1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_mac.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/mac.h> 89 #include <sys/malloc.h> 90 #include <sys/sysctl.h> 91 #include <sys/sysproto.h> 92 #include <sys/blist.h> 93 #include <sys/lock.h> 94 #include <sys/sx.h> 95 #include <sys/vmmeter.h> 96 97 #include <vm/vm.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_param.h> 106 #include <vm/swap_pager.h> 107 #include <vm/vm_extern.h> 108 #include <vm/uma.h> 109 110 #include <geom/geom.h> 111 112 /* 113 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 114 * pages per allocation. We recommend you stick with the default of 8. 115 * The 16-page limit is due to the radix code (kern/subr_blist.c). 116 */ 117 #ifndef MAX_PAGEOUT_CLUSTER 118 #define MAX_PAGEOUT_CLUSTER 16 119 #endif 120 121 #if !defined(SWB_NPAGES) 122 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 123 #endif 124 125 /* 126 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 127 * 128 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 129 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 130 * 32K worth of data, two levels represent 256K, three levels represent 131 * 2 MBytes. This is acceptable. 132 * 133 * Overall memory utilization is about the same as the old swap structure. 134 */ 135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 136 #define SWAP_META_PAGES (SWB_NPAGES * 2) 137 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 138 139 typedef int32_t swblk_t; /* 140 * swap offset. This is the type used to 141 * address the "virtual swap device" and 142 * therefore the maximum swap space is 143 * 2^32 pages. 144 */ 145 146 struct swdevt; 147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw); 148 typedef void sw_close_t(struct thread *td, struct swdevt *sw); 149 150 /* 151 * Swap device table 152 */ 153 struct swdevt { 154 int sw_flags; 155 int sw_nblks; 156 int sw_used; 157 udev_t sw_udev; 158 struct vnode *sw_vp; 159 void *sw_id; 160 swblk_t sw_first; 161 swblk_t sw_end; 162 struct blist *sw_blist; 163 TAILQ_ENTRY(swdevt) sw_list; 164 sw_strategy_t *sw_strategy; 165 sw_close_t *sw_close; 166 }; 167 168 #define SW_CLOSING 0x04 169 170 struct swblock { 171 struct swblock *swb_hnext; 172 vm_object_t swb_object; 173 vm_pindex_t swb_index; 174 int swb_count; 175 daddr_t swb_pages[SWAP_META_PAGES]; 176 }; 177 178 static struct mtx sw_dev_mtx; 179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 180 static struct swdevt *swdevhd; /* Allocate from here next */ 181 static int nswapdev; /* Number of swap devices */ 182 int swap_pager_avail; 183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 184 185 static void swapdev_strategy(struct buf *, struct swdevt *sw); 186 187 #define SWM_FREE 0x02 /* free, period */ 188 #define SWM_POP 0x04 /* pop out */ 189 190 int swap_pager_full; /* swap space exhaustion (task killing) */ 191 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 192 static int nsw_rcount; /* free read buffers */ 193 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 194 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 195 static int nsw_wcount_async_max;/* assigned maximum */ 196 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 197 198 static struct swblock **swhash; 199 static int swhash_mask; 200 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 201 static struct sx sw_alloc_sx; 202 203 204 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 205 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 206 207 /* 208 * "named" and "unnamed" anon region objects. Try to reduce the overhead 209 * of searching a named list by hashing it just a little. 210 */ 211 212 #define NOBJLISTS 8 213 214 #define NOBJLIST(handle) \ 215 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 216 217 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 218 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 219 static struct pagerlst swap_pager_un_object_list; 220 static uma_zone_t swap_zone; 221 222 /* 223 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 224 * calls hooked from other parts of the VM system and do not appear here. 225 * (see vm/swap_pager.h). 226 */ 227 static vm_object_t 228 swap_pager_alloc(void *handle, vm_ooffset_t size, 229 vm_prot_t prot, vm_ooffset_t offset); 230 static void swap_pager_dealloc(vm_object_t object); 231 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 232 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 233 static boolean_t 234 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 235 static void swap_pager_init(void); 236 static void swap_pager_unswapped(vm_page_t); 237 static void swap_pager_swapoff(struct swdevt *sp, int *sw_used); 238 239 struct pagerops swappagerops = { 240 .pgo_init = swap_pager_init, /* early system initialization of pager */ 241 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 242 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 243 .pgo_getpages = swap_pager_getpages, /* pagein */ 244 .pgo_putpages = swap_pager_putpages, /* pageout */ 245 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 246 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 247 }; 248 249 /* 250 * dmmax is in page-sized chunks with the new swap system. It was 251 * dev-bsized chunks in the old. dmmax is always a power of 2. 252 * 253 * swap_*() routines are externally accessible. swp_*() routines are 254 * internal. 255 */ 256 static int dmmax; 257 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 258 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 259 260 SYSCTL_INT(_vm, OID_AUTO, dmmax, 261 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 262 263 static void swp_sizecheck(void); 264 static void swp_pager_sync_iodone(struct buf *bp); 265 static void swp_pager_async_iodone(struct buf *bp); 266 static int swapongeom(struct thread *, struct vnode *); 267 static int swaponvp(struct thread *, struct vnode *, u_long); 268 269 /* 270 * Swap bitmap functions 271 */ 272 static void swp_pager_freeswapspace(daddr_t blk, int npages); 273 static daddr_t swp_pager_getswapspace(int npages); 274 275 /* 276 * Metadata functions 277 */ 278 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 279 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 280 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 281 static void swp_pager_meta_free_all(vm_object_t); 282 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 283 284 /* 285 * SWP_SIZECHECK() - update swap_pager_full indication 286 * 287 * update the swap_pager_almost_full indication and warn when we are 288 * about to run out of swap space, using lowat/hiwat hysteresis. 289 * 290 * Clear swap_pager_full ( task killing ) indication when lowat is met. 291 * 292 * No restrictions on call 293 * This routine may not block. 294 * This routine must be called at splvm() 295 */ 296 static void 297 swp_sizecheck(void) 298 { 299 GIANT_REQUIRED; 300 301 if (swap_pager_avail < nswap_lowat) { 302 if (swap_pager_almost_full == 0) { 303 printf("swap_pager: out of swap space\n"); 304 swap_pager_almost_full = 1; 305 } 306 } else { 307 swap_pager_full = 0; 308 if (swap_pager_avail > nswap_hiwat) 309 swap_pager_almost_full = 0; 310 } 311 } 312 313 /* 314 * SWP_PAGER_HASH() - hash swap meta data 315 * 316 * This is an helper function which hashes the swapblk given 317 * the object and page index. It returns a pointer to a pointer 318 * to the object, or a pointer to a NULL pointer if it could not 319 * find a swapblk. 320 * 321 * This routine must be called at splvm(). 322 */ 323 static struct swblock ** 324 swp_pager_hash(vm_object_t object, vm_pindex_t index) 325 { 326 struct swblock **pswap; 327 struct swblock *swap; 328 329 index &= ~(vm_pindex_t)SWAP_META_MASK; 330 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 331 while ((swap = *pswap) != NULL) { 332 if (swap->swb_object == object && 333 swap->swb_index == index 334 ) { 335 break; 336 } 337 pswap = &swap->swb_hnext; 338 } 339 return (pswap); 340 } 341 342 /* 343 * SWAP_PAGER_INIT() - initialize the swap pager! 344 * 345 * Expected to be started from system init. NOTE: This code is run 346 * before much else so be careful what you depend on. Most of the VM 347 * system has yet to be initialized at this point. 348 */ 349 static void 350 swap_pager_init(void) 351 { 352 /* 353 * Initialize object lists 354 */ 355 int i; 356 357 for (i = 0; i < NOBJLISTS; ++i) 358 TAILQ_INIT(&swap_pager_object_list[i]); 359 TAILQ_INIT(&swap_pager_un_object_list); 360 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 361 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 362 363 /* 364 * Device Stripe, in PAGE_SIZE'd blocks 365 */ 366 dmmax = SWB_NPAGES * 2; 367 } 368 369 /* 370 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 371 * 372 * Expected to be started from pageout process once, prior to entering 373 * its main loop. 374 */ 375 void 376 swap_pager_swap_init(void) 377 { 378 int n, n2; 379 380 /* 381 * Number of in-transit swap bp operations. Don't 382 * exhaust the pbufs completely. Make sure we 383 * initialize workable values (0 will work for hysteresis 384 * but it isn't very efficient). 385 * 386 * The nsw_cluster_max is constrained by the bp->b_pages[] 387 * array (MAXPHYS/PAGE_SIZE) and our locally defined 388 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 389 * constrained by the swap device interleave stripe size. 390 * 391 * Currently we hardwire nsw_wcount_async to 4. This limit is 392 * designed to prevent other I/O from having high latencies due to 393 * our pageout I/O. The value 4 works well for one or two active swap 394 * devices but is probably a little low if you have more. Even so, 395 * a higher value would probably generate only a limited improvement 396 * with three or four active swap devices since the system does not 397 * typically have to pageout at extreme bandwidths. We will want 398 * at least 2 per swap devices, and 4 is a pretty good value if you 399 * have one NFS swap device due to the command/ack latency over NFS. 400 * So it all works out pretty well. 401 */ 402 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 403 404 mtx_lock(&pbuf_mtx); 405 nsw_rcount = (nswbuf + 1) / 2; 406 nsw_wcount_sync = (nswbuf + 3) / 4; 407 nsw_wcount_async = 4; 408 nsw_wcount_async_max = nsw_wcount_async; 409 mtx_unlock(&pbuf_mtx); 410 411 /* 412 * Initialize our zone. Right now I'm just guessing on the number 413 * we need based on the number of pages in the system. Each swblock 414 * can hold 16 pages, so this is probably overkill. This reservation 415 * is typically limited to around 32MB by default. 416 */ 417 n = cnt.v_page_count / 2; 418 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 419 n = maxswzone / sizeof(struct swblock); 420 n2 = n; 421 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 422 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 423 do { 424 if (uma_zone_set_obj(swap_zone, NULL, n)) 425 break; 426 /* 427 * if the allocation failed, try a zone two thirds the 428 * size of the previous attempt. 429 */ 430 n -= ((n + 2) / 3); 431 } while (n > 0); 432 if (swap_zone == NULL) 433 panic("failed to create swap_zone."); 434 if (n2 != n) 435 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 436 n2 = n; 437 438 /* 439 * Initialize our meta-data hash table. The swapper does not need to 440 * be quite as efficient as the VM system, so we do not use an 441 * oversized hash table. 442 * 443 * n: size of hash table, must be power of 2 444 * swhash_mask: hash table index mask 445 */ 446 for (n = 1; n < n2 / 8; n *= 2) 447 ; 448 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 449 swhash_mask = n - 1; 450 } 451 452 /* 453 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 454 * its metadata structures. 455 * 456 * This routine is called from the mmap and fork code to create a new 457 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 458 * and then converting it with swp_pager_meta_build(). 459 * 460 * This routine may block in vm_object_allocate() and create a named 461 * object lookup race, so we must interlock. We must also run at 462 * splvm() for the object lookup to handle races with interrupts, but 463 * we do not have to maintain splvm() in between the lookup and the 464 * add because (I believe) it is not possible to attempt to create 465 * a new swap object w/handle when a default object with that handle 466 * already exists. 467 * 468 * MPSAFE 469 */ 470 static vm_object_t 471 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 472 vm_ooffset_t offset) 473 { 474 vm_object_t object; 475 476 mtx_lock(&Giant); 477 if (handle) { 478 /* 479 * Reference existing named region or allocate new one. There 480 * should not be a race here against swp_pager_meta_build() 481 * as called from vm_page_remove() in regards to the lookup 482 * of the handle. 483 */ 484 sx_xlock(&sw_alloc_sx); 485 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 486 487 if (object != NULL) { 488 vm_object_reference(object); 489 } else { 490 object = vm_object_allocate(OBJT_DEFAULT, 491 OFF_TO_IDX(offset + PAGE_MASK + size)); 492 object->handle = handle; 493 494 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 495 } 496 sx_xunlock(&sw_alloc_sx); 497 } else { 498 object = vm_object_allocate(OBJT_DEFAULT, 499 OFF_TO_IDX(offset + PAGE_MASK + size)); 500 501 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 502 } 503 mtx_unlock(&Giant); 504 return (object); 505 } 506 507 /* 508 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 509 * 510 * The swap backing for the object is destroyed. The code is 511 * designed such that we can reinstantiate it later, but this 512 * routine is typically called only when the entire object is 513 * about to be destroyed. 514 * 515 * This routine may block, but no longer does. 516 * 517 * The object must be locked or unreferenceable. 518 */ 519 static void 520 swap_pager_dealloc(vm_object_t object) 521 { 522 int s; 523 524 GIANT_REQUIRED; 525 526 /* 527 * Remove from list right away so lookups will fail if we block for 528 * pageout completion. 529 */ 530 mtx_lock(&sw_alloc_mtx); 531 if (object->handle == NULL) { 532 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 533 } else { 534 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 535 } 536 mtx_unlock(&sw_alloc_mtx); 537 538 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 539 vm_object_pip_wait(object, "swpdea"); 540 541 /* 542 * Free all remaining metadata. We only bother to free it from 543 * the swap meta data. We do not attempt to free swapblk's still 544 * associated with vm_page_t's for this object. We do not care 545 * if paging is still in progress on some objects. 546 */ 547 s = splvm(); 548 swp_pager_meta_free_all(object); 549 splx(s); 550 } 551 552 /************************************************************************ 553 * SWAP PAGER BITMAP ROUTINES * 554 ************************************************************************/ 555 556 /* 557 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 558 * 559 * Allocate swap for the requested number of pages. The starting 560 * swap block number (a page index) is returned or SWAPBLK_NONE 561 * if the allocation failed. 562 * 563 * Also has the side effect of advising that somebody made a mistake 564 * when they configured swap and didn't configure enough. 565 * 566 * Must be called at splvm() to avoid races with bitmap frees from 567 * vm_page_remove() aka swap_pager_page_removed(). 568 * 569 * This routine may not block 570 * This routine must be called at splvm(). 571 * 572 * We allocate in round-robin fashion from the configured devices. 573 */ 574 static daddr_t 575 swp_pager_getswapspace(int npages) 576 { 577 daddr_t blk; 578 struct swdevt *sp; 579 int i; 580 581 GIANT_REQUIRED; 582 583 blk = SWAPBLK_NONE; 584 mtx_lock(&sw_dev_mtx); 585 sp = swdevhd; 586 for (i = 0; i < nswapdev; i++) { 587 if (sp == NULL) 588 sp = TAILQ_FIRST(&swtailq); 589 if (!(sp->sw_flags & SW_CLOSING)) { 590 blk = blist_alloc(sp->sw_blist, npages); 591 if (blk != SWAPBLK_NONE) { 592 blk += sp->sw_first; 593 swap_pager_avail -= npages; 594 sp->sw_used += npages; 595 swp_sizecheck(); 596 swdevhd = TAILQ_NEXT(sp, sw_list); 597 mtx_unlock(&sw_dev_mtx); 598 return(blk); 599 } 600 } 601 sp = TAILQ_NEXT(sp, sw_list); 602 } 603 mtx_unlock(&sw_dev_mtx); 604 if (swap_pager_full != 2) { 605 printf("swap_pager_getswapspace(%d): failed\n", npages); 606 swap_pager_full = 2; 607 swap_pager_almost_full = 1; 608 } 609 swdevhd = NULL; 610 return (blk); 611 } 612 613 static struct swdevt * 614 swp_pager_find_dev(daddr_t blk) 615 { 616 struct swdevt *sp; 617 618 mtx_lock(&sw_dev_mtx); 619 TAILQ_FOREACH(sp, &swtailq, sw_list) { 620 if (blk >= sp->sw_first && blk < sp->sw_end) { 621 mtx_unlock(&sw_dev_mtx); 622 return (sp); 623 } 624 } 625 panic("Swapdev not found"); 626 } 627 628 static void 629 swp_pager_strategy(struct buf *bp) 630 { 631 struct swdevt *sp; 632 633 mtx_lock(&sw_dev_mtx); 634 TAILQ_FOREACH(sp, &swtailq, sw_list) { 635 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 636 mtx_unlock(&sw_dev_mtx); 637 sp->sw_strategy(bp, sp); 638 return; 639 } 640 } 641 panic("Swapdev not found"); 642 } 643 644 645 /* 646 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 647 * 648 * This routine returns the specified swap blocks back to the bitmap. 649 * 650 * Note: This routine may not block (it could in the old swap code), 651 * and through the use of the new blist routines it does not block. 652 * 653 * We must be called at splvm() to avoid races with bitmap frees from 654 * vm_page_remove() aka swap_pager_page_removed(). 655 * 656 * This routine may not block 657 * This routine must be called at splvm(). 658 */ 659 static void 660 swp_pager_freeswapspace(daddr_t blk, int npages) 661 { 662 struct swdevt *sp; 663 664 GIANT_REQUIRED; 665 666 sp = swp_pager_find_dev(blk); 667 668 /* per-swap area stats */ 669 sp->sw_used -= npages; 670 671 /* 672 * If we are attempting to stop swapping on this device, we 673 * don't want to mark any blocks free lest they be reused. 674 */ 675 if (sp->sw_flags & SW_CLOSING) 676 return; 677 678 blist_free(sp->sw_blist, blk - sp->sw_first, npages); 679 swap_pager_avail += npages; 680 swp_sizecheck(); 681 } 682 683 /* 684 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 685 * range within an object. 686 * 687 * This is a globally accessible routine. 688 * 689 * This routine removes swapblk assignments from swap metadata. 690 * 691 * The external callers of this routine typically have already destroyed 692 * or renamed vm_page_t's associated with this range in the object so 693 * we should be ok. 694 * 695 * This routine may be called at any spl. We up our spl to splvm temporarily 696 * in order to perform the metadata removal. 697 */ 698 void 699 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 700 { 701 int s = splvm(); 702 703 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 704 swp_pager_meta_free(object, start, size); 705 splx(s); 706 } 707 708 /* 709 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 710 * 711 * Assigns swap blocks to the specified range within the object. The 712 * swap blocks are not zerod. Any previous swap assignment is destroyed. 713 * 714 * Returns 0 on success, -1 on failure. 715 */ 716 int 717 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 718 { 719 int s; 720 int n = 0; 721 daddr_t blk = SWAPBLK_NONE; 722 vm_pindex_t beg = start; /* save start index */ 723 724 s = splvm(); 725 while (size) { 726 if (n == 0) { 727 n = BLIST_MAX_ALLOC; 728 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 729 n >>= 1; 730 if (n == 0) { 731 swp_pager_meta_free(object, beg, start - beg); 732 splx(s); 733 return (-1); 734 } 735 } 736 } 737 swp_pager_meta_build(object, start, blk); 738 --size; 739 ++start; 740 ++blk; 741 --n; 742 } 743 swp_pager_meta_free(object, start, n); 744 splx(s); 745 return (0); 746 } 747 748 /* 749 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 750 * and destroy the source. 751 * 752 * Copy any valid swapblks from the source to the destination. In 753 * cases where both the source and destination have a valid swapblk, 754 * we keep the destination's. 755 * 756 * This routine is allowed to block. It may block allocating metadata 757 * indirectly through swp_pager_meta_build() or if paging is still in 758 * progress on the source. 759 * 760 * This routine can be called at any spl 761 * 762 * XXX vm_page_collapse() kinda expects us not to block because we 763 * supposedly do not need to allocate memory, but for the moment we 764 * *may* have to get a little memory from the zone allocator, but 765 * it is taken from the interrupt memory. We should be ok. 766 * 767 * The source object contains no vm_page_t's (which is just as well) 768 * 769 * The source object is of type OBJT_SWAP. 770 * 771 * The source and destination objects must be locked or 772 * inaccessible (XXX are they ?) 773 */ 774 void 775 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 776 vm_pindex_t offset, int destroysource) 777 { 778 vm_pindex_t i; 779 int s; 780 781 GIANT_REQUIRED; 782 783 s = splvm(); 784 /* 785 * If destroysource is set, we remove the source object from the 786 * swap_pager internal queue now. 787 */ 788 if (destroysource) { 789 mtx_lock(&sw_alloc_mtx); 790 if (srcobject->handle == NULL) { 791 TAILQ_REMOVE( 792 &swap_pager_un_object_list, 793 srcobject, 794 pager_object_list 795 ); 796 } else { 797 TAILQ_REMOVE( 798 NOBJLIST(srcobject->handle), 799 srcobject, 800 pager_object_list 801 ); 802 } 803 mtx_unlock(&sw_alloc_mtx); 804 } 805 806 /* 807 * transfer source to destination. 808 */ 809 for (i = 0; i < dstobject->size; ++i) { 810 daddr_t dstaddr; 811 812 /* 813 * Locate (without changing) the swapblk on the destination, 814 * unless it is invalid in which case free it silently, or 815 * if the destination is a resident page, in which case the 816 * source is thrown away. 817 */ 818 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 819 820 if (dstaddr == SWAPBLK_NONE) { 821 /* 822 * Destination has no swapblk and is not resident, 823 * copy source. 824 */ 825 daddr_t srcaddr; 826 827 srcaddr = swp_pager_meta_ctl( 828 srcobject, 829 i + offset, 830 SWM_POP 831 ); 832 833 if (srcaddr != SWAPBLK_NONE) 834 swp_pager_meta_build(dstobject, i, srcaddr); 835 } else { 836 /* 837 * Destination has valid swapblk or it is represented 838 * by a resident page. We destroy the sourceblock. 839 */ 840 841 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 842 } 843 } 844 845 /* 846 * Free left over swap blocks in source. 847 * 848 * We have to revert the type to OBJT_DEFAULT so we do not accidently 849 * double-remove the object from the swap queues. 850 */ 851 if (destroysource) { 852 swp_pager_meta_free_all(srcobject); 853 /* 854 * Reverting the type is not necessary, the caller is going 855 * to destroy srcobject directly, but I'm doing it here 856 * for consistency since we've removed the object from its 857 * queues. 858 */ 859 srcobject->type = OBJT_DEFAULT; 860 } 861 splx(s); 862 } 863 864 /* 865 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 866 * the requested page. 867 * 868 * We determine whether good backing store exists for the requested 869 * page and return TRUE if it does, FALSE if it doesn't. 870 * 871 * If TRUE, we also try to determine how much valid, contiguous backing 872 * store exists before and after the requested page within a reasonable 873 * distance. We do not try to restrict it to the swap device stripe 874 * (that is handled in getpages/putpages). It probably isn't worth 875 * doing here. 876 */ 877 static boolean_t 878 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 879 { 880 daddr_t blk0; 881 int s; 882 883 /* 884 * do we have good backing store at the requested index ? 885 */ 886 s = splvm(); 887 blk0 = swp_pager_meta_ctl(object, pindex, 0); 888 889 if (blk0 == SWAPBLK_NONE) { 890 splx(s); 891 if (before) 892 *before = 0; 893 if (after) 894 *after = 0; 895 return (FALSE); 896 } 897 898 /* 899 * find backwards-looking contiguous good backing store 900 */ 901 if (before != NULL) { 902 int i; 903 904 for (i = 1; i < (SWB_NPAGES/2); ++i) { 905 daddr_t blk; 906 907 if (i > pindex) 908 break; 909 blk = swp_pager_meta_ctl(object, pindex - i, 0); 910 if (blk != blk0 - i) 911 break; 912 } 913 *before = (i - 1); 914 } 915 916 /* 917 * find forward-looking contiguous good backing store 918 */ 919 if (after != NULL) { 920 int i; 921 922 for (i = 1; i < (SWB_NPAGES/2); ++i) { 923 daddr_t blk; 924 925 blk = swp_pager_meta_ctl(object, pindex + i, 0); 926 if (blk != blk0 + i) 927 break; 928 } 929 *after = (i - 1); 930 } 931 splx(s); 932 return (TRUE); 933 } 934 935 /* 936 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 937 * 938 * This removes any associated swap backing store, whether valid or 939 * not, from the page. 940 * 941 * This routine is typically called when a page is made dirty, at 942 * which point any associated swap can be freed. MADV_FREE also 943 * calls us in a special-case situation 944 * 945 * NOTE!!! If the page is clean and the swap was valid, the caller 946 * should make the page dirty before calling this routine. This routine 947 * does NOT change the m->dirty status of the page. Also: MADV_FREE 948 * depends on it. 949 * 950 * This routine may not block 951 * This routine must be called at splvm() 952 */ 953 static void 954 swap_pager_unswapped(vm_page_t m) 955 { 956 957 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 958 } 959 960 /* 961 * SWAP_PAGER_GETPAGES() - bring pages in from swap 962 * 963 * Attempt to retrieve (m, count) pages from backing store, but make 964 * sure we retrieve at least m[reqpage]. We try to load in as large 965 * a chunk surrounding m[reqpage] as is contiguous in swap and which 966 * belongs to the same object. 967 * 968 * The code is designed for asynchronous operation and 969 * immediate-notification of 'reqpage' but tends not to be 970 * used that way. Please do not optimize-out this algorithmic 971 * feature, I intend to improve on it in the future. 972 * 973 * The parent has a single vm_object_pip_add() reference prior to 974 * calling us and we should return with the same. 975 * 976 * The parent has BUSY'd the pages. We should return with 'm' 977 * left busy, but the others adjusted. 978 */ 979 static int 980 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 981 { 982 struct buf *bp; 983 vm_page_t mreq; 984 int s; 985 int i; 986 int j; 987 daddr_t blk; 988 989 mreq = m[reqpage]; 990 991 KASSERT(mreq->object == object, 992 ("swap_pager_getpages: object mismatch %p/%p", 993 object, mreq->object)); 994 995 /* 996 * Calculate range to retrieve. The pages have already been assigned 997 * their swapblks. We require a *contiguous* range but we know it to 998 * not span devices. If we do not supply it, bad things 999 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1000 * loops are set up such that the case(s) are handled implicitly. 1001 * 1002 * The swp_*() calls must be made at splvm(). vm_page_free() does 1003 * not need to be, but it will go a little faster if it is. 1004 */ 1005 s = splvm(); 1006 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1007 1008 for (i = reqpage - 1; i >= 0; --i) { 1009 daddr_t iblk; 1010 1011 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1012 if (blk != iblk + (reqpage - i)) 1013 break; 1014 } 1015 ++i; 1016 1017 for (j = reqpage + 1; j < count; ++j) { 1018 daddr_t jblk; 1019 1020 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1021 if (blk != jblk - (j - reqpage)) 1022 break; 1023 } 1024 1025 /* 1026 * free pages outside our collection range. Note: we never free 1027 * mreq, it must remain busy throughout. 1028 */ 1029 vm_page_lock_queues(); 1030 { 1031 int k; 1032 1033 for (k = 0; k < i; ++k) 1034 vm_page_free(m[k]); 1035 for (k = j; k < count; ++k) 1036 vm_page_free(m[k]); 1037 } 1038 vm_page_unlock_queues(); 1039 splx(s); 1040 1041 1042 /* 1043 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1044 * still busy, but the others unbusied. 1045 */ 1046 if (blk == SWAPBLK_NONE) 1047 return (VM_PAGER_FAIL); 1048 1049 /* 1050 * Getpbuf() can sleep. 1051 */ 1052 VM_OBJECT_UNLOCK(object); 1053 /* 1054 * Get a swap buffer header to perform the IO 1055 */ 1056 bp = getpbuf(&nsw_rcount); 1057 bp->b_flags |= B_PAGING; 1058 1059 /* 1060 * map our page(s) into kva for input 1061 */ 1062 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1063 1064 bp->b_iocmd = BIO_READ; 1065 bp->b_iodone = swp_pager_async_iodone; 1066 bp->b_rcred = crhold(thread0.td_ucred); 1067 bp->b_wcred = crhold(thread0.td_ucred); 1068 bp->b_blkno = blk - (reqpage - i); 1069 bp->b_bcount = PAGE_SIZE * (j - i); 1070 bp->b_bufsize = PAGE_SIZE * (j - i); 1071 bp->b_pager.pg_reqpage = reqpage - i; 1072 1073 VM_OBJECT_LOCK(object); 1074 vm_page_lock_queues(); 1075 { 1076 int k; 1077 1078 for (k = i; k < j; ++k) { 1079 bp->b_pages[k - i] = m[k]; 1080 vm_page_flag_set(m[k], PG_SWAPINPROG); 1081 } 1082 } 1083 vm_page_unlock_queues(); 1084 VM_OBJECT_UNLOCK(object); 1085 bp->b_npages = j - i; 1086 1087 cnt.v_swapin++; 1088 cnt.v_swappgsin += bp->b_npages; 1089 1090 /* 1091 * We still hold the lock on mreq, and our automatic completion routine 1092 * does not remove it. 1093 */ 1094 VM_OBJECT_LOCK(mreq->object); 1095 vm_object_pip_add(mreq->object, bp->b_npages); 1096 VM_OBJECT_UNLOCK(mreq->object); 1097 1098 /* 1099 * perform the I/O. NOTE!!! bp cannot be considered valid after 1100 * this point because we automatically release it on completion. 1101 * Instead, we look at the one page we are interested in which we 1102 * still hold a lock on even through the I/O completion. 1103 * 1104 * The other pages in our m[] array are also released on completion, 1105 * so we cannot assume they are valid anymore either. 1106 * 1107 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1108 */ 1109 BUF_KERNPROC(bp); 1110 swp_pager_strategy(bp); 1111 1112 /* 1113 * wait for the page we want to complete. PG_SWAPINPROG is always 1114 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1115 * is set in the meta-data. 1116 */ 1117 s = splvm(); 1118 vm_page_lock_queues(); 1119 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1120 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1121 cnt.v_intrans++; 1122 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) { 1123 printf( 1124 "swap_pager: indefinite wait buffer: device:" 1125 " %s, blkno: %ld, size: %ld\n", 1126 devtoname(bp->b_dev), (long)bp->b_blkno, 1127 bp->b_bcount 1128 ); 1129 } 1130 } 1131 vm_page_unlock_queues(); 1132 splx(s); 1133 1134 VM_OBJECT_LOCK(mreq->object); 1135 /* 1136 * mreq is left busied after completion, but all the other pages 1137 * are freed. If we had an unrecoverable read error the page will 1138 * not be valid. 1139 */ 1140 if (mreq->valid != VM_PAGE_BITS_ALL) { 1141 return (VM_PAGER_ERROR); 1142 } else { 1143 return (VM_PAGER_OK); 1144 } 1145 1146 /* 1147 * A final note: in a low swap situation, we cannot deallocate swap 1148 * and mark a page dirty here because the caller is likely to mark 1149 * the page clean when we return, causing the page to possibly revert 1150 * to all-zero's later. 1151 */ 1152 } 1153 1154 /* 1155 * swap_pager_putpages: 1156 * 1157 * Assign swap (if necessary) and initiate I/O on the specified pages. 1158 * 1159 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1160 * are automatically converted to SWAP objects. 1161 * 1162 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1163 * vm_page reservation system coupled with properly written VFS devices 1164 * should ensure that no low-memory deadlock occurs. This is an area 1165 * which needs work. 1166 * 1167 * The parent has N vm_object_pip_add() references prior to 1168 * calling us and will remove references for rtvals[] that are 1169 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1170 * completion. 1171 * 1172 * The parent has soft-busy'd the pages it passes us and will unbusy 1173 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1174 * We need to unbusy the rest on I/O completion. 1175 */ 1176 void 1177 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1178 boolean_t sync, int *rtvals) 1179 { 1180 int i; 1181 int n = 0; 1182 1183 GIANT_REQUIRED; 1184 if (count && m[0]->object != object) { 1185 panic("swap_pager_getpages: object mismatch %p/%p", 1186 object, 1187 m[0]->object 1188 ); 1189 } 1190 /* 1191 * Step 1 1192 * 1193 * Turn object into OBJT_SWAP 1194 * check for bogus sysops 1195 * force sync if not pageout process 1196 */ 1197 if (object->type != OBJT_SWAP) 1198 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1199 1200 if (curproc != pageproc) 1201 sync = TRUE; 1202 1203 /* 1204 * Step 2 1205 * 1206 * Update nsw parameters from swap_async_max sysctl values. 1207 * Do not let the sysop crash the machine with bogus numbers. 1208 */ 1209 mtx_lock(&pbuf_mtx); 1210 if (swap_async_max != nsw_wcount_async_max) { 1211 int n; 1212 int s; 1213 1214 /* 1215 * limit range 1216 */ 1217 if ((n = swap_async_max) > nswbuf / 2) 1218 n = nswbuf / 2; 1219 if (n < 1) 1220 n = 1; 1221 swap_async_max = n; 1222 1223 /* 1224 * Adjust difference ( if possible ). If the current async 1225 * count is too low, we may not be able to make the adjustment 1226 * at this time. 1227 */ 1228 s = splvm(); 1229 n -= nsw_wcount_async_max; 1230 if (nsw_wcount_async + n >= 0) { 1231 nsw_wcount_async += n; 1232 nsw_wcount_async_max += n; 1233 wakeup(&nsw_wcount_async); 1234 } 1235 splx(s); 1236 } 1237 mtx_unlock(&pbuf_mtx); 1238 1239 /* 1240 * Step 3 1241 * 1242 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1243 * The page is left dirty until the pageout operation completes 1244 * successfully. 1245 */ 1246 for (i = 0; i < count; i += n) { 1247 int s; 1248 int j; 1249 struct buf *bp; 1250 daddr_t blk; 1251 1252 /* 1253 * Maximum I/O size is limited by a number of factors. 1254 */ 1255 n = min(BLIST_MAX_ALLOC, count - i); 1256 n = min(n, nsw_cluster_max); 1257 1258 s = splvm(); 1259 1260 /* 1261 * Get biggest block of swap we can. If we fail, fall 1262 * back and try to allocate a smaller block. Don't go 1263 * overboard trying to allocate space if it would overly 1264 * fragment swap. 1265 */ 1266 while ( 1267 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1268 n > 4 1269 ) { 1270 n >>= 1; 1271 } 1272 if (blk == SWAPBLK_NONE) { 1273 for (j = 0; j < n; ++j) 1274 rtvals[i+j] = VM_PAGER_FAIL; 1275 splx(s); 1276 continue; 1277 } 1278 1279 /* 1280 * All I/O parameters have been satisfied, build the I/O 1281 * request and assign the swap space. 1282 */ 1283 if (sync == TRUE) { 1284 bp = getpbuf(&nsw_wcount_sync); 1285 } else { 1286 bp = getpbuf(&nsw_wcount_async); 1287 bp->b_flags = B_ASYNC; 1288 } 1289 bp->b_flags |= B_PAGING; 1290 bp->b_iocmd = BIO_WRITE; 1291 1292 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1293 1294 bp->b_rcred = crhold(thread0.td_ucred); 1295 bp->b_wcred = crhold(thread0.td_ucred); 1296 bp->b_bcount = PAGE_SIZE * n; 1297 bp->b_bufsize = PAGE_SIZE * n; 1298 bp->b_blkno = blk; 1299 1300 for (j = 0; j < n; ++j) { 1301 vm_page_t mreq = m[i+j]; 1302 1303 swp_pager_meta_build( 1304 mreq->object, 1305 mreq->pindex, 1306 blk + j 1307 ); 1308 vm_page_dirty(mreq); 1309 rtvals[i+j] = VM_PAGER_OK; 1310 1311 vm_page_lock_queues(); 1312 vm_page_flag_set(mreq, PG_SWAPINPROG); 1313 vm_page_unlock_queues(); 1314 bp->b_pages[j] = mreq; 1315 } 1316 bp->b_npages = n; 1317 /* 1318 * Must set dirty range for NFS to work. 1319 */ 1320 bp->b_dirtyoff = 0; 1321 bp->b_dirtyend = bp->b_bcount; 1322 1323 cnt.v_swapout++; 1324 cnt.v_swappgsout += bp->b_npages; 1325 1326 splx(s); 1327 1328 /* 1329 * asynchronous 1330 * 1331 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1332 */ 1333 if (sync == FALSE) { 1334 bp->b_iodone = swp_pager_async_iodone; 1335 BUF_KERNPROC(bp); 1336 swp_pager_strategy(bp); 1337 1338 for (j = 0; j < n; ++j) 1339 rtvals[i+j] = VM_PAGER_PEND; 1340 /* restart outter loop */ 1341 continue; 1342 } 1343 1344 /* 1345 * synchronous 1346 * 1347 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1348 */ 1349 bp->b_iodone = swp_pager_sync_iodone; 1350 swp_pager_strategy(bp); 1351 1352 /* 1353 * Wait for the sync I/O to complete, then update rtvals. 1354 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1355 * our async completion routine at the end, thus avoiding a 1356 * double-free. 1357 */ 1358 s = splbio(); 1359 while ((bp->b_flags & B_DONE) == 0) { 1360 tsleep(bp, PVM, "swwrt", 0); 1361 } 1362 for (j = 0; j < n; ++j) 1363 rtvals[i+j] = VM_PAGER_PEND; 1364 /* 1365 * Now that we are through with the bp, we can call the 1366 * normal async completion, which frees everything up. 1367 */ 1368 swp_pager_async_iodone(bp); 1369 splx(s); 1370 } 1371 } 1372 1373 /* 1374 * swap_pager_sync_iodone: 1375 * 1376 * Completion routine for synchronous reads and writes from/to swap. 1377 * We just mark the bp is complete and wake up anyone waiting on it. 1378 * 1379 * This routine may not block. This routine is called at splbio() or better. 1380 */ 1381 static void 1382 swp_pager_sync_iodone(struct buf *bp) 1383 { 1384 bp->b_flags |= B_DONE; 1385 bp->b_flags &= ~B_ASYNC; 1386 wakeup(bp); 1387 } 1388 1389 /* 1390 * swp_pager_async_iodone: 1391 * 1392 * Completion routine for asynchronous reads and writes from/to swap. 1393 * Also called manually by synchronous code to finish up a bp. 1394 * 1395 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1396 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1397 * unbusy all pages except the 'main' request page. For WRITE 1398 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1399 * because we marked them all VM_PAGER_PEND on return from putpages ). 1400 * 1401 * This routine may not block. 1402 * This routine is called at splbio() or better 1403 * 1404 * We up ourselves to splvm() as required for various vm_page related 1405 * calls. 1406 */ 1407 static void 1408 swp_pager_async_iodone(struct buf *bp) 1409 { 1410 int s; 1411 int i; 1412 vm_object_t object = NULL; 1413 1414 GIANT_REQUIRED; 1415 bp->b_flags |= B_DONE; 1416 1417 /* 1418 * report error 1419 */ 1420 if (bp->b_ioflags & BIO_ERROR) { 1421 printf( 1422 "swap_pager: I/O error - %s failed; blkno %ld," 1423 "size %ld, error %d\n", 1424 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1425 (long)bp->b_blkno, 1426 (long)bp->b_bcount, 1427 bp->b_error 1428 ); 1429 } 1430 1431 /* 1432 * set object, raise to splvm(). 1433 */ 1434 s = splvm(); 1435 1436 /* 1437 * remove the mapping for kernel virtual 1438 */ 1439 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1440 1441 if (bp->b_npages) { 1442 object = bp->b_pages[0]->object; 1443 VM_OBJECT_LOCK(object); 1444 } 1445 vm_page_lock_queues(); 1446 /* 1447 * cleanup pages. If an error occurs writing to swap, we are in 1448 * very serious trouble. If it happens to be a disk error, though, 1449 * we may be able to recover by reassigning the swap later on. So 1450 * in this case we remove the m->swapblk assignment for the page 1451 * but do not free it in the rlist. The errornous block(s) are thus 1452 * never reallocated as swap. Redirty the page and continue. 1453 */ 1454 for (i = 0; i < bp->b_npages; ++i) { 1455 vm_page_t m = bp->b_pages[i]; 1456 1457 vm_page_flag_clear(m, PG_SWAPINPROG); 1458 1459 if (bp->b_ioflags & BIO_ERROR) { 1460 /* 1461 * If an error occurs I'd love to throw the swapblk 1462 * away without freeing it back to swapspace, so it 1463 * can never be used again. But I can't from an 1464 * interrupt. 1465 */ 1466 if (bp->b_iocmd == BIO_READ) { 1467 /* 1468 * When reading, reqpage needs to stay 1469 * locked for the parent, but all other 1470 * pages can be freed. We still want to 1471 * wakeup the parent waiting on the page, 1472 * though. ( also: pg_reqpage can be -1 and 1473 * not match anything ). 1474 * 1475 * We have to wake specifically requested pages 1476 * up too because we cleared PG_SWAPINPROG and 1477 * someone may be waiting for that. 1478 * 1479 * NOTE: for reads, m->dirty will probably 1480 * be overridden by the original caller of 1481 * getpages so don't play cute tricks here. 1482 * 1483 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1484 * AS THIS MESSES WITH object->memq, and it is 1485 * not legal to mess with object->memq from an 1486 * interrupt. 1487 */ 1488 m->valid = 0; 1489 vm_page_flag_clear(m, PG_ZERO); 1490 if (i != bp->b_pager.pg_reqpage) 1491 vm_page_free(m); 1492 else 1493 vm_page_flash(m); 1494 /* 1495 * If i == bp->b_pager.pg_reqpage, do not wake 1496 * the page up. The caller needs to. 1497 */ 1498 } else { 1499 /* 1500 * If a write error occurs, reactivate page 1501 * so it doesn't clog the inactive list, 1502 * then finish the I/O. 1503 */ 1504 vm_page_dirty(m); 1505 vm_page_activate(m); 1506 vm_page_io_finish(m); 1507 } 1508 } else if (bp->b_iocmd == BIO_READ) { 1509 /* 1510 * For read success, clear dirty bits. Nobody should 1511 * have this page mapped but don't take any chances, 1512 * make sure the pmap modify bits are also cleared. 1513 * 1514 * NOTE: for reads, m->dirty will probably be 1515 * overridden by the original caller of getpages so 1516 * we cannot set them in order to free the underlying 1517 * swap in a low-swap situation. I don't think we'd 1518 * want to do that anyway, but it was an optimization 1519 * that existed in the old swapper for a time before 1520 * it got ripped out due to precisely this problem. 1521 * 1522 * clear PG_ZERO in page. 1523 * 1524 * If not the requested page then deactivate it. 1525 * 1526 * Note that the requested page, reqpage, is left 1527 * busied, but we still have to wake it up. The 1528 * other pages are released (unbusied) by 1529 * vm_page_wakeup(). We do not set reqpage's 1530 * valid bits here, it is up to the caller. 1531 */ 1532 pmap_clear_modify(m); 1533 m->valid = VM_PAGE_BITS_ALL; 1534 vm_page_undirty(m); 1535 vm_page_flag_clear(m, PG_ZERO); 1536 1537 /* 1538 * We have to wake specifically requested pages 1539 * up too because we cleared PG_SWAPINPROG and 1540 * could be waiting for it in getpages. However, 1541 * be sure to not unbusy getpages specifically 1542 * requested page - getpages expects it to be 1543 * left busy. 1544 */ 1545 if (i != bp->b_pager.pg_reqpage) { 1546 vm_page_deactivate(m); 1547 vm_page_wakeup(m); 1548 } else { 1549 vm_page_flash(m); 1550 } 1551 } else { 1552 /* 1553 * For write success, clear the modify and dirty 1554 * status, then finish the I/O ( which decrements the 1555 * busy count and possibly wakes waiter's up ). 1556 */ 1557 pmap_clear_modify(m); 1558 vm_page_undirty(m); 1559 vm_page_io_finish(m); 1560 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1561 pmap_page_protect(m, VM_PROT_READ); 1562 } 1563 } 1564 vm_page_unlock_queues(); 1565 1566 /* 1567 * adjust pip. NOTE: the original parent may still have its own 1568 * pip refs on the object. 1569 */ 1570 if (object != NULL) { 1571 vm_object_pip_wakeupn(object, bp->b_npages); 1572 VM_OBJECT_UNLOCK(object); 1573 } 1574 1575 /* 1576 * release the physical I/O buffer 1577 */ 1578 relpbuf( 1579 bp, 1580 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1581 ((bp->b_flags & B_ASYNC) ? 1582 &nsw_wcount_async : 1583 &nsw_wcount_sync 1584 ) 1585 ) 1586 ); 1587 splx(s); 1588 } 1589 1590 /* 1591 * swap_pager_isswapped: 1592 * 1593 * Return 1 if at least one page in the given object is paged 1594 * out to the given swap device. 1595 * 1596 * This routine may not block. 1597 */ 1598 int 1599 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1600 { 1601 daddr_t index = 0; 1602 int bcount; 1603 int i; 1604 1605 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1606 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1607 struct swblock *swap; 1608 1609 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1610 for (i = 0; i < SWAP_META_PAGES; ++i) { 1611 daddr_t v = swap->swb_pages[i]; 1612 if (v == SWAPBLK_NONE) 1613 continue; 1614 if (swp_pager_find_dev(v) == sp) 1615 return 1; 1616 } 1617 } 1618 1619 index += SWAP_META_PAGES; 1620 if (index > 0x20000000) 1621 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1622 } 1623 return 0; 1624 } 1625 1626 /* 1627 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1628 * 1629 * This routine dissociates the page at the given index within a 1630 * swap block from its backing store, paging it in if necessary. 1631 * If the page is paged in, it is placed in the inactive queue, 1632 * since it had its backing store ripped out from under it. 1633 * We also attempt to swap in all other pages in the swap block, 1634 * we only guarantee that the one at the specified index is 1635 * paged in. 1636 * 1637 * XXX - The code to page the whole block in doesn't work, so we 1638 * revert to the one-by-one behavior for now. Sigh. 1639 */ 1640 static __inline void 1641 swp_pager_force_pagein(struct swblock *swap, int idx) 1642 { 1643 vm_object_t object; 1644 vm_page_t m; 1645 vm_pindex_t pindex; 1646 1647 object = swap->swb_object; 1648 pindex = swap->swb_index; 1649 1650 VM_OBJECT_LOCK(object); 1651 vm_object_pip_add(object, 1); 1652 m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1653 if (m->valid == VM_PAGE_BITS_ALL) { 1654 vm_object_pip_subtract(object, 1); 1655 VM_OBJECT_UNLOCK(object); 1656 vm_page_lock_queues(); 1657 vm_page_activate(m); 1658 vm_page_dirty(m); 1659 vm_page_wakeup(m); 1660 vm_page_unlock_queues(); 1661 vm_pager_page_unswapped(m); 1662 return; 1663 } 1664 1665 if (swap_pager_getpages(object, &m, 1, 0) != 1666 VM_PAGER_OK) 1667 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1668 vm_object_pip_subtract(object, 1); 1669 VM_OBJECT_UNLOCK(object); 1670 1671 vm_page_lock_queues(); 1672 vm_page_dirty(m); 1673 vm_page_dontneed(m); 1674 vm_page_wakeup(m); 1675 vm_page_unlock_queues(); 1676 vm_pager_page_unswapped(m); 1677 } 1678 1679 1680 /* 1681 * swap_pager_swapoff: 1682 * 1683 * Page in all of the pages that have been paged out to the 1684 * given device. The corresponding blocks in the bitmap must be 1685 * marked as allocated and the device must be flagged SW_CLOSING. 1686 * There may be no processes swapped out to the device. 1687 * 1688 * The sw_used parameter points to the field in the swdev structure 1689 * that contains a count of the number of blocks still allocated 1690 * on the device. If we encounter objects with a nonzero pip count 1691 * in our scan, we use this number to determine if we're really done. 1692 * 1693 * This routine may block. 1694 */ 1695 static void 1696 swap_pager_swapoff(struct swdevt *sp, int *sw_used) 1697 { 1698 struct swblock **pswap; 1699 struct swblock *swap; 1700 vm_object_t waitobj; 1701 daddr_t v; 1702 int i, j; 1703 1704 GIANT_REQUIRED; 1705 1706 full_rescan: 1707 waitobj = NULL; 1708 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1709 restart: 1710 pswap = &swhash[i]; 1711 while ((swap = *pswap) != NULL) { 1712 for (j = 0; j < SWAP_META_PAGES; ++j) { 1713 v = swap->swb_pages[j]; 1714 if (v != SWAPBLK_NONE && 1715 swp_pager_find_dev(v) == sp) 1716 break; 1717 } 1718 if (j < SWAP_META_PAGES) { 1719 swp_pager_force_pagein(swap, j); 1720 goto restart; 1721 } else if (swap->swb_object->paging_in_progress) { 1722 if (!waitobj) 1723 waitobj = swap->swb_object; 1724 } 1725 pswap = &swap->swb_hnext; 1726 } 1727 } 1728 if (waitobj && *sw_used) { 1729 /* 1730 * We wait on an arbitrary object to clock our rescans 1731 * to the rate of paging completion. 1732 */ 1733 VM_OBJECT_LOCK(waitobj); 1734 vm_object_pip_wait(waitobj, "swpoff"); 1735 VM_OBJECT_UNLOCK(waitobj); 1736 goto full_rescan; 1737 } 1738 if (*sw_used) 1739 panic("swapoff: failed to locate %d swap blocks", *sw_used); 1740 } 1741 1742 /************************************************************************ 1743 * SWAP META DATA * 1744 ************************************************************************ 1745 * 1746 * These routines manipulate the swap metadata stored in the 1747 * OBJT_SWAP object. All swp_*() routines must be called at 1748 * splvm() because swap can be freed up by the low level vm_page 1749 * code which might be called from interrupts beyond what splbio() covers. 1750 * 1751 * Swap metadata is implemented with a global hash and not directly 1752 * linked into the object. Instead the object simply contains 1753 * appropriate tracking counters. 1754 */ 1755 1756 /* 1757 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1758 * 1759 * We first convert the object to a swap object if it is a default 1760 * object. 1761 * 1762 * The specified swapblk is added to the object's swap metadata. If 1763 * the swapblk is not valid, it is freed instead. Any previously 1764 * assigned swapblk is freed. 1765 * 1766 * This routine must be called at splvm(), except when used to convert 1767 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1768 */ 1769 static void 1770 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1771 { 1772 struct swblock *swap; 1773 struct swblock **pswap; 1774 int idx; 1775 1776 GIANT_REQUIRED; 1777 /* 1778 * Convert default object to swap object if necessary 1779 */ 1780 if (object->type != OBJT_SWAP) { 1781 object->type = OBJT_SWAP; 1782 object->un_pager.swp.swp_bcount = 0; 1783 1784 mtx_lock(&sw_alloc_mtx); 1785 if (object->handle != NULL) { 1786 TAILQ_INSERT_TAIL( 1787 NOBJLIST(object->handle), 1788 object, 1789 pager_object_list 1790 ); 1791 } else { 1792 TAILQ_INSERT_TAIL( 1793 &swap_pager_un_object_list, 1794 object, 1795 pager_object_list 1796 ); 1797 } 1798 mtx_unlock(&sw_alloc_mtx); 1799 } 1800 1801 /* 1802 * Locate hash entry. If not found create, but if we aren't adding 1803 * anything just return. If we run out of space in the map we wait 1804 * and, since the hash table may have changed, retry. 1805 */ 1806 retry: 1807 pswap = swp_pager_hash(object, pindex); 1808 1809 if ((swap = *pswap) == NULL) { 1810 int i; 1811 1812 if (swapblk == SWAPBLK_NONE) 1813 return; 1814 1815 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1816 if (swap == NULL) { 1817 VM_WAIT; 1818 goto retry; 1819 } 1820 1821 swap->swb_hnext = NULL; 1822 swap->swb_object = object; 1823 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1824 swap->swb_count = 0; 1825 1826 ++object->un_pager.swp.swp_bcount; 1827 1828 for (i = 0; i < SWAP_META_PAGES; ++i) 1829 swap->swb_pages[i] = SWAPBLK_NONE; 1830 } 1831 1832 /* 1833 * Delete prior contents of metadata 1834 */ 1835 idx = pindex & SWAP_META_MASK; 1836 1837 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1838 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1839 --swap->swb_count; 1840 } 1841 1842 /* 1843 * Enter block into metadata 1844 */ 1845 swap->swb_pages[idx] = swapblk; 1846 if (swapblk != SWAPBLK_NONE) 1847 ++swap->swb_count; 1848 } 1849 1850 /* 1851 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1852 * 1853 * The requested range of blocks is freed, with any associated swap 1854 * returned to the swap bitmap. 1855 * 1856 * This routine will free swap metadata structures as they are cleaned 1857 * out. This routine does *NOT* operate on swap metadata associated 1858 * with resident pages. 1859 * 1860 * This routine must be called at splvm() 1861 */ 1862 static void 1863 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1864 { 1865 GIANT_REQUIRED; 1866 1867 if (object->type != OBJT_SWAP) 1868 return; 1869 1870 while (count > 0) { 1871 struct swblock **pswap; 1872 struct swblock *swap; 1873 1874 pswap = swp_pager_hash(object, index); 1875 1876 if ((swap = *pswap) != NULL) { 1877 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1878 1879 if (v != SWAPBLK_NONE) { 1880 swp_pager_freeswapspace(v, 1); 1881 swap->swb_pages[index & SWAP_META_MASK] = 1882 SWAPBLK_NONE; 1883 if (--swap->swb_count == 0) { 1884 *pswap = swap->swb_hnext; 1885 uma_zfree(swap_zone, swap); 1886 --object->un_pager.swp.swp_bcount; 1887 } 1888 } 1889 --count; 1890 ++index; 1891 } else { 1892 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1893 count -= n; 1894 index += n; 1895 } 1896 } 1897 } 1898 1899 /* 1900 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1901 * 1902 * This routine locates and destroys all swap metadata associated with 1903 * an object. 1904 * 1905 * This routine must be called at splvm() 1906 */ 1907 static void 1908 swp_pager_meta_free_all(vm_object_t object) 1909 { 1910 daddr_t index = 0; 1911 1912 GIANT_REQUIRED; 1913 1914 if (object->type != OBJT_SWAP) 1915 return; 1916 1917 while (object->un_pager.swp.swp_bcount) { 1918 struct swblock **pswap; 1919 struct swblock *swap; 1920 1921 pswap = swp_pager_hash(object, index); 1922 if ((swap = *pswap) != NULL) { 1923 int i; 1924 1925 for (i = 0; i < SWAP_META_PAGES; ++i) { 1926 daddr_t v = swap->swb_pages[i]; 1927 if (v != SWAPBLK_NONE) { 1928 --swap->swb_count; 1929 swp_pager_freeswapspace(v, 1); 1930 } 1931 } 1932 if (swap->swb_count != 0) 1933 panic("swap_pager_meta_free_all: swb_count != 0"); 1934 *pswap = swap->swb_hnext; 1935 uma_zfree(swap_zone, swap); 1936 --object->un_pager.swp.swp_bcount; 1937 } 1938 index += SWAP_META_PAGES; 1939 if (index > 0x20000000) 1940 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1941 } 1942 } 1943 1944 /* 1945 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1946 * 1947 * This routine is capable of looking up, popping, or freeing 1948 * swapblk assignments in the swap meta data or in the vm_page_t. 1949 * The routine typically returns the swapblk being looked-up, or popped, 1950 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1951 * was invalid. This routine will automatically free any invalid 1952 * meta-data swapblks. 1953 * 1954 * It is not possible to store invalid swapblks in the swap meta data 1955 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1956 * 1957 * When acting on a busy resident page and paging is in progress, we 1958 * have to wait until paging is complete but otherwise can act on the 1959 * busy page. 1960 * 1961 * This routine must be called at splvm(). 1962 * 1963 * SWM_FREE remove and free swap block from metadata 1964 * SWM_POP remove from meta data but do not free.. pop it out 1965 */ 1966 static daddr_t 1967 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1968 { 1969 struct swblock **pswap; 1970 struct swblock *swap; 1971 daddr_t r1; 1972 int idx; 1973 1974 GIANT_REQUIRED; 1975 /* 1976 * The meta data only exists of the object is OBJT_SWAP 1977 * and even then might not be allocated yet. 1978 */ 1979 if (object->type != OBJT_SWAP) 1980 return (SWAPBLK_NONE); 1981 1982 r1 = SWAPBLK_NONE; 1983 pswap = swp_pager_hash(object, pindex); 1984 1985 if ((swap = *pswap) != NULL) { 1986 idx = pindex & SWAP_META_MASK; 1987 r1 = swap->swb_pages[idx]; 1988 1989 if (r1 != SWAPBLK_NONE) { 1990 if (flags & SWM_FREE) { 1991 swp_pager_freeswapspace(r1, 1); 1992 r1 = SWAPBLK_NONE; 1993 } 1994 if (flags & (SWM_FREE|SWM_POP)) { 1995 swap->swb_pages[idx] = SWAPBLK_NONE; 1996 if (--swap->swb_count == 0) { 1997 *pswap = swap->swb_hnext; 1998 uma_zfree(swap_zone, swap); 1999 --object->un_pager.swp.swp_bcount; 2000 } 2001 } 2002 } 2003 } 2004 return (r1); 2005 } 2006 2007 /* 2008 * System call swapon(name) enables swapping on device name, 2009 * which must be in the swdevsw. Return EBUSY 2010 * if already swapping on this device. 2011 */ 2012 #ifndef _SYS_SYSPROTO_H_ 2013 struct swapon_args { 2014 char *name; 2015 }; 2016 #endif 2017 2018 /* 2019 * MPSAFE 2020 */ 2021 /* ARGSUSED */ 2022 int 2023 swapon(struct thread *td, struct swapon_args *uap) 2024 { 2025 struct vattr attr; 2026 struct vnode *vp; 2027 struct nameidata nd; 2028 int error; 2029 2030 mtx_lock(&Giant); 2031 error = suser(td); 2032 if (error) 2033 goto done2; 2034 2035 while (swdev_syscall_active) 2036 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2037 swdev_syscall_active = 1; 2038 2039 /* 2040 * Swap metadata may not fit in the KVM if we have physical 2041 * memory of >1GB. 2042 */ 2043 if (swap_zone == NULL) { 2044 error = ENOMEM; 2045 goto done; 2046 } 2047 2048 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); 2049 error = namei(&nd); 2050 if (error) 2051 goto done; 2052 2053 NDFREE(&nd, NDF_ONLY_PNBUF); 2054 vp = nd.ni_vp; 2055 2056 if (vn_isdisk(vp, &error)) { 2057 error = swapongeom(td, vp); 2058 } else if (vp->v_type == VREG && 2059 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2060 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { 2061 /* 2062 * Allow direct swapping to NFS regular files in the same 2063 * way that nfs_mountroot() sets up diskless swapping. 2064 */ 2065 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2066 } 2067 2068 if (error) 2069 vrele(vp); 2070 done: 2071 swdev_syscall_active = 0; 2072 wakeup_one(&swdev_syscall_active); 2073 done2: 2074 mtx_unlock(&Giant); 2075 return (error); 2076 } 2077 2078 static void 2079 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, udev_t udev) 2080 { 2081 struct swdevt *sp; 2082 swblk_t dvbase; 2083 u_long mblocks; 2084 2085 dvbase = 0; 2086 mtx_lock(&sw_dev_mtx); 2087 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2088 if (sp->sw_end >= dvbase) { 2089 /* 2090 * We put one uncovered page between the devices 2091 * in order to definitively prevent any cross-device 2092 * I/O requests 2093 */ 2094 dvbase = sp->sw_end + 1; 2095 } 2096 } 2097 mtx_unlock(&sw_dev_mtx); 2098 2099 /* 2100 * If we go beyond this, we get overflows in the radix 2101 * tree bitmap code. 2102 */ 2103 mblocks = 0x40000000 / BLIST_META_RADIX; 2104 if (nblks > mblocks) { 2105 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2106 mblocks); 2107 nblks = mblocks; 2108 } 2109 /* 2110 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2111 * First chop nblks off to page-align it, then convert. 2112 * 2113 * sw->sw_nblks is in page-sized chunks now too. 2114 */ 2115 nblks &= ~(ctodb(1) - 1); 2116 nblks = dbtoc(nblks); 2117 2118 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2119 sp->sw_vp = vp; 2120 sp->sw_id = id; 2121 sp->sw_udev = udev; 2122 sp->sw_flags = 0; 2123 sp->sw_nblks = nblks; 2124 sp->sw_used = 0; 2125 sp->sw_first = dvbase; 2126 sp->sw_end = dvbase + nblks; 2127 sp->sw_strategy = strategy; 2128 sp->sw_close = close; 2129 2130 sp->sw_blist = blist_create(nblks); 2131 /* 2132 * Do not free the first two block in order to avoid overwriting 2133 * any bsd label at the front of the partition 2134 */ 2135 blist_free(sp->sw_blist, 2, nblks - 2); 2136 2137 mtx_lock(&sw_dev_mtx); 2138 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2139 mtx_unlock(&sw_dev_mtx); 2140 nswapdev++; 2141 swap_pager_avail += nblks; 2142 swap_pager_full = 0; 2143 } 2144 2145 /* 2146 * SYSCALL: swapoff(devname) 2147 * 2148 * Disable swapping on the given device. 2149 * 2150 * XXX: Badly designed system call: it should use a device index 2151 * rather than filename as specification. We keep sw_vp around 2152 * only to make this work. 2153 */ 2154 #ifndef _SYS_SYSPROTO_H_ 2155 struct swapoff_args { 2156 char *name; 2157 }; 2158 #endif 2159 2160 /* 2161 * MPSAFE 2162 */ 2163 /* ARGSUSED */ 2164 int 2165 swapoff(struct thread *td, struct swapoff_args *uap) 2166 { 2167 struct vnode *vp; 2168 struct nameidata nd; 2169 struct swdevt *sp; 2170 u_long nblks, dvbase; 2171 int error; 2172 2173 mtx_lock(&Giant); 2174 2175 error = suser(td); 2176 if (error) 2177 goto done2; 2178 2179 while (swdev_syscall_active) 2180 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2181 swdev_syscall_active = 1; 2182 2183 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); 2184 error = namei(&nd); 2185 if (error) 2186 goto done; 2187 NDFREE(&nd, NDF_ONLY_PNBUF); 2188 vp = nd.ni_vp; 2189 2190 mtx_lock(&sw_dev_mtx); 2191 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2192 if (sp->sw_vp == vp) 2193 goto found; 2194 } 2195 mtx_unlock(&sw_dev_mtx); 2196 error = EINVAL; 2197 goto done; 2198 found: 2199 mtx_unlock(&sw_dev_mtx); 2200 #ifdef MAC 2201 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2202 error = mac_check_system_swapoff(td->td_ucred, vp); 2203 (void) VOP_UNLOCK(vp, 0, td); 2204 if (error != 0) 2205 goto done; 2206 #endif 2207 2208 nblks = sp->sw_nblks; 2209 2210 /* 2211 * We can turn off this swap device safely only if the 2212 * available virtual memory in the system will fit the amount 2213 * of data we will have to page back in, plus an epsilon so 2214 * the system doesn't become critically low on swap space. 2215 */ 2216 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2217 nblks + nswap_lowat) { 2218 error = ENOMEM; 2219 goto done; 2220 } 2221 2222 /* 2223 * Prevent further allocations on this device. 2224 */ 2225 sp->sw_flags |= SW_CLOSING; 2226 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2227 swap_pager_avail -= blist_fill(sp->sw_blist, 2228 dvbase, dmmax); 2229 } 2230 2231 /* 2232 * Page in the contents of the device and close it. 2233 */ 2234 #ifndef NO_SWAPPING 2235 vm_proc_swapin_all(sp); 2236 #endif /* !NO_SWAPPING */ 2237 swap_pager_swapoff(sp, &sp->sw_used); 2238 2239 sp->sw_close(td, sp); 2240 sp->sw_id = NULL; 2241 mtx_lock(&sw_dev_mtx); 2242 TAILQ_REMOVE(&swtailq, sp, sw_list); 2243 mtx_unlock(&sw_dev_mtx); 2244 if (swdevhd == sp) 2245 swdevhd = NULL; 2246 nswapdev--; 2247 blist_destroy(sp->sw_blist); 2248 free(sp, M_VMPGDATA); 2249 2250 done: 2251 swdev_syscall_active = 0; 2252 wakeup_one(&swdev_syscall_active); 2253 done2: 2254 mtx_unlock(&Giant); 2255 return (error); 2256 } 2257 2258 void 2259 swap_pager_status(int *total, int *used) 2260 { 2261 struct swdevt *sp; 2262 2263 *total = 0; 2264 *used = 0; 2265 mtx_lock(&sw_dev_mtx); 2266 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2267 *total += sp->sw_nblks; 2268 *used += sp->sw_used; 2269 } 2270 mtx_unlock(&sw_dev_mtx); 2271 } 2272 2273 static int 2274 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2275 { 2276 int *name = (int *)arg1; 2277 int error, n; 2278 struct xswdev xs; 2279 struct swdevt *sp; 2280 2281 if (arg2 != 1) /* name length */ 2282 return (EINVAL); 2283 2284 n = 0; 2285 mtx_lock(&sw_dev_mtx); 2286 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2287 if (n == *name) { 2288 mtx_unlock(&sw_dev_mtx); 2289 xs.xsw_version = XSWDEV_VERSION; 2290 xs.xsw_dev = sp->sw_udev; 2291 xs.xsw_flags = sp->sw_flags; 2292 xs.xsw_nblks = sp->sw_nblks; 2293 xs.xsw_used = sp->sw_used; 2294 2295 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2296 return (error); 2297 } 2298 n++; 2299 } 2300 mtx_unlock(&sw_dev_mtx); 2301 return (ENOENT); 2302 } 2303 2304 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2305 "Number of swap devices"); 2306 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2307 "Swap statistics by device"); 2308 2309 /* 2310 * vmspace_swap_count() - count the approximate swap useage in pages for a 2311 * vmspace. 2312 * 2313 * The map must be locked. 2314 * 2315 * Swap useage is determined by taking the proportional swap used by 2316 * VM objects backing the VM map. To make up for fractional losses, 2317 * if the VM object has any swap use at all the associated map entries 2318 * count for at least 1 swap page. 2319 */ 2320 int 2321 vmspace_swap_count(struct vmspace *vmspace) 2322 { 2323 vm_map_t map = &vmspace->vm_map; 2324 vm_map_entry_t cur; 2325 int count = 0; 2326 2327 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2328 vm_object_t object; 2329 2330 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2331 (object = cur->object.vm_object) != NULL) { 2332 VM_OBJECT_LOCK(object); 2333 if (object->type == OBJT_SWAP && 2334 object->un_pager.swp.swp_bcount != 0) { 2335 int n = (cur->end - cur->start) / PAGE_SIZE; 2336 2337 count += object->un_pager.swp.swp_bcount * 2338 SWAP_META_PAGES * n / object->size + 1; 2339 } 2340 VM_OBJECT_UNLOCK(object); 2341 } 2342 } 2343 return (count); 2344 } 2345 2346 /* 2347 * GEOM backend 2348 * 2349 * Swapping onto disk devices. 2350 * 2351 */ 2352 2353 static struct g_class g_swap_class = { 2354 .name = "SWAP", 2355 }; 2356 2357 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2358 2359 2360 static void 2361 swapgeom_done(struct bio *bp2) 2362 { 2363 struct buf *bp; 2364 2365 bp = bp2->bio_caller2; 2366 if (bp2->bio_error) 2367 bp->b_ioflags |= BIO_ERROR; 2368 mtx_lock(&Giant); 2369 bufdone(bp); 2370 mtx_unlock(&Giant); 2371 g_destroy_bio(bp2); 2372 } 2373 2374 static void 2375 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2376 { 2377 struct bio *bio; 2378 struct g_consumer *cp; 2379 2380 cp = sp->sw_id; 2381 if (cp == NULL) { 2382 bp->b_error = ENXIO; 2383 bp->b_ioflags |= BIO_ERROR; 2384 bufdone(bp); 2385 return; 2386 } 2387 bio = g_clone_bio(&bp->b_io); 2388 bio->bio_caller2 = bp; 2389 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2390 bio->bio_length = bp->b_bcount; 2391 bio->bio_done = swapgeom_done; 2392 g_io_request(bio, cp); 2393 return; 2394 } 2395 2396 static void 2397 swapgeom_orphan(struct g_consumer *cp) 2398 { 2399 struct swdevt *sp; 2400 2401 mtx_lock(&sw_dev_mtx); 2402 TAILQ_FOREACH(sp, &swtailq, sw_list) 2403 if (sp->sw_id == cp) 2404 sp->sw_id = NULL; 2405 mtx_unlock(&sw_dev_mtx); 2406 } 2407 2408 static void 2409 swapgeom_close_ev(void *arg, int flags) 2410 { 2411 struct g_consumer *cp; 2412 2413 cp = arg; 2414 g_access_rel(cp, -1, -1, 0); 2415 g_detach(cp); 2416 g_destroy_consumer(cp); 2417 } 2418 2419 static void 2420 swapgeom_close(struct thread *td, struct swdevt *sw) 2421 { 2422 2423 /* XXX: direct call when Giant untangled */ 2424 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2425 } 2426 2427 2428 struct swh0h0 { 2429 dev_t dev; 2430 struct vnode *vp; 2431 int error; 2432 }; 2433 2434 static void 2435 swapongeom_ev(void *arg, int flags) 2436 { 2437 struct swh0h0 *swh; 2438 struct g_provider *pp; 2439 struct g_consumer *cp; 2440 static struct g_geom *gp; 2441 struct swdevt *sp; 2442 u_long nblks; 2443 int error; 2444 2445 swh = arg; 2446 swh->error = 0; 2447 pp = g_dev_getprovider(swh->dev); 2448 if (pp == NULL) { 2449 swh->error = ENODEV; 2450 return; 2451 } 2452 mtx_lock(&sw_dev_mtx); 2453 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2454 cp = sp->sw_id; 2455 if (cp != NULL && cp->provider == pp) { 2456 mtx_unlock(&sw_dev_mtx); 2457 swh->error = EBUSY; 2458 return; 2459 } 2460 } 2461 mtx_unlock(&sw_dev_mtx); 2462 if (gp == NULL) { 2463 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2464 gp->orphan = swapgeom_orphan; 2465 } 2466 cp = g_new_consumer(gp); 2467 g_attach(cp, pp); 2468 /* 2469 * XXX: Everytime you think you can improve the margin for 2470 * footshooting, somebody depends on the ability to do so: 2471 * savecore(8) wants to write to our swapdev so we cannot 2472 * set an exclusive count :-( 2473 */ 2474 error = g_access_rel(cp, 1, 1, 0); 2475 if (error) { 2476 g_detach(cp); 2477 g_destroy_consumer(cp); 2478 swh->error = error; 2479 return; 2480 } 2481 nblks = pp->mediasize / DEV_BSIZE; 2482 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2483 swapgeom_close, dev2udev(swh->dev)); 2484 swh->error = 0; 2485 return; 2486 } 2487 2488 static int 2489 swapongeom(struct thread *td, struct vnode *vp) 2490 { 2491 int error; 2492 struct swh0h0 swh; 2493 2494 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2495 2496 swh.dev = vp->v_rdev; 2497 swh.vp = vp; 2498 swh.error = 0; 2499 /* XXX: direct call when Giant untangled */ 2500 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2501 if (!error) 2502 error = swh.error; 2503 VOP_UNLOCK(vp, 0, td); 2504 return (error); 2505 } 2506 2507 /* 2508 * VNODE backend 2509 * 2510 * This is used mainly for network filesystem (read: probably only tested 2511 * with NFS) swapfiles. 2512 * 2513 */ 2514 2515 static void 2516 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2517 { 2518 int s; 2519 struct vnode *vp, *vp2; 2520 2521 bp->b_dev = NODEV; 2522 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2523 2524 vp2 = sp->sw_id; 2525 vhold(vp2); 2526 s = splvm(); 2527 if (bp->b_iocmd == BIO_WRITE) { 2528 vp = bp->b_vp; 2529 if (vp) { 2530 VI_LOCK(vp); 2531 vp->v_numoutput--; 2532 if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) { 2533 vp->v_iflag &= ~VI_BWAIT; 2534 wakeup(&vp->v_numoutput); 2535 } 2536 VI_UNLOCK(vp); 2537 } 2538 VI_LOCK(vp2); 2539 vp2->v_numoutput++; 2540 VI_UNLOCK(vp2); 2541 } 2542 bp->b_vp = vp2; 2543 splx(s); 2544 VOP_STRATEGY(vp2, bp); 2545 return; 2546 } 2547 2548 static void 2549 swapdev_close(struct thread *td, struct swdevt *sp) 2550 { 2551 2552 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2553 vrele(sp->sw_vp); 2554 } 2555 2556 2557 static int 2558 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2559 { 2560 struct swdevt *sp; 2561 int error; 2562 2563 if (nblks == 0) 2564 return (ENXIO); 2565 mtx_lock(&sw_dev_mtx); 2566 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2567 if (sp->sw_id == vp) { 2568 mtx_unlock(&sw_dev_mtx); 2569 return (EBUSY); 2570 } 2571 } 2572 mtx_unlock(&sw_dev_mtx); 2573 2574 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2575 #ifdef MAC 2576 error = mac_check_system_swapon(td->td_ucred, vp); 2577 if (error == 0) 2578 #endif 2579 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1); 2580 (void) VOP_UNLOCK(vp, 0, td); 2581 if (error) 2582 return (error); 2583 2584 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2585 NOUDEV); 2586 return (0); 2587 } 2588