xref: /freebsd/sys/vm/swap_pager.c (revision 77a0943ded95b9e6438f7db70c4a28e4d93946d4)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vm_zone.h>
100 
101 #define SWM_FREE	0x02	/* free, period			*/
102 #define SWM_POP		0x04	/* pop out			*/
103 
104 /*
105  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
106  * in the old system.
107  */
108 
109 extern int vm_swap_size;	/* number of free swap blocks, in pages */
110 
111 int swap_pager_full;		/* swap space exhaustion (task killing) */
112 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
113 static int nsw_rcount;		/* free read buffers			*/
114 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
115 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
116 static int nsw_wcount_async_max;/* assigned maximum			*/
117 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
118 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
119 
120 struct blist *swapblist;
121 static struct swblock **swhash;
122 static int swhash_mask;
123 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
124 
125 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
126 
127 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
128         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
129 
130 /*
131  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
132  * of searching a named list by hashing it just a little.
133  */
134 
135 #define NOBJLISTS		8
136 
137 #define NOBJLIST(handle)	\
138 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
139 
140 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
141 struct pagerlst		swap_pager_un_object_list;
142 vm_zone_t		swap_zone;
143 
144 /*
145  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
146  * calls hooked from other parts of the VM system and do not appear here.
147  * (see vm/swap_pager.h).
148  */
149 
150 static vm_object_t
151 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
152 				      vm_prot_t prot, vm_ooffset_t offset));
153 static void	swap_pager_dealloc __P((vm_object_t object));
154 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
155 static void	swap_pager_init __P((void));
156 static void	swap_pager_unswapped __P((vm_page_t));
157 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
158 
159 struct pagerops swappagerops = {
160 	swap_pager_init,	/* early system initialization of pager	*/
161 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
162 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
163 	swap_pager_getpages,	/* pagein				*/
164 	swap_pager_putpages,	/* pageout				*/
165 	swap_pager_haspage,	/* get backing store status for page	*/
166 	swap_pager_unswapped,	/* remove swap related to page		*/
167 	swap_pager_strategy	/* pager strategy call			*/
168 };
169 
170 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
171 static void flushchainbuf(struct buf *nbp);
172 static void waitchainbuf(struct bio *bp, int count, int done);
173 
174 /*
175  * dmmax is in page-sized chunks with the new swap system.  It was
176  * dev-bsized chunks in the old.  dmmax is always a power of 2.
177  *
178  * swap_*() routines are externally accessible.  swp_*() routines are
179  * internal.
180  */
181 
182 int dmmax;
183 static int dmmax_mask;
184 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
185 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
186 
187 SYSCTL_INT(_vm, OID_AUTO, dmmax,
188 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
189 
190 static __inline void	swp_sizecheck __P((void));
191 static void	swp_pager_sync_iodone __P((struct buf *bp));
192 static void	swp_pager_async_iodone __P((struct buf *bp));
193 
194 /*
195  * Swap bitmap functions
196  */
197 
198 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
199 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
200 
201 /*
202  * Metadata functions
203  */
204 
205 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
206 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
207 static void swp_pager_meta_free_all __P((vm_object_t));
208 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
209 
210 /*
211  * SWP_SIZECHECK() -	update swap_pager_full indication
212  *
213  *	update the swap_pager_almost_full indication and warn when we are
214  *	about to run out of swap space, using lowat/hiwat hysteresis.
215  *
216  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
217  *
218  *	No restrictions on call
219  *	This routine may not block.
220  *	This routine must be called at splvm()
221  */
222 
223 static __inline void
224 swp_sizecheck()
225 {
226 	if (vm_swap_size < nswap_lowat) {
227 		if (swap_pager_almost_full == 0) {
228 			printf("swap_pager: out of swap space\n");
229 			swap_pager_almost_full = 1;
230 		}
231 	} else {
232 		swap_pager_full = 0;
233 		if (vm_swap_size > nswap_hiwat)
234 			swap_pager_almost_full = 0;
235 	}
236 }
237 
238 /*
239  * SWAP_PAGER_INIT() -	initialize the swap pager!
240  *
241  *	Expected to be started from system init.  NOTE:  This code is run
242  *	before much else so be careful what you depend on.  Most of the VM
243  *	system has yet to be initialized at this point.
244  */
245 
246 static void
247 swap_pager_init()
248 {
249 	/*
250 	 * Initialize object lists
251 	 */
252 	int i;
253 
254 	for (i = 0; i < NOBJLISTS; ++i)
255 		TAILQ_INIT(&swap_pager_object_list[i]);
256 	TAILQ_INIT(&swap_pager_un_object_list);
257 
258 	/*
259 	 * Device Stripe, in PAGE_SIZE'd blocks
260 	 */
261 
262 	dmmax = SWB_NPAGES * 2;
263 	dmmax_mask = ~(dmmax - 1);
264 }
265 
266 /*
267  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
268  *
269  *	Expected to be started from pageout process once, prior to entering
270  *	its main loop.
271  */
272 
273 void
274 swap_pager_swap_init()
275 {
276 	int n;
277 
278 	/*
279 	 * Number of in-transit swap bp operations.  Don't
280 	 * exhaust the pbufs completely.  Make sure we
281 	 * initialize workable values (0 will work for hysteresis
282 	 * but it isn't very efficient).
283 	 *
284 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
285 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
286 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
287 	 * constrained by the swap device interleave stripe size.
288 	 *
289 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
290 	 * designed to prevent other I/O from having high latencies due to
291 	 * our pageout I/O.  The value 4 works well for one or two active swap
292 	 * devices but is probably a little low if you have more.  Even so,
293 	 * a higher value would probably generate only a limited improvement
294 	 * with three or four active swap devices since the system does not
295 	 * typically have to pageout at extreme bandwidths.   We will want
296 	 * at least 2 per swap devices, and 4 is a pretty good value if you
297 	 * have one NFS swap device due to the command/ack latency over NFS.
298 	 * So it all works out pretty well.
299 	 */
300 
301 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
302 
303 	nsw_rcount = (nswbuf + 1) / 2;
304 	nsw_wcount_sync = (nswbuf + 3) / 4;
305 	nsw_wcount_async = 4;
306 	nsw_wcount_async_max = nsw_wcount_async;
307 
308 	/*
309 	 * Initialize our zone.  Right now I'm just guessing on the number
310 	 * we need based on the number of pages in the system.  Each swblock
311 	 * can hold 16 pages, so this is probably overkill.
312 	 */
313 
314 	n = cnt.v_page_count * 2;
315 
316 	swap_zone = zinit(
317 	    "SWAPMETA",
318 	    sizeof(struct swblock),
319 	    n,
320 	    ZONE_INTERRUPT,
321 	    1
322 	);
323 
324 	/*
325 	 * Initialize our meta-data hash table.  The swapper does not need to
326 	 * be quite as efficient as the VM system, so we do not use an
327 	 * oversized hash table.
328 	 *
329 	 * 	n: 		size of hash table, must be power of 2
330 	 *	swhash_mask:	hash table index mask
331 	 */
332 
333 	for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
334 		;
335 
336 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
337 	bzero(swhash, sizeof(struct swblock *) * n);
338 
339 	swhash_mask = n - 1;
340 }
341 
342 /*
343  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
344  *			its metadata structures.
345  *
346  *	This routine is called from the mmap and fork code to create a new
347  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
348  *	and then converting it with swp_pager_meta_build().
349  *
350  *	This routine may block in vm_object_allocate() and create a named
351  *	object lookup race, so we must interlock.   We must also run at
352  *	splvm() for the object lookup to handle races with interrupts, but
353  *	we do not have to maintain splvm() in between the lookup and the
354  *	add because (I believe) it is not possible to attempt to create
355  *	a new swap object w/handle when a default object with that handle
356  *	already exists.
357  */
358 
359 static vm_object_t
360 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
361 		 vm_ooffset_t offset)
362 {
363 	vm_object_t object;
364 
365 	if (handle) {
366 		/*
367 		 * Reference existing named region or allocate new one.  There
368 		 * should not be a race here against swp_pager_meta_build()
369 		 * as called from vm_page_remove() in regards to the lookup
370 		 * of the handle.
371 		 */
372 
373 		while (sw_alloc_interlock) {
374 			sw_alloc_interlock = -1;
375 			tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
376 		}
377 		sw_alloc_interlock = 1;
378 
379 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
380 
381 		if (object != NULL) {
382 			vm_object_reference(object);
383 		} else {
384 			object = vm_object_allocate(OBJT_DEFAULT,
385 				OFF_TO_IDX(offset + PAGE_MASK + size));
386 			object->handle = handle;
387 
388 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
389 		}
390 
391 		if (sw_alloc_interlock < 0)
392 			wakeup(&sw_alloc_interlock);
393 
394 		sw_alloc_interlock = 0;
395 	} else {
396 		object = vm_object_allocate(OBJT_DEFAULT,
397 			OFF_TO_IDX(offset + PAGE_MASK + size));
398 
399 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
400 	}
401 
402 	return (object);
403 }
404 
405 /*
406  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
407  *
408  *	The swap backing for the object is destroyed.  The code is
409  *	designed such that we can reinstantiate it later, but this
410  *	routine is typically called only when the entire object is
411  *	about to be destroyed.
412  *
413  *	This routine may block, but no longer does.
414  *
415  *	The object must be locked or unreferenceable.
416  */
417 
418 static void
419 swap_pager_dealloc(object)
420 	vm_object_t object;
421 {
422 	int s;
423 
424 	/*
425 	 * Remove from list right away so lookups will fail if we block for
426 	 * pageout completion.
427 	 */
428 
429 	if (object->handle == NULL) {
430 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
431 	} else {
432 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
433 	}
434 
435 	vm_object_pip_wait(object, "swpdea");
436 
437 	/*
438 	 * Free all remaining metadata.  We only bother to free it from
439 	 * the swap meta data.  We do not attempt to free swapblk's still
440 	 * associated with vm_page_t's for this object.  We do not care
441 	 * if paging is still in progress on some objects.
442 	 */
443 	s = splvm();
444 	swp_pager_meta_free_all(object);
445 	splx(s);
446 }
447 
448 /************************************************************************
449  *			SWAP PAGER BITMAP ROUTINES			*
450  ************************************************************************/
451 
452 /*
453  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
454  *
455  *	Allocate swap for the requested number of pages.  The starting
456  *	swap block number (a page index) is returned or SWAPBLK_NONE
457  *	if the allocation failed.
458  *
459  *	Also has the side effect of advising that somebody made a mistake
460  *	when they configured swap and didn't configure enough.
461  *
462  *	Must be called at splvm() to avoid races with bitmap frees from
463  *	vm_page_remove() aka swap_pager_page_removed().
464  *
465  *	This routine may not block
466  *	This routine must be called at splvm().
467  */
468 
469 static __inline daddr_t
470 swp_pager_getswapspace(npages)
471 	int npages;
472 {
473 	daddr_t blk;
474 
475 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
476 		if (swap_pager_full != 2) {
477 			printf("swap_pager_getswapspace: failed\n");
478 			swap_pager_full = 2;
479 			swap_pager_almost_full = 1;
480 		}
481 	} else {
482 		vm_swap_size -= npages;
483 		swp_sizecheck();
484 	}
485 	return(blk);
486 }
487 
488 /*
489  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
490  *
491  *	This routine returns the specified swap blocks back to the bitmap.
492  *
493  *	Note:  This routine may not block (it could in the old swap code),
494  *	and through the use of the new blist routines it does not block.
495  *
496  *	We must be called at splvm() to avoid races with bitmap frees from
497  *	vm_page_remove() aka swap_pager_page_removed().
498  *
499  *	This routine may not block
500  *	This routine must be called at splvm().
501  */
502 
503 static __inline void
504 swp_pager_freeswapspace(blk, npages)
505 	daddr_t blk;
506 	int npages;
507 {
508 	blist_free(swapblist, blk, npages);
509 	vm_swap_size += npages;
510 	swp_sizecheck();
511 }
512 
513 /*
514  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
515  *				range within an object.
516  *
517  *	This is a globally accessible routine.
518  *
519  *	This routine removes swapblk assignments from swap metadata.
520  *
521  *	The external callers of this routine typically have already destroyed
522  *	or renamed vm_page_t's associated with this range in the object so
523  *	we should be ok.
524  *
525  *	This routine may be called at any spl.  We up our spl to splvm temporarily
526  *	in order to perform the metadata removal.
527  */
528 
529 void
530 swap_pager_freespace(object, start, size)
531 	vm_object_t object;
532 	vm_pindex_t start;
533 	vm_size_t size;
534 {
535 	int s = splvm();
536 	swp_pager_meta_free(object, start, size);
537 	splx(s);
538 }
539 
540 /*
541  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
542  *
543  *	Assigns swap blocks to the specified range within the object.  The
544  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
545  *
546  *	Returns 0 on success, -1 on failure.
547  */
548 
549 int
550 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
551 {
552 	int s;
553 	int n = 0;
554 	daddr_t blk = SWAPBLK_NONE;
555 	vm_pindex_t beg = start;	/* save start index */
556 
557 	s = splvm();
558 	while (size) {
559 		if (n == 0) {
560 			n = BLIST_MAX_ALLOC;
561 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
562 				n >>= 1;
563 				if (n == 0) {
564 					swp_pager_meta_free(object, beg, start - beg);
565 					splx(s);
566 					return(-1);
567 				}
568 			}
569 		}
570 		swp_pager_meta_build(object, start, blk);
571 		--size;
572 		++start;
573 		++blk;
574 		--n;
575 	}
576 	swp_pager_meta_free(object, start, n);
577 	splx(s);
578 	return(0);
579 }
580 
581 /*
582  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
583  *			and destroy the source.
584  *
585  *	Copy any valid swapblks from the source to the destination.  In
586  *	cases where both the source and destination have a valid swapblk,
587  *	we keep the destination's.
588  *
589  *	This routine is allowed to block.  It may block allocating metadata
590  *	indirectly through swp_pager_meta_build() or if paging is still in
591  *	progress on the source.
592  *
593  *	This routine can be called at any spl
594  *
595  *	XXX vm_page_collapse() kinda expects us not to block because we
596  *	supposedly do not need to allocate memory, but for the moment we
597  *	*may* have to get a little memory from the zone allocator, but
598  *	it is taken from the interrupt memory.  We should be ok.
599  *
600  *	The source object contains no vm_page_t's (which is just as well)
601  *
602  *	The source object is of type OBJT_SWAP.
603  *
604  *	The source and destination objects must be locked or
605  *	inaccessible (XXX are they ?)
606  */
607 
608 void
609 swap_pager_copy(srcobject, dstobject, offset, destroysource)
610 	vm_object_t srcobject;
611 	vm_object_t dstobject;
612 	vm_pindex_t offset;
613 	int destroysource;
614 {
615 	vm_pindex_t i;
616 	int s;
617 
618 	s = splvm();
619 
620 	/*
621 	 * If destroysource is set, we remove the source object from the
622 	 * swap_pager internal queue now.
623 	 */
624 
625 	if (destroysource) {
626 		if (srcobject->handle == NULL) {
627 			TAILQ_REMOVE(
628 			    &swap_pager_un_object_list,
629 			    srcobject,
630 			    pager_object_list
631 			);
632 		} else {
633 			TAILQ_REMOVE(
634 			    NOBJLIST(srcobject->handle),
635 			    srcobject,
636 			    pager_object_list
637 			);
638 		}
639 	}
640 
641 	/*
642 	 * transfer source to destination.
643 	 */
644 
645 	for (i = 0; i < dstobject->size; ++i) {
646 		daddr_t dstaddr;
647 
648 		/*
649 		 * Locate (without changing) the swapblk on the destination,
650 		 * unless it is invalid in which case free it silently, or
651 		 * if the destination is a resident page, in which case the
652 		 * source is thrown away.
653 		 */
654 
655 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
656 
657 		if (dstaddr == SWAPBLK_NONE) {
658 			/*
659 			 * Destination has no swapblk and is not resident,
660 			 * copy source.
661 			 */
662 			daddr_t srcaddr;
663 
664 			srcaddr = swp_pager_meta_ctl(
665 			    srcobject,
666 			    i + offset,
667 			    SWM_POP
668 			);
669 
670 			if (srcaddr != SWAPBLK_NONE)
671 				swp_pager_meta_build(dstobject, i, srcaddr);
672 		} else {
673 			/*
674 			 * Destination has valid swapblk or it is represented
675 			 * by a resident page.  We destroy the sourceblock.
676 			 */
677 
678 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
679 		}
680 	}
681 
682 	/*
683 	 * Free left over swap blocks in source.
684 	 *
685 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
686 	 * double-remove the object from the swap queues.
687 	 */
688 
689 	if (destroysource) {
690 		swp_pager_meta_free_all(srcobject);
691 		/*
692 		 * Reverting the type is not necessary, the caller is going
693 		 * to destroy srcobject directly, but I'm doing it here
694 		 * for consistency since we've removed the object from its
695 		 * queues.
696 		 */
697 		srcobject->type = OBJT_DEFAULT;
698 	}
699 	splx(s);
700 }
701 
702 /*
703  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
704  *				the requested page.
705  *
706  *	We determine whether good backing store exists for the requested
707  *	page and return TRUE if it does, FALSE if it doesn't.
708  *
709  *	If TRUE, we also try to determine how much valid, contiguous backing
710  *	store exists before and after the requested page within a reasonable
711  *	distance.  We do not try to restrict it to the swap device stripe
712  *	(that is handled in getpages/putpages).  It probably isn't worth
713  *	doing here.
714  */
715 
716 boolean_t
717 swap_pager_haspage(object, pindex, before, after)
718 	vm_object_t object;
719 	vm_pindex_t pindex;
720 	int *before;
721 	int *after;
722 {
723 	daddr_t blk0;
724 	int s;
725 
726 	/*
727 	 * do we have good backing store at the requested index ?
728 	 */
729 
730 	s = splvm();
731 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
732 
733 	if (blk0 == SWAPBLK_NONE) {
734 		splx(s);
735 		if (before)
736 			*before = 0;
737 		if (after)
738 			*after = 0;
739 		return (FALSE);
740 	}
741 
742 	/*
743 	 * find backwards-looking contiguous good backing store
744 	 */
745 
746 	if (before != NULL) {
747 		int i;
748 
749 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
750 			daddr_t blk;
751 
752 			if (i > pindex)
753 				break;
754 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
755 			if (blk != blk0 - i)
756 				break;
757 		}
758 		*before = (i - 1);
759 	}
760 
761 	/*
762 	 * find forward-looking contiguous good backing store
763 	 */
764 
765 	if (after != NULL) {
766 		int i;
767 
768 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
769 			daddr_t blk;
770 
771 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
772 			if (blk != blk0 + i)
773 				break;
774 		}
775 		*after = (i - 1);
776 	}
777 	splx(s);
778 	return (TRUE);
779 }
780 
781 /*
782  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
783  *
784  *	This removes any associated swap backing store, whether valid or
785  *	not, from the page.
786  *
787  *	This routine is typically called when a page is made dirty, at
788  *	which point any associated swap can be freed.  MADV_FREE also
789  *	calls us in a special-case situation
790  *
791  *	NOTE!!!  If the page is clean and the swap was valid, the caller
792  *	should make the page dirty before calling this routine.  This routine
793  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
794  *	depends on it.
795  *
796  *	This routine may not block
797  *	This routine must be called at splvm()
798  */
799 
800 static void
801 swap_pager_unswapped(m)
802 	vm_page_t m;
803 {
804 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
805 }
806 
807 /*
808  * SWAP_PAGER_STRATEGY() - read, write, free blocks
809  *
810  *	This implements the vm_pager_strategy() interface to swap and allows
811  *	other parts of the system to directly access swap as backing store
812  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
813  *	cacheless interface ( i.e. caching occurs at higher levels ).
814  *	Therefore we do not maintain any resident pages.  All I/O goes
815  *	directly to and from the swap device.
816  *
817  *	Note that b_blkno is scaled for PAGE_SIZE
818  *
819  *	We currently attempt to run I/O synchronously or asynchronously as
820  *	the caller requests.  This isn't perfect because we loose error
821  *	sequencing when we run multiple ops in parallel to satisfy a request.
822  *	But this is swap, so we let it all hang out.
823  */
824 
825 static void
826 swap_pager_strategy(vm_object_t object, struct bio *bp)
827 {
828 	vm_pindex_t start;
829 	int count;
830 	int s;
831 	char *data;
832 	struct buf *nbp = NULL;
833 
834 	/* XXX: KASSERT instead ? */
835 	if (bp->bio_bcount & PAGE_MASK) {
836 		bp->bio_error = EINVAL;
837 		bp->bio_flags |= BIO_ERROR;
838 		biodone(bp);
839 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
840 		return;
841 	}
842 
843 	/*
844 	 * Clear error indication, initialize page index, count, data pointer.
845 	 */
846 
847 	bp->bio_error = 0;
848 	bp->bio_flags &= ~BIO_ERROR;
849 	bp->bio_resid = bp->bio_bcount;
850 
851 	start = bp->bio_pblkno;
852 	count = howmany(bp->bio_bcount, PAGE_SIZE);
853 	data = bp->bio_data;
854 
855 	s = splvm();
856 
857 	/*
858 	 * Deal with BIO_DELETE
859 	 */
860 
861 	if (bp->bio_cmd == BIO_DELETE) {
862 		/*
863 		 * FREE PAGE(s) - destroy underlying swap that is no longer
864 		 *		  needed.
865 		 */
866 		swp_pager_meta_free(object, start, count);
867 		splx(s);
868 		bp->bio_resid = 0;
869 		biodone(bp);
870 		return;
871 	}
872 
873 	/*
874 	 * Execute read or write
875 	 */
876 
877 	while (count > 0) {
878 		daddr_t blk;
879 
880 		/*
881 		 * Obtain block.  If block not found and writing, allocate a
882 		 * new block and build it into the object.
883 		 */
884 
885 		blk = swp_pager_meta_ctl(object, start, 0);
886 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
887 			blk = swp_pager_getswapspace(1);
888 			if (blk == SWAPBLK_NONE) {
889 				bp->bio_error = ENOMEM;
890 				bp->bio_flags |= BIO_ERROR;
891 				break;
892 			}
893 			swp_pager_meta_build(object, start, blk);
894 		}
895 
896 		/*
897 		 * Do we have to flush our current collection?  Yes if:
898 		 *
899 		 *	- no swap block at this index
900 		 *	- swap block is not contiguous
901 		 *	- we cross a physical disk boundry in the
902 		 *	  stripe.
903 		 */
904 
905 		if (
906 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
907 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
908 		    )
909 		) {
910 			splx(s);
911 			if (bp->bio_cmd == BIO_READ) {
912 				++cnt.v_swapin;
913 				cnt.v_swappgsin += btoc(nbp->b_bcount);
914 			} else {
915 				++cnt.v_swapout;
916 				cnt.v_swappgsout += btoc(nbp->b_bcount);
917 				nbp->b_dirtyend = nbp->b_bcount;
918 			}
919 			flushchainbuf(nbp);
920 			s = splvm();
921 			nbp = NULL;
922 		}
923 
924 		/*
925 		 * Add new swapblk to nbp, instantiating nbp if necessary.
926 		 * Zero-fill reads are able to take a shortcut.
927 		 */
928 
929 		if (blk == SWAPBLK_NONE) {
930 			/*
931 			 * We can only get here if we are reading.  Since
932 			 * we are at splvm() we can safely modify b_resid,
933 			 * even if chain ops are in progress.
934 			 */
935 			bzero(data, PAGE_SIZE);
936 			bp->bio_resid -= PAGE_SIZE;
937 		} else {
938 			if (nbp == NULL) {
939 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
940 				nbp->b_blkno = blk;
941 				nbp->b_bcount = 0;
942 				nbp->b_data = data;
943 			}
944 			nbp->b_bcount += PAGE_SIZE;
945 		}
946 		--count;
947 		++start;
948 		data += PAGE_SIZE;
949 	}
950 
951 	/*
952 	 *  Flush out last buffer
953 	 */
954 
955 	splx(s);
956 
957 	if (nbp) {
958 		if (nbp->b_iocmd == BIO_READ) {
959 			++cnt.v_swapin;
960 			cnt.v_swappgsin += btoc(nbp->b_bcount);
961 		} else {
962 			++cnt.v_swapout;
963 			cnt.v_swappgsout += btoc(nbp->b_bcount);
964 			nbp->b_dirtyend = nbp->b_bcount;
965 		}
966 		flushchainbuf(nbp);
967 		/* nbp = NULL; */
968 	}
969 
970 	/*
971 	 * Wait for completion.
972 	 */
973 
974 	waitchainbuf(bp, 0, 1);
975 }
976 
977 /*
978  * SWAP_PAGER_GETPAGES() - bring pages in from swap
979  *
980  *	Attempt to retrieve (m, count) pages from backing store, but make
981  *	sure we retrieve at least m[reqpage].  We try to load in as large
982  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
983  *	belongs to the same object.
984  *
985  *	The code is designed for asynchronous operation and
986  *	immediate-notification of 'reqpage' but tends not to be
987  *	used that way.  Please do not optimize-out this algorithmic
988  *	feature, I intend to improve on it in the future.
989  *
990  *	The parent has a single vm_object_pip_add() reference prior to
991  *	calling us and we should return with the same.
992  *
993  *	The parent has BUSY'd the pages.  We should return with 'm'
994  *	left busy, but the others adjusted.
995  */
996 
997 static int
998 swap_pager_getpages(object, m, count, reqpage)
999 	vm_object_t object;
1000 	vm_page_t *m;
1001 	int count, reqpage;
1002 {
1003 	struct buf *bp;
1004 	vm_page_t mreq;
1005 	int s;
1006 	int i;
1007 	int j;
1008 	daddr_t blk;
1009 	vm_offset_t kva;
1010 	vm_pindex_t lastpindex;
1011 
1012 	mreq = m[reqpage];
1013 
1014 	if (mreq->object != object) {
1015 		panic("swap_pager_getpages: object mismatch %p/%p",
1016 		    object,
1017 		    mreq->object
1018 		);
1019 	}
1020 	/*
1021 	 * Calculate range to retrieve.  The pages have already been assigned
1022 	 * their swapblks.  We require a *contiguous* range that falls entirely
1023 	 * within a single device stripe.   If we do not supply it, bad things
1024 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1025 	 * loops are set up such that the case(s) are handled implicitly.
1026 	 *
1027 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1028 	 * not need to be, but it will go a little faster if it is.
1029 	 */
1030 
1031 	s = splvm();
1032 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1033 
1034 	for (i = reqpage - 1; i >= 0; --i) {
1035 		daddr_t iblk;
1036 
1037 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1038 		if (blk != iblk + (reqpage - i))
1039 			break;
1040 		if ((blk ^ iblk) & dmmax_mask)
1041 			break;
1042 	}
1043 	++i;
1044 
1045 	for (j = reqpage + 1; j < count; ++j) {
1046 		daddr_t jblk;
1047 
1048 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1049 		if (blk != jblk - (j - reqpage))
1050 			break;
1051 		if ((blk ^ jblk) & dmmax_mask)
1052 			break;
1053 	}
1054 
1055 	/*
1056 	 * free pages outside our collection range.   Note: we never free
1057 	 * mreq, it must remain busy throughout.
1058 	 */
1059 
1060 	{
1061 		int k;
1062 
1063 		for (k = 0; k < i; ++k)
1064 			vm_page_free(m[k]);
1065 		for (k = j; k < count; ++k)
1066 			vm_page_free(m[k]);
1067 	}
1068 	splx(s);
1069 
1070 
1071 	/*
1072 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1073 	 * still busy, but the others unbusied.
1074 	 */
1075 
1076 	if (blk == SWAPBLK_NONE)
1077 		return(VM_PAGER_FAIL);
1078 
1079 	/*
1080 	 * Get a swap buffer header to perform the IO
1081 	 */
1082 
1083 	bp = getpbuf(&nsw_rcount);
1084 	kva = (vm_offset_t) bp->b_data;
1085 
1086 	/*
1087 	 * map our page(s) into kva for input
1088 	 *
1089 	 * NOTE: B_PAGING is set by pbgetvp()
1090 	 */
1091 
1092 	pmap_qenter(kva, m + i, j - i);
1093 
1094 	bp->b_iocmd = BIO_READ;
1095 	bp->b_iodone = swp_pager_async_iodone;
1096 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1097 	bp->b_data = (caddr_t) kva;
1098 	crhold(bp->b_rcred);
1099 	crhold(bp->b_wcred);
1100 	bp->b_blkno = blk - (reqpage - i);
1101 	bp->b_bcount = PAGE_SIZE * (j - i);
1102 	bp->b_bufsize = PAGE_SIZE * (j - i);
1103 	bp->b_pager.pg_reqpage = reqpage - i;
1104 
1105 	{
1106 		int k;
1107 
1108 		for (k = i; k < j; ++k) {
1109 			bp->b_pages[k - i] = m[k];
1110 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1111 		}
1112 	}
1113 	bp->b_npages = j - i;
1114 
1115 	pbgetvp(swapdev_vp, bp);
1116 
1117 	cnt.v_swapin++;
1118 	cnt.v_swappgsin += bp->b_npages;
1119 
1120 	/*
1121 	 * We still hold the lock on mreq, and our automatic completion routine
1122 	 * does not remove it.
1123 	 */
1124 
1125 	vm_object_pip_add(mreq->object, bp->b_npages);
1126 	lastpindex = m[j-1]->pindex;
1127 
1128 	/*
1129 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1130 	 * this point because we automatically release it on completion.
1131 	 * Instead, we look at the one page we are interested in which we
1132 	 * still hold a lock on even through the I/O completion.
1133 	 *
1134 	 * The other pages in our m[] array are also released on completion,
1135 	 * so we cannot assume they are valid anymore either.
1136 	 *
1137 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1138 	 */
1139 
1140 	BUF_KERNPROC(bp);
1141 	BUF_STRATEGY(bp);
1142 
1143 	/*
1144 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1145 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1146 	 * is set in the meta-data.
1147 	 */
1148 
1149 	s = splvm();
1150 
1151 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1152 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1153 		cnt.v_intrans++;
1154 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1155 			printf(
1156 			    "swap_pager: indefinite wait buffer: device:"
1157 				" %s, blkno: %ld, size: %ld\n",
1158 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1159 			    bp->b_bcount
1160 			);
1161 		}
1162 	}
1163 
1164 	splx(s);
1165 
1166 	/*
1167 	 * mreq is left bussied after completion, but all the other pages
1168 	 * are freed.  If we had an unrecoverable read error the page will
1169 	 * not be valid.
1170 	 */
1171 
1172 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1173 		return(VM_PAGER_ERROR);
1174 	} else {
1175 		return(VM_PAGER_OK);
1176 	}
1177 
1178 	/*
1179 	 * A final note: in a low swap situation, we cannot deallocate swap
1180 	 * and mark a page dirty here because the caller is likely to mark
1181 	 * the page clean when we return, causing the page to possibly revert
1182 	 * to all-zero's later.
1183 	 */
1184 }
1185 
1186 /*
1187  *	swap_pager_putpages:
1188  *
1189  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1190  *
1191  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1192  *	are automatically converted to SWAP objects.
1193  *
1194  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1195  *	vm_page reservation system coupled with properly written VFS devices
1196  *	should ensure that no low-memory deadlock occurs.  This is an area
1197  *	which needs work.
1198  *
1199  *	The parent has N vm_object_pip_add() references prior to
1200  *	calling us and will remove references for rtvals[] that are
1201  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1202  *	completion.
1203  *
1204  *	The parent has soft-busy'd the pages it passes us and will unbusy
1205  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1206  *	We need to unbusy the rest on I/O completion.
1207  */
1208 
1209 void
1210 swap_pager_putpages(object, m, count, sync, rtvals)
1211 	vm_object_t object;
1212 	vm_page_t *m;
1213 	int count;
1214 	boolean_t sync;
1215 	int *rtvals;
1216 {
1217 	int i;
1218 	int n = 0;
1219 
1220 	if (count && m[0]->object != object) {
1221 		panic("swap_pager_getpages: object mismatch %p/%p",
1222 		    object,
1223 		    m[0]->object
1224 		);
1225 	}
1226 	/*
1227 	 * Step 1
1228 	 *
1229 	 * Turn object into OBJT_SWAP
1230 	 * check for bogus sysops
1231 	 * force sync if not pageout process
1232 	 */
1233 
1234 	if (object->type != OBJT_SWAP)
1235 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1236 
1237 	if (curproc != pageproc)
1238 		sync = TRUE;
1239 
1240 	/*
1241 	 * Step 2
1242 	 *
1243 	 * Update nsw parameters from swap_async_max sysctl values.
1244 	 * Do not let the sysop crash the machine with bogus numbers.
1245 	 */
1246 
1247 	if (swap_async_max != nsw_wcount_async_max) {
1248 		int n;
1249 		int s;
1250 
1251 		/*
1252 		 * limit range
1253 		 */
1254 		if ((n = swap_async_max) > nswbuf / 2)
1255 			n = nswbuf / 2;
1256 		if (n < 1)
1257 			n = 1;
1258 		swap_async_max = n;
1259 
1260 		/*
1261 		 * Adjust difference ( if possible ).  If the current async
1262 		 * count is too low, we may not be able to make the adjustment
1263 		 * at this time.
1264 		 */
1265 		s = splvm();
1266 		n -= nsw_wcount_async_max;
1267 		if (nsw_wcount_async + n >= 0) {
1268 			nsw_wcount_async += n;
1269 			nsw_wcount_async_max += n;
1270 			wakeup(&nsw_wcount_async);
1271 		}
1272 		splx(s);
1273 	}
1274 
1275 	/*
1276 	 * Step 3
1277 	 *
1278 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1279 	 * The page is left dirty until the pageout operation completes
1280 	 * successfully.
1281 	 */
1282 
1283 	for (i = 0; i < count; i += n) {
1284 		int s;
1285 		int j;
1286 		struct buf *bp;
1287 		daddr_t blk;
1288 
1289 		/*
1290 		 * Maximum I/O size is limited by a number of factors.
1291 		 */
1292 
1293 		n = min(BLIST_MAX_ALLOC, count - i);
1294 		n = min(n, nsw_cluster_max);
1295 
1296 		s = splvm();
1297 
1298 		/*
1299 		 * Get biggest block of swap we can.  If we fail, fall
1300 		 * back and try to allocate a smaller block.  Don't go
1301 		 * overboard trying to allocate space if it would overly
1302 		 * fragment swap.
1303 		 */
1304 		while (
1305 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1306 		    n > 4
1307 		) {
1308 			n >>= 1;
1309 		}
1310 		if (blk == SWAPBLK_NONE) {
1311 			for (j = 0; j < n; ++j)
1312 				rtvals[i+j] = VM_PAGER_FAIL;
1313 			splx(s);
1314 			continue;
1315 		}
1316 
1317 		/*
1318 		 * The I/O we are constructing cannot cross a physical
1319 		 * disk boundry in the swap stripe.  Note: we are still
1320 		 * at splvm().
1321 		 */
1322 		if ((blk ^ (blk + n)) & dmmax_mask) {
1323 			j = ((blk + dmmax) & dmmax_mask) - blk;
1324 			swp_pager_freeswapspace(blk + j, n - j);
1325 			n = j;
1326 		}
1327 
1328 		/*
1329 		 * All I/O parameters have been satisfied, build the I/O
1330 		 * request and assign the swap space.
1331 		 *
1332 		 * NOTE: B_PAGING is set by pbgetvp()
1333 		 */
1334 
1335 		if (sync == TRUE) {
1336 			bp = getpbuf(&nsw_wcount_sync);
1337 		} else {
1338 			bp = getpbuf(&nsw_wcount_async);
1339 			bp->b_flags = B_ASYNC;
1340 		}
1341 		bp->b_iocmd = BIO_WRITE;
1342 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1343 
1344 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1345 
1346 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1347 		bp->b_bcount = PAGE_SIZE * n;
1348 		bp->b_bufsize = PAGE_SIZE * n;
1349 		bp->b_blkno = blk;
1350 
1351 		crhold(bp->b_rcred);
1352 		crhold(bp->b_wcred);
1353 
1354 		pbgetvp(swapdev_vp, bp);
1355 
1356 		for (j = 0; j < n; ++j) {
1357 			vm_page_t mreq = m[i+j];
1358 
1359 			swp_pager_meta_build(
1360 			    mreq->object,
1361 			    mreq->pindex,
1362 			    blk + j
1363 			);
1364 			vm_page_dirty(mreq);
1365 			rtvals[i+j] = VM_PAGER_OK;
1366 
1367 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1368 			bp->b_pages[j] = mreq;
1369 		}
1370 		bp->b_npages = n;
1371 		/*
1372 		 * Must set dirty range for NFS to work.
1373 		 */
1374 		bp->b_dirtyoff = 0;
1375 		bp->b_dirtyend = bp->b_bcount;
1376 
1377 		cnt.v_swapout++;
1378 		cnt.v_swappgsout += bp->b_npages;
1379 		swapdev_vp->v_numoutput++;
1380 
1381 		splx(s);
1382 
1383 		/*
1384 		 * asynchronous
1385 		 *
1386 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1387 		 */
1388 
1389 		if (sync == FALSE) {
1390 			bp->b_iodone = swp_pager_async_iodone;
1391 			BUF_KERNPROC(bp);
1392 			BUF_STRATEGY(bp);
1393 
1394 			for (j = 0; j < n; ++j)
1395 				rtvals[i+j] = VM_PAGER_PEND;
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * synchronous
1401 		 *
1402 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1403 		 */
1404 
1405 		bp->b_iodone = swp_pager_sync_iodone;
1406 		BUF_STRATEGY(bp);
1407 
1408 		/*
1409 		 * Wait for the sync I/O to complete, then update rtvals.
1410 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1411 		 * our async completion routine at the end, thus avoiding a
1412 		 * double-free.
1413 		 */
1414 		s = splbio();
1415 
1416 		while ((bp->b_flags & B_DONE) == 0) {
1417 			tsleep(bp, PVM, "swwrt", 0);
1418 		}
1419 
1420 		for (j = 0; j < n; ++j)
1421 			rtvals[i+j] = VM_PAGER_PEND;
1422 
1423 		/*
1424 		 * Now that we are through with the bp, we can call the
1425 		 * normal async completion, which frees everything up.
1426 		 */
1427 
1428 		swp_pager_async_iodone(bp);
1429 
1430 		splx(s);
1431 	}
1432 }
1433 
1434 /*
1435  *	swap_pager_sync_iodone:
1436  *
1437  *	Completion routine for synchronous reads and writes from/to swap.
1438  *	We just mark the bp is complete and wake up anyone waiting on it.
1439  *
1440  *	This routine may not block.  This routine is called at splbio() or better.
1441  */
1442 
1443 static void
1444 swp_pager_sync_iodone(bp)
1445 	struct buf *bp;
1446 {
1447 	bp->b_flags |= B_DONE;
1448 	bp->b_flags &= ~B_ASYNC;
1449 	wakeup(bp);
1450 }
1451 
1452 /*
1453  *	swp_pager_async_iodone:
1454  *
1455  *	Completion routine for asynchronous reads and writes from/to swap.
1456  *	Also called manually by synchronous code to finish up a bp.
1457  *
1458  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1459  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1460  *	unbusy all pages except the 'main' request page.  For WRITE
1461  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1462  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1463  *
1464  *	This routine may not block.
1465  *	This routine is called at splbio() or better
1466  *
1467  *	We up ourselves to splvm() as required for various vm_page related
1468  *	calls.
1469  */
1470 
1471 static void
1472 swp_pager_async_iodone(bp)
1473 	register struct buf *bp;
1474 {
1475 	int s;
1476 	int i;
1477 	vm_object_t object = NULL;
1478 
1479 	bp->b_flags |= B_DONE;
1480 
1481 	/*
1482 	 * report error
1483 	 */
1484 
1485 	if (bp->b_ioflags & BIO_ERROR) {
1486 		printf(
1487 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1488 			"size %ld, error %d\n",
1489 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1490 		    (long)bp->b_blkno,
1491 		    (long)bp->b_bcount,
1492 		    bp->b_error
1493 		);
1494 	}
1495 
1496 	/*
1497 	 * set object, raise to splvm().
1498 	 */
1499 
1500 	if (bp->b_npages)
1501 		object = bp->b_pages[0]->object;
1502 	s = splvm();
1503 
1504 	/*
1505 	 * remove the mapping for kernel virtual
1506 	 */
1507 
1508 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1509 
1510 	/*
1511 	 * cleanup pages.  If an error occurs writing to swap, we are in
1512 	 * very serious trouble.  If it happens to be a disk error, though,
1513 	 * we may be able to recover by reassigning the swap later on.  So
1514 	 * in this case we remove the m->swapblk assignment for the page
1515 	 * but do not free it in the rlist.  The errornous block(s) are thus
1516 	 * never reallocated as swap.  Redirty the page and continue.
1517 	 */
1518 
1519 	for (i = 0; i < bp->b_npages; ++i) {
1520 		vm_page_t m = bp->b_pages[i];
1521 
1522 		vm_page_flag_clear(m, PG_SWAPINPROG);
1523 
1524 		if (bp->b_ioflags & BIO_ERROR) {
1525 			/*
1526 			 * If an error occurs I'd love to throw the swapblk
1527 			 * away without freeing it back to swapspace, so it
1528 			 * can never be used again.  But I can't from an
1529 			 * interrupt.
1530 			 */
1531 
1532 			if (bp->b_iocmd == BIO_READ) {
1533 				/*
1534 				 * When reading, reqpage needs to stay
1535 				 * locked for the parent, but all other
1536 				 * pages can be freed.  We still want to
1537 				 * wakeup the parent waiting on the page,
1538 				 * though.  ( also: pg_reqpage can be -1 and
1539 				 * not match anything ).
1540 				 *
1541 				 * We have to wake specifically requested pages
1542 				 * up too because we cleared PG_SWAPINPROG and
1543 				 * someone may be waiting for that.
1544 				 *
1545 				 * NOTE: for reads, m->dirty will probably
1546 				 * be overridden by the original caller of
1547 				 * getpages so don't play cute tricks here.
1548 				 *
1549 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1550 				 * AS THIS MESSES WITH object->memq, and it is
1551 				 * not legal to mess with object->memq from an
1552 				 * interrupt.
1553 				 */
1554 
1555 				m->valid = 0;
1556 				vm_page_flag_clear(m, PG_ZERO);
1557 
1558 				if (i != bp->b_pager.pg_reqpage)
1559 					vm_page_free(m);
1560 				else
1561 					vm_page_flash(m);
1562 				/*
1563 				 * If i == bp->b_pager.pg_reqpage, do not wake
1564 				 * the page up.  The caller needs to.
1565 				 */
1566 			} else {
1567 				/*
1568 				 * If a write error occurs, reactivate page
1569 				 * so it doesn't clog the inactive list,
1570 				 * then finish the I/O.
1571 				 */
1572 				vm_page_dirty(m);
1573 				vm_page_activate(m);
1574 				vm_page_io_finish(m);
1575 			}
1576 		} else if (bp->b_iocmd == BIO_READ) {
1577 			/*
1578 			 * For read success, clear dirty bits.  Nobody should
1579 			 * have this page mapped but don't take any chances,
1580 			 * make sure the pmap modify bits are also cleared.
1581 			 *
1582 			 * NOTE: for reads, m->dirty will probably be
1583 			 * overridden by the original caller of getpages so
1584 			 * we cannot set them in order to free the underlying
1585 			 * swap in a low-swap situation.  I don't think we'd
1586 			 * want to do that anyway, but it was an optimization
1587 			 * that existed in the old swapper for a time before
1588 			 * it got ripped out due to precisely this problem.
1589 			 *
1590 			 * clear PG_ZERO in page.
1591 			 *
1592 			 * If not the requested page then deactivate it.
1593 			 *
1594 			 * Note that the requested page, reqpage, is left
1595 			 * busied, but we still have to wake it up.  The
1596 			 * other pages are released (unbusied) by
1597 			 * vm_page_wakeup().  We do not set reqpage's
1598 			 * valid bits here, it is up to the caller.
1599 			 */
1600 
1601 			pmap_clear_modify(m);
1602 			m->valid = VM_PAGE_BITS_ALL;
1603 			vm_page_undirty(m);
1604 			vm_page_flag_clear(m, PG_ZERO);
1605 
1606 			/*
1607 			 * We have to wake specifically requested pages
1608 			 * up too because we cleared PG_SWAPINPROG and
1609 			 * could be waiting for it in getpages.  However,
1610 			 * be sure to not unbusy getpages specifically
1611 			 * requested page - getpages expects it to be
1612 			 * left busy.
1613 			 */
1614 			if (i != bp->b_pager.pg_reqpage) {
1615 				vm_page_deactivate(m);
1616 				vm_page_wakeup(m);
1617 			} else {
1618 				vm_page_flash(m);
1619 			}
1620 		} else {
1621 			/*
1622 			 * For write success, clear the modify and dirty
1623 			 * status, then finish the I/O ( which decrements the
1624 			 * busy count and possibly wakes waiter's up ).
1625 			 */
1626 			pmap_clear_modify(m);
1627 			vm_page_undirty(m);
1628 			vm_page_io_finish(m);
1629 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1630 				vm_page_protect(m, VM_PROT_READ);
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * adjust pip.  NOTE: the original parent may still have its own
1636 	 * pip refs on the object.
1637 	 */
1638 
1639 	if (object)
1640 		vm_object_pip_wakeupn(object, bp->b_npages);
1641 
1642 	/*
1643 	 * release the physical I/O buffer
1644 	 */
1645 
1646 	relpbuf(
1647 	    bp,
1648 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1649 		((bp->b_flags & B_ASYNC) ?
1650 		    &nsw_wcount_async :
1651 		    &nsw_wcount_sync
1652 		)
1653 	    )
1654 	);
1655 	splx(s);
1656 }
1657 
1658 /************************************************************************
1659  *				SWAP META DATA 				*
1660  ************************************************************************
1661  *
1662  *	These routines manipulate the swap metadata stored in the
1663  *	OBJT_SWAP object.  All swp_*() routines must be called at
1664  *	splvm() because swap can be freed up by the low level vm_page
1665  *	code which might be called from interrupts beyond what splbio() covers.
1666  *
1667  *	Swap metadata is implemented with a global hash and not directly
1668  *	linked into the object.  Instead the object simply contains
1669  *	appropriate tracking counters.
1670  */
1671 
1672 /*
1673  * SWP_PAGER_HASH() -	hash swap meta data
1674  *
1675  *	This is an inline helper function which hashes the swapblk given
1676  *	the object and page index.  It returns a pointer to a pointer
1677  *	to the object, or a pointer to a NULL pointer if it could not
1678  *	find a swapblk.
1679  *
1680  *	This routine must be called at splvm().
1681  */
1682 
1683 static __inline struct swblock **
1684 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1685 {
1686 	struct swblock **pswap;
1687 	struct swblock *swap;
1688 
1689 	index &= ~SWAP_META_MASK;
1690 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1691 
1692 	while ((swap = *pswap) != NULL) {
1693 		if (swap->swb_object == object &&
1694 		    swap->swb_index == index
1695 		) {
1696 			break;
1697 		}
1698 		pswap = &swap->swb_hnext;
1699 	}
1700 	return(pswap);
1701 }
1702 
1703 /*
1704  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1705  *
1706  *	We first convert the object to a swap object if it is a default
1707  *	object.
1708  *
1709  *	The specified swapblk is added to the object's swap metadata.  If
1710  *	the swapblk is not valid, it is freed instead.  Any previously
1711  *	assigned swapblk is freed.
1712  *
1713  *	This routine must be called at splvm(), except when used to convert
1714  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1715 
1716  */
1717 
1718 static void
1719 swp_pager_meta_build(
1720 	vm_object_t object,
1721 	vm_pindex_t index,
1722 	daddr_t swapblk
1723 ) {
1724 	struct swblock *swap;
1725 	struct swblock **pswap;
1726 
1727 	/*
1728 	 * Convert default object to swap object if necessary
1729 	 */
1730 
1731 	if (object->type != OBJT_SWAP) {
1732 		object->type = OBJT_SWAP;
1733 		object->un_pager.swp.swp_bcount = 0;
1734 
1735 		if (object->handle != NULL) {
1736 			TAILQ_INSERT_TAIL(
1737 			    NOBJLIST(object->handle),
1738 			    object,
1739 			    pager_object_list
1740 			);
1741 		} else {
1742 			TAILQ_INSERT_TAIL(
1743 			    &swap_pager_un_object_list,
1744 			    object,
1745 			    pager_object_list
1746 			);
1747 		}
1748 	}
1749 
1750 	/*
1751 	 * Locate hash entry.  If not found create, but if we aren't adding
1752 	 * anything just return.  If we run out of space in the map we wait
1753 	 * and, since the hash table may have changed, retry.
1754 	 */
1755 
1756 retry:
1757 	pswap = swp_pager_hash(object, index);
1758 
1759 	if ((swap = *pswap) == NULL) {
1760 		int i;
1761 
1762 		if (swapblk == SWAPBLK_NONE)
1763 			return;
1764 
1765 		swap = *pswap = zalloc(swap_zone);
1766 		if (swap == NULL) {
1767 			VM_WAIT;
1768 			goto retry;
1769 		}
1770 		swap->swb_hnext = NULL;
1771 		swap->swb_object = object;
1772 		swap->swb_index = index & ~SWAP_META_MASK;
1773 		swap->swb_count = 0;
1774 
1775 		++object->un_pager.swp.swp_bcount;
1776 
1777 		for (i = 0; i < SWAP_META_PAGES; ++i)
1778 			swap->swb_pages[i] = SWAPBLK_NONE;
1779 	}
1780 
1781 	/*
1782 	 * Delete prior contents of metadata
1783 	 */
1784 
1785 	index &= SWAP_META_MASK;
1786 
1787 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1788 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1789 		--swap->swb_count;
1790 	}
1791 
1792 	/*
1793 	 * Enter block into metadata
1794 	 */
1795 
1796 	swap->swb_pages[index] = swapblk;
1797 	if (swapblk != SWAPBLK_NONE)
1798 		++swap->swb_count;
1799 }
1800 
1801 /*
1802  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1803  *
1804  *	The requested range of blocks is freed, with any associated swap
1805  *	returned to the swap bitmap.
1806  *
1807  *	This routine will free swap metadata structures as they are cleaned
1808  *	out.  This routine does *NOT* operate on swap metadata associated
1809  *	with resident pages.
1810  *
1811  *	This routine must be called at splvm()
1812  */
1813 
1814 static void
1815 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1816 {
1817 	if (object->type != OBJT_SWAP)
1818 		return;
1819 
1820 	while (count > 0) {
1821 		struct swblock **pswap;
1822 		struct swblock *swap;
1823 
1824 		pswap = swp_pager_hash(object, index);
1825 
1826 		if ((swap = *pswap) != NULL) {
1827 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1828 
1829 			if (v != SWAPBLK_NONE) {
1830 				swp_pager_freeswapspace(v, 1);
1831 				swap->swb_pages[index & SWAP_META_MASK] =
1832 					SWAPBLK_NONE;
1833 				if (--swap->swb_count == 0) {
1834 					*pswap = swap->swb_hnext;
1835 					zfree(swap_zone, swap);
1836 					--object->un_pager.swp.swp_bcount;
1837 				}
1838 			}
1839 			--count;
1840 			++index;
1841 		} else {
1842 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1843 			count -= n;
1844 			index += n;
1845 		}
1846 	}
1847 }
1848 
1849 /*
1850  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1851  *
1852  *	This routine locates and destroys all swap metadata associated with
1853  *	an object.
1854  *
1855  *	This routine must be called at splvm()
1856  */
1857 
1858 static void
1859 swp_pager_meta_free_all(vm_object_t object)
1860 {
1861 	daddr_t index = 0;
1862 
1863 	if (object->type != OBJT_SWAP)
1864 		return;
1865 
1866 	while (object->un_pager.swp.swp_bcount) {
1867 		struct swblock **pswap;
1868 		struct swblock *swap;
1869 
1870 		pswap = swp_pager_hash(object, index);
1871 		if ((swap = *pswap) != NULL) {
1872 			int i;
1873 
1874 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1875 				daddr_t v = swap->swb_pages[i];
1876 				if (v != SWAPBLK_NONE) {
1877 					--swap->swb_count;
1878 					swp_pager_freeswapspace(v, 1);
1879 				}
1880 			}
1881 			if (swap->swb_count != 0)
1882 				panic("swap_pager_meta_free_all: swb_count != 0");
1883 			*pswap = swap->swb_hnext;
1884 			zfree(swap_zone, swap);
1885 			--object->un_pager.swp.swp_bcount;
1886 		}
1887 		index += SWAP_META_PAGES;
1888 		if (index > 0x20000000)
1889 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1890 	}
1891 }
1892 
1893 /*
1894  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1895  *
1896  *	This routine is capable of looking up, popping, or freeing
1897  *	swapblk assignments in the swap meta data or in the vm_page_t.
1898  *	The routine typically returns the swapblk being looked-up, or popped,
1899  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1900  *	was invalid.  This routine will automatically free any invalid
1901  *	meta-data swapblks.
1902  *
1903  *	It is not possible to store invalid swapblks in the swap meta data
1904  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1905  *
1906  *	When acting on a busy resident page and paging is in progress, we
1907  *	have to wait until paging is complete but otherwise can act on the
1908  *	busy page.
1909  *
1910  *	This routine must be called at splvm().
1911  *
1912  *	SWM_FREE	remove and free swap block from metadata
1913  *	SWM_POP		remove from meta data but do not free.. pop it out
1914  */
1915 
1916 static daddr_t
1917 swp_pager_meta_ctl(
1918 	vm_object_t object,
1919 	vm_pindex_t index,
1920 	int flags
1921 ) {
1922 	struct swblock **pswap;
1923 	struct swblock *swap;
1924 	daddr_t r1;
1925 
1926 	/*
1927 	 * The meta data only exists of the object is OBJT_SWAP
1928 	 * and even then might not be allocated yet.
1929 	 */
1930 
1931 	if (object->type != OBJT_SWAP)
1932 		return(SWAPBLK_NONE);
1933 
1934 	r1 = SWAPBLK_NONE;
1935 	pswap = swp_pager_hash(object, index);
1936 
1937 	if ((swap = *pswap) != NULL) {
1938 		index &= SWAP_META_MASK;
1939 		r1 = swap->swb_pages[index];
1940 
1941 		if (r1 != SWAPBLK_NONE) {
1942 			if (flags & SWM_FREE) {
1943 				swp_pager_freeswapspace(r1, 1);
1944 				r1 = SWAPBLK_NONE;
1945 			}
1946 			if (flags & (SWM_FREE|SWM_POP)) {
1947 				swap->swb_pages[index] = SWAPBLK_NONE;
1948 				if (--swap->swb_count == 0) {
1949 					*pswap = swap->swb_hnext;
1950 					zfree(swap_zone, swap);
1951 					--object->un_pager.swp.swp_bcount;
1952 				}
1953 			}
1954 		}
1955 	}
1956 	return(r1);
1957 }
1958 
1959 /********************************************************
1960  *		CHAINING FUNCTIONS			*
1961  ********************************************************
1962  *
1963  *	These functions support recursion of I/O operations
1964  *	on bp's, typically by chaining one or more 'child' bp's
1965  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1966  *	chaining is possible.
1967  */
1968 
1969 /*
1970  *	vm_pager_chain_iodone:
1971  *
1972  *	io completion routine for child bp.  Currently we fudge a bit
1973  *	on dealing with b_resid.   Since users of these routines may issue
1974  *	multiple children simultaneously, sequencing of the error can be lost.
1975  */
1976 
1977 static void
1978 vm_pager_chain_iodone(struct buf *nbp)
1979 {
1980 	struct bio *bp;
1981 	u_int *count;
1982 
1983 	bp = nbp->b_caller1;
1984 	count = (u_int *)&(bp->bio_caller1);
1985 	if (bp != NULL) {
1986 		if (nbp->b_ioflags & BIO_ERROR) {
1987 			bp->bio_flags |= BIO_ERROR;
1988 			bp->bio_error = nbp->b_error;
1989 		} else if (nbp->b_resid != 0) {
1990 			bp->bio_flags |= BIO_ERROR;
1991 			bp->bio_error = EINVAL;
1992 		} else {
1993 			bp->bio_resid -= nbp->b_bcount;
1994 		}
1995 		nbp->b_caller1 = NULL;
1996 		--(*count);
1997 		if (bp->bio_flags & BIO_FLAG1) {
1998 			bp->bio_flags &= ~BIO_FLAG1;
1999 			wakeup(bp);
2000 		}
2001 	}
2002 	nbp->b_flags |= B_DONE;
2003 	nbp->b_flags &= ~B_ASYNC;
2004 	relpbuf(nbp, NULL);
2005 }
2006 
2007 /*
2008  *	getchainbuf:
2009  *
2010  *	Obtain a physical buffer and chain it to its parent buffer.  When
2011  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2012  *	automatically propagated to the parent
2013  */
2014 
2015 struct buf *
2016 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2017 {
2018 	struct buf *nbp = getpbuf(NULL);
2019 	u_int *count = (u_int *)&(bp->bio_caller1);
2020 
2021 	nbp->b_caller1 = bp;
2022 	++(*count);
2023 
2024 	if (*count > 4)
2025 		waitchainbuf(bp, 4, 0);
2026 
2027 	nbp->b_iocmd = bp->bio_cmd;
2028 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2029 	nbp->b_flags = flags;
2030 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2031 	nbp->b_iodone = vm_pager_chain_iodone;
2032 
2033 	crhold(nbp->b_rcred);
2034 	crhold(nbp->b_wcred);
2035 
2036 	if (vp)
2037 		pbgetvp(vp, nbp);
2038 	return(nbp);
2039 }
2040 
2041 void
2042 flushchainbuf(struct buf *nbp)
2043 {
2044 	if (nbp->b_bcount) {
2045 		nbp->b_bufsize = nbp->b_bcount;
2046 		if (nbp->b_iocmd == BIO_WRITE)
2047 			nbp->b_dirtyend = nbp->b_bcount;
2048 		BUF_KERNPROC(nbp);
2049 		BUF_STRATEGY(nbp);
2050 	} else {
2051 		bufdone(nbp);
2052 	}
2053 }
2054 
2055 void
2056 waitchainbuf(struct bio *bp, int limit, int done)
2057 {
2058  	int s;
2059 	u_int *count = (u_int *)&(bp->bio_caller1);
2060 
2061 	s = splbio();
2062 	while (*count > limit) {
2063 		bp->bio_flags |= BIO_FLAG1;
2064 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2065 	}
2066 	if (done) {
2067 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2068 			bp->bio_flags |= BIO_ERROR;
2069 			bp->bio_error = EINVAL;
2070 		}
2071 		biodone(bp);
2072 	}
2073 	splx(s);
2074 }
2075 
2076