xref: /freebsd/sys/vm/swap_pager.c (revision 807b6a646a0a0dbc258bf239468b5d9f901d1f92)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 #define SWM_FREE	0x02	/* free, period			*/
317 #define SWM_POP		0x04	/* pop out			*/
318 
319 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
321 static int nsw_rcount;		/* free read buffers			*/
322 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
323 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
324 static int nsw_wcount_async_max;/* assigned maximum			*/
325 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
326 
327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW,
329     NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops");
330 
331 static struct swblock **swhash;
332 static int swhash_mask;
333 static struct mtx swhash_mtx;
334 
335 static struct sx sw_alloc_sx;
336 
337 /*
338  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
339  * of searching a named list by hashing it just a little.
340  */
341 
342 #define NOBJLISTS		8
343 
344 #define NOBJLIST(handle)	\
345 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
346 
347 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
348 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
349 static uma_zone_t	swap_zone;
350 
351 /*
352  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
353  * calls hooked from other parts of the VM system and do not appear here.
354  * (see vm/swap_pager.h).
355  */
356 static vm_object_t
357 		swap_pager_alloc(void *handle, vm_ooffset_t size,
358 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
359 static void	swap_pager_dealloc(vm_object_t object);
360 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
361     int *);
362 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
363     int *, pgo_getpages_iodone_t, void *);
364 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365 static boolean_t
366 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367 static void	swap_pager_init(void);
368 static void	swap_pager_unswapped(vm_page_t);
369 static void	swap_pager_swapoff(struct swdevt *sp);
370 
371 struct pagerops swappagerops = {
372 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
377 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
378 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
379 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
380 };
381 
382 /*
383  * dmmax is in page-sized chunks with the new swap system.  It was
384  * dev-bsized chunks in the old.  dmmax is always a power of 2.
385  *
386  * swap_*() routines are externally accessible.  swp_*() routines are
387  * internal.
388  */
389 static int dmmax;
390 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
391 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
392 
393 SYSCTL_INT(_vm, OID_AUTO, dmmax,
394 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
395 
396 static void	swp_sizecheck(void);
397 static void	swp_pager_async_iodone(struct buf *bp);
398 static int	swapongeom(struct thread *, struct vnode *);
399 static int	swaponvp(struct thread *, struct vnode *, u_long);
400 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
401 
402 /*
403  * Swap bitmap functions
404  */
405 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
406 static daddr_t	swp_pager_getswapspace(int npages);
407 
408 /*
409  * Metadata functions
410  */
411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
414 static void swp_pager_meta_free_all(vm_object_t);
415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
416 
417 /*
418  * SWP_SIZECHECK() -	update swap_pager_full indication
419  *
420  *	update the swap_pager_almost_full indication and warn when we are
421  *	about to run out of swap space, using lowat/hiwat hysteresis.
422  *
423  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424  *
425  *	No restrictions on call
426  *	This routine may not block.
427  */
428 static void
429 swp_sizecheck(void)
430 {
431 
432 	if (swap_pager_avail < nswap_lowat) {
433 		if (swap_pager_almost_full == 0) {
434 			printf("swap_pager: out of swap space\n");
435 			swap_pager_almost_full = 1;
436 		}
437 	} else {
438 		swap_pager_full = 0;
439 		if (swap_pager_avail > nswap_hiwat)
440 			swap_pager_almost_full = 0;
441 	}
442 }
443 
444 /*
445  * SWP_PAGER_HASH() -	hash swap meta data
446  *
447  *	This is an helper function which hashes the swapblk given
448  *	the object and page index.  It returns a pointer to a pointer
449  *	to the object, or a pointer to a NULL pointer if it could not
450  *	find a swapblk.
451  */
452 static struct swblock **
453 swp_pager_hash(vm_object_t object, vm_pindex_t index)
454 {
455 	struct swblock **pswap;
456 	struct swblock *swap;
457 
458 	index &= ~(vm_pindex_t)SWAP_META_MASK;
459 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
460 	while ((swap = *pswap) != NULL) {
461 		if (swap->swb_object == object &&
462 		    swap->swb_index == index
463 		) {
464 			break;
465 		}
466 		pswap = &swap->swb_hnext;
467 	}
468 	return (pswap);
469 }
470 
471 /*
472  * SWAP_PAGER_INIT() -	initialize the swap pager!
473  *
474  *	Expected to be started from system init.  NOTE:  This code is run
475  *	before much else so be careful what you depend on.  Most of the VM
476  *	system has yet to be initialized at this point.
477  */
478 static void
479 swap_pager_init(void)
480 {
481 	/*
482 	 * Initialize object lists
483 	 */
484 	int i;
485 
486 	for (i = 0; i < NOBJLISTS; ++i)
487 		TAILQ_INIT(&swap_pager_object_list[i]);
488 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
489 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
490 
491 	/*
492 	 * Device Stripe, in PAGE_SIZE'd blocks
493 	 */
494 	dmmax = SWB_NPAGES * 2;
495 }
496 
497 /*
498  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
499  *
500  *	Expected to be started from pageout process once, prior to entering
501  *	its main loop.
502  */
503 void
504 swap_pager_swap_init(void)
505 {
506 	unsigned long n, n2;
507 
508 	/*
509 	 * Number of in-transit swap bp operations.  Don't
510 	 * exhaust the pbufs completely.  Make sure we
511 	 * initialize workable values (0 will work for hysteresis
512 	 * but it isn't very efficient).
513 	 *
514 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
515 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
516 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
517 	 * constrained by the swap device interleave stripe size.
518 	 *
519 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
520 	 * designed to prevent other I/O from having high latencies due to
521 	 * our pageout I/O.  The value 4 works well for one or two active swap
522 	 * devices but is probably a little low if you have more.  Even so,
523 	 * a higher value would probably generate only a limited improvement
524 	 * with three or four active swap devices since the system does not
525 	 * typically have to pageout at extreme bandwidths.   We will want
526 	 * at least 2 per swap devices, and 4 is a pretty good value if you
527 	 * have one NFS swap device due to the command/ack latency over NFS.
528 	 * So it all works out pretty well.
529 	 */
530 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
531 
532 	mtx_lock(&pbuf_mtx);
533 	nsw_rcount = (nswbuf + 1) / 2;
534 	nsw_wcount_sync = (nswbuf + 3) / 4;
535 	nsw_wcount_async = 4;
536 	nsw_wcount_async_max = nsw_wcount_async;
537 	mtx_unlock(&pbuf_mtx);
538 
539 	/*
540 	 * Initialize our zone.  Right now I'm just guessing on the number
541 	 * we need based on the number of pages in the system.  Each swblock
542 	 * can hold 32 pages, so this is probably overkill.  This reservation
543 	 * is typically limited to around 32MB by default.
544 	 */
545 	n = vm_cnt.v_page_count / 2;
546 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
547 		n = maxswzone / sizeof(struct swblock);
548 	n2 = n;
549 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
550 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
551 	if (swap_zone == NULL)
552 		panic("failed to create swap_zone.");
553 	do {
554 		if (uma_zone_reserve_kva(swap_zone, n))
555 			break;
556 		/*
557 		 * if the allocation failed, try a zone two thirds the
558 		 * size of the previous attempt.
559 		 */
560 		n -= ((n + 2) / 3);
561 	} while (n > 0);
562 	if (n2 != n)
563 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
564 	swap_maxpages = n * SWAP_META_PAGES;
565 	swzone = n * sizeof(struct swblock);
566 	n2 = n;
567 
568 	/*
569 	 * Initialize our meta-data hash table.  The swapper does not need to
570 	 * be quite as efficient as the VM system, so we do not use an
571 	 * oversized hash table.
572 	 *
573 	 * 	n: 		size of hash table, must be power of 2
574 	 *	swhash_mask:	hash table index mask
575 	 */
576 	for (n = 1; n < n2 / 8; n *= 2)
577 		;
578 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
579 	swhash_mask = n - 1;
580 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
581 }
582 
583 /*
584  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
585  *			its metadata structures.
586  *
587  *	This routine is called from the mmap and fork code to create a new
588  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
589  *	and then converting it with swp_pager_meta_build().
590  *
591  *	This routine may block in vm_object_allocate() and create a named
592  *	object lookup race, so we must interlock.
593  *
594  * MPSAFE
595  */
596 static vm_object_t
597 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
598     vm_ooffset_t offset, struct ucred *cred)
599 {
600 	vm_object_t object;
601 	vm_pindex_t pindex;
602 
603 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
604 	if (handle) {
605 		mtx_lock(&Giant);
606 		/*
607 		 * Reference existing named region or allocate new one.  There
608 		 * should not be a race here against swp_pager_meta_build()
609 		 * as called from vm_page_remove() in regards to the lookup
610 		 * of the handle.
611 		 */
612 		sx_xlock(&sw_alloc_sx);
613 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
614 		if (object == NULL) {
615 			if (cred != NULL) {
616 				if (!swap_reserve_by_cred(size, cred)) {
617 					sx_xunlock(&sw_alloc_sx);
618 					mtx_unlock(&Giant);
619 					return (NULL);
620 				}
621 				crhold(cred);
622 			}
623 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
624 			VM_OBJECT_WLOCK(object);
625 			object->handle = handle;
626 			if (cred != NULL) {
627 				object->cred = cred;
628 				object->charge = size;
629 			}
630 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
631 			VM_OBJECT_WUNLOCK(object);
632 		}
633 		sx_xunlock(&sw_alloc_sx);
634 		mtx_unlock(&Giant);
635 	} else {
636 		if (cred != NULL) {
637 			if (!swap_reserve_by_cred(size, cred))
638 				return (NULL);
639 			crhold(cred);
640 		}
641 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
642 		VM_OBJECT_WLOCK(object);
643 		if (cred != NULL) {
644 			object->cred = cred;
645 			object->charge = size;
646 		}
647 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
648 		VM_OBJECT_WUNLOCK(object);
649 	}
650 	return (object);
651 }
652 
653 /*
654  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
655  *
656  *	The swap backing for the object is destroyed.  The code is
657  *	designed such that we can reinstantiate it later, but this
658  *	routine is typically called only when the entire object is
659  *	about to be destroyed.
660  *
661  *	The object must be locked.
662  */
663 static void
664 swap_pager_dealloc(vm_object_t object)
665 {
666 
667 	/*
668 	 * Remove from list right away so lookups will fail if we block for
669 	 * pageout completion.
670 	 */
671 	if (object->handle != NULL) {
672 		mtx_lock(&sw_alloc_mtx);
673 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
674 		mtx_unlock(&sw_alloc_mtx);
675 	}
676 
677 	VM_OBJECT_ASSERT_WLOCKED(object);
678 	vm_object_pip_wait(object, "swpdea");
679 
680 	/*
681 	 * Free all remaining metadata.  We only bother to free it from
682 	 * the swap meta data.  We do not attempt to free swapblk's still
683 	 * associated with vm_page_t's for this object.  We do not care
684 	 * if paging is still in progress on some objects.
685 	 */
686 	swp_pager_meta_free_all(object);
687 	object->handle = NULL;
688 	object->type = OBJT_DEAD;
689 }
690 
691 /************************************************************************
692  *			SWAP PAGER BITMAP ROUTINES			*
693  ************************************************************************/
694 
695 /*
696  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
697  *
698  *	Allocate swap for the requested number of pages.  The starting
699  *	swap block number (a page index) is returned or SWAPBLK_NONE
700  *	if the allocation failed.
701  *
702  *	Also has the side effect of advising that somebody made a mistake
703  *	when they configured swap and didn't configure enough.
704  *
705  *	This routine may not sleep.
706  *
707  *	We allocate in round-robin fashion from the configured devices.
708  */
709 static daddr_t
710 swp_pager_getswapspace(int npages)
711 {
712 	daddr_t blk;
713 	struct swdevt *sp;
714 	int i;
715 
716 	blk = SWAPBLK_NONE;
717 	mtx_lock(&sw_dev_mtx);
718 	sp = swdevhd;
719 	for (i = 0; i < nswapdev; i++) {
720 		if (sp == NULL)
721 			sp = TAILQ_FIRST(&swtailq);
722 		if (!(sp->sw_flags & SW_CLOSING)) {
723 			blk = blist_alloc(sp->sw_blist, npages);
724 			if (blk != SWAPBLK_NONE) {
725 				blk += sp->sw_first;
726 				sp->sw_used += npages;
727 				swap_pager_avail -= npages;
728 				swp_sizecheck();
729 				swdevhd = TAILQ_NEXT(sp, sw_list);
730 				goto done;
731 			}
732 		}
733 		sp = TAILQ_NEXT(sp, sw_list);
734 	}
735 	if (swap_pager_full != 2) {
736 		printf("swap_pager_getswapspace(%d): failed\n", npages);
737 		swap_pager_full = 2;
738 		swap_pager_almost_full = 1;
739 	}
740 	swdevhd = NULL;
741 done:
742 	mtx_unlock(&sw_dev_mtx);
743 	return (blk);
744 }
745 
746 static int
747 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
748 {
749 
750 	return (blk >= sp->sw_first && blk < sp->sw_end);
751 }
752 
753 static void
754 swp_pager_strategy(struct buf *bp)
755 {
756 	struct swdevt *sp;
757 
758 	mtx_lock(&sw_dev_mtx);
759 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
760 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
761 			mtx_unlock(&sw_dev_mtx);
762 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
763 			    unmapped_buf_allowed) {
764 				bp->b_data = unmapped_buf;
765 				bp->b_offset = 0;
766 			} else {
767 				pmap_qenter((vm_offset_t)bp->b_data,
768 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
769 			}
770 			sp->sw_strategy(bp, sp);
771 			return;
772 		}
773 	}
774 	panic("Swapdev not found");
775 }
776 
777 
778 /*
779  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
780  *
781  *	This routine returns the specified swap blocks back to the bitmap.
782  *
783  *	This routine may not sleep.
784  */
785 static void
786 swp_pager_freeswapspace(daddr_t blk, int npages)
787 {
788 	struct swdevt *sp;
789 
790 	mtx_lock(&sw_dev_mtx);
791 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
792 		if (blk >= sp->sw_first && blk < sp->sw_end) {
793 			sp->sw_used -= npages;
794 			/*
795 			 * If we are attempting to stop swapping on
796 			 * this device, we don't want to mark any
797 			 * blocks free lest they be reused.
798 			 */
799 			if ((sp->sw_flags & SW_CLOSING) == 0) {
800 				blist_free(sp->sw_blist, blk - sp->sw_first,
801 				    npages);
802 				swap_pager_avail += npages;
803 				swp_sizecheck();
804 			}
805 			mtx_unlock(&sw_dev_mtx);
806 			return;
807 		}
808 	}
809 	panic("Swapdev not found");
810 }
811 
812 /*
813  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
814  *				range within an object.
815  *
816  *	This is a globally accessible routine.
817  *
818  *	This routine removes swapblk assignments from swap metadata.
819  *
820  *	The external callers of this routine typically have already destroyed
821  *	or renamed vm_page_t's associated with this range in the object so
822  *	we should be ok.
823  *
824  *	The object must be locked.
825  */
826 void
827 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
828 {
829 
830 	swp_pager_meta_free(object, start, size);
831 }
832 
833 /*
834  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
835  *
836  *	Assigns swap blocks to the specified range within the object.  The
837  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
838  *
839  *	Returns 0 on success, -1 on failure.
840  */
841 int
842 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
843 {
844 	int n = 0;
845 	daddr_t blk = SWAPBLK_NONE;
846 	vm_pindex_t beg = start;	/* save start index */
847 
848 	VM_OBJECT_WLOCK(object);
849 	while (size) {
850 		if (n == 0) {
851 			n = BLIST_MAX_ALLOC;
852 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
853 				n >>= 1;
854 				if (n == 0) {
855 					swp_pager_meta_free(object, beg, start - beg);
856 					VM_OBJECT_WUNLOCK(object);
857 					return (-1);
858 				}
859 			}
860 		}
861 		swp_pager_meta_build(object, start, blk);
862 		--size;
863 		++start;
864 		++blk;
865 		--n;
866 	}
867 	swp_pager_meta_free(object, start, n);
868 	VM_OBJECT_WUNLOCK(object);
869 	return (0);
870 }
871 
872 /*
873  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
874  *			and destroy the source.
875  *
876  *	Copy any valid swapblks from the source to the destination.  In
877  *	cases where both the source and destination have a valid swapblk,
878  *	we keep the destination's.
879  *
880  *	This routine is allowed to sleep.  It may sleep allocating metadata
881  *	indirectly through swp_pager_meta_build() or if paging is still in
882  *	progress on the source.
883  *
884  *	The source object contains no vm_page_t's (which is just as well)
885  *
886  *	The source object is of type OBJT_SWAP.
887  *
888  *	The source and destination objects must be locked.
889  *	Both object locks may temporarily be released.
890  */
891 void
892 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
893     vm_pindex_t offset, int destroysource)
894 {
895 	vm_pindex_t i;
896 
897 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
898 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
899 
900 	/*
901 	 * If destroysource is set, we remove the source object from the
902 	 * swap_pager internal queue now.
903 	 */
904 	if (destroysource) {
905 		if (srcobject->handle != NULL) {
906 			mtx_lock(&sw_alloc_mtx);
907 			TAILQ_REMOVE(
908 			    NOBJLIST(srcobject->handle),
909 			    srcobject,
910 			    pager_object_list
911 			);
912 			mtx_unlock(&sw_alloc_mtx);
913 		}
914 	}
915 
916 	/*
917 	 * transfer source to destination.
918 	 */
919 	for (i = 0; i < dstobject->size; ++i) {
920 		daddr_t dstaddr;
921 
922 		/*
923 		 * Locate (without changing) the swapblk on the destination,
924 		 * unless it is invalid in which case free it silently, or
925 		 * if the destination is a resident page, in which case the
926 		 * source is thrown away.
927 		 */
928 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
929 
930 		if (dstaddr == SWAPBLK_NONE) {
931 			/*
932 			 * Destination has no swapblk and is not resident,
933 			 * copy source.
934 			 */
935 			daddr_t srcaddr;
936 
937 			srcaddr = swp_pager_meta_ctl(
938 			    srcobject,
939 			    i + offset,
940 			    SWM_POP
941 			);
942 
943 			if (srcaddr != SWAPBLK_NONE) {
944 				/*
945 				 * swp_pager_meta_build() can sleep.
946 				 */
947 				vm_object_pip_add(srcobject, 1);
948 				VM_OBJECT_WUNLOCK(srcobject);
949 				vm_object_pip_add(dstobject, 1);
950 				swp_pager_meta_build(dstobject, i, srcaddr);
951 				vm_object_pip_wakeup(dstobject);
952 				VM_OBJECT_WLOCK(srcobject);
953 				vm_object_pip_wakeup(srcobject);
954 			}
955 		} else {
956 			/*
957 			 * Destination has valid swapblk or it is represented
958 			 * by a resident page.  We destroy the sourceblock.
959 			 */
960 
961 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
962 		}
963 	}
964 
965 	/*
966 	 * Free left over swap blocks in source.
967 	 *
968 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
969 	 * double-remove the object from the swap queues.
970 	 */
971 	if (destroysource) {
972 		swp_pager_meta_free_all(srcobject);
973 		/*
974 		 * Reverting the type is not necessary, the caller is going
975 		 * to destroy srcobject directly, but I'm doing it here
976 		 * for consistency since we've removed the object from its
977 		 * queues.
978 		 */
979 		srcobject->type = OBJT_DEFAULT;
980 	}
981 }
982 
983 /*
984  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
985  *				the requested page.
986  *
987  *	We determine whether good backing store exists for the requested
988  *	page and return TRUE if it does, FALSE if it doesn't.
989  *
990  *	If TRUE, we also try to determine how much valid, contiguous backing
991  *	store exists before and after the requested page within a reasonable
992  *	distance.  We do not try to restrict it to the swap device stripe
993  *	(that is handled in getpages/putpages).  It probably isn't worth
994  *	doing here.
995  */
996 static boolean_t
997 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
998 {
999 	daddr_t blk0;
1000 
1001 	VM_OBJECT_ASSERT_LOCKED(object);
1002 	/*
1003 	 * do we have good backing store at the requested index ?
1004 	 */
1005 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1006 
1007 	if (blk0 == SWAPBLK_NONE) {
1008 		if (before)
1009 			*before = 0;
1010 		if (after)
1011 			*after = 0;
1012 		return (FALSE);
1013 	}
1014 
1015 	/*
1016 	 * find backwards-looking contiguous good backing store
1017 	 */
1018 	if (before != NULL) {
1019 		int i;
1020 
1021 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1022 			daddr_t blk;
1023 
1024 			if (i > pindex)
1025 				break;
1026 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1027 			if (blk != blk0 - i)
1028 				break;
1029 		}
1030 		*before = (i - 1);
1031 	}
1032 
1033 	/*
1034 	 * find forward-looking contiguous good backing store
1035 	 */
1036 	if (after != NULL) {
1037 		int i;
1038 
1039 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1040 			daddr_t blk;
1041 
1042 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1043 			if (blk != blk0 + i)
1044 				break;
1045 		}
1046 		*after = (i - 1);
1047 	}
1048 	return (TRUE);
1049 }
1050 
1051 /*
1052  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1053  *
1054  *	This removes any associated swap backing store, whether valid or
1055  *	not, from the page.
1056  *
1057  *	This routine is typically called when a page is made dirty, at
1058  *	which point any associated swap can be freed.  MADV_FREE also
1059  *	calls us in a special-case situation
1060  *
1061  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1062  *	should make the page dirty before calling this routine.  This routine
1063  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1064  *	depends on it.
1065  *
1066  *	This routine may not sleep.
1067  *
1068  *	The object containing the page must be locked.
1069  */
1070 static void
1071 swap_pager_unswapped(vm_page_t m)
1072 {
1073 
1074 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1075 }
1076 
1077 /*
1078  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1079  *
1080  *	Attempt to retrieve (m, count) pages from backing store, but make
1081  *	sure we retrieve at least m[reqpage].  We try to load in as large
1082  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1083  *	belongs to the same object.
1084  *
1085  *	The code is designed for asynchronous operation and
1086  *	immediate-notification of 'reqpage' but tends not to be
1087  *	used that way.  Please do not optimize-out this algorithmic
1088  *	feature, I intend to improve on it in the future.
1089  *
1090  *	The parent has a single vm_object_pip_add() reference prior to
1091  *	calling us and we should return with the same.
1092  *
1093  *	The parent has BUSY'd the pages.  We should return with 'm'
1094  *	left busy, but the others adjusted.
1095  */
1096 static int
1097 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1098     int *rahead)
1099 {
1100 	struct buf *bp;
1101 	daddr_t blk;
1102 
1103 	/*
1104 	 * Calculate range to retrieve.  The pages have already been assigned
1105 	 * their swapblks.  We require a *contiguous* range but we know it to
1106 	 * not span devices.   If we do not supply it, bad things
1107 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1108 	 * loops are set up such that the case(s) are handled implicitly.
1109 	 *
1110 	 * The swp_*() calls must be made with the object locked.
1111 	 */
1112 	blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0);
1113 
1114 	if (blk == SWAPBLK_NONE)
1115 		return (VM_PAGER_FAIL);
1116 
1117 #ifdef INVARIANTS
1118 	for (int i = 0; i < count; i++)
1119 		KASSERT(blk + i ==
1120 		    swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0),
1121 		    ("%s: range is not contiguous", __func__));
1122 #endif
1123 
1124 	/*
1125 	 * Getpbuf() can sleep.
1126 	 */
1127 	VM_OBJECT_WUNLOCK(object);
1128 	/*
1129 	 * Get a swap buffer header to perform the IO
1130 	 */
1131 	bp = getpbuf(&nsw_rcount);
1132 	bp->b_flags |= B_PAGING;
1133 
1134 	bp->b_iocmd = BIO_READ;
1135 	bp->b_iodone = swp_pager_async_iodone;
1136 	bp->b_rcred = crhold(thread0.td_ucred);
1137 	bp->b_wcred = crhold(thread0.td_ucred);
1138 	bp->b_blkno = blk;
1139 	bp->b_bcount = PAGE_SIZE * count;
1140 	bp->b_bufsize = PAGE_SIZE * count;
1141 	bp->b_npages = count;
1142 
1143 	VM_OBJECT_WLOCK(object);
1144 	for (int i = 0; i < count; i++) {
1145 		bp->b_pages[i] = m[i];
1146 		m[i]->oflags |= VPO_SWAPINPROG;
1147 	}
1148 
1149 	PCPU_INC(cnt.v_swapin);
1150 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1151 
1152 	/*
1153 	 * We still hold the lock on mreq, and our automatic completion routine
1154 	 * does not remove it.
1155 	 */
1156 	vm_object_pip_add(object, bp->b_npages);
1157 	VM_OBJECT_WUNLOCK(object);
1158 
1159 	/*
1160 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1161 	 * this point because we automatically release it on completion.
1162 	 * Instead, we look at the one page we are interested in which we
1163 	 * still hold a lock on even through the I/O completion.
1164 	 *
1165 	 * The other pages in our m[] array are also released on completion,
1166 	 * so we cannot assume they are valid anymore either.
1167 	 *
1168 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1169 	 */
1170 	BUF_KERNPROC(bp);
1171 	swp_pager_strategy(bp);
1172 
1173 	/*
1174 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1175 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1176 	 * is set in the meta-data.
1177 	 */
1178 	VM_OBJECT_WLOCK(object);
1179 	while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1180 		m[0]->oflags |= VPO_SWAPSLEEP;
1181 		PCPU_INC(cnt.v_intrans);
1182 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1183 		    "swread", hz * 20)) {
1184 			printf(
1185 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1186 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * If we had an unrecoverable read error pages will not be valid.
1192 	 */
1193 	for (int i = 0; i < count; i++)
1194 		if (m[i]->valid != VM_PAGE_BITS_ALL)
1195 			return (VM_PAGER_ERROR);
1196 
1197 	if (rbehind)
1198 		*rbehind = 0;
1199 	if (rahead)
1200 		*rahead = 0;
1201 
1202 	return (VM_PAGER_OK);
1203 
1204 	/*
1205 	 * A final note: in a low swap situation, we cannot deallocate swap
1206 	 * and mark a page dirty here because the caller is likely to mark
1207 	 * the page clean when we return, causing the page to possibly revert
1208 	 * to all-zero's later.
1209 	 */
1210 }
1211 
1212 /*
1213  * 	swap_pager_getpages_async():
1214  *
1215  *	Right now this is emulation of asynchronous operation on top of
1216  *	swap_pager_getpages().
1217  */
1218 static int
1219 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1220     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1221 {
1222 	int r, error;
1223 
1224 	r = swap_pager_getpages(object, m, count, rbehind, rahead);
1225 	VM_OBJECT_WUNLOCK(object);
1226 	switch (r) {
1227 	case VM_PAGER_OK:
1228 		error = 0;
1229 		break;
1230 	case VM_PAGER_ERROR:
1231 		error = EIO;
1232 		break;
1233 	case VM_PAGER_FAIL:
1234 		error = EINVAL;
1235 		break;
1236 	default:
1237 		panic("unhandled swap_pager_getpages() error %d", r);
1238 	}
1239 	(iodone)(arg, m, count, error);
1240 	VM_OBJECT_WLOCK(object);
1241 
1242 	return (r);
1243 }
1244 
1245 /*
1246  *	swap_pager_putpages:
1247  *
1248  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1249  *
1250  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1251  *	are automatically converted to SWAP objects.
1252  *
1253  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1254  *	vm_page reservation system coupled with properly written VFS devices
1255  *	should ensure that no low-memory deadlock occurs.  This is an area
1256  *	which needs work.
1257  *
1258  *	The parent has N vm_object_pip_add() references prior to
1259  *	calling us and will remove references for rtvals[] that are
1260  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1261  *	completion.
1262  *
1263  *	The parent has soft-busy'd the pages it passes us and will unbusy
1264  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1265  *	We need to unbusy the rest on I/O completion.
1266  */
1267 static void
1268 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1269     int flags, int *rtvals)
1270 {
1271 	int i, n;
1272 	boolean_t sync;
1273 
1274 	if (count && m[0]->object != object) {
1275 		panic("swap_pager_putpages: object mismatch %p/%p",
1276 		    object,
1277 		    m[0]->object
1278 		);
1279 	}
1280 
1281 	/*
1282 	 * Step 1
1283 	 *
1284 	 * Turn object into OBJT_SWAP
1285 	 * check for bogus sysops
1286 	 * force sync if not pageout process
1287 	 */
1288 	if (object->type != OBJT_SWAP)
1289 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1290 	VM_OBJECT_WUNLOCK(object);
1291 
1292 	n = 0;
1293 	if (curproc != pageproc)
1294 		sync = TRUE;
1295 	else
1296 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1297 
1298 	/*
1299 	 * Step 2
1300 	 *
1301 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1302 	 * The page is left dirty until the pageout operation completes
1303 	 * successfully.
1304 	 */
1305 	for (i = 0; i < count; i += n) {
1306 		int j;
1307 		struct buf *bp;
1308 		daddr_t blk;
1309 
1310 		/*
1311 		 * Maximum I/O size is limited by a number of factors.
1312 		 */
1313 		n = min(BLIST_MAX_ALLOC, count - i);
1314 		n = min(n, nsw_cluster_max);
1315 
1316 		/*
1317 		 * Get biggest block of swap we can.  If we fail, fall
1318 		 * back and try to allocate a smaller block.  Don't go
1319 		 * overboard trying to allocate space if it would overly
1320 		 * fragment swap.
1321 		 */
1322 		while (
1323 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1324 		    n > 4
1325 		) {
1326 			n >>= 1;
1327 		}
1328 		if (blk == SWAPBLK_NONE) {
1329 			for (j = 0; j < n; ++j)
1330 				rtvals[i+j] = VM_PAGER_FAIL;
1331 			continue;
1332 		}
1333 
1334 		/*
1335 		 * All I/O parameters have been satisfied, build the I/O
1336 		 * request and assign the swap space.
1337 		 */
1338 		if (sync == TRUE) {
1339 			bp = getpbuf(&nsw_wcount_sync);
1340 		} else {
1341 			bp = getpbuf(&nsw_wcount_async);
1342 			bp->b_flags = B_ASYNC;
1343 		}
1344 		bp->b_flags |= B_PAGING;
1345 		bp->b_iocmd = BIO_WRITE;
1346 
1347 		bp->b_rcred = crhold(thread0.td_ucred);
1348 		bp->b_wcred = crhold(thread0.td_ucred);
1349 		bp->b_bcount = PAGE_SIZE * n;
1350 		bp->b_bufsize = PAGE_SIZE * n;
1351 		bp->b_blkno = blk;
1352 
1353 		VM_OBJECT_WLOCK(object);
1354 		for (j = 0; j < n; ++j) {
1355 			vm_page_t mreq = m[i+j];
1356 
1357 			swp_pager_meta_build(
1358 			    mreq->object,
1359 			    mreq->pindex,
1360 			    blk + j
1361 			);
1362 			vm_page_dirty(mreq);
1363 			mreq->oflags |= VPO_SWAPINPROG;
1364 			bp->b_pages[j] = mreq;
1365 		}
1366 		VM_OBJECT_WUNLOCK(object);
1367 		bp->b_npages = n;
1368 		/*
1369 		 * Must set dirty range for NFS to work.
1370 		 */
1371 		bp->b_dirtyoff = 0;
1372 		bp->b_dirtyend = bp->b_bcount;
1373 
1374 		PCPU_INC(cnt.v_swapout);
1375 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1376 
1377 		/*
1378 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1379 		 * can call the async completion routine at the end of a
1380 		 * synchronous I/O operation.  Otherwise, our caller would
1381 		 * perform duplicate unbusy and wakeup operations on the page
1382 		 * and object, respectively.
1383 		 */
1384 		for (j = 0; j < n; j++)
1385 			rtvals[i + j] = VM_PAGER_PEND;
1386 
1387 		/*
1388 		 * asynchronous
1389 		 *
1390 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1391 		 */
1392 		if (sync == FALSE) {
1393 			bp->b_iodone = swp_pager_async_iodone;
1394 			BUF_KERNPROC(bp);
1395 			swp_pager_strategy(bp);
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * synchronous
1401 		 *
1402 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1403 		 */
1404 		bp->b_iodone = bdone;
1405 		swp_pager_strategy(bp);
1406 
1407 		/*
1408 		 * Wait for the sync I/O to complete.
1409 		 */
1410 		bwait(bp, PVM, "swwrt");
1411 
1412 		/*
1413 		 * Now that we are through with the bp, we can call the
1414 		 * normal async completion, which frees everything up.
1415 		 */
1416 		swp_pager_async_iodone(bp);
1417 	}
1418 	VM_OBJECT_WLOCK(object);
1419 }
1420 
1421 /*
1422  *	swp_pager_async_iodone:
1423  *
1424  *	Completion routine for asynchronous reads and writes from/to swap.
1425  *	Also called manually by synchronous code to finish up a bp.
1426  *
1427  *	This routine may not sleep.
1428  */
1429 static void
1430 swp_pager_async_iodone(struct buf *bp)
1431 {
1432 	int i;
1433 	vm_object_t object = NULL;
1434 
1435 	/*
1436 	 * report error
1437 	 */
1438 	if (bp->b_ioflags & BIO_ERROR) {
1439 		printf(
1440 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1441 			"size %ld, error %d\n",
1442 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1443 		    (long)bp->b_blkno,
1444 		    (long)bp->b_bcount,
1445 		    bp->b_error
1446 		);
1447 	}
1448 
1449 	/*
1450 	 * remove the mapping for kernel virtual
1451 	 */
1452 	if (buf_mapped(bp))
1453 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1454 	else
1455 		bp->b_data = bp->b_kvabase;
1456 
1457 	if (bp->b_npages) {
1458 		object = bp->b_pages[0]->object;
1459 		VM_OBJECT_WLOCK(object);
1460 	}
1461 
1462 	/*
1463 	 * cleanup pages.  If an error occurs writing to swap, we are in
1464 	 * very serious trouble.  If it happens to be a disk error, though,
1465 	 * we may be able to recover by reassigning the swap later on.  So
1466 	 * in this case we remove the m->swapblk assignment for the page
1467 	 * but do not free it in the rlist.  The errornous block(s) are thus
1468 	 * never reallocated as swap.  Redirty the page and continue.
1469 	 */
1470 	for (i = 0; i < bp->b_npages; ++i) {
1471 		vm_page_t m = bp->b_pages[i];
1472 
1473 		m->oflags &= ~VPO_SWAPINPROG;
1474 		if (m->oflags & VPO_SWAPSLEEP) {
1475 			m->oflags &= ~VPO_SWAPSLEEP;
1476 			wakeup(&object->paging_in_progress);
1477 		}
1478 
1479 		if (bp->b_ioflags & BIO_ERROR) {
1480 			/*
1481 			 * If an error occurs I'd love to throw the swapblk
1482 			 * away without freeing it back to swapspace, so it
1483 			 * can never be used again.  But I can't from an
1484 			 * interrupt.
1485 			 */
1486 			if (bp->b_iocmd == BIO_READ) {
1487 				/*
1488 				 * NOTE: for reads, m->dirty will probably
1489 				 * be overridden by the original caller of
1490 				 * getpages so don't play cute tricks here.
1491 				 */
1492 				m->valid = 0;
1493 			} else {
1494 				/*
1495 				 * If a write error occurs, reactivate page
1496 				 * so it doesn't clog the inactive list,
1497 				 * then finish the I/O.
1498 				 */
1499 				vm_page_dirty(m);
1500 				vm_page_lock(m);
1501 				vm_page_activate(m);
1502 				vm_page_unlock(m);
1503 				vm_page_sunbusy(m);
1504 			}
1505 		} else if (bp->b_iocmd == BIO_READ) {
1506 			/*
1507 			 * NOTE: for reads, m->dirty will probably be
1508 			 * overridden by the original caller of getpages so
1509 			 * we cannot set them in order to free the underlying
1510 			 * swap in a low-swap situation.  I don't think we'd
1511 			 * want to do that anyway, but it was an optimization
1512 			 * that existed in the old swapper for a time before
1513 			 * it got ripped out due to precisely this problem.
1514 			 */
1515 			KASSERT(!pmap_page_is_mapped(m),
1516 			    ("swp_pager_async_iodone: page %p is mapped", m));
1517 			KASSERT(m->dirty == 0,
1518 			    ("swp_pager_async_iodone: page %p is dirty", m));
1519 			m->valid = VM_PAGE_BITS_ALL;
1520 		} else {
1521 			/*
1522 			 * For write success, clear the dirty
1523 			 * status, then finish the I/O ( which decrements the
1524 			 * busy count and possibly wakes waiter's up ).
1525 			 */
1526 			KASSERT(!pmap_page_is_write_mapped(m),
1527 			    ("swp_pager_async_iodone: page %p is not write"
1528 			    " protected", m));
1529 			vm_page_undirty(m);
1530 			vm_page_sunbusy(m);
1531 			if (vm_page_count_severe()) {
1532 				vm_page_lock(m);
1533 				vm_page_try_to_cache(m);
1534 				vm_page_unlock(m);
1535 			}
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * adjust pip.  NOTE: the original parent may still have its own
1541 	 * pip refs on the object.
1542 	 */
1543 	if (object != NULL) {
1544 		vm_object_pip_wakeupn(object, bp->b_npages);
1545 		VM_OBJECT_WUNLOCK(object);
1546 	}
1547 
1548 	/*
1549 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1550 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1551 	 * trigger a KASSERT in relpbuf().
1552 	 */
1553 	if (bp->b_vp) {
1554 		    bp->b_vp = NULL;
1555 		    bp->b_bufobj = NULL;
1556 	}
1557 	/*
1558 	 * release the physical I/O buffer
1559 	 */
1560 	relpbuf(
1561 	    bp,
1562 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1563 		((bp->b_flags & B_ASYNC) ?
1564 		    &nsw_wcount_async :
1565 		    &nsw_wcount_sync
1566 		)
1567 	    )
1568 	);
1569 }
1570 
1571 /*
1572  *	swap_pager_isswapped:
1573  *
1574  *	Return 1 if at least one page in the given object is paged
1575  *	out to the given swap device.
1576  *
1577  *	This routine may not sleep.
1578  */
1579 int
1580 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1581 {
1582 	daddr_t index = 0;
1583 	int bcount;
1584 	int i;
1585 
1586 	VM_OBJECT_ASSERT_WLOCKED(object);
1587 	if (object->type != OBJT_SWAP)
1588 		return (0);
1589 
1590 	mtx_lock(&swhash_mtx);
1591 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1592 		struct swblock *swap;
1593 
1594 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1595 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1596 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1597 					mtx_unlock(&swhash_mtx);
1598 					return (1);
1599 				}
1600 			}
1601 		}
1602 		index += SWAP_META_PAGES;
1603 	}
1604 	mtx_unlock(&swhash_mtx);
1605 	return (0);
1606 }
1607 
1608 /*
1609  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1610  *
1611  *	This routine dissociates the page at the given index within a
1612  *	swap block from its backing store, paging it in if necessary.
1613  *	If the page is paged in, it is placed in the inactive queue,
1614  *	since it had its backing store ripped out from under it.
1615  *	We also attempt to swap in all other pages in the swap block,
1616  *	we only guarantee that the one at the specified index is
1617  *	paged in.
1618  *
1619  *	XXX - The code to page the whole block in doesn't work, so we
1620  *	      revert to the one-by-one behavior for now.  Sigh.
1621  */
1622 static inline void
1623 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1624 {
1625 	vm_page_t m;
1626 
1627 	vm_object_pip_add(object, 1);
1628 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1629 	if (m->valid == VM_PAGE_BITS_ALL) {
1630 		vm_object_pip_wakeup(object);
1631 		vm_page_dirty(m);
1632 		vm_page_lock(m);
1633 		vm_page_activate(m);
1634 		vm_page_unlock(m);
1635 		vm_page_xunbusy(m);
1636 		vm_pager_page_unswapped(m);
1637 		return;
1638 	}
1639 
1640 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1641 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1642 	vm_object_pip_wakeup(object);
1643 	vm_page_dirty(m);
1644 	vm_page_lock(m);
1645 	vm_page_deactivate(m);
1646 	vm_page_unlock(m);
1647 	vm_page_xunbusy(m);
1648 	vm_pager_page_unswapped(m);
1649 }
1650 
1651 /*
1652  *	swap_pager_swapoff:
1653  *
1654  *	Page in all of the pages that have been paged out to the
1655  *	given device.  The corresponding blocks in the bitmap must be
1656  *	marked as allocated and the device must be flagged SW_CLOSING.
1657  *	There may be no processes swapped out to the device.
1658  *
1659  *	This routine may block.
1660  */
1661 static void
1662 swap_pager_swapoff(struct swdevt *sp)
1663 {
1664 	struct swblock *swap;
1665 	int i, j, retries;
1666 
1667 	GIANT_REQUIRED;
1668 
1669 	retries = 0;
1670 full_rescan:
1671 	mtx_lock(&swhash_mtx);
1672 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1673 restart:
1674 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1675 			vm_object_t object = swap->swb_object;
1676 			vm_pindex_t pindex = swap->swb_index;
1677 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1678 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1679 					/* avoid deadlock */
1680 					if (!VM_OBJECT_TRYWLOCK(object)) {
1681 						break;
1682 					} else {
1683 						mtx_unlock(&swhash_mtx);
1684 						swp_pager_force_pagein(object,
1685 						    pindex + j);
1686 						VM_OBJECT_WUNLOCK(object);
1687 						mtx_lock(&swhash_mtx);
1688 						goto restart;
1689 					}
1690 				}
1691 			}
1692 		}
1693 	}
1694 	mtx_unlock(&swhash_mtx);
1695 	if (sp->sw_used) {
1696 		/*
1697 		 * Objects may be locked or paging to the device being
1698 		 * removed, so we will miss their pages and need to
1699 		 * make another pass.  We have marked this device as
1700 		 * SW_CLOSING, so the activity should finish soon.
1701 		 */
1702 		retries++;
1703 		if (retries > 100) {
1704 			panic("swapoff: failed to locate %d swap blocks",
1705 			    sp->sw_used);
1706 		}
1707 		pause("swpoff", hz / 20);
1708 		goto full_rescan;
1709 	}
1710 }
1711 
1712 /************************************************************************
1713  *				SWAP META DATA 				*
1714  ************************************************************************
1715  *
1716  *	These routines manipulate the swap metadata stored in the
1717  *	OBJT_SWAP object.
1718  *
1719  *	Swap metadata is implemented with a global hash and not directly
1720  *	linked into the object.  Instead the object simply contains
1721  *	appropriate tracking counters.
1722  */
1723 
1724 /*
1725  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1726  *
1727  *	We first convert the object to a swap object if it is a default
1728  *	object.
1729  *
1730  *	The specified swapblk is added to the object's swap metadata.  If
1731  *	the swapblk is not valid, it is freed instead.  Any previously
1732  *	assigned swapblk is freed.
1733  */
1734 static void
1735 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1736 {
1737 	static volatile int exhausted;
1738 	struct swblock *swap;
1739 	struct swblock **pswap;
1740 	int idx;
1741 
1742 	VM_OBJECT_ASSERT_WLOCKED(object);
1743 	/*
1744 	 * Convert default object to swap object if necessary
1745 	 */
1746 	if (object->type != OBJT_SWAP) {
1747 		object->type = OBJT_SWAP;
1748 		object->un_pager.swp.swp_bcount = 0;
1749 
1750 		if (object->handle != NULL) {
1751 			mtx_lock(&sw_alloc_mtx);
1752 			TAILQ_INSERT_TAIL(
1753 			    NOBJLIST(object->handle),
1754 			    object,
1755 			    pager_object_list
1756 			);
1757 			mtx_unlock(&sw_alloc_mtx);
1758 		}
1759 	}
1760 
1761 	/*
1762 	 * Locate hash entry.  If not found create, but if we aren't adding
1763 	 * anything just return.  If we run out of space in the map we wait
1764 	 * and, since the hash table may have changed, retry.
1765 	 */
1766 retry:
1767 	mtx_lock(&swhash_mtx);
1768 	pswap = swp_pager_hash(object, pindex);
1769 
1770 	if ((swap = *pswap) == NULL) {
1771 		int i;
1772 
1773 		if (swapblk == SWAPBLK_NONE)
1774 			goto done;
1775 
1776 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1777 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1778 		if (swap == NULL) {
1779 			mtx_unlock(&swhash_mtx);
1780 			VM_OBJECT_WUNLOCK(object);
1781 			if (uma_zone_exhausted(swap_zone)) {
1782 				if (atomic_cmpset_int(&exhausted, 0, 1))
1783 					printf("swap zone exhausted, "
1784 					    "increase kern.maxswzone\n");
1785 				vm_pageout_oom(VM_OOM_SWAPZ);
1786 				pause("swzonex", 10);
1787 			} else
1788 				VM_WAIT;
1789 			VM_OBJECT_WLOCK(object);
1790 			goto retry;
1791 		}
1792 
1793 		if (atomic_cmpset_int(&exhausted, 1, 0))
1794 			printf("swap zone ok\n");
1795 
1796 		swap->swb_hnext = NULL;
1797 		swap->swb_object = object;
1798 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1799 		swap->swb_count = 0;
1800 
1801 		++object->un_pager.swp.swp_bcount;
1802 
1803 		for (i = 0; i < SWAP_META_PAGES; ++i)
1804 			swap->swb_pages[i] = SWAPBLK_NONE;
1805 	}
1806 
1807 	/*
1808 	 * Delete prior contents of metadata
1809 	 */
1810 	idx = pindex & SWAP_META_MASK;
1811 
1812 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1813 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1814 		--swap->swb_count;
1815 	}
1816 
1817 	/*
1818 	 * Enter block into metadata
1819 	 */
1820 	swap->swb_pages[idx] = swapblk;
1821 	if (swapblk != SWAPBLK_NONE)
1822 		++swap->swb_count;
1823 done:
1824 	mtx_unlock(&swhash_mtx);
1825 }
1826 
1827 /*
1828  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1829  *
1830  *	The requested range of blocks is freed, with any associated swap
1831  *	returned to the swap bitmap.
1832  *
1833  *	This routine will free swap metadata structures as they are cleaned
1834  *	out.  This routine does *NOT* operate on swap metadata associated
1835  *	with resident pages.
1836  */
1837 static void
1838 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1839 {
1840 
1841 	VM_OBJECT_ASSERT_LOCKED(object);
1842 	if (object->type != OBJT_SWAP)
1843 		return;
1844 
1845 	while (count > 0) {
1846 		struct swblock **pswap;
1847 		struct swblock *swap;
1848 
1849 		mtx_lock(&swhash_mtx);
1850 		pswap = swp_pager_hash(object, index);
1851 
1852 		if ((swap = *pswap) != NULL) {
1853 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1854 
1855 			if (v != SWAPBLK_NONE) {
1856 				swp_pager_freeswapspace(v, 1);
1857 				swap->swb_pages[index & SWAP_META_MASK] =
1858 					SWAPBLK_NONE;
1859 				if (--swap->swb_count == 0) {
1860 					*pswap = swap->swb_hnext;
1861 					uma_zfree(swap_zone, swap);
1862 					--object->un_pager.swp.swp_bcount;
1863 				}
1864 			}
1865 			--count;
1866 			++index;
1867 		} else {
1868 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1869 			count -= n;
1870 			index += n;
1871 		}
1872 		mtx_unlock(&swhash_mtx);
1873 	}
1874 }
1875 
1876 /*
1877  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1878  *
1879  *	This routine locates and destroys all swap metadata associated with
1880  *	an object.
1881  */
1882 static void
1883 swp_pager_meta_free_all(vm_object_t object)
1884 {
1885 	daddr_t index = 0;
1886 
1887 	VM_OBJECT_ASSERT_WLOCKED(object);
1888 	if (object->type != OBJT_SWAP)
1889 		return;
1890 
1891 	while (object->un_pager.swp.swp_bcount) {
1892 		struct swblock **pswap;
1893 		struct swblock *swap;
1894 
1895 		mtx_lock(&swhash_mtx);
1896 		pswap = swp_pager_hash(object, index);
1897 		if ((swap = *pswap) != NULL) {
1898 			int i;
1899 
1900 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1901 				daddr_t v = swap->swb_pages[i];
1902 				if (v != SWAPBLK_NONE) {
1903 					--swap->swb_count;
1904 					swp_pager_freeswapspace(v, 1);
1905 				}
1906 			}
1907 			if (swap->swb_count != 0)
1908 				panic("swap_pager_meta_free_all: swb_count != 0");
1909 			*pswap = swap->swb_hnext;
1910 			uma_zfree(swap_zone, swap);
1911 			--object->un_pager.swp.swp_bcount;
1912 		}
1913 		mtx_unlock(&swhash_mtx);
1914 		index += SWAP_META_PAGES;
1915 	}
1916 }
1917 
1918 /*
1919  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1920  *
1921  *	This routine is capable of looking up, popping, or freeing
1922  *	swapblk assignments in the swap meta data or in the vm_page_t.
1923  *	The routine typically returns the swapblk being looked-up, or popped,
1924  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1925  *	was invalid.  This routine will automatically free any invalid
1926  *	meta-data swapblks.
1927  *
1928  *	It is not possible to store invalid swapblks in the swap meta data
1929  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1930  *
1931  *	When acting on a busy resident page and paging is in progress, we
1932  *	have to wait until paging is complete but otherwise can act on the
1933  *	busy page.
1934  *
1935  *	SWM_FREE	remove and free swap block from metadata
1936  *	SWM_POP		remove from meta data but do not free.. pop it out
1937  */
1938 static daddr_t
1939 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1940 {
1941 	struct swblock **pswap;
1942 	struct swblock *swap;
1943 	daddr_t r1;
1944 	int idx;
1945 
1946 	VM_OBJECT_ASSERT_LOCKED(object);
1947 	/*
1948 	 * The meta data only exists of the object is OBJT_SWAP
1949 	 * and even then might not be allocated yet.
1950 	 */
1951 	if (object->type != OBJT_SWAP)
1952 		return (SWAPBLK_NONE);
1953 
1954 	r1 = SWAPBLK_NONE;
1955 	mtx_lock(&swhash_mtx);
1956 	pswap = swp_pager_hash(object, pindex);
1957 
1958 	if ((swap = *pswap) != NULL) {
1959 		idx = pindex & SWAP_META_MASK;
1960 		r1 = swap->swb_pages[idx];
1961 
1962 		if (r1 != SWAPBLK_NONE) {
1963 			if (flags & SWM_FREE) {
1964 				swp_pager_freeswapspace(r1, 1);
1965 				r1 = SWAPBLK_NONE;
1966 			}
1967 			if (flags & (SWM_FREE|SWM_POP)) {
1968 				swap->swb_pages[idx] = SWAPBLK_NONE;
1969 				if (--swap->swb_count == 0) {
1970 					*pswap = swap->swb_hnext;
1971 					uma_zfree(swap_zone, swap);
1972 					--object->un_pager.swp.swp_bcount;
1973 				}
1974 			}
1975 		}
1976 	}
1977 	mtx_unlock(&swhash_mtx);
1978 	return (r1);
1979 }
1980 
1981 /*
1982  * System call swapon(name) enables swapping on device name,
1983  * which must be in the swdevsw.  Return EBUSY
1984  * if already swapping on this device.
1985  */
1986 #ifndef _SYS_SYSPROTO_H_
1987 struct swapon_args {
1988 	char *name;
1989 };
1990 #endif
1991 
1992 /*
1993  * MPSAFE
1994  */
1995 /* ARGSUSED */
1996 int
1997 sys_swapon(struct thread *td, struct swapon_args *uap)
1998 {
1999 	struct vattr attr;
2000 	struct vnode *vp;
2001 	struct nameidata nd;
2002 	int error;
2003 
2004 	error = priv_check(td, PRIV_SWAPON);
2005 	if (error)
2006 		return (error);
2007 
2008 	mtx_lock(&Giant);
2009 	while (swdev_syscall_active)
2010 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2011 	swdev_syscall_active = 1;
2012 
2013 	/*
2014 	 * Swap metadata may not fit in the KVM if we have physical
2015 	 * memory of >1GB.
2016 	 */
2017 	if (swap_zone == NULL) {
2018 		error = ENOMEM;
2019 		goto done;
2020 	}
2021 
2022 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2023 	    uap->name, td);
2024 	error = namei(&nd);
2025 	if (error)
2026 		goto done;
2027 
2028 	NDFREE(&nd, NDF_ONLY_PNBUF);
2029 	vp = nd.ni_vp;
2030 
2031 	if (vn_isdisk(vp, &error)) {
2032 		error = swapongeom(td, vp);
2033 	} else if (vp->v_type == VREG &&
2034 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2035 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2036 		/*
2037 		 * Allow direct swapping to NFS regular files in the same
2038 		 * way that nfs_mountroot() sets up diskless swapping.
2039 		 */
2040 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2041 	}
2042 
2043 	if (error)
2044 		vrele(vp);
2045 done:
2046 	swdev_syscall_active = 0;
2047 	wakeup_one(&swdev_syscall_active);
2048 	mtx_unlock(&Giant);
2049 	return (error);
2050 }
2051 
2052 /*
2053  * Check that the total amount of swap currently configured does not
2054  * exceed half the theoretical maximum.  If it does, print a warning
2055  * message and return -1; otherwise, return 0.
2056  */
2057 static int
2058 swapon_check_swzone(unsigned long npages)
2059 {
2060 	unsigned long maxpages;
2061 
2062 	/* absolute maximum we can handle assuming 100% efficiency */
2063 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2064 
2065 	/* recommend using no more than half that amount */
2066 	if (npages > maxpages / 2) {
2067 		printf("warning: total configured swap (%lu pages) "
2068 		    "exceeds maximum recommended amount (%lu pages).\n",
2069 		    npages, maxpages / 2);
2070 		printf("warning: increase kern.maxswzone "
2071 		    "or reduce amount of swap.\n");
2072 		return (-1);
2073 	}
2074 	return (0);
2075 }
2076 
2077 static void
2078 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2079     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2080 {
2081 	struct swdevt *sp, *tsp;
2082 	swblk_t dvbase;
2083 	u_long mblocks;
2084 
2085 	/*
2086 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2087 	 * First chop nblks off to page-align it, then convert.
2088 	 *
2089 	 * sw->sw_nblks is in page-sized chunks now too.
2090 	 */
2091 	nblks &= ~(ctodb(1) - 1);
2092 	nblks = dbtoc(nblks);
2093 
2094 	/*
2095 	 * If we go beyond this, we get overflows in the radix
2096 	 * tree bitmap code.
2097 	 */
2098 	mblocks = 0x40000000 / BLIST_META_RADIX;
2099 	if (nblks > mblocks) {
2100 		printf(
2101     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2102 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2103 		nblks = mblocks;
2104 	}
2105 
2106 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2107 	sp->sw_vp = vp;
2108 	sp->sw_id = id;
2109 	sp->sw_dev = dev;
2110 	sp->sw_flags = 0;
2111 	sp->sw_nblks = nblks;
2112 	sp->sw_used = 0;
2113 	sp->sw_strategy = strategy;
2114 	sp->sw_close = close;
2115 	sp->sw_flags = flags;
2116 
2117 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2118 	/*
2119 	 * Do not free the first two block in order to avoid overwriting
2120 	 * any bsd label at the front of the partition
2121 	 */
2122 	blist_free(sp->sw_blist, 2, nblks - 2);
2123 
2124 	dvbase = 0;
2125 	mtx_lock(&sw_dev_mtx);
2126 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2127 		if (tsp->sw_end >= dvbase) {
2128 			/*
2129 			 * We put one uncovered page between the devices
2130 			 * in order to definitively prevent any cross-device
2131 			 * I/O requests
2132 			 */
2133 			dvbase = tsp->sw_end + 1;
2134 		}
2135 	}
2136 	sp->sw_first = dvbase;
2137 	sp->sw_end = dvbase + nblks;
2138 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2139 	nswapdev++;
2140 	swap_pager_avail += nblks;
2141 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2142 	swapon_check_swzone(swap_total / PAGE_SIZE);
2143 	swp_sizecheck();
2144 	mtx_unlock(&sw_dev_mtx);
2145 }
2146 
2147 /*
2148  * SYSCALL: swapoff(devname)
2149  *
2150  * Disable swapping on the given device.
2151  *
2152  * XXX: Badly designed system call: it should use a device index
2153  * rather than filename as specification.  We keep sw_vp around
2154  * only to make this work.
2155  */
2156 #ifndef _SYS_SYSPROTO_H_
2157 struct swapoff_args {
2158 	char *name;
2159 };
2160 #endif
2161 
2162 /*
2163  * MPSAFE
2164  */
2165 /* ARGSUSED */
2166 int
2167 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2168 {
2169 	struct vnode *vp;
2170 	struct nameidata nd;
2171 	struct swdevt *sp;
2172 	int error;
2173 
2174 	error = priv_check(td, PRIV_SWAPOFF);
2175 	if (error)
2176 		return (error);
2177 
2178 	mtx_lock(&Giant);
2179 	while (swdev_syscall_active)
2180 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2181 	swdev_syscall_active = 1;
2182 
2183 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2184 	    td);
2185 	error = namei(&nd);
2186 	if (error)
2187 		goto done;
2188 	NDFREE(&nd, NDF_ONLY_PNBUF);
2189 	vp = nd.ni_vp;
2190 
2191 	mtx_lock(&sw_dev_mtx);
2192 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2193 		if (sp->sw_vp == vp)
2194 			break;
2195 	}
2196 	mtx_unlock(&sw_dev_mtx);
2197 	if (sp == NULL) {
2198 		error = EINVAL;
2199 		goto done;
2200 	}
2201 	error = swapoff_one(sp, td->td_ucred);
2202 done:
2203 	swdev_syscall_active = 0;
2204 	wakeup_one(&swdev_syscall_active);
2205 	mtx_unlock(&Giant);
2206 	return (error);
2207 }
2208 
2209 static int
2210 swapoff_one(struct swdevt *sp, struct ucred *cred)
2211 {
2212 	u_long nblks, dvbase;
2213 #ifdef MAC
2214 	int error;
2215 #endif
2216 
2217 	mtx_assert(&Giant, MA_OWNED);
2218 #ifdef MAC
2219 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2220 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2221 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2222 	if (error != 0)
2223 		return (error);
2224 #endif
2225 	nblks = sp->sw_nblks;
2226 
2227 	/*
2228 	 * We can turn off this swap device safely only if the
2229 	 * available virtual memory in the system will fit the amount
2230 	 * of data we will have to page back in, plus an epsilon so
2231 	 * the system doesn't become critically low on swap space.
2232 	 */
2233 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2234 	    nblks + nswap_lowat) {
2235 		return (ENOMEM);
2236 	}
2237 
2238 	/*
2239 	 * Prevent further allocations on this device.
2240 	 */
2241 	mtx_lock(&sw_dev_mtx);
2242 	sp->sw_flags |= SW_CLOSING;
2243 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2244 		swap_pager_avail -= blist_fill(sp->sw_blist,
2245 		     dvbase, dmmax);
2246 	}
2247 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2248 	mtx_unlock(&sw_dev_mtx);
2249 
2250 	/*
2251 	 * Page in the contents of the device and close it.
2252 	 */
2253 	swap_pager_swapoff(sp);
2254 
2255 	sp->sw_close(curthread, sp);
2256 	mtx_lock(&sw_dev_mtx);
2257 	sp->sw_id = NULL;
2258 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2259 	nswapdev--;
2260 	if (nswapdev == 0) {
2261 		swap_pager_full = 2;
2262 		swap_pager_almost_full = 1;
2263 	}
2264 	if (swdevhd == sp)
2265 		swdevhd = NULL;
2266 	mtx_unlock(&sw_dev_mtx);
2267 	blist_destroy(sp->sw_blist);
2268 	free(sp, M_VMPGDATA);
2269 	return (0);
2270 }
2271 
2272 void
2273 swapoff_all(void)
2274 {
2275 	struct swdevt *sp, *spt;
2276 	const char *devname;
2277 	int error;
2278 
2279 	mtx_lock(&Giant);
2280 	while (swdev_syscall_active)
2281 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2282 	swdev_syscall_active = 1;
2283 
2284 	mtx_lock(&sw_dev_mtx);
2285 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2286 		mtx_unlock(&sw_dev_mtx);
2287 		if (vn_isdisk(sp->sw_vp, NULL))
2288 			devname = devtoname(sp->sw_vp->v_rdev);
2289 		else
2290 			devname = "[file]";
2291 		error = swapoff_one(sp, thread0.td_ucred);
2292 		if (error != 0) {
2293 			printf("Cannot remove swap device %s (error=%d), "
2294 			    "skipping.\n", devname, error);
2295 		} else if (bootverbose) {
2296 			printf("Swap device %s removed.\n", devname);
2297 		}
2298 		mtx_lock(&sw_dev_mtx);
2299 	}
2300 	mtx_unlock(&sw_dev_mtx);
2301 
2302 	swdev_syscall_active = 0;
2303 	wakeup_one(&swdev_syscall_active);
2304 	mtx_unlock(&Giant);
2305 }
2306 
2307 void
2308 swap_pager_status(int *total, int *used)
2309 {
2310 	struct swdevt *sp;
2311 
2312 	*total = 0;
2313 	*used = 0;
2314 	mtx_lock(&sw_dev_mtx);
2315 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2316 		*total += sp->sw_nblks;
2317 		*used += sp->sw_used;
2318 	}
2319 	mtx_unlock(&sw_dev_mtx);
2320 }
2321 
2322 int
2323 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2324 {
2325 	struct swdevt *sp;
2326 	const char *tmp_devname;
2327 	int error, n;
2328 
2329 	n = 0;
2330 	error = ENOENT;
2331 	mtx_lock(&sw_dev_mtx);
2332 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2333 		if (n != name) {
2334 			n++;
2335 			continue;
2336 		}
2337 		xs->xsw_version = XSWDEV_VERSION;
2338 		xs->xsw_dev = sp->sw_dev;
2339 		xs->xsw_flags = sp->sw_flags;
2340 		xs->xsw_nblks = sp->sw_nblks;
2341 		xs->xsw_used = sp->sw_used;
2342 		if (devname != NULL) {
2343 			if (vn_isdisk(sp->sw_vp, NULL))
2344 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2345 			else
2346 				tmp_devname = "[file]";
2347 			strncpy(devname, tmp_devname, len);
2348 		}
2349 		error = 0;
2350 		break;
2351 	}
2352 	mtx_unlock(&sw_dev_mtx);
2353 	return (error);
2354 }
2355 
2356 static int
2357 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2358 {
2359 	struct xswdev xs;
2360 	int error;
2361 
2362 	if (arg2 != 1)			/* name length */
2363 		return (EINVAL);
2364 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2365 	if (error != 0)
2366 		return (error);
2367 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2368 	return (error);
2369 }
2370 
2371 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2372     "Number of swap devices");
2373 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2374     "Swap statistics by device");
2375 
2376 /*
2377  * vmspace_swap_count() - count the approximate swap usage in pages for a
2378  *			  vmspace.
2379  *
2380  *	The map must be locked.
2381  *
2382  *	Swap usage is determined by taking the proportional swap used by
2383  *	VM objects backing the VM map.  To make up for fractional losses,
2384  *	if the VM object has any swap use at all the associated map entries
2385  *	count for at least 1 swap page.
2386  */
2387 long
2388 vmspace_swap_count(struct vmspace *vmspace)
2389 {
2390 	vm_map_t map;
2391 	vm_map_entry_t cur;
2392 	vm_object_t object;
2393 	long count, n;
2394 
2395 	map = &vmspace->vm_map;
2396 	count = 0;
2397 
2398 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2399 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2400 		    (object = cur->object.vm_object) != NULL) {
2401 			VM_OBJECT_WLOCK(object);
2402 			if (object->type == OBJT_SWAP &&
2403 			    object->un_pager.swp.swp_bcount != 0) {
2404 				n = (cur->end - cur->start) / PAGE_SIZE;
2405 				count += object->un_pager.swp.swp_bcount *
2406 				    SWAP_META_PAGES * n / object->size + 1;
2407 			}
2408 			VM_OBJECT_WUNLOCK(object);
2409 		}
2410 	}
2411 	return (count);
2412 }
2413 
2414 /*
2415  * GEOM backend
2416  *
2417  * Swapping onto disk devices.
2418  *
2419  */
2420 
2421 static g_orphan_t swapgeom_orphan;
2422 
2423 static struct g_class g_swap_class = {
2424 	.name = "SWAP",
2425 	.version = G_VERSION,
2426 	.orphan = swapgeom_orphan,
2427 };
2428 
2429 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2430 
2431 
2432 static void
2433 swapgeom_close_ev(void *arg, int flags)
2434 {
2435 	struct g_consumer *cp;
2436 
2437 	cp = arg;
2438 	g_access(cp, -1, -1, 0);
2439 	g_detach(cp);
2440 	g_destroy_consumer(cp);
2441 }
2442 
2443 /*
2444  * Add a reference to the g_consumer for an inflight transaction.
2445  */
2446 static void
2447 swapgeom_acquire(struct g_consumer *cp)
2448 {
2449 
2450 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2451 	cp->index++;
2452 }
2453 
2454 /*
2455  * Remove a reference from the g_consumer. Post a close event if
2456  * all referneces go away.
2457  */
2458 static void
2459 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2460 {
2461 
2462 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2463 	cp->index--;
2464 	if (cp->index == 0) {
2465 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2466 			sp->sw_id = NULL;
2467 	}
2468 }
2469 
2470 static void
2471 swapgeom_done(struct bio *bp2)
2472 {
2473 	struct swdevt *sp;
2474 	struct buf *bp;
2475 	struct g_consumer *cp;
2476 
2477 	bp = bp2->bio_caller2;
2478 	cp = bp2->bio_from;
2479 	bp->b_ioflags = bp2->bio_flags;
2480 	if (bp2->bio_error)
2481 		bp->b_ioflags |= BIO_ERROR;
2482 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2483 	bp->b_error = bp2->bio_error;
2484 	bufdone(bp);
2485 	sp = bp2->bio_caller1;
2486 	mtx_lock(&sw_dev_mtx);
2487 	swapgeom_release(cp, sp);
2488 	mtx_unlock(&sw_dev_mtx);
2489 	g_destroy_bio(bp2);
2490 }
2491 
2492 static void
2493 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2494 {
2495 	struct bio *bio;
2496 	struct g_consumer *cp;
2497 
2498 	mtx_lock(&sw_dev_mtx);
2499 	cp = sp->sw_id;
2500 	if (cp == NULL) {
2501 		mtx_unlock(&sw_dev_mtx);
2502 		bp->b_error = ENXIO;
2503 		bp->b_ioflags |= BIO_ERROR;
2504 		bufdone(bp);
2505 		return;
2506 	}
2507 	swapgeom_acquire(cp);
2508 	mtx_unlock(&sw_dev_mtx);
2509 	if (bp->b_iocmd == BIO_WRITE)
2510 		bio = g_new_bio();
2511 	else
2512 		bio = g_alloc_bio();
2513 	if (bio == NULL) {
2514 		mtx_lock(&sw_dev_mtx);
2515 		swapgeom_release(cp, sp);
2516 		mtx_unlock(&sw_dev_mtx);
2517 		bp->b_error = ENOMEM;
2518 		bp->b_ioflags |= BIO_ERROR;
2519 		bufdone(bp);
2520 		return;
2521 	}
2522 
2523 	bio->bio_caller1 = sp;
2524 	bio->bio_caller2 = bp;
2525 	bio->bio_cmd = bp->b_iocmd;
2526 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2527 	bio->bio_length = bp->b_bcount;
2528 	bio->bio_done = swapgeom_done;
2529 	if (!buf_mapped(bp)) {
2530 		bio->bio_ma = bp->b_pages;
2531 		bio->bio_data = unmapped_buf;
2532 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2533 		bio->bio_ma_n = bp->b_npages;
2534 		bio->bio_flags |= BIO_UNMAPPED;
2535 	} else {
2536 		bio->bio_data = bp->b_data;
2537 		bio->bio_ma = NULL;
2538 	}
2539 	g_io_request(bio, cp);
2540 	return;
2541 }
2542 
2543 static void
2544 swapgeom_orphan(struct g_consumer *cp)
2545 {
2546 	struct swdevt *sp;
2547 	int destroy;
2548 
2549 	mtx_lock(&sw_dev_mtx);
2550 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2551 		if (sp->sw_id == cp) {
2552 			sp->sw_flags |= SW_CLOSING;
2553 			break;
2554 		}
2555 	}
2556 	/*
2557 	 * Drop reference we were created with. Do directly since we're in a
2558 	 * special context where we don't have to queue the call to
2559 	 * swapgeom_close_ev().
2560 	 */
2561 	cp->index--;
2562 	destroy = ((sp != NULL) && (cp->index == 0));
2563 	if (destroy)
2564 		sp->sw_id = NULL;
2565 	mtx_unlock(&sw_dev_mtx);
2566 	if (destroy)
2567 		swapgeom_close_ev(cp, 0);
2568 }
2569 
2570 static void
2571 swapgeom_close(struct thread *td, struct swdevt *sw)
2572 {
2573 	struct g_consumer *cp;
2574 
2575 	mtx_lock(&sw_dev_mtx);
2576 	cp = sw->sw_id;
2577 	sw->sw_id = NULL;
2578 	mtx_unlock(&sw_dev_mtx);
2579 	/* XXX: direct call when Giant untangled */
2580 	if (cp != NULL)
2581 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2582 }
2583 
2584 
2585 struct swh0h0 {
2586 	struct cdev *dev;
2587 	struct vnode *vp;
2588 	int	error;
2589 };
2590 
2591 static void
2592 swapongeom_ev(void *arg, int flags)
2593 {
2594 	struct swh0h0 *swh;
2595 	struct g_provider *pp;
2596 	struct g_consumer *cp;
2597 	static struct g_geom *gp;
2598 	struct swdevt *sp;
2599 	u_long nblks;
2600 	int error;
2601 
2602 	swh = arg;
2603 	swh->error = 0;
2604 	pp = g_dev_getprovider(swh->dev);
2605 	if (pp == NULL) {
2606 		swh->error = ENODEV;
2607 		return;
2608 	}
2609 	mtx_lock(&sw_dev_mtx);
2610 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2611 		cp = sp->sw_id;
2612 		if (cp != NULL && cp->provider == pp) {
2613 			mtx_unlock(&sw_dev_mtx);
2614 			swh->error = EBUSY;
2615 			return;
2616 		}
2617 	}
2618 	mtx_unlock(&sw_dev_mtx);
2619 	if (gp == NULL)
2620 		gp = g_new_geomf(&g_swap_class, "swap");
2621 	cp = g_new_consumer(gp);
2622 	cp->index = 1;		/* Number of active I/Os, plus one for being active. */
2623 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2624 	g_attach(cp, pp);
2625 	/*
2626 	 * XXX: Everytime you think you can improve the margin for
2627 	 * footshooting, somebody depends on the ability to do so:
2628 	 * savecore(8) wants to write to our swapdev so we cannot
2629 	 * set an exclusive count :-(
2630 	 */
2631 	error = g_access(cp, 1, 1, 0);
2632 	if (error) {
2633 		g_detach(cp);
2634 		g_destroy_consumer(cp);
2635 		swh->error = error;
2636 		return;
2637 	}
2638 	nblks = pp->mediasize / DEV_BSIZE;
2639 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2640 	    swapgeom_close, dev2udev(swh->dev),
2641 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2642 	swh->error = 0;
2643 }
2644 
2645 static int
2646 swapongeom(struct thread *td, struct vnode *vp)
2647 {
2648 	int error;
2649 	struct swh0h0 swh;
2650 
2651 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2652 
2653 	swh.dev = vp->v_rdev;
2654 	swh.vp = vp;
2655 	swh.error = 0;
2656 	/* XXX: direct call when Giant untangled */
2657 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2658 	if (!error)
2659 		error = swh.error;
2660 	VOP_UNLOCK(vp, 0);
2661 	return (error);
2662 }
2663 
2664 /*
2665  * VNODE backend
2666  *
2667  * This is used mainly for network filesystem (read: probably only tested
2668  * with NFS) swapfiles.
2669  *
2670  */
2671 
2672 static void
2673 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2674 {
2675 	struct vnode *vp2;
2676 
2677 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2678 
2679 	vp2 = sp->sw_id;
2680 	vhold(vp2);
2681 	if (bp->b_iocmd == BIO_WRITE) {
2682 		if (bp->b_bufobj)
2683 			bufobj_wdrop(bp->b_bufobj);
2684 		bufobj_wref(&vp2->v_bufobj);
2685 	}
2686 	if (bp->b_bufobj != &vp2->v_bufobj)
2687 		bp->b_bufobj = &vp2->v_bufobj;
2688 	bp->b_vp = vp2;
2689 	bp->b_iooffset = dbtob(bp->b_blkno);
2690 	bstrategy(bp);
2691 	return;
2692 }
2693 
2694 static void
2695 swapdev_close(struct thread *td, struct swdevt *sp)
2696 {
2697 
2698 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2699 	vrele(sp->sw_vp);
2700 }
2701 
2702 
2703 static int
2704 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2705 {
2706 	struct swdevt *sp;
2707 	int error;
2708 
2709 	if (nblks == 0)
2710 		return (ENXIO);
2711 	mtx_lock(&sw_dev_mtx);
2712 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2713 		if (sp->sw_id == vp) {
2714 			mtx_unlock(&sw_dev_mtx);
2715 			return (EBUSY);
2716 		}
2717 	}
2718 	mtx_unlock(&sw_dev_mtx);
2719 
2720 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2721 #ifdef MAC
2722 	error = mac_system_check_swapon(td->td_ucred, vp);
2723 	if (error == 0)
2724 #endif
2725 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2726 	(void) VOP_UNLOCK(vp, 0);
2727 	if (error)
2728 		return (error);
2729 
2730 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2731 	    NODEV, 0);
2732 	return (0);
2733 }
2734 
2735 static int
2736 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2737 {
2738 	int error, new, n;
2739 
2740 	new = nsw_wcount_async_max;
2741 	error = sysctl_handle_int(oidp, &new, 0, req);
2742 	if (error != 0 || req->newptr == NULL)
2743 		return (error);
2744 
2745 	if (new > nswbuf / 2 || new < 1)
2746 		return (EINVAL);
2747 
2748 	mtx_lock(&pbuf_mtx);
2749 	while (nsw_wcount_async_max != new) {
2750 		/*
2751 		 * Adjust difference.  If the current async count is too low,
2752 		 * we will need to sqeeze our update slowly in.  Sleep with a
2753 		 * higher priority than getpbuf() to finish faster.
2754 		 */
2755 		n = new - nsw_wcount_async_max;
2756 		if (nsw_wcount_async + n >= 0) {
2757 			nsw_wcount_async += n;
2758 			nsw_wcount_async_max += n;
2759 			wakeup(&nsw_wcount_async);
2760 		} else {
2761 			nsw_wcount_async_max -= nsw_wcount_async;
2762 			nsw_wcount_async = 0;
2763 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2764 			    "swpsysctl", 0);
2765 		}
2766 	}
2767 	mtx_unlock(&pbuf_mtx);
2768 
2769 	return (0);
2770 }
2771