1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/vnode.h> 77 #include <sys/malloc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/sysctl.h> 80 #include <sys/blist.h> 81 #include <sys/lock.h> 82 83 #ifndef MAX_PAGEOUT_CLUSTER 84 #define MAX_PAGEOUT_CLUSTER 16 85 #endif 86 87 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 88 89 #include "opt_swap.h" 90 #include <vm/vm.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/swap_pager.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vm_zone.h> 98 99 #define SWM_FREE 0x02 /* free, period */ 100 #define SWM_POP 0x04 /* pop out */ 101 102 /* 103 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 104 * in the old system. 105 */ 106 107 extern int vm_swap_size; /* number of free swap blocks, in pages */ 108 109 int swap_pager_full; /* swap space exhaustion (task killing) */ 110 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 111 static int nsw_rcount; /* free read buffers */ 112 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 113 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 114 static int nsw_wcount_async_max;/* assigned maximum */ 115 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 116 static int sw_alloc_interlock; /* swap pager allocation interlock */ 117 118 struct blist *swapblist; 119 static struct swblock **swhash; 120 static int swhash_mask; 121 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 122 123 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 124 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 125 126 /* 127 * "named" and "unnamed" anon region objects. Try to reduce the overhead 128 * of searching a named list by hashing it just a little. 129 */ 130 131 #define NOBJLISTS 8 132 133 #define NOBJLIST(handle) \ 134 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 135 136 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 137 struct pagerlst swap_pager_un_object_list; 138 vm_zone_t swap_zone; 139 140 /* 141 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 142 * calls hooked from other parts of the VM system and do not appear here. 143 * (see vm/swap_pager.h). 144 */ 145 146 static vm_object_t 147 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 148 vm_prot_t prot, vm_ooffset_t offset)); 149 static void swap_pager_dealloc __P((vm_object_t object)); 150 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 151 static void swap_pager_init __P((void)); 152 static void swap_pager_unswapped __P((vm_page_t)); 153 static void swap_pager_strategy __P((vm_object_t, struct buf *)); 154 155 struct pagerops swappagerops = { 156 swap_pager_init, /* early system initialization of pager */ 157 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 158 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 159 swap_pager_getpages, /* pagein */ 160 swap_pager_putpages, /* pageout */ 161 swap_pager_haspage, /* get backing store status for page */ 162 swap_pager_unswapped, /* remove swap related to page */ 163 swap_pager_strategy /* pager strategy call */ 164 }; 165 166 /* 167 * dmmax is in page-sized chunks with the new swap system. It was 168 * dev-bsized chunks in the old. 169 * 170 * swap_*() routines are externally accessible. swp_*() routines are 171 * internal. 172 */ 173 174 int dmmax; 175 static int dmmax_mask; 176 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 177 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 178 179 static __inline void swp_sizecheck __P((void)); 180 static void swp_pager_sync_iodone __P((struct buf *bp)); 181 static void swp_pager_async_iodone __P((struct buf *bp)); 182 183 /* 184 * Swap bitmap functions 185 */ 186 187 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 188 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 189 190 /* 191 * Metadata functions 192 */ 193 194 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 195 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 196 static void swp_pager_meta_free_all __P((vm_object_t)); 197 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 198 199 /* 200 * SWP_SIZECHECK() - update swap_pager_full indication 201 * 202 * update the swap_pager_almost_full indication and warn when we are 203 * about to run out of swap space, using lowat/hiwat hysteresis. 204 * 205 * Clear swap_pager_full ( task killing ) indication when lowat is met. 206 * 207 * No restrictions on call 208 * This routine may not block. 209 * This routine must be called at splvm() 210 */ 211 212 static __inline void 213 swp_sizecheck() 214 { 215 if (vm_swap_size < nswap_lowat) { 216 if (swap_pager_almost_full == 0) { 217 printf("swap_pager: out of swap space\n"); 218 swap_pager_almost_full = 1; 219 } 220 } else { 221 swap_pager_full = 0; 222 if (vm_swap_size > nswap_hiwat) 223 swap_pager_almost_full = 0; 224 } 225 } 226 227 /* 228 * SWAP_PAGER_INIT() - initialize the swap pager! 229 * 230 * Expected to be started from system init. NOTE: This code is run 231 * before much else so be careful what you depend on. Most of the VM 232 * system has yet to be initialized at this point. 233 */ 234 235 static void 236 swap_pager_init() 237 { 238 /* 239 * Initialize object lists 240 */ 241 int i; 242 243 for (i = 0; i < NOBJLISTS; ++i) 244 TAILQ_INIT(&swap_pager_object_list[i]); 245 TAILQ_INIT(&swap_pager_un_object_list); 246 247 /* 248 * Device Stripe, in PAGE_SIZE'd blocks 249 */ 250 251 dmmax = SWB_NPAGES * 2; 252 dmmax_mask = ~(dmmax - 1); 253 } 254 255 /* 256 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 257 * 258 * Expected to be started from pageout process once, prior to entering 259 * its main loop. 260 */ 261 262 void 263 swap_pager_swap_init() 264 { 265 int n; 266 267 /* 268 * Number of in-transit swap bp operations. Don't 269 * exhaust the pbufs completely. Make sure we 270 * initialize workable values (0 will work for hysteresis 271 * but it isn't very efficient). 272 * 273 * The nsw_cluster_max is constrained by the bp->b_pages[] 274 * array (MAXPHYS/PAGE_SIZE) and our locally defined 275 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 276 * constrained by the swap device interleave stripe size. 277 * 278 * Currently we hardwire nsw_wcount_async to 4. This limit is 279 * designed to prevent other I/O from having high latencies due to 280 * our pageout I/O. The value 4 works well for one or two active swap 281 * devices but is probably a little low if you have more. Even so, 282 * a higher value would probably generate only a limited improvement 283 * with three or four active swap devices since the system does not 284 * typically have to pageout at extreme bandwidths. We will want 285 * at least 2 per swap devices, and 4 is a pretty good value if you 286 * have one NFS swap device due to the command/ack latency over NFS. 287 * So it all works out pretty well. 288 */ 289 290 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 291 292 nsw_rcount = (nswbuf + 1) / 2; 293 nsw_wcount_sync = (nswbuf + 3) / 4; 294 nsw_wcount_async = 4; 295 nsw_wcount_async_max = nsw_wcount_async; 296 297 /* 298 * Initialize our zone. Right now I'm just guessing on the number 299 * we need based on the number of pages in the system. Each swblock 300 * can hold 16 pages, so this is probably overkill. 301 */ 302 303 n = cnt.v_page_count * 2; 304 305 swap_zone = zinit( 306 "SWAPMETA", 307 sizeof(struct swblock), 308 n, 309 ZONE_INTERRUPT, 310 1 311 ); 312 313 /* 314 * Initialize our meta-data hash table. The swapper does not need to 315 * be quite as efficient as the VM system, so we do not use an 316 * oversized hash table. 317 * 318 * n: size of hash table, must be power of 2 319 * swhash_mask: hash table index mask 320 */ 321 322 for (n = 1; n < cnt.v_page_count / 4; n <<= 1) 323 ; 324 325 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK); 326 bzero(swhash, sizeof(struct swblock *) * n); 327 328 swhash_mask = n - 1; 329 } 330 331 /* 332 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 333 * its metadata structures. 334 * 335 * This routine is called from the mmap and fork code to create a new 336 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 337 * and then converting it with swp_pager_meta_build(). 338 * 339 * This routine may block in vm_object_allocate() and create a named 340 * object lookup race, so we must interlock. We must also run at 341 * splvm() for the object lookup to handle races with interrupts, but 342 * we do not have to maintain splvm() in between the lookup and the 343 * add because (I believe) it is not possible to attempt to create 344 * a new swap object w/handle when a default object with that handle 345 * already exists. 346 */ 347 348 static vm_object_t 349 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 350 vm_ooffset_t offset) 351 { 352 vm_object_t object; 353 354 if (handle) { 355 /* 356 * Reference existing named region or allocate new one. There 357 * should not be a race here against swp_pager_meta_build() 358 * as called from vm_page_remove() in regards to the lookup 359 * of the handle. 360 */ 361 362 while (sw_alloc_interlock) { 363 sw_alloc_interlock = -1; 364 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0); 365 } 366 sw_alloc_interlock = 1; 367 368 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 369 370 if (object != NULL) { 371 vm_object_reference(object); 372 } else { 373 object = vm_object_allocate(OBJT_DEFAULT, 374 OFF_TO_IDX(offset + PAGE_MASK + size)); 375 object->handle = handle; 376 377 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 378 } 379 380 if (sw_alloc_interlock < 0) 381 wakeup(&sw_alloc_interlock); 382 383 sw_alloc_interlock = 0; 384 } else { 385 object = vm_object_allocate(OBJT_DEFAULT, 386 OFF_TO_IDX(offset + PAGE_MASK + size)); 387 388 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 389 } 390 391 return (object); 392 } 393 394 /* 395 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 396 * 397 * The swap backing for the object is destroyed. The code is 398 * designed such that we can reinstantiate it later, but this 399 * routine is typically called only when the entire object is 400 * about to be destroyed. 401 * 402 * This routine may block, but no longer does. 403 * 404 * The object must be locked or unreferenceable. 405 */ 406 407 static void 408 swap_pager_dealloc(object) 409 vm_object_t object; 410 { 411 int s; 412 413 /* 414 * Remove from list right away so lookups will fail if we block for 415 * pageout completion. 416 */ 417 418 if (object->handle == NULL) { 419 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 420 } else { 421 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 422 } 423 424 vm_object_pip_wait(object, "swpdea"); 425 426 /* 427 * Free all remaining metadata. We only bother to free it from 428 * the swap meta data. We do not attempt to free swapblk's still 429 * associated with vm_page_t's for this object. We do not care 430 * if paging is still in progress on some objects. 431 */ 432 s = splvm(); 433 swp_pager_meta_free_all(object); 434 splx(s); 435 } 436 437 /************************************************************************ 438 * SWAP PAGER BITMAP ROUTINES * 439 ************************************************************************/ 440 441 /* 442 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 443 * 444 * Allocate swap for the requested number of pages. The starting 445 * swap block number (a page index) is returned or SWAPBLK_NONE 446 * if the allocation failed. 447 * 448 * Also has the side effect of advising that somebody made a mistake 449 * when they configured swap and didn't configure enough. 450 * 451 * Must be called at splvm() to avoid races with bitmap frees from 452 * vm_page_remove() aka swap_pager_page_removed(). 453 * 454 * This routine may not block 455 * This routine must be called at splvm(). 456 */ 457 458 static __inline daddr_t 459 swp_pager_getswapspace(npages) 460 int npages; 461 { 462 daddr_t blk; 463 464 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 465 if (swap_pager_full != 2) { 466 printf("swap_pager_getswapspace: failed\n"); 467 swap_pager_full = 2; 468 swap_pager_almost_full = 1; 469 } 470 } else { 471 vm_swap_size -= npages; 472 swp_sizecheck(); 473 } 474 return(blk); 475 } 476 477 /* 478 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 479 * 480 * This routine returns the specified swap blocks back to the bitmap. 481 * 482 * Note: This routine may not block (it could in the old swap code), 483 * and through the use of the new blist routines it does not block. 484 * 485 * We must be called at splvm() to avoid races with bitmap frees from 486 * vm_page_remove() aka swap_pager_page_removed(). 487 * 488 * This routine may not block 489 * This routine must be called at splvm(). 490 */ 491 492 static __inline void 493 swp_pager_freeswapspace(blk, npages) 494 daddr_t blk; 495 int npages; 496 { 497 blist_free(swapblist, blk, npages); 498 vm_swap_size += npages; 499 swp_sizecheck(); 500 } 501 502 /* 503 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 504 * range within an object. 505 * 506 * This is a globally accessible routine. 507 * 508 * This routine removes swapblk assignments from swap metadata. 509 * 510 * The external callers of this routine typically have already destroyed 511 * or renamed vm_page_t's associated with this range in the object so 512 * we should be ok. 513 * 514 * This routine may be called at any spl. We up our spl to splvm temporarily 515 * in order to perform the metadata removal. 516 */ 517 518 void 519 swap_pager_freespace(object, start, size) 520 vm_object_t object; 521 vm_pindex_t start; 522 vm_size_t size; 523 { 524 int s = splvm(); 525 swp_pager_meta_free(object, start, size); 526 splx(s); 527 } 528 529 /* 530 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 531 * 532 * Assigns swap blocks to the specified range within the object. The 533 * swap blocks are not zerod. Any previous swap assignment is destroyed. 534 * 535 * Returns 0 on success, -1 on failure. 536 */ 537 538 int 539 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 540 { 541 int s; 542 int n = 0; 543 daddr_t blk = SWAPBLK_NONE; 544 vm_pindex_t beg = start; /* save start index */ 545 546 s = splvm(); 547 while (size) { 548 if (n == 0) { 549 n = BLIST_MAX_ALLOC; 550 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 551 n >>= 1; 552 if (n == 0) { 553 swp_pager_meta_free(object, beg, start - beg); 554 splx(s); 555 return(-1); 556 } 557 } 558 } 559 swp_pager_meta_build(object, start, blk); 560 --size; 561 ++start; 562 ++blk; 563 --n; 564 } 565 swp_pager_meta_free(object, start, n); 566 splx(s); 567 return(0); 568 } 569 570 /* 571 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 572 * and destroy the source. 573 * 574 * Copy any valid swapblks from the source to the destination. In 575 * cases where both the source and destination have a valid swapblk, 576 * we keep the destination's. 577 * 578 * This routine is allowed to block. It may block allocating metadata 579 * indirectly through swp_pager_meta_build() or if paging is still in 580 * progress on the source. 581 * 582 * This routine can be called at any spl 583 * 584 * XXX vm_page_collapse() kinda expects us not to block because we 585 * supposedly do not need to allocate memory, but for the moment we 586 * *may* have to get a little memory from the zone allocator, but 587 * it is taken from the interrupt memory. We should be ok. 588 * 589 * The source object contains no vm_page_t's (which is just as well) 590 * 591 * The source object is of type OBJT_SWAP. 592 * 593 * The source and destination objects must be locked or 594 * inaccessible (XXX are they ?) 595 */ 596 597 void 598 swap_pager_copy(srcobject, dstobject, offset, destroysource) 599 vm_object_t srcobject; 600 vm_object_t dstobject; 601 vm_pindex_t offset; 602 int destroysource; 603 { 604 vm_pindex_t i; 605 int s; 606 607 s = splvm(); 608 609 /* 610 * If destroysource is set, we remove the source object from the 611 * swap_pager internal queue now. 612 */ 613 614 if (destroysource) { 615 if (srcobject->handle == NULL) { 616 TAILQ_REMOVE( 617 &swap_pager_un_object_list, 618 srcobject, 619 pager_object_list 620 ); 621 } else { 622 TAILQ_REMOVE( 623 NOBJLIST(srcobject->handle), 624 srcobject, 625 pager_object_list 626 ); 627 } 628 } 629 630 /* 631 * transfer source to destination. 632 */ 633 634 for (i = 0; i < dstobject->size; ++i) { 635 daddr_t dstaddr; 636 637 /* 638 * Locate (without changing) the swapblk on the destination, 639 * unless it is invalid in which case free it silently, or 640 * if the destination is a resident page, in which case the 641 * source is thrown away. 642 */ 643 644 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 645 646 if (dstaddr == SWAPBLK_NONE) { 647 /* 648 * Destination has no swapblk and is not resident, 649 * copy source. 650 */ 651 daddr_t srcaddr; 652 653 srcaddr = swp_pager_meta_ctl( 654 srcobject, 655 i + offset, 656 SWM_POP 657 ); 658 659 if (srcaddr != SWAPBLK_NONE) 660 swp_pager_meta_build(dstobject, i, srcaddr); 661 } else { 662 /* 663 * Destination has valid swapblk or it is represented 664 * by a resident page. We destroy the sourceblock. 665 */ 666 667 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 668 } 669 } 670 671 /* 672 * Free left over swap blocks in source. 673 * 674 * We have to revert the type to OBJT_DEFAULT so we do not accidently 675 * double-remove the object from the swap queues. 676 */ 677 678 if (destroysource) { 679 swp_pager_meta_free_all(srcobject); 680 /* 681 * Reverting the type is not necessary, the caller is going 682 * to destroy srcobject directly, but I'm doing it here 683 * for consistancy since we've removed the object from its 684 * queues. 685 */ 686 srcobject->type = OBJT_DEFAULT; 687 } 688 splx(s); 689 } 690 691 /* 692 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 693 * the requested page. 694 * 695 * We determine whether good backing store exists for the requested 696 * page and return TRUE if it does, FALSE if it doesn't. 697 * 698 * If TRUE, we also try to determine how much valid, contiguous backing 699 * store exists before and after the requested page within a reasonable 700 * distance. We do not try to restrict it to the swap device stripe 701 * (that is handled in getpages/putpages). It probably isn't worth 702 * doing here. 703 * 704 * This routine must be called at splvm(). 705 */ 706 707 boolean_t 708 swap_pager_haspage(object, pindex, before, after) 709 vm_object_t object; 710 vm_pindex_t pindex; 711 int *before; 712 int *after; 713 { 714 daddr_t blk0; 715 716 /* 717 * do we have good backing store at the requested index ? 718 */ 719 720 blk0 = swp_pager_meta_ctl(object, pindex, 0); 721 722 if (blk0 == SWAPBLK_NONE) { 723 if (before) 724 *before = 0; 725 if (after) 726 *after = 0; 727 return (FALSE); 728 } 729 730 /* 731 * find backwards-looking contiguous good backing store 732 */ 733 734 if (before != NULL) { 735 int i; 736 737 for (i = 1; i < (SWB_NPAGES/2); ++i) { 738 daddr_t blk; 739 740 if (i > pindex) 741 break; 742 blk = swp_pager_meta_ctl(object, pindex - i, 0); 743 if (blk != blk0 - i) 744 break; 745 } 746 *before = (i - 1); 747 } 748 749 /* 750 * find forward-looking contiguous good backing store 751 */ 752 753 if (after != NULL) { 754 int i; 755 756 for (i = 1; i < (SWB_NPAGES/2); ++i) { 757 daddr_t blk; 758 759 blk = swp_pager_meta_ctl(object, pindex + i, 0); 760 if (blk != blk0 + i) 761 break; 762 } 763 *after = (i - 1); 764 } 765 766 return (TRUE); 767 } 768 769 /* 770 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 771 * 772 * This removes any associated swap backing store, whether valid or 773 * not, from the page. 774 * 775 * This routine is typically called when a page is made dirty, at 776 * which point any associated swap can be freed. MADV_FREE also 777 * calls us in a special-case situation 778 * 779 * NOTE!!! If the page is clean and the swap was valid, the caller 780 * should make the page dirty before calling this routine. This routine 781 * does NOT change the m->dirty status of the page. Also: MADV_FREE 782 * depends on it. 783 * 784 * This routine may not block 785 * This routine must be called at splvm() 786 */ 787 788 static void 789 swap_pager_unswapped(m) 790 vm_page_t m; 791 { 792 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 793 } 794 795 /* 796 * SWAP_PAGER_STRATEGY() - read, write, free blocks 797 * 798 * This implements the vm_pager_strategy() interface to swap and allows 799 * other parts of the system to directly access swap as backing store 800 * through vm_objects of type OBJT_SWAP. This is intended to be a 801 * cacheless interface ( i.e. caching occurs at higher levels ). 802 * Therefore we do not maintain any resident pages. All I/O goes 803 * directly to and from the swap device. 804 * 805 * Note that b_blkno is scaled for PAGE_SIZE 806 * 807 * We currently attempt to run I/O synchronously or asynchronously as 808 * the caller requests. This isn't perfect because we loose error 809 * sequencing when we run multiple ops in parallel to satisfy a request. 810 * But this is swap, so we let it all hang out. 811 */ 812 813 static void 814 swap_pager_strategy(vm_object_t object, struct buf *bp) 815 { 816 vm_pindex_t start; 817 int count; 818 int s; 819 char *data; 820 struct buf *nbp = NULL; 821 822 if (bp->b_bcount & PAGE_MASK) { 823 bp->b_error = EINVAL; 824 bp->b_flags |= B_ERROR | B_INVAL; 825 biodone(bp); 826 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount); 827 return; 828 } 829 830 /* 831 * Clear error indication, initialize page index, count, data pointer. 832 */ 833 834 bp->b_error = 0; 835 bp->b_flags &= ~B_ERROR; 836 bp->b_resid = bp->b_bcount; 837 838 start = bp->b_pblkno; 839 count = howmany(bp->b_bcount, PAGE_SIZE); 840 data = bp->b_data; 841 842 s = splvm(); 843 844 /* 845 * Deal with B_FREEBUF 846 */ 847 848 if (bp->b_flags & B_FREEBUF) { 849 /* 850 * FREE PAGE(s) - destroy underlying swap that is no longer 851 * needed. 852 */ 853 swp_pager_meta_free(object, start, count); 854 splx(s); 855 bp->b_resid = 0; 856 biodone(bp); 857 return; 858 } 859 860 /* 861 * Execute read or write 862 */ 863 864 while (count > 0) { 865 daddr_t blk; 866 867 /* 868 * Obtain block. If block not found and writing, allocate a 869 * new block and build it into the object. 870 */ 871 872 blk = swp_pager_meta_ctl(object, start, 0); 873 if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) { 874 blk = swp_pager_getswapspace(1); 875 if (blk == SWAPBLK_NONE) { 876 bp->b_error = ENOMEM; 877 bp->b_flags |= B_ERROR; 878 break; 879 } 880 swp_pager_meta_build(object, start, blk); 881 } 882 883 /* 884 * Do we have to flush our current collection? Yes if: 885 * 886 * - no swap block at this index 887 * - swap block is not contiguous 888 * - we cross a physical disk boundry in the 889 * stripe. 890 */ 891 892 if ( 893 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 894 ((nbp->b_blkno ^ blk) & dmmax_mask) 895 ) 896 ) { 897 splx(s); 898 if (bp->b_flags & B_READ) { 899 ++cnt.v_swapin; 900 cnt.v_swappgsin += btoc(nbp->b_bcount); 901 } else { 902 ++cnt.v_swapout; 903 cnt.v_swappgsout += btoc(nbp->b_bcount); 904 nbp->b_dirtyend = nbp->b_bcount; 905 } 906 flushchainbuf(nbp); 907 s = splvm(); 908 nbp = NULL; 909 } 910 911 /* 912 * Add new swapblk to nbp, instantiating nbp if necessary. 913 * Zero-fill reads are able to take a shortcut. 914 */ 915 916 if (blk == SWAPBLK_NONE) { 917 /* 918 * We can only get here if we are reading. Since 919 * we are at splvm() we can safely modify b_resid, 920 * even if chain ops are in progress. 921 */ 922 bzero(data, PAGE_SIZE); 923 bp->b_resid -= PAGE_SIZE; 924 } else { 925 if (nbp == NULL) { 926 nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC); 927 nbp->b_blkno = blk; 928 nbp->b_bcount = 0; 929 nbp->b_data = data; 930 } 931 nbp->b_bcount += PAGE_SIZE; 932 } 933 --count; 934 ++start; 935 data += PAGE_SIZE; 936 } 937 938 /* 939 * Flush out last buffer 940 */ 941 942 splx(s); 943 944 if (nbp) { 945 if ((bp->b_flags & B_ASYNC) == 0) 946 nbp->b_flags &= ~B_ASYNC; 947 if (nbp->b_flags & B_READ) { 948 ++cnt.v_swapin; 949 cnt.v_swappgsin += btoc(nbp->b_bcount); 950 } else { 951 ++cnt.v_swapout; 952 cnt.v_swappgsout += btoc(nbp->b_bcount); 953 nbp->b_dirtyend = nbp->b_bcount; 954 } 955 flushchainbuf(nbp); 956 /* nbp = NULL; */ 957 } 958 959 /* 960 * Wait for completion. 961 */ 962 963 if (bp->b_flags & B_ASYNC) { 964 autochaindone(bp); 965 } else { 966 waitchainbuf(bp, 0, 1); 967 } 968 } 969 970 /* 971 * SWAP_PAGER_GETPAGES() - bring pages in from swap 972 * 973 * Attempt to retrieve (m, count) pages from backing store, but make 974 * sure we retrieve at least m[reqpage]. We try to load in as large 975 * a chunk surrounding m[reqpage] as is contiguous in swap and which 976 * belongs to the same object. 977 * 978 * The code is designed for asynchronous operation and 979 * immediate-notification of 'reqpage' but tends not to be 980 * used that way. Please do not optimize-out this algorithmic 981 * feature, I intend to improve on it in the future. 982 * 983 * The parent has a single vm_object_pip_add() reference prior to 984 * calling us and we should return with the same. 985 * 986 * The parent has BUSY'd the pages. We should return with 'm' 987 * left busy, but the others adjusted. 988 */ 989 990 static int 991 swap_pager_getpages(object, m, count, reqpage) 992 vm_object_t object; 993 vm_page_t *m; 994 int count, reqpage; 995 { 996 struct buf *bp; 997 vm_page_t mreq; 998 int s; 999 int i; 1000 int j; 1001 daddr_t blk; 1002 vm_offset_t kva; 1003 vm_pindex_t lastpindex; 1004 1005 mreq = m[reqpage]; 1006 1007 #if !defined(MAX_PERF) 1008 if (mreq->object != object) { 1009 panic("swap_pager_getpages: object mismatch %p/%p", 1010 object, 1011 mreq->object 1012 ); 1013 } 1014 #endif 1015 /* 1016 * Calculate range to retrieve. The pages have already been assigned 1017 * their swapblks. We require a *contiguous* range that falls entirely 1018 * within a single device stripe. If we do not supply it, bad things 1019 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1020 * loops are set up such that the case(s) are handled implicitly. 1021 * 1022 * The swp_*() calls must be made at splvm(). vm_page_free() does 1023 * not need to be, but it will go a little faster if it is. 1024 */ 1025 1026 s = splvm(); 1027 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1028 1029 for (i = reqpage - 1; i >= 0; --i) { 1030 daddr_t iblk; 1031 1032 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1033 if (blk != iblk + (reqpage - i)) 1034 break; 1035 if ((blk ^ iblk) & dmmax_mask) 1036 break; 1037 } 1038 ++i; 1039 1040 for (j = reqpage + 1; j < count; ++j) { 1041 daddr_t jblk; 1042 1043 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1044 if (blk != jblk - (j - reqpage)) 1045 break; 1046 if ((blk ^ jblk) & dmmax_mask) 1047 break; 1048 } 1049 1050 /* 1051 * free pages outside our collection range. Note: we never free 1052 * mreq, it must remain busy throughout. 1053 */ 1054 1055 { 1056 int k; 1057 1058 for (k = 0; k < i; ++k) 1059 vm_page_free(m[k]); 1060 for (k = j; k < count; ++k) 1061 vm_page_free(m[k]); 1062 } 1063 splx(s); 1064 1065 1066 /* 1067 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1068 * still busy, but the others unbusied. 1069 */ 1070 1071 if (blk == SWAPBLK_NONE) 1072 return(VM_PAGER_FAIL); 1073 1074 /* 1075 * Get a swap buffer header to perform the IO 1076 */ 1077 1078 bp = getpbuf(&nsw_rcount); 1079 kva = (vm_offset_t) bp->b_data; 1080 1081 /* 1082 * map our page(s) into kva for input 1083 * 1084 * NOTE: B_PAGING is set by pbgetvp() 1085 */ 1086 1087 pmap_qenter(kva, m + i, j - i); 1088 1089 bp->b_flags = B_READ | B_CALL; 1090 bp->b_iodone = swp_pager_async_iodone; 1091 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1092 bp->b_data = (caddr_t) kva; 1093 crhold(bp->b_rcred); 1094 crhold(bp->b_wcred); 1095 bp->b_blkno = blk - (reqpage - i); 1096 bp->b_bcount = PAGE_SIZE * (j - i); 1097 bp->b_bufsize = PAGE_SIZE * (j - i); 1098 bp->b_pager.pg_reqpage = reqpage - i; 1099 1100 { 1101 int k; 1102 1103 for (k = i; k < j; ++k) { 1104 bp->b_pages[k - i] = m[k]; 1105 vm_page_flag_set(m[k], PG_SWAPINPROG); 1106 } 1107 } 1108 bp->b_npages = j - i; 1109 1110 pbgetvp(swapdev_vp, bp); 1111 1112 cnt.v_swapin++; 1113 cnt.v_swappgsin += bp->b_npages; 1114 1115 /* 1116 * We still hold the lock on mreq, and our automatic completion routine 1117 * does not remove it. 1118 */ 1119 1120 vm_object_pip_add(mreq->object, bp->b_npages); 1121 lastpindex = m[j-1]->pindex; 1122 1123 /* 1124 * perform the I/O. NOTE!!! bp cannot be considered valid after 1125 * this point because we automatically release it on completion. 1126 * Instead, we look at the one page we are interested in which we 1127 * still hold a lock on even through the I/O completion. 1128 * 1129 * The other pages in our m[] array are also released on completion, 1130 * so we cannot assume they are valid anymore either. 1131 * 1132 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1133 */ 1134 1135 BUF_KERNPROC(bp); 1136 VOP_STRATEGY(bp->b_vp, bp); 1137 1138 /* 1139 * wait for the page we want to complete. PG_SWAPINPROG is always 1140 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1141 * is set in the meta-data. 1142 */ 1143 1144 s = splvm(); 1145 1146 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1147 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1148 cnt.v_intrans++; 1149 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1150 printf( 1151 "swap_pager: indefinite wait buffer: device:" 1152 " %s, blkno: %ld, size: %ld\n", 1153 devtoname(bp->b_dev), (long)bp->b_blkno, 1154 bp->b_bcount 1155 ); 1156 } 1157 } 1158 1159 splx(s); 1160 1161 /* 1162 * mreq is left bussied after completion, but all the other pages 1163 * are freed. If we had an unrecoverable read error the page will 1164 * not be valid. 1165 */ 1166 1167 if (mreq->valid != VM_PAGE_BITS_ALL) { 1168 return(VM_PAGER_ERROR); 1169 } else { 1170 return(VM_PAGER_OK); 1171 } 1172 1173 /* 1174 * A final note: in a low swap situation, we cannot deallocate swap 1175 * and mark a page dirty here because the caller is likely to mark 1176 * the page clean when we return, causing the page to possibly revert 1177 * to all-zero's later. 1178 */ 1179 } 1180 1181 /* 1182 * swap_pager_putpages: 1183 * 1184 * Assign swap (if necessary) and initiate I/O on the specified pages. 1185 * 1186 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1187 * are automatically converted to SWAP objects. 1188 * 1189 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1190 * vm_page reservation system coupled with properly written VFS devices 1191 * should ensure that no low-memory deadlock occurs. This is an area 1192 * which needs work. 1193 * 1194 * The parent has N vm_object_pip_add() references prior to 1195 * calling us and will remove references for rtvals[] that are 1196 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1197 * completion. 1198 * 1199 * The parent has soft-busy'd the pages it passes us and will unbusy 1200 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1201 * We need to unbusy the rest on I/O completion. 1202 */ 1203 1204 void 1205 swap_pager_putpages(object, m, count, sync, rtvals) 1206 vm_object_t object; 1207 vm_page_t *m; 1208 int count; 1209 boolean_t sync; 1210 int *rtvals; 1211 { 1212 int i; 1213 int n = 0; 1214 1215 #if !defined(MAX_PERF) 1216 if (count && m[0]->object != object) { 1217 panic("swap_pager_getpages: object mismatch %p/%p", 1218 object, 1219 m[0]->object 1220 ); 1221 } 1222 #endif 1223 /* 1224 * Step 1 1225 * 1226 * Turn object into OBJT_SWAP 1227 * check for bogus sysops 1228 * force sync if not pageout process 1229 */ 1230 1231 if (object->type != OBJT_SWAP) 1232 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1233 1234 if (curproc != pageproc) 1235 sync = TRUE; 1236 1237 /* 1238 * Step 2 1239 * 1240 * Update nsw parameters from swap_async_max sysctl values. 1241 * Do not let the sysop crash the machine with bogus numbers. 1242 */ 1243 1244 if (swap_async_max != nsw_wcount_async_max) { 1245 int n; 1246 int s; 1247 1248 /* 1249 * limit range 1250 */ 1251 if ((n = swap_async_max) > nswbuf / 2) 1252 n = nswbuf / 2; 1253 if (n < 1) 1254 n = 1; 1255 swap_async_max = n; 1256 1257 /* 1258 * Adjust difference ( if possible ). If the current async 1259 * count is too low, we may not be able to make the adjustment 1260 * at this time. 1261 */ 1262 s = splvm(); 1263 n -= nsw_wcount_async_max; 1264 if (nsw_wcount_async + n >= 0) { 1265 nsw_wcount_async += n; 1266 nsw_wcount_async_max += n; 1267 wakeup(&nsw_wcount_async); 1268 } 1269 splx(s); 1270 } 1271 1272 /* 1273 * Step 3 1274 * 1275 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1276 * The page is left dirty until the pageout operation completes 1277 * successfully. 1278 */ 1279 1280 for (i = 0; i < count; i += n) { 1281 int s; 1282 int j; 1283 struct buf *bp; 1284 daddr_t blk; 1285 1286 /* 1287 * Maximum I/O size is limited by a number of factors. 1288 */ 1289 1290 n = min(BLIST_MAX_ALLOC, count - i); 1291 n = min(n, nsw_cluster_max); 1292 1293 s = splvm(); 1294 1295 /* 1296 * Get biggest block of swap we can. If we fail, fall 1297 * back and try to allocate a smaller block. Don't go 1298 * overboard trying to allocate space if it would overly 1299 * fragment swap. 1300 */ 1301 while ( 1302 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1303 n > 4 1304 ) { 1305 n >>= 1; 1306 } 1307 if (blk == SWAPBLK_NONE) { 1308 for (j = 0; j < n; ++j) 1309 rtvals[i+j] = VM_PAGER_FAIL; 1310 splx(s); 1311 continue; 1312 } 1313 1314 /* 1315 * The I/O we are constructing cannot cross a physical 1316 * disk boundry in the swap stripe. Note: we are still 1317 * at splvm(). 1318 */ 1319 if ((blk ^ (blk + n)) & dmmax_mask) { 1320 j = ((blk + dmmax) & dmmax_mask) - blk; 1321 swp_pager_freeswapspace(blk + j, n - j); 1322 n = j; 1323 } 1324 1325 /* 1326 * All I/O parameters have been satisfied, build the I/O 1327 * request and assign the swap space. 1328 * 1329 * NOTE: B_PAGING is set by pbgetvp() 1330 */ 1331 1332 if (sync == TRUE) { 1333 bp = getpbuf(&nsw_wcount_sync); 1334 bp->b_flags = B_CALL; 1335 } else { 1336 bp = getpbuf(&nsw_wcount_async); 1337 bp->b_flags = B_CALL | B_ASYNC; 1338 } 1339 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1340 1341 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1342 1343 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1344 bp->b_bcount = PAGE_SIZE * n; 1345 bp->b_bufsize = PAGE_SIZE * n; 1346 bp->b_blkno = blk; 1347 1348 crhold(bp->b_rcred); 1349 crhold(bp->b_wcred); 1350 1351 pbgetvp(swapdev_vp, bp); 1352 1353 for (j = 0; j < n; ++j) { 1354 vm_page_t mreq = m[i+j]; 1355 1356 swp_pager_meta_build( 1357 mreq->object, 1358 mreq->pindex, 1359 blk + j 1360 ); 1361 vm_page_dirty(mreq); 1362 rtvals[i+j] = VM_PAGER_OK; 1363 1364 vm_page_flag_set(mreq, PG_SWAPINPROG); 1365 bp->b_pages[j] = mreq; 1366 } 1367 bp->b_npages = n; 1368 /* 1369 * Must set dirty range for NFS to work. 1370 */ 1371 bp->b_dirtyoff = 0; 1372 bp->b_dirtyend = bp->b_bcount; 1373 1374 cnt.v_swapout++; 1375 cnt.v_swappgsout += bp->b_npages; 1376 swapdev_vp->v_numoutput++; 1377 1378 splx(s); 1379 1380 /* 1381 * asynchronous 1382 * 1383 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1384 */ 1385 1386 if (sync == FALSE) { 1387 bp->b_iodone = swp_pager_async_iodone; 1388 BUF_KERNPROC(bp); 1389 VOP_STRATEGY(bp->b_vp, bp); 1390 1391 for (j = 0; j < n; ++j) 1392 rtvals[i+j] = VM_PAGER_PEND; 1393 continue; 1394 } 1395 1396 /* 1397 * synchronous 1398 * 1399 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1400 */ 1401 1402 bp->b_iodone = swp_pager_sync_iodone; 1403 VOP_STRATEGY(bp->b_vp, bp); 1404 1405 /* 1406 * Wait for the sync I/O to complete, then update rtvals. 1407 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1408 * our async completion routine at the end, thus avoiding a 1409 * double-free. 1410 */ 1411 s = splbio(); 1412 1413 while ((bp->b_flags & B_DONE) == 0) { 1414 tsleep(bp, PVM, "swwrt", 0); 1415 } 1416 1417 for (j = 0; j < n; ++j) 1418 rtvals[i+j] = VM_PAGER_PEND; 1419 1420 /* 1421 * Now that we are through with the bp, we can call the 1422 * normal async completion, which frees everything up. 1423 */ 1424 1425 swp_pager_async_iodone(bp); 1426 1427 splx(s); 1428 } 1429 } 1430 1431 /* 1432 * swap_pager_sync_iodone: 1433 * 1434 * Completion routine for synchronous reads and writes from/to swap. 1435 * We just mark the bp is complete and wake up anyone waiting on it. 1436 * 1437 * This routine may not block. This routine is called at splbio() or better. 1438 */ 1439 1440 static void 1441 swp_pager_sync_iodone(bp) 1442 struct buf *bp; 1443 { 1444 bp->b_flags |= B_DONE; 1445 bp->b_flags &= ~B_ASYNC; 1446 wakeup(bp); 1447 } 1448 1449 /* 1450 * swp_pager_async_iodone: 1451 * 1452 * Completion routine for asynchronous reads and writes from/to swap. 1453 * Also called manually by synchronous code to finish up a bp. 1454 * 1455 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1456 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1457 * unbusy all pages except the 'main' request page. For WRITE 1458 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1459 * because we marked them all VM_PAGER_PEND on return from putpages ). 1460 * 1461 * This routine may not block. 1462 * This routine is called at splbio() or better 1463 * 1464 * We up ourselves to splvm() as required for various vm_page related 1465 * calls. 1466 */ 1467 1468 static void 1469 swp_pager_async_iodone(bp) 1470 register struct buf *bp; 1471 { 1472 int s; 1473 int i; 1474 vm_object_t object = NULL; 1475 1476 bp->b_flags |= B_DONE; 1477 1478 /* 1479 * report error 1480 */ 1481 1482 if (bp->b_flags & B_ERROR) { 1483 printf( 1484 "swap_pager: I/O error - %s failed; blkno %ld," 1485 "size %ld, error %d\n", 1486 ((bp->b_flags & B_READ) ? "pagein" : "pageout"), 1487 (long)bp->b_blkno, 1488 (long)bp->b_bcount, 1489 bp->b_error 1490 ); 1491 } 1492 1493 /* 1494 * set object, raise to splvm(). 1495 */ 1496 1497 if (bp->b_npages) 1498 object = bp->b_pages[0]->object; 1499 s = splvm(); 1500 1501 /* 1502 * remove the mapping for kernel virtual 1503 */ 1504 1505 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1506 1507 /* 1508 * cleanup pages. If an error occurs writing to swap, we are in 1509 * very serious trouble. If it happens to be a disk error, though, 1510 * we may be able to recover by reassigning the swap later on. So 1511 * in this case we remove the m->swapblk assignment for the page 1512 * but do not free it in the rlist. The errornous block(s) are thus 1513 * never reallocated as swap. Redirty the page and continue. 1514 */ 1515 1516 for (i = 0; i < bp->b_npages; ++i) { 1517 vm_page_t m = bp->b_pages[i]; 1518 1519 vm_page_flag_clear(m, PG_SWAPINPROG); 1520 1521 if (bp->b_flags & B_ERROR) { 1522 /* 1523 * If an error occurs I'd love to throw the swapblk 1524 * away without freeing it back to swapspace, so it 1525 * can never be used again. But I can't from an 1526 * interrupt. 1527 */ 1528 1529 if (bp->b_flags & B_READ) { 1530 /* 1531 * When reading, reqpage needs to stay 1532 * locked for the parent, but all other 1533 * pages can be freed. We still want to 1534 * wakeup the parent waiting on the page, 1535 * though. ( also: pg_reqpage can be -1 and 1536 * not match anything ). 1537 * 1538 * We have to wake specifically requested pages 1539 * up too because we cleared PG_SWAPINPROG and 1540 * someone may be waiting for that. 1541 * 1542 * NOTE: for reads, m->dirty will probably 1543 * be overriden by the original caller of 1544 * getpages so don't play cute tricks here. 1545 * 1546 * XXX it may not be legal to free the page 1547 * here as this messes with the object->memq's. 1548 */ 1549 1550 m->valid = 0; 1551 vm_page_flag_clear(m, PG_ZERO); 1552 1553 if (i != bp->b_pager.pg_reqpage) 1554 vm_page_free(m); 1555 else 1556 vm_page_flash(m); 1557 /* 1558 * If i == bp->b_pager.pg_reqpage, do not wake 1559 * the page up. The caller needs to. 1560 */ 1561 } else { 1562 /* 1563 * If a write error occurs, reactivate page 1564 * so it doesn't clog the inactive list, 1565 * then finish the I/O. 1566 */ 1567 vm_page_dirty(m); 1568 vm_page_activate(m); 1569 vm_page_io_finish(m); 1570 } 1571 } else if (bp->b_flags & B_READ) { 1572 /* 1573 * For read success, clear dirty bits. Nobody should 1574 * have this page mapped but don't take any chances, 1575 * make sure the pmap modify bits are also cleared. 1576 * 1577 * NOTE: for reads, m->dirty will probably be 1578 * overriden by the original caller of getpages so 1579 * we cannot set them in order to free the underlying 1580 * swap in a low-swap situation. I don't think we'd 1581 * want to do that anyway, but it was an optimization 1582 * that existed in the old swapper for a time before 1583 * it got ripped out due to precisely this problem. 1584 * 1585 * clear PG_ZERO in page. 1586 * 1587 * If not the requested page then deactivate it. 1588 * 1589 * Note that the requested page, reqpage, is left 1590 * busied, but we still have to wake it up. The 1591 * other pages are released (unbusied) by 1592 * vm_page_wakeup(). We do not set reqpage's 1593 * valid bits here, it is up to the caller. 1594 */ 1595 1596 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1597 m->valid = VM_PAGE_BITS_ALL; 1598 vm_page_undirty(m); 1599 vm_page_flag_clear(m, PG_ZERO); 1600 1601 /* 1602 * We have to wake specifically requested pages 1603 * up too because we cleared PG_SWAPINPROG and 1604 * could be waiting for it in getpages. However, 1605 * be sure to not unbusy getpages specifically 1606 * requested page - getpages expects it to be 1607 * left busy. 1608 */ 1609 if (i != bp->b_pager.pg_reqpage) { 1610 vm_page_deactivate(m); 1611 vm_page_wakeup(m); 1612 } else { 1613 vm_page_flash(m); 1614 } 1615 } else { 1616 /* 1617 * For write success, clear the modify and dirty 1618 * status, then finish the I/O ( which decrements the 1619 * busy count and possibly wakes waiter's up ). 1620 */ 1621 vm_page_protect(m, VM_PROT_READ); 1622 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1623 vm_page_undirty(m); 1624 vm_page_io_finish(m); 1625 } 1626 } 1627 1628 /* 1629 * adjust pip. NOTE: the original parent may still have its own 1630 * pip refs on the object. 1631 */ 1632 1633 if (object) 1634 vm_object_pip_wakeupn(object, bp->b_npages); 1635 1636 /* 1637 * release the physical I/O buffer 1638 */ 1639 1640 relpbuf( 1641 bp, 1642 ((bp->b_flags & B_READ) ? &nsw_rcount : 1643 ((bp->b_flags & B_ASYNC) ? 1644 &nsw_wcount_async : 1645 &nsw_wcount_sync 1646 ) 1647 ) 1648 ); 1649 splx(s); 1650 } 1651 1652 /************************************************************************ 1653 * SWAP META DATA * 1654 ************************************************************************ 1655 * 1656 * These routines manipulate the swap metadata stored in the 1657 * OBJT_SWAP object. All swp_*() routines must be called at 1658 * splvm() because swap can be freed up by the low level vm_page 1659 * code which might be called from interrupts beyond what splbio() covers. 1660 * 1661 * Swap metadata is implemented with a global hash and not directly 1662 * linked into the object. Instead the object simply contains 1663 * appropriate tracking counters. 1664 */ 1665 1666 /* 1667 * SWP_PAGER_HASH() - hash swap meta data 1668 * 1669 * This is an inline helper function which hashes the swapblk given 1670 * the object and page index. It returns a pointer to a pointer 1671 * to the object, or a pointer to a NULL pointer if it could not 1672 * find a swapblk. 1673 * 1674 * This routine must be called at splvm(). 1675 */ 1676 1677 static __inline struct swblock ** 1678 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1679 { 1680 struct swblock **pswap; 1681 struct swblock *swap; 1682 1683 index &= ~SWAP_META_MASK; 1684 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1685 1686 while ((swap = *pswap) != NULL) { 1687 if (swap->swb_object == object && 1688 swap->swb_index == index 1689 ) { 1690 break; 1691 } 1692 pswap = &swap->swb_hnext; 1693 } 1694 return(pswap); 1695 } 1696 1697 /* 1698 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1699 * 1700 * We first convert the object to a swap object if it is a default 1701 * object. 1702 * 1703 * The specified swapblk is added to the object's swap metadata. If 1704 * the swapblk is not valid, it is freed instead. Any previously 1705 * assigned swapblk is freed. 1706 * 1707 * This routine must be called at splvm(), except when used to convert 1708 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1709 1710 */ 1711 1712 static void 1713 swp_pager_meta_build( 1714 vm_object_t object, 1715 vm_pindex_t index, 1716 daddr_t swapblk 1717 ) { 1718 struct swblock *swap; 1719 struct swblock **pswap; 1720 1721 /* 1722 * Convert default object to swap object if necessary 1723 */ 1724 1725 if (object->type != OBJT_SWAP) { 1726 object->type = OBJT_SWAP; 1727 object->un_pager.swp.swp_bcount = 0; 1728 1729 if (object->handle != NULL) { 1730 TAILQ_INSERT_TAIL( 1731 NOBJLIST(object->handle), 1732 object, 1733 pager_object_list 1734 ); 1735 } else { 1736 TAILQ_INSERT_TAIL( 1737 &swap_pager_un_object_list, 1738 object, 1739 pager_object_list 1740 ); 1741 } 1742 } 1743 1744 /* 1745 * Locate hash entry. If not found create, but if we aren't adding 1746 * anything just return. If we run out of space in the map we wait 1747 * and, since the hash table may have changed, retry. 1748 */ 1749 1750 retry: 1751 pswap = swp_pager_hash(object, index); 1752 1753 if ((swap = *pswap) == NULL) { 1754 int i; 1755 1756 if (swapblk == SWAPBLK_NONE) 1757 return; 1758 1759 swap = *pswap = zalloc(swap_zone); 1760 if (swap == NULL) { 1761 VM_WAIT; 1762 goto retry; 1763 } 1764 swap->swb_hnext = NULL; 1765 swap->swb_object = object; 1766 swap->swb_index = index & ~SWAP_META_MASK; 1767 swap->swb_count = 0; 1768 1769 ++object->un_pager.swp.swp_bcount; 1770 1771 for (i = 0; i < SWAP_META_PAGES; ++i) 1772 swap->swb_pages[i] = SWAPBLK_NONE; 1773 } 1774 1775 /* 1776 * Delete prior contents of metadata 1777 */ 1778 1779 index &= SWAP_META_MASK; 1780 1781 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1782 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1783 --swap->swb_count; 1784 } 1785 1786 /* 1787 * Enter block into metadata 1788 */ 1789 1790 swap->swb_pages[index] = swapblk; 1791 if (swapblk != SWAPBLK_NONE) 1792 ++swap->swb_count; 1793 } 1794 1795 /* 1796 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1797 * 1798 * The requested range of blocks is freed, with any associated swap 1799 * returned to the swap bitmap. 1800 * 1801 * This routine will free swap metadata structures as they are cleaned 1802 * out. This routine does *NOT* operate on swap metadata associated 1803 * with resident pages. 1804 * 1805 * This routine must be called at splvm() 1806 */ 1807 1808 static void 1809 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1810 { 1811 if (object->type != OBJT_SWAP) 1812 return; 1813 1814 while (count > 0) { 1815 struct swblock **pswap; 1816 struct swblock *swap; 1817 1818 pswap = swp_pager_hash(object, index); 1819 1820 if ((swap = *pswap) != NULL) { 1821 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1822 1823 if (v != SWAPBLK_NONE) { 1824 swp_pager_freeswapspace(v, 1); 1825 swap->swb_pages[index & SWAP_META_MASK] = 1826 SWAPBLK_NONE; 1827 if (--swap->swb_count == 0) { 1828 *pswap = swap->swb_hnext; 1829 zfree(swap_zone, swap); 1830 --object->un_pager.swp.swp_bcount; 1831 } 1832 } 1833 --count; 1834 ++index; 1835 } else { 1836 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1837 count -= n; 1838 index += n; 1839 } 1840 } 1841 } 1842 1843 /* 1844 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1845 * 1846 * This routine locates and destroys all swap metadata associated with 1847 * an object. 1848 * 1849 * This routine must be called at splvm() 1850 */ 1851 1852 static void 1853 swp_pager_meta_free_all(vm_object_t object) 1854 { 1855 daddr_t index = 0; 1856 1857 if (object->type != OBJT_SWAP) 1858 return; 1859 1860 while (object->un_pager.swp.swp_bcount) { 1861 struct swblock **pswap; 1862 struct swblock *swap; 1863 1864 pswap = swp_pager_hash(object, index); 1865 if ((swap = *pswap) != NULL) { 1866 int i; 1867 1868 for (i = 0; i < SWAP_META_PAGES; ++i) { 1869 daddr_t v = swap->swb_pages[i]; 1870 if (v != SWAPBLK_NONE) { 1871 #if !defined(MAX_PERF) 1872 --swap->swb_count; 1873 #endif 1874 swp_pager_freeswapspace(v, 1); 1875 } 1876 } 1877 #if !defined(MAX_PERF) 1878 if (swap->swb_count != 0) 1879 panic("swap_pager_meta_free_all: swb_count != 0"); 1880 #endif 1881 *pswap = swap->swb_hnext; 1882 zfree(swap_zone, swap); 1883 --object->un_pager.swp.swp_bcount; 1884 } 1885 index += SWAP_META_PAGES; 1886 #if !defined(MAX_PERF) 1887 if (index > 0x20000000) 1888 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1889 #endif 1890 } 1891 } 1892 1893 /* 1894 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1895 * 1896 * This routine is capable of looking up, popping, or freeing 1897 * swapblk assignments in the swap meta data or in the vm_page_t. 1898 * The routine typically returns the swapblk being looked-up, or popped, 1899 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1900 * was invalid. This routine will automatically free any invalid 1901 * meta-data swapblks. 1902 * 1903 * It is not possible to store invalid swapblks in the swap meta data 1904 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1905 * 1906 * When acting on a busy resident page and paging is in progress, we 1907 * have to wait until paging is complete but otherwise can act on the 1908 * busy page. 1909 * 1910 * This routine must be called at splvm(). 1911 * 1912 * SWM_FREE remove and free swap block from metadata 1913 * SWM_POP remove from meta data but do not free.. pop it out 1914 */ 1915 1916 static daddr_t 1917 swp_pager_meta_ctl( 1918 vm_object_t object, 1919 vm_pindex_t index, 1920 int flags 1921 ) { 1922 struct swblock **pswap; 1923 struct swblock *swap; 1924 daddr_t r1; 1925 1926 /* 1927 * The meta data only exists of the object is OBJT_SWAP 1928 * and even then might not be allocated yet. 1929 */ 1930 1931 if (object->type != OBJT_SWAP) 1932 return(SWAPBLK_NONE); 1933 1934 r1 = SWAPBLK_NONE; 1935 pswap = swp_pager_hash(object, index); 1936 1937 if ((swap = *pswap) != NULL) { 1938 index &= SWAP_META_MASK; 1939 r1 = swap->swb_pages[index]; 1940 1941 if (r1 != SWAPBLK_NONE) { 1942 if (flags & SWM_FREE) { 1943 swp_pager_freeswapspace(r1, 1); 1944 r1 = SWAPBLK_NONE; 1945 } 1946 if (flags & (SWM_FREE|SWM_POP)) { 1947 swap->swb_pages[index] = SWAPBLK_NONE; 1948 if (--swap->swb_count == 0) { 1949 *pswap = swap->swb_hnext; 1950 zfree(swap_zone, swap); 1951 --object->un_pager.swp.swp_bcount; 1952 } 1953 } 1954 } 1955 } 1956 return(r1); 1957 } 1958 1959