1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/bio.h> 76 #include <sys/buf.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/sysctl.h> 80 #include <sys/blist.h> 81 #include <sys/lock.h> 82 #include <sys/sx.h> 83 #include <sys/vmmeter.h> 84 85 #ifndef MAX_PAGEOUT_CLUSTER 86 #define MAX_PAGEOUT_CLUSTER 16 87 #endif 88 89 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 90 91 #include "opt_swap.h" 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/swap_pager.h> 101 #include <vm/vm_extern.h> 102 #include <vm/uma.h> 103 104 #define SWM_FREE 0x02 /* free, period */ 105 #define SWM_POP 0x04 /* pop out */ 106 107 int swap_pager_full; /* swap space exhaustion (task killing) */ 108 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 109 static int nsw_rcount; /* free read buffers */ 110 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 111 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 112 static int nsw_wcount_async_max;/* assigned maximum */ 113 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 114 115 struct blist *swapblist; 116 static struct swblock **swhash; 117 static int swhash_mask; 118 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 119 static struct sx sw_alloc_sx; 120 121 122 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 123 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 124 125 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 126 127 /* 128 * "named" and "unnamed" anon region objects. Try to reduce the overhead 129 * of searching a named list by hashing it just a little. 130 */ 131 132 #define NOBJLISTS 8 133 134 #define NOBJLIST(handle) \ 135 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 136 137 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 138 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 139 struct pagerlst swap_pager_un_object_list; 140 uma_zone_t swap_zone; 141 142 /* 143 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 144 * calls hooked from other parts of the VM system and do not appear here. 145 * (see vm/swap_pager.h). 146 */ 147 static vm_object_t 148 swap_pager_alloc(void *handle, vm_ooffset_t size, 149 vm_prot_t prot, vm_ooffset_t offset); 150 static void swap_pager_dealloc(vm_object_t object); 151 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 152 static void swap_pager_init(void); 153 static void swap_pager_unswapped(vm_page_t); 154 static void swap_pager_strategy(vm_object_t, struct bio *); 155 156 struct pagerops swappagerops = { 157 swap_pager_init, /* early system initialization of pager */ 158 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 159 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 160 swap_pager_getpages, /* pagein */ 161 swap_pager_putpages, /* pageout */ 162 swap_pager_haspage, /* get backing store status for page */ 163 swap_pager_unswapped, /* remove swap related to page */ 164 swap_pager_strategy /* pager strategy call */ 165 }; 166 167 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 168 static void flushchainbuf(struct buf *nbp); 169 static void waitchainbuf(struct bio *bp, int count, int done); 170 171 /* 172 * dmmax is in page-sized chunks with the new swap system. It was 173 * dev-bsized chunks in the old. dmmax is always a power of 2. 174 * 175 * swap_*() routines are externally accessible. swp_*() routines are 176 * internal. 177 */ 178 int dmmax, dmmax_mask; 179 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 180 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 181 182 SYSCTL_INT(_vm, OID_AUTO, dmmax, 183 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 184 185 static __inline void swp_sizecheck(void); 186 static void swp_pager_sync_iodone(struct buf *bp); 187 static void swp_pager_async_iodone(struct buf *bp); 188 189 /* 190 * Swap bitmap functions 191 */ 192 static __inline void swp_pager_freeswapspace(daddr_t blk, int npages); 193 static __inline daddr_t swp_pager_getswapspace(int npages); 194 195 /* 196 * Metadata functions 197 */ 198 static __inline struct swblock ** 199 swp_pager_hash(vm_object_t object, vm_pindex_t index); 200 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 201 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 202 static void swp_pager_meta_free_all(vm_object_t); 203 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 204 205 /* 206 * SWP_SIZECHECK() - update swap_pager_full indication 207 * 208 * update the swap_pager_almost_full indication and warn when we are 209 * about to run out of swap space, using lowat/hiwat hysteresis. 210 * 211 * Clear swap_pager_full ( task killing ) indication when lowat is met. 212 * 213 * No restrictions on call 214 * This routine may not block. 215 * This routine must be called at splvm() 216 */ 217 static __inline void 218 swp_sizecheck() 219 { 220 GIANT_REQUIRED; 221 222 if (vm_swap_size < nswap_lowat) { 223 if (swap_pager_almost_full == 0) { 224 printf("swap_pager: out of swap space\n"); 225 swap_pager_almost_full = 1; 226 } 227 } else { 228 swap_pager_full = 0; 229 if (vm_swap_size > nswap_hiwat) 230 swap_pager_almost_full = 0; 231 } 232 } 233 234 /* 235 * SWAP_PAGER_INIT() - initialize the swap pager! 236 * 237 * Expected to be started from system init. NOTE: This code is run 238 * before much else so be careful what you depend on. Most of the VM 239 * system has yet to be initialized at this point. 240 */ 241 static void 242 swap_pager_init() 243 { 244 /* 245 * Initialize object lists 246 */ 247 int i; 248 249 for (i = 0; i < NOBJLISTS; ++i) 250 TAILQ_INIT(&swap_pager_object_list[i]); 251 TAILQ_INIT(&swap_pager_un_object_list); 252 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 253 254 /* 255 * Device Stripe, in PAGE_SIZE'd blocks 256 */ 257 dmmax = SWB_NPAGES * 2; 258 dmmax_mask = ~(dmmax - 1); 259 } 260 261 /* 262 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 263 * 264 * Expected to be started from pageout process once, prior to entering 265 * its main loop. 266 */ 267 void 268 swap_pager_swap_init() 269 { 270 int n, n2; 271 272 /* 273 * Number of in-transit swap bp operations. Don't 274 * exhaust the pbufs completely. Make sure we 275 * initialize workable values (0 will work for hysteresis 276 * but it isn't very efficient). 277 * 278 * The nsw_cluster_max is constrained by the bp->b_pages[] 279 * array (MAXPHYS/PAGE_SIZE) and our locally defined 280 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 281 * constrained by the swap device interleave stripe size. 282 * 283 * Currently we hardwire nsw_wcount_async to 4. This limit is 284 * designed to prevent other I/O from having high latencies due to 285 * our pageout I/O. The value 4 works well for one or two active swap 286 * devices but is probably a little low if you have more. Even so, 287 * a higher value would probably generate only a limited improvement 288 * with three or four active swap devices since the system does not 289 * typically have to pageout at extreme bandwidths. We will want 290 * at least 2 per swap devices, and 4 is a pretty good value if you 291 * have one NFS swap device due to the command/ack latency over NFS. 292 * So it all works out pretty well. 293 */ 294 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 295 296 mtx_lock(&pbuf_mtx); 297 nsw_rcount = (nswbuf + 1) / 2; 298 nsw_wcount_sync = (nswbuf + 3) / 4; 299 nsw_wcount_async = 4; 300 nsw_wcount_async_max = nsw_wcount_async; 301 mtx_unlock(&pbuf_mtx); 302 303 /* 304 * Initialize our zone. Right now I'm just guessing on the number 305 * we need based on the number of pages in the system. Each swblock 306 * can hold 16 pages, so this is probably overkill. This reservation 307 * is typically limited to around 32MB by default. 308 */ 309 n = cnt.v_page_count / 2; 310 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 311 n = maxswzone / sizeof(struct swblock); 312 n2 = n; 313 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 314 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 do { 316 if (uma_zone_set_obj(swap_zone, NULL, n)) 317 break; 318 /* 319 * if the allocation failed, try a zone two thirds the 320 * size of the previous attempt. 321 */ 322 n -= ((n + 2) / 3); 323 } while (n > 0); 324 if (swap_zone == NULL) 325 panic("failed to create swap_zone."); 326 if (n2 != n) 327 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 328 n2 = n; 329 330 /* 331 * Initialize our meta-data hash table. The swapper does not need to 332 * be quite as efficient as the VM system, so we do not use an 333 * oversized hash table. 334 * 335 * n: size of hash table, must be power of 2 336 * swhash_mask: hash table index mask 337 */ 338 for (n = 1; n < n2 / 8; n *= 2) 339 ; 340 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 341 swhash_mask = n - 1; 342 } 343 344 /* 345 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 346 * its metadata structures. 347 * 348 * This routine is called from the mmap and fork code to create a new 349 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 350 * and then converting it with swp_pager_meta_build(). 351 * 352 * This routine may block in vm_object_allocate() and create a named 353 * object lookup race, so we must interlock. We must also run at 354 * splvm() for the object lookup to handle races with interrupts, but 355 * we do not have to maintain splvm() in between the lookup and the 356 * add because (I believe) it is not possible to attempt to create 357 * a new swap object w/handle when a default object with that handle 358 * already exists. 359 * 360 * MPSAFE 361 */ 362 static vm_object_t 363 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 364 vm_ooffset_t offset) 365 { 366 vm_object_t object; 367 368 mtx_lock(&Giant); 369 if (handle) { 370 /* 371 * Reference existing named region or allocate new one. There 372 * should not be a race here against swp_pager_meta_build() 373 * as called from vm_page_remove() in regards to the lookup 374 * of the handle. 375 */ 376 sx_xlock(&sw_alloc_sx); 377 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 378 379 if (object != NULL) { 380 vm_object_reference(object); 381 } else { 382 object = vm_object_allocate(OBJT_DEFAULT, 383 OFF_TO_IDX(offset + PAGE_MASK + size)); 384 object->handle = handle; 385 386 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 387 } 388 sx_xunlock(&sw_alloc_sx); 389 } else { 390 object = vm_object_allocate(OBJT_DEFAULT, 391 OFF_TO_IDX(offset + PAGE_MASK + size)); 392 393 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 394 } 395 mtx_unlock(&Giant); 396 return (object); 397 } 398 399 /* 400 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 401 * 402 * The swap backing for the object is destroyed. The code is 403 * designed such that we can reinstantiate it later, but this 404 * routine is typically called only when the entire object is 405 * about to be destroyed. 406 * 407 * This routine may block, but no longer does. 408 * 409 * The object must be locked or unreferenceable. 410 */ 411 static void 412 swap_pager_dealloc(object) 413 vm_object_t object; 414 { 415 int s; 416 417 GIANT_REQUIRED; 418 419 /* 420 * Remove from list right away so lookups will fail if we block for 421 * pageout completion. 422 */ 423 mtx_lock(&sw_alloc_mtx); 424 if (object->handle == NULL) { 425 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 426 } else { 427 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 428 } 429 mtx_unlock(&sw_alloc_mtx); 430 431 VM_OBJECT_LOCK(object); 432 vm_object_pip_wait(object, "swpdea"); 433 VM_OBJECT_UNLOCK(object); 434 435 /* 436 * Free all remaining metadata. We only bother to free it from 437 * the swap meta data. We do not attempt to free swapblk's still 438 * associated with vm_page_t's for this object. We do not care 439 * if paging is still in progress on some objects. 440 */ 441 s = splvm(); 442 swp_pager_meta_free_all(object); 443 splx(s); 444 } 445 446 /************************************************************************ 447 * SWAP PAGER BITMAP ROUTINES * 448 ************************************************************************/ 449 450 /* 451 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 452 * 453 * Allocate swap for the requested number of pages. The starting 454 * swap block number (a page index) is returned or SWAPBLK_NONE 455 * if the allocation failed. 456 * 457 * Also has the side effect of advising that somebody made a mistake 458 * when they configured swap and didn't configure enough. 459 * 460 * Must be called at splvm() to avoid races with bitmap frees from 461 * vm_page_remove() aka swap_pager_page_removed(). 462 * 463 * This routine may not block 464 * This routine must be called at splvm(). 465 */ 466 static __inline daddr_t 467 swp_pager_getswapspace(npages) 468 int npages; 469 { 470 daddr_t blk; 471 472 GIANT_REQUIRED; 473 474 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 475 if (swap_pager_full != 2) { 476 printf("swap_pager_getswapspace: failed\n"); 477 swap_pager_full = 2; 478 swap_pager_almost_full = 1; 479 } 480 } else { 481 vm_swap_size -= npages; 482 /* per-swap area stats */ 483 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 484 swp_sizecheck(); 485 } 486 return (blk); 487 } 488 489 /* 490 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 491 * 492 * This routine returns the specified swap blocks back to the bitmap. 493 * 494 * Note: This routine may not block (it could in the old swap code), 495 * and through the use of the new blist routines it does not block. 496 * 497 * We must be called at splvm() to avoid races with bitmap frees from 498 * vm_page_remove() aka swap_pager_page_removed(). 499 * 500 * This routine may not block 501 * This routine must be called at splvm(). 502 */ 503 static __inline void 504 swp_pager_freeswapspace(blk, npages) 505 daddr_t blk; 506 int npages; 507 { 508 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)]; 509 510 GIANT_REQUIRED; 511 512 /* per-swap area stats */ 513 sp->sw_used -= npages; 514 515 /* 516 * If we are attempting to stop swapping on this device, we 517 * don't want to mark any blocks free lest they be reused. 518 */ 519 if (sp->sw_flags & SW_CLOSING) 520 return; 521 522 blist_free(swapblist, blk, npages); 523 vm_swap_size += npages; 524 swp_sizecheck(); 525 } 526 527 /* 528 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 529 * range within an object. 530 * 531 * This is a globally accessible routine. 532 * 533 * This routine removes swapblk assignments from swap metadata. 534 * 535 * The external callers of this routine typically have already destroyed 536 * or renamed vm_page_t's associated with this range in the object so 537 * we should be ok. 538 * 539 * This routine may be called at any spl. We up our spl to splvm temporarily 540 * in order to perform the metadata removal. 541 */ 542 void 543 swap_pager_freespace(object, start, size) 544 vm_object_t object; 545 vm_pindex_t start; 546 vm_size_t size; 547 { 548 int s = splvm(); 549 550 GIANT_REQUIRED; 551 swp_pager_meta_free(object, start, size); 552 splx(s); 553 } 554 555 /* 556 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 557 * 558 * Assigns swap blocks to the specified range within the object. The 559 * swap blocks are not zerod. Any previous swap assignment is destroyed. 560 * 561 * Returns 0 on success, -1 on failure. 562 */ 563 int 564 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 565 { 566 int s; 567 int n = 0; 568 daddr_t blk = SWAPBLK_NONE; 569 vm_pindex_t beg = start; /* save start index */ 570 571 s = splvm(); 572 while (size) { 573 if (n == 0) { 574 n = BLIST_MAX_ALLOC; 575 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 576 n >>= 1; 577 if (n == 0) { 578 swp_pager_meta_free(object, beg, start - beg); 579 splx(s); 580 return (-1); 581 } 582 } 583 } 584 swp_pager_meta_build(object, start, blk); 585 --size; 586 ++start; 587 ++blk; 588 --n; 589 } 590 swp_pager_meta_free(object, start, n); 591 splx(s); 592 return (0); 593 } 594 595 /* 596 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 597 * and destroy the source. 598 * 599 * Copy any valid swapblks from the source to the destination. In 600 * cases where both the source and destination have a valid swapblk, 601 * we keep the destination's. 602 * 603 * This routine is allowed to block. It may block allocating metadata 604 * indirectly through swp_pager_meta_build() or if paging is still in 605 * progress on the source. 606 * 607 * This routine can be called at any spl 608 * 609 * XXX vm_page_collapse() kinda expects us not to block because we 610 * supposedly do not need to allocate memory, but for the moment we 611 * *may* have to get a little memory from the zone allocator, but 612 * it is taken from the interrupt memory. We should be ok. 613 * 614 * The source object contains no vm_page_t's (which is just as well) 615 * 616 * The source object is of type OBJT_SWAP. 617 * 618 * The source and destination objects must be locked or 619 * inaccessible (XXX are they ?) 620 */ 621 void 622 swap_pager_copy(srcobject, dstobject, offset, destroysource) 623 vm_object_t srcobject; 624 vm_object_t dstobject; 625 vm_pindex_t offset; 626 int destroysource; 627 { 628 vm_pindex_t i; 629 int s; 630 631 GIANT_REQUIRED; 632 633 s = splvm(); 634 /* 635 * If destroysource is set, we remove the source object from the 636 * swap_pager internal queue now. 637 */ 638 if (destroysource) { 639 mtx_lock(&sw_alloc_mtx); 640 if (srcobject->handle == NULL) { 641 TAILQ_REMOVE( 642 &swap_pager_un_object_list, 643 srcobject, 644 pager_object_list 645 ); 646 } else { 647 TAILQ_REMOVE( 648 NOBJLIST(srcobject->handle), 649 srcobject, 650 pager_object_list 651 ); 652 } 653 mtx_unlock(&sw_alloc_mtx); 654 } 655 656 /* 657 * transfer source to destination. 658 */ 659 for (i = 0; i < dstobject->size; ++i) { 660 daddr_t dstaddr; 661 662 /* 663 * Locate (without changing) the swapblk on the destination, 664 * unless it is invalid in which case free it silently, or 665 * if the destination is a resident page, in which case the 666 * source is thrown away. 667 */ 668 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 669 670 if (dstaddr == SWAPBLK_NONE) { 671 /* 672 * Destination has no swapblk and is not resident, 673 * copy source. 674 */ 675 daddr_t srcaddr; 676 677 srcaddr = swp_pager_meta_ctl( 678 srcobject, 679 i + offset, 680 SWM_POP 681 ); 682 683 if (srcaddr != SWAPBLK_NONE) 684 swp_pager_meta_build(dstobject, i, srcaddr); 685 } else { 686 /* 687 * Destination has valid swapblk or it is represented 688 * by a resident page. We destroy the sourceblock. 689 */ 690 691 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 692 } 693 } 694 695 /* 696 * Free left over swap blocks in source. 697 * 698 * We have to revert the type to OBJT_DEFAULT so we do not accidently 699 * double-remove the object from the swap queues. 700 */ 701 if (destroysource) { 702 swp_pager_meta_free_all(srcobject); 703 /* 704 * Reverting the type is not necessary, the caller is going 705 * to destroy srcobject directly, but I'm doing it here 706 * for consistency since we've removed the object from its 707 * queues. 708 */ 709 srcobject->type = OBJT_DEFAULT; 710 } 711 splx(s); 712 } 713 714 /* 715 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 716 * the requested page. 717 * 718 * We determine whether good backing store exists for the requested 719 * page and return TRUE if it does, FALSE if it doesn't. 720 * 721 * If TRUE, we also try to determine how much valid, contiguous backing 722 * store exists before and after the requested page within a reasonable 723 * distance. We do not try to restrict it to the swap device stripe 724 * (that is handled in getpages/putpages). It probably isn't worth 725 * doing here. 726 */ 727 boolean_t 728 swap_pager_haspage(object, pindex, before, after) 729 vm_object_t object; 730 vm_pindex_t pindex; 731 int *before; 732 int *after; 733 { 734 daddr_t blk0; 735 int s; 736 737 /* 738 * do we have good backing store at the requested index ? 739 */ 740 s = splvm(); 741 blk0 = swp_pager_meta_ctl(object, pindex, 0); 742 743 if (blk0 == SWAPBLK_NONE) { 744 splx(s); 745 if (before) 746 *before = 0; 747 if (after) 748 *after = 0; 749 return (FALSE); 750 } 751 752 /* 753 * find backwards-looking contiguous good backing store 754 */ 755 if (before != NULL) { 756 int i; 757 758 for (i = 1; i < (SWB_NPAGES/2); ++i) { 759 daddr_t blk; 760 761 if (i > pindex) 762 break; 763 blk = swp_pager_meta_ctl(object, pindex - i, 0); 764 if (blk != blk0 - i) 765 break; 766 } 767 *before = (i - 1); 768 } 769 770 /* 771 * find forward-looking contiguous good backing store 772 */ 773 if (after != NULL) { 774 int i; 775 776 for (i = 1; i < (SWB_NPAGES/2); ++i) { 777 daddr_t blk; 778 779 blk = swp_pager_meta_ctl(object, pindex + i, 0); 780 if (blk != blk0 + i) 781 break; 782 } 783 *after = (i - 1); 784 } 785 splx(s); 786 return (TRUE); 787 } 788 789 /* 790 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 791 * 792 * This removes any associated swap backing store, whether valid or 793 * not, from the page. 794 * 795 * This routine is typically called when a page is made dirty, at 796 * which point any associated swap can be freed. MADV_FREE also 797 * calls us in a special-case situation 798 * 799 * NOTE!!! If the page is clean and the swap was valid, the caller 800 * should make the page dirty before calling this routine. This routine 801 * does NOT change the m->dirty status of the page. Also: MADV_FREE 802 * depends on it. 803 * 804 * This routine may not block 805 * This routine must be called at splvm() 806 */ 807 static void 808 swap_pager_unswapped(m) 809 vm_page_t m; 810 { 811 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 812 } 813 814 /* 815 * SWAP_PAGER_STRATEGY() - read, write, free blocks 816 * 817 * This implements the vm_pager_strategy() interface to swap and allows 818 * other parts of the system to directly access swap as backing store 819 * through vm_objects of type OBJT_SWAP. This is intended to be a 820 * cacheless interface ( i.e. caching occurs at higher levels ). 821 * Therefore we do not maintain any resident pages. All I/O goes 822 * directly to and from the swap device. 823 * 824 * Note that b_blkno is scaled for PAGE_SIZE 825 * 826 * We currently attempt to run I/O synchronously or asynchronously as 827 * the caller requests. This isn't perfect because we loose error 828 * sequencing when we run multiple ops in parallel to satisfy a request. 829 * But this is swap, so we let it all hang out. 830 */ 831 static void 832 swap_pager_strategy(vm_object_t object, struct bio *bp) 833 { 834 vm_pindex_t start; 835 int count; 836 int s; 837 char *data; 838 struct buf *nbp = NULL; 839 840 GIANT_REQUIRED; 841 842 /* XXX: KASSERT instead ? */ 843 if (bp->bio_bcount & PAGE_MASK) { 844 biofinish(bp, NULL, EINVAL); 845 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 846 return; 847 } 848 849 /* 850 * Clear error indication, initialize page index, count, data pointer. 851 */ 852 bp->bio_error = 0; 853 bp->bio_flags &= ~BIO_ERROR; 854 bp->bio_resid = bp->bio_bcount; 855 *(u_int *) &bp->bio_driver1 = 0; 856 857 start = bp->bio_pblkno; 858 count = howmany(bp->bio_bcount, PAGE_SIZE); 859 data = bp->bio_data; 860 861 s = splvm(); 862 863 /* 864 * Deal with BIO_DELETE 865 */ 866 if (bp->bio_cmd == BIO_DELETE) { 867 /* 868 * FREE PAGE(s) - destroy underlying swap that is no longer 869 * needed. 870 */ 871 swp_pager_meta_free(object, start, count); 872 splx(s); 873 bp->bio_resid = 0; 874 biodone(bp); 875 return; 876 } 877 878 /* 879 * Execute read or write 880 */ 881 while (count > 0) { 882 daddr_t blk; 883 884 /* 885 * Obtain block. If block not found and writing, allocate a 886 * new block and build it into the object. 887 */ 888 889 blk = swp_pager_meta_ctl(object, start, 0); 890 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 891 blk = swp_pager_getswapspace(1); 892 if (blk == SWAPBLK_NONE) { 893 bp->bio_error = ENOMEM; 894 bp->bio_flags |= BIO_ERROR; 895 break; 896 } 897 swp_pager_meta_build(object, start, blk); 898 } 899 900 /* 901 * Do we have to flush our current collection? Yes if: 902 * 903 * - no swap block at this index 904 * - swap block is not contiguous 905 * - we cross a physical disk boundry in the 906 * stripe. 907 */ 908 if ( 909 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 910 ((nbp->b_blkno ^ blk) & dmmax_mask) 911 ) 912 ) { 913 splx(s); 914 if (bp->bio_cmd == BIO_READ) { 915 ++cnt.v_swapin; 916 cnt.v_swappgsin += btoc(nbp->b_bcount); 917 } else { 918 ++cnt.v_swapout; 919 cnt.v_swappgsout += btoc(nbp->b_bcount); 920 nbp->b_dirtyend = nbp->b_bcount; 921 } 922 flushchainbuf(nbp); 923 s = splvm(); 924 nbp = NULL; 925 } 926 927 /* 928 * Add new swapblk to nbp, instantiating nbp if necessary. 929 * Zero-fill reads are able to take a shortcut. 930 */ 931 if (blk == SWAPBLK_NONE) { 932 /* 933 * We can only get here if we are reading. Since 934 * we are at splvm() we can safely modify b_resid, 935 * even if chain ops are in progress. 936 */ 937 bzero(data, PAGE_SIZE); 938 bp->bio_resid -= PAGE_SIZE; 939 } else { 940 if (nbp == NULL) { 941 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 942 nbp->b_blkno = blk; 943 nbp->b_bcount = 0; 944 nbp->b_data = data; 945 } 946 nbp->b_bcount += PAGE_SIZE; 947 } 948 --count; 949 ++start; 950 data += PAGE_SIZE; 951 } 952 953 /* 954 * Flush out last buffer 955 */ 956 splx(s); 957 958 if (nbp) { 959 if (nbp->b_iocmd == BIO_READ) { 960 ++cnt.v_swapin; 961 cnt.v_swappgsin += btoc(nbp->b_bcount); 962 } else { 963 ++cnt.v_swapout; 964 cnt.v_swappgsout += btoc(nbp->b_bcount); 965 nbp->b_dirtyend = nbp->b_bcount; 966 } 967 flushchainbuf(nbp); 968 /* nbp = NULL; */ 969 } 970 /* 971 * Wait for completion. 972 */ 973 waitchainbuf(bp, 0, 1); 974 } 975 976 /* 977 * SWAP_PAGER_GETPAGES() - bring pages in from swap 978 * 979 * Attempt to retrieve (m, count) pages from backing store, but make 980 * sure we retrieve at least m[reqpage]. We try to load in as large 981 * a chunk surrounding m[reqpage] as is contiguous in swap and which 982 * belongs to the same object. 983 * 984 * The code is designed for asynchronous operation and 985 * immediate-notification of 'reqpage' but tends not to be 986 * used that way. Please do not optimize-out this algorithmic 987 * feature, I intend to improve on it in the future. 988 * 989 * The parent has a single vm_object_pip_add() reference prior to 990 * calling us and we should return with the same. 991 * 992 * The parent has BUSY'd the pages. We should return with 'm' 993 * left busy, but the others adjusted. 994 */ 995 static int 996 swap_pager_getpages(object, m, count, reqpage) 997 vm_object_t object; 998 vm_page_t *m; 999 int count, reqpage; 1000 { 1001 struct buf *bp; 1002 vm_page_t mreq; 1003 int s; 1004 int i; 1005 int j; 1006 daddr_t blk; 1007 vm_pindex_t lastpindex; 1008 1009 GIANT_REQUIRED; 1010 1011 mreq = m[reqpage]; 1012 1013 if (mreq->object != object) { 1014 panic("swap_pager_getpages: object mismatch %p/%p", 1015 object, 1016 mreq->object 1017 ); 1018 } 1019 /* 1020 * Calculate range to retrieve. The pages have already been assigned 1021 * their swapblks. We require a *contiguous* range that falls entirely 1022 * within a single device stripe. If we do not supply it, bad things 1023 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1024 * loops are set up such that the case(s) are handled implicitly. 1025 * 1026 * The swp_*() calls must be made at splvm(). vm_page_free() does 1027 * not need to be, but it will go a little faster if it is. 1028 */ 1029 s = splvm(); 1030 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1031 1032 for (i = reqpage - 1; i >= 0; --i) { 1033 daddr_t iblk; 1034 1035 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1036 if (blk != iblk + (reqpage - i)) 1037 break; 1038 if ((blk ^ iblk) & dmmax_mask) 1039 break; 1040 } 1041 ++i; 1042 1043 for (j = reqpage + 1; j < count; ++j) { 1044 daddr_t jblk; 1045 1046 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1047 if (blk != jblk - (j - reqpage)) 1048 break; 1049 if ((blk ^ jblk) & dmmax_mask) 1050 break; 1051 } 1052 1053 /* 1054 * free pages outside our collection range. Note: we never free 1055 * mreq, it must remain busy throughout. 1056 */ 1057 vm_page_lock_queues(); 1058 { 1059 int k; 1060 1061 for (k = 0; k < i; ++k) 1062 vm_page_free(m[k]); 1063 for (k = j; k < count; ++k) 1064 vm_page_free(m[k]); 1065 } 1066 vm_page_unlock_queues(); 1067 splx(s); 1068 1069 1070 /* 1071 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1072 * still busy, but the others unbusied. 1073 */ 1074 if (blk == SWAPBLK_NONE) 1075 return (VM_PAGER_FAIL); 1076 1077 /* 1078 * Get a swap buffer header to perform the IO 1079 */ 1080 bp = getpbuf(&nsw_rcount); 1081 1082 /* 1083 * map our page(s) into kva for input 1084 * 1085 * NOTE: B_PAGING is set by pbgetvp() 1086 */ 1087 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1088 1089 bp->b_iocmd = BIO_READ; 1090 bp->b_iodone = swp_pager_async_iodone; 1091 bp->b_rcred = crhold(thread0.td_ucred); 1092 bp->b_wcred = crhold(thread0.td_ucred); 1093 bp->b_blkno = blk - (reqpage - i); 1094 bp->b_bcount = PAGE_SIZE * (j - i); 1095 bp->b_bufsize = PAGE_SIZE * (j - i); 1096 bp->b_pager.pg_reqpage = reqpage - i; 1097 1098 vm_page_lock_queues(); 1099 { 1100 int k; 1101 1102 for (k = i; k < j; ++k) { 1103 bp->b_pages[k - i] = m[k]; 1104 vm_page_flag_set(m[k], PG_SWAPINPROG); 1105 } 1106 } 1107 vm_page_unlock_queues(); 1108 bp->b_npages = j - i; 1109 1110 pbgetvp(swapdev_vp, bp); 1111 1112 cnt.v_swapin++; 1113 cnt.v_swappgsin += bp->b_npages; 1114 1115 /* 1116 * We still hold the lock on mreq, and our automatic completion routine 1117 * does not remove it. 1118 */ 1119 VM_OBJECT_LOCK(mreq->object); 1120 vm_object_pip_add(mreq->object, bp->b_npages); 1121 VM_OBJECT_UNLOCK(mreq->object); 1122 lastpindex = m[j-1]->pindex; 1123 1124 /* 1125 * perform the I/O. NOTE!!! bp cannot be considered valid after 1126 * this point because we automatically release it on completion. 1127 * Instead, we look at the one page we are interested in which we 1128 * still hold a lock on even through the I/O completion. 1129 * 1130 * The other pages in our m[] array are also released on completion, 1131 * so we cannot assume they are valid anymore either. 1132 * 1133 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1134 */ 1135 BUF_KERNPROC(bp); 1136 VOP_STRATEGY(bp->b_vp, bp); 1137 1138 /* 1139 * wait for the page we want to complete. PG_SWAPINPROG is always 1140 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1141 * is set in the meta-data. 1142 */ 1143 s = splvm(); 1144 vm_page_lock_queues(); 1145 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1146 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1147 cnt.v_intrans++; 1148 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) { 1149 printf( 1150 "swap_pager: indefinite wait buffer: device:" 1151 " %s, blkno: %ld, size: %ld\n", 1152 devtoname(bp->b_dev), (long)bp->b_blkno, 1153 bp->b_bcount 1154 ); 1155 } 1156 } 1157 vm_page_unlock_queues(); 1158 splx(s); 1159 1160 /* 1161 * mreq is left busied after completion, but all the other pages 1162 * are freed. If we had an unrecoverable read error the page will 1163 * not be valid. 1164 */ 1165 if (mreq->valid != VM_PAGE_BITS_ALL) { 1166 return (VM_PAGER_ERROR); 1167 } else { 1168 return (VM_PAGER_OK); 1169 } 1170 1171 /* 1172 * A final note: in a low swap situation, we cannot deallocate swap 1173 * and mark a page dirty here because the caller is likely to mark 1174 * the page clean when we return, causing the page to possibly revert 1175 * to all-zero's later. 1176 */ 1177 } 1178 1179 /* 1180 * swap_pager_putpages: 1181 * 1182 * Assign swap (if necessary) and initiate I/O on the specified pages. 1183 * 1184 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1185 * are automatically converted to SWAP objects. 1186 * 1187 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1188 * vm_page reservation system coupled with properly written VFS devices 1189 * should ensure that no low-memory deadlock occurs. This is an area 1190 * which needs work. 1191 * 1192 * The parent has N vm_object_pip_add() references prior to 1193 * calling us and will remove references for rtvals[] that are 1194 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1195 * completion. 1196 * 1197 * The parent has soft-busy'd the pages it passes us and will unbusy 1198 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1199 * We need to unbusy the rest on I/O completion. 1200 */ 1201 void 1202 swap_pager_putpages(object, m, count, sync, rtvals) 1203 vm_object_t object; 1204 vm_page_t *m; 1205 int count; 1206 boolean_t sync; 1207 int *rtvals; 1208 { 1209 int i; 1210 int n = 0; 1211 1212 GIANT_REQUIRED; 1213 if (count && m[0]->object != object) { 1214 panic("swap_pager_getpages: object mismatch %p/%p", 1215 object, 1216 m[0]->object 1217 ); 1218 } 1219 /* 1220 * Step 1 1221 * 1222 * Turn object into OBJT_SWAP 1223 * check for bogus sysops 1224 * force sync if not pageout process 1225 */ 1226 if (object->type != OBJT_SWAP) 1227 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1228 1229 if (curproc != pageproc) 1230 sync = TRUE; 1231 1232 /* 1233 * Step 2 1234 * 1235 * Update nsw parameters from swap_async_max sysctl values. 1236 * Do not let the sysop crash the machine with bogus numbers. 1237 */ 1238 mtx_lock(&pbuf_mtx); 1239 if (swap_async_max != nsw_wcount_async_max) { 1240 int n; 1241 int s; 1242 1243 /* 1244 * limit range 1245 */ 1246 if ((n = swap_async_max) > nswbuf / 2) 1247 n = nswbuf / 2; 1248 if (n < 1) 1249 n = 1; 1250 swap_async_max = n; 1251 1252 /* 1253 * Adjust difference ( if possible ). If the current async 1254 * count is too low, we may not be able to make the adjustment 1255 * at this time. 1256 */ 1257 s = splvm(); 1258 n -= nsw_wcount_async_max; 1259 if (nsw_wcount_async + n >= 0) { 1260 nsw_wcount_async += n; 1261 nsw_wcount_async_max += n; 1262 wakeup(&nsw_wcount_async); 1263 } 1264 splx(s); 1265 } 1266 mtx_unlock(&pbuf_mtx); 1267 1268 /* 1269 * Step 3 1270 * 1271 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1272 * The page is left dirty until the pageout operation completes 1273 * successfully. 1274 */ 1275 for (i = 0; i < count; i += n) { 1276 int s; 1277 int j; 1278 struct buf *bp; 1279 daddr_t blk; 1280 1281 /* 1282 * Maximum I/O size is limited by a number of factors. 1283 */ 1284 n = min(BLIST_MAX_ALLOC, count - i); 1285 n = min(n, nsw_cluster_max); 1286 1287 s = splvm(); 1288 1289 /* 1290 * Get biggest block of swap we can. If we fail, fall 1291 * back and try to allocate a smaller block. Don't go 1292 * overboard trying to allocate space if it would overly 1293 * fragment swap. 1294 */ 1295 while ( 1296 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1297 n > 4 1298 ) { 1299 n >>= 1; 1300 } 1301 if (blk == SWAPBLK_NONE) { 1302 for (j = 0; j < n; ++j) 1303 rtvals[i+j] = VM_PAGER_FAIL; 1304 splx(s); 1305 continue; 1306 } 1307 1308 /* 1309 * The I/O we are constructing cannot cross a physical 1310 * disk boundry in the swap stripe. Note: we are still 1311 * at splvm(). 1312 */ 1313 if ((blk ^ (blk + n)) & dmmax_mask) { 1314 j = ((blk + dmmax) & dmmax_mask) - blk; 1315 swp_pager_freeswapspace(blk + j, n - j); 1316 n = j; 1317 } 1318 1319 /* 1320 * All I/O parameters have been satisfied, build the I/O 1321 * request and assign the swap space. 1322 * 1323 * NOTE: B_PAGING is set by pbgetvp() 1324 */ 1325 if (sync == TRUE) { 1326 bp = getpbuf(&nsw_wcount_sync); 1327 } else { 1328 bp = getpbuf(&nsw_wcount_async); 1329 bp->b_flags = B_ASYNC; 1330 } 1331 bp->b_iocmd = BIO_WRITE; 1332 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1333 1334 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1335 1336 bp->b_rcred = crhold(thread0.td_ucred); 1337 bp->b_wcred = crhold(thread0.td_ucred); 1338 bp->b_bcount = PAGE_SIZE * n; 1339 bp->b_bufsize = PAGE_SIZE * n; 1340 bp->b_blkno = blk; 1341 1342 pbgetvp(swapdev_vp, bp); 1343 1344 for (j = 0; j < n; ++j) { 1345 vm_page_t mreq = m[i+j]; 1346 1347 swp_pager_meta_build( 1348 mreq->object, 1349 mreq->pindex, 1350 blk + j 1351 ); 1352 vm_page_dirty(mreq); 1353 rtvals[i+j] = VM_PAGER_OK; 1354 1355 vm_page_lock_queues(); 1356 vm_page_flag_set(mreq, PG_SWAPINPROG); 1357 vm_page_unlock_queues(); 1358 bp->b_pages[j] = mreq; 1359 } 1360 bp->b_npages = n; 1361 /* 1362 * Must set dirty range for NFS to work. 1363 */ 1364 bp->b_dirtyoff = 0; 1365 bp->b_dirtyend = bp->b_bcount; 1366 1367 cnt.v_swapout++; 1368 cnt.v_swappgsout += bp->b_npages; 1369 VI_LOCK(swapdev_vp); 1370 swapdev_vp->v_numoutput++; 1371 VI_UNLOCK(swapdev_vp); 1372 1373 splx(s); 1374 1375 /* 1376 * asynchronous 1377 * 1378 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1379 */ 1380 if (sync == FALSE) { 1381 bp->b_iodone = swp_pager_async_iodone; 1382 BUF_KERNPROC(bp); 1383 VOP_STRATEGY(bp->b_vp, bp); 1384 1385 for (j = 0; j < n; ++j) 1386 rtvals[i+j] = VM_PAGER_PEND; 1387 /* restart outter loop */ 1388 continue; 1389 } 1390 1391 /* 1392 * synchronous 1393 * 1394 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1395 */ 1396 bp->b_iodone = swp_pager_sync_iodone; 1397 VOP_STRATEGY(bp->b_vp, bp); 1398 1399 /* 1400 * Wait for the sync I/O to complete, then update rtvals. 1401 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1402 * our async completion routine at the end, thus avoiding a 1403 * double-free. 1404 */ 1405 s = splbio(); 1406 while ((bp->b_flags & B_DONE) == 0) { 1407 tsleep(bp, PVM, "swwrt", 0); 1408 } 1409 for (j = 0; j < n; ++j) 1410 rtvals[i+j] = VM_PAGER_PEND; 1411 /* 1412 * Now that we are through with the bp, we can call the 1413 * normal async completion, which frees everything up. 1414 */ 1415 swp_pager_async_iodone(bp); 1416 splx(s); 1417 } 1418 } 1419 1420 /* 1421 * swap_pager_sync_iodone: 1422 * 1423 * Completion routine for synchronous reads and writes from/to swap. 1424 * We just mark the bp is complete and wake up anyone waiting on it. 1425 * 1426 * This routine may not block. This routine is called at splbio() or better. 1427 */ 1428 static void 1429 swp_pager_sync_iodone(bp) 1430 struct buf *bp; 1431 { 1432 bp->b_flags |= B_DONE; 1433 bp->b_flags &= ~B_ASYNC; 1434 wakeup(bp); 1435 } 1436 1437 /* 1438 * swp_pager_async_iodone: 1439 * 1440 * Completion routine for asynchronous reads and writes from/to swap. 1441 * Also called manually by synchronous code to finish up a bp. 1442 * 1443 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1444 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1445 * unbusy all pages except the 'main' request page. For WRITE 1446 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1447 * because we marked them all VM_PAGER_PEND on return from putpages ). 1448 * 1449 * This routine may not block. 1450 * This routine is called at splbio() or better 1451 * 1452 * We up ourselves to splvm() as required for various vm_page related 1453 * calls. 1454 */ 1455 static void 1456 swp_pager_async_iodone(bp) 1457 struct buf *bp; 1458 { 1459 int s; 1460 int i; 1461 vm_object_t object = NULL; 1462 1463 GIANT_REQUIRED; 1464 bp->b_flags |= B_DONE; 1465 1466 /* 1467 * report error 1468 */ 1469 if (bp->b_ioflags & BIO_ERROR) { 1470 printf( 1471 "swap_pager: I/O error - %s failed; blkno %ld," 1472 "size %ld, error %d\n", 1473 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1474 (long)bp->b_blkno, 1475 (long)bp->b_bcount, 1476 bp->b_error 1477 ); 1478 } 1479 1480 /* 1481 * set object, raise to splvm(). 1482 */ 1483 if (bp->b_npages) 1484 object = bp->b_pages[0]->object; 1485 s = splvm(); 1486 1487 /* 1488 * remove the mapping for kernel virtual 1489 */ 1490 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1491 1492 vm_page_lock_queues(); 1493 /* 1494 * cleanup pages. If an error occurs writing to swap, we are in 1495 * very serious trouble. If it happens to be a disk error, though, 1496 * we may be able to recover by reassigning the swap later on. So 1497 * in this case we remove the m->swapblk assignment for the page 1498 * but do not free it in the rlist. The errornous block(s) are thus 1499 * never reallocated as swap. Redirty the page and continue. 1500 */ 1501 for (i = 0; i < bp->b_npages; ++i) { 1502 vm_page_t m = bp->b_pages[i]; 1503 1504 vm_page_flag_clear(m, PG_SWAPINPROG); 1505 1506 if (bp->b_ioflags & BIO_ERROR) { 1507 /* 1508 * If an error occurs I'd love to throw the swapblk 1509 * away without freeing it back to swapspace, so it 1510 * can never be used again. But I can't from an 1511 * interrupt. 1512 */ 1513 if (bp->b_iocmd == BIO_READ) { 1514 /* 1515 * When reading, reqpage needs to stay 1516 * locked for the parent, but all other 1517 * pages can be freed. We still want to 1518 * wakeup the parent waiting on the page, 1519 * though. ( also: pg_reqpage can be -1 and 1520 * not match anything ). 1521 * 1522 * We have to wake specifically requested pages 1523 * up too because we cleared PG_SWAPINPROG and 1524 * someone may be waiting for that. 1525 * 1526 * NOTE: for reads, m->dirty will probably 1527 * be overridden by the original caller of 1528 * getpages so don't play cute tricks here. 1529 * 1530 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1531 * AS THIS MESSES WITH object->memq, and it is 1532 * not legal to mess with object->memq from an 1533 * interrupt. 1534 */ 1535 m->valid = 0; 1536 vm_page_flag_clear(m, PG_ZERO); 1537 if (i != bp->b_pager.pg_reqpage) 1538 vm_page_free(m); 1539 else 1540 vm_page_flash(m); 1541 /* 1542 * If i == bp->b_pager.pg_reqpage, do not wake 1543 * the page up. The caller needs to. 1544 */ 1545 } else { 1546 /* 1547 * If a write error occurs, reactivate page 1548 * so it doesn't clog the inactive list, 1549 * then finish the I/O. 1550 */ 1551 vm_page_dirty(m); 1552 vm_page_activate(m); 1553 vm_page_io_finish(m); 1554 } 1555 } else if (bp->b_iocmd == BIO_READ) { 1556 /* 1557 * For read success, clear dirty bits. Nobody should 1558 * have this page mapped but don't take any chances, 1559 * make sure the pmap modify bits are also cleared. 1560 * 1561 * NOTE: for reads, m->dirty will probably be 1562 * overridden by the original caller of getpages so 1563 * we cannot set them in order to free the underlying 1564 * swap in a low-swap situation. I don't think we'd 1565 * want to do that anyway, but it was an optimization 1566 * that existed in the old swapper for a time before 1567 * it got ripped out due to precisely this problem. 1568 * 1569 * clear PG_ZERO in page. 1570 * 1571 * If not the requested page then deactivate it. 1572 * 1573 * Note that the requested page, reqpage, is left 1574 * busied, but we still have to wake it up. The 1575 * other pages are released (unbusied) by 1576 * vm_page_wakeup(). We do not set reqpage's 1577 * valid bits here, it is up to the caller. 1578 */ 1579 pmap_clear_modify(m); 1580 m->valid = VM_PAGE_BITS_ALL; 1581 vm_page_undirty(m); 1582 vm_page_flag_clear(m, PG_ZERO); 1583 1584 /* 1585 * We have to wake specifically requested pages 1586 * up too because we cleared PG_SWAPINPROG and 1587 * could be waiting for it in getpages. However, 1588 * be sure to not unbusy getpages specifically 1589 * requested page - getpages expects it to be 1590 * left busy. 1591 */ 1592 if (i != bp->b_pager.pg_reqpage) { 1593 vm_page_deactivate(m); 1594 vm_page_wakeup(m); 1595 } else { 1596 vm_page_flash(m); 1597 } 1598 } else { 1599 /* 1600 * For write success, clear the modify and dirty 1601 * status, then finish the I/O ( which decrements the 1602 * busy count and possibly wakes waiter's up ). 1603 */ 1604 pmap_clear_modify(m); 1605 vm_page_undirty(m); 1606 vm_page_io_finish(m); 1607 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1608 pmap_page_protect(m, VM_PROT_READ); 1609 } 1610 } 1611 vm_page_unlock_queues(); 1612 1613 /* 1614 * adjust pip. NOTE: the original parent may still have its own 1615 * pip refs on the object. 1616 */ 1617 if (object != NULL) { 1618 VM_OBJECT_LOCK(object); 1619 vm_object_pip_wakeupn(object, bp->b_npages); 1620 VM_OBJECT_UNLOCK(object); 1621 } 1622 1623 /* 1624 * release the physical I/O buffer 1625 */ 1626 relpbuf( 1627 bp, 1628 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1629 ((bp->b_flags & B_ASYNC) ? 1630 &nsw_wcount_async : 1631 &nsw_wcount_sync 1632 ) 1633 ) 1634 ); 1635 splx(s); 1636 } 1637 1638 /* 1639 * swap_pager_isswapped: 1640 * 1641 * Return 1 if at least one page in the given object is paged 1642 * out to the given swap device. 1643 * 1644 * This routine may not block. 1645 */ 1646 int swap_pager_isswapped(vm_object_t object, int devidx) { 1647 daddr_t index = 0; 1648 int bcount; 1649 int i; 1650 1651 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1652 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1653 struct swblock *swap; 1654 1655 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1656 for (i = 0; i < SWAP_META_PAGES; ++i) { 1657 daddr_t v = swap->swb_pages[i]; 1658 if (v != SWAPBLK_NONE && 1659 BLK2DEVIDX(v) == devidx) 1660 return 1; 1661 } 1662 } 1663 1664 index += SWAP_META_PAGES; 1665 if (index > 0x20000000) 1666 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1667 } 1668 return 0; 1669 } 1670 1671 /* 1672 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1673 * 1674 * This routine dissociates the page at the given index within a 1675 * swap block from its backing store, paging it in if necessary. 1676 * If the page is paged in, it is placed in the inactive queue, 1677 * since it had its backing store ripped out from under it. 1678 * We also attempt to swap in all other pages in the swap block, 1679 * we only guarantee that the one at the specified index is 1680 * paged in. 1681 * 1682 * XXX - The code to page the whole block in doesn't work, so we 1683 * revert to the one-by-one behavior for now. Sigh. 1684 */ 1685 static __inline void 1686 swp_pager_force_pagein(struct swblock *swap, int idx) 1687 { 1688 vm_object_t object; 1689 vm_page_t m; 1690 vm_pindex_t pindex; 1691 1692 object = swap->swb_object; 1693 pindex = swap->swb_index; 1694 1695 VM_OBJECT_LOCK(object); 1696 vm_object_pip_add(object, 1); 1697 VM_OBJECT_UNLOCK(object); 1698 m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1699 if (m->valid == VM_PAGE_BITS_ALL) { 1700 VM_OBJECT_LOCK(object); 1701 vm_object_pip_subtract(object, 1); 1702 VM_OBJECT_UNLOCK(object); 1703 vm_page_lock_queues(); 1704 vm_page_activate(m); 1705 vm_page_dirty(m); 1706 vm_page_wakeup(m); 1707 vm_page_unlock_queues(); 1708 vm_pager_page_unswapped(m); 1709 return; 1710 } 1711 1712 if (swap_pager_getpages(object, &m, 1, 0) != 1713 VM_PAGER_OK) 1714 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1715 VM_OBJECT_LOCK(object); 1716 vm_object_pip_subtract(object, 1); 1717 VM_OBJECT_UNLOCK(object); 1718 1719 vm_page_lock_queues(); 1720 vm_page_dirty(m); 1721 vm_page_dontneed(m); 1722 vm_page_wakeup(m); 1723 vm_page_unlock_queues(); 1724 vm_pager_page_unswapped(m); 1725 } 1726 1727 1728 /* 1729 * swap_pager_swapoff: 1730 * 1731 * Page in all of the pages that have been paged out to the 1732 * given device. The corresponding blocks in the bitmap must be 1733 * marked as allocated and the device must be flagged SW_CLOSING. 1734 * There may be no processes swapped out to the device. 1735 * 1736 * The sw_used parameter points to the field in the swdev structure 1737 * that contains a count of the number of blocks still allocated 1738 * on the device. If we encounter objects with a nonzero pip count 1739 * in our scan, we use this number to determine if we're really done. 1740 * 1741 * This routine may block. 1742 */ 1743 void 1744 swap_pager_swapoff(int devidx, int *sw_used) 1745 { 1746 struct swblock **pswap; 1747 struct swblock *swap; 1748 vm_object_t waitobj; 1749 daddr_t v; 1750 int i, j; 1751 1752 GIANT_REQUIRED; 1753 1754 full_rescan: 1755 waitobj = NULL; 1756 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1757 restart: 1758 pswap = &swhash[i]; 1759 while ((swap = *pswap) != NULL) { 1760 for (j = 0; j < SWAP_META_PAGES; ++j) { 1761 v = swap->swb_pages[j]; 1762 if (v != SWAPBLK_NONE && 1763 BLK2DEVIDX(v) == devidx) 1764 break; 1765 } 1766 if (j < SWAP_META_PAGES) { 1767 swp_pager_force_pagein(swap, j); 1768 goto restart; 1769 } else if (swap->swb_object->paging_in_progress) { 1770 if (!waitobj) 1771 waitobj = swap->swb_object; 1772 } 1773 pswap = &swap->swb_hnext; 1774 } 1775 } 1776 if (waitobj && *sw_used) { 1777 /* 1778 * We wait on an arbitrary object to clock our rescans 1779 * to the rate of paging completion. 1780 */ 1781 VM_OBJECT_LOCK(waitobj); 1782 vm_object_pip_wait(waitobj, "swpoff"); 1783 VM_OBJECT_UNLOCK(waitobj); 1784 goto full_rescan; 1785 } 1786 if (*sw_used) 1787 panic("swapoff: failed to locate %d swap blocks", *sw_used); 1788 } 1789 1790 /************************************************************************ 1791 * SWAP META DATA * 1792 ************************************************************************ 1793 * 1794 * These routines manipulate the swap metadata stored in the 1795 * OBJT_SWAP object. All swp_*() routines must be called at 1796 * splvm() because swap can be freed up by the low level vm_page 1797 * code which might be called from interrupts beyond what splbio() covers. 1798 * 1799 * Swap metadata is implemented with a global hash and not directly 1800 * linked into the object. Instead the object simply contains 1801 * appropriate tracking counters. 1802 */ 1803 1804 /* 1805 * SWP_PAGER_HASH() - hash swap meta data 1806 * 1807 * This is an inline helper function which hashes the swapblk given 1808 * the object and page index. It returns a pointer to a pointer 1809 * to the object, or a pointer to a NULL pointer if it could not 1810 * find a swapblk. 1811 * 1812 * This routine must be called at splvm(). 1813 */ 1814 static __inline struct swblock ** 1815 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1816 { 1817 struct swblock **pswap; 1818 struct swblock *swap; 1819 1820 index &= ~(vm_pindex_t)SWAP_META_MASK; 1821 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1822 while ((swap = *pswap) != NULL) { 1823 if (swap->swb_object == object && 1824 swap->swb_index == index 1825 ) { 1826 break; 1827 } 1828 pswap = &swap->swb_hnext; 1829 } 1830 return (pswap); 1831 } 1832 1833 /* 1834 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1835 * 1836 * We first convert the object to a swap object if it is a default 1837 * object. 1838 * 1839 * The specified swapblk is added to the object's swap metadata. If 1840 * the swapblk is not valid, it is freed instead. Any previously 1841 * assigned swapblk is freed. 1842 * 1843 * This routine must be called at splvm(), except when used to convert 1844 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1845 */ 1846 static void 1847 swp_pager_meta_build( 1848 vm_object_t object, 1849 vm_pindex_t pindex, 1850 daddr_t swapblk 1851 ) { 1852 struct swblock *swap; 1853 struct swblock **pswap; 1854 int idx; 1855 1856 GIANT_REQUIRED; 1857 /* 1858 * Convert default object to swap object if necessary 1859 */ 1860 if (object->type != OBJT_SWAP) { 1861 object->type = OBJT_SWAP; 1862 object->un_pager.swp.swp_bcount = 0; 1863 1864 mtx_lock(&sw_alloc_mtx); 1865 if (object->handle != NULL) { 1866 TAILQ_INSERT_TAIL( 1867 NOBJLIST(object->handle), 1868 object, 1869 pager_object_list 1870 ); 1871 } else { 1872 TAILQ_INSERT_TAIL( 1873 &swap_pager_un_object_list, 1874 object, 1875 pager_object_list 1876 ); 1877 } 1878 mtx_unlock(&sw_alloc_mtx); 1879 } 1880 1881 /* 1882 * Locate hash entry. If not found create, but if we aren't adding 1883 * anything just return. If we run out of space in the map we wait 1884 * and, since the hash table may have changed, retry. 1885 */ 1886 retry: 1887 pswap = swp_pager_hash(object, pindex); 1888 1889 if ((swap = *pswap) == NULL) { 1890 int i; 1891 1892 if (swapblk == SWAPBLK_NONE) 1893 return; 1894 1895 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1896 if (swap == NULL) { 1897 VM_WAIT; 1898 goto retry; 1899 } 1900 1901 swap->swb_hnext = NULL; 1902 swap->swb_object = object; 1903 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1904 swap->swb_count = 0; 1905 1906 ++object->un_pager.swp.swp_bcount; 1907 1908 for (i = 0; i < SWAP_META_PAGES; ++i) 1909 swap->swb_pages[i] = SWAPBLK_NONE; 1910 } 1911 1912 /* 1913 * Delete prior contents of metadata 1914 */ 1915 idx = pindex & SWAP_META_MASK; 1916 1917 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1918 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1919 --swap->swb_count; 1920 } 1921 1922 /* 1923 * Enter block into metadata 1924 */ 1925 swap->swb_pages[idx] = swapblk; 1926 if (swapblk != SWAPBLK_NONE) 1927 ++swap->swb_count; 1928 } 1929 1930 /* 1931 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1932 * 1933 * The requested range of blocks is freed, with any associated swap 1934 * returned to the swap bitmap. 1935 * 1936 * This routine will free swap metadata structures as they are cleaned 1937 * out. This routine does *NOT* operate on swap metadata associated 1938 * with resident pages. 1939 * 1940 * This routine must be called at splvm() 1941 */ 1942 static void 1943 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1944 { 1945 GIANT_REQUIRED; 1946 1947 if (object->type != OBJT_SWAP) 1948 return; 1949 1950 while (count > 0) { 1951 struct swblock **pswap; 1952 struct swblock *swap; 1953 1954 pswap = swp_pager_hash(object, index); 1955 1956 if ((swap = *pswap) != NULL) { 1957 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1958 1959 if (v != SWAPBLK_NONE) { 1960 swp_pager_freeswapspace(v, 1); 1961 swap->swb_pages[index & SWAP_META_MASK] = 1962 SWAPBLK_NONE; 1963 if (--swap->swb_count == 0) { 1964 *pswap = swap->swb_hnext; 1965 uma_zfree(swap_zone, swap); 1966 --object->un_pager.swp.swp_bcount; 1967 } 1968 } 1969 --count; 1970 ++index; 1971 } else { 1972 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1973 count -= n; 1974 index += n; 1975 } 1976 } 1977 } 1978 1979 /* 1980 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1981 * 1982 * This routine locates and destroys all swap metadata associated with 1983 * an object. 1984 * 1985 * This routine must be called at splvm() 1986 */ 1987 static void 1988 swp_pager_meta_free_all(vm_object_t object) 1989 { 1990 daddr_t index = 0; 1991 1992 GIANT_REQUIRED; 1993 1994 if (object->type != OBJT_SWAP) 1995 return; 1996 1997 while (object->un_pager.swp.swp_bcount) { 1998 struct swblock **pswap; 1999 struct swblock *swap; 2000 2001 pswap = swp_pager_hash(object, index); 2002 if ((swap = *pswap) != NULL) { 2003 int i; 2004 2005 for (i = 0; i < SWAP_META_PAGES; ++i) { 2006 daddr_t v = swap->swb_pages[i]; 2007 if (v != SWAPBLK_NONE) { 2008 --swap->swb_count; 2009 swp_pager_freeswapspace(v, 1); 2010 } 2011 } 2012 if (swap->swb_count != 0) 2013 panic("swap_pager_meta_free_all: swb_count != 0"); 2014 *pswap = swap->swb_hnext; 2015 uma_zfree(swap_zone, swap); 2016 --object->un_pager.swp.swp_bcount; 2017 } 2018 index += SWAP_META_PAGES; 2019 if (index > 0x20000000) 2020 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 2021 } 2022 } 2023 2024 /* 2025 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2026 * 2027 * This routine is capable of looking up, popping, or freeing 2028 * swapblk assignments in the swap meta data or in the vm_page_t. 2029 * The routine typically returns the swapblk being looked-up, or popped, 2030 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2031 * was invalid. This routine will automatically free any invalid 2032 * meta-data swapblks. 2033 * 2034 * It is not possible to store invalid swapblks in the swap meta data 2035 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2036 * 2037 * When acting on a busy resident page and paging is in progress, we 2038 * have to wait until paging is complete but otherwise can act on the 2039 * busy page. 2040 * 2041 * This routine must be called at splvm(). 2042 * 2043 * SWM_FREE remove and free swap block from metadata 2044 * SWM_POP remove from meta data but do not free.. pop it out 2045 */ 2046 static daddr_t 2047 swp_pager_meta_ctl( 2048 vm_object_t object, 2049 vm_pindex_t pindex, 2050 int flags 2051 ) { 2052 struct swblock **pswap; 2053 struct swblock *swap; 2054 daddr_t r1; 2055 int idx; 2056 2057 GIANT_REQUIRED; 2058 /* 2059 * The meta data only exists of the object is OBJT_SWAP 2060 * and even then might not be allocated yet. 2061 */ 2062 if (object->type != OBJT_SWAP) 2063 return (SWAPBLK_NONE); 2064 2065 r1 = SWAPBLK_NONE; 2066 pswap = swp_pager_hash(object, pindex); 2067 2068 if ((swap = *pswap) != NULL) { 2069 idx = pindex & SWAP_META_MASK; 2070 r1 = swap->swb_pages[idx]; 2071 2072 if (r1 != SWAPBLK_NONE) { 2073 if (flags & SWM_FREE) { 2074 swp_pager_freeswapspace(r1, 1); 2075 r1 = SWAPBLK_NONE; 2076 } 2077 if (flags & (SWM_FREE|SWM_POP)) { 2078 swap->swb_pages[idx] = SWAPBLK_NONE; 2079 if (--swap->swb_count == 0) { 2080 *pswap = swap->swb_hnext; 2081 uma_zfree(swap_zone, swap); 2082 --object->un_pager.swp.swp_bcount; 2083 } 2084 } 2085 } 2086 } 2087 return (r1); 2088 } 2089 2090 /******************************************************** 2091 * CHAINING FUNCTIONS * 2092 ******************************************************** 2093 * 2094 * These functions support recursion of I/O operations 2095 * on bp's, typically by chaining one or more 'child' bp's 2096 * to the parent. Synchronous, asynchronous, and semi-synchronous 2097 * chaining is possible. 2098 */ 2099 2100 /* 2101 * vm_pager_chain_iodone: 2102 * 2103 * io completion routine for child bp. Currently we fudge a bit 2104 * on dealing with b_resid. Since users of these routines may issue 2105 * multiple children simultaneously, sequencing of the error can be lost. 2106 */ 2107 static void 2108 vm_pager_chain_iodone(struct buf *nbp) 2109 { 2110 struct bio *bp; 2111 u_int *count; 2112 2113 bp = nbp->b_caller1; 2114 count = (u_int *)&(bp->bio_driver1); 2115 if (bp != NULL) { 2116 if (nbp->b_ioflags & BIO_ERROR) { 2117 bp->bio_flags |= BIO_ERROR; 2118 bp->bio_error = nbp->b_error; 2119 } else if (nbp->b_resid != 0) { 2120 bp->bio_flags |= BIO_ERROR; 2121 bp->bio_error = EINVAL; 2122 } else { 2123 bp->bio_resid -= nbp->b_bcount; 2124 } 2125 nbp->b_caller1 = NULL; 2126 --(*count); 2127 if (bp->bio_flags & BIO_FLAG1) { 2128 bp->bio_flags &= ~BIO_FLAG1; 2129 wakeup(bp); 2130 } 2131 } 2132 nbp->b_flags |= B_DONE; 2133 nbp->b_flags &= ~B_ASYNC; 2134 relpbuf(nbp, NULL); 2135 } 2136 2137 /* 2138 * getchainbuf: 2139 * 2140 * Obtain a physical buffer and chain it to its parent buffer. When 2141 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 2142 * automatically propagated to the parent 2143 */ 2144 static struct buf * 2145 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 2146 { 2147 struct buf *nbp; 2148 u_int *count; 2149 2150 GIANT_REQUIRED; 2151 nbp = getpbuf(NULL); 2152 count = (u_int *)&(bp->bio_driver1); 2153 2154 nbp->b_caller1 = bp; 2155 ++(*count); 2156 2157 if (*count > 4) 2158 waitchainbuf(bp, 4, 0); 2159 2160 nbp->b_iocmd = bp->bio_cmd; 2161 nbp->b_ioflags = 0; 2162 nbp->b_flags = flags; 2163 nbp->b_rcred = crhold(thread0.td_ucred); 2164 nbp->b_wcred = crhold(thread0.td_ucred); 2165 nbp->b_iodone = vm_pager_chain_iodone; 2166 2167 if (vp) 2168 pbgetvp(vp, nbp); 2169 return (nbp); 2170 } 2171 2172 static void 2173 flushchainbuf(struct buf *nbp) 2174 { 2175 GIANT_REQUIRED; 2176 if (nbp->b_bcount) { 2177 nbp->b_bufsize = nbp->b_bcount; 2178 if (nbp->b_iocmd == BIO_WRITE) 2179 nbp->b_dirtyend = nbp->b_bcount; 2180 BUF_KERNPROC(nbp); 2181 VOP_STRATEGY(nbp->b_vp, nbp); 2182 } else { 2183 bufdone(nbp); 2184 } 2185 } 2186 2187 static void 2188 waitchainbuf(struct bio *bp, int limit, int done) 2189 { 2190 int s; 2191 u_int *count; 2192 2193 GIANT_REQUIRED; 2194 count = (u_int *)&(bp->bio_driver1); 2195 s = splbio(); 2196 while (*count > limit) { 2197 bp->bio_flags |= BIO_FLAG1; 2198 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2199 } 2200 if (done) { 2201 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2202 bp->bio_flags |= BIO_ERROR; 2203 bp->bio_error = EINVAL; 2204 } 2205 biodone(bp); 2206 } 2207 splx(s); 2208 } 2209 2210