xref: /freebsd/sys/vm/swap_pager.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 #include <sys/sx.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/swap_pager.h>
101 #include <vm/vm_extern.h>
102 #include <vm/uma.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 int swap_pager_full;		/* swap space exhaustion (task killing) */
108 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
109 static int nsw_rcount;		/* free read buffers			*/
110 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
111 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
112 static int nsw_wcount_async_max;/* assigned maximum			*/
113 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
114 
115 struct blist *swapblist;
116 static struct swblock **swhash;
117 static int swhash_mask;
118 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
119 static struct sx sw_alloc_sx;
120 
121 
122 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
123         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
124 
125 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
126 
127 /*
128  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
129  * of searching a named list by hashing it just a little.
130  */
131 
132 #define NOBJLISTS		8
133 
134 #define NOBJLIST(handle)	\
135 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
136 
137 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
138 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
139 struct pagerlst		swap_pager_un_object_list;
140 uma_zone_t		swap_zone;
141 
142 /*
143  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
144  * calls hooked from other parts of the VM system and do not appear here.
145  * (see vm/swap_pager.h).
146  */
147 static vm_object_t
148 		swap_pager_alloc(void *handle, vm_ooffset_t size,
149 				      vm_prot_t prot, vm_ooffset_t offset);
150 static void	swap_pager_dealloc(vm_object_t object);
151 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
152 static void	swap_pager_init(void);
153 static void	swap_pager_unswapped(vm_page_t);
154 static void	swap_pager_strategy(vm_object_t, struct bio *);
155 
156 struct pagerops swappagerops = {
157 	swap_pager_init,	/* early system initialization of pager	*/
158 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
159 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
160 	swap_pager_getpages,	/* pagein				*/
161 	swap_pager_putpages,	/* pageout				*/
162 	swap_pager_haspage,	/* get backing store status for page	*/
163 	swap_pager_unswapped,	/* remove swap related to page		*/
164 	swap_pager_strategy	/* pager strategy call			*/
165 };
166 
167 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
168 static void flushchainbuf(struct buf *nbp);
169 static void waitchainbuf(struct bio *bp, int count, int done);
170 
171 /*
172  * dmmax is in page-sized chunks with the new swap system.  It was
173  * dev-bsized chunks in the old.  dmmax is always a power of 2.
174  *
175  * swap_*() routines are externally accessible.  swp_*() routines are
176  * internal.
177  */
178 int dmmax, dmmax_mask;
179 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
180 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
181 
182 SYSCTL_INT(_vm, OID_AUTO, dmmax,
183 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
184 
185 static __inline void	swp_sizecheck(void);
186 static void	swp_pager_sync_iodone(struct buf *bp);
187 static void	swp_pager_async_iodone(struct buf *bp);
188 
189 /*
190  * Swap bitmap functions
191  */
192 static __inline void	swp_pager_freeswapspace(daddr_t blk, int npages);
193 static __inline daddr_t	swp_pager_getswapspace(int npages);
194 
195 /*
196  * Metadata functions
197  */
198 static __inline struct swblock **
199     swp_pager_hash(vm_object_t object, vm_pindex_t index);
200 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
201 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
202 static void swp_pager_meta_free_all(vm_object_t);
203 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
204 
205 /*
206  * SWP_SIZECHECK() -	update swap_pager_full indication
207  *
208  *	update the swap_pager_almost_full indication and warn when we are
209  *	about to run out of swap space, using lowat/hiwat hysteresis.
210  *
211  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
212  *
213  *	No restrictions on call
214  *	This routine may not block.
215  *	This routine must be called at splvm()
216  */
217 static __inline void
218 swp_sizecheck()
219 {
220 	GIANT_REQUIRED;
221 
222 	if (vm_swap_size < nswap_lowat) {
223 		if (swap_pager_almost_full == 0) {
224 			printf("swap_pager: out of swap space\n");
225 			swap_pager_almost_full = 1;
226 		}
227 	} else {
228 		swap_pager_full = 0;
229 		if (vm_swap_size > nswap_hiwat)
230 			swap_pager_almost_full = 0;
231 	}
232 }
233 
234 /*
235  * SWAP_PAGER_INIT() -	initialize the swap pager!
236  *
237  *	Expected to be started from system init.  NOTE:  This code is run
238  *	before much else so be careful what you depend on.  Most of the VM
239  *	system has yet to be initialized at this point.
240  */
241 static void
242 swap_pager_init()
243 {
244 	/*
245 	 * Initialize object lists
246 	 */
247 	int i;
248 
249 	for (i = 0; i < NOBJLISTS; ++i)
250 		TAILQ_INIT(&swap_pager_object_list[i]);
251 	TAILQ_INIT(&swap_pager_un_object_list);
252 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
253 
254 	/*
255 	 * Device Stripe, in PAGE_SIZE'd blocks
256 	 */
257 	dmmax = SWB_NPAGES * 2;
258 	dmmax_mask = ~(dmmax - 1);
259 }
260 
261 /*
262  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
263  *
264  *	Expected to be started from pageout process once, prior to entering
265  *	its main loop.
266  */
267 void
268 swap_pager_swap_init()
269 {
270 	int n, n2;
271 
272 	/*
273 	 * Number of in-transit swap bp operations.  Don't
274 	 * exhaust the pbufs completely.  Make sure we
275 	 * initialize workable values (0 will work for hysteresis
276 	 * but it isn't very efficient).
277 	 *
278 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
279 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
280 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
281 	 * constrained by the swap device interleave stripe size.
282 	 *
283 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
284 	 * designed to prevent other I/O from having high latencies due to
285 	 * our pageout I/O.  The value 4 works well for one or two active swap
286 	 * devices but is probably a little low if you have more.  Even so,
287 	 * a higher value would probably generate only a limited improvement
288 	 * with three or four active swap devices since the system does not
289 	 * typically have to pageout at extreme bandwidths.   We will want
290 	 * at least 2 per swap devices, and 4 is a pretty good value if you
291 	 * have one NFS swap device due to the command/ack latency over NFS.
292 	 * So it all works out pretty well.
293 	 */
294 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
295 
296 	mtx_lock(&pbuf_mtx);
297 	nsw_rcount = (nswbuf + 1) / 2;
298 	nsw_wcount_sync = (nswbuf + 3) / 4;
299 	nsw_wcount_async = 4;
300 	nsw_wcount_async_max = nsw_wcount_async;
301 	mtx_unlock(&pbuf_mtx);
302 
303 	/*
304 	 * Initialize our zone.  Right now I'm just guessing on the number
305 	 * we need based on the number of pages in the system.  Each swblock
306 	 * can hold 16 pages, so this is probably overkill.  This reservation
307 	 * is typically limited to around 32MB by default.
308 	 */
309 	n = cnt.v_page_count / 2;
310 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
311 		n = maxswzone / sizeof(struct swblock);
312 	n2 = n;
313 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
314 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 	do {
316 		if (uma_zone_set_obj(swap_zone, NULL, n))
317 			break;
318 		/*
319 		 * if the allocation failed, try a zone two thirds the
320 		 * size of the previous attempt.
321 		 */
322 		n -= ((n + 2) / 3);
323 	} while (n > 0);
324 	if (swap_zone == NULL)
325 		panic("failed to create swap_zone.");
326 	if (n2 != n)
327 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
328 	n2 = n;
329 
330 	/*
331 	 * Initialize our meta-data hash table.  The swapper does not need to
332 	 * be quite as efficient as the VM system, so we do not use an
333 	 * oversized hash table.
334 	 *
335 	 * 	n: 		size of hash table, must be power of 2
336 	 *	swhash_mask:	hash table index mask
337 	 */
338 	for (n = 1; n < n2 / 8; n *= 2)
339 		;
340 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
341 	swhash_mask = n - 1;
342 }
343 
344 /*
345  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
346  *			its metadata structures.
347  *
348  *	This routine is called from the mmap and fork code to create a new
349  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
350  *	and then converting it with swp_pager_meta_build().
351  *
352  *	This routine may block in vm_object_allocate() and create a named
353  *	object lookup race, so we must interlock.   We must also run at
354  *	splvm() for the object lookup to handle races with interrupts, but
355  *	we do not have to maintain splvm() in between the lookup and the
356  *	add because (I believe) it is not possible to attempt to create
357  *	a new swap object w/handle when a default object with that handle
358  *	already exists.
359  *
360  * MPSAFE
361  */
362 static vm_object_t
363 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
364 		 vm_ooffset_t offset)
365 {
366 	vm_object_t object;
367 
368 	mtx_lock(&Giant);
369 	if (handle) {
370 		/*
371 		 * Reference existing named region or allocate new one.  There
372 		 * should not be a race here against swp_pager_meta_build()
373 		 * as called from vm_page_remove() in regards to the lookup
374 		 * of the handle.
375 		 */
376 		sx_xlock(&sw_alloc_sx);
377 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
378 
379 		if (object != NULL) {
380 			vm_object_reference(object);
381 		} else {
382 			object = vm_object_allocate(OBJT_DEFAULT,
383 				OFF_TO_IDX(offset + PAGE_MASK + size));
384 			object->handle = handle;
385 
386 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
387 		}
388 		sx_xunlock(&sw_alloc_sx);
389 	} else {
390 		object = vm_object_allocate(OBJT_DEFAULT,
391 			OFF_TO_IDX(offset + PAGE_MASK + size));
392 
393 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
394 	}
395 	mtx_unlock(&Giant);
396 	return (object);
397 }
398 
399 /*
400  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
401  *
402  *	The swap backing for the object is destroyed.  The code is
403  *	designed such that we can reinstantiate it later, but this
404  *	routine is typically called only when the entire object is
405  *	about to be destroyed.
406  *
407  *	This routine may block, but no longer does.
408  *
409  *	The object must be locked or unreferenceable.
410  */
411 static void
412 swap_pager_dealloc(object)
413 	vm_object_t object;
414 {
415 	int s;
416 
417 	GIANT_REQUIRED;
418 
419 	/*
420 	 * Remove from list right away so lookups will fail if we block for
421 	 * pageout completion.
422 	 */
423 	mtx_lock(&sw_alloc_mtx);
424 	if (object->handle == NULL) {
425 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
426 	} else {
427 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
428 	}
429 	mtx_unlock(&sw_alloc_mtx);
430 
431 	VM_OBJECT_LOCK(object);
432 	vm_object_pip_wait(object, "swpdea");
433 	VM_OBJECT_UNLOCK(object);
434 
435 	/*
436 	 * Free all remaining metadata.  We only bother to free it from
437 	 * the swap meta data.  We do not attempt to free swapblk's still
438 	 * associated with vm_page_t's for this object.  We do not care
439 	 * if paging is still in progress on some objects.
440 	 */
441 	s = splvm();
442 	swp_pager_meta_free_all(object);
443 	splx(s);
444 }
445 
446 /************************************************************************
447  *			SWAP PAGER BITMAP ROUTINES			*
448  ************************************************************************/
449 
450 /*
451  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
452  *
453  *	Allocate swap for the requested number of pages.  The starting
454  *	swap block number (a page index) is returned or SWAPBLK_NONE
455  *	if the allocation failed.
456  *
457  *	Also has the side effect of advising that somebody made a mistake
458  *	when they configured swap and didn't configure enough.
459  *
460  *	Must be called at splvm() to avoid races with bitmap frees from
461  *	vm_page_remove() aka swap_pager_page_removed().
462  *
463  *	This routine may not block
464  *	This routine must be called at splvm().
465  */
466 static __inline daddr_t
467 swp_pager_getswapspace(npages)
468 	int npages;
469 {
470 	daddr_t blk;
471 
472 	GIANT_REQUIRED;
473 
474 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
475 		if (swap_pager_full != 2) {
476 			printf("swap_pager_getswapspace: failed\n");
477 			swap_pager_full = 2;
478 			swap_pager_almost_full = 1;
479 		}
480 	} else {
481 		vm_swap_size -= npages;
482 		/* per-swap area stats */
483 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
484 		swp_sizecheck();
485 	}
486 	return (blk);
487 }
488 
489 /*
490  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
491  *
492  *	This routine returns the specified swap blocks back to the bitmap.
493  *
494  *	Note:  This routine may not block (it could in the old swap code),
495  *	and through the use of the new blist routines it does not block.
496  *
497  *	We must be called at splvm() to avoid races with bitmap frees from
498  *	vm_page_remove() aka swap_pager_page_removed().
499  *
500  *	This routine may not block
501  *	This routine must be called at splvm().
502  */
503 static __inline void
504 swp_pager_freeswapspace(blk, npages)
505 	daddr_t blk;
506 	int npages;
507 {
508 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
509 
510 	GIANT_REQUIRED;
511 
512 	/* per-swap area stats */
513 	sp->sw_used -= npages;
514 
515 	/*
516 	 * If we are attempting to stop swapping on this device, we
517 	 * don't want to mark any blocks free lest they be reused.
518 	 */
519 	if (sp->sw_flags & SW_CLOSING)
520 		return;
521 
522 	blist_free(swapblist, blk, npages);
523 	vm_swap_size += npages;
524 	swp_sizecheck();
525 }
526 
527 /*
528  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
529  *				range within an object.
530  *
531  *	This is a globally accessible routine.
532  *
533  *	This routine removes swapblk assignments from swap metadata.
534  *
535  *	The external callers of this routine typically have already destroyed
536  *	or renamed vm_page_t's associated with this range in the object so
537  *	we should be ok.
538  *
539  *	This routine may be called at any spl.  We up our spl to splvm temporarily
540  *	in order to perform the metadata removal.
541  */
542 void
543 swap_pager_freespace(object, start, size)
544 	vm_object_t object;
545 	vm_pindex_t start;
546 	vm_size_t size;
547 {
548 	int s = splvm();
549 
550 	GIANT_REQUIRED;
551 	swp_pager_meta_free(object, start, size);
552 	splx(s);
553 }
554 
555 /*
556  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
557  *
558  *	Assigns swap blocks to the specified range within the object.  The
559  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
560  *
561  *	Returns 0 on success, -1 on failure.
562  */
563 int
564 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
565 {
566 	int s;
567 	int n = 0;
568 	daddr_t blk = SWAPBLK_NONE;
569 	vm_pindex_t beg = start;	/* save start index */
570 
571 	s = splvm();
572 	while (size) {
573 		if (n == 0) {
574 			n = BLIST_MAX_ALLOC;
575 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
576 				n >>= 1;
577 				if (n == 0) {
578 					swp_pager_meta_free(object, beg, start - beg);
579 					splx(s);
580 					return (-1);
581 				}
582 			}
583 		}
584 		swp_pager_meta_build(object, start, blk);
585 		--size;
586 		++start;
587 		++blk;
588 		--n;
589 	}
590 	swp_pager_meta_free(object, start, n);
591 	splx(s);
592 	return (0);
593 }
594 
595 /*
596  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
597  *			and destroy the source.
598  *
599  *	Copy any valid swapblks from the source to the destination.  In
600  *	cases where both the source and destination have a valid swapblk,
601  *	we keep the destination's.
602  *
603  *	This routine is allowed to block.  It may block allocating metadata
604  *	indirectly through swp_pager_meta_build() or if paging is still in
605  *	progress on the source.
606  *
607  *	This routine can be called at any spl
608  *
609  *	XXX vm_page_collapse() kinda expects us not to block because we
610  *	supposedly do not need to allocate memory, but for the moment we
611  *	*may* have to get a little memory from the zone allocator, but
612  *	it is taken from the interrupt memory.  We should be ok.
613  *
614  *	The source object contains no vm_page_t's (which is just as well)
615  *
616  *	The source object is of type OBJT_SWAP.
617  *
618  *	The source and destination objects must be locked or
619  *	inaccessible (XXX are they ?)
620  */
621 void
622 swap_pager_copy(srcobject, dstobject, offset, destroysource)
623 	vm_object_t srcobject;
624 	vm_object_t dstobject;
625 	vm_pindex_t offset;
626 	int destroysource;
627 {
628 	vm_pindex_t i;
629 	int s;
630 
631 	GIANT_REQUIRED;
632 
633 	s = splvm();
634 	/*
635 	 * If destroysource is set, we remove the source object from the
636 	 * swap_pager internal queue now.
637 	 */
638 	if (destroysource) {
639 		mtx_lock(&sw_alloc_mtx);
640 		if (srcobject->handle == NULL) {
641 			TAILQ_REMOVE(
642 			    &swap_pager_un_object_list,
643 			    srcobject,
644 			    pager_object_list
645 			);
646 		} else {
647 			TAILQ_REMOVE(
648 			    NOBJLIST(srcobject->handle),
649 			    srcobject,
650 			    pager_object_list
651 			);
652 		}
653 		mtx_unlock(&sw_alloc_mtx);
654 	}
655 
656 	/*
657 	 * transfer source to destination.
658 	 */
659 	for (i = 0; i < dstobject->size; ++i) {
660 		daddr_t dstaddr;
661 
662 		/*
663 		 * Locate (without changing) the swapblk on the destination,
664 		 * unless it is invalid in which case free it silently, or
665 		 * if the destination is a resident page, in which case the
666 		 * source is thrown away.
667 		 */
668 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
669 
670 		if (dstaddr == SWAPBLK_NONE) {
671 			/*
672 			 * Destination has no swapblk and is not resident,
673 			 * copy source.
674 			 */
675 			daddr_t srcaddr;
676 
677 			srcaddr = swp_pager_meta_ctl(
678 			    srcobject,
679 			    i + offset,
680 			    SWM_POP
681 			);
682 
683 			if (srcaddr != SWAPBLK_NONE)
684 				swp_pager_meta_build(dstobject, i, srcaddr);
685 		} else {
686 			/*
687 			 * Destination has valid swapblk or it is represented
688 			 * by a resident page.  We destroy the sourceblock.
689 			 */
690 
691 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
692 		}
693 	}
694 
695 	/*
696 	 * Free left over swap blocks in source.
697 	 *
698 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
699 	 * double-remove the object from the swap queues.
700 	 */
701 	if (destroysource) {
702 		swp_pager_meta_free_all(srcobject);
703 		/*
704 		 * Reverting the type is not necessary, the caller is going
705 		 * to destroy srcobject directly, but I'm doing it here
706 		 * for consistency since we've removed the object from its
707 		 * queues.
708 		 */
709 		srcobject->type = OBJT_DEFAULT;
710 	}
711 	splx(s);
712 }
713 
714 /*
715  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
716  *				the requested page.
717  *
718  *	We determine whether good backing store exists for the requested
719  *	page and return TRUE if it does, FALSE if it doesn't.
720  *
721  *	If TRUE, we also try to determine how much valid, contiguous backing
722  *	store exists before and after the requested page within a reasonable
723  *	distance.  We do not try to restrict it to the swap device stripe
724  *	(that is handled in getpages/putpages).  It probably isn't worth
725  *	doing here.
726  */
727 boolean_t
728 swap_pager_haspage(object, pindex, before, after)
729 	vm_object_t object;
730 	vm_pindex_t pindex;
731 	int *before;
732 	int *after;
733 {
734 	daddr_t blk0;
735 	int s;
736 
737 	/*
738 	 * do we have good backing store at the requested index ?
739 	 */
740 	s = splvm();
741 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
742 
743 	if (blk0 == SWAPBLK_NONE) {
744 		splx(s);
745 		if (before)
746 			*before = 0;
747 		if (after)
748 			*after = 0;
749 		return (FALSE);
750 	}
751 
752 	/*
753 	 * find backwards-looking contiguous good backing store
754 	 */
755 	if (before != NULL) {
756 		int i;
757 
758 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
759 			daddr_t blk;
760 
761 			if (i > pindex)
762 				break;
763 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
764 			if (blk != blk0 - i)
765 				break;
766 		}
767 		*before = (i - 1);
768 	}
769 
770 	/*
771 	 * find forward-looking contiguous good backing store
772 	 */
773 	if (after != NULL) {
774 		int i;
775 
776 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
777 			daddr_t blk;
778 
779 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
780 			if (blk != blk0 + i)
781 				break;
782 		}
783 		*after = (i - 1);
784 	}
785 	splx(s);
786 	return (TRUE);
787 }
788 
789 /*
790  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
791  *
792  *	This removes any associated swap backing store, whether valid or
793  *	not, from the page.
794  *
795  *	This routine is typically called when a page is made dirty, at
796  *	which point any associated swap can be freed.  MADV_FREE also
797  *	calls us in a special-case situation
798  *
799  *	NOTE!!!  If the page is clean and the swap was valid, the caller
800  *	should make the page dirty before calling this routine.  This routine
801  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
802  *	depends on it.
803  *
804  *	This routine may not block
805  *	This routine must be called at splvm()
806  */
807 static void
808 swap_pager_unswapped(m)
809 	vm_page_t m;
810 {
811 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
812 }
813 
814 /*
815  * SWAP_PAGER_STRATEGY() - read, write, free blocks
816  *
817  *	This implements the vm_pager_strategy() interface to swap and allows
818  *	other parts of the system to directly access swap as backing store
819  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
820  *	cacheless interface ( i.e. caching occurs at higher levels ).
821  *	Therefore we do not maintain any resident pages.  All I/O goes
822  *	directly to and from the swap device.
823  *
824  *	Note that b_blkno is scaled for PAGE_SIZE
825  *
826  *	We currently attempt to run I/O synchronously or asynchronously as
827  *	the caller requests.  This isn't perfect because we loose error
828  *	sequencing when we run multiple ops in parallel to satisfy a request.
829  *	But this is swap, so we let it all hang out.
830  */
831 static void
832 swap_pager_strategy(vm_object_t object, struct bio *bp)
833 {
834 	vm_pindex_t start;
835 	int count;
836 	int s;
837 	char *data;
838 	struct buf *nbp = NULL;
839 
840 	GIANT_REQUIRED;
841 
842 	/* XXX: KASSERT instead ? */
843 	if (bp->bio_bcount & PAGE_MASK) {
844 		biofinish(bp, NULL, EINVAL);
845 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
846 		return;
847 	}
848 
849 	/*
850 	 * Clear error indication, initialize page index, count, data pointer.
851 	 */
852 	bp->bio_error = 0;
853 	bp->bio_flags &= ~BIO_ERROR;
854 	bp->bio_resid = bp->bio_bcount;
855 	*(u_int *) &bp->bio_driver1 = 0;
856 
857 	start = bp->bio_pblkno;
858 	count = howmany(bp->bio_bcount, PAGE_SIZE);
859 	data = bp->bio_data;
860 
861 	s = splvm();
862 
863 	/*
864 	 * Deal with BIO_DELETE
865 	 */
866 	if (bp->bio_cmd == BIO_DELETE) {
867 		/*
868 		 * FREE PAGE(s) - destroy underlying swap that is no longer
869 		 *		  needed.
870 		 */
871 		swp_pager_meta_free(object, start, count);
872 		splx(s);
873 		bp->bio_resid = 0;
874 		biodone(bp);
875 		return;
876 	}
877 
878 	/*
879 	 * Execute read or write
880 	 */
881 	while (count > 0) {
882 		daddr_t blk;
883 
884 		/*
885 		 * Obtain block.  If block not found and writing, allocate a
886 		 * new block and build it into the object.
887 		 */
888 
889 		blk = swp_pager_meta_ctl(object, start, 0);
890 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
891 			blk = swp_pager_getswapspace(1);
892 			if (blk == SWAPBLK_NONE) {
893 				bp->bio_error = ENOMEM;
894 				bp->bio_flags |= BIO_ERROR;
895 				break;
896 			}
897 			swp_pager_meta_build(object, start, blk);
898 		}
899 
900 		/*
901 		 * Do we have to flush our current collection?  Yes if:
902 		 *
903 		 *	- no swap block at this index
904 		 *	- swap block is not contiguous
905 		 *	- we cross a physical disk boundry in the
906 		 *	  stripe.
907 		 */
908 		if (
909 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
910 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
911 		    )
912 		) {
913 			splx(s);
914 			if (bp->bio_cmd == BIO_READ) {
915 				++cnt.v_swapin;
916 				cnt.v_swappgsin += btoc(nbp->b_bcount);
917 			} else {
918 				++cnt.v_swapout;
919 				cnt.v_swappgsout += btoc(nbp->b_bcount);
920 				nbp->b_dirtyend = nbp->b_bcount;
921 			}
922 			flushchainbuf(nbp);
923 			s = splvm();
924 			nbp = NULL;
925 		}
926 
927 		/*
928 		 * Add new swapblk to nbp, instantiating nbp if necessary.
929 		 * Zero-fill reads are able to take a shortcut.
930 		 */
931 		if (blk == SWAPBLK_NONE) {
932 			/*
933 			 * We can only get here if we are reading.  Since
934 			 * we are at splvm() we can safely modify b_resid,
935 			 * even if chain ops are in progress.
936 			 */
937 			bzero(data, PAGE_SIZE);
938 			bp->bio_resid -= PAGE_SIZE;
939 		} else {
940 			if (nbp == NULL) {
941 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
942 				nbp->b_blkno = blk;
943 				nbp->b_bcount = 0;
944 				nbp->b_data = data;
945 			}
946 			nbp->b_bcount += PAGE_SIZE;
947 		}
948 		--count;
949 		++start;
950 		data += PAGE_SIZE;
951 	}
952 
953 	/*
954 	 *  Flush out last buffer
955 	 */
956 	splx(s);
957 
958 	if (nbp) {
959 		if (nbp->b_iocmd == BIO_READ) {
960 			++cnt.v_swapin;
961 			cnt.v_swappgsin += btoc(nbp->b_bcount);
962 		} else {
963 			++cnt.v_swapout;
964 			cnt.v_swappgsout += btoc(nbp->b_bcount);
965 			nbp->b_dirtyend = nbp->b_bcount;
966 		}
967 		flushchainbuf(nbp);
968 		/* nbp = NULL; */
969 	}
970 	/*
971 	 * Wait for completion.
972 	 */
973 	waitchainbuf(bp, 0, 1);
974 }
975 
976 /*
977  * SWAP_PAGER_GETPAGES() - bring pages in from swap
978  *
979  *	Attempt to retrieve (m, count) pages from backing store, but make
980  *	sure we retrieve at least m[reqpage].  We try to load in as large
981  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
982  *	belongs to the same object.
983  *
984  *	The code is designed for asynchronous operation and
985  *	immediate-notification of 'reqpage' but tends not to be
986  *	used that way.  Please do not optimize-out this algorithmic
987  *	feature, I intend to improve on it in the future.
988  *
989  *	The parent has a single vm_object_pip_add() reference prior to
990  *	calling us and we should return with the same.
991  *
992  *	The parent has BUSY'd the pages.  We should return with 'm'
993  *	left busy, but the others adjusted.
994  */
995 static int
996 swap_pager_getpages(object, m, count, reqpage)
997 	vm_object_t object;
998 	vm_page_t *m;
999 	int count, reqpage;
1000 {
1001 	struct buf *bp;
1002 	vm_page_t mreq;
1003 	int s;
1004 	int i;
1005 	int j;
1006 	daddr_t blk;
1007 	vm_pindex_t lastpindex;
1008 
1009 	GIANT_REQUIRED;
1010 
1011 	mreq = m[reqpage];
1012 
1013 	if (mreq->object != object) {
1014 		panic("swap_pager_getpages: object mismatch %p/%p",
1015 		    object,
1016 		    mreq->object
1017 		);
1018 	}
1019 	/*
1020 	 * Calculate range to retrieve.  The pages have already been assigned
1021 	 * their swapblks.  We require a *contiguous* range that falls entirely
1022 	 * within a single device stripe.   If we do not supply it, bad things
1023 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1024 	 * loops are set up such that the case(s) are handled implicitly.
1025 	 *
1026 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1027 	 * not need to be, but it will go a little faster if it is.
1028 	 */
1029 	s = splvm();
1030 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1031 
1032 	for (i = reqpage - 1; i >= 0; --i) {
1033 		daddr_t iblk;
1034 
1035 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1036 		if (blk != iblk + (reqpage - i))
1037 			break;
1038 		if ((blk ^ iblk) & dmmax_mask)
1039 			break;
1040 	}
1041 	++i;
1042 
1043 	for (j = reqpage + 1; j < count; ++j) {
1044 		daddr_t jblk;
1045 
1046 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1047 		if (blk != jblk - (j - reqpage))
1048 			break;
1049 		if ((blk ^ jblk) & dmmax_mask)
1050 			break;
1051 	}
1052 
1053 	/*
1054 	 * free pages outside our collection range.   Note: we never free
1055 	 * mreq, it must remain busy throughout.
1056 	 */
1057 	vm_page_lock_queues();
1058 	{
1059 		int k;
1060 
1061 		for (k = 0; k < i; ++k)
1062 			vm_page_free(m[k]);
1063 		for (k = j; k < count; ++k)
1064 			vm_page_free(m[k]);
1065 	}
1066 	vm_page_unlock_queues();
1067 	splx(s);
1068 
1069 
1070 	/*
1071 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1072 	 * still busy, but the others unbusied.
1073 	 */
1074 	if (blk == SWAPBLK_NONE)
1075 		return (VM_PAGER_FAIL);
1076 
1077 	/*
1078 	 * Get a swap buffer header to perform the IO
1079 	 */
1080 	bp = getpbuf(&nsw_rcount);
1081 
1082 	/*
1083 	 * map our page(s) into kva for input
1084 	 *
1085 	 * NOTE: B_PAGING is set by pbgetvp()
1086 	 */
1087 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1088 
1089 	bp->b_iocmd = BIO_READ;
1090 	bp->b_iodone = swp_pager_async_iodone;
1091 	bp->b_rcred = crhold(thread0.td_ucred);
1092 	bp->b_wcred = crhold(thread0.td_ucred);
1093 	bp->b_blkno = blk - (reqpage - i);
1094 	bp->b_bcount = PAGE_SIZE * (j - i);
1095 	bp->b_bufsize = PAGE_SIZE * (j - i);
1096 	bp->b_pager.pg_reqpage = reqpage - i;
1097 
1098 	vm_page_lock_queues();
1099 	{
1100 		int k;
1101 
1102 		for (k = i; k < j; ++k) {
1103 			bp->b_pages[k - i] = m[k];
1104 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1105 		}
1106 	}
1107 	vm_page_unlock_queues();
1108 	bp->b_npages = j - i;
1109 
1110 	pbgetvp(swapdev_vp, bp);
1111 
1112 	cnt.v_swapin++;
1113 	cnt.v_swappgsin += bp->b_npages;
1114 
1115 	/*
1116 	 * We still hold the lock on mreq, and our automatic completion routine
1117 	 * does not remove it.
1118 	 */
1119 	VM_OBJECT_LOCK(mreq->object);
1120 	vm_object_pip_add(mreq->object, bp->b_npages);
1121 	VM_OBJECT_UNLOCK(mreq->object);
1122 	lastpindex = m[j-1]->pindex;
1123 
1124 	/*
1125 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1126 	 * this point because we automatically release it on completion.
1127 	 * Instead, we look at the one page we are interested in which we
1128 	 * still hold a lock on even through the I/O completion.
1129 	 *
1130 	 * The other pages in our m[] array are also released on completion,
1131 	 * so we cannot assume they are valid anymore either.
1132 	 *
1133 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1134 	 */
1135 	BUF_KERNPROC(bp);
1136 	VOP_STRATEGY(bp->b_vp, bp);
1137 
1138 	/*
1139 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1140 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1141 	 * is set in the meta-data.
1142 	 */
1143 	s = splvm();
1144 	vm_page_lock_queues();
1145 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1146 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1147 		cnt.v_intrans++;
1148 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1149 			printf(
1150 			    "swap_pager: indefinite wait buffer: device:"
1151 				" %s, blkno: %ld, size: %ld\n",
1152 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1153 			    bp->b_bcount
1154 			);
1155 		}
1156 	}
1157 	vm_page_unlock_queues();
1158 	splx(s);
1159 
1160 	/*
1161 	 * mreq is left busied after completion, but all the other pages
1162 	 * are freed.  If we had an unrecoverable read error the page will
1163 	 * not be valid.
1164 	 */
1165 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1166 		return (VM_PAGER_ERROR);
1167 	} else {
1168 		return (VM_PAGER_OK);
1169 	}
1170 
1171 	/*
1172 	 * A final note: in a low swap situation, we cannot deallocate swap
1173 	 * and mark a page dirty here because the caller is likely to mark
1174 	 * the page clean when we return, causing the page to possibly revert
1175 	 * to all-zero's later.
1176 	 */
1177 }
1178 
1179 /*
1180  *	swap_pager_putpages:
1181  *
1182  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1183  *
1184  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1185  *	are automatically converted to SWAP objects.
1186  *
1187  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1188  *	vm_page reservation system coupled with properly written VFS devices
1189  *	should ensure that no low-memory deadlock occurs.  This is an area
1190  *	which needs work.
1191  *
1192  *	The parent has N vm_object_pip_add() references prior to
1193  *	calling us and will remove references for rtvals[] that are
1194  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1195  *	completion.
1196  *
1197  *	The parent has soft-busy'd the pages it passes us and will unbusy
1198  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1199  *	We need to unbusy the rest on I/O completion.
1200  */
1201 void
1202 swap_pager_putpages(object, m, count, sync, rtvals)
1203 	vm_object_t object;
1204 	vm_page_t *m;
1205 	int count;
1206 	boolean_t sync;
1207 	int *rtvals;
1208 {
1209 	int i;
1210 	int n = 0;
1211 
1212 	GIANT_REQUIRED;
1213 	if (count && m[0]->object != object) {
1214 		panic("swap_pager_getpages: object mismatch %p/%p",
1215 		    object,
1216 		    m[0]->object
1217 		);
1218 	}
1219 	/*
1220 	 * Step 1
1221 	 *
1222 	 * Turn object into OBJT_SWAP
1223 	 * check for bogus sysops
1224 	 * force sync if not pageout process
1225 	 */
1226 	if (object->type != OBJT_SWAP)
1227 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1228 
1229 	if (curproc != pageproc)
1230 		sync = TRUE;
1231 
1232 	/*
1233 	 * Step 2
1234 	 *
1235 	 * Update nsw parameters from swap_async_max sysctl values.
1236 	 * Do not let the sysop crash the machine with bogus numbers.
1237 	 */
1238 	mtx_lock(&pbuf_mtx);
1239 	if (swap_async_max != nsw_wcount_async_max) {
1240 		int n;
1241 		int s;
1242 
1243 		/*
1244 		 * limit range
1245 		 */
1246 		if ((n = swap_async_max) > nswbuf / 2)
1247 			n = nswbuf / 2;
1248 		if (n < 1)
1249 			n = 1;
1250 		swap_async_max = n;
1251 
1252 		/*
1253 		 * Adjust difference ( if possible ).  If the current async
1254 		 * count is too low, we may not be able to make the adjustment
1255 		 * at this time.
1256 		 */
1257 		s = splvm();
1258 		n -= nsw_wcount_async_max;
1259 		if (nsw_wcount_async + n >= 0) {
1260 			nsw_wcount_async += n;
1261 			nsw_wcount_async_max += n;
1262 			wakeup(&nsw_wcount_async);
1263 		}
1264 		splx(s);
1265 	}
1266 	mtx_unlock(&pbuf_mtx);
1267 
1268 	/*
1269 	 * Step 3
1270 	 *
1271 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1272 	 * The page is left dirty until the pageout operation completes
1273 	 * successfully.
1274 	 */
1275 	for (i = 0; i < count; i += n) {
1276 		int s;
1277 		int j;
1278 		struct buf *bp;
1279 		daddr_t blk;
1280 
1281 		/*
1282 		 * Maximum I/O size is limited by a number of factors.
1283 		 */
1284 		n = min(BLIST_MAX_ALLOC, count - i);
1285 		n = min(n, nsw_cluster_max);
1286 
1287 		s = splvm();
1288 
1289 		/*
1290 		 * Get biggest block of swap we can.  If we fail, fall
1291 		 * back and try to allocate a smaller block.  Don't go
1292 		 * overboard trying to allocate space if it would overly
1293 		 * fragment swap.
1294 		 */
1295 		while (
1296 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1297 		    n > 4
1298 		) {
1299 			n >>= 1;
1300 		}
1301 		if (blk == SWAPBLK_NONE) {
1302 			for (j = 0; j < n; ++j)
1303 				rtvals[i+j] = VM_PAGER_FAIL;
1304 			splx(s);
1305 			continue;
1306 		}
1307 
1308 		/*
1309 		 * The I/O we are constructing cannot cross a physical
1310 		 * disk boundry in the swap stripe.  Note: we are still
1311 		 * at splvm().
1312 		 */
1313 		if ((blk ^ (blk + n)) & dmmax_mask) {
1314 			j = ((blk + dmmax) & dmmax_mask) - blk;
1315 			swp_pager_freeswapspace(blk + j, n - j);
1316 			n = j;
1317 		}
1318 
1319 		/*
1320 		 * All I/O parameters have been satisfied, build the I/O
1321 		 * request and assign the swap space.
1322 		 *
1323 		 * NOTE: B_PAGING is set by pbgetvp()
1324 		 */
1325 		if (sync == TRUE) {
1326 			bp = getpbuf(&nsw_wcount_sync);
1327 		} else {
1328 			bp = getpbuf(&nsw_wcount_async);
1329 			bp->b_flags = B_ASYNC;
1330 		}
1331 		bp->b_iocmd = BIO_WRITE;
1332 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1333 
1334 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1335 
1336 		bp->b_rcred = crhold(thread0.td_ucred);
1337 		bp->b_wcred = crhold(thread0.td_ucred);
1338 		bp->b_bcount = PAGE_SIZE * n;
1339 		bp->b_bufsize = PAGE_SIZE * n;
1340 		bp->b_blkno = blk;
1341 
1342 		pbgetvp(swapdev_vp, bp);
1343 
1344 		for (j = 0; j < n; ++j) {
1345 			vm_page_t mreq = m[i+j];
1346 
1347 			swp_pager_meta_build(
1348 			    mreq->object,
1349 			    mreq->pindex,
1350 			    blk + j
1351 			);
1352 			vm_page_dirty(mreq);
1353 			rtvals[i+j] = VM_PAGER_OK;
1354 
1355 			vm_page_lock_queues();
1356 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1357 			vm_page_unlock_queues();
1358 			bp->b_pages[j] = mreq;
1359 		}
1360 		bp->b_npages = n;
1361 		/*
1362 		 * Must set dirty range for NFS to work.
1363 		 */
1364 		bp->b_dirtyoff = 0;
1365 		bp->b_dirtyend = bp->b_bcount;
1366 
1367 		cnt.v_swapout++;
1368 		cnt.v_swappgsout += bp->b_npages;
1369 		VI_LOCK(swapdev_vp);
1370 		swapdev_vp->v_numoutput++;
1371 		VI_UNLOCK(swapdev_vp);
1372 
1373 		splx(s);
1374 
1375 		/*
1376 		 * asynchronous
1377 		 *
1378 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1379 		 */
1380 		if (sync == FALSE) {
1381 			bp->b_iodone = swp_pager_async_iodone;
1382 			BUF_KERNPROC(bp);
1383 			VOP_STRATEGY(bp->b_vp, bp);
1384 
1385 			for (j = 0; j < n; ++j)
1386 				rtvals[i+j] = VM_PAGER_PEND;
1387 			/* restart outter loop */
1388 			continue;
1389 		}
1390 
1391 		/*
1392 		 * synchronous
1393 		 *
1394 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1395 		 */
1396 		bp->b_iodone = swp_pager_sync_iodone;
1397 		VOP_STRATEGY(bp->b_vp, bp);
1398 
1399 		/*
1400 		 * Wait for the sync I/O to complete, then update rtvals.
1401 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1402 		 * our async completion routine at the end, thus avoiding a
1403 		 * double-free.
1404 		 */
1405 		s = splbio();
1406 		while ((bp->b_flags & B_DONE) == 0) {
1407 			tsleep(bp, PVM, "swwrt", 0);
1408 		}
1409 		for (j = 0; j < n; ++j)
1410 			rtvals[i+j] = VM_PAGER_PEND;
1411 		/*
1412 		 * Now that we are through with the bp, we can call the
1413 		 * normal async completion, which frees everything up.
1414 		 */
1415 		swp_pager_async_iodone(bp);
1416 		splx(s);
1417 	}
1418 }
1419 
1420 /*
1421  *	swap_pager_sync_iodone:
1422  *
1423  *	Completion routine for synchronous reads and writes from/to swap.
1424  *	We just mark the bp is complete and wake up anyone waiting on it.
1425  *
1426  *	This routine may not block.  This routine is called at splbio() or better.
1427  */
1428 static void
1429 swp_pager_sync_iodone(bp)
1430 	struct buf *bp;
1431 {
1432 	bp->b_flags |= B_DONE;
1433 	bp->b_flags &= ~B_ASYNC;
1434 	wakeup(bp);
1435 }
1436 
1437 /*
1438  *	swp_pager_async_iodone:
1439  *
1440  *	Completion routine for asynchronous reads and writes from/to swap.
1441  *	Also called manually by synchronous code to finish up a bp.
1442  *
1443  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1444  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1445  *	unbusy all pages except the 'main' request page.  For WRITE
1446  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1447  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1448  *
1449  *	This routine may not block.
1450  *	This routine is called at splbio() or better
1451  *
1452  *	We up ourselves to splvm() as required for various vm_page related
1453  *	calls.
1454  */
1455 static void
1456 swp_pager_async_iodone(bp)
1457 	struct buf *bp;
1458 {
1459 	int s;
1460 	int i;
1461 	vm_object_t object = NULL;
1462 
1463 	GIANT_REQUIRED;
1464 	bp->b_flags |= B_DONE;
1465 
1466 	/*
1467 	 * report error
1468 	 */
1469 	if (bp->b_ioflags & BIO_ERROR) {
1470 		printf(
1471 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1472 			"size %ld, error %d\n",
1473 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1474 		    (long)bp->b_blkno,
1475 		    (long)bp->b_bcount,
1476 		    bp->b_error
1477 		);
1478 	}
1479 
1480 	/*
1481 	 * set object, raise to splvm().
1482 	 */
1483 	if (bp->b_npages)
1484 		object = bp->b_pages[0]->object;
1485 	s = splvm();
1486 
1487 	/*
1488 	 * remove the mapping for kernel virtual
1489 	 */
1490 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1491 
1492 	vm_page_lock_queues();
1493 	/*
1494 	 * cleanup pages.  If an error occurs writing to swap, we are in
1495 	 * very serious trouble.  If it happens to be a disk error, though,
1496 	 * we may be able to recover by reassigning the swap later on.  So
1497 	 * in this case we remove the m->swapblk assignment for the page
1498 	 * but do not free it in the rlist.  The errornous block(s) are thus
1499 	 * never reallocated as swap.  Redirty the page and continue.
1500 	 */
1501 	for (i = 0; i < bp->b_npages; ++i) {
1502 		vm_page_t m = bp->b_pages[i];
1503 
1504 		vm_page_flag_clear(m, PG_SWAPINPROG);
1505 
1506 		if (bp->b_ioflags & BIO_ERROR) {
1507 			/*
1508 			 * If an error occurs I'd love to throw the swapblk
1509 			 * away without freeing it back to swapspace, so it
1510 			 * can never be used again.  But I can't from an
1511 			 * interrupt.
1512 			 */
1513 			if (bp->b_iocmd == BIO_READ) {
1514 				/*
1515 				 * When reading, reqpage needs to stay
1516 				 * locked for the parent, but all other
1517 				 * pages can be freed.  We still want to
1518 				 * wakeup the parent waiting on the page,
1519 				 * though.  ( also: pg_reqpage can be -1 and
1520 				 * not match anything ).
1521 				 *
1522 				 * We have to wake specifically requested pages
1523 				 * up too because we cleared PG_SWAPINPROG and
1524 				 * someone may be waiting for that.
1525 				 *
1526 				 * NOTE: for reads, m->dirty will probably
1527 				 * be overridden by the original caller of
1528 				 * getpages so don't play cute tricks here.
1529 				 *
1530 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1531 				 * AS THIS MESSES WITH object->memq, and it is
1532 				 * not legal to mess with object->memq from an
1533 				 * interrupt.
1534 				 */
1535 				m->valid = 0;
1536 				vm_page_flag_clear(m, PG_ZERO);
1537 				if (i != bp->b_pager.pg_reqpage)
1538 					vm_page_free(m);
1539 				else
1540 					vm_page_flash(m);
1541 				/*
1542 				 * If i == bp->b_pager.pg_reqpage, do not wake
1543 				 * the page up.  The caller needs to.
1544 				 */
1545 			} else {
1546 				/*
1547 				 * If a write error occurs, reactivate page
1548 				 * so it doesn't clog the inactive list,
1549 				 * then finish the I/O.
1550 				 */
1551 				vm_page_dirty(m);
1552 				vm_page_activate(m);
1553 				vm_page_io_finish(m);
1554 			}
1555 		} else if (bp->b_iocmd == BIO_READ) {
1556 			/*
1557 			 * For read success, clear dirty bits.  Nobody should
1558 			 * have this page mapped but don't take any chances,
1559 			 * make sure the pmap modify bits are also cleared.
1560 			 *
1561 			 * NOTE: for reads, m->dirty will probably be
1562 			 * overridden by the original caller of getpages so
1563 			 * we cannot set them in order to free the underlying
1564 			 * swap in a low-swap situation.  I don't think we'd
1565 			 * want to do that anyway, but it was an optimization
1566 			 * that existed in the old swapper for a time before
1567 			 * it got ripped out due to precisely this problem.
1568 			 *
1569 			 * clear PG_ZERO in page.
1570 			 *
1571 			 * If not the requested page then deactivate it.
1572 			 *
1573 			 * Note that the requested page, reqpage, is left
1574 			 * busied, but we still have to wake it up.  The
1575 			 * other pages are released (unbusied) by
1576 			 * vm_page_wakeup().  We do not set reqpage's
1577 			 * valid bits here, it is up to the caller.
1578 			 */
1579 			pmap_clear_modify(m);
1580 			m->valid = VM_PAGE_BITS_ALL;
1581 			vm_page_undirty(m);
1582 			vm_page_flag_clear(m, PG_ZERO);
1583 
1584 			/*
1585 			 * We have to wake specifically requested pages
1586 			 * up too because we cleared PG_SWAPINPROG and
1587 			 * could be waiting for it in getpages.  However,
1588 			 * be sure to not unbusy getpages specifically
1589 			 * requested page - getpages expects it to be
1590 			 * left busy.
1591 			 */
1592 			if (i != bp->b_pager.pg_reqpage) {
1593 				vm_page_deactivate(m);
1594 				vm_page_wakeup(m);
1595 			} else {
1596 				vm_page_flash(m);
1597 			}
1598 		} else {
1599 			/*
1600 			 * For write success, clear the modify and dirty
1601 			 * status, then finish the I/O ( which decrements the
1602 			 * busy count and possibly wakes waiter's up ).
1603 			 */
1604 			pmap_clear_modify(m);
1605 			vm_page_undirty(m);
1606 			vm_page_io_finish(m);
1607 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1608 				pmap_page_protect(m, VM_PROT_READ);
1609 		}
1610 	}
1611 	vm_page_unlock_queues();
1612 
1613 	/*
1614 	 * adjust pip.  NOTE: the original parent may still have its own
1615 	 * pip refs on the object.
1616 	 */
1617 	if (object != NULL) {
1618 		VM_OBJECT_LOCK(object);
1619 		vm_object_pip_wakeupn(object, bp->b_npages);
1620 		VM_OBJECT_UNLOCK(object);
1621 	}
1622 
1623 	/*
1624 	 * release the physical I/O buffer
1625 	 */
1626 	relpbuf(
1627 	    bp,
1628 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1629 		((bp->b_flags & B_ASYNC) ?
1630 		    &nsw_wcount_async :
1631 		    &nsw_wcount_sync
1632 		)
1633 	    )
1634 	);
1635 	splx(s);
1636 }
1637 
1638 /*
1639  *	swap_pager_isswapped:
1640  *
1641  *	Return 1 if at least one page in the given object is paged
1642  *	out to the given swap device.
1643  *
1644  *	This routine may not block.
1645  */
1646 int swap_pager_isswapped(vm_object_t object, int devidx) {
1647 	daddr_t index = 0;
1648 	int bcount;
1649 	int i;
1650 
1651 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1652 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1653 		struct swblock *swap;
1654 
1655 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1656 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1657 				daddr_t v = swap->swb_pages[i];
1658 				if (v != SWAPBLK_NONE &&
1659 				    BLK2DEVIDX(v) == devidx)
1660 					return 1;
1661 			}
1662 		}
1663 
1664 		index += SWAP_META_PAGES;
1665 		if (index > 0x20000000)
1666 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1667 	}
1668 	return 0;
1669 }
1670 
1671 /*
1672  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1673  *
1674  *	This routine dissociates the page at the given index within a
1675  *	swap block from its backing store, paging it in if necessary.
1676  *	If the page is paged in, it is placed in the inactive queue,
1677  *	since it had its backing store ripped out from under it.
1678  *	We also attempt to swap in all other pages in the swap block,
1679  *	we only guarantee that the one at the specified index is
1680  *	paged in.
1681  *
1682  *	XXX - The code to page the whole block in doesn't work, so we
1683  *	      revert to the one-by-one behavior for now.  Sigh.
1684  */
1685 static __inline void
1686 swp_pager_force_pagein(struct swblock *swap, int idx)
1687 {
1688 	vm_object_t object;
1689 	vm_page_t m;
1690 	vm_pindex_t pindex;
1691 
1692 	object = swap->swb_object;
1693 	pindex = swap->swb_index;
1694 
1695 	VM_OBJECT_LOCK(object);
1696 	vm_object_pip_add(object, 1);
1697 	VM_OBJECT_UNLOCK(object);
1698 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1699 	if (m->valid == VM_PAGE_BITS_ALL) {
1700 		VM_OBJECT_LOCK(object);
1701 		vm_object_pip_subtract(object, 1);
1702 		VM_OBJECT_UNLOCK(object);
1703 		vm_page_lock_queues();
1704 		vm_page_activate(m);
1705 		vm_page_dirty(m);
1706 		vm_page_wakeup(m);
1707 		vm_page_unlock_queues();
1708 		vm_pager_page_unswapped(m);
1709 		return;
1710 	}
1711 
1712 	if (swap_pager_getpages(object, &m, 1, 0) !=
1713 	    VM_PAGER_OK)
1714 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1715 	VM_OBJECT_LOCK(object);
1716 	vm_object_pip_subtract(object, 1);
1717 	VM_OBJECT_UNLOCK(object);
1718 
1719 	vm_page_lock_queues();
1720 	vm_page_dirty(m);
1721 	vm_page_dontneed(m);
1722 	vm_page_wakeup(m);
1723 	vm_page_unlock_queues();
1724 	vm_pager_page_unswapped(m);
1725 }
1726 
1727 
1728 /*
1729  *	swap_pager_swapoff:
1730  *
1731  *	Page in all of the pages that have been paged out to the
1732  *	given device.  The corresponding blocks in the bitmap must be
1733  *	marked as allocated and the device must be flagged SW_CLOSING.
1734  *	There may be no processes swapped out to the device.
1735  *
1736  *	The sw_used parameter points to the field in the swdev structure
1737  *	that contains a count of the number of blocks still allocated
1738  *	on the device.  If we encounter objects with a nonzero pip count
1739  *	in our scan, we use this number to determine if we're really done.
1740  *
1741  *	This routine may block.
1742  */
1743 void
1744 swap_pager_swapoff(int devidx, int *sw_used)
1745 {
1746 	struct swblock **pswap;
1747 	struct swblock *swap;
1748 	vm_object_t waitobj;
1749 	daddr_t v;
1750 	int i, j;
1751 
1752 	GIANT_REQUIRED;
1753 
1754 full_rescan:
1755 	waitobj = NULL;
1756 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1757 restart:
1758 		pswap = &swhash[i];
1759 		while ((swap = *pswap) != NULL) {
1760                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1761                                 v = swap->swb_pages[j];
1762                                 if (v != SWAPBLK_NONE &&
1763 				    BLK2DEVIDX(v) == devidx)
1764                                         break;
1765                         }
1766 			if (j < SWAP_META_PAGES) {
1767 				swp_pager_force_pagein(swap, j);
1768 				goto restart;
1769 			} else if (swap->swb_object->paging_in_progress) {
1770 				if (!waitobj)
1771 					waitobj = swap->swb_object;
1772 			}
1773 			pswap = &swap->swb_hnext;
1774 		}
1775 	}
1776 	if (waitobj && *sw_used) {
1777 	    /*
1778 	     * We wait on an arbitrary object to clock our rescans
1779 	     * to the rate of paging completion.
1780 	     */
1781 	    VM_OBJECT_LOCK(waitobj);
1782 	    vm_object_pip_wait(waitobj, "swpoff");
1783 	    VM_OBJECT_UNLOCK(waitobj);
1784 	    goto full_rescan;
1785 	}
1786 	if (*sw_used)
1787 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1788 }
1789 
1790 /************************************************************************
1791  *				SWAP META DATA 				*
1792  ************************************************************************
1793  *
1794  *	These routines manipulate the swap metadata stored in the
1795  *	OBJT_SWAP object.  All swp_*() routines must be called at
1796  *	splvm() because swap can be freed up by the low level vm_page
1797  *	code which might be called from interrupts beyond what splbio() covers.
1798  *
1799  *	Swap metadata is implemented with a global hash and not directly
1800  *	linked into the object.  Instead the object simply contains
1801  *	appropriate tracking counters.
1802  */
1803 
1804 /*
1805  * SWP_PAGER_HASH() -	hash swap meta data
1806  *
1807  *	This is an inline helper function which hashes the swapblk given
1808  *	the object and page index.  It returns a pointer to a pointer
1809  *	to the object, or a pointer to a NULL pointer if it could not
1810  *	find a swapblk.
1811  *
1812  *	This routine must be called at splvm().
1813  */
1814 static __inline struct swblock **
1815 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1816 {
1817 	struct swblock **pswap;
1818 	struct swblock *swap;
1819 
1820 	index &= ~(vm_pindex_t)SWAP_META_MASK;
1821 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1822 	while ((swap = *pswap) != NULL) {
1823 		if (swap->swb_object == object &&
1824 		    swap->swb_index == index
1825 		) {
1826 			break;
1827 		}
1828 		pswap = &swap->swb_hnext;
1829 	}
1830 	return (pswap);
1831 }
1832 
1833 /*
1834  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1835  *
1836  *	We first convert the object to a swap object if it is a default
1837  *	object.
1838  *
1839  *	The specified swapblk is added to the object's swap metadata.  If
1840  *	the swapblk is not valid, it is freed instead.  Any previously
1841  *	assigned swapblk is freed.
1842  *
1843  *	This routine must be called at splvm(), except when used to convert
1844  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1845  */
1846 static void
1847 swp_pager_meta_build(
1848 	vm_object_t object,
1849 	vm_pindex_t pindex,
1850 	daddr_t swapblk
1851 ) {
1852 	struct swblock *swap;
1853 	struct swblock **pswap;
1854 	int idx;
1855 
1856 	GIANT_REQUIRED;
1857 	/*
1858 	 * Convert default object to swap object if necessary
1859 	 */
1860 	if (object->type != OBJT_SWAP) {
1861 		object->type = OBJT_SWAP;
1862 		object->un_pager.swp.swp_bcount = 0;
1863 
1864 		mtx_lock(&sw_alloc_mtx);
1865 		if (object->handle != NULL) {
1866 			TAILQ_INSERT_TAIL(
1867 			    NOBJLIST(object->handle),
1868 			    object,
1869 			    pager_object_list
1870 			);
1871 		} else {
1872 			TAILQ_INSERT_TAIL(
1873 			    &swap_pager_un_object_list,
1874 			    object,
1875 			    pager_object_list
1876 			);
1877 		}
1878 		mtx_unlock(&sw_alloc_mtx);
1879 	}
1880 
1881 	/*
1882 	 * Locate hash entry.  If not found create, but if we aren't adding
1883 	 * anything just return.  If we run out of space in the map we wait
1884 	 * and, since the hash table may have changed, retry.
1885 	 */
1886 retry:
1887 	pswap = swp_pager_hash(object, pindex);
1888 
1889 	if ((swap = *pswap) == NULL) {
1890 		int i;
1891 
1892 		if (swapblk == SWAPBLK_NONE)
1893 			return;
1894 
1895 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1896 		if (swap == NULL) {
1897 			VM_WAIT;
1898 			goto retry;
1899 		}
1900 
1901 		swap->swb_hnext = NULL;
1902 		swap->swb_object = object;
1903 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1904 		swap->swb_count = 0;
1905 
1906 		++object->un_pager.swp.swp_bcount;
1907 
1908 		for (i = 0; i < SWAP_META_PAGES; ++i)
1909 			swap->swb_pages[i] = SWAPBLK_NONE;
1910 	}
1911 
1912 	/*
1913 	 * Delete prior contents of metadata
1914 	 */
1915 	idx = pindex & SWAP_META_MASK;
1916 
1917 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1918 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1919 		--swap->swb_count;
1920 	}
1921 
1922 	/*
1923 	 * Enter block into metadata
1924 	 */
1925 	swap->swb_pages[idx] = swapblk;
1926 	if (swapblk != SWAPBLK_NONE)
1927 		++swap->swb_count;
1928 }
1929 
1930 /*
1931  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1932  *
1933  *	The requested range of blocks is freed, with any associated swap
1934  *	returned to the swap bitmap.
1935  *
1936  *	This routine will free swap metadata structures as they are cleaned
1937  *	out.  This routine does *NOT* operate on swap metadata associated
1938  *	with resident pages.
1939  *
1940  *	This routine must be called at splvm()
1941  */
1942 static void
1943 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1944 {
1945 	GIANT_REQUIRED;
1946 
1947 	if (object->type != OBJT_SWAP)
1948 		return;
1949 
1950 	while (count > 0) {
1951 		struct swblock **pswap;
1952 		struct swblock *swap;
1953 
1954 		pswap = swp_pager_hash(object, index);
1955 
1956 		if ((swap = *pswap) != NULL) {
1957 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1958 
1959 			if (v != SWAPBLK_NONE) {
1960 				swp_pager_freeswapspace(v, 1);
1961 				swap->swb_pages[index & SWAP_META_MASK] =
1962 					SWAPBLK_NONE;
1963 				if (--swap->swb_count == 0) {
1964 					*pswap = swap->swb_hnext;
1965 					uma_zfree(swap_zone, swap);
1966 					--object->un_pager.swp.swp_bcount;
1967 				}
1968 			}
1969 			--count;
1970 			++index;
1971 		} else {
1972 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1973 			count -= n;
1974 			index += n;
1975 		}
1976 	}
1977 }
1978 
1979 /*
1980  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1981  *
1982  *	This routine locates and destroys all swap metadata associated with
1983  *	an object.
1984  *
1985  *	This routine must be called at splvm()
1986  */
1987 static void
1988 swp_pager_meta_free_all(vm_object_t object)
1989 {
1990 	daddr_t index = 0;
1991 
1992 	GIANT_REQUIRED;
1993 
1994 	if (object->type != OBJT_SWAP)
1995 		return;
1996 
1997 	while (object->un_pager.swp.swp_bcount) {
1998 		struct swblock **pswap;
1999 		struct swblock *swap;
2000 
2001 		pswap = swp_pager_hash(object, index);
2002 		if ((swap = *pswap) != NULL) {
2003 			int i;
2004 
2005 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2006 				daddr_t v = swap->swb_pages[i];
2007 				if (v != SWAPBLK_NONE) {
2008 					--swap->swb_count;
2009 					swp_pager_freeswapspace(v, 1);
2010 				}
2011 			}
2012 			if (swap->swb_count != 0)
2013 				panic("swap_pager_meta_free_all: swb_count != 0");
2014 			*pswap = swap->swb_hnext;
2015 			uma_zfree(swap_zone, swap);
2016 			--object->un_pager.swp.swp_bcount;
2017 		}
2018 		index += SWAP_META_PAGES;
2019 		if (index > 0x20000000)
2020 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2021 	}
2022 }
2023 
2024 /*
2025  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2026  *
2027  *	This routine is capable of looking up, popping, or freeing
2028  *	swapblk assignments in the swap meta data or in the vm_page_t.
2029  *	The routine typically returns the swapblk being looked-up, or popped,
2030  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2031  *	was invalid.  This routine will automatically free any invalid
2032  *	meta-data swapblks.
2033  *
2034  *	It is not possible to store invalid swapblks in the swap meta data
2035  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2036  *
2037  *	When acting on a busy resident page and paging is in progress, we
2038  *	have to wait until paging is complete but otherwise can act on the
2039  *	busy page.
2040  *
2041  *	This routine must be called at splvm().
2042  *
2043  *	SWM_FREE	remove and free swap block from metadata
2044  *	SWM_POP		remove from meta data but do not free.. pop it out
2045  */
2046 static daddr_t
2047 swp_pager_meta_ctl(
2048 	vm_object_t object,
2049 	vm_pindex_t pindex,
2050 	int flags
2051 ) {
2052 	struct swblock **pswap;
2053 	struct swblock *swap;
2054 	daddr_t r1;
2055 	int idx;
2056 
2057 	GIANT_REQUIRED;
2058 	/*
2059 	 * The meta data only exists of the object is OBJT_SWAP
2060 	 * and even then might not be allocated yet.
2061 	 */
2062 	if (object->type != OBJT_SWAP)
2063 		return (SWAPBLK_NONE);
2064 
2065 	r1 = SWAPBLK_NONE;
2066 	pswap = swp_pager_hash(object, pindex);
2067 
2068 	if ((swap = *pswap) != NULL) {
2069 		idx = pindex & SWAP_META_MASK;
2070 		r1 = swap->swb_pages[idx];
2071 
2072 		if (r1 != SWAPBLK_NONE) {
2073 			if (flags & SWM_FREE) {
2074 				swp_pager_freeswapspace(r1, 1);
2075 				r1 = SWAPBLK_NONE;
2076 			}
2077 			if (flags & (SWM_FREE|SWM_POP)) {
2078 				swap->swb_pages[idx] = SWAPBLK_NONE;
2079 				if (--swap->swb_count == 0) {
2080 					*pswap = swap->swb_hnext;
2081 					uma_zfree(swap_zone, swap);
2082 					--object->un_pager.swp.swp_bcount;
2083 				}
2084 			}
2085 		}
2086 	}
2087 	return (r1);
2088 }
2089 
2090 /********************************************************
2091  *		CHAINING FUNCTIONS			*
2092  ********************************************************
2093  *
2094  *	These functions support recursion of I/O operations
2095  *	on bp's, typically by chaining one or more 'child' bp's
2096  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2097  *	chaining is possible.
2098  */
2099 
2100 /*
2101  *	vm_pager_chain_iodone:
2102  *
2103  *	io completion routine for child bp.  Currently we fudge a bit
2104  *	on dealing with b_resid.   Since users of these routines may issue
2105  *	multiple children simultaneously, sequencing of the error can be lost.
2106  */
2107 static void
2108 vm_pager_chain_iodone(struct buf *nbp)
2109 {
2110 	struct bio *bp;
2111 	u_int *count;
2112 
2113 	bp = nbp->b_caller1;
2114 	count = (u_int *)&(bp->bio_driver1);
2115 	if (bp != NULL) {
2116 		if (nbp->b_ioflags & BIO_ERROR) {
2117 			bp->bio_flags |= BIO_ERROR;
2118 			bp->bio_error = nbp->b_error;
2119 		} else if (nbp->b_resid != 0) {
2120 			bp->bio_flags |= BIO_ERROR;
2121 			bp->bio_error = EINVAL;
2122 		} else {
2123 			bp->bio_resid -= nbp->b_bcount;
2124 		}
2125 		nbp->b_caller1 = NULL;
2126 		--(*count);
2127 		if (bp->bio_flags & BIO_FLAG1) {
2128 			bp->bio_flags &= ~BIO_FLAG1;
2129 			wakeup(bp);
2130 		}
2131 	}
2132 	nbp->b_flags |= B_DONE;
2133 	nbp->b_flags &= ~B_ASYNC;
2134 	relpbuf(nbp, NULL);
2135 }
2136 
2137 /*
2138  *	getchainbuf:
2139  *
2140  *	Obtain a physical buffer and chain it to its parent buffer.  When
2141  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2142  *	automatically propagated to the parent
2143  */
2144 static struct buf *
2145 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2146 {
2147 	struct buf *nbp;
2148 	u_int *count;
2149 
2150 	GIANT_REQUIRED;
2151 	nbp = getpbuf(NULL);
2152 	count = (u_int *)&(bp->bio_driver1);
2153 
2154 	nbp->b_caller1 = bp;
2155 	++(*count);
2156 
2157 	if (*count > 4)
2158 		waitchainbuf(bp, 4, 0);
2159 
2160 	nbp->b_iocmd = bp->bio_cmd;
2161 	nbp->b_ioflags = 0;
2162 	nbp->b_flags = flags;
2163 	nbp->b_rcred = crhold(thread0.td_ucred);
2164 	nbp->b_wcred = crhold(thread0.td_ucred);
2165 	nbp->b_iodone = vm_pager_chain_iodone;
2166 
2167 	if (vp)
2168 		pbgetvp(vp, nbp);
2169 	return (nbp);
2170 }
2171 
2172 static void
2173 flushchainbuf(struct buf *nbp)
2174 {
2175 	GIANT_REQUIRED;
2176 	if (nbp->b_bcount) {
2177 		nbp->b_bufsize = nbp->b_bcount;
2178 		if (nbp->b_iocmd == BIO_WRITE)
2179 			nbp->b_dirtyend = nbp->b_bcount;
2180 		BUF_KERNPROC(nbp);
2181 		VOP_STRATEGY(nbp->b_vp, nbp);
2182 	} else {
2183 		bufdone(nbp);
2184 	}
2185 }
2186 
2187 static void
2188 waitchainbuf(struct bio *bp, int limit, int done)
2189 {
2190  	int s;
2191 	u_int *count;
2192 
2193 	GIANT_REQUIRED;
2194 	count = (u_int *)&(bp->bio_driver1);
2195 	s = splbio();
2196 	while (*count > limit) {
2197 		bp->bio_flags |= BIO_FLAG1;
2198 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2199 	}
2200 	if (done) {
2201 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2202 			bp->bio_flags |= BIO_ERROR;
2203 			bp->bio_error = EINVAL;
2204 		}
2205 		biodone(bp);
2206 	}
2207 	splx(s);
2208 }
2209 
2210