xref: /freebsd/sys/vm/swap_pager.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 
110 #include <geom/geom.h>
111 
112 /*
113  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
114  * pages per allocation.  We recommend you stick with the default of 8.
115  * The 16-page limit is due to the radix code (kern/subr_blist.c).
116  */
117 #ifndef MAX_PAGEOUT_CLUSTER
118 #define MAX_PAGEOUT_CLUSTER 16
119 #endif
120 
121 #if !defined(SWB_NPAGES)
122 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
123 #endif
124 
125 /*
126  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
127  *
128  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
129  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
130  * 32K worth of data, two levels represent 256K, three levels represent
131  * 2 MBytes.   This is acceptable.
132  *
133  * Overall memory utilization is about the same as the old swap structure.
134  */
135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
136 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
137 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
138 
139 typedef	int32_t	swblk_t;	/*
140 				 * swap offset.  This is the type used to
141 				 * address the "virtual swap device" and
142 				 * therefore the maximum swap space is
143 				 * 2^32 pages.
144 				 */
145 
146 struct swdevt;
147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw);
148 typedef void sw_close_t(struct thread *td, struct swdevt *sw);
149 
150 /*
151  * Swap device table
152  */
153 struct swdevt {
154 	int	sw_flags;
155 	int	sw_nblks;
156 	int     sw_used;
157 	udev_t	sw_udev;
158 	struct vnode *sw_vp;
159 	void	*sw_id;
160 	swblk_t	sw_first;
161 	swblk_t	sw_end;
162 	struct blist *sw_blist;
163 	TAILQ_ENTRY(swdevt)	sw_list;
164 	sw_strategy_t		*sw_strategy;
165 	sw_close_t		*sw_close;
166 };
167 
168 #define	SW_CLOSING	0x04
169 
170 struct swblock {
171 	struct swblock	*swb_hnext;
172 	vm_object_t	swb_object;
173 	vm_pindex_t	swb_index;
174 	int		swb_count;
175 	daddr_t		swb_pages[SWAP_META_PAGES];
176 };
177 
178 static struct mtx sw_dev_mtx;
179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
180 static struct swdevt *swdevhd;	/* Allocate from here next */
181 static int nswapdev;		/* Number of swap devices */
182 int swap_pager_avail;
183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
184 
185 static void swapdev_strategy(struct buf *, struct swdevt *sw);
186 
187 #define SWM_FREE	0x02	/* free, period			*/
188 #define SWM_POP		0x04	/* pop out			*/
189 
190 int swap_pager_full;		/* swap space exhaustion (task killing) */
191 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
192 static int nsw_rcount;		/* free read buffers			*/
193 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
194 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
195 static int nsw_wcount_async_max;/* assigned maximum			*/
196 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
197 
198 static struct swblock **swhash;
199 static int swhash_mask;
200 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
201 static struct sx sw_alloc_sx;
202 
203 
204 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
205         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
206 
207 /*
208  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
209  * of searching a named list by hashing it just a little.
210  */
211 
212 #define NOBJLISTS		8
213 
214 #define NOBJLIST(handle)	\
215 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
216 
217 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
218 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
219 static struct pagerlst	swap_pager_un_object_list;
220 static uma_zone_t	swap_zone;
221 
222 /*
223  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
224  * calls hooked from other parts of the VM system and do not appear here.
225  * (see vm/swap_pager.h).
226  */
227 static vm_object_t
228 		swap_pager_alloc(void *handle, vm_ooffset_t size,
229 				      vm_prot_t prot, vm_ooffset_t offset);
230 static void	swap_pager_dealloc(vm_object_t object);
231 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
232 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
233 static boolean_t
234 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
235 static void	swap_pager_init(void);
236 static void	swap_pager_unswapped(vm_page_t);
237 static void	swap_pager_swapoff(struct swdevt *sp, int *sw_used);
238 
239 struct pagerops swappagerops = {
240 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
241 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
242 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
243 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
244 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
245 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
246 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
247 };
248 
249 /*
250  * dmmax is in page-sized chunks with the new swap system.  It was
251  * dev-bsized chunks in the old.  dmmax is always a power of 2.
252  *
253  * swap_*() routines are externally accessible.  swp_*() routines are
254  * internal.
255  */
256 static int dmmax;
257 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
258 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
259 
260 SYSCTL_INT(_vm, OID_AUTO, dmmax,
261 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
262 
263 static void	swp_sizecheck(void);
264 static void	swp_pager_sync_iodone(struct buf *bp);
265 static void	swp_pager_async_iodone(struct buf *bp);
266 static int	swapongeom(struct thread *, struct vnode *);
267 static int	swaponvp(struct thread *, struct vnode *, u_long);
268 
269 /*
270  * Swap bitmap functions
271  */
272 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
273 static daddr_t	swp_pager_getswapspace(int npages);
274 
275 /*
276  * Metadata functions
277  */
278 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
279 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
280 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
281 static void swp_pager_meta_free_all(vm_object_t);
282 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
283 
284 /*
285  * SWP_SIZECHECK() -	update swap_pager_full indication
286  *
287  *	update the swap_pager_almost_full indication and warn when we are
288  *	about to run out of swap space, using lowat/hiwat hysteresis.
289  *
290  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
291  *
292  *	No restrictions on call
293  *	This routine may not block.
294  *	This routine must be called at splvm()
295  */
296 static void
297 swp_sizecheck(void)
298 {
299 	GIANT_REQUIRED;
300 
301 	if (swap_pager_avail < nswap_lowat) {
302 		if (swap_pager_almost_full == 0) {
303 			printf("swap_pager: out of swap space\n");
304 			swap_pager_almost_full = 1;
305 		}
306 	} else {
307 		swap_pager_full = 0;
308 		if (swap_pager_avail > nswap_hiwat)
309 			swap_pager_almost_full = 0;
310 	}
311 }
312 
313 /*
314  * SWP_PAGER_HASH() -	hash swap meta data
315  *
316  *	This is an helper function which hashes the swapblk given
317  *	the object and page index.  It returns a pointer to a pointer
318  *	to the object, or a pointer to a NULL pointer if it could not
319  *	find a swapblk.
320  *
321  *	This routine must be called at splvm().
322  */
323 static struct swblock **
324 swp_pager_hash(vm_object_t object, vm_pindex_t index)
325 {
326 	struct swblock **pswap;
327 	struct swblock *swap;
328 
329 	index &= ~(vm_pindex_t)SWAP_META_MASK;
330 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
331 	while ((swap = *pswap) != NULL) {
332 		if (swap->swb_object == object &&
333 		    swap->swb_index == index
334 		) {
335 			break;
336 		}
337 		pswap = &swap->swb_hnext;
338 	}
339 	return (pswap);
340 }
341 
342 /*
343  * SWAP_PAGER_INIT() -	initialize the swap pager!
344  *
345  *	Expected to be started from system init.  NOTE:  This code is run
346  *	before much else so be careful what you depend on.  Most of the VM
347  *	system has yet to be initialized at this point.
348  */
349 static void
350 swap_pager_init(void)
351 {
352 	/*
353 	 * Initialize object lists
354 	 */
355 	int i;
356 
357 	for (i = 0; i < NOBJLISTS; ++i)
358 		TAILQ_INIT(&swap_pager_object_list[i]);
359 	TAILQ_INIT(&swap_pager_un_object_list);
360 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
361 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
362 
363 	/*
364 	 * Device Stripe, in PAGE_SIZE'd blocks
365 	 */
366 	dmmax = SWB_NPAGES * 2;
367 }
368 
369 /*
370  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
371  *
372  *	Expected to be started from pageout process once, prior to entering
373  *	its main loop.
374  */
375 void
376 swap_pager_swap_init(void)
377 {
378 	int n, n2;
379 
380 	/*
381 	 * Number of in-transit swap bp operations.  Don't
382 	 * exhaust the pbufs completely.  Make sure we
383 	 * initialize workable values (0 will work for hysteresis
384 	 * but it isn't very efficient).
385 	 *
386 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
387 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
388 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
389 	 * constrained by the swap device interleave stripe size.
390 	 *
391 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
392 	 * designed to prevent other I/O from having high latencies due to
393 	 * our pageout I/O.  The value 4 works well for one or two active swap
394 	 * devices but is probably a little low if you have more.  Even so,
395 	 * a higher value would probably generate only a limited improvement
396 	 * with three or four active swap devices since the system does not
397 	 * typically have to pageout at extreme bandwidths.   We will want
398 	 * at least 2 per swap devices, and 4 is a pretty good value if you
399 	 * have one NFS swap device due to the command/ack latency over NFS.
400 	 * So it all works out pretty well.
401 	 */
402 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
403 
404 	mtx_lock(&pbuf_mtx);
405 	nsw_rcount = (nswbuf + 1) / 2;
406 	nsw_wcount_sync = (nswbuf + 3) / 4;
407 	nsw_wcount_async = 4;
408 	nsw_wcount_async_max = nsw_wcount_async;
409 	mtx_unlock(&pbuf_mtx);
410 
411 	/*
412 	 * Initialize our zone.  Right now I'm just guessing on the number
413 	 * we need based on the number of pages in the system.  Each swblock
414 	 * can hold 16 pages, so this is probably overkill.  This reservation
415 	 * is typically limited to around 32MB by default.
416 	 */
417 	n = cnt.v_page_count / 2;
418 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
419 		n = maxswzone / sizeof(struct swblock);
420 	n2 = n;
421 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
422 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
423 	do {
424 		if (uma_zone_set_obj(swap_zone, NULL, n))
425 			break;
426 		/*
427 		 * if the allocation failed, try a zone two thirds the
428 		 * size of the previous attempt.
429 		 */
430 		n -= ((n + 2) / 3);
431 	} while (n > 0);
432 	if (swap_zone == NULL)
433 		panic("failed to create swap_zone.");
434 	if (n2 != n)
435 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
436 	n2 = n;
437 
438 	/*
439 	 * Initialize our meta-data hash table.  The swapper does not need to
440 	 * be quite as efficient as the VM system, so we do not use an
441 	 * oversized hash table.
442 	 *
443 	 * 	n: 		size of hash table, must be power of 2
444 	 *	swhash_mask:	hash table index mask
445 	 */
446 	for (n = 1; n < n2 / 8; n *= 2)
447 		;
448 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
449 	swhash_mask = n - 1;
450 }
451 
452 /*
453  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
454  *			its metadata structures.
455  *
456  *	This routine is called from the mmap and fork code to create a new
457  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
458  *	and then converting it with swp_pager_meta_build().
459  *
460  *	This routine may block in vm_object_allocate() and create a named
461  *	object lookup race, so we must interlock.   We must also run at
462  *	splvm() for the object lookup to handle races with interrupts, but
463  *	we do not have to maintain splvm() in between the lookup and the
464  *	add because (I believe) it is not possible to attempt to create
465  *	a new swap object w/handle when a default object with that handle
466  *	already exists.
467  *
468  * MPSAFE
469  */
470 static vm_object_t
471 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
472 		 vm_ooffset_t offset)
473 {
474 	vm_object_t object;
475 
476 	mtx_lock(&Giant);
477 	if (handle) {
478 		/*
479 		 * Reference existing named region or allocate new one.  There
480 		 * should not be a race here against swp_pager_meta_build()
481 		 * as called from vm_page_remove() in regards to the lookup
482 		 * of the handle.
483 		 */
484 		sx_xlock(&sw_alloc_sx);
485 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
486 
487 		if (object != NULL) {
488 			vm_object_reference(object);
489 		} else {
490 			object = vm_object_allocate(OBJT_DEFAULT,
491 				OFF_TO_IDX(offset + PAGE_MASK + size));
492 			object->handle = handle;
493 
494 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
495 		}
496 		sx_xunlock(&sw_alloc_sx);
497 	} else {
498 		object = vm_object_allocate(OBJT_DEFAULT,
499 			OFF_TO_IDX(offset + PAGE_MASK + size));
500 
501 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
502 	}
503 	mtx_unlock(&Giant);
504 	return (object);
505 }
506 
507 /*
508  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
509  *
510  *	The swap backing for the object is destroyed.  The code is
511  *	designed such that we can reinstantiate it later, but this
512  *	routine is typically called only when the entire object is
513  *	about to be destroyed.
514  *
515  *	This routine may block, but no longer does.
516  *
517  *	The object must be locked or unreferenceable.
518  */
519 static void
520 swap_pager_dealloc(vm_object_t object)
521 {
522 	int s;
523 
524 	GIANT_REQUIRED;
525 
526 	/*
527 	 * Remove from list right away so lookups will fail if we block for
528 	 * pageout completion.
529 	 */
530 	mtx_lock(&sw_alloc_mtx);
531 	if (object->handle == NULL) {
532 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
533 	} else {
534 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
535 	}
536 	mtx_unlock(&sw_alloc_mtx);
537 
538 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
539 	vm_object_pip_wait(object, "swpdea");
540 
541 	/*
542 	 * Free all remaining metadata.  We only bother to free it from
543 	 * the swap meta data.  We do not attempt to free swapblk's still
544 	 * associated with vm_page_t's for this object.  We do not care
545 	 * if paging is still in progress on some objects.
546 	 */
547 	s = splvm();
548 	swp_pager_meta_free_all(object);
549 	splx(s);
550 }
551 
552 /************************************************************************
553  *			SWAP PAGER BITMAP ROUTINES			*
554  ************************************************************************/
555 
556 /*
557  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
558  *
559  *	Allocate swap for the requested number of pages.  The starting
560  *	swap block number (a page index) is returned or SWAPBLK_NONE
561  *	if the allocation failed.
562  *
563  *	Also has the side effect of advising that somebody made a mistake
564  *	when they configured swap and didn't configure enough.
565  *
566  *	Must be called at splvm() to avoid races with bitmap frees from
567  *	vm_page_remove() aka swap_pager_page_removed().
568  *
569  *	This routine may not block
570  *	This routine must be called at splvm().
571  *
572  *	We allocate in round-robin fashion from the configured devices.
573  */
574 static daddr_t
575 swp_pager_getswapspace(int npages)
576 {
577 	daddr_t blk;
578 	struct swdevt *sp;
579 	int i;
580 
581 	GIANT_REQUIRED;
582 
583 	blk = SWAPBLK_NONE;
584 	mtx_lock(&sw_dev_mtx);
585 	sp = swdevhd;
586 	for (i = 0; i < nswapdev; i++) {
587 		if (sp == NULL)
588 			sp = TAILQ_FIRST(&swtailq);
589 		if (!(sp->sw_flags & SW_CLOSING)) {
590 			blk = blist_alloc(sp->sw_blist, npages);
591 			if (blk != SWAPBLK_NONE) {
592 				blk += sp->sw_first;
593 				swap_pager_avail -= npages;
594 				sp->sw_used += npages;
595 				swp_sizecheck();
596 				swdevhd = TAILQ_NEXT(sp, sw_list);
597 				mtx_unlock(&sw_dev_mtx);
598 				return(blk);
599 			}
600 		}
601 		sp = TAILQ_NEXT(sp, sw_list);
602 	}
603 	mtx_unlock(&sw_dev_mtx);
604 	if (swap_pager_full != 2) {
605 		printf("swap_pager_getswapspace(%d): failed\n", npages);
606 		swap_pager_full = 2;
607 		swap_pager_almost_full = 1;
608 	}
609 	swdevhd = NULL;
610 	return (blk);
611 }
612 
613 static struct swdevt *
614 swp_pager_find_dev(daddr_t blk)
615 {
616 	struct swdevt *sp;
617 
618 	mtx_lock(&sw_dev_mtx);
619 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
620 		if (blk >= sp->sw_first && blk < sp->sw_end) {
621 			mtx_unlock(&sw_dev_mtx);
622 			return (sp);
623 		}
624 	}
625 	panic("Swapdev not found");
626 }
627 
628 static void
629 swp_pager_strategy(struct buf *bp)
630 {
631 	struct swdevt *sp;
632 
633 	mtx_lock(&sw_dev_mtx);
634 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
635 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
636 			mtx_unlock(&sw_dev_mtx);
637 			sp->sw_strategy(bp, sp);
638 			return;
639 		}
640 	}
641 	panic("Swapdev not found");
642 }
643 
644 
645 /*
646  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
647  *
648  *	This routine returns the specified swap blocks back to the bitmap.
649  *
650  *	Note:  This routine may not block (it could in the old swap code),
651  *	and through the use of the new blist routines it does not block.
652  *
653  *	We must be called at splvm() to avoid races with bitmap frees from
654  *	vm_page_remove() aka swap_pager_page_removed().
655  *
656  *	This routine may not block
657  *	This routine must be called at splvm().
658  */
659 static void
660 swp_pager_freeswapspace(daddr_t blk, int npages)
661 {
662 	struct swdevt *sp;
663 
664 	GIANT_REQUIRED;
665 
666 	sp = swp_pager_find_dev(blk);
667 
668 	/* per-swap area stats */
669 	sp->sw_used -= npages;
670 
671 	/*
672 	 * If we are attempting to stop swapping on this device, we
673 	 * don't want to mark any blocks free lest they be reused.
674 	 */
675 	if (sp->sw_flags & SW_CLOSING)
676 		return;
677 
678 	blist_free(sp->sw_blist, blk - sp->sw_first, npages);
679 	swap_pager_avail += npages;
680 	swp_sizecheck();
681 }
682 
683 /*
684  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
685  *				range within an object.
686  *
687  *	This is a globally accessible routine.
688  *
689  *	This routine removes swapblk assignments from swap metadata.
690  *
691  *	The external callers of this routine typically have already destroyed
692  *	or renamed vm_page_t's associated with this range in the object so
693  *	we should be ok.
694  *
695  *	This routine may be called at any spl.  We up our spl to splvm temporarily
696  *	in order to perform the metadata removal.
697  */
698 void
699 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
700 {
701 	int s = splvm();
702 
703 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
704 	swp_pager_meta_free(object, start, size);
705 	splx(s);
706 }
707 
708 /*
709  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
710  *
711  *	Assigns swap blocks to the specified range within the object.  The
712  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
713  *
714  *	Returns 0 on success, -1 on failure.
715  */
716 int
717 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
718 {
719 	int s;
720 	int n = 0;
721 	daddr_t blk = SWAPBLK_NONE;
722 	vm_pindex_t beg = start;	/* save start index */
723 
724 	s = splvm();
725 	while (size) {
726 		if (n == 0) {
727 			n = BLIST_MAX_ALLOC;
728 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
729 				n >>= 1;
730 				if (n == 0) {
731 					swp_pager_meta_free(object, beg, start - beg);
732 					splx(s);
733 					return (-1);
734 				}
735 			}
736 		}
737 		swp_pager_meta_build(object, start, blk);
738 		--size;
739 		++start;
740 		++blk;
741 		--n;
742 	}
743 	swp_pager_meta_free(object, start, n);
744 	splx(s);
745 	return (0);
746 }
747 
748 /*
749  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
750  *			and destroy the source.
751  *
752  *	Copy any valid swapblks from the source to the destination.  In
753  *	cases where both the source and destination have a valid swapblk,
754  *	we keep the destination's.
755  *
756  *	This routine is allowed to block.  It may block allocating metadata
757  *	indirectly through swp_pager_meta_build() or if paging is still in
758  *	progress on the source.
759  *
760  *	This routine can be called at any spl
761  *
762  *	XXX vm_page_collapse() kinda expects us not to block because we
763  *	supposedly do not need to allocate memory, but for the moment we
764  *	*may* have to get a little memory from the zone allocator, but
765  *	it is taken from the interrupt memory.  We should be ok.
766  *
767  *	The source object contains no vm_page_t's (which is just as well)
768  *
769  *	The source object is of type OBJT_SWAP.
770  *
771  *	The source and destination objects must be locked or
772  *	inaccessible (XXX are they ?)
773  */
774 void
775 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
776     vm_pindex_t offset, int destroysource)
777 {
778 	vm_pindex_t i;
779 	int s;
780 
781 	GIANT_REQUIRED;
782 
783 	s = splvm();
784 	/*
785 	 * If destroysource is set, we remove the source object from the
786 	 * swap_pager internal queue now.
787 	 */
788 	if (destroysource) {
789 		mtx_lock(&sw_alloc_mtx);
790 		if (srcobject->handle == NULL) {
791 			TAILQ_REMOVE(
792 			    &swap_pager_un_object_list,
793 			    srcobject,
794 			    pager_object_list
795 			);
796 		} else {
797 			TAILQ_REMOVE(
798 			    NOBJLIST(srcobject->handle),
799 			    srcobject,
800 			    pager_object_list
801 			);
802 		}
803 		mtx_unlock(&sw_alloc_mtx);
804 	}
805 
806 	/*
807 	 * transfer source to destination.
808 	 */
809 	for (i = 0; i < dstobject->size; ++i) {
810 		daddr_t dstaddr;
811 
812 		/*
813 		 * Locate (without changing) the swapblk on the destination,
814 		 * unless it is invalid in which case free it silently, or
815 		 * if the destination is a resident page, in which case the
816 		 * source is thrown away.
817 		 */
818 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
819 
820 		if (dstaddr == SWAPBLK_NONE) {
821 			/*
822 			 * Destination has no swapblk and is not resident,
823 			 * copy source.
824 			 */
825 			daddr_t srcaddr;
826 
827 			srcaddr = swp_pager_meta_ctl(
828 			    srcobject,
829 			    i + offset,
830 			    SWM_POP
831 			);
832 
833 			if (srcaddr != SWAPBLK_NONE)
834 				swp_pager_meta_build(dstobject, i, srcaddr);
835 		} else {
836 			/*
837 			 * Destination has valid swapblk or it is represented
838 			 * by a resident page.  We destroy the sourceblock.
839 			 */
840 
841 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
842 		}
843 	}
844 
845 	/*
846 	 * Free left over swap blocks in source.
847 	 *
848 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
849 	 * double-remove the object from the swap queues.
850 	 */
851 	if (destroysource) {
852 		swp_pager_meta_free_all(srcobject);
853 		/*
854 		 * Reverting the type is not necessary, the caller is going
855 		 * to destroy srcobject directly, but I'm doing it here
856 		 * for consistency since we've removed the object from its
857 		 * queues.
858 		 */
859 		srcobject->type = OBJT_DEFAULT;
860 	}
861 	splx(s);
862 }
863 
864 /*
865  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
866  *				the requested page.
867  *
868  *	We determine whether good backing store exists for the requested
869  *	page and return TRUE if it does, FALSE if it doesn't.
870  *
871  *	If TRUE, we also try to determine how much valid, contiguous backing
872  *	store exists before and after the requested page within a reasonable
873  *	distance.  We do not try to restrict it to the swap device stripe
874  *	(that is handled in getpages/putpages).  It probably isn't worth
875  *	doing here.
876  */
877 static boolean_t
878 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
879 {
880 	daddr_t blk0;
881 	int s;
882 
883 	/*
884 	 * do we have good backing store at the requested index ?
885 	 */
886 	s = splvm();
887 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
888 
889 	if (blk0 == SWAPBLK_NONE) {
890 		splx(s);
891 		if (before)
892 			*before = 0;
893 		if (after)
894 			*after = 0;
895 		return (FALSE);
896 	}
897 
898 	/*
899 	 * find backwards-looking contiguous good backing store
900 	 */
901 	if (before != NULL) {
902 		int i;
903 
904 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
905 			daddr_t blk;
906 
907 			if (i > pindex)
908 				break;
909 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
910 			if (blk != blk0 - i)
911 				break;
912 		}
913 		*before = (i - 1);
914 	}
915 
916 	/*
917 	 * find forward-looking contiguous good backing store
918 	 */
919 	if (after != NULL) {
920 		int i;
921 
922 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
923 			daddr_t blk;
924 
925 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
926 			if (blk != blk0 + i)
927 				break;
928 		}
929 		*after = (i - 1);
930 	}
931 	splx(s);
932 	return (TRUE);
933 }
934 
935 /*
936  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
937  *
938  *	This removes any associated swap backing store, whether valid or
939  *	not, from the page.
940  *
941  *	This routine is typically called when a page is made dirty, at
942  *	which point any associated swap can be freed.  MADV_FREE also
943  *	calls us in a special-case situation
944  *
945  *	NOTE!!!  If the page is clean and the swap was valid, the caller
946  *	should make the page dirty before calling this routine.  This routine
947  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
948  *	depends on it.
949  *
950  *	This routine may not block
951  *	This routine must be called at splvm()
952  */
953 static void
954 swap_pager_unswapped(vm_page_t m)
955 {
956 
957 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
958 }
959 
960 /*
961  * SWAP_PAGER_GETPAGES() - bring pages in from swap
962  *
963  *	Attempt to retrieve (m, count) pages from backing store, but make
964  *	sure we retrieve at least m[reqpage].  We try to load in as large
965  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
966  *	belongs to the same object.
967  *
968  *	The code is designed for asynchronous operation and
969  *	immediate-notification of 'reqpage' but tends not to be
970  *	used that way.  Please do not optimize-out this algorithmic
971  *	feature, I intend to improve on it in the future.
972  *
973  *	The parent has a single vm_object_pip_add() reference prior to
974  *	calling us and we should return with the same.
975  *
976  *	The parent has BUSY'd the pages.  We should return with 'm'
977  *	left busy, but the others adjusted.
978  */
979 static int
980 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
981 {
982 	struct buf *bp;
983 	vm_page_t mreq;
984 	int s;
985 	int i;
986 	int j;
987 	daddr_t blk;
988 
989 	mreq = m[reqpage];
990 
991 	KASSERT(mreq->object == object,
992 	    ("swap_pager_getpages: object mismatch %p/%p",
993 	    object, mreq->object));
994 
995 	/*
996 	 * Calculate range to retrieve.  The pages have already been assigned
997 	 * their swapblks.  We require a *contiguous* range but we know it to
998 	 * not span devices.   If we do not supply it, bad things
999 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1000 	 * loops are set up such that the case(s) are handled implicitly.
1001 	 *
1002 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1003 	 * not need to be, but it will go a little faster if it is.
1004 	 */
1005 	s = splvm();
1006 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1007 
1008 	for (i = reqpage - 1; i >= 0; --i) {
1009 		daddr_t iblk;
1010 
1011 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1012 		if (blk != iblk + (reqpage - i))
1013 			break;
1014 	}
1015 	++i;
1016 
1017 	for (j = reqpage + 1; j < count; ++j) {
1018 		daddr_t jblk;
1019 
1020 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1021 		if (blk != jblk - (j - reqpage))
1022 			break;
1023 	}
1024 
1025 	/*
1026 	 * free pages outside our collection range.   Note: we never free
1027 	 * mreq, it must remain busy throughout.
1028 	 */
1029 	vm_page_lock_queues();
1030 	{
1031 		int k;
1032 
1033 		for (k = 0; k < i; ++k)
1034 			vm_page_free(m[k]);
1035 		for (k = j; k < count; ++k)
1036 			vm_page_free(m[k]);
1037 	}
1038 	vm_page_unlock_queues();
1039 	splx(s);
1040 
1041 
1042 	/*
1043 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1044 	 * still busy, but the others unbusied.
1045 	 */
1046 	if (blk == SWAPBLK_NONE)
1047 		return (VM_PAGER_FAIL);
1048 
1049 	/*
1050 	 * Getpbuf() can sleep.
1051 	 */
1052 	VM_OBJECT_UNLOCK(object);
1053 	/*
1054 	 * Get a swap buffer header to perform the IO
1055 	 */
1056 	bp = getpbuf(&nsw_rcount);
1057 	bp->b_flags |= B_PAGING;
1058 
1059 	/*
1060 	 * map our page(s) into kva for input
1061 	 */
1062 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1063 
1064 	bp->b_iocmd = BIO_READ;
1065 	bp->b_iodone = swp_pager_async_iodone;
1066 	bp->b_rcred = crhold(thread0.td_ucred);
1067 	bp->b_wcred = crhold(thread0.td_ucred);
1068 	bp->b_blkno = blk - (reqpage - i);
1069 	bp->b_bcount = PAGE_SIZE * (j - i);
1070 	bp->b_bufsize = PAGE_SIZE * (j - i);
1071 	bp->b_pager.pg_reqpage = reqpage - i;
1072 
1073 	VM_OBJECT_LOCK(object);
1074 	vm_page_lock_queues();
1075 	{
1076 		int k;
1077 
1078 		for (k = i; k < j; ++k) {
1079 			bp->b_pages[k - i] = m[k];
1080 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1081 		}
1082 	}
1083 	vm_page_unlock_queues();
1084 	VM_OBJECT_UNLOCK(object);
1085 	bp->b_npages = j - i;
1086 
1087 	cnt.v_swapin++;
1088 	cnt.v_swappgsin += bp->b_npages;
1089 
1090 	/*
1091 	 * We still hold the lock on mreq, and our automatic completion routine
1092 	 * does not remove it.
1093 	 */
1094 	VM_OBJECT_LOCK(mreq->object);
1095 	vm_object_pip_add(mreq->object, bp->b_npages);
1096 	VM_OBJECT_UNLOCK(mreq->object);
1097 
1098 	/*
1099 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1100 	 * this point because we automatically release it on completion.
1101 	 * Instead, we look at the one page we are interested in which we
1102 	 * still hold a lock on even through the I/O completion.
1103 	 *
1104 	 * The other pages in our m[] array are also released on completion,
1105 	 * so we cannot assume they are valid anymore either.
1106 	 *
1107 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1108 	 */
1109 	BUF_KERNPROC(bp);
1110 	swp_pager_strategy(bp);
1111 
1112 	/*
1113 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1114 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1115 	 * is set in the meta-data.
1116 	 */
1117 	s = splvm();
1118 	vm_page_lock_queues();
1119 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1120 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1121 		cnt.v_intrans++;
1122 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1123 			printf(
1124 			    "swap_pager: indefinite wait buffer: device:"
1125 				" %s, blkno: %ld, size: %ld\n",
1126 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1127 			    bp->b_bcount
1128 			);
1129 		}
1130 	}
1131 	vm_page_unlock_queues();
1132 	splx(s);
1133 
1134 	VM_OBJECT_LOCK(mreq->object);
1135 	/*
1136 	 * mreq is left busied after completion, but all the other pages
1137 	 * are freed.  If we had an unrecoverable read error the page will
1138 	 * not be valid.
1139 	 */
1140 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1141 		return (VM_PAGER_ERROR);
1142 	} else {
1143 		return (VM_PAGER_OK);
1144 	}
1145 
1146 	/*
1147 	 * A final note: in a low swap situation, we cannot deallocate swap
1148 	 * and mark a page dirty here because the caller is likely to mark
1149 	 * the page clean when we return, causing the page to possibly revert
1150 	 * to all-zero's later.
1151 	 */
1152 }
1153 
1154 /*
1155  *	swap_pager_putpages:
1156  *
1157  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1158  *
1159  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1160  *	are automatically converted to SWAP objects.
1161  *
1162  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1163  *	vm_page reservation system coupled with properly written VFS devices
1164  *	should ensure that no low-memory deadlock occurs.  This is an area
1165  *	which needs work.
1166  *
1167  *	The parent has N vm_object_pip_add() references prior to
1168  *	calling us and will remove references for rtvals[] that are
1169  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1170  *	completion.
1171  *
1172  *	The parent has soft-busy'd the pages it passes us and will unbusy
1173  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1174  *	We need to unbusy the rest on I/O completion.
1175  */
1176 void
1177 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1178     boolean_t sync, int *rtvals)
1179 {
1180 	int i;
1181 	int n = 0;
1182 
1183 	GIANT_REQUIRED;
1184 	if (count && m[0]->object != object) {
1185 		panic("swap_pager_getpages: object mismatch %p/%p",
1186 		    object,
1187 		    m[0]->object
1188 		);
1189 	}
1190 	/*
1191 	 * Step 1
1192 	 *
1193 	 * Turn object into OBJT_SWAP
1194 	 * check for bogus sysops
1195 	 * force sync if not pageout process
1196 	 */
1197 	if (object->type != OBJT_SWAP)
1198 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1199 
1200 	if (curproc != pageproc)
1201 		sync = TRUE;
1202 
1203 	/*
1204 	 * Step 2
1205 	 *
1206 	 * Update nsw parameters from swap_async_max sysctl values.
1207 	 * Do not let the sysop crash the machine with bogus numbers.
1208 	 */
1209 	mtx_lock(&pbuf_mtx);
1210 	if (swap_async_max != nsw_wcount_async_max) {
1211 		int n;
1212 		int s;
1213 
1214 		/*
1215 		 * limit range
1216 		 */
1217 		if ((n = swap_async_max) > nswbuf / 2)
1218 			n = nswbuf / 2;
1219 		if (n < 1)
1220 			n = 1;
1221 		swap_async_max = n;
1222 
1223 		/*
1224 		 * Adjust difference ( if possible ).  If the current async
1225 		 * count is too low, we may not be able to make the adjustment
1226 		 * at this time.
1227 		 */
1228 		s = splvm();
1229 		n -= nsw_wcount_async_max;
1230 		if (nsw_wcount_async + n >= 0) {
1231 			nsw_wcount_async += n;
1232 			nsw_wcount_async_max += n;
1233 			wakeup(&nsw_wcount_async);
1234 		}
1235 		splx(s);
1236 	}
1237 	mtx_unlock(&pbuf_mtx);
1238 
1239 	/*
1240 	 * Step 3
1241 	 *
1242 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1243 	 * The page is left dirty until the pageout operation completes
1244 	 * successfully.
1245 	 */
1246 	for (i = 0; i < count; i += n) {
1247 		int s;
1248 		int j;
1249 		struct buf *bp;
1250 		daddr_t blk;
1251 
1252 		/*
1253 		 * Maximum I/O size is limited by a number of factors.
1254 		 */
1255 		n = min(BLIST_MAX_ALLOC, count - i);
1256 		n = min(n, nsw_cluster_max);
1257 
1258 		s = splvm();
1259 
1260 		/*
1261 		 * Get biggest block of swap we can.  If we fail, fall
1262 		 * back and try to allocate a smaller block.  Don't go
1263 		 * overboard trying to allocate space if it would overly
1264 		 * fragment swap.
1265 		 */
1266 		while (
1267 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1268 		    n > 4
1269 		) {
1270 			n >>= 1;
1271 		}
1272 		if (blk == SWAPBLK_NONE) {
1273 			for (j = 0; j < n; ++j)
1274 				rtvals[i+j] = VM_PAGER_FAIL;
1275 			splx(s);
1276 			continue;
1277 		}
1278 
1279 		/*
1280 		 * All I/O parameters have been satisfied, build the I/O
1281 		 * request and assign the swap space.
1282 		 */
1283 		if (sync == TRUE) {
1284 			bp = getpbuf(&nsw_wcount_sync);
1285 		} else {
1286 			bp = getpbuf(&nsw_wcount_async);
1287 			bp->b_flags = B_ASYNC;
1288 		}
1289 		bp->b_flags |= B_PAGING;
1290 		bp->b_iocmd = BIO_WRITE;
1291 
1292 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1293 
1294 		bp->b_rcred = crhold(thread0.td_ucred);
1295 		bp->b_wcred = crhold(thread0.td_ucred);
1296 		bp->b_bcount = PAGE_SIZE * n;
1297 		bp->b_bufsize = PAGE_SIZE * n;
1298 		bp->b_blkno = blk;
1299 
1300 		for (j = 0; j < n; ++j) {
1301 			vm_page_t mreq = m[i+j];
1302 
1303 			swp_pager_meta_build(
1304 			    mreq->object,
1305 			    mreq->pindex,
1306 			    blk + j
1307 			);
1308 			vm_page_dirty(mreq);
1309 			rtvals[i+j] = VM_PAGER_OK;
1310 
1311 			vm_page_lock_queues();
1312 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1313 			vm_page_unlock_queues();
1314 			bp->b_pages[j] = mreq;
1315 		}
1316 		bp->b_npages = n;
1317 		/*
1318 		 * Must set dirty range for NFS to work.
1319 		 */
1320 		bp->b_dirtyoff = 0;
1321 		bp->b_dirtyend = bp->b_bcount;
1322 
1323 		cnt.v_swapout++;
1324 		cnt.v_swappgsout += bp->b_npages;
1325 
1326 		splx(s);
1327 
1328 		/*
1329 		 * asynchronous
1330 		 *
1331 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1332 		 */
1333 		if (sync == FALSE) {
1334 			bp->b_iodone = swp_pager_async_iodone;
1335 			BUF_KERNPROC(bp);
1336 			swp_pager_strategy(bp);
1337 
1338 			for (j = 0; j < n; ++j)
1339 				rtvals[i+j] = VM_PAGER_PEND;
1340 			/* restart outter loop */
1341 			continue;
1342 		}
1343 
1344 		/*
1345 		 * synchronous
1346 		 *
1347 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1348 		 */
1349 		bp->b_iodone = swp_pager_sync_iodone;
1350 		swp_pager_strategy(bp);
1351 
1352 		/*
1353 		 * Wait for the sync I/O to complete, then update rtvals.
1354 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1355 		 * our async completion routine at the end, thus avoiding a
1356 		 * double-free.
1357 		 */
1358 		s = splbio();
1359 		while ((bp->b_flags & B_DONE) == 0) {
1360 			tsleep(bp, PVM, "swwrt", 0);
1361 		}
1362 		for (j = 0; j < n; ++j)
1363 			rtvals[i+j] = VM_PAGER_PEND;
1364 		/*
1365 		 * Now that we are through with the bp, we can call the
1366 		 * normal async completion, which frees everything up.
1367 		 */
1368 		swp_pager_async_iodone(bp);
1369 		splx(s);
1370 	}
1371 }
1372 
1373 /*
1374  *	swap_pager_sync_iodone:
1375  *
1376  *	Completion routine for synchronous reads and writes from/to swap.
1377  *	We just mark the bp is complete and wake up anyone waiting on it.
1378  *
1379  *	This routine may not block.  This routine is called at splbio() or better.
1380  */
1381 static void
1382 swp_pager_sync_iodone(struct buf *bp)
1383 {
1384 	bp->b_flags |= B_DONE;
1385 	bp->b_flags &= ~B_ASYNC;
1386 	wakeup(bp);
1387 }
1388 
1389 /*
1390  *	swp_pager_async_iodone:
1391  *
1392  *	Completion routine for asynchronous reads and writes from/to swap.
1393  *	Also called manually by synchronous code to finish up a bp.
1394  *
1395  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1396  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1397  *	unbusy all pages except the 'main' request page.  For WRITE
1398  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1399  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1400  *
1401  *	This routine may not block.
1402  *	This routine is called at splbio() or better
1403  *
1404  *	We up ourselves to splvm() as required for various vm_page related
1405  *	calls.
1406  */
1407 static void
1408 swp_pager_async_iodone(struct buf *bp)
1409 {
1410 	int s;
1411 	int i;
1412 	vm_object_t object = NULL;
1413 
1414 	GIANT_REQUIRED;
1415 	bp->b_flags |= B_DONE;
1416 
1417 	/*
1418 	 * report error
1419 	 */
1420 	if (bp->b_ioflags & BIO_ERROR) {
1421 		printf(
1422 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1423 			"size %ld, error %d\n",
1424 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1425 		    (long)bp->b_blkno,
1426 		    (long)bp->b_bcount,
1427 		    bp->b_error
1428 		);
1429 	}
1430 
1431 	/*
1432 	 * set object, raise to splvm().
1433 	 */
1434 	s = splvm();
1435 
1436 	/*
1437 	 * remove the mapping for kernel virtual
1438 	 */
1439 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1440 
1441 	if (bp->b_npages) {
1442 		object = bp->b_pages[0]->object;
1443 		VM_OBJECT_LOCK(object);
1444 	}
1445 	vm_page_lock_queues();
1446 	/*
1447 	 * cleanup pages.  If an error occurs writing to swap, we are in
1448 	 * very serious trouble.  If it happens to be a disk error, though,
1449 	 * we may be able to recover by reassigning the swap later on.  So
1450 	 * in this case we remove the m->swapblk assignment for the page
1451 	 * but do not free it in the rlist.  The errornous block(s) are thus
1452 	 * never reallocated as swap.  Redirty the page and continue.
1453 	 */
1454 	for (i = 0; i < bp->b_npages; ++i) {
1455 		vm_page_t m = bp->b_pages[i];
1456 
1457 		vm_page_flag_clear(m, PG_SWAPINPROG);
1458 
1459 		if (bp->b_ioflags & BIO_ERROR) {
1460 			/*
1461 			 * If an error occurs I'd love to throw the swapblk
1462 			 * away without freeing it back to swapspace, so it
1463 			 * can never be used again.  But I can't from an
1464 			 * interrupt.
1465 			 */
1466 			if (bp->b_iocmd == BIO_READ) {
1467 				/*
1468 				 * When reading, reqpage needs to stay
1469 				 * locked for the parent, but all other
1470 				 * pages can be freed.  We still want to
1471 				 * wakeup the parent waiting on the page,
1472 				 * though.  ( also: pg_reqpage can be -1 and
1473 				 * not match anything ).
1474 				 *
1475 				 * We have to wake specifically requested pages
1476 				 * up too because we cleared PG_SWAPINPROG and
1477 				 * someone may be waiting for that.
1478 				 *
1479 				 * NOTE: for reads, m->dirty will probably
1480 				 * be overridden by the original caller of
1481 				 * getpages so don't play cute tricks here.
1482 				 *
1483 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1484 				 * AS THIS MESSES WITH object->memq, and it is
1485 				 * not legal to mess with object->memq from an
1486 				 * interrupt.
1487 				 */
1488 				m->valid = 0;
1489 				vm_page_flag_clear(m, PG_ZERO);
1490 				if (i != bp->b_pager.pg_reqpage)
1491 					vm_page_free(m);
1492 				else
1493 					vm_page_flash(m);
1494 				/*
1495 				 * If i == bp->b_pager.pg_reqpage, do not wake
1496 				 * the page up.  The caller needs to.
1497 				 */
1498 			} else {
1499 				/*
1500 				 * If a write error occurs, reactivate page
1501 				 * so it doesn't clog the inactive list,
1502 				 * then finish the I/O.
1503 				 */
1504 				vm_page_dirty(m);
1505 				vm_page_activate(m);
1506 				vm_page_io_finish(m);
1507 			}
1508 		} else if (bp->b_iocmd == BIO_READ) {
1509 			/*
1510 			 * For read success, clear dirty bits.  Nobody should
1511 			 * have this page mapped but don't take any chances,
1512 			 * make sure the pmap modify bits are also cleared.
1513 			 *
1514 			 * NOTE: for reads, m->dirty will probably be
1515 			 * overridden by the original caller of getpages so
1516 			 * we cannot set them in order to free the underlying
1517 			 * swap in a low-swap situation.  I don't think we'd
1518 			 * want to do that anyway, but it was an optimization
1519 			 * that existed in the old swapper for a time before
1520 			 * it got ripped out due to precisely this problem.
1521 			 *
1522 			 * clear PG_ZERO in page.
1523 			 *
1524 			 * If not the requested page then deactivate it.
1525 			 *
1526 			 * Note that the requested page, reqpage, is left
1527 			 * busied, but we still have to wake it up.  The
1528 			 * other pages are released (unbusied) by
1529 			 * vm_page_wakeup().  We do not set reqpage's
1530 			 * valid bits here, it is up to the caller.
1531 			 */
1532 			pmap_clear_modify(m);
1533 			m->valid = VM_PAGE_BITS_ALL;
1534 			vm_page_undirty(m);
1535 			vm_page_flag_clear(m, PG_ZERO);
1536 
1537 			/*
1538 			 * We have to wake specifically requested pages
1539 			 * up too because we cleared PG_SWAPINPROG and
1540 			 * could be waiting for it in getpages.  However,
1541 			 * be sure to not unbusy getpages specifically
1542 			 * requested page - getpages expects it to be
1543 			 * left busy.
1544 			 */
1545 			if (i != bp->b_pager.pg_reqpage) {
1546 				vm_page_deactivate(m);
1547 				vm_page_wakeup(m);
1548 			} else {
1549 				vm_page_flash(m);
1550 			}
1551 		} else {
1552 			/*
1553 			 * For write success, clear the modify and dirty
1554 			 * status, then finish the I/O ( which decrements the
1555 			 * busy count and possibly wakes waiter's up ).
1556 			 */
1557 			pmap_clear_modify(m);
1558 			vm_page_undirty(m);
1559 			vm_page_io_finish(m);
1560 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1561 				pmap_page_protect(m, VM_PROT_READ);
1562 		}
1563 	}
1564 	vm_page_unlock_queues();
1565 
1566 	/*
1567 	 * adjust pip.  NOTE: the original parent may still have its own
1568 	 * pip refs on the object.
1569 	 */
1570 	if (object != NULL) {
1571 		vm_object_pip_wakeupn(object, bp->b_npages);
1572 		VM_OBJECT_UNLOCK(object);
1573 	}
1574 
1575 	/*
1576 	 * release the physical I/O buffer
1577 	 */
1578 	relpbuf(
1579 	    bp,
1580 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1581 		((bp->b_flags & B_ASYNC) ?
1582 		    &nsw_wcount_async :
1583 		    &nsw_wcount_sync
1584 		)
1585 	    )
1586 	);
1587 	splx(s);
1588 }
1589 
1590 /*
1591  *	swap_pager_isswapped:
1592  *
1593  *	Return 1 if at least one page in the given object is paged
1594  *	out to the given swap device.
1595  *
1596  *	This routine may not block.
1597  */
1598 int
1599 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1600 {
1601 	daddr_t index = 0;
1602 	int bcount;
1603 	int i;
1604 
1605 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1606 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1607 		struct swblock *swap;
1608 
1609 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1610 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1611 				daddr_t v = swap->swb_pages[i];
1612 				if (v == SWAPBLK_NONE)
1613 					continue;
1614 				if (swp_pager_find_dev(v) == sp)
1615 					return 1;
1616 			}
1617 		}
1618 
1619 		index += SWAP_META_PAGES;
1620 		if (index > 0x20000000)
1621 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1622 	}
1623 	return 0;
1624 }
1625 
1626 /*
1627  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1628  *
1629  *	This routine dissociates the page at the given index within a
1630  *	swap block from its backing store, paging it in if necessary.
1631  *	If the page is paged in, it is placed in the inactive queue,
1632  *	since it had its backing store ripped out from under it.
1633  *	We also attempt to swap in all other pages in the swap block,
1634  *	we only guarantee that the one at the specified index is
1635  *	paged in.
1636  *
1637  *	XXX - The code to page the whole block in doesn't work, so we
1638  *	      revert to the one-by-one behavior for now.  Sigh.
1639  */
1640 static __inline void
1641 swp_pager_force_pagein(struct swblock *swap, int idx)
1642 {
1643 	vm_object_t object;
1644 	vm_page_t m;
1645 	vm_pindex_t pindex;
1646 
1647 	object = swap->swb_object;
1648 	pindex = swap->swb_index;
1649 
1650 	VM_OBJECT_LOCK(object);
1651 	vm_object_pip_add(object, 1);
1652 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1653 	if (m->valid == VM_PAGE_BITS_ALL) {
1654 		vm_object_pip_subtract(object, 1);
1655 		VM_OBJECT_UNLOCK(object);
1656 		vm_page_lock_queues();
1657 		vm_page_activate(m);
1658 		vm_page_dirty(m);
1659 		vm_page_wakeup(m);
1660 		vm_page_unlock_queues();
1661 		vm_pager_page_unswapped(m);
1662 		return;
1663 	}
1664 
1665 	if (swap_pager_getpages(object, &m, 1, 0) !=
1666 	    VM_PAGER_OK)
1667 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1668 	vm_object_pip_subtract(object, 1);
1669 	VM_OBJECT_UNLOCK(object);
1670 
1671 	vm_page_lock_queues();
1672 	vm_page_dirty(m);
1673 	vm_page_dontneed(m);
1674 	vm_page_wakeup(m);
1675 	vm_page_unlock_queues();
1676 	vm_pager_page_unswapped(m);
1677 }
1678 
1679 
1680 /*
1681  *	swap_pager_swapoff:
1682  *
1683  *	Page in all of the pages that have been paged out to the
1684  *	given device.  The corresponding blocks in the bitmap must be
1685  *	marked as allocated and the device must be flagged SW_CLOSING.
1686  *	There may be no processes swapped out to the device.
1687  *
1688  *	The sw_used parameter points to the field in the swdev structure
1689  *	that contains a count of the number of blocks still allocated
1690  *	on the device.  If we encounter objects with a nonzero pip count
1691  *	in our scan, we use this number to determine if we're really done.
1692  *
1693  *	This routine may block.
1694  */
1695 static void
1696 swap_pager_swapoff(struct swdevt *sp, int *sw_used)
1697 {
1698 	struct swblock **pswap;
1699 	struct swblock *swap;
1700 	vm_object_t waitobj;
1701 	daddr_t v;
1702 	int i, j;
1703 
1704 	GIANT_REQUIRED;
1705 
1706 full_rescan:
1707 	waitobj = NULL;
1708 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1709 restart:
1710 		pswap = &swhash[i];
1711 		while ((swap = *pswap) != NULL) {
1712                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1713                                 v = swap->swb_pages[j];
1714                                 if (v != SWAPBLK_NONE &&
1715 				    swp_pager_find_dev(v) == sp)
1716                                         break;
1717                         }
1718 			if (j < SWAP_META_PAGES) {
1719 				swp_pager_force_pagein(swap, j);
1720 				goto restart;
1721 			} else if (swap->swb_object->paging_in_progress) {
1722 				if (!waitobj)
1723 					waitobj = swap->swb_object;
1724 			}
1725 			pswap = &swap->swb_hnext;
1726 		}
1727 	}
1728 	if (waitobj && *sw_used) {
1729 	    /*
1730 	     * We wait on an arbitrary object to clock our rescans
1731 	     * to the rate of paging completion.
1732 	     */
1733 	    VM_OBJECT_LOCK(waitobj);
1734 	    vm_object_pip_wait(waitobj, "swpoff");
1735 	    VM_OBJECT_UNLOCK(waitobj);
1736 	    goto full_rescan;
1737 	}
1738 	if (*sw_used)
1739 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1740 }
1741 
1742 /************************************************************************
1743  *				SWAP META DATA 				*
1744  ************************************************************************
1745  *
1746  *	These routines manipulate the swap metadata stored in the
1747  *	OBJT_SWAP object.  All swp_*() routines must be called at
1748  *	splvm() because swap can be freed up by the low level vm_page
1749  *	code which might be called from interrupts beyond what splbio() covers.
1750  *
1751  *	Swap metadata is implemented with a global hash and not directly
1752  *	linked into the object.  Instead the object simply contains
1753  *	appropriate tracking counters.
1754  */
1755 
1756 /*
1757  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1758  *
1759  *	We first convert the object to a swap object if it is a default
1760  *	object.
1761  *
1762  *	The specified swapblk is added to the object's swap metadata.  If
1763  *	the swapblk is not valid, it is freed instead.  Any previously
1764  *	assigned swapblk is freed.
1765  *
1766  *	This routine must be called at splvm(), except when used to convert
1767  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1768  */
1769 static void
1770 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1771 {
1772 	struct swblock *swap;
1773 	struct swblock **pswap;
1774 	int idx;
1775 
1776 	GIANT_REQUIRED;
1777 	/*
1778 	 * Convert default object to swap object if necessary
1779 	 */
1780 	if (object->type != OBJT_SWAP) {
1781 		object->type = OBJT_SWAP;
1782 		object->un_pager.swp.swp_bcount = 0;
1783 
1784 		mtx_lock(&sw_alloc_mtx);
1785 		if (object->handle != NULL) {
1786 			TAILQ_INSERT_TAIL(
1787 			    NOBJLIST(object->handle),
1788 			    object,
1789 			    pager_object_list
1790 			);
1791 		} else {
1792 			TAILQ_INSERT_TAIL(
1793 			    &swap_pager_un_object_list,
1794 			    object,
1795 			    pager_object_list
1796 			);
1797 		}
1798 		mtx_unlock(&sw_alloc_mtx);
1799 	}
1800 
1801 	/*
1802 	 * Locate hash entry.  If not found create, but if we aren't adding
1803 	 * anything just return.  If we run out of space in the map we wait
1804 	 * and, since the hash table may have changed, retry.
1805 	 */
1806 retry:
1807 	pswap = swp_pager_hash(object, pindex);
1808 
1809 	if ((swap = *pswap) == NULL) {
1810 		int i;
1811 
1812 		if (swapblk == SWAPBLK_NONE)
1813 			return;
1814 
1815 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1816 		if (swap == NULL) {
1817 			VM_WAIT;
1818 			goto retry;
1819 		}
1820 
1821 		swap->swb_hnext = NULL;
1822 		swap->swb_object = object;
1823 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1824 		swap->swb_count = 0;
1825 
1826 		++object->un_pager.swp.swp_bcount;
1827 
1828 		for (i = 0; i < SWAP_META_PAGES; ++i)
1829 			swap->swb_pages[i] = SWAPBLK_NONE;
1830 	}
1831 
1832 	/*
1833 	 * Delete prior contents of metadata
1834 	 */
1835 	idx = pindex & SWAP_META_MASK;
1836 
1837 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1838 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1839 		--swap->swb_count;
1840 	}
1841 
1842 	/*
1843 	 * Enter block into metadata
1844 	 */
1845 	swap->swb_pages[idx] = swapblk;
1846 	if (swapblk != SWAPBLK_NONE)
1847 		++swap->swb_count;
1848 }
1849 
1850 /*
1851  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1852  *
1853  *	The requested range of blocks is freed, with any associated swap
1854  *	returned to the swap bitmap.
1855  *
1856  *	This routine will free swap metadata structures as they are cleaned
1857  *	out.  This routine does *NOT* operate on swap metadata associated
1858  *	with resident pages.
1859  *
1860  *	This routine must be called at splvm()
1861  */
1862 static void
1863 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1864 {
1865 	GIANT_REQUIRED;
1866 
1867 	if (object->type != OBJT_SWAP)
1868 		return;
1869 
1870 	while (count > 0) {
1871 		struct swblock **pswap;
1872 		struct swblock *swap;
1873 
1874 		pswap = swp_pager_hash(object, index);
1875 
1876 		if ((swap = *pswap) != NULL) {
1877 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1878 
1879 			if (v != SWAPBLK_NONE) {
1880 				swp_pager_freeswapspace(v, 1);
1881 				swap->swb_pages[index & SWAP_META_MASK] =
1882 					SWAPBLK_NONE;
1883 				if (--swap->swb_count == 0) {
1884 					*pswap = swap->swb_hnext;
1885 					uma_zfree(swap_zone, swap);
1886 					--object->un_pager.swp.swp_bcount;
1887 				}
1888 			}
1889 			--count;
1890 			++index;
1891 		} else {
1892 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1893 			count -= n;
1894 			index += n;
1895 		}
1896 	}
1897 }
1898 
1899 /*
1900  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1901  *
1902  *	This routine locates and destroys all swap metadata associated with
1903  *	an object.
1904  *
1905  *	This routine must be called at splvm()
1906  */
1907 static void
1908 swp_pager_meta_free_all(vm_object_t object)
1909 {
1910 	daddr_t index = 0;
1911 
1912 	GIANT_REQUIRED;
1913 
1914 	if (object->type != OBJT_SWAP)
1915 		return;
1916 
1917 	while (object->un_pager.swp.swp_bcount) {
1918 		struct swblock **pswap;
1919 		struct swblock *swap;
1920 
1921 		pswap = swp_pager_hash(object, index);
1922 		if ((swap = *pswap) != NULL) {
1923 			int i;
1924 
1925 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1926 				daddr_t v = swap->swb_pages[i];
1927 				if (v != SWAPBLK_NONE) {
1928 					--swap->swb_count;
1929 					swp_pager_freeswapspace(v, 1);
1930 				}
1931 			}
1932 			if (swap->swb_count != 0)
1933 				panic("swap_pager_meta_free_all: swb_count != 0");
1934 			*pswap = swap->swb_hnext;
1935 			uma_zfree(swap_zone, swap);
1936 			--object->un_pager.swp.swp_bcount;
1937 		}
1938 		index += SWAP_META_PAGES;
1939 		if (index > 0x20000000)
1940 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1941 	}
1942 }
1943 
1944 /*
1945  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1946  *
1947  *	This routine is capable of looking up, popping, or freeing
1948  *	swapblk assignments in the swap meta data or in the vm_page_t.
1949  *	The routine typically returns the swapblk being looked-up, or popped,
1950  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1951  *	was invalid.  This routine will automatically free any invalid
1952  *	meta-data swapblks.
1953  *
1954  *	It is not possible to store invalid swapblks in the swap meta data
1955  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1956  *
1957  *	When acting on a busy resident page and paging is in progress, we
1958  *	have to wait until paging is complete but otherwise can act on the
1959  *	busy page.
1960  *
1961  *	This routine must be called at splvm().
1962  *
1963  *	SWM_FREE	remove and free swap block from metadata
1964  *	SWM_POP		remove from meta data but do not free.. pop it out
1965  */
1966 static daddr_t
1967 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1968 {
1969 	struct swblock **pswap;
1970 	struct swblock *swap;
1971 	daddr_t r1;
1972 	int idx;
1973 
1974 	GIANT_REQUIRED;
1975 	/*
1976 	 * The meta data only exists of the object is OBJT_SWAP
1977 	 * and even then might not be allocated yet.
1978 	 */
1979 	if (object->type != OBJT_SWAP)
1980 		return (SWAPBLK_NONE);
1981 
1982 	r1 = SWAPBLK_NONE;
1983 	pswap = swp_pager_hash(object, pindex);
1984 
1985 	if ((swap = *pswap) != NULL) {
1986 		idx = pindex & SWAP_META_MASK;
1987 		r1 = swap->swb_pages[idx];
1988 
1989 		if (r1 != SWAPBLK_NONE) {
1990 			if (flags & SWM_FREE) {
1991 				swp_pager_freeswapspace(r1, 1);
1992 				r1 = SWAPBLK_NONE;
1993 			}
1994 			if (flags & (SWM_FREE|SWM_POP)) {
1995 				swap->swb_pages[idx] = SWAPBLK_NONE;
1996 				if (--swap->swb_count == 0) {
1997 					*pswap = swap->swb_hnext;
1998 					uma_zfree(swap_zone, swap);
1999 					--object->un_pager.swp.swp_bcount;
2000 				}
2001 			}
2002 		}
2003 	}
2004 	return (r1);
2005 }
2006 
2007 /*
2008  * System call swapon(name) enables swapping on device name,
2009  * which must be in the swdevsw.  Return EBUSY
2010  * if already swapping on this device.
2011  */
2012 #ifndef _SYS_SYSPROTO_H_
2013 struct swapon_args {
2014 	char *name;
2015 };
2016 #endif
2017 
2018 /*
2019  * MPSAFE
2020  */
2021 /* ARGSUSED */
2022 int
2023 swapon(struct thread *td, struct swapon_args *uap)
2024 {
2025 	struct vattr attr;
2026 	struct vnode *vp;
2027 	struct nameidata nd;
2028 	int error;
2029 
2030 	mtx_lock(&Giant);
2031 	error = suser(td);
2032 	if (error)
2033 		goto done2;
2034 
2035 	while (swdev_syscall_active)
2036 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2037 	swdev_syscall_active = 1;
2038 
2039 	/*
2040 	 * Swap metadata may not fit in the KVM if we have physical
2041 	 * memory of >1GB.
2042 	 */
2043 	if (swap_zone == NULL) {
2044 		error = ENOMEM;
2045 		goto done;
2046 	}
2047 
2048 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2049 	error = namei(&nd);
2050 	if (error)
2051 		goto done;
2052 
2053 	NDFREE(&nd, NDF_ONLY_PNBUF);
2054 	vp = nd.ni_vp;
2055 
2056 	if (vn_isdisk(vp, &error)) {
2057 		error = swapongeom(td, vp);
2058 	} else if (vp->v_type == VREG &&
2059 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2060 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
2061 		/*
2062 		 * Allow direct swapping to NFS regular files in the same
2063 		 * way that nfs_mountroot() sets up diskless swapping.
2064 		 */
2065 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2066 	}
2067 
2068 	if (error)
2069 		vrele(vp);
2070 done:
2071 	swdev_syscall_active = 0;
2072 	wakeup_one(&swdev_syscall_active);
2073 done2:
2074 	mtx_unlock(&Giant);
2075 	return (error);
2076 }
2077 
2078 static void
2079 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, udev_t udev)
2080 {
2081 	struct swdevt *sp;
2082 	swblk_t dvbase;
2083 	u_long mblocks;
2084 
2085 	dvbase = 0;
2086 	mtx_lock(&sw_dev_mtx);
2087 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2088 		if (sp->sw_end >= dvbase) {
2089 			/*
2090 			 * We put one uncovered page between the devices
2091 			 * in order to definitively prevent any cross-device
2092 			 * I/O requests
2093 			 */
2094 			dvbase = sp->sw_end + 1;
2095 		}
2096 	}
2097 	mtx_unlock(&sw_dev_mtx);
2098 
2099 	/*
2100 	 * If we go beyond this, we get overflows in the radix
2101 	 * tree bitmap code.
2102 	 */
2103 	mblocks = 0x40000000 / BLIST_META_RADIX;
2104 	if (nblks > mblocks) {
2105 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2106 			mblocks);
2107 		nblks = mblocks;
2108 	}
2109 	/*
2110 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2111 	 * First chop nblks off to page-align it, then convert.
2112 	 *
2113 	 * sw->sw_nblks is in page-sized chunks now too.
2114 	 */
2115 	nblks &= ~(ctodb(1) - 1);
2116 	nblks = dbtoc(nblks);
2117 
2118 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2119 	sp->sw_vp = vp;
2120 	sp->sw_id = id;
2121 	sp->sw_udev = udev;
2122 	sp->sw_flags = 0;
2123 	sp->sw_nblks = nblks;
2124 	sp->sw_used = 0;
2125 	sp->sw_first = dvbase;
2126 	sp->sw_end = dvbase + nblks;
2127 	sp->sw_strategy = strategy;
2128 	sp->sw_close = close;
2129 
2130 	sp->sw_blist = blist_create(nblks);
2131 	/*
2132 	 * Do not free the first two block in order to avoid overwriting
2133 	 * any bsd label at the front of the partition
2134 	 */
2135 	blist_free(sp->sw_blist, 2, nblks - 2);
2136 
2137 	mtx_lock(&sw_dev_mtx);
2138 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2139 	mtx_unlock(&sw_dev_mtx);
2140 	nswapdev++;
2141 	swap_pager_avail += nblks;
2142 	swap_pager_full = 0;
2143 }
2144 
2145 /*
2146  * SYSCALL: swapoff(devname)
2147  *
2148  * Disable swapping on the given device.
2149  *
2150  * XXX: Badly designed system call: it should use a device index
2151  * rather than filename as specification.  We keep sw_vp around
2152  * only to make this work.
2153  */
2154 #ifndef _SYS_SYSPROTO_H_
2155 struct swapoff_args {
2156 	char *name;
2157 };
2158 #endif
2159 
2160 /*
2161  * MPSAFE
2162  */
2163 /* ARGSUSED */
2164 int
2165 swapoff(struct thread *td, struct swapoff_args *uap)
2166 {
2167 	struct vnode *vp;
2168 	struct nameidata nd;
2169 	struct swdevt *sp;
2170 	u_long nblks, dvbase;
2171 	int error;
2172 
2173 	mtx_lock(&Giant);
2174 
2175 	error = suser(td);
2176 	if (error)
2177 		goto done2;
2178 
2179 	while (swdev_syscall_active)
2180 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2181 	swdev_syscall_active = 1;
2182 
2183 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2184 	error = namei(&nd);
2185 	if (error)
2186 		goto done;
2187 	NDFREE(&nd, NDF_ONLY_PNBUF);
2188 	vp = nd.ni_vp;
2189 
2190 	mtx_lock(&sw_dev_mtx);
2191 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2192 		if (sp->sw_vp == vp)
2193 			goto found;
2194 	}
2195 	mtx_unlock(&sw_dev_mtx);
2196 	error = EINVAL;
2197 	goto done;
2198 found:
2199 	mtx_unlock(&sw_dev_mtx);
2200 #ifdef MAC
2201 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2202 	error = mac_check_system_swapoff(td->td_ucred, vp);
2203 	(void) VOP_UNLOCK(vp, 0, td);
2204 	if (error != 0)
2205 		goto done;
2206 #endif
2207 
2208 	nblks = sp->sw_nblks;
2209 
2210 	/*
2211 	 * We can turn off this swap device safely only if the
2212 	 * available virtual memory in the system will fit the amount
2213 	 * of data we will have to page back in, plus an epsilon so
2214 	 * the system doesn't become critically low on swap space.
2215 	 */
2216 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2217 	    nblks + nswap_lowat) {
2218 		error = ENOMEM;
2219 		goto done;
2220 	}
2221 
2222 	/*
2223 	 * Prevent further allocations on this device.
2224 	 */
2225 	sp->sw_flags |= SW_CLOSING;
2226 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2227 		swap_pager_avail -= blist_fill(sp->sw_blist,
2228 		     dvbase, dmmax);
2229 	}
2230 
2231 	/*
2232 	 * Page in the contents of the device and close it.
2233 	 */
2234 #ifndef NO_SWAPPING
2235        	vm_proc_swapin_all(sp);
2236 #endif /* !NO_SWAPPING */
2237 	swap_pager_swapoff(sp, &sp->sw_used);
2238 
2239 	sp->sw_close(td, sp);
2240 	sp->sw_id = NULL;
2241 	mtx_lock(&sw_dev_mtx);
2242 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2243 	mtx_unlock(&sw_dev_mtx);
2244 	if (swdevhd == sp)
2245 		swdevhd = NULL;
2246 	nswapdev--;
2247 	blist_destroy(sp->sw_blist);
2248 	free(sp, M_VMPGDATA);
2249 
2250 done:
2251 	swdev_syscall_active = 0;
2252 	wakeup_one(&swdev_syscall_active);
2253 done2:
2254 	mtx_unlock(&Giant);
2255 	return (error);
2256 }
2257 
2258 void
2259 swap_pager_status(int *total, int *used)
2260 {
2261 	struct swdevt *sp;
2262 
2263 	*total = 0;
2264 	*used = 0;
2265 	mtx_lock(&sw_dev_mtx);
2266 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2267 		*total += sp->sw_nblks;
2268 		*used += sp->sw_used;
2269 	}
2270 	mtx_unlock(&sw_dev_mtx);
2271 }
2272 
2273 static int
2274 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2275 {
2276 	int	*name = (int *)arg1;
2277 	int	error, n;
2278 	struct xswdev xs;
2279 	struct swdevt *sp;
2280 
2281 	if (arg2 != 1) /* name length */
2282 		return (EINVAL);
2283 
2284 	n = 0;
2285 	mtx_lock(&sw_dev_mtx);
2286 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2287 		if (n == *name) {
2288 			mtx_unlock(&sw_dev_mtx);
2289 			xs.xsw_version = XSWDEV_VERSION;
2290 			xs.xsw_dev = sp->sw_udev;
2291 			xs.xsw_flags = sp->sw_flags;
2292 			xs.xsw_nblks = sp->sw_nblks;
2293 			xs.xsw_used = sp->sw_used;
2294 
2295 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2296 			return (error);
2297 		}
2298 		n++;
2299 	}
2300 	mtx_unlock(&sw_dev_mtx);
2301 	return (ENOENT);
2302 }
2303 
2304 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2305     "Number of swap devices");
2306 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2307     "Swap statistics by device");
2308 
2309 /*
2310  * vmspace_swap_count() - count the approximate swap useage in pages for a
2311  *			  vmspace.
2312  *
2313  *	The map must be locked.
2314  *
2315  *	Swap useage is determined by taking the proportional swap used by
2316  *	VM objects backing the VM map.  To make up for fractional losses,
2317  *	if the VM object has any swap use at all the associated map entries
2318  *	count for at least 1 swap page.
2319  */
2320 int
2321 vmspace_swap_count(struct vmspace *vmspace)
2322 {
2323 	vm_map_t map = &vmspace->vm_map;
2324 	vm_map_entry_t cur;
2325 	int count = 0;
2326 
2327 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2328 		vm_object_t object;
2329 
2330 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2331 		    (object = cur->object.vm_object) != NULL) {
2332 			VM_OBJECT_LOCK(object);
2333 			if (object->type == OBJT_SWAP &&
2334 			    object->un_pager.swp.swp_bcount != 0) {
2335 				int n = (cur->end - cur->start) / PAGE_SIZE;
2336 
2337 				count += object->un_pager.swp.swp_bcount *
2338 				    SWAP_META_PAGES * n / object->size + 1;
2339 			}
2340 			VM_OBJECT_UNLOCK(object);
2341 		}
2342 	}
2343 	return (count);
2344 }
2345 
2346 /*
2347  * GEOM backend
2348  *
2349  * Swapping onto disk devices.
2350  *
2351  */
2352 
2353 static struct g_class g_swap_class = {
2354 	.name = "SWAP",
2355 };
2356 
2357 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2358 
2359 
2360 static void
2361 swapgeom_done(struct bio *bp2)
2362 {
2363 	struct buf *bp;
2364 
2365 	bp = bp2->bio_caller2;
2366 	if (bp2->bio_error)
2367 		bp->b_ioflags |= BIO_ERROR;
2368 	mtx_lock(&Giant);
2369 	bufdone(bp);
2370 	mtx_unlock(&Giant);
2371 	g_destroy_bio(bp2);
2372 }
2373 
2374 static void
2375 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2376 {
2377 	struct bio *bio;
2378 	struct g_consumer *cp;
2379 
2380 	cp = sp->sw_id;
2381 	if (cp == NULL) {
2382 		bp->b_error = ENXIO;
2383 		bp->b_ioflags |= BIO_ERROR;
2384 		bufdone(bp);
2385 		return;
2386 	}
2387 	bio = g_clone_bio(&bp->b_io);
2388 	bio->bio_caller2 = bp;
2389 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2390 	bio->bio_length = bp->b_bcount;
2391 	bio->bio_done = swapgeom_done;
2392 	g_io_request(bio, cp);
2393 	return;
2394 }
2395 
2396 static void
2397 swapgeom_orphan(struct g_consumer *cp)
2398 {
2399 	struct swdevt *sp;
2400 
2401 	mtx_lock(&sw_dev_mtx);
2402 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2403 		if (sp->sw_id == cp)
2404 			sp->sw_id = NULL;
2405 	mtx_unlock(&sw_dev_mtx);
2406 }
2407 
2408 static void
2409 swapgeom_close_ev(void *arg, int flags)
2410 {
2411 	struct g_consumer *cp;
2412 
2413 	cp = arg;
2414 	g_access_rel(cp, -1, -1, 0);
2415 	g_detach(cp);
2416 	g_destroy_consumer(cp);
2417 }
2418 
2419 static void
2420 swapgeom_close(struct thread *td, struct swdevt *sw)
2421 {
2422 
2423 	/* XXX: direct call when Giant untangled */
2424 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2425 }
2426 
2427 
2428 struct swh0h0 {
2429 	dev_t	dev;
2430 	struct vnode *vp;
2431 	int	error;
2432 };
2433 
2434 static void
2435 swapongeom_ev(void *arg, int flags)
2436 {
2437 	struct swh0h0 *swh;
2438 	struct g_provider *pp;
2439 	struct g_consumer *cp;
2440 	static struct g_geom *gp;
2441 	struct swdevt *sp;
2442 	u_long nblks;
2443 	int error;
2444 
2445 	swh = arg;
2446 	swh->error = 0;
2447 	pp = g_dev_getprovider(swh->dev);
2448 	if (pp == NULL) {
2449 		swh->error = ENODEV;
2450 		return;
2451 	}
2452 	mtx_lock(&sw_dev_mtx);
2453 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2454 		cp = sp->sw_id;
2455 		if (cp != NULL && cp->provider == pp) {
2456 			mtx_unlock(&sw_dev_mtx);
2457 			swh->error = EBUSY;
2458 			return;
2459 		}
2460 	}
2461 	mtx_unlock(&sw_dev_mtx);
2462 	if (gp == NULL) {
2463 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2464 		gp->orphan = swapgeom_orphan;
2465 	}
2466 	cp = g_new_consumer(gp);
2467 	g_attach(cp, pp);
2468 	/*
2469 	 * XXX: Everytime you think you can improve the margin for
2470 	 * footshooting, somebody depends on the ability to do so:
2471 	 * savecore(8) wants to write to our swapdev so we cannot
2472 	 * set an exclusive count :-(
2473 	 */
2474 	error = g_access_rel(cp, 1, 1, 0);
2475 	if (error) {
2476 		g_detach(cp);
2477 		g_destroy_consumer(cp);
2478 		swh->error = error;
2479 		return;
2480 	}
2481 	nblks = pp->mediasize / DEV_BSIZE;
2482 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2483 	    swapgeom_close, dev2udev(swh->dev));
2484 	swh->error = 0;
2485 	return;
2486 }
2487 
2488 static int
2489 swapongeom(struct thread *td, struct vnode *vp)
2490 {
2491 	int error;
2492 	struct swh0h0 swh;
2493 
2494 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2495 
2496 	swh.dev = vp->v_rdev;
2497 	swh.vp = vp;
2498 	swh.error = 0;
2499 	/* XXX: direct call when Giant untangled */
2500 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2501 	if (!error)
2502 		error = swh.error;
2503 	VOP_UNLOCK(vp, 0, td);
2504 	return (error);
2505 }
2506 
2507 /*
2508  * VNODE backend
2509  *
2510  * This is used mainly for network filesystem (read: probably only tested
2511  * with NFS) swapfiles.
2512  *
2513  */
2514 
2515 static void
2516 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2517 {
2518 	int s;
2519 	struct vnode *vp, *vp2;
2520 
2521 	bp->b_dev = NODEV;
2522 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2523 
2524 	vp2 = sp->sw_id;
2525 	vhold(vp2);
2526 	s = splvm();
2527 	if (bp->b_iocmd == BIO_WRITE) {
2528 		vp = bp->b_vp;
2529 		if (vp) {
2530 			VI_LOCK(vp);
2531 			vp->v_numoutput--;
2532 			if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) {
2533 				vp->v_iflag &= ~VI_BWAIT;
2534 				wakeup(&vp->v_numoutput);
2535 			}
2536 			VI_UNLOCK(vp);
2537 		}
2538 		VI_LOCK(vp2);
2539 		vp2->v_numoutput++;
2540 		VI_UNLOCK(vp2);
2541 	}
2542 	bp->b_vp = vp2;
2543 	splx(s);
2544 	VOP_STRATEGY(vp2, bp);
2545 	return;
2546 }
2547 
2548 static void
2549 swapdev_close(struct thread *td, struct swdevt *sp)
2550 {
2551 
2552 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2553 	vrele(sp->sw_vp);
2554 }
2555 
2556 
2557 static int
2558 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2559 {
2560 	struct swdevt *sp;
2561 	int error;
2562 
2563 	if (nblks == 0)
2564 		return (ENXIO);
2565 	mtx_lock(&sw_dev_mtx);
2566 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2567 		if (sp->sw_id == vp) {
2568 			mtx_unlock(&sw_dev_mtx);
2569 			return (EBUSY);
2570 		}
2571 	}
2572 	mtx_unlock(&sw_dev_mtx);
2573 
2574 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2575 #ifdef MAC
2576 	error = mac_check_system_swapon(td->td_ucred, vp);
2577 	if (error == 0)
2578 #endif
2579 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2580 	(void) VOP_UNLOCK(vp, 0, td);
2581 	if (error)
2582 		return (error);
2583 
2584 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2585 	    NOUDEV);
2586 	return (0);
2587 }
2588