine will free swap metadata structures as they are cleaned
1902  *	out.  This routine does *NOT* operate on swap metadata associated
1903  *	with resident pages.
1904  */
1905 static void
1906 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1907 {
1908 
1909 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1910 	if (object->type != OBJT_SWAP)
1911 		return;
1912 
1913 	while (count > 0) {
1914 		struct swblock **pswap;
1915 		struct swblock *swap;
1916 
1917 		mtx_lock(&swhash_mtx);
1918 		pswap = swp_pager_hash(object, index);
1919 
1920 		if ((swap = *pswap) != NULL) {
1921 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1922 
1923 			if (v != SWAPBLK_NONE) {
1924 				swp_pager_freeswapspace(v, 1);
1925 				swap->swb_pages[index & SWAP_META_MASK] =
1926 					SWAPBLK_NONE;
1927 				if (--swap->swb_count == 0) {
1928 					*pswap = swap->swb_hnext;
1929 					uma_zfree(swap_zone, swap);
1930 					--object->un_pager.swp.swp_bcount;
1931 				}
1932 			}
1933 			--count;
1934 			++index;
1935 		} else {
1936 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1937 			count -= n;
1938 			index += n;
1939 		}
1940 		mtx_unlock(&swhash_mtx);
1941 	}
1942 }
1943 
1944 /*
1945  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1946  *
1947  *	This routine locates and destroys all swap metadata associated with
1948  *	an object.
1949  */
1950 static void
1951 swp_pager_meta_free_all(vm_object_t object)
1952 {
1953 	daddr_t index = 0;
1954 
1955 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1956 	if (object->type != OBJT_SWAP)
1957 		return;
1958 
1959 	while (object->un_pager.swp.swp_bcount) {
1960 		struct swblock **pswap;
1961 		struct swblock *swap;
1962 
1963 		mtx_lock(&swhash_mtx);
1964 		pswap = swp_pager_hash(object, index);
1965 		if ((swap = *pswap) != NULL) {
1966 			int i;
1967 
1968 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1969 				daddr_t v = swap->swb_pages[i];
1970 				if (v != SWAPBLK_NONE) {
1971 					--swap->swb_count;
1972 					swp_pager_freeswapspace(v, 1);
1973 				}
1974 			}
1975 			if (swap->swb_count != 0)
1976 				panic("swap_pager_meta_free_all: swb_count != 0");
1977 			*pswap = swap->swb_hnext;
1978 			uma_zfree(swap_zone, swap);
1979 			--object->un_pager.swp.swp_bcount;
1980 		}
1981 		mtx_unlock(&swhash_mtx);
1982 		index += SWAP_META_PAGES;
1983 	}
1984 }
1985 
1986 /*
1987  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1988  *
1989  *	This routine is capable of looking up, popping, or freeing
1990  *	swapblk assignments in the swap meta data or in the vm_page_t.
1991  *	The routine typically returns the swapblk being looked-up, or popped,
1992  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1993  *	was invalid.  This routine will automatically free any invalid
1994  *	meta-data swapblks.
1995  *
1996  *	It is not possible to store invalid swapblks in the swap meta data
1997  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1998  *
1999  *	When acting on a busy resident page and paging is in progress, we
2000  *	have to wait until paging is complete but otherwise can act on the
2001  *	busy page.
2002  *
2003  *	SWM_FREE	remove and free swap block from metadata
2004  *	SWM_POP		remove from meta data but do not free.. pop it out
2005  */
2006 static daddr_t
2007 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2008 {
2009 	struct swblock **pswap;
2010 	struct swblock *swap;
2011 	daddr_t r1;
2012 	int idx;
2013 
2014 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2015 	/*
2016 	 * The meta data only exists of the object is OBJT_SWAP
2017 	 * and even then might not be allocated yet.
2018 	 */
2019 	if (object->type != OBJT_SWAP)
2020 		return (SWAPBLK_NONE);
2021 
2022 	r1 = SWAPBLK_NONE;
2023 	mtx_lock(&swhash_mtx);
2024 	pswap = swp_pager_hash(object, pindex);
2025 
2026 	if ((swap = *pswap) != NULL) {
2027 		idx = pindex & SWAP_META_MASK;
2028 		r1 = swap->swb_pages[idx];
2029 
2030 		if (r1 != SWAPBLK_NONE) {
2031 			if (flags & SWM_FREE) {
2032 				swp_pager_freeswapspace(r1, 1);
2033 				r1 = SWAPBLK_NONE;
2034 			}
2035 			if (flags & (SWM_FREE|SWM_POP)) {
2036 				swap->swb_pages[idx] = SWAPBLK_NONE;
2037 				if (--swap->swb_count == 0) {
2038 					*pswap = swap->swb_hnext;
2039 					uma_zfree(swap_zone, swap);
2040 					--object->un_pager.swp.swp_bcount;
2041 				}
2042 			}
2043 		}
2044 	}
2045 	mtx_unlock(&swhash_mtx);
2046 	return (r1);
2047 }
2048 
2049 /*
2050  * System call swapon(name) enables swapping on device name,
2051  * which must be in the swdevsw.  Return EBUSY
2052  * if already swapping on this device.
2053  */
2054 #ifndef _SYS_SYSPROTO_H_
2055 struct swapon_args {
2056 	char *name;
2057 };
2058 #endif
2059 
2060 /*
2061  * MPSAFE
2062  */
2063 /* ARGSUSED */
2064 int
2065 sys_swapon(struct thread *td, struct swapon_args *uap)
2066 {
2067 	struct vattr attr;
2068 	struct vnode *vp;
2069 	struct nameidata nd;
2070 	int error;
2071 
2072 	error = priv_check(td, PRIV_SWAPON);
2073 	if (error)
2074 		return (error);
2075 
2076 	mtx_lock(&Giant);
2077 	while (swdev_syscall_active)
2078 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2079 	swdev_syscall_active = 1;
2080 
2081 	/*
2082 	 * Swap metadata may not fit in the KVM if we have physical
2083 	 * memory of >1GB.
2084 	 */
2085 	if (swap_zone == NULL) {
2086 		error = ENOMEM;
2087 		goto done;
2088 	}
2089 
2090 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2091 	    uap->name, td);
2092 	error = namei(&nd);
2093 	if (error)
2094 		goto done;
2095 
2096 	NDFREE(&nd, NDF_ONLY_PNBUF);
2097 	vp = nd.ni_vp;
2098 
2099 	if (vn_isdisk(vp, &error)) {
2100 		error = swapongeom(td, vp);
2101 	} else if (vp->v_type == VREG &&
2102 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2103 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2104 		/*
2105 		 * Allow direct swapping to NFS regular files in the same
2106 		 * way that nfs_mountroot() sets up diskless swapping.
2107 		 */
2108 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2109 	}
2110 
2111 	if (error)
2112 		vrele(vp);
2113 done:
2114 	swdev_syscall_active = 0;
2115 	wakeup_one(&swdev_syscall_active);
2116 	mtx_unlock(&Giant);
2117 	return (error);
2118 }
2119 
2120 /*
2121  * Check that the total amount of swap currently configured does not
2122  * exceed half the theoretical maximum.  If it does, print a warning
2123  * message and return -1; otherwise, return 0.
2124  */
2125 static int
2126 swapon_check_swzone(unsigned long npages)
2127 {
2128 	unsigned long maxpages;
2129 
2130 	/* absolute maximum we can handle assuming 100% efficiency */
2131 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2132 
2133 	/* recommend using no more than half that amount */
2134 	if (npages > maxpages / 2) {
2135 		printf("warning: total configured swap (%lu pages) "
2136 		    "exceeds maximum recommended amount (%lu pages).\n",
2137 		    npages, maxpages / 2);
2138 		printf("warning: increase kern.maxswzone "
2139 		    "or reduce amount of swap.\n");
2140 		return (-1);
2141 	}
2142 	return (0);
2143 }
2144 
2145 static void
2146 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2147 {
2148 	struct swdevt *sp, *tsp;
2149 	swblk_t dvbase;
2150 	u_long mblocks;
2151 
2152 	/*
2153 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2154 	 * First chop nblks off to page-align it, then convert.
2155 	 *
2156 	 * sw->sw_nblks is in page-sized chunks now too.
2157 	 */
2158 	nblks &= ~(ctodb(1) - 1);
2159 	nblks = dbtoc(nblks);
2160 
2161 	/*
2162 	 * If we go beyond this, we get overflows in the radix
2163 	 * tree bitmap code.
2164 	 */
2165 	mblocks = 0x40000000 / BLIST_META_RADIX;
2166 	if (nblks > mblocks) {
2167 		printf(
2168     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2169 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2170 		nblks = mblocks;
2171 	}
2172 
2173 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2174 	sp->sw_vp = vp;
2175 	sp->sw_id = id;
2176 	sp->sw_dev = dev;
2177 	sp->sw_flags = 0;
2178 	sp->sw_nblks = nblks;
2179 	sp->sw_used = 0;
2180 	sp->sw_strategy = strategy;
2181 	sp->sw_close = close;
2182 
2183 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2184 	/*
2185 	 * Do not free the first two block in order to avoid overwriting
2186 	 * any bsd label at the front of the partition
2187 	 */
2188 	blist_free(sp->sw_blist, 2, nblks - 2);
2189 
2190 	dvbase = 0;
2191 	mtx_lock(&sw_dev_mtx);
2192 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2193 		if (tsp->sw_end >= dvbase) {
2194 			/*
2195 			 * We put one uncovered page between the devices
2196 			 * in order to definitively prevent any cross-device
2197 			 * I/O requests
2198 			 */
2199 			dvbase = tsp->sw_end + 1;
2200 		}
2201 	}
2202 	sp->sw_first = dvbase;
2203 	sp->sw_end = dvbase + nblks;
2204 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2205 	nswapdev++;
2206 	swap_pager_avail += nblks;
2207 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2208 	swapon_check_swzone(swap_total / PAGE_SIZE);
2209 	swp_sizecheck();
2210 	mtx_unlock(&sw_dev_mtx);
2211 }
2212 
2213 /*
2214  * SYSCALL: swapoff(devname)
2215  *
2216  * Disable swapping on the given device.
2217  *
2218  * XXX: Badly designed system call: it should use a device index
2219  * rather than filename as specification.  We keep sw_vp around
2220  * only to make this work.
2221  */
2222 #ifndef _SYS_SYSPROTO_H_
2223 struct swapoff_args {
2224 	char *name;
2225 };
2226 #endif
2227 
2228 /*
2229  * MPSAFE
2230  */
2231 /* ARGSUSED */
2232 int
2233 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2234 {
2235 	struct vnode *vp;
2236 	struct nameidata nd;
2237 	struct swdevt *sp;
2238 	int error;
2239 
2240 	error = priv_check(td, PRIV_SWAPOFF);
2241 	if (error)
2242 		return (error);
2243 
2244 	mtx_lock(&Giant);
2245 	while (swdev_syscall_active)
2246 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2247 	swdev_syscall_active = 1;
2248 
2249 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2250 	    td);
2251 	error = namei(&nd);
2252 	if (error)
2253 		goto done;
2254 	NDFREE(&nd, NDF_ONLY_PNBUF);
2255 	vp = nd.ni_vp;
2256 
2257 	mtx_lock(&sw_dev_mtx);
2258 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2259 		if (sp->sw_vp == vp)
2260 			break;
2261 	}
2262 	mtx_unlock(&sw_dev_mtx);
2263 	if (sp == NULL) {
2264 		error = EINVAL;
2265 		goto done;
2266 	}
2267 	error = swapoff_one(sp, td->td_ucred);
2268 done:
2269 	swdev_syscall_active = 0;
2270 	wakeup_one(&swdev_syscall_active);
2271 	mtx_unlock(&Giant);
2272 	return (error);
2273 }
2274 
2275 static int
2276 swapoff_one(struct swdevt *sp, struct ucred *cred)
2277 {
2278 	u_long nblks, dvbase;
2279 #ifdef MAC
2280 	int error;
2281 #endif
2282 
2283 	mtx_assert(&Giant, MA_OWNED);
2284 #ifdef MAC
2285 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2286 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2287 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2288 	if (error != 0)
2289 		return (error);
2290 #endif
2291 	nblks = sp->sw_nblks;
2292 
2293 	/*
2294 	 * We can turn off this swap device safely only if the
2295 	 * available virtual memory in the system will fit the amount
2296 	 * of data we will have to page back in, plus an epsilon so
2297 	 * the system doesn't become critically low on swap space.
2298 	 */
2299 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2300 	    nblks + nswap_lowat) {
2301 		return (ENOMEM);
2302 	}
2303 
2304 	/*
2305 	 * Prevent further allocations on this device.
2306 	 */
2307 	mtx_lock(&sw_dev_mtx);
2308 	sp->sw_flags |= SW_CLOSING;
2309 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2310 		swap_pager_avail -= blist_fill(sp->sw_blist,
2311 		     dvbase, dmmax);
2312 	}
2313 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2314 	mtx_unlock(&sw_dev_mtx);
2315 
2316 	/*
2317 	 * Page in the contents of the device and close it.
2318 	 */
2319 	swap_pager_swapoff(sp);
2320 
2321 	sp->sw_close(curthread, sp);
2322 	sp->sw_id = NULL;
2323 	mtx_lock(&sw_dev_mtx);
2324 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2325 	nswapdev--;
2326 	if (nswapdev == 0) {
2327 		swap_pager_full = 2;
2328 		swap_pager_almost_full = 1;
2329 	}
2330 	if (swdevhd == sp)
2331 		swdevhd = NULL;
2332 	mtx_unlock(&sw_dev_mtx);
2333 	blist_destroy(sp->sw_blist);
2334 	free(sp, M_VMPGDATA);
2335 	return (0);
2336 }
2337 
2338 void
2339 swapoff_all(void)
2340 {
2341 	struct swdevt *sp, *spt;
2342 	const char *devname;
2343 	int error;
2344 
2345 	mtx_lock(&Giant);
2346 	while (swdev_syscall_active)
2347 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2348 	swdev_syscall_active = 1;
2349 
2350 	mtx_lock(&sw_dev_mtx);
2351 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2352 		mtx_unlock(&sw_dev_mtx);
2353 		if (vn_isdisk(sp->sw_vp, NULL))
2354 			devname = devtoname(sp->sw_vp->v_rdev);
2355 		else
2356 			devname = "[file]";
2357 		error = swapoff_one(sp, thread0.td_ucred);
2358 		if (error != 0) {
2359 			printf("Cannot remove swap device %s (error=%d), "
2360 			    "skipping.\n", devname, error);
2361 		} else if (bootverbose) {
2362 			printf("Swap device %s removed.\n", devname);
2363 		}
2364 		mtx_lock(&sw_dev_mtx);
2365 	}
2366 	mtx_unlock(&sw_dev_mtx);
2367 
2368 	swdev_syscall_active = 0;
2369 	wakeup_one(&swdev_syscall_active);
2370 	mtx_unlock(&Giant);
2371 }
2372 
2373 void
2374 swap_pager_status(int *total, int *used)
2375 {
2376 	struct swdevt *sp;
2377 
2378 	*total = 0;
2379 	*used = 0;
2380 	mtx_lock(&sw_dev_mtx);
2381 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2382 		*total += sp->sw_nblks;
2383 		*used += sp->sw_used;
2384 	}
2385 	mtx_unlock(&sw_dev_mtx);
2386 }
2387 
2388 int
2389 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2390 {
2391 	struct swdevt *sp;
2392 	const char *tmp_devname;
2393 	int error, n;
2394 
2395 	n = 0;
2396 	error = ENOENT;
2397 	mtx_lock(&sw_dev_mtx);
2398 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2399 		if (n != name) {
2400 			n++;
2401 			continue;
2402 		}
2403 		xs->xsw_version = XSWDEV_VERSION;
2404 		xs->xsw_dev = sp->sw_dev;
2405 		xs->xsw_flags = sp->sw_flags;
2406 		xs->xsw_nblks = sp->sw_nblks;
2407 		xs->xsw_used = sp->sw_used;
2408 		if (devname != NULL) {
2409 			if (vn_isdisk(sp->sw_vp, NULL))
2410 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2411 			else
2412 				tmp_devname = "[file]";
2413 			strncpy(devname, tmp_devname, len);
2414 		}
2415 		error = 0;
2416 		break;
2417 	}
2418 	mtx_unlock(&sw_dev_mtx);
2419 	return (error);
2420 }
2421 
2422 static int
2423 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2424 {
2425 	struct xswdev xs;
2426 	int error;
2427 
2428 	if (arg2 != 1)			/* name length */
2429 		return (EINVAL);
2430 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2431 	if (error != 0)
2432 		return (error);
2433 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2434 	return (error);
2435 }
2436 
2437 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2438     "Number of swap devices");
2439 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2440     "Swap statistics by device");
2441 
2442 /*
2443  * vmspace_swap_count() - count the approximate swap usage in pages for a
2444  *			  vmspace.
2445  *
2446  *	The map must be locked.
2447  *
2448  *	Swap usage is determined by taking the proportional swap used by
2449  *	VM objects backing the VM map.  To make up for fractional losses,
2450  *	if the VM object has any swap use at all the associated map entries
2451  *	count for at least 1 swap page.
2452  */
2453 long
2454 vmspace_swap_count(struct vmspace *vmspace)
2455 {
2456 	vm_map_t map;
2457 	vm_map_entry_t cur;
2458 	vm_object_t object;
2459 	long count, n;
2460 
2461 	map = &vmspace->vm_map;
2462 	count = 0;
2463 
2464 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2465 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2466 		    (object = cur->object.vm_object) != NULL) {
2467 			VM_OBJECT_LOCK(object);
2468 			if (object->type == OBJT_SWAP &&
2469 			    object->un_pager.swp.swp_bcount != 0) {
2470 				n = (cur->end - cur->start) / PAGE_SIZE;
2471 				count += object->un_pager.swp.swp_bcount *
2472 				    SWAP_META_PAGES * n / object->size + 1;
2473 			}
2474 			VM_OBJECT_UNLOCK(object);
2475 		}
2476 	}
2477 	return (count);
2478 }
2479 
2480 /*
2481  * GEOM backend
2482  *
2483  * Swapping onto disk devices.
2484  *
2485  */
2486 
2487 static g_orphan_t swapgeom_orphan;
2488 
2489 static struct g_class g_swap_class = {
2490 	.name = "SWAP",
2491 	.version = G_VERSION,
2492 	.orphan = swapgeom_orphan,
2493 };
2494 
2495 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2496 
2497 
2498 static void
2499 swapgeom_done(struct bio *bp2)
2500 {
2501 	struct buf *bp;
2502 
2503 	bp = bp2->bio_caller2;
2504 	bp->b_ioflags = bp2->bio_flags;
2505 	if (bp2->bio_error)
2506 		bp->b_ioflags |= BIO_ERROR;
2507 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2508 	bp->b_error = bp2->bio_error;
2509 	bufdone(bp);
2510 	g_destroy_bio(bp2);
2511 }
2512 
2513 static void
2514 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2515 {
2516 	struct bio *bio;
2517 	struct g_consumer *cp;
2518 
2519 	cp = sp->sw_id;
2520 	if (cp == NULL) {
2521 		bp->b_error = ENXIO;
2522 		bp->b_ioflags |= BIO_ERROR;
2523 		bufdone(bp);
2524 		return;
2525 	}
2526 	if (bp->b_iocmd == BIO_WRITE)
2527 		bio = g_new_bio();
2528 	else
2529 		bio = g_alloc_bio();
2530 	if (bio == NULL) {
2531 		bp->b_error = ENOMEM;
2532 		bp->b_ioflags |= BIO_ERROR;
2533 		bufdone(bp);
2534 		return;
2535 	}
2536 
2537 	bio->bio_caller2 = bp;
2538 	bio->bio_cmd = bp->b_iocmd;
2539 	bio->bio_data = bp->b_data;
2540 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2541 	bio->bio_length = bp->b_bcount;
2542 	bio->bio_done = swapgeom_done;
2543 	g_io_request(bio, cp);
2544 	return;
2545 }
2546 
2547 static void
2548 swapgeom_orphan(struct g_consumer *cp)
2549 {
2550 	struct swdevt *sp;
2551 
2552 	mtx_lock(&sw_dev_mtx);
2553 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2554 		if (sp->sw_id == cp)
2555 			sp->sw_flags |= SW_CLOSING;
2556 	mtx_unlock(&sw_dev_mtx);
2557 }
2558 
2559 static void
2560 swapgeom_close_ev(void *arg, int flags)
2561 {
2562 	struct g_consumer *cp;
2563 
2564 	cp = arg;
2565 	g_access(cp, -1, -1, 0);
2566 	g_detach(cp);
2567 	g_destroy_consumer(cp);
2568 }
2569 
2570 static void
2571 swapgeom_close(struct thread *td, struct swdevt *sw)
2572 {
2573 
2574 	/* XXX: direct call when Giant untangled */
2575 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2576 }
2577 
2578 
2579 struct swh0h0 {
2580 	struct cdev *dev;
2581 	struct vnode *vp;
2582 	int	error;
2583 };
2584 
2585 static void
2586 swapongeom_ev(void *arg, int flags)
2587 {
2588 	struct swh0h0 *swh;
2589 	struct g_provider *pp;
2590 	struct g_consumer *cp;
2591 	static struct g_geom *gp;
2592 	struct swdevt *sp;
2593 	u_long nblks;
2594 	int error;
2595 
2596 	swh = arg;
2597 	swh->error = 0;
2598 	pp = g_dev_getprovider(swh->dev);
2599 	if (pp == NULL) {
2600 		swh->error = ENODEV;
2601 		return;
2602 	}
2603 	mtx_lock(&sw_dev_mtx);
2604 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2605 		cp = sp->sw_id;
2606 		if (cp != NULL && cp->provider == pp) {
2607 			mtx_unlock(&sw_dev_mtx);
2608 			swh->error = EBUSY;
2609 			return;
2610 		}
2611 	}
2612 	mtx_unlock(&sw_dev_mtx);
2613 	if (gp == NULL)
2614 		gp = g_new_geomf(&g_swap_class, "swap");
2615 	cp = g_new_consumer(gp);
2616 	g_attach(cp, pp);
2617 	/*
2618 	 * XXX: Everytime you think you can improve the margin for
2619 	 * footshooting, somebody depends on the ability to do so:
2620 	 * savecore(8) wants to write to our swapdev so we cannot
2621 	 * set an exclusive count :-(
2622 	 */
2623 	error = g_access(cp, 1, 1, 0);
2624 	if (error) {
2625 		g_detach(cp);
2626 		g_destroy_consumer(cp);
2627 		swh->error = error;
2628 		return;
2629 	}
2630 	nblks = pp->mediasize / DEV_BSIZE;
2631 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2632 	    swapgeom_close, dev2udev(swh->dev));
2633 	swh->error = 0;
2634 	return;
2635 }
2636 
2637 static int
2638 swapongeom(struct thread *td, struct vnode *vp)
2639 {
2640 	int error;
2641 	struct swh0h0 swh;
2642 
2643 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2644 
2645 	swh.dev = vp->v_rdev;
2646 	swh.vp = vp;
2647 	swh.error = 0;
2648 	/* XXX: direct call when Giant untangled */
2649 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2650 	if (!error)
2651 		error = swh.error;
2652 	VOP_UNLOCK(vp, 0);
2653 	return (error);
2654 }
2655 
2656 /*
2657  * VNODE backend
2658  *
2659  * This is used mainly for network filesystem (read: probably only tested
2660  * with NFS) swapfiles.
2661  *
2662  */
2663 
2664 static void
2665 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2666 {
2667 	struct vnode *vp2;
2668 
2669 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2670 
2671 	vp2 = sp->sw_id;
2672 	vhold(vp2);
2673 	if (bp->b_iocmd == BIO_WRITE) {
2674 		if (bp->b_bufobj)
2675 			bufobj_wdrop(bp->b_bufobj);
2676 		bufobj_wref(&vp2->v_bufobj);
2677 	}
2678 	if (bp->b_bufobj != &vp2->v_bufobj)
2679 		bp->b_bufobj = &vp2->v_bufobj;
2680 	bp->b_vp = vp2;
2681 	bp->b_iooffset = dbtob(bp->b_blkno);
2682 	bstrategy(bp);
2683 	return;
2684 }
2685 
2686 static void
2687 swapdev_close(struct thread *td, struct swdevt *sp)
2688 {
2689 
2690 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2691 	vrele(sp->sw_vp);
2692 }
2693 
2694 
2695 static int
2696 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2697 {
2698 	struct swdevt *sp;
2699 	int error;
2700 
2701 	if (nblks == 0)
2702 		return (ENXIO);
2703 	mtx_lock(&sw_dev_mtx);
2704 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2705 		if (sp->sw_id == vp) {
2706 			mtx_unlock(&sw_dev_mtx);
2707 			return (EBUSY);
2708 		}
2709 	}
2710 	mtx_unlock(&sw_dev_mtx);
2711 
2712 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2713 #ifdef MAC
2714 	error = mac_system_check_swapon(td->td_ucred, vp);
2715 	if (error == 0)
2716 #endif
2717 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2718 	(void) VOP_UNLOCK(vp, 0);
2719 	if (error)
2720 		return (error);
2721 
2722 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2723 	    NODEV);
2724 	return (0);
2725 }
2726