1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_mac.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/mac.h> 89 #include <sys/malloc.h> 90 #include <sys/sysctl.h> 91 #include <sys/sysproto.h> 92 #include <sys/blist.h> 93 #include <sys/lock.h> 94 #include <sys/sx.h> 95 #include <sys/vmmeter.h> 96 97 #include <vm/vm.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_kern.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pager.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_param.h> 106 #include <vm/swap_pager.h> 107 #include <vm/vm_extern.h> 108 #include <vm/uma.h> 109 110 #include <geom/geom.h> 111 112 /* 113 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 114 * pages per allocation. We recommend you stick with the default of 8. 115 * The 16-page limit is due to the radix code (kern/subr_blist.c). 116 */ 117 #ifndef MAX_PAGEOUT_CLUSTER 118 #define MAX_PAGEOUT_CLUSTER 16 119 #endif 120 121 #if !defined(SWB_NPAGES) 122 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 123 #endif 124 125 /* 126 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 127 * 128 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 129 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 130 * 32K worth of data, two levels represent 256K, three levels represent 131 * 2 MBytes. This is acceptable. 132 * 133 * Overall memory utilization is about the same as the old swap structure. 134 */ 135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 136 #define SWAP_META_PAGES (SWB_NPAGES * 2) 137 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 138 139 typedef int32_t swblk_t; /* 140 * swap offset. This is the type used to 141 * address the "virtual swap device" and 142 * therefore the maximum swap space is 143 * 2^32 pages. 144 */ 145 146 struct swdevt; 147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw); 148 typedef void sw_close_t(struct thread *td, struct swdevt *sw); 149 150 /* 151 * Swap device table 152 */ 153 struct swdevt { 154 int sw_flags; 155 int sw_nblks; 156 int sw_used; 157 udev_t sw_udev; 158 struct vnode *sw_vp; 159 void *sw_id; 160 swblk_t sw_first; 161 swblk_t sw_end; 162 struct blist *sw_blist; 163 TAILQ_ENTRY(swdevt) sw_list; 164 sw_strategy_t *sw_strategy; 165 sw_close_t *sw_close; 166 }; 167 168 #define SW_CLOSING 0x04 169 170 struct swblock { 171 struct swblock *swb_hnext; 172 vm_object_t swb_object; 173 vm_pindex_t swb_index; 174 int swb_count; 175 daddr_t swb_pages[SWAP_META_PAGES]; 176 }; 177 178 static struct mtx sw_dev_mtx; 179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 180 static struct swdevt *swdevhd; /* Allocate from here next */ 181 static int nswapdev; /* Number of swap devices */ 182 int swap_pager_avail; 183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 184 185 static void swapdev_strategy(struct buf *, struct swdevt *sw); 186 187 #define SWM_FREE 0x02 /* free, period */ 188 #define SWM_POP 0x04 /* pop out */ 189 190 int swap_pager_full; /* swap space exhaustion (task killing) */ 191 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 192 static int nsw_rcount; /* free read buffers */ 193 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 194 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 195 static int nsw_wcount_async_max;/* assigned maximum */ 196 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 197 198 static struct swblock **swhash; 199 static int swhash_mask; 200 static struct mtx swhash_mtx; 201 202 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 203 static struct sx sw_alloc_sx; 204 205 206 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 207 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 208 209 /* 210 * "named" and "unnamed" anon region objects. Try to reduce the overhead 211 * of searching a named list by hashing it just a little. 212 */ 213 214 #define NOBJLISTS 8 215 216 #define NOBJLIST(handle) \ 217 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 218 219 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 220 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 221 static uma_zone_t swap_zone; 222 223 /* 224 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 225 * calls hooked from other parts of the VM system and do not appear here. 226 * (see vm/swap_pager.h). 227 */ 228 static vm_object_t 229 swap_pager_alloc(void *handle, vm_ooffset_t size, 230 vm_prot_t prot, vm_ooffset_t offset); 231 static void swap_pager_dealloc(vm_object_t object); 232 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 233 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 234 static boolean_t 235 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 236 static void swap_pager_init(void); 237 static void swap_pager_unswapped(vm_page_t); 238 static void swap_pager_swapoff(struct swdevt *sp, int *sw_used); 239 240 struct pagerops swappagerops = { 241 .pgo_init = swap_pager_init, /* early system initialization of pager */ 242 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 243 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 244 .pgo_getpages = swap_pager_getpages, /* pagein */ 245 .pgo_putpages = swap_pager_putpages, /* pageout */ 246 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 247 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 248 }; 249 250 /* 251 * dmmax is in page-sized chunks with the new swap system. It was 252 * dev-bsized chunks in the old. dmmax is always a power of 2. 253 * 254 * swap_*() routines are externally accessible. swp_*() routines are 255 * internal. 256 */ 257 static int dmmax; 258 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 259 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 260 261 SYSCTL_INT(_vm, OID_AUTO, dmmax, 262 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 263 264 static void swp_sizecheck(void); 265 static void swp_pager_sync_iodone(struct buf *bp); 266 static void swp_pager_async_iodone(struct buf *bp); 267 static int swapongeom(struct thread *, struct vnode *); 268 static int swaponvp(struct thread *, struct vnode *, u_long); 269 270 /* 271 * Swap bitmap functions 272 */ 273 static void swp_pager_freeswapspace(daddr_t blk, int npages); 274 static daddr_t swp_pager_getswapspace(int npages); 275 276 /* 277 * Metadata functions 278 */ 279 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 280 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 281 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 282 static void swp_pager_meta_free_all(vm_object_t); 283 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 284 285 /* 286 * SWP_SIZECHECK() - update swap_pager_full indication 287 * 288 * update the swap_pager_almost_full indication and warn when we are 289 * about to run out of swap space, using lowat/hiwat hysteresis. 290 * 291 * Clear swap_pager_full ( task killing ) indication when lowat is met. 292 * 293 * No restrictions on call 294 * This routine may not block. 295 * This routine must be called at splvm() 296 */ 297 static void 298 swp_sizecheck(void) 299 { 300 301 if (swap_pager_avail < nswap_lowat) { 302 if (swap_pager_almost_full == 0) { 303 printf("swap_pager: out of swap space\n"); 304 swap_pager_almost_full = 1; 305 } 306 } else { 307 swap_pager_full = 0; 308 if (swap_pager_avail > nswap_hiwat) 309 swap_pager_almost_full = 0; 310 } 311 } 312 313 /* 314 * SWP_PAGER_HASH() - hash swap meta data 315 * 316 * This is an helper function which hashes the swapblk given 317 * the object and page index. It returns a pointer to a pointer 318 * to the object, or a pointer to a NULL pointer if it could not 319 * find a swapblk. 320 * 321 * This routine must be called at splvm(). 322 */ 323 static struct swblock ** 324 swp_pager_hash(vm_object_t object, vm_pindex_t index) 325 { 326 struct swblock **pswap; 327 struct swblock *swap; 328 329 index &= ~(vm_pindex_t)SWAP_META_MASK; 330 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 331 while ((swap = *pswap) != NULL) { 332 if (swap->swb_object == object && 333 swap->swb_index == index 334 ) { 335 break; 336 } 337 pswap = &swap->swb_hnext; 338 } 339 return (pswap); 340 } 341 342 /* 343 * SWAP_PAGER_INIT() - initialize the swap pager! 344 * 345 * Expected to be started from system init. NOTE: This code is run 346 * before much else so be careful what you depend on. Most of the VM 347 * system has yet to be initialized at this point. 348 */ 349 static void 350 swap_pager_init(void) 351 { 352 /* 353 * Initialize object lists 354 */ 355 int i; 356 357 for (i = 0; i < NOBJLISTS; ++i) 358 TAILQ_INIT(&swap_pager_object_list[i]); 359 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 360 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 361 362 /* 363 * Device Stripe, in PAGE_SIZE'd blocks 364 */ 365 dmmax = SWB_NPAGES * 2; 366 } 367 368 /* 369 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 370 * 371 * Expected to be started from pageout process once, prior to entering 372 * its main loop. 373 */ 374 void 375 swap_pager_swap_init(void) 376 { 377 int n, n2; 378 379 /* 380 * Number of in-transit swap bp operations. Don't 381 * exhaust the pbufs completely. Make sure we 382 * initialize workable values (0 will work for hysteresis 383 * but it isn't very efficient). 384 * 385 * The nsw_cluster_max is constrained by the bp->b_pages[] 386 * array (MAXPHYS/PAGE_SIZE) and our locally defined 387 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 388 * constrained by the swap device interleave stripe size. 389 * 390 * Currently we hardwire nsw_wcount_async to 4. This limit is 391 * designed to prevent other I/O from having high latencies due to 392 * our pageout I/O. The value 4 works well for one or two active swap 393 * devices but is probably a little low if you have more. Even so, 394 * a higher value would probably generate only a limited improvement 395 * with three or four active swap devices since the system does not 396 * typically have to pageout at extreme bandwidths. We will want 397 * at least 2 per swap devices, and 4 is a pretty good value if you 398 * have one NFS swap device due to the command/ack latency over NFS. 399 * So it all works out pretty well. 400 */ 401 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 402 403 mtx_lock(&pbuf_mtx); 404 nsw_rcount = (nswbuf + 1) / 2; 405 nsw_wcount_sync = (nswbuf + 3) / 4; 406 nsw_wcount_async = 4; 407 nsw_wcount_async_max = nsw_wcount_async; 408 mtx_unlock(&pbuf_mtx); 409 410 /* 411 * Initialize our zone. Right now I'm just guessing on the number 412 * we need based on the number of pages in the system. Each swblock 413 * can hold 16 pages, so this is probably overkill. This reservation 414 * is typically limited to around 32MB by default. 415 */ 416 n = cnt.v_page_count / 2; 417 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 418 n = maxswzone / sizeof(struct swblock); 419 n2 = n; 420 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 421 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 422 do { 423 if (uma_zone_set_obj(swap_zone, NULL, n)) 424 break; 425 /* 426 * if the allocation failed, try a zone two thirds the 427 * size of the previous attempt. 428 */ 429 n -= ((n + 2) / 3); 430 } while (n > 0); 431 if (swap_zone == NULL) 432 panic("failed to create swap_zone."); 433 if (n2 != n) 434 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 435 n2 = n; 436 437 /* 438 * Initialize our meta-data hash table. The swapper does not need to 439 * be quite as efficient as the VM system, so we do not use an 440 * oversized hash table. 441 * 442 * n: size of hash table, must be power of 2 443 * swhash_mask: hash table index mask 444 */ 445 for (n = 1; n < n2 / 8; n *= 2) 446 ; 447 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 448 swhash_mask = n - 1; 449 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 450 } 451 452 /* 453 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 454 * its metadata structures. 455 * 456 * This routine is called from the mmap and fork code to create a new 457 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 458 * and then converting it with swp_pager_meta_build(). 459 * 460 * This routine may block in vm_object_allocate() and create a named 461 * object lookup race, so we must interlock. We must also run at 462 * splvm() for the object lookup to handle races with interrupts, but 463 * we do not have to maintain splvm() in between the lookup and the 464 * add because (I believe) it is not possible to attempt to create 465 * a new swap object w/handle when a default object with that handle 466 * already exists. 467 * 468 * MPSAFE 469 */ 470 static vm_object_t 471 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 472 vm_ooffset_t offset) 473 { 474 vm_object_t object; 475 476 mtx_lock(&Giant); 477 if (handle) { 478 /* 479 * Reference existing named region or allocate new one. There 480 * should not be a race here against swp_pager_meta_build() 481 * as called from vm_page_remove() in regards to the lookup 482 * of the handle. 483 */ 484 sx_xlock(&sw_alloc_sx); 485 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 486 487 if (object != NULL) { 488 vm_object_reference(object); 489 } else { 490 object = vm_object_allocate(OBJT_DEFAULT, 491 OFF_TO_IDX(offset + PAGE_MASK + size)); 492 object->handle = handle; 493 494 VM_OBJECT_LOCK(object); 495 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 496 VM_OBJECT_UNLOCK(object); 497 } 498 sx_xunlock(&sw_alloc_sx); 499 } else { 500 object = vm_object_allocate(OBJT_DEFAULT, 501 OFF_TO_IDX(offset + PAGE_MASK + size)); 502 503 VM_OBJECT_LOCK(object); 504 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 505 VM_OBJECT_UNLOCK(object); 506 } 507 mtx_unlock(&Giant); 508 return (object); 509 } 510 511 /* 512 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 513 * 514 * The swap backing for the object is destroyed. The code is 515 * designed such that we can reinstantiate it later, but this 516 * routine is typically called only when the entire object is 517 * about to be destroyed. 518 * 519 * This routine may block, but no longer does. 520 * 521 * The object must be locked or unreferenceable. 522 */ 523 static void 524 swap_pager_dealloc(vm_object_t object) 525 { 526 int s; 527 528 /* 529 * Remove from list right away so lookups will fail if we block for 530 * pageout completion. 531 */ 532 if (object->handle != NULL) { 533 mtx_lock(&sw_alloc_mtx); 534 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 535 mtx_unlock(&sw_alloc_mtx); 536 } 537 538 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 539 vm_object_pip_wait(object, "swpdea"); 540 541 /* 542 * Free all remaining metadata. We only bother to free it from 543 * the swap meta data. We do not attempt to free swapblk's still 544 * associated with vm_page_t's for this object. We do not care 545 * if paging is still in progress on some objects. 546 */ 547 s = splvm(); 548 swp_pager_meta_free_all(object); 549 splx(s); 550 } 551 552 /************************************************************************ 553 * SWAP PAGER BITMAP ROUTINES * 554 ************************************************************************/ 555 556 /* 557 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 558 * 559 * Allocate swap for the requested number of pages. The starting 560 * swap block number (a page index) is returned or SWAPBLK_NONE 561 * if the allocation failed. 562 * 563 * Also has the side effect of advising that somebody made a mistake 564 * when they configured swap and didn't configure enough. 565 * 566 * Must be called at splvm() to avoid races with bitmap frees from 567 * vm_page_remove() aka swap_pager_page_removed(). 568 * 569 * This routine may not block 570 * This routine must be called at splvm(). 571 * 572 * We allocate in round-robin fashion from the configured devices. 573 */ 574 static daddr_t 575 swp_pager_getswapspace(int npages) 576 { 577 daddr_t blk; 578 struct swdevt *sp; 579 int i; 580 581 blk = SWAPBLK_NONE; 582 mtx_lock(&sw_dev_mtx); 583 sp = swdevhd; 584 for (i = 0; i < nswapdev; i++) { 585 if (sp == NULL) 586 sp = TAILQ_FIRST(&swtailq); 587 if (!(sp->sw_flags & SW_CLOSING)) { 588 blk = blist_alloc(sp->sw_blist, npages); 589 if (blk != SWAPBLK_NONE) { 590 blk += sp->sw_first; 591 sp->sw_used += npages; 592 swap_pager_avail -= npages; 593 swp_sizecheck(); 594 swdevhd = TAILQ_NEXT(sp, sw_list); 595 goto done; 596 } 597 } 598 sp = TAILQ_NEXT(sp, sw_list); 599 } 600 if (swap_pager_full != 2) { 601 printf("swap_pager_getswapspace(%d): failed\n", npages); 602 swap_pager_full = 2; 603 swap_pager_almost_full = 1; 604 } 605 swdevhd = NULL; 606 done: 607 mtx_unlock(&sw_dev_mtx); 608 return (blk); 609 } 610 611 static struct swdevt * 612 swp_pager_find_dev(daddr_t blk) 613 { 614 struct swdevt *sp; 615 616 mtx_lock(&sw_dev_mtx); 617 TAILQ_FOREACH(sp, &swtailq, sw_list) { 618 if (blk >= sp->sw_first && blk < sp->sw_end) { 619 mtx_unlock(&sw_dev_mtx); 620 return (sp); 621 } 622 } 623 panic("Swapdev not found"); 624 } 625 626 static void 627 swp_pager_strategy(struct buf *bp) 628 { 629 struct swdevt *sp; 630 631 mtx_lock(&sw_dev_mtx); 632 TAILQ_FOREACH(sp, &swtailq, sw_list) { 633 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 634 mtx_unlock(&sw_dev_mtx); 635 sp->sw_strategy(bp, sp); 636 return; 637 } 638 } 639 panic("Swapdev not found"); 640 } 641 642 643 /* 644 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 645 * 646 * This routine returns the specified swap blocks back to the bitmap. 647 * 648 * Note: This routine may not block (it could in the old swap code), 649 * and through the use of the new blist routines it does not block. 650 * 651 * We must be called at splvm() to avoid races with bitmap frees from 652 * vm_page_remove() aka swap_pager_page_removed(). 653 * 654 * This routine may not block 655 * This routine must be called at splvm(). 656 */ 657 static void 658 swp_pager_freeswapspace(daddr_t blk, int npages) 659 { 660 struct swdevt *sp; 661 662 mtx_lock(&sw_dev_mtx); 663 TAILQ_FOREACH(sp, &swtailq, sw_list) { 664 if (blk >= sp->sw_first && blk < sp->sw_end) { 665 sp->sw_used -= npages; 666 /* 667 * If we are attempting to stop swapping on 668 * this device, we don't want to mark any 669 * blocks free lest they be reused. 670 */ 671 if ((sp->sw_flags & SW_CLOSING) == 0) { 672 blist_free(sp->sw_blist, blk - sp->sw_first, 673 npages); 674 swap_pager_avail += npages; 675 swp_sizecheck(); 676 } 677 mtx_unlock(&sw_dev_mtx); 678 return; 679 } 680 } 681 panic("Swapdev not found"); 682 } 683 684 /* 685 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 686 * range within an object. 687 * 688 * This is a globally accessible routine. 689 * 690 * This routine removes swapblk assignments from swap metadata. 691 * 692 * The external callers of this routine typically have already destroyed 693 * or renamed vm_page_t's associated with this range in the object so 694 * we should be ok. 695 * 696 * This routine may be called at any spl. We up our spl to splvm temporarily 697 * in order to perform the metadata removal. 698 */ 699 void 700 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 701 { 702 int s = splvm(); 703 704 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 705 swp_pager_meta_free(object, start, size); 706 splx(s); 707 } 708 709 /* 710 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 711 * 712 * Assigns swap blocks to the specified range within the object. The 713 * swap blocks are not zerod. Any previous swap assignment is destroyed. 714 * 715 * Returns 0 on success, -1 on failure. 716 */ 717 int 718 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 719 { 720 int s; 721 int n = 0; 722 daddr_t blk = SWAPBLK_NONE; 723 vm_pindex_t beg = start; /* save start index */ 724 725 s = splvm(); 726 VM_OBJECT_LOCK(object); 727 while (size) { 728 if (n == 0) { 729 n = BLIST_MAX_ALLOC; 730 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 731 n >>= 1; 732 if (n == 0) { 733 swp_pager_meta_free(object, beg, start - beg); 734 VM_OBJECT_UNLOCK(object); 735 splx(s); 736 return (-1); 737 } 738 } 739 } 740 swp_pager_meta_build(object, start, blk); 741 --size; 742 ++start; 743 ++blk; 744 --n; 745 } 746 swp_pager_meta_free(object, start, n); 747 VM_OBJECT_UNLOCK(object); 748 splx(s); 749 return (0); 750 } 751 752 /* 753 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 754 * and destroy the source. 755 * 756 * Copy any valid swapblks from the source to the destination. In 757 * cases where both the source and destination have a valid swapblk, 758 * we keep the destination's. 759 * 760 * This routine is allowed to block. It may block allocating metadata 761 * indirectly through swp_pager_meta_build() or if paging is still in 762 * progress on the source. 763 * 764 * This routine can be called at any spl 765 * 766 * XXX vm_page_collapse() kinda expects us not to block because we 767 * supposedly do not need to allocate memory, but for the moment we 768 * *may* have to get a little memory from the zone allocator, but 769 * it is taken from the interrupt memory. We should be ok. 770 * 771 * The source object contains no vm_page_t's (which is just as well) 772 * 773 * The source object is of type OBJT_SWAP. 774 * 775 * The source and destination objects must be locked or 776 * inaccessible (XXX are they ?) 777 */ 778 void 779 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 780 vm_pindex_t offset, int destroysource) 781 { 782 vm_pindex_t i; 783 int s; 784 785 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 786 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 787 788 s = splvm(); 789 /* 790 * If destroysource is set, we remove the source object from the 791 * swap_pager internal queue now. 792 */ 793 if (destroysource) { 794 if (srcobject->handle != NULL) { 795 mtx_lock(&sw_alloc_mtx); 796 TAILQ_REMOVE( 797 NOBJLIST(srcobject->handle), 798 srcobject, 799 pager_object_list 800 ); 801 mtx_unlock(&sw_alloc_mtx); 802 } 803 } 804 805 /* 806 * transfer source to destination. 807 */ 808 for (i = 0; i < dstobject->size; ++i) { 809 daddr_t dstaddr; 810 811 /* 812 * Locate (without changing) the swapblk on the destination, 813 * unless it is invalid in which case free it silently, or 814 * if the destination is a resident page, in which case the 815 * source is thrown away. 816 */ 817 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 818 819 if (dstaddr == SWAPBLK_NONE) { 820 /* 821 * Destination has no swapblk and is not resident, 822 * copy source. 823 */ 824 daddr_t srcaddr; 825 826 srcaddr = swp_pager_meta_ctl( 827 srcobject, 828 i + offset, 829 SWM_POP 830 ); 831 832 if (srcaddr != SWAPBLK_NONE) { 833 /* 834 * swp_pager_meta_build() can sleep. 835 */ 836 vm_object_pip_add(srcobject, 1); 837 VM_OBJECT_UNLOCK(srcobject); 838 vm_object_pip_add(dstobject, 1); 839 swp_pager_meta_build(dstobject, i, srcaddr); 840 vm_object_pip_wakeup(dstobject); 841 VM_OBJECT_LOCK(srcobject); 842 vm_object_pip_wakeup(srcobject); 843 } 844 } else { 845 /* 846 * Destination has valid swapblk or it is represented 847 * by a resident page. We destroy the sourceblock. 848 */ 849 850 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 851 } 852 } 853 854 /* 855 * Free left over swap blocks in source. 856 * 857 * We have to revert the type to OBJT_DEFAULT so we do not accidently 858 * double-remove the object from the swap queues. 859 */ 860 if (destroysource) { 861 swp_pager_meta_free_all(srcobject); 862 /* 863 * Reverting the type is not necessary, the caller is going 864 * to destroy srcobject directly, but I'm doing it here 865 * for consistency since we've removed the object from its 866 * queues. 867 */ 868 srcobject->type = OBJT_DEFAULT; 869 } 870 splx(s); 871 } 872 873 /* 874 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 875 * the requested page. 876 * 877 * We determine whether good backing store exists for the requested 878 * page and return TRUE if it does, FALSE if it doesn't. 879 * 880 * If TRUE, we also try to determine how much valid, contiguous backing 881 * store exists before and after the requested page within a reasonable 882 * distance. We do not try to restrict it to the swap device stripe 883 * (that is handled in getpages/putpages). It probably isn't worth 884 * doing here. 885 */ 886 static boolean_t 887 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 888 { 889 daddr_t blk0; 890 int s; 891 892 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 893 /* 894 * do we have good backing store at the requested index ? 895 */ 896 s = splvm(); 897 blk0 = swp_pager_meta_ctl(object, pindex, 0); 898 899 if (blk0 == SWAPBLK_NONE) { 900 splx(s); 901 if (before) 902 *before = 0; 903 if (after) 904 *after = 0; 905 return (FALSE); 906 } 907 908 /* 909 * find backwards-looking contiguous good backing store 910 */ 911 if (before != NULL) { 912 int i; 913 914 for (i = 1; i < (SWB_NPAGES/2); ++i) { 915 daddr_t blk; 916 917 if (i > pindex) 918 break; 919 blk = swp_pager_meta_ctl(object, pindex - i, 0); 920 if (blk != blk0 - i) 921 break; 922 } 923 *before = (i - 1); 924 } 925 926 /* 927 * find forward-looking contiguous good backing store 928 */ 929 if (after != NULL) { 930 int i; 931 932 for (i = 1; i < (SWB_NPAGES/2); ++i) { 933 daddr_t blk; 934 935 blk = swp_pager_meta_ctl(object, pindex + i, 0); 936 if (blk != blk0 + i) 937 break; 938 } 939 *after = (i - 1); 940 } 941 splx(s); 942 return (TRUE); 943 } 944 945 /* 946 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 947 * 948 * This removes any associated swap backing store, whether valid or 949 * not, from the page. 950 * 951 * This routine is typically called when a page is made dirty, at 952 * which point any associated swap can be freed. MADV_FREE also 953 * calls us in a special-case situation 954 * 955 * NOTE!!! If the page is clean and the swap was valid, the caller 956 * should make the page dirty before calling this routine. This routine 957 * does NOT change the m->dirty status of the page. Also: MADV_FREE 958 * depends on it. 959 * 960 * This routine may not block 961 * This routine must be called at splvm() 962 */ 963 static void 964 swap_pager_unswapped(vm_page_t m) 965 { 966 967 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 968 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 969 } 970 971 /* 972 * SWAP_PAGER_GETPAGES() - bring pages in from swap 973 * 974 * Attempt to retrieve (m, count) pages from backing store, but make 975 * sure we retrieve at least m[reqpage]. We try to load in as large 976 * a chunk surrounding m[reqpage] as is contiguous in swap and which 977 * belongs to the same object. 978 * 979 * The code is designed for asynchronous operation and 980 * immediate-notification of 'reqpage' but tends not to be 981 * used that way. Please do not optimize-out this algorithmic 982 * feature, I intend to improve on it in the future. 983 * 984 * The parent has a single vm_object_pip_add() reference prior to 985 * calling us and we should return with the same. 986 * 987 * The parent has BUSY'd the pages. We should return with 'm' 988 * left busy, but the others adjusted. 989 */ 990 static int 991 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 992 { 993 struct buf *bp; 994 vm_page_t mreq; 995 int s; 996 int i; 997 int j; 998 daddr_t blk; 999 1000 mreq = m[reqpage]; 1001 1002 KASSERT(mreq->object == object, 1003 ("swap_pager_getpages: object mismatch %p/%p", 1004 object, mreq->object)); 1005 1006 /* 1007 * Calculate range to retrieve. The pages have already been assigned 1008 * their swapblks. We require a *contiguous* range but we know it to 1009 * not span devices. If we do not supply it, bad things 1010 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1011 * loops are set up such that the case(s) are handled implicitly. 1012 * 1013 * The swp_*() calls must be made at splvm(). vm_page_free() does 1014 * not need to be, but it will go a little faster if it is. 1015 */ 1016 s = splvm(); 1017 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1018 1019 for (i = reqpage - 1; i >= 0; --i) { 1020 daddr_t iblk; 1021 1022 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1023 if (blk != iblk + (reqpage - i)) 1024 break; 1025 } 1026 ++i; 1027 1028 for (j = reqpage + 1; j < count; ++j) { 1029 daddr_t jblk; 1030 1031 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1032 if (blk != jblk - (j - reqpage)) 1033 break; 1034 } 1035 1036 /* 1037 * free pages outside our collection range. Note: we never free 1038 * mreq, it must remain busy throughout. 1039 */ 1040 vm_page_lock_queues(); 1041 { 1042 int k; 1043 1044 for (k = 0; k < i; ++k) 1045 vm_page_free(m[k]); 1046 for (k = j; k < count; ++k) 1047 vm_page_free(m[k]); 1048 } 1049 vm_page_unlock_queues(); 1050 splx(s); 1051 1052 1053 /* 1054 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1055 * still busy, but the others unbusied. 1056 */ 1057 if (blk == SWAPBLK_NONE) 1058 return (VM_PAGER_FAIL); 1059 1060 /* 1061 * Getpbuf() can sleep. 1062 */ 1063 VM_OBJECT_UNLOCK(object); 1064 /* 1065 * Get a swap buffer header to perform the IO 1066 */ 1067 bp = getpbuf(&nsw_rcount); 1068 bp->b_flags |= B_PAGING; 1069 1070 /* 1071 * map our page(s) into kva for input 1072 */ 1073 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1074 1075 bp->b_iocmd = BIO_READ; 1076 bp->b_iodone = swp_pager_async_iodone; 1077 bp->b_rcred = crhold(thread0.td_ucred); 1078 bp->b_wcred = crhold(thread0.td_ucred); 1079 bp->b_blkno = blk - (reqpage - i); 1080 bp->b_bcount = PAGE_SIZE * (j - i); 1081 bp->b_bufsize = PAGE_SIZE * (j - i); 1082 bp->b_pager.pg_reqpage = reqpage - i; 1083 1084 VM_OBJECT_LOCK(object); 1085 vm_page_lock_queues(); 1086 { 1087 int k; 1088 1089 for (k = i; k < j; ++k) { 1090 bp->b_pages[k - i] = m[k]; 1091 vm_page_flag_set(m[k], PG_SWAPINPROG); 1092 } 1093 } 1094 vm_page_unlock_queues(); 1095 VM_OBJECT_UNLOCK(object); 1096 bp->b_npages = j - i; 1097 1098 cnt.v_swapin++; 1099 cnt.v_swappgsin += bp->b_npages; 1100 1101 /* 1102 * We still hold the lock on mreq, and our automatic completion routine 1103 * does not remove it. 1104 */ 1105 VM_OBJECT_LOCK(mreq->object); 1106 vm_object_pip_add(mreq->object, bp->b_npages); 1107 VM_OBJECT_UNLOCK(mreq->object); 1108 1109 /* 1110 * perform the I/O. NOTE!!! bp cannot be considered valid after 1111 * this point because we automatically release it on completion. 1112 * Instead, we look at the one page we are interested in which we 1113 * still hold a lock on even through the I/O completion. 1114 * 1115 * The other pages in our m[] array are also released on completion, 1116 * so we cannot assume they are valid anymore either. 1117 * 1118 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1119 */ 1120 BUF_KERNPROC(bp); 1121 swp_pager_strategy(bp); 1122 1123 /* 1124 * wait for the page we want to complete. PG_SWAPINPROG is always 1125 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1126 * is set in the meta-data. 1127 */ 1128 s = splvm(); 1129 vm_page_lock_queues(); 1130 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1131 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1132 cnt.v_intrans++; 1133 if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) { 1134 printf( 1135 "swap_pager: indefinite wait buffer: device:" 1136 " %s, blkno: %ld, size: %ld\n", 1137 devtoname(bp->b_dev), (long)bp->b_blkno, 1138 bp->b_bcount 1139 ); 1140 } 1141 } 1142 vm_page_unlock_queues(); 1143 splx(s); 1144 1145 VM_OBJECT_LOCK(mreq->object); 1146 /* 1147 * mreq is left busied after completion, but all the other pages 1148 * are freed. If we had an unrecoverable read error the page will 1149 * not be valid. 1150 */ 1151 if (mreq->valid != VM_PAGE_BITS_ALL) { 1152 return (VM_PAGER_ERROR); 1153 } else { 1154 return (VM_PAGER_OK); 1155 } 1156 1157 /* 1158 * A final note: in a low swap situation, we cannot deallocate swap 1159 * and mark a page dirty here because the caller is likely to mark 1160 * the page clean when we return, causing the page to possibly revert 1161 * to all-zero's later. 1162 */ 1163 } 1164 1165 /* 1166 * swap_pager_putpages: 1167 * 1168 * Assign swap (if necessary) and initiate I/O on the specified pages. 1169 * 1170 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1171 * are automatically converted to SWAP objects. 1172 * 1173 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1174 * vm_page reservation system coupled with properly written VFS devices 1175 * should ensure that no low-memory deadlock occurs. This is an area 1176 * which needs work. 1177 * 1178 * The parent has N vm_object_pip_add() references prior to 1179 * calling us and will remove references for rtvals[] that are 1180 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1181 * completion. 1182 * 1183 * The parent has soft-busy'd the pages it passes us and will unbusy 1184 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1185 * We need to unbusy the rest on I/O completion. 1186 */ 1187 void 1188 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1189 boolean_t sync, int *rtvals) 1190 { 1191 int i; 1192 int n = 0; 1193 1194 GIANT_REQUIRED; 1195 if (count && m[0]->object != object) { 1196 panic("swap_pager_getpages: object mismatch %p/%p", 1197 object, 1198 m[0]->object 1199 ); 1200 } 1201 1202 /* 1203 * Step 1 1204 * 1205 * Turn object into OBJT_SWAP 1206 * check for bogus sysops 1207 * force sync if not pageout process 1208 */ 1209 if (object->type != OBJT_SWAP) 1210 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1211 VM_OBJECT_UNLOCK(object); 1212 1213 if (curproc != pageproc) 1214 sync = TRUE; 1215 1216 /* 1217 * Step 2 1218 * 1219 * Update nsw parameters from swap_async_max sysctl values. 1220 * Do not let the sysop crash the machine with bogus numbers. 1221 */ 1222 mtx_lock(&pbuf_mtx); 1223 if (swap_async_max != nsw_wcount_async_max) { 1224 int n; 1225 int s; 1226 1227 /* 1228 * limit range 1229 */ 1230 if ((n = swap_async_max) > nswbuf / 2) 1231 n = nswbuf / 2; 1232 if (n < 1) 1233 n = 1; 1234 swap_async_max = n; 1235 1236 /* 1237 * Adjust difference ( if possible ). If the current async 1238 * count is too low, we may not be able to make the adjustment 1239 * at this time. 1240 */ 1241 s = splvm(); 1242 n -= nsw_wcount_async_max; 1243 if (nsw_wcount_async + n >= 0) { 1244 nsw_wcount_async += n; 1245 nsw_wcount_async_max += n; 1246 wakeup(&nsw_wcount_async); 1247 } 1248 splx(s); 1249 } 1250 mtx_unlock(&pbuf_mtx); 1251 1252 /* 1253 * Step 3 1254 * 1255 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1256 * The page is left dirty until the pageout operation completes 1257 * successfully. 1258 */ 1259 for (i = 0; i < count; i += n) { 1260 int s; 1261 int j; 1262 struct buf *bp; 1263 daddr_t blk; 1264 1265 /* 1266 * Maximum I/O size is limited by a number of factors. 1267 */ 1268 n = min(BLIST_MAX_ALLOC, count - i); 1269 n = min(n, nsw_cluster_max); 1270 1271 s = splvm(); 1272 1273 /* 1274 * Get biggest block of swap we can. If we fail, fall 1275 * back and try to allocate a smaller block. Don't go 1276 * overboard trying to allocate space if it would overly 1277 * fragment swap. 1278 */ 1279 while ( 1280 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1281 n > 4 1282 ) { 1283 n >>= 1; 1284 } 1285 if (blk == SWAPBLK_NONE) { 1286 for (j = 0; j < n; ++j) 1287 rtvals[i+j] = VM_PAGER_FAIL; 1288 splx(s); 1289 continue; 1290 } 1291 1292 /* 1293 * All I/O parameters have been satisfied, build the I/O 1294 * request and assign the swap space. 1295 */ 1296 if (sync == TRUE) { 1297 bp = getpbuf(&nsw_wcount_sync); 1298 } else { 1299 bp = getpbuf(&nsw_wcount_async); 1300 bp->b_flags = B_ASYNC; 1301 } 1302 bp->b_flags |= B_PAGING; 1303 bp->b_iocmd = BIO_WRITE; 1304 1305 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1306 1307 bp->b_rcred = crhold(thread0.td_ucred); 1308 bp->b_wcred = crhold(thread0.td_ucred); 1309 bp->b_bcount = PAGE_SIZE * n; 1310 bp->b_bufsize = PAGE_SIZE * n; 1311 bp->b_blkno = blk; 1312 1313 VM_OBJECT_LOCK(object); 1314 for (j = 0; j < n; ++j) { 1315 vm_page_t mreq = m[i+j]; 1316 1317 swp_pager_meta_build( 1318 mreq->object, 1319 mreq->pindex, 1320 blk + j 1321 ); 1322 vm_page_dirty(mreq); 1323 rtvals[i+j] = VM_PAGER_OK; 1324 1325 vm_page_lock_queues(); 1326 vm_page_flag_set(mreq, PG_SWAPINPROG); 1327 vm_page_unlock_queues(); 1328 bp->b_pages[j] = mreq; 1329 } 1330 VM_OBJECT_UNLOCK(object); 1331 bp->b_npages = n; 1332 /* 1333 * Must set dirty range for NFS to work. 1334 */ 1335 bp->b_dirtyoff = 0; 1336 bp->b_dirtyend = bp->b_bcount; 1337 1338 cnt.v_swapout++; 1339 cnt.v_swappgsout += bp->b_npages; 1340 1341 splx(s); 1342 1343 /* 1344 * asynchronous 1345 * 1346 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1347 */ 1348 if (sync == FALSE) { 1349 bp->b_iodone = swp_pager_async_iodone; 1350 BUF_KERNPROC(bp); 1351 swp_pager_strategy(bp); 1352 1353 for (j = 0; j < n; ++j) 1354 rtvals[i+j] = VM_PAGER_PEND; 1355 /* restart outter loop */ 1356 continue; 1357 } 1358 1359 /* 1360 * synchronous 1361 * 1362 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1363 */ 1364 bp->b_iodone = swp_pager_sync_iodone; 1365 swp_pager_strategy(bp); 1366 1367 /* 1368 * Wait for the sync I/O to complete, then update rtvals. 1369 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1370 * our async completion routine at the end, thus avoiding a 1371 * double-free. 1372 */ 1373 s = splbio(); 1374 while ((bp->b_flags & B_DONE) == 0) { 1375 tsleep(bp, PVM, "swwrt", 0); 1376 } 1377 for (j = 0; j < n; ++j) 1378 rtvals[i+j] = VM_PAGER_PEND; 1379 /* 1380 * Now that we are through with the bp, we can call the 1381 * normal async completion, which frees everything up. 1382 */ 1383 swp_pager_async_iodone(bp); 1384 splx(s); 1385 } 1386 VM_OBJECT_LOCK(object); 1387 } 1388 1389 /* 1390 * swap_pager_sync_iodone: 1391 * 1392 * Completion routine for synchronous reads and writes from/to swap. 1393 * We just mark the bp is complete and wake up anyone waiting on it. 1394 * 1395 * This routine may not block. This routine is called at splbio() or better. 1396 */ 1397 static void 1398 swp_pager_sync_iodone(struct buf *bp) 1399 { 1400 bp->b_flags |= B_DONE; 1401 bp->b_flags &= ~B_ASYNC; 1402 wakeup(bp); 1403 } 1404 1405 /* 1406 * swp_pager_async_iodone: 1407 * 1408 * Completion routine for asynchronous reads and writes from/to swap. 1409 * Also called manually by synchronous code to finish up a bp. 1410 * 1411 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1412 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1413 * unbusy all pages except the 'main' request page. For WRITE 1414 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1415 * because we marked them all VM_PAGER_PEND on return from putpages ). 1416 * 1417 * This routine may not block. 1418 * This routine is called at splbio() or better 1419 * 1420 * We up ourselves to splvm() as required for various vm_page related 1421 * calls. 1422 */ 1423 static void 1424 swp_pager_async_iodone(struct buf *bp) 1425 { 1426 int s; 1427 int i; 1428 vm_object_t object = NULL; 1429 1430 GIANT_REQUIRED; 1431 bp->b_flags |= B_DONE; 1432 1433 /* 1434 * report error 1435 */ 1436 if (bp->b_ioflags & BIO_ERROR) { 1437 printf( 1438 "swap_pager: I/O error - %s failed; blkno %ld," 1439 "size %ld, error %d\n", 1440 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1441 (long)bp->b_blkno, 1442 (long)bp->b_bcount, 1443 bp->b_error 1444 ); 1445 } 1446 1447 /* 1448 * set object, raise to splvm(). 1449 */ 1450 s = splvm(); 1451 1452 /* 1453 * remove the mapping for kernel virtual 1454 */ 1455 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1456 1457 if (bp->b_npages) { 1458 object = bp->b_pages[0]->object; 1459 VM_OBJECT_LOCK(object); 1460 } 1461 vm_page_lock_queues(); 1462 /* 1463 * cleanup pages. If an error occurs writing to swap, we are in 1464 * very serious trouble. If it happens to be a disk error, though, 1465 * we may be able to recover by reassigning the swap later on. So 1466 * in this case we remove the m->swapblk assignment for the page 1467 * but do not free it in the rlist. The errornous block(s) are thus 1468 * never reallocated as swap. Redirty the page and continue. 1469 */ 1470 for (i = 0; i < bp->b_npages; ++i) { 1471 vm_page_t m = bp->b_pages[i]; 1472 1473 vm_page_flag_clear(m, PG_SWAPINPROG); 1474 1475 if (bp->b_ioflags & BIO_ERROR) { 1476 /* 1477 * If an error occurs I'd love to throw the swapblk 1478 * away without freeing it back to swapspace, so it 1479 * can never be used again. But I can't from an 1480 * interrupt. 1481 */ 1482 if (bp->b_iocmd == BIO_READ) { 1483 /* 1484 * When reading, reqpage needs to stay 1485 * locked for the parent, but all other 1486 * pages can be freed. We still want to 1487 * wakeup the parent waiting on the page, 1488 * though. ( also: pg_reqpage can be -1 and 1489 * not match anything ). 1490 * 1491 * We have to wake specifically requested pages 1492 * up too because we cleared PG_SWAPINPROG and 1493 * someone may be waiting for that. 1494 * 1495 * NOTE: for reads, m->dirty will probably 1496 * be overridden by the original caller of 1497 * getpages so don't play cute tricks here. 1498 * 1499 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1500 * AS THIS MESSES WITH object->memq, and it is 1501 * not legal to mess with object->memq from an 1502 * interrupt. 1503 */ 1504 m->valid = 0; 1505 vm_page_flag_clear(m, PG_ZERO); 1506 if (i != bp->b_pager.pg_reqpage) 1507 vm_page_free(m); 1508 else 1509 vm_page_flash(m); 1510 /* 1511 * If i == bp->b_pager.pg_reqpage, do not wake 1512 * the page up. The caller needs to. 1513 */ 1514 } else { 1515 /* 1516 * If a write error occurs, reactivate page 1517 * so it doesn't clog the inactive list, 1518 * then finish the I/O. 1519 */ 1520 vm_page_dirty(m); 1521 vm_page_activate(m); 1522 vm_page_io_finish(m); 1523 } 1524 } else if (bp->b_iocmd == BIO_READ) { 1525 /* 1526 * For read success, clear dirty bits. Nobody should 1527 * have this page mapped but don't take any chances, 1528 * make sure the pmap modify bits are also cleared. 1529 * 1530 * NOTE: for reads, m->dirty will probably be 1531 * overridden by the original caller of getpages so 1532 * we cannot set them in order to free the underlying 1533 * swap in a low-swap situation. I don't think we'd 1534 * want to do that anyway, but it was an optimization 1535 * that existed in the old swapper for a time before 1536 * it got ripped out due to precisely this problem. 1537 * 1538 * clear PG_ZERO in page. 1539 * 1540 * If not the requested page then deactivate it. 1541 * 1542 * Note that the requested page, reqpage, is left 1543 * busied, but we still have to wake it up. The 1544 * other pages are released (unbusied) by 1545 * vm_page_wakeup(). We do not set reqpage's 1546 * valid bits here, it is up to the caller. 1547 */ 1548 pmap_clear_modify(m); 1549 m->valid = VM_PAGE_BITS_ALL; 1550 vm_page_undirty(m); 1551 vm_page_flag_clear(m, PG_ZERO); 1552 1553 /* 1554 * We have to wake specifically requested pages 1555 * up too because we cleared PG_SWAPINPROG and 1556 * could be waiting for it in getpages. However, 1557 * be sure to not unbusy getpages specifically 1558 * requested page - getpages expects it to be 1559 * left busy. 1560 */ 1561 if (i != bp->b_pager.pg_reqpage) { 1562 vm_page_deactivate(m); 1563 vm_page_wakeup(m); 1564 } else { 1565 vm_page_flash(m); 1566 } 1567 } else { 1568 /* 1569 * For write success, clear the modify and dirty 1570 * status, then finish the I/O ( which decrements the 1571 * busy count and possibly wakes waiter's up ). 1572 */ 1573 pmap_clear_modify(m); 1574 vm_page_undirty(m); 1575 vm_page_io_finish(m); 1576 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1577 pmap_page_protect(m, VM_PROT_READ); 1578 } 1579 } 1580 vm_page_unlock_queues(); 1581 1582 /* 1583 * adjust pip. NOTE: the original parent may still have its own 1584 * pip refs on the object. 1585 */ 1586 if (object != NULL) { 1587 vm_object_pip_wakeupn(object, bp->b_npages); 1588 VM_OBJECT_UNLOCK(object); 1589 } 1590 1591 /* 1592 * release the physical I/O buffer 1593 */ 1594 relpbuf( 1595 bp, 1596 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1597 ((bp->b_flags & B_ASYNC) ? 1598 &nsw_wcount_async : 1599 &nsw_wcount_sync 1600 ) 1601 ) 1602 ); 1603 splx(s); 1604 } 1605 1606 /* 1607 * swap_pager_isswapped: 1608 * 1609 * Return 1 if at least one page in the given object is paged 1610 * out to the given swap device. 1611 * 1612 * This routine may not block. 1613 */ 1614 int 1615 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1616 { 1617 daddr_t index = 0; 1618 int bcount; 1619 int i; 1620 1621 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1622 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1623 struct swblock *swap; 1624 1625 mtx_lock(&swhash_mtx); 1626 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1627 for (i = 0; i < SWAP_META_PAGES; ++i) { 1628 daddr_t v = swap->swb_pages[i]; 1629 if (v == SWAPBLK_NONE) 1630 continue; 1631 if (swp_pager_find_dev(v) == sp) { 1632 mtx_unlock(&swhash_mtx); 1633 return 1; 1634 } 1635 } 1636 } 1637 mtx_unlock(&swhash_mtx); 1638 index += SWAP_META_PAGES; 1639 if (index > 0x20000000) 1640 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1641 } 1642 return 0; 1643 } 1644 1645 /* 1646 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1647 * 1648 * This routine dissociates the page at the given index within a 1649 * swap block from its backing store, paging it in if necessary. 1650 * If the page is paged in, it is placed in the inactive queue, 1651 * since it had its backing store ripped out from under it. 1652 * We also attempt to swap in all other pages in the swap block, 1653 * we only guarantee that the one at the specified index is 1654 * paged in. 1655 * 1656 * XXX - The code to page the whole block in doesn't work, so we 1657 * revert to the one-by-one behavior for now. Sigh. 1658 */ 1659 static __inline void 1660 swp_pager_force_pagein(struct swblock *swap, int idx) 1661 { 1662 vm_object_t object; 1663 vm_page_t m; 1664 vm_pindex_t pindex; 1665 1666 object = swap->swb_object; 1667 pindex = swap->swb_index; 1668 mtx_unlock(&swhash_mtx); 1669 1670 VM_OBJECT_LOCK(object); 1671 vm_object_pip_add(object, 1); 1672 m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1673 if (m->valid == VM_PAGE_BITS_ALL) { 1674 vm_object_pip_subtract(object, 1); 1675 vm_page_lock_queues(); 1676 vm_page_activate(m); 1677 vm_page_dirty(m); 1678 vm_page_wakeup(m); 1679 vm_page_unlock_queues(); 1680 vm_pager_page_unswapped(m); 1681 VM_OBJECT_UNLOCK(object); 1682 return; 1683 } 1684 1685 if (swap_pager_getpages(object, &m, 1, 0) != 1686 VM_PAGER_OK) 1687 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1688 vm_object_pip_subtract(object, 1); 1689 vm_page_lock_queues(); 1690 vm_page_dirty(m); 1691 vm_page_dontneed(m); 1692 vm_page_wakeup(m); 1693 vm_page_unlock_queues(); 1694 vm_pager_page_unswapped(m); 1695 VM_OBJECT_UNLOCK(object); 1696 } 1697 1698 1699 /* 1700 * swap_pager_swapoff: 1701 * 1702 * Page in all of the pages that have been paged out to the 1703 * given device. The corresponding blocks in the bitmap must be 1704 * marked as allocated and the device must be flagged SW_CLOSING. 1705 * There may be no processes swapped out to the device. 1706 * 1707 * The sw_used parameter points to the field in the swdev structure 1708 * that contains a count of the number of blocks still allocated 1709 * on the device. If we encounter objects with a nonzero pip count 1710 * in our scan, we use this number to determine if we're really done. 1711 * 1712 * This routine may block. 1713 */ 1714 static void 1715 swap_pager_swapoff(struct swdevt *sp, int *sw_used) 1716 { 1717 struct swblock **pswap; 1718 struct swblock *swap; 1719 vm_object_t waitobj; 1720 daddr_t v; 1721 int i, j; 1722 1723 GIANT_REQUIRED; 1724 1725 full_rescan: 1726 waitobj = NULL; 1727 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1728 restart: 1729 pswap = &swhash[i]; 1730 mtx_lock(&swhash_mtx); 1731 while ((swap = *pswap) != NULL) { 1732 for (j = 0; j < SWAP_META_PAGES; ++j) { 1733 v = swap->swb_pages[j]; 1734 if (v != SWAPBLK_NONE && 1735 swp_pager_find_dev(v) == sp) 1736 break; 1737 } 1738 if (j < SWAP_META_PAGES) { 1739 swp_pager_force_pagein(swap, j); 1740 goto restart; 1741 } else if (swap->swb_object->paging_in_progress) { 1742 if (!waitobj) 1743 waitobj = swap->swb_object; 1744 } 1745 pswap = &swap->swb_hnext; 1746 } 1747 mtx_unlock(&swhash_mtx); 1748 } 1749 if (waitobj && *sw_used) { 1750 /* 1751 * We wait on an arbitrary object to clock our rescans 1752 * to the rate of paging completion. 1753 */ 1754 VM_OBJECT_LOCK(waitobj); 1755 vm_object_pip_wait(waitobj, "swpoff"); 1756 VM_OBJECT_UNLOCK(waitobj); 1757 goto full_rescan; 1758 } 1759 if (*sw_used) 1760 panic("swapoff: failed to locate %d swap blocks", *sw_used); 1761 } 1762 1763 /************************************************************************ 1764 * SWAP META DATA * 1765 ************************************************************************ 1766 * 1767 * These routines manipulate the swap metadata stored in the 1768 * OBJT_SWAP object. All swp_*() routines must be called at 1769 * splvm() because swap can be freed up by the low level vm_page 1770 * code which might be called from interrupts beyond what splbio() covers. 1771 * 1772 * Swap metadata is implemented with a global hash and not directly 1773 * linked into the object. Instead the object simply contains 1774 * appropriate tracking counters. 1775 */ 1776 1777 /* 1778 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1779 * 1780 * We first convert the object to a swap object if it is a default 1781 * object. 1782 * 1783 * The specified swapblk is added to the object's swap metadata. If 1784 * the swapblk is not valid, it is freed instead. Any previously 1785 * assigned swapblk is freed. 1786 * 1787 * This routine must be called at splvm(), except when used to convert 1788 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1789 */ 1790 static void 1791 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1792 { 1793 struct swblock *swap; 1794 struct swblock **pswap; 1795 int idx; 1796 1797 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1798 /* 1799 * Convert default object to swap object if necessary 1800 */ 1801 if (object->type != OBJT_SWAP) { 1802 object->type = OBJT_SWAP; 1803 object->un_pager.swp.swp_bcount = 0; 1804 1805 if (object->handle != NULL) { 1806 mtx_lock(&sw_alloc_mtx); 1807 TAILQ_INSERT_TAIL( 1808 NOBJLIST(object->handle), 1809 object, 1810 pager_object_list 1811 ); 1812 mtx_unlock(&sw_alloc_mtx); 1813 } 1814 } 1815 1816 /* 1817 * Locate hash entry. If not found create, but if we aren't adding 1818 * anything just return. If we run out of space in the map we wait 1819 * and, since the hash table may have changed, retry. 1820 */ 1821 retry: 1822 mtx_lock(&swhash_mtx); 1823 pswap = swp_pager_hash(object, pindex); 1824 1825 if ((swap = *pswap) == NULL) { 1826 int i; 1827 1828 if (swapblk == SWAPBLK_NONE) 1829 goto done; 1830 1831 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1832 if (swap == NULL) { 1833 mtx_unlock(&swhash_mtx); 1834 VM_OBJECT_UNLOCK(object); 1835 VM_WAIT; 1836 VM_OBJECT_LOCK(object); 1837 goto retry; 1838 } 1839 1840 swap->swb_hnext = NULL; 1841 swap->swb_object = object; 1842 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1843 swap->swb_count = 0; 1844 1845 ++object->un_pager.swp.swp_bcount; 1846 1847 for (i = 0; i < SWAP_META_PAGES; ++i) 1848 swap->swb_pages[i] = SWAPBLK_NONE; 1849 } 1850 1851 /* 1852 * Delete prior contents of metadata 1853 */ 1854 idx = pindex & SWAP_META_MASK; 1855 1856 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1857 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1858 --swap->swb_count; 1859 } 1860 1861 /* 1862 * Enter block into metadata 1863 */ 1864 swap->swb_pages[idx] = swapblk; 1865 if (swapblk != SWAPBLK_NONE) 1866 ++swap->swb_count; 1867 done: 1868 mtx_unlock(&swhash_mtx); 1869 } 1870 1871 /* 1872 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1873 * 1874 * The requested range of blocks is freed, with any associated swap 1875 * returned to the swap bitmap. 1876 * 1877 * This routine will free swap metadata structures as they are cleaned 1878 * out. This routine does *NOT* operate on swap metadata associated 1879 * with resident pages. 1880 * 1881 * This routine must be called at splvm() 1882 */ 1883 static void 1884 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1885 { 1886 1887 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1888 if (object->type != OBJT_SWAP) 1889 return; 1890 1891 while (count > 0) { 1892 struct swblock **pswap; 1893 struct swblock *swap; 1894 1895 mtx_lock(&swhash_mtx); 1896 pswap = swp_pager_hash(object, index); 1897 1898 if ((swap = *pswap) != NULL) { 1899 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1900 1901 if (v != SWAPBLK_NONE) { 1902 swp_pager_freeswapspace(v, 1); 1903 swap->swb_pages[index & SWAP_META_MASK] = 1904 SWAPBLK_NONE; 1905 if (--swap->swb_count == 0) { 1906 *pswap = swap->swb_hnext; 1907 uma_zfree(swap_zone, swap); 1908 --object->un_pager.swp.swp_bcount; 1909 } 1910 } 1911 --count; 1912 ++index; 1913 } else { 1914 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1915 count -= n; 1916 index += n; 1917 } 1918 mtx_unlock(&swhash_mtx); 1919 } 1920 } 1921 1922 /* 1923 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1924 * 1925 * This routine locates and destroys all swap metadata associated with 1926 * an object. 1927 * 1928 * This routine must be called at splvm() 1929 */ 1930 static void 1931 swp_pager_meta_free_all(vm_object_t object) 1932 { 1933 daddr_t index = 0; 1934 1935 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1936 if (object->type != OBJT_SWAP) 1937 return; 1938 1939 while (object->un_pager.swp.swp_bcount) { 1940 struct swblock **pswap; 1941 struct swblock *swap; 1942 1943 mtx_lock(&swhash_mtx); 1944 pswap = swp_pager_hash(object, index); 1945 if ((swap = *pswap) != NULL) { 1946 int i; 1947 1948 for (i = 0; i < SWAP_META_PAGES; ++i) { 1949 daddr_t v = swap->swb_pages[i]; 1950 if (v != SWAPBLK_NONE) { 1951 --swap->swb_count; 1952 swp_pager_freeswapspace(v, 1); 1953 } 1954 } 1955 if (swap->swb_count != 0) 1956 panic("swap_pager_meta_free_all: swb_count != 0"); 1957 *pswap = swap->swb_hnext; 1958 uma_zfree(swap_zone, swap); 1959 --object->un_pager.swp.swp_bcount; 1960 } 1961 mtx_unlock(&swhash_mtx); 1962 index += SWAP_META_PAGES; 1963 if (index > 0x20000000) 1964 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1965 } 1966 } 1967 1968 /* 1969 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1970 * 1971 * This routine is capable of looking up, popping, or freeing 1972 * swapblk assignments in the swap meta data or in the vm_page_t. 1973 * The routine typically returns the swapblk being looked-up, or popped, 1974 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1975 * was invalid. This routine will automatically free any invalid 1976 * meta-data swapblks. 1977 * 1978 * It is not possible to store invalid swapblks in the swap meta data 1979 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1980 * 1981 * When acting on a busy resident page and paging is in progress, we 1982 * have to wait until paging is complete but otherwise can act on the 1983 * busy page. 1984 * 1985 * This routine must be called at splvm(). 1986 * 1987 * SWM_FREE remove and free swap block from metadata 1988 * SWM_POP remove from meta data but do not free.. pop it out 1989 */ 1990 static daddr_t 1991 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1992 { 1993 struct swblock **pswap; 1994 struct swblock *swap; 1995 daddr_t r1; 1996 int idx; 1997 1998 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1999 /* 2000 * The meta data only exists of the object is OBJT_SWAP 2001 * and even then might not be allocated yet. 2002 */ 2003 if (object->type != OBJT_SWAP) 2004 return (SWAPBLK_NONE); 2005 2006 r1 = SWAPBLK_NONE; 2007 mtx_lock(&swhash_mtx); 2008 pswap = swp_pager_hash(object, pindex); 2009 2010 if ((swap = *pswap) != NULL) { 2011 idx = pindex & SWAP_META_MASK; 2012 r1 = swap->swb_pages[idx]; 2013 2014 if (r1 != SWAPBLK_NONE) { 2015 if (flags & SWM_FREE) { 2016 swp_pager_freeswapspace(r1, 1); 2017 r1 = SWAPBLK_NONE; 2018 } 2019 if (flags & (SWM_FREE|SWM_POP)) { 2020 swap->swb_pages[idx] = SWAPBLK_NONE; 2021 if (--swap->swb_count == 0) { 2022 *pswap = swap->swb_hnext; 2023 uma_zfree(swap_zone, swap); 2024 --object->un_pager.swp.swp_bcount; 2025 } 2026 } 2027 } 2028 } 2029 mtx_unlock(&swhash_mtx); 2030 return (r1); 2031 } 2032 2033 /* 2034 * System call swapon(name) enables swapping on device name, 2035 * which must be in the swdevsw. Return EBUSY 2036 * if already swapping on this device. 2037 */ 2038 #ifndef _SYS_SYSPROTO_H_ 2039 struct swapon_args { 2040 char *name; 2041 }; 2042 #endif 2043 2044 /* 2045 * MPSAFE 2046 */ 2047 /* ARGSUSED */ 2048 int 2049 swapon(struct thread *td, struct swapon_args *uap) 2050 { 2051 struct vattr attr; 2052 struct vnode *vp; 2053 struct nameidata nd; 2054 int error; 2055 2056 mtx_lock(&Giant); 2057 error = suser(td); 2058 if (error) 2059 goto done2; 2060 2061 while (swdev_syscall_active) 2062 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2063 swdev_syscall_active = 1; 2064 2065 /* 2066 * Swap metadata may not fit in the KVM if we have physical 2067 * memory of >1GB. 2068 */ 2069 if (swap_zone == NULL) { 2070 error = ENOMEM; 2071 goto done; 2072 } 2073 2074 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); 2075 error = namei(&nd); 2076 if (error) 2077 goto done; 2078 2079 NDFREE(&nd, NDF_ONLY_PNBUF); 2080 vp = nd.ni_vp; 2081 2082 if (vn_isdisk(vp, &error)) { 2083 error = swapongeom(td, vp); 2084 } else if (vp->v_type == VREG && 2085 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2086 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { 2087 /* 2088 * Allow direct swapping to NFS regular files in the same 2089 * way that nfs_mountroot() sets up diskless swapping. 2090 */ 2091 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2092 } 2093 2094 if (error) 2095 vrele(vp); 2096 done: 2097 swdev_syscall_active = 0; 2098 wakeup_one(&swdev_syscall_active); 2099 done2: 2100 mtx_unlock(&Giant); 2101 return (error); 2102 } 2103 2104 static void 2105 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, udev_t udev) 2106 { 2107 struct swdevt *sp, *tsp; 2108 swblk_t dvbase; 2109 u_long mblocks; 2110 2111 /* 2112 * If we go beyond this, we get overflows in the radix 2113 * tree bitmap code. 2114 */ 2115 mblocks = 0x40000000 / BLIST_META_RADIX; 2116 if (nblks > mblocks) { 2117 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2118 mblocks); 2119 nblks = mblocks; 2120 } 2121 /* 2122 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2123 * First chop nblks off to page-align it, then convert. 2124 * 2125 * sw->sw_nblks is in page-sized chunks now too. 2126 */ 2127 nblks &= ~(ctodb(1) - 1); 2128 nblks = dbtoc(nblks); 2129 2130 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2131 sp->sw_vp = vp; 2132 sp->sw_id = id; 2133 sp->sw_udev = udev; 2134 sp->sw_flags = 0; 2135 sp->sw_nblks = nblks; 2136 sp->sw_used = 0; 2137 sp->sw_strategy = strategy; 2138 sp->sw_close = close; 2139 2140 sp->sw_blist = blist_create(nblks); 2141 /* 2142 * Do not free the first two block in order to avoid overwriting 2143 * any bsd label at the front of the partition 2144 */ 2145 blist_free(sp->sw_blist, 2, nblks - 2); 2146 2147 dvbase = 0; 2148 mtx_lock(&sw_dev_mtx); 2149 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2150 if (tsp->sw_end >= dvbase) { 2151 /* 2152 * We put one uncovered page between the devices 2153 * in order to definitively prevent any cross-device 2154 * I/O requests 2155 */ 2156 dvbase = tsp->sw_end + 1; 2157 } 2158 } 2159 sp->sw_first = dvbase; 2160 sp->sw_end = dvbase + nblks; 2161 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2162 nswapdev++; 2163 swap_pager_avail += nblks; 2164 swp_sizecheck(); 2165 mtx_unlock(&sw_dev_mtx); 2166 } 2167 2168 /* 2169 * SYSCALL: swapoff(devname) 2170 * 2171 * Disable swapping on the given device. 2172 * 2173 * XXX: Badly designed system call: it should use a device index 2174 * rather than filename as specification. We keep sw_vp around 2175 * only to make this work. 2176 */ 2177 #ifndef _SYS_SYSPROTO_H_ 2178 struct swapoff_args { 2179 char *name; 2180 }; 2181 #endif 2182 2183 /* 2184 * MPSAFE 2185 */ 2186 /* ARGSUSED */ 2187 int 2188 swapoff(struct thread *td, struct swapoff_args *uap) 2189 { 2190 struct vnode *vp; 2191 struct nameidata nd; 2192 struct swdevt *sp; 2193 u_long nblks, dvbase; 2194 int error; 2195 2196 mtx_lock(&Giant); 2197 2198 error = suser(td); 2199 if (error) 2200 goto done2; 2201 2202 while (swdev_syscall_active) 2203 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2204 swdev_syscall_active = 1; 2205 2206 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); 2207 error = namei(&nd); 2208 if (error) 2209 goto done; 2210 NDFREE(&nd, NDF_ONLY_PNBUF); 2211 vp = nd.ni_vp; 2212 2213 mtx_lock(&sw_dev_mtx); 2214 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2215 if (sp->sw_vp == vp) 2216 goto found; 2217 } 2218 mtx_unlock(&sw_dev_mtx); 2219 error = EINVAL; 2220 goto done; 2221 found: 2222 mtx_unlock(&sw_dev_mtx); 2223 #ifdef MAC 2224 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2225 error = mac_check_system_swapoff(td->td_ucred, vp); 2226 (void) VOP_UNLOCK(vp, 0, td); 2227 if (error != 0) 2228 goto done; 2229 #endif 2230 2231 nblks = sp->sw_nblks; 2232 2233 /* 2234 * We can turn off this swap device safely only if the 2235 * available virtual memory in the system will fit the amount 2236 * of data we will have to page back in, plus an epsilon so 2237 * the system doesn't become critically low on swap space. 2238 */ 2239 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2240 nblks + nswap_lowat) { 2241 error = ENOMEM; 2242 goto done; 2243 } 2244 2245 /* 2246 * Prevent further allocations on this device. 2247 */ 2248 mtx_lock(&sw_dev_mtx); 2249 sp->sw_flags |= SW_CLOSING; 2250 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2251 swap_pager_avail -= blist_fill(sp->sw_blist, 2252 dvbase, dmmax); 2253 } 2254 mtx_unlock(&sw_dev_mtx); 2255 2256 /* 2257 * Page in the contents of the device and close it. 2258 */ 2259 #ifndef NO_SWAPPING 2260 vm_proc_swapin_all(sp); 2261 #endif /* !NO_SWAPPING */ 2262 swap_pager_swapoff(sp, &sp->sw_used); 2263 2264 sp->sw_close(td, sp); 2265 sp->sw_id = NULL; 2266 mtx_lock(&sw_dev_mtx); 2267 TAILQ_REMOVE(&swtailq, sp, sw_list); 2268 nswapdev--; 2269 if (swdevhd == sp) 2270 swdevhd = NULL; 2271 mtx_unlock(&sw_dev_mtx); 2272 blist_destroy(sp->sw_blist); 2273 free(sp, M_VMPGDATA); 2274 2275 done: 2276 swdev_syscall_active = 0; 2277 wakeup_one(&swdev_syscall_active); 2278 done2: 2279 mtx_unlock(&Giant); 2280 return (error); 2281 } 2282 2283 void 2284 swap_pager_status(int *total, int *used) 2285 { 2286 struct swdevt *sp; 2287 2288 *total = 0; 2289 *used = 0; 2290 mtx_lock(&sw_dev_mtx); 2291 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2292 *total += sp->sw_nblks; 2293 *used += sp->sw_used; 2294 } 2295 mtx_unlock(&sw_dev_mtx); 2296 } 2297 2298 static int 2299 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2300 { 2301 int *name = (int *)arg1; 2302 int error, n; 2303 struct xswdev xs; 2304 struct swdevt *sp; 2305 2306 if (arg2 != 1) /* name length */ 2307 return (EINVAL); 2308 2309 n = 0; 2310 mtx_lock(&sw_dev_mtx); 2311 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2312 if (n == *name) { 2313 mtx_unlock(&sw_dev_mtx); 2314 xs.xsw_version = XSWDEV_VERSION; 2315 xs.xsw_dev = sp->sw_udev; 2316 xs.xsw_flags = sp->sw_flags; 2317 xs.xsw_nblks = sp->sw_nblks; 2318 xs.xsw_used = sp->sw_used; 2319 2320 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2321 return (error); 2322 } 2323 n++; 2324 } 2325 mtx_unlock(&sw_dev_mtx); 2326 return (ENOENT); 2327 } 2328 2329 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2330 "Number of swap devices"); 2331 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2332 "Swap statistics by device"); 2333 2334 /* 2335 * vmspace_swap_count() - count the approximate swap useage in pages for a 2336 * vmspace. 2337 * 2338 * The map must be locked. 2339 * 2340 * Swap useage is determined by taking the proportional swap used by 2341 * VM objects backing the VM map. To make up for fractional losses, 2342 * if the VM object has any swap use at all the associated map entries 2343 * count for at least 1 swap page. 2344 */ 2345 int 2346 vmspace_swap_count(struct vmspace *vmspace) 2347 { 2348 vm_map_t map = &vmspace->vm_map; 2349 vm_map_entry_t cur; 2350 int count = 0; 2351 2352 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2353 vm_object_t object; 2354 2355 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2356 (object = cur->object.vm_object) != NULL) { 2357 VM_OBJECT_LOCK(object); 2358 if (object->type == OBJT_SWAP && 2359 object->un_pager.swp.swp_bcount != 0) { 2360 int n = (cur->end - cur->start) / PAGE_SIZE; 2361 2362 count += object->un_pager.swp.swp_bcount * 2363 SWAP_META_PAGES * n / object->size + 1; 2364 } 2365 VM_OBJECT_UNLOCK(object); 2366 } 2367 } 2368 return (count); 2369 } 2370 2371 /* 2372 * GEOM backend 2373 * 2374 * Swapping onto disk devices. 2375 * 2376 */ 2377 2378 static struct g_class g_swap_class = { 2379 .name = "SWAP", 2380 }; 2381 2382 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2383 2384 2385 static void 2386 swapgeom_done(struct bio *bp2) 2387 { 2388 struct buf *bp; 2389 2390 bp = bp2->bio_caller2; 2391 if (bp2->bio_error) 2392 bp->b_ioflags |= BIO_ERROR; 2393 mtx_lock(&Giant); 2394 bufdone(bp); 2395 mtx_unlock(&Giant); 2396 g_destroy_bio(bp2); 2397 } 2398 2399 static void 2400 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2401 { 2402 struct bio *bio; 2403 struct g_consumer *cp; 2404 2405 cp = sp->sw_id; 2406 if (cp == NULL) { 2407 bp->b_error = ENXIO; 2408 bp->b_ioflags |= BIO_ERROR; 2409 bufdone(bp); 2410 return; 2411 } 2412 bio = g_clone_bio(&bp->b_io); 2413 bio->bio_caller2 = bp; 2414 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2415 bio->bio_length = bp->b_bcount; 2416 bio->bio_done = swapgeom_done; 2417 g_io_request(bio, cp); 2418 return; 2419 } 2420 2421 static void 2422 swapgeom_orphan(struct g_consumer *cp) 2423 { 2424 struct swdevt *sp; 2425 2426 mtx_lock(&sw_dev_mtx); 2427 TAILQ_FOREACH(sp, &swtailq, sw_list) 2428 if (sp->sw_id == cp) 2429 sp->sw_id = NULL; 2430 mtx_unlock(&sw_dev_mtx); 2431 } 2432 2433 static void 2434 swapgeom_close_ev(void *arg, int flags) 2435 { 2436 struct g_consumer *cp; 2437 2438 cp = arg; 2439 g_access_rel(cp, -1, -1, 0); 2440 g_detach(cp); 2441 g_destroy_consumer(cp); 2442 } 2443 2444 static void 2445 swapgeom_close(struct thread *td, struct swdevt *sw) 2446 { 2447 2448 /* XXX: direct call when Giant untangled */ 2449 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2450 } 2451 2452 2453 struct swh0h0 { 2454 dev_t dev; 2455 struct vnode *vp; 2456 int error; 2457 }; 2458 2459 static void 2460 swapongeom_ev(void *arg, int flags) 2461 { 2462 struct swh0h0 *swh; 2463 struct g_provider *pp; 2464 struct g_consumer *cp; 2465 static struct g_geom *gp; 2466 struct swdevt *sp; 2467 u_long nblks; 2468 int error; 2469 2470 swh = arg; 2471 swh->error = 0; 2472 pp = g_dev_getprovider(swh->dev); 2473 if (pp == NULL) { 2474 swh->error = ENODEV; 2475 return; 2476 } 2477 mtx_lock(&sw_dev_mtx); 2478 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2479 cp = sp->sw_id; 2480 if (cp != NULL && cp->provider == pp) { 2481 mtx_unlock(&sw_dev_mtx); 2482 swh->error = EBUSY; 2483 return; 2484 } 2485 } 2486 mtx_unlock(&sw_dev_mtx); 2487 if (gp == NULL) { 2488 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2489 gp->orphan = swapgeom_orphan; 2490 } 2491 cp = g_new_consumer(gp); 2492 g_attach(cp, pp); 2493 /* 2494 * XXX: Everytime you think you can improve the margin for 2495 * footshooting, somebody depends on the ability to do so: 2496 * savecore(8) wants to write to our swapdev so we cannot 2497 * set an exclusive count :-( 2498 */ 2499 error = g_access_rel(cp, 1, 1, 0); 2500 if (error) { 2501 g_detach(cp); 2502 g_destroy_consumer(cp); 2503 swh->error = error; 2504 return; 2505 } 2506 nblks = pp->mediasize / DEV_BSIZE; 2507 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2508 swapgeom_close, dev2udev(swh->dev)); 2509 swh->error = 0; 2510 return; 2511 } 2512 2513 static int 2514 swapongeom(struct thread *td, struct vnode *vp) 2515 { 2516 int error; 2517 struct swh0h0 swh; 2518 2519 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2520 2521 swh.dev = vp->v_rdev; 2522 swh.vp = vp; 2523 swh.error = 0; 2524 /* XXX: direct call when Giant untangled */ 2525 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2526 if (!error) 2527 error = swh.error; 2528 VOP_UNLOCK(vp, 0, td); 2529 return (error); 2530 } 2531 2532 /* 2533 * VNODE backend 2534 * 2535 * This is used mainly for network filesystem (read: probably only tested 2536 * with NFS) swapfiles. 2537 * 2538 */ 2539 2540 static void 2541 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2542 { 2543 int s; 2544 struct vnode *vp, *vp2; 2545 2546 bp->b_dev = NODEV; 2547 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2548 2549 vp2 = sp->sw_id; 2550 vhold(vp2); 2551 s = splvm(); 2552 if (bp->b_iocmd == BIO_WRITE) { 2553 vp = bp->b_vp; 2554 if (vp) { 2555 VI_LOCK(vp); 2556 vp->v_numoutput--; 2557 if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) { 2558 vp->v_iflag &= ~VI_BWAIT; 2559 wakeup(&vp->v_numoutput); 2560 } 2561 VI_UNLOCK(vp); 2562 } 2563 VI_LOCK(vp2); 2564 vp2->v_numoutput++; 2565 VI_UNLOCK(vp2); 2566 } 2567 bp->b_vp = vp2; 2568 splx(s); 2569 bp->b_iooffset = dbtob(bp->b_blkno); 2570 VOP_STRATEGY(vp2, bp); 2571 return; 2572 } 2573 2574 static void 2575 swapdev_close(struct thread *td, struct swdevt *sp) 2576 { 2577 2578 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2579 vrele(sp->sw_vp); 2580 } 2581 2582 2583 static int 2584 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2585 { 2586 struct swdevt *sp; 2587 int error; 2588 2589 if (nblks == 0) 2590 return (ENXIO); 2591 mtx_lock(&sw_dev_mtx); 2592 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2593 if (sp->sw_id == vp) { 2594 mtx_unlock(&sw_dev_mtx); 2595 return (EBUSY); 2596 } 2597 } 2598 mtx_unlock(&sw_dev_mtx); 2599 2600 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2601 #ifdef MAC 2602 error = mac_check_system_swapon(td->td_ucred, vp); 2603 if (error == 0) 2604 #endif 2605 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1); 2606 (void) VOP_UNLOCK(vp, 0, td); 2607 if (error) 2608 return (error); 2609 2610 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2611 NOUDEV); 2612 return (0); 2613 } 2614