1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 168 /* bits from overcommit */ 169 #define SWAP_RESERVE_FORCE_ON (1 << 0) 170 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 171 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 172 173 int 174 swap_reserve(vm_ooffset_t incr) 175 { 176 177 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 178 } 179 180 int 181 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 182 { 183 vm_ooffset_t r, s; 184 int res, error; 185 static int curfail; 186 static struct timeval lastfail; 187 struct uidinfo *uip; 188 189 uip = cred->cr_ruidinfo; 190 191 if (incr & PAGE_MASK) 192 panic("swap_reserve: & PAGE_MASK"); 193 194 #ifdef RACCT 195 PROC_LOCK(curproc); 196 error = racct_add(curproc, RACCT_SWAP, incr); 197 PROC_UNLOCK(curproc); 198 if (error != 0) 199 return (0); 200 #endif 201 202 res = 0; 203 mtx_lock(&sw_dev_mtx); 204 r = swap_reserved + incr; 205 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 206 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 207 s *= PAGE_SIZE; 208 } else 209 s = 0; 210 s += swap_total; 211 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 212 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 213 res = 1; 214 swap_reserved = r; 215 } 216 mtx_unlock(&sw_dev_mtx); 217 218 if (res) { 219 PROC_LOCK(curproc); 220 UIDINFO_VMSIZE_LOCK(uip); 221 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 222 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 223 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 224 res = 0; 225 else 226 uip->ui_vmsize += incr; 227 UIDINFO_VMSIZE_UNLOCK(uip); 228 PROC_UNLOCK(curproc); 229 if (!res) { 230 mtx_lock(&sw_dev_mtx); 231 swap_reserved -= incr; 232 mtx_unlock(&sw_dev_mtx); 233 } 234 } 235 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 236 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 237 uip->ui_uid, curproc->p_pid, incr); 238 } 239 240 #ifdef RACCT 241 if (!res) { 242 PROC_LOCK(curproc); 243 racct_sub(curproc, RACCT_SWAP, incr); 244 PROC_UNLOCK(curproc); 245 } 246 #endif 247 248 return (res); 249 } 250 251 void 252 swap_reserve_force(vm_ooffset_t incr) 253 { 254 struct uidinfo *uip; 255 256 mtx_lock(&sw_dev_mtx); 257 swap_reserved += incr; 258 mtx_unlock(&sw_dev_mtx); 259 260 #ifdef RACCT 261 PROC_LOCK(curproc); 262 racct_add_force(curproc, RACCT_SWAP, incr); 263 PROC_UNLOCK(curproc); 264 #endif 265 266 uip = curthread->td_ucred->cr_ruidinfo; 267 PROC_LOCK(curproc); 268 UIDINFO_VMSIZE_LOCK(uip); 269 uip->ui_vmsize += incr; 270 UIDINFO_VMSIZE_UNLOCK(uip); 271 PROC_UNLOCK(curproc); 272 } 273 274 void 275 swap_release(vm_ooffset_t decr) 276 { 277 struct ucred *cred; 278 279 PROC_LOCK(curproc); 280 cred = curthread->td_ucred; 281 swap_release_by_cred(decr, cred); 282 PROC_UNLOCK(curproc); 283 } 284 285 void 286 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 287 { 288 struct uidinfo *uip; 289 290 uip = cred->cr_ruidinfo; 291 292 if (decr & PAGE_MASK) 293 panic("swap_release: & PAGE_MASK"); 294 295 mtx_lock(&sw_dev_mtx); 296 if (swap_reserved < decr) 297 panic("swap_reserved < decr"); 298 swap_reserved -= decr; 299 mtx_unlock(&sw_dev_mtx); 300 301 UIDINFO_VMSIZE_LOCK(uip); 302 if (uip->ui_vmsize < decr) 303 printf("negative vmsize for uid = %d\n", uip->ui_uid); 304 uip->ui_vmsize -= decr; 305 UIDINFO_VMSIZE_UNLOCK(uip); 306 307 racct_sub_cred(cred, RACCT_SWAP, decr); 308 } 309 310 static void swapdev_strategy(struct buf *, struct swdevt *sw); 311 312 #define SWM_FREE 0x02 /* free, period */ 313 #define SWM_POP 0x04 /* pop out */ 314 315 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 316 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 317 static int nsw_rcount; /* free read buffers */ 318 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 319 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 320 static int nsw_wcount_async_max;/* assigned maximum */ 321 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 322 323 static struct swblock **swhash; 324 static int swhash_mask; 325 static struct mtx swhash_mtx; 326 327 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 328 static struct sx sw_alloc_sx; 329 330 331 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 332 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 333 334 /* 335 * "named" and "unnamed" anon region objects. Try to reduce the overhead 336 * of searching a named list by hashing it just a little. 337 */ 338 339 #define NOBJLISTS 8 340 341 #define NOBJLIST(handle) \ 342 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 343 344 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 345 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 346 static uma_zone_t swap_zone; 347 348 /* 349 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 350 * calls hooked from other parts of the VM system and do not appear here. 351 * (see vm/swap_pager.h). 352 */ 353 static vm_object_t 354 swap_pager_alloc(void *handle, vm_ooffset_t size, 355 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 356 static void swap_pager_dealloc(vm_object_t object); 357 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 358 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 359 static boolean_t 360 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 361 static void swap_pager_init(void); 362 static void swap_pager_unswapped(vm_page_t); 363 static void swap_pager_swapoff(struct swdevt *sp); 364 365 struct pagerops swappagerops = { 366 .pgo_init = swap_pager_init, /* early system initialization of pager */ 367 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 368 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 369 .pgo_getpages = swap_pager_getpages, /* pagein */ 370 .pgo_putpages = swap_pager_putpages, /* pageout */ 371 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 372 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 373 }; 374 375 /* 376 * dmmax is in page-sized chunks with the new swap system. It was 377 * dev-bsized chunks in the old. dmmax is always a power of 2. 378 * 379 * swap_*() routines are externally accessible. swp_*() routines are 380 * internal. 381 */ 382 static int dmmax; 383 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 384 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 385 386 SYSCTL_INT(_vm, OID_AUTO, dmmax, 387 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 388 389 static void swp_sizecheck(void); 390 static void swp_pager_async_iodone(struct buf *bp); 391 static int swapongeom(struct thread *, struct vnode *); 392 static int swaponvp(struct thread *, struct vnode *, u_long); 393 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 394 395 /* 396 * Swap bitmap functions 397 */ 398 static void swp_pager_freeswapspace(daddr_t blk, int npages); 399 static daddr_t swp_pager_getswapspace(int npages); 400 401 /* 402 * Metadata functions 403 */ 404 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 405 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 406 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 407 static void swp_pager_meta_free_all(vm_object_t); 408 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 409 410 static void 411 swp_pager_free_nrpage(vm_page_t m) 412 { 413 414 vm_page_lock(m); 415 if (m->wire_count == 0) 416 vm_page_free(m); 417 vm_page_unlock(m); 418 } 419 420 /* 421 * SWP_SIZECHECK() - update swap_pager_full indication 422 * 423 * update the swap_pager_almost_full indication and warn when we are 424 * about to run out of swap space, using lowat/hiwat hysteresis. 425 * 426 * Clear swap_pager_full ( task killing ) indication when lowat is met. 427 * 428 * No restrictions on call 429 * This routine may not block. 430 */ 431 static void 432 swp_sizecheck(void) 433 { 434 435 if (swap_pager_avail < nswap_lowat) { 436 if (swap_pager_almost_full == 0) { 437 printf("swap_pager: out of swap space\n"); 438 swap_pager_almost_full = 1; 439 } 440 } else { 441 swap_pager_full = 0; 442 if (swap_pager_avail > nswap_hiwat) 443 swap_pager_almost_full = 0; 444 } 445 } 446 447 /* 448 * SWP_PAGER_HASH() - hash swap meta data 449 * 450 * This is an helper function which hashes the swapblk given 451 * the object and page index. It returns a pointer to a pointer 452 * to the object, or a pointer to a NULL pointer if it could not 453 * find a swapblk. 454 */ 455 static struct swblock ** 456 swp_pager_hash(vm_object_t object, vm_pindex_t index) 457 { 458 struct swblock **pswap; 459 struct swblock *swap; 460 461 index &= ~(vm_pindex_t)SWAP_META_MASK; 462 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 463 while ((swap = *pswap) != NULL) { 464 if (swap->swb_object == object && 465 swap->swb_index == index 466 ) { 467 break; 468 } 469 pswap = &swap->swb_hnext; 470 } 471 return (pswap); 472 } 473 474 /* 475 * SWAP_PAGER_INIT() - initialize the swap pager! 476 * 477 * Expected to be started from system init. NOTE: This code is run 478 * before much else so be careful what you depend on. Most of the VM 479 * system has yet to be initialized at this point. 480 */ 481 static void 482 swap_pager_init(void) 483 { 484 /* 485 * Initialize object lists 486 */ 487 int i; 488 489 for (i = 0; i < NOBJLISTS; ++i) 490 TAILQ_INIT(&swap_pager_object_list[i]); 491 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 492 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 493 494 /* 495 * Device Stripe, in PAGE_SIZE'd blocks 496 */ 497 dmmax = SWB_NPAGES * 2; 498 } 499 500 /* 501 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 502 * 503 * Expected to be started from pageout process once, prior to entering 504 * its main loop. 505 */ 506 void 507 swap_pager_swap_init(void) 508 { 509 int n, n2; 510 511 /* 512 * Number of in-transit swap bp operations. Don't 513 * exhaust the pbufs completely. Make sure we 514 * initialize workable values (0 will work for hysteresis 515 * but it isn't very efficient). 516 * 517 * The nsw_cluster_max is constrained by the bp->b_pages[] 518 * array (MAXPHYS/PAGE_SIZE) and our locally defined 519 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 520 * constrained by the swap device interleave stripe size. 521 * 522 * Currently we hardwire nsw_wcount_async to 4. This limit is 523 * designed to prevent other I/O from having high latencies due to 524 * our pageout I/O. The value 4 works well for one or two active swap 525 * devices but is probably a little low if you have more. Even so, 526 * a higher value would probably generate only a limited improvement 527 * with three or four active swap devices since the system does not 528 * typically have to pageout at extreme bandwidths. We will want 529 * at least 2 per swap devices, and 4 is a pretty good value if you 530 * have one NFS swap device due to the command/ack latency over NFS. 531 * So it all works out pretty well. 532 */ 533 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 534 535 mtx_lock(&pbuf_mtx); 536 nsw_rcount = (nswbuf + 1) / 2; 537 nsw_wcount_sync = (nswbuf + 3) / 4; 538 nsw_wcount_async = 4; 539 nsw_wcount_async_max = nsw_wcount_async; 540 mtx_unlock(&pbuf_mtx); 541 542 /* 543 * Initialize our zone. Right now I'm just guessing on the number 544 * we need based on the number of pages in the system. Each swblock 545 * can hold 16 pages, so this is probably overkill. This reservation 546 * is typically limited to around 32MB by default. 547 */ 548 n = cnt.v_page_count / 2; 549 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 550 n = maxswzone / sizeof(struct swblock); 551 n2 = n; 552 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 553 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 554 if (swap_zone == NULL) 555 panic("failed to create swap_zone."); 556 do { 557 if (uma_zone_reserve_kva(swap_zone, n)) 558 break; 559 /* 560 * if the allocation failed, try a zone two thirds the 561 * size of the previous attempt. 562 */ 563 n -= ((n + 2) / 3); 564 } while (n > 0); 565 if (n2 != n) 566 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 567 n2 = n; 568 569 /* 570 * Initialize our meta-data hash table. The swapper does not need to 571 * be quite as efficient as the VM system, so we do not use an 572 * oversized hash table. 573 * 574 * n: size of hash table, must be power of 2 575 * swhash_mask: hash table index mask 576 */ 577 for (n = 1; n < n2 / 8; n *= 2) 578 ; 579 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 580 swhash_mask = n - 1; 581 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 582 } 583 584 /* 585 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 586 * its metadata structures. 587 * 588 * This routine is called from the mmap and fork code to create a new 589 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 590 * and then converting it with swp_pager_meta_build(). 591 * 592 * This routine may block in vm_object_allocate() and create a named 593 * object lookup race, so we must interlock. 594 * 595 * MPSAFE 596 */ 597 static vm_object_t 598 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 599 vm_ooffset_t offset, struct ucred *cred) 600 { 601 vm_object_t object; 602 vm_pindex_t pindex; 603 604 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 605 if (handle) { 606 mtx_lock(&Giant); 607 /* 608 * Reference existing named region or allocate new one. There 609 * should not be a race here against swp_pager_meta_build() 610 * as called from vm_page_remove() in regards to the lookup 611 * of the handle. 612 */ 613 sx_xlock(&sw_alloc_sx); 614 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 615 if (object == NULL) { 616 if (cred != NULL) { 617 if (!swap_reserve_by_cred(size, cred)) { 618 sx_xunlock(&sw_alloc_sx); 619 mtx_unlock(&Giant); 620 return (NULL); 621 } 622 crhold(cred); 623 } 624 object = vm_object_allocate(OBJT_DEFAULT, pindex); 625 VM_OBJECT_WLOCK(object); 626 object->handle = handle; 627 if (cred != NULL) { 628 object->cred = cred; 629 object->charge = size; 630 } 631 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 632 VM_OBJECT_WUNLOCK(object); 633 } 634 sx_xunlock(&sw_alloc_sx); 635 mtx_unlock(&Giant); 636 } else { 637 if (cred != NULL) { 638 if (!swap_reserve_by_cred(size, cred)) 639 return (NULL); 640 crhold(cred); 641 } 642 object = vm_object_allocate(OBJT_DEFAULT, pindex); 643 VM_OBJECT_WLOCK(object); 644 if (cred != NULL) { 645 object->cred = cred; 646 object->charge = size; 647 } 648 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 649 VM_OBJECT_WUNLOCK(object); 650 } 651 return (object); 652 } 653 654 /* 655 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 656 * 657 * The swap backing for the object is destroyed. The code is 658 * designed such that we can reinstantiate it later, but this 659 * routine is typically called only when the entire object is 660 * about to be destroyed. 661 * 662 * The object must be locked. 663 */ 664 static void 665 swap_pager_dealloc(vm_object_t object) 666 { 667 668 /* 669 * Remove from list right away so lookups will fail if we block for 670 * pageout completion. 671 */ 672 if (object->handle != NULL) { 673 mtx_lock(&sw_alloc_mtx); 674 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 675 mtx_unlock(&sw_alloc_mtx); 676 } 677 678 VM_OBJECT_ASSERT_WLOCKED(object); 679 vm_object_pip_wait(object, "swpdea"); 680 681 /* 682 * Free all remaining metadata. We only bother to free it from 683 * the swap meta data. We do not attempt to free swapblk's still 684 * associated with vm_page_t's for this object. We do not care 685 * if paging is still in progress on some objects. 686 */ 687 swp_pager_meta_free_all(object); 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 762 unmapped_buf_allowed) { 763 bp->b_kvaalloc = bp->b_data; 764 bp->b_data = unmapped_buf; 765 bp->b_kvabase = unmapped_buf; 766 bp->b_offset = 0; 767 bp->b_flags |= B_UNMAPPED; 768 } else { 769 pmap_qenter((vm_offset_t)bp->b_data, 770 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 771 } 772 sp->sw_strategy(bp, sp); 773 return; 774 } 775 } 776 panic("Swapdev not found"); 777 } 778 779 780 /* 781 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 782 * 783 * This routine returns the specified swap blocks back to the bitmap. 784 * 785 * This routine may not sleep. 786 */ 787 static void 788 swp_pager_freeswapspace(daddr_t blk, int npages) 789 { 790 struct swdevt *sp; 791 792 mtx_lock(&sw_dev_mtx); 793 TAILQ_FOREACH(sp, &swtailq, sw_list) { 794 if (blk >= sp->sw_first && blk < sp->sw_end) { 795 sp->sw_used -= npages; 796 /* 797 * If we are attempting to stop swapping on 798 * this device, we don't want to mark any 799 * blocks free lest they be reused. 800 */ 801 if ((sp->sw_flags & SW_CLOSING) == 0) { 802 blist_free(sp->sw_blist, blk - sp->sw_first, 803 npages); 804 swap_pager_avail += npages; 805 swp_sizecheck(); 806 } 807 mtx_unlock(&sw_dev_mtx); 808 return; 809 } 810 } 811 panic("Swapdev not found"); 812 } 813 814 /* 815 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 816 * range within an object. 817 * 818 * This is a globally accessible routine. 819 * 820 * This routine removes swapblk assignments from swap metadata. 821 * 822 * The external callers of this routine typically have already destroyed 823 * or renamed vm_page_t's associated with this range in the object so 824 * we should be ok. 825 */ 826 void 827 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 828 { 829 830 VM_OBJECT_ASSERT_WLOCKED(object); 831 swp_pager_meta_free(object, start, size); 832 } 833 834 /* 835 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 836 * 837 * Assigns swap blocks to the specified range within the object. The 838 * swap blocks are not zerod. Any previous swap assignment is destroyed. 839 * 840 * Returns 0 on success, -1 on failure. 841 */ 842 int 843 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 844 { 845 int n = 0; 846 daddr_t blk = SWAPBLK_NONE; 847 vm_pindex_t beg = start; /* save start index */ 848 849 VM_OBJECT_WLOCK(object); 850 while (size) { 851 if (n == 0) { 852 n = BLIST_MAX_ALLOC; 853 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 854 n >>= 1; 855 if (n == 0) { 856 swp_pager_meta_free(object, beg, start - beg); 857 VM_OBJECT_WUNLOCK(object); 858 return (-1); 859 } 860 } 861 } 862 swp_pager_meta_build(object, start, blk); 863 --size; 864 ++start; 865 ++blk; 866 --n; 867 } 868 swp_pager_meta_free(object, start, n); 869 VM_OBJECT_WUNLOCK(object); 870 return (0); 871 } 872 873 /* 874 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 875 * and destroy the source. 876 * 877 * Copy any valid swapblks from the source to the destination. In 878 * cases where both the source and destination have a valid swapblk, 879 * we keep the destination's. 880 * 881 * This routine is allowed to sleep. It may sleep allocating metadata 882 * indirectly through swp_pager_meta_build() or if paging is still in 883 * progress on the source. 884 * 885 * The source object contains no vm_page_t's (which is just as well) 886 * 887 * The source object is of type OBJT_SWAP. 888 * 889 * The source and destination objects must be locked. 890 * Both object locks may temporarily be released. 891 */ 892 void 893 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 894 vm_pindex_t offset, int destroysource) 895 { 896 vm_pindex_t i; 897 898 VM_OBJECT_ASSERT_WLOCKED(srcobject); 899 VM_OBJECT_ASSERT_WLOCKED(dstobject); 900 901 /* 902 * If destroysource is set, we remove the source object from the 903 * swap_pager internal queue now. 904 */ 905 if (destroysource) { 906 if (srcobject->handle != NULL) { 907 mtx_lock(&sw_alloc_mtx); 908 TAILQ_REMOVE( 909 NOBJLIST(srcobject->handle), 910 srcobject, 911 pager_object_list 912 ); 913 mtx_unlock(&sw_alloc_mtx); 914 } 915 } 916 917 /* 918 * transfer source to destination. 919 */ 920 for (i = 0; i < dstobject->size; ++i) { 921 daddr_t dstaddr; 922 923 /* 924 * Locate (without changing) the swapblk on the destination, 925 * unless it is invalid in which case free it silently, or 926 * if the destination is a resident page, in which case the 927 * source is thrown away. 928 */ 929 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 930 931 if (dstaddr == SWAPBLK_NONE) { 932 /* 933 * Destination has no swapblk and is not resident, 934 * copy source. 935 */ 936 daddr_t srcaddr; 937 938 srcaddr = swp_pager_meta_ctl( 939 srcobject, 940 i + offset, 941 SWM_POP 942 ); 943 944 if (srcaddr != SWAPBLK_NONE) { 945 /* 946 * swp_pager_meta_build() can sleep. 947 */ 948 vm_object_pip_add(srcobject, 1); 949 VM_OBJECT_WUNLOCK(srcobject); 950 vm_object_pip_add(dstobject, 1); 951 swp_pager_meta_build(dstobject, i, srcaddr); 952 vm_object_pip_wakeup(dstobject); 953 VM_OBJECT_WLOCK(srcobject); 954 vm_object_pip_wakeup(srcobject); 955 } 956 } else { 957 /* 958 * Destination has valid swapblk or it is represented 959 * by a resident page. We destroy the sourceblock. 960 */ 961 962 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 963 } 964 } 965 966 /* 967 * Free left over swap blocks in source. 968 * 969 * We have to revert the type to OBJT_DEFAULT so we do not accidently 970 * double-remove the object from the swap queues. 971 */ 972 if (destroysource) { 973 swp_pager_meta_free_all(srcobject); 974 /* 975 * Reverting the type is not necessary, the caller is going 976 * to destroy srcobject directly, but I'm doing it here 977 * for consistency since we've removed the object from its 978 * queues. 979 */ 980 srcobject->type = OBJT_DEFAULT; 981 } 982 } 983 984 /* 985 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 986 * the requested page. 987 * 988 * We determine whether good backing store exists for the requested 989 * page and return TRUE if it does, FALSE if it doesn't. 990 * 991 * If TRUE, we also try to determine how much valid, contiguous backing 992 * store exists before and after the requested page within a reasonable 993 * distance. We do not try to restrict it to the swap device stripe 994 * (that is handled in getpages/putpages). It probably isn't worth 995 * doing here. 996 */ 997 static boolean_t 998 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 999 { 1000 daddr_t blk0; 1001 1002 VM_OBJECT_ASSERT_WLOCKED(object); 1003 /* 1004 * do we have good backing store at the requested index ? 1005 */ 1006 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1007 1008 if (blk0 == SWAPBLK_NONE) { 1009 if (before) 1010 *before = 0; 1011 if (after) 1012 *after = 0; 1013 return (FALSE); 1014 } 1015 1016 /* 1017 * find backwards-looking contiguous good backing store 1018 */ 1019 if (before != NULL) { 1020 int i; 1021 1022 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1023 daddr_t blk; 1024 1025 if (i > pindex) 1026 break; 1027 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1028 if (blk != blk0 - i) 1029 break; 1030 } 1031 *before = (i - 1); 1032 } 1033 1034 /* 1035 * find forward-looking contiguous good backing store 1036 */ 1037 if (after != NULL) { 1038 int i; 1039 1040 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1041 daddr_t blk; 1042 1043 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1044 if (blk != blk0 + i) 1045 break; 1046 } 1047 *after = (i - 1); 1048 } 1049 return (TRUE); 1050 } 1051 1052 /* 1053 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1054 * 1055 * This removes any associated swap backing store, whether valid or 1056 * not, from the page. 1057 * 1058 * This routine is typically called when a page is made dirty, at 1059 * which point any associated swap can be freed. MADV_FREE also 1060 * calls us in a special-case situation 1061 * 1062 * NOTE!!! If the page is clean and the swap was valid, the caller 1063 * should make the page dirty before calling this routine. This routine 1064 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1065 * depends on it. 1066 * 1067 * This routine may not sleep. 1068 */ 1069 static void 1070 swap_pager_unswapped(vm_page_t m) 1071 { 1072 1073 VM_OBJECT_ASSERT_WLOCKED(m->object); 1074 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1075 } 1076 1077 /* 1078 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1079 * 1080 * Attempt to retrieve (m, count) pages from backing store, but make 1081 * sure we retrieve at least m[reqpage]. We try to load in as large 1082 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1083 * belongs to the same object. 1084 * 1085 * The code is designed for asynchronous operation and 1086 * immediate-notification of 'reqpage' but tends not to be 1087 * used that way. Please do not optimize-out this algorithmic 1088 * feature, I intend to improve on it in the future. 1089 * 1090 * The parent has a single vm_object_pip_add() reference prior to 1091 * calling us and we should return with the same. 1092 * 1093 * The parent has BUSY'd the pages. We should return with 'm' 1094 * left busy, but the others adjusted. 1095 */ 1096 static int 1097 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1098 { 1099 struct buf *bp; 1100 vm_page_t mreq; 1101 int i; 1102 int j; 1103 daddr_t blk; 1104 1105 mreq = m[reqpage]; 1106 1107 KASSERT(mreq->object == object, 1108 ("swap_pager_getpages: object mismatch %p/%p", 1109 object, mreq->object)); 1110 1111 /* 1112 * Calculate range to retrieve. The pages have already been assigned 1113 * their swapblks. We require a *contiguous* range but we know it to 1114 * not span devices. If we do not supply it, bad things 1115 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1116 * loops are set up such that the case(s) are handled implicitly. 1117 * 1118 * The swp_*() calls must be made with the object locked. 1119 */ 1120 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1121 1122 for (i = reqpage - 1; i >= 0; --i) { 1123 daddr_t iblk; 1124 1125 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1126 if (blk != iblk + (reqpage - i)) 1127 break; 1128 } 1129 ++i; 1130 1131 for (j = reqpage + 1; j < count; ++j) { 1132 daddr_t jblk; 1133 1134 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1135 if (blk != jblk - (j - reqpage)) 1136 break; 1137 } 1138 1139 /* 1140 * free pages outside our collection range. Note: we never free 1141 * mreq, it must remain busy throughout. 1142 */ 1143 if (0 < i || j < count) { 1144 int k; 1145 1146 for (k = 0; k < i; ++k) 1147 swp_pager_free_nrpage(m[k]); 1148 for (k = j; k < count; ++k) 1149 swp_pager_free_nrpage(m[k]); 1150 } 1151 1152 /* 1153 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1154 * still busy, but the others unbusied. 1155 */ 1156 if (blk == SWAPBLK_NONE) 1157 return (VM_PAGER_FAIL); 1158 1159 /* 1160 * Getpbuf() can sleep. 1161 */ 1162 VM_OBJECT_WUNLOCK(object); 1163 /* 1164 * Get a swap buffer header to perform the IO 1165 */ 1166 bp = getpbuf(&nsw_rcount); 1167 bp->b_flags |= B_PAGING; 1168 1169 bp->b_iocmd = BIO_READ; 1170 bp->b_iodone = swp_pager_async_iodone; 1171 bp->b_rcred = crhold(thread0.td_ucred); 1172 bp->b_wcred = crhold(thread0.td_ucred); 1173 bp->b_blkno = blk - (reqpage - i); 1174 bp->b_bcount = PAGE_SIZE * (j - i); 1175 bp->b_bufsize = PAGE_SIZE * (j - i); 1176 bp->b_pager.pg_reqpage = reqpage - i; 1177 1178 VM_OBJECT_WLOCK(object); 1179 { 1180 int k; 1181 1182 for (k = i; k < j; ++k) { 1183 bp->b_pages[k - i] = m[k]; 1184 m[k]->oflags |= VPO_SWAPINPROG; 1185 } 1186 } 1187 bp->b_npages = j - i; 1188 1189 PCPU_INC(cnt.v_swapin); 1190 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1191 1192 /* 1193 * We still hold the lock on mreq, and our automatic completion routine 1194 * does not remove it. 1195 */ 1196 vm_object_pip_add(object, bp->b_npages); 1197 VM_OBJECT_WUNLOCK(object); 1198 1199 /* 1200 * perform the I/O. NOTE!!! bp cannot be considered valid after 1201 * this point because we automatically release it on completion. 1202 * Instead, we look at the one page we are interested in which we 1203 * still hold a lock on even through the I/O completion. 1204 * 1205 * The other pages in our m[] array are also released on completion, 1206 * so we cannot assume they are valid anymore either. 1207 * 1208 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1209 */ 1210 BUF_KERNPROC(bp); 1211 swp_pager_strategy(bp); 1212 1213 /* 1214 * wait for the page we want to complete. VPO_SWAPINPROG is always 1215 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1216 * is set in the meta-data. 1217 */ 1218 VM_OBJECT_WLOCK(object); 1219 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1220 mreq->oflags |= VPO_WANTED; 1221 PCPU_INC(cnt.v_intrans); 1222 if (VM_OBJECT_SLEEP(object, mreq, PSWP, "swread", hz * 20)) { 1223 printf( 1224 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1225 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1226 } 1227 } 1228 1229 /* 1230 * mreq is left busied after completion, but all the other pages 1231 * are freed. If we had an unrecoverable read error the page will 1232 * not be valid. 1233 */ 1234 if (mreq->valid != VM_PAGE_BITS_ALL) { 1235 return (VM_PAGER_ERROR); 1236 } else { 1237 return (VM_PAGER_OK); 1238 } 1239 1240 /* 1241 * A final note: in a low swap situation, we cannot deallocate swap 1242 * and mark a page dirty here because the caller is likely to mark 1243 * the page clean when we return, causing the page to possibly revert 1244 * to all-zero's later. 1245 */ 1246 } 1247 1248 /* 1249 * swap_pager_putpages: 1250 * 1251 * Assign swap (if necessary) and initiate I/O on the specified pages. 1252 * 1253 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1254 * are automatically converted to SWAP objects. 1255 * 1256 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1257 * vm_page reservation system coupled with properly written VFS devices 1258 * should ensure that no low-memory deadlock occurs. This is an area 1259 * which needs work. 1260 * 1261 * The parent has N vm_object_pip_add() references prior to 1262 * calling us and will remove references for rtvals[] that are 1263 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1264 * completion. 1265 * 1266 * The parent has soft-busy'd the pages it passes us and will unbusy 1267 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1268 * We need to unbusy the rest on I/O completion. 1269 */ 1270 void 1271 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1272 boolean_t sync, int *rtvals) 1273 { 1274 int i; 1275 int n = 0; 1276 1277 if (count && m[0]->object != object) { 1278 panic("swap_pager_putpages: object mismatch %p/%p", 1279 object, 1280 m[0]->object 1281 ); 1282 } 1283 1284 /* 1285 * Step 1 1286 * 1287 * Turn object into OBJT_SWAP 1288 * check for bogus sysops 1289 * force sync if not pageout process 1290 */ 1291 if (object->type != OBJT_SWAP) 1292 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1293 VM_OBJECT_WUNLOCK(object); 1294 1295 if (curproc != pageproc) 1296 sync = TRUE; 1297 1298 /* 1299 * Step 2 1300 * 1301 * Update nsw parameters from swap_async_max sysctl values. 1302 * Do not let the sysop crash the machine with bogus numbers. 1303 */ 1304 mtx_lock(&pbuf_mtx); 1305 if (swap_async_max != nsw_wcount_async_max) { 1306 int n; 1307 1308 /* 1309 * limit range 1310 */ 1311 if ((n = swap_async_max) > nswbuf / 2) 1312 n = nswbuf / 2; 1313 if (n < 1) 1314 n = 1; 1315 swap_async_max = n; 1316 1317 /* 1318 * Adjust difference ( if possible ). If the current async 1319 * count is too low, we may not be able to make the adjustment 1320 * at this time. 1321 */ 1322 n -= nsw_wcount_async_max; 1323 if (nsw_wcount_async + n >= 0) { 1324 nsw_wcount_async += n; 1325 nsw_wcount_async_max += n; 1326 wakeup(&nsw_wcount_async); 1327 } 1328 } 1329 mtx_unlock(&pbuf_mtx); 1330 1331 /* 1332 * Step 3 1333 * 1334 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1335 * The page is left dirty until the pageout operation completes 1336 * successfully. 1337 */ 1338 for (i = 0; i < count; i += n) { 1339 int j; 1340 struct buf *bp; 1341 daddr_t blk; 1342 1343 /* 1344 * Maximum I/O size is limited by a number of factors. 1345 */ 1346 n = min(BLIST_MAX_ALLOC, count - i); 1347 n = min(n, nsw_cluster_max); 1348 1349 /* 1350 * Get biggest block of swap we can. If we fail, fall 1351 * back and try to allocate a smaller block. Don't go 1352 * overboard trying to allocate space if it would overly 1353 * fragment swap. 1354 */ 1355 while ( 1356 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1357 n > 4 1358 ) { 1359 n >>= 1; 1360 } 1361 if (blk == SWAPBLK_NONE) { 1362 for (j = 0; j < n; ++j) 1363 rtvals[i+j] = VM_PAGER_FAIL; 1364 continue; 1365 } 1366 1367 /* 1368 * All I/O parameters have been satisfied, build the I/O 1369 * request and assign the swap space. 1370 */ 1371 if (sync == TRUE) { 1372 bp = getpbuf(&nsw_wcount_sync); 1373 } else { 1374 bp = getpbuf(&nsw_wcount_async); 1375 bp->b_flags = B_ASYNC; 1376 } 1377 bp->b_flags |= B_PAGING; 1378 bp->b_iocmd = BIO_WRITE; 1379 1380 bp->b_rcred = crhold(thread0.td_ucred); 1381 bp->b_wcred = crhold(thread0.td_ucred); 1382 bp->b_bcount = PAGE_SIZE * n; 1383 bp->b_bufsize = PAGE_SIZE * n; 1384 bp->b_blkno = blk; 1385 1386 VM_OBJECT_WLOCK(object); 1387 for (j = 0; j < n; ++j) { 1388 vm_page_t mreq = m[i+j]; 1389 1390 swp_pager_meta_build( 1391 mreq->object, 1392 mreq->pindex, 1393 blk + j 1394 ); 1395 vm_page_dirty(mreq); 1396 rtvals[i+j] = VM_PAGER_OK; 1397 1398 mreq->oflags |= VPO_SWAPINPROG; 1399 bp->b_pages[j] = mreq; 1400 } 1401 VM_OBJECT_WUNLOCK(object); 1402 bp->b_npages = n; 1403 /* 1404 * Must set dirty range for NFS to work. 1405 */ 1406 bp->b_dirtyoff = 0; 1407 bp->b_dirtyend = bp->b_bcount; 1408 1409 PCPU_INC(cnt.v_swapout); 1410 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1411 1412 /* 1413 * asynchronous 1414 * 1415 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1416 */ 1417 if (sync == FALSE) { 1418 bp->b_iodone = swp_pager_async_iodone; 1419 BUF_KERNPROC(bp); 1420 swp_pager_strategy(bp); 1421 1422 for (j = 0; j < n; ++j) 1423 rtvals[i+j] = VM_PAGER_PEND; 1424 /* restart outter loop */ 1425 continue; 1426 } 1427 1428 /* 1429 * synchronous 1430 * 1431 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1432 */ 1433 bp->b_iodone = bdone; 1434 swp_pager_strategy(bp); 1435 1436 /* 1437 * Wait for the sync I/O to complete, then update rtvals. 1438 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1439 * our async completion routine at the end, thus avoiding a 1440 * double-free. 1441 */ 1442 bwait(bp, PVM, "swwrt"); 1443 for (j = 0; j < n; ++j) 1444 rtvals[i+j] = VM_PAGER_PEND; 1445 /* 1446 * Now that we are through with the bp, we can call the 1447 * normal async completion, which frees everything up. 1448 */ 1449 swp_pager_async_iodone(bp); 1450 } 1451 VM_OBJECT_WLOCK(object); 1452 } 1453 1454 /* 1455 * swp_pager_async_iodone: 1456 * 1457 * Completion routine for asynchronous reads and writes from/to swap. 1458 * Also called manually by synchronous code to finish up a bp. 1459 * 1460 * For READ operations, the pages are VPO_BUSY'd. For WRITE operations, 1461 * the pages are vm_page_t->busy'd. For READ operations, we VPO_BUSY 1462 * unbusy all pages except the 'main' request page. For WRITE 1463 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1464 * because we marked them all VM_PAGER_PEND on return from putpages ). 1465 * 1466 * This routine may not sleep. 1467 */ 1468 static void 1469 swp_pager_async_iodone(struct buf *bp) 1470 { 1471 int i; 1472 vm_object_t object = NULL; 1473 1474 /* 1475 * report error 1476 */ 1477 if (bp->b_ioflags & BIO_ERROR) { 1478 printf( 1479 "swap_pager: I/O error - %s failed; blkno %ld," 1480 "size %ld, error %d\n", 1481 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1482 (long)bp->b_blkno, 1483 (long)bp->b_bcount, 1484 bp->b_error 1485 ); 1486 } 1487 1488 /* 1489 * remove the mapping for kernel virtual 1490 */ 1491 if ((bp->b_flags & B_UNMAPPED) != 0) { 1492 bp->b_data = bp->b_kvaalloc; 1493 bp->b_kvabase = bp->b_kvaalloc; 1494 bp->b_flags &= ~B_UNMAPPED; 1495 } else 1496 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1497 1498 if (bp->b_npages) { 1499 object = bp->b_pages[0]->object; 1500 VM_OBJECT_WLOCK(object); 1501 } 1502 1503 /* 1504 * cleanup pages. If an error occurs writing to swap, we are in 1505 * very serious trouble. If it happens to be a disk error, though, 1506 * we may be able to recover by reassigning the swap later on. So 1507 * in this case we remove the m->swapblk assignment for the page 1508 * but do not free it in the rlist. The errornous block(s) are thus 1509 * never reallocated as swap. Redirty the page and continue. 1510 */ 1511 for (i = 0; i < bp->b_npages; ++i) { 1512 vm_page_t m = bp->b_pages[i]; 1513 1514 m->oflags &= ~VPO_SWAPINPROG; 1515 1516 if (bp->b_ioflags & BIO_ERROR) { 1517 /* 1518 * If an error occurs I'd love to throw the swapblk 1519 * away without freeing it back to swapspace, so it 1520 * can never be used again. But I can't from an 1521 * interrupt. 1522 */ 1523 if (bp->b_iocmd == BIO_READ) { 1524 /* 1525 * When reading, reqpage needs to stay 1526 * locked for the parent, but all other 1527 * pages can be freed. We still want to 1528 * wakeup the parent waiting on the page, 1529 * though. ( also: pg_reqpage can be -1 and 1530 * not match anything ). 1531 * 1532 * We have to wake specifically requested pages 1533 * up too because we cleared VPO_SWAPINPROG and 1534 * someone may be waiting for that. 1535 * 1536 * NOTE: for reads, m->dirty will probably 1537 * be overridden by the original caller of 1538 * getpages so don't play cute tricks here. 1539 */ 1540 m->valid = 0; 1541 if (i != bp->b_pager.pg_reqpage) 1542 swp_pager_free_nrpage(m); 1543 else 1544 vm_page_flash(m); 1545 /* 1546 * If i == bp->b_pager.pg_reqpage, do not wake 1547 * the page up. The caller needs to. 1548 */ 1549 } else { 1550 /* 1551 * If a write error occurs, reactivate page 1552 * so it doesn't clog the inactive list, 1553 * then finish the I/O. 1554 */ 1555 vm_page_dirty(m); 1556 vm_page_lock(m); 1557 vm_page_activate(m); 1558 vm_page_unlock(m); 1559 vm_page_io_finish(m); 1560 } 1561 } else if (bp->b_iocmd == BIO_READ) { 1562 /* 1563 * NOTE: for reads, m->dirty will probably be 1564 * overridden by the original caller of getpages so 1565 * we cannot set them in order to free the underlying 1566 * swap in a low-swap situation. I don't think we'd 1567 * want to do that anyway, but it was an optimization 1568 * that existed in the old swapper for a time before 1569 * it got ripped out due to precisely this problem. 1570 * 1571 * If not the requested page then deactivate it. 1572 * 1573 * Note that the requested page, reqpage, is left 1574 * busied, but we still have to wake it up. The 1575 * other pages are released (unbusied) by 1576 * vm_page_wakeup(). 1577 */ 1578 KASSERT(!pmap_page_is_mapped(m), 1579 ("swp_pager_async_iodone: page %p is mapped", m)); 1580 m->valid = VM_PAGE_BITS_ALL; 1581 KASSERT(m->dirty == 0, 1582 ("swp_pager_async_iodone: page %p is dirty", m)); 1583 1584 /* 1585 * We have to wake specifically requested pages 1586 * up too because we cleared VPO_SWAPINPROG and 1587 * could be waiting for it in getpages. However, 1588 * be sure to not unbusy getpages specifically 1589 * requested page - getpages expects it to be 1590 * left busy. 1591 */ 1592 if (i != bp->b_pager.pg_reqpage) { 1593 vm_page_lock(m); 1594 vm_page_deactivate(m); 1595 vm_page_unlock(m); 1596 vm_page_wakeup(m); 1597 } else 1598 vm_page_flash(m); 1599 } else { 1600 /* 1601 * For write success, clear the dirty 1602 * status, then finish the I/O ( which decrements the 1603 * busy count and possibly wakes waiter's up ). 1604 */ 1605 KASSERT(!pmap_page_is_write_mapped(m), 1606 ("swp_pager_async_iodone: page %p is not write" 1607 " protected", m)); 1608 vm_page_undirty(m); 1609 vm_page_io_finish(m); 1610 if (vm_page_count_severe()) { 1611 vm_page_lock(m); 1612 vm_page_try_to_cache(m); 1613 vm_page_unlock(m); 1614 } 1615 } 1616 } 1617 1618 /* 1619 * adjust pip. NOTE: the original parent may still have its own 1620 * pip refs on the object. 1621 */ 1622 if (object != NULL) { 1623 vm_object_pip_wakeupn(object, bp->b_npages); 1624 VM_OBJECT_WUNLOCK(object); 1625 } 1626 1627 /* 1628 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1629 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1630 * trigger a KASSERT in relpbuf(). 1631 */ 1632 if (bp->b_vp) { 1633 bp->b_vp = NULL; 1634 bp->b_bufobj = NULL; 1635 } 1636 /* 1637 * release the physical I/O buffer 1638 */ 1639 relpbuf( 1640 bp, 1641 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1642 ((bp->b_flags & B_ASYNC) ? 1643 &nsw_wcount_async : 1644 &nsw_wcount_sync 1645 ) 1646 ) 1647 ); 1648 } 1649 1650 /* 1651 * swap_pager_isswapped: 1652 * 1653 * Return 1 if at least one page in the given object is paged 1654 * out to the given swap device. 1655 * 1656 * This routine may not sleep. 1657 */ 1658 int 1659 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1660 { 1661 daddr_t index = 0; 1662 int bcount; 1663 int i; 1664 1665 VM_OBJECT_ASSERT_WLOCKED(object); 1666 if (object->type != OBJT_SWAP) 1667 return (0); 1668 1669 mtx_lock(&swhash_mtx); 1670 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1671 struct swblock *swap; 1672 1673 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1674 for (i = 0; i < SWAP_META_PAGES; ++i) { 1675 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1676 mtx_unlock(&swhash_mtx); 1677 return (1); 1678 } 1679 } 1680 } 1681 index += SWAP_META_PAGES; 1682 } 1683 mtx_unlock(&swhash_mtx); 1684 return (0); 1685 } 1686 1687 /* 1688 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1689 * 1690 * This routine dissociates the page at the given index within a 1691 * swap block from its backing store, paging it in if necessary. 1692 * If the page is paged in, it is placed in the inactive queue, 1693 * since it had its backing store ripped out from under it. 1694 * We also attempt to swap in all other pages in the swap block, 1695 * we only guarantee that the one at the specified index is 1696 * paged in. 1697 * 1698 * XXX - The code to page the whole block in doesn't work, so we 1699 * revert to the one-by-one behavior for now. Sigh. 1700 */ 1701 static inline void 1702 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1703 { 1704 vm_page_t m; 1705 1706 vm_object_pip_add(object, 1); 1707 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1708 if (m->valid == VM_PAGE_BITS_ALL) { 1709 vm_object_pip_subtract(object, 1); 1710 vm_page_dirty(m); 1711 vm_page_lock(m); 1712 vm_page_activate(m); 1713 vm_page_unlock(m); 1714 vm_page_wakeup(m); 1715 vm_pager_page_unswapped(m); 1716 return; 1717 } 1718 1719 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1720 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1721 vm_object_pip_subtract(object, 1); 1722 vm_page_dirty(m); 1723 vm_page_lock(m); 1724 vm_page_deactivate(m); 1725 vm_page_unlock(m); 1726 vm_page_wakeup(m); 1727 vm_pager_page_unswapped(m); 1728 } 1729 1730 /* 1731 * swap_pager_swapoff: 1732 * 1733 * Page in all of the pages that have been paged out to the 1734 * given device. The corresponding blocks in the bitmap must be 1735 * marked as allocated and the device must be flagged SW_CLOSING. 1736 * There may be no processes swapped out to the device. 1737 * 1738 * This routine may block. 1739 */ 1740 static void 1741 swap_pager_swapoff(struct swdevt *sp) 1742 { 1743 struct swblock *swap; 1744 int i, j, retries; 1745 1746 GIANT_REQUIRED; 1747 1748 retries = 0; 1749 full_rescan: 1750 mtx_lock(&swhash_mtx); 1751 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1752 restart: 1753 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1754 vm_object_t object = swap->swb_object; 1755 vm_pindex_t pindex = swap->swb_index; 1756 for (j = 0; j < SWAP_META_PAGES; ++j) { 1757 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1758 /* avoid deadlock */ 1759 if (!VM_OBJECT_TRYWLOCK(object)) { 1760 break; 1761 } else { 1762 mtx_unlock(&swhash_mtx); 1763 swp_pager_force_pagein(object, 1764 pindex + j); 1765 VM_OBJECT_WUNLOCK(object); 1766 mtx_lock(&swhash_mtx); 1767 goto restart; 1768 } 1769 } 1770 } 1771 } 1772 } 1773 mtx_unlock(&swhash_mtx); 1774 if (sp->sw_used) { 1775 /* 1776 * Objects may be locked or paging to the device being 1777 * removed, so we will miss their pages and need to 1778 * make another pass. We have marked this device as 1779 * SW_CLOSING, so the activity should finish soon. 1780 */ 1781 retries++; 1782 if (retries > 100) { 1783 panic("swapoff: failed to locate %d swap blocks", 1784 sp->sw_used); 1785 } 1786 pause("swpoff", hz / 20); 1787 goto full_rescan; 1788 } 1789 } 1790 1791 /************************************************************************ 1792 * SWAP META DATA * 1793 ************************************************************************ 1794 * 1795 * These routines manipulate the swap metadata stored in the 1796 * OBJT_SWAP object. 1797 * 1798 * Swap metadata is implemented with a global hash and not directly 1799 * linked into the object. Instead the object simply contains 1800 * appropriate tracking counters. 1801 */ 1802 1803 /* 1804 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1805 * 1806 * We first convert the object to a swap object if it is a default 1807 * object. 1808 * 1809 * The specified swapblk is added to the object's swap metadata. If 1810 * the swapblk is not valid, it is freed instead. Any previously 1811 * assigned swapblk is freed. 1812 */ 1813 static void 1814 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1815 { 1816 static volatile int exhausted; 1817 struct swblock *swap; 1818 struct swblock **pswap; 1819 int idx; 1820 1821 VM_OBJECT_ASSERT_WLOCKED(object); 1822 /* 1823 * Convert default object to swap object if necessary 1824 */ 1825 if (object->type != OBJT_SWAP) { 1826 object->type = OBJT_SWAP; 1827 object->un_pager.swp.swp_bcount = 0; 1828 1829 if (object->handle != NULL) { 1830 mtx_lock(&sw_alloc_mtx); 1831 TAILQ_INSERT_TAIL( 1832 NOBJLIST(object->handle), 1833 object, 1834 pager_object_list 1835 ); 1836 mtx_unlock(&sw_alloc_mtx); 1837 } 1838 } 1839 1840 /* 1841 * Locate hash entry. If not found create, but if we aren't adding 1842 * anything just return. If we run out of space in the map we wait 1843 * and, since the hash table may have changed, retry. 1844 */ 1845 retry: 1846 mtx_lock(&swhash_mtx); 1847 pswap = swp_pager_hash(object, pindex); 1848 1849 if ((swap = *pswap) == NULL) { 1850 int i; 1851 1852 if (swapblk == SWAPBLK_NONE) 1853 goto done; 1854 1855 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1856 if (swap == NULL) { 1857 mtx_unlock(&swhash_mtx); 1858 VM_OBJECT_WUNLOCK(object); 1859 if (uma_zone_exhausted(swap_zone)) { 1860 if (atomic_cmpset_int(&exhausted, 0, 1)) 1861 printf("swap zone exhausted, " 1862 "increase kern.maxswzone\n"); 1863 vm_pageout_oom(VM_OOM_SWAPZ); 1864 pause("swzonex", 10); 1865 } else 1866 VM_WAIT; 1867 VM_OBJECT_WLOCK(object); 1868 goto retry; 1869 } 1870 1871 if (atomic_cmpset_int(&exhausted, 1, 0)) 1872 printf("swap zone ok\n"); 1873 1874 swap->swb_hnext = NULL; 1875 swap->swb_object = object; 1876 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1877 swap->swb_count = 0; 1878 1879 ++object->un_pager.swp.swp_bcount; 1880 1881 for (i = 0; i < SWAP_META_PAGES; ++i) 1882 swap->swb_pages[i] = SWAPBLK_NONE; 1883 } 1884 1885 /* 1886 * Delete prior contents of metadata 1887 */ 1888 idx = pindex & SWAP_META_MASK; 1889 1890 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1891 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1892 --swap->swb_count; 1893 } 1894 1895 /* 1896 * Enter block into metadata 1897 */ 1898 swap->swb_pages[idx] = swapblk; 1899 if (swapblk != SWAPBLK_NONE) 1900 ++swap->swb_count; 1901 done: 1902 mtx_unlock(&swhash_mtx); 1903 } 1904 1905 /* 1906 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1907 * 1908 * The requested range of blocks is freed, with any associated swap 1909 * returned to the swap bitmap. 1910 * 1911 * This routine will free swap metadata structures as they are cleaned 1912 * out. This routine does *NOT* operate on swap metadata associated 1913 * with resident pages. 1914 */ 1915 static void 1916 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1917 { 1918 1919 VM_OBJECT_ASSERT_WLOCKED(object); 1920 if (object->type != OBJT_SWAP) 1921 return; 1922 1923 while (count > 0) { 1924 struct swblock **pswap; 1925 struct swblock *swap; 1926 1927 mtx_lock(&swhash_mtx); 1928 pswap = swp_pager_hash(object, index); 1929 1930 if ((swap = *pswap) != NULL) { 1931 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1932 1933 if (v != SWAPBLK_NONE) { 1934 swp_pager_freeswapspace(v, 1); 1935 swap->swb_pages[index & SWAP_META_MASK] = 1936 SWAPBLK_NONE; 1937 if (--swap->swb_count == 0) { 1938 *pswap = swap->swb_hnext; 1939 uma_zfree(swap_zone, swap); 1940 --object->un_pager.swp.swp_bcount; 1941 } 1942 } 1943 --count; 1944 ++index; 1945 } else { 1946 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1947 count -= n; 1948 index += n; 1949 } 1950 mtx_unlock(&swhash_mtx); 1951 } 1952 } 1953 1954 /* 1955 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1956 * 1957 * This routine locates and destroys all swap metadata associated with 1958 * an object. 1959 */ 1960 static void 1961 swp_pager_meta_free_all(vm_object_t object) 1962 { 1963 daddr_t index = 0; 1964 1965 VM_OBJECT_ASSERT_WLOCKED(object); 1966 if (object->type != OBJT_SWAP) 1967 return; 1968 1969 while (object->un_pager.swp.swp_bcount) { 1970 struct swblock **pswap; 1971 struct swblock *swap; 1972 1973 mtx_lock(&swhash_mtx); 1974 pswap = swp_pager_hash(object, index); 1975 if ((swap = *pswap) != NULL) { 1976 int i; 1977 1978 for (i = 0; i < SWAP_META_PAGES; ++i) { 1979 daddr_t v = swap->swb_pages[i]; 1980 if (v != SWAPBLK_NONE) { 1981 --swap->swb_count; 1982 swp_pager_freeswapspace(v, 1); 1983 } 1984 } 1985 if (swap->swb_count != 0) 1986 panic("swap_pager_meta_free_all: swb_count != 0"); 1987 *pswap = swap->swb_hnext; 1988 uma_zfree(swap_zone, swap); 1989 --object->un_pager.swp.swp_bcount; 1990 } 1991 mtx_unlock(&swhash_mtx); 1992 index += SWAP_META_PAGES; 1993 } 1994 } 1995 1996 /* 1997 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1998 * 1999 * This routine is capable of looking up, popping, or freeing 2000 * swapblk assignments in the swap meta data or in the vm_page_t. 2001 * The routine typically returns the swapblk being looked-up, or popped, 2002 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2003 * was invalid. This routine will automatically free any invalid 2004 * meta-data swapblks. 2005 * 2006 * It is not possible to store invalid swapblks in the swap meta data 2007 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2008 * 2009 * When acting on a busy resident page and paging is in progress, we 2010 * have to wait until paging is complete but otherwise can act on the 2011 * busy page. 2012 * 2013 * SWM_FREE remove and free swap block from metadata 2014 * SWM_POP remove from meta data but do not free.. pop it out 2015 */ 2016 static daddr_t 2017 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2018 { 2019 struct swblock **pswap; 2020 struct swblock *swap; 2021 daddr_t r1; 2022 int idx; 2023 2024 VM_OBJECT_ASSERT_WLOCKED(object); 2025 /* 2026 * The meta data only exists of the object is OBJT_SWAP 2027 * and even then might not be allocated yet. 2028 */ 2029 if (object->type != OBJT_SWAP) 2030 return (SWAPBLK_NONE); 2031 2032 r1 = SWAPBLK_NONE; 2033 mtx_lock(&swhash_mtx); 2034 pswap = swp_pager_hash(object, pindex); 2035 2036 if ((swap = *pswap) != NULL) { 2037 idx = pindex & SWAP_META_MASK; 2038 r1 = swap->swb_pages[idx]; 2039 2040 if (r1 != SWAPBLK_NONE) { 2041 if (flags & SWM_FREE) { 2042 swp_pager_freeswapspace(r1, 1); 2043 r1 = SWAPBLK_NONE; 2044 } 2045 if (flags & (SWM_FREE|SWM_POP)) { 2046 swap->swb_pages[idx] = SWAPBLK_NONE; 2047 if (--swap->swb_count == 0) { 2048 *pswap = swap->swb_hnext; 2049 uma_zfree(swap_zone, swap); 2050 --object->un_pager.swp.swp_bcount; 2051 } 2052 } 2053 } 2054 } 2055 mtx_unlock(&swhash_mtx); 2056 return (r1); 2057 } 2058 2059 /* 2060 * System call swapon(name) enables swapping on device name, 2061 * which must be in the swdevsw. Return EBUSY 2062 * if already swapping on this device. 2063 */ 2064 #ifndef _SYS_SYSPROTO_H_ 2065 struct swapon_args { 2066 char *name; 2067 }; 2068 #endif 2069 2070 /* 2071 * MPSAFE 2072 */ 2073 /* ARGSUSED */ 2074 int 2075 sys_swapon(struct thread *td, struct swapon_args *uap) 2076 { 2077 struct vattr attr; 2078 struct vnode *vp; 2079 struct nameidata nd; 2080 int error; 2081 2082 error = priv_check(td, PRIV_SWAPON); 2083 if (error) 2084 return (error); 2085 2086 mtx_lock(&Giant); 2087 while (swdev_syscall_active) 2088 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2089 swdev_syscall_active = 1; 2090 2091 /* 2092 * Swap metadata may not fit in the KVM if we have physical 2093 * memory of >1GB. 2094 */ 2095 if (swap_zone == NULL) { 2096 error = ENOMEM; 2097 goto done; 2098 } 2099 2100 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2101 uap->name, td); 2102 error = namei(&nd); 2103 if (error) 2104 goto done; 2105 2106 NDFREE(&nd, NDF_ONLY_PNBUF); 2107 vp = nd.ni_vp; 2108 2109 if (vn_isdisk(vp, &error)) { 2110 error = swapongeom(td, vp); 2111 } else if (vp->v_type == VREG && 2112 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2113 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2114 /* 2115 * Allow direct swapping to NFS regular files in the same 2116 * way that nfs_mountroot() sets up diskless swapping. 2117 */ 2118 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2119 } 2120 2121 if (error) 2122 vrele(vp); 2123 done: 2124 swdev_syscall_active = 0; 2125 wakeup_one(&swdev_syscall_active); 2126 mtx_unlock(&Giant); 2127 return (error); 2128 } 2129 2130 /* 2131 * Check that the total amount of swap currently configured does not 2132 * exceed half the theoretical maximum. If it does, print a warning 2133 * message and return -1; otherwise, return 0. 2134 */ 2135 static int 2136 swapon_check_swzone(unsigned long npages) 2137 { 2138 unsigned long maxpages; 2139 2140 /* absolute maximum we can handle assuming 100% efficiency */ 2141 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2142 2143 /* recommend using no more than half that amount */ 2144 if (npages > maxpages / 2) { 2145 printf("warning: total configured swap (%lu pages) " 2146 "exceeds maximum recommended amount (%lu pages).\n", 2147 npages, maxpages / 2); 2148 printf("warning: increase kern.maxswzone " 2149 "or reduce amount of swap.\n"); 2150 return (-1); 2151 } 2152 return (0); 2153 } 2154 2155 static void 2156 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2157 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2158 { 2159 struct swdevt *sp, *tsp; 2160 swblk_t dvbase; 2161 u_long mblocks; 2162 2163 /* 2164 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2165 * First chop nblks off to page-align it, then convert. 2166 * 2167 * sw->sw_nblks is in page-sized chunks now too. 2168 */ 2169 nblks &= ~(ctodb(1) - 1); 2170 nblks = dbtoc(nblks); 2171 2172 /* 2173 * If we go beyond this, we get overflows in the radix 2174 * tree bitmap code. 2175 */ 2176 mblocks = 0x40000000 / BLIST_META_RADIX; 2177 if (nblks > mblocks) { 2178 printf( 2179 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2180 mblocks / 1024 / 1024 * PAGE_SIZE); 2181 nblks = mblocks; 2182 } 2183 2184 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2185 sp->sw_vp = vp; 2186 sp->sw_id = id; 2187 sp->sw_dev = dev; 2188 sp->sw_flags = 0; 2189 sp->sw_nblks = nblks; 2190 sp->sw_used = 0; 2191 sp->sw_strategy = strategy; 2192 sp->sw_close = close; 2193 sp->sw_flags = flags; 2194 2195 sp->sw_blist = blist_create(nblks, M_WAITOK); 2196 /* 2197 * Do not free the first two block in order to avoid overwriting 2198 * any bsd label at the front of the partition 2199 */ 2200 blist_free(sp->sw_blist, 2, nblks - 2); 2201 2202 dvbase = 0; 2203 mtx_lock(&sw_dev_mtx); 2204 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2205 if (tsp->sw_end >= dvbase) { 2206 /* 2207 * We put one uncovered page between the devices 2208 * in order to definitively prevent any cross-device 2209 * I/O requests 2210 */ 2211 dvbase = tsp->sw_end + 1; 2212 } 2213 } 2214 sp->sw_first = dvbase; 2215 sp->sw_end = dvbase + nblks; 2216 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2217 nswapdev++; 2218 swap_pager_avail += nblks; 2219 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2220 swapon_check_swzone(swap_total / PAGE_SIZE); 2221 swp_sizecheck(); 2222 mtx_unlock(&sw_dev_mtx); 2223 } 2224 2225 /* 2226 * SYSCALL: swapoff(devname) 2227 * 2228 * Disable swapping on the given device. 2229 * 2230 * XXX: Badly designed system call: it should use a device index 2231 * rather than filename as specification. We keep sw_vp around 2232 * only to make this work. 2233 */ 2234 #ifndef _SYS_SYSPROTO_H_ 2235 struct swapoff_args { 2236 char *name; 2237 }; 2238 #endif 2239 2240 /* 2241 * MPSAFE 2242 */ 2243 /* ARGSUSED */ 2244 int 2245 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2246 { 2247 struct vnode *vp; 2248 struct nameidata nd; 2249 struct swdevt *sp; 2250 int error; 2251 2252 error = priv_check(td, PRIV_SWAPOFF); 2253 if (error) 2254 return (error); 2255 2256 mtx_lock(&Giant); 2257 while (swdev_syscall_active) 2258 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2259 swdev_syscall_active = 1; 2260 2261 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2262 td); 2263 error = namei(&nd); 2264 if (error) 2265 goto done; 2266 NDFREE(&nd, NDF_ONLY_PNBUF); 2267 vp = nd.ni_vp; 2268 2269 mtx_lock(&sw_dev_mtx); 2270 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2271 if (sp->sw_vp == vp) 2272 break; 2273 } 2274 mtx_unlock(&sw_dev_mtx); 2275 if (sp == NULL) { 2276 error = EINVAL; 2277 goto done; 2278 } 2279 error = swapoff_one(sp, td->td_ucred); 2280 done: 2281 swdev_syscall_active = 0; 2282 wakeup_one(&swdev_syscall_active); 2283 mtx_unlock(&Giant); 2284 return (error); 2285 } 2286 2287 static int 2288 swapoff_one(struct swdevt *sp, struct ucred *cred) 2289 { 2290 u_long nblks, dvbase; 2291 #ifdef MAC 2292 int error; 2293 #endif 2294 2295 mtx_assert(&Giant, MA_OWNED); 2296 #ifdef MAC 2297 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2298 error = mac_system_check_swapoff(cred, sp->sw_vp); 2299 (void) VOP_UNLOCK(sp->sw_vp, 0); 2300 if (error != 0) 2301 return (error); 2302 #endif 2303 nblks = sp->sw_nblks; 2304 2305 /* 2306 * We can turn off this swap device safely only if the 2307 * available virtual memory in the system will fit the amount 2308 * of data we will have to page back in, plus an epsilon so 2309 * the system doesn't become critically low on swap space. 2310 */ 2311 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2312 nblks + nswap_lowat) { 2313 return (ENOMEM); 2314 } 2315 2316 /* 2317 * Prevent further allocations on this device. 2318 */ 2319 mtx_lock(&sw_dev_mtx); 2320 sp->sw_flags |= SW_CLOSING; 2321 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2322 swap_pager_avail -= blist_fill(sp->sw_blist, 2323 dvbase, dmmax); 2324 } 2325 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2326 mtx_unlock(&sw_dev_mtx); 2327 2328 /* 2329 * Page in the contents of the device and close it. 2330 */ 2331 swap_pager_swapoff(sp); 2332 2333 sp->sw_close(curthread, sp); 2334 sp->sw_id = NULL; 2335 mtx_lock(&sw_dev_mtx); 2336 TAILQ_REMOVE(&swtailq, sp, sw_list); 2337 nswapdev--; 2338 if (nswapdev == 0) { 2339 swap_pager_full = 2; 2340 swap_pager_almost_full = 1; 2341 } 2342 if (swdevhd == sp) 2343 swdevhd = NULL; 2344 mtx_unlock(&sw_dev_mtx); 2345 blist_destroy(sp->sw_blist); 2346 free(sp, M_VMPGDATA); 2347 return (0); 2348 } 2349 2350 void 2351 swapoff_all(void) 2352 { 2353 struct swdevt *sp, *spt; 2354 const char *devname; 2355 int error; 2356 2357 mtx_lock(&Giant); 2358 while (swdev_syscall_active) 2359 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2360 swdev_syscall_active = 1; 2361 2362 mtx_lock(&sw_dev_mtx); 2363 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2364 mtx_unlock(&sw_dev_mtx); 2365 if (vn_isdisk(sp->sw_vp, NULL)) 2366 devname = devtoname(sp->sw_vp->v_rdev); 2367 else 2368 devname = "[file]"; 2369 error = swapoff_one(sp, thread0.td_ucred); 2370 if (error != 0) { 2371 printf("Cannot remove swap device %s (error=%d), " 2372 "skipping.\n", devname, error); 2373 } else if (bootverbose) { 2374 printf("Swap device %s removed.\n", devname); 2375 } 2376 mtx_lock(&sw_dev_mtx); 2377 } 2378 mtx_unlock(&sw_dev_mtx); 2379 2380 swdev_syscall_active = 0; 2381 wakeup_one(&swdev_syscall_active); 2382 mtx_unlock(&Giant); 2383 } 2384 2385 void 2386 swap_pager_status(int *total, int *used) 2387 { 2388 struct swdevt *sp; 2389 2390 *total = 0; 2391 *used = 0; 2392 mtx_lock(&sw_dev_mtx); 2393 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2394 *total += sp->sw_nblks; 2395 *used += sp->sw_used; 2396 } 2397 mtx_unlock(&sw_dev_mtx); 2398 } 2399 2400 int 2401 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2402 { 2403 struct swdevt *sp; 2404 const char *tmp_devname; 2405 int error, n; 2406 2407 n = 0; 2408 error = ENOENT; 2409 mtx_lock(&sw_dev_mtx); 2410 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2411 if (n != name) { 2412 n++; 2413 continue; 2414 } 2415 xs->xsw_version = XSWDEV_VERSION; 2416 xs->xsw_dev = sp->sw_dev; 2417 xs->xsw_flags = sp->sw_flags; 2418 xs->xsw_nblks = sp->sw_nblks; 2419 xs->xsw_used = sp->sw_used; 2420 if (devname != NULL) { 2421 if (vn_isdisk(sp->sw_vp, NULL)) 2422 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2423 else 2424 tmp_devname = "[file]"; 2425 strncpy(devname, tmp_devname, len); 2426 } 2427 error = 0; 2428 break; 2429 } 2430 mtx_unlock(&sw_dev_mtx); 2431 return (error); 2432 } 2433 2434 static int 2435 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2436 { 2437 struct xswdev xs; 2438 int error; 2439 2440 if (arg2 != 1) /* name length */ 2441 return (EINVAL); 2442 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2443 if (error != 0) 2444 return (error); 2445 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2446 return (error); 2447 } 2448 2449 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2450 "Number of swap devices"); 2451 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2452 "Swap statistics by device"); 2453 2454 /* 2455 * vmspace_swap_count() - count the approximate swap usage in pages for a 2456 * vmspace. 2457 * 2458 * The map must be locked. 2459 * 2460 * Swap usage is determined by taking the proportional swap used by 2461 * VM objects backing the VM map. To make up for fractional losses, 2462 * if the VM object has any swap use at all the associated map entries 2463 * count for at least 1 swap page. 2464 */ 2465 long 2466 vmspace_swap_count(struct vmspace *vmspace) 2467 { 2468 vm_map_t map; 2469 vm_map_entry_t cur; 2470 vm_object_t object; 2471 long count, n; 2472 2473 map = &vmspace->vm_map; 2474 count = 0; 2475 2476 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2477 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2478 (object = cur->object.vm_object) != NULL) { 2479 VM_OBJECT_WLOCK(object); 2480 if (object->type == OBJT_SWAP && 2481 object->un_pager.swp.swp_bcount != 0) { 2482 n = (cur->end - cur->start) / PAGE_SIZE; 2483 count += object->un_pager.swp.swp_bcount * 2484 SWAP_META_PAGES * n / object->size + 1; 2485 } 2486 VM_OBJECT_WUNLOCK(object); 2487 } 2488 } 2489 return (count); 2490 } 2491 2492 /* 2493 * GEOM backend 2494 * 2495 * Swapping onto disk devices. 2496 * 2497 */ 2498 2499 static g_orphan_t swapgeom_orphan; 2500 2501 static struct g_class g_swap_class = { 2502 .name = "SWAP", 2503 .version = G_VERSION, 2504 .orphan = swapgeom_orphan, 2505 }; 2506 2507 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2508 2509 2510 static void 2511 swapgeom_done(struct bio *bp2) 2512 { 2513 struct buf *bp; 2514 2515 bp = bp2->bio_caller2; 2516 bp->b_ioflags = bp2->bio_flags; 2517 if (bp2->bio_error) 2518 bp->b_ioflags |= BIO_ERROR; 2519 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2520 bp->b_error = bp2->bio_error; 2521 bufdone(bp); 2522 g_destroy_bio(bp2); 2523 } 2524 2525 static void 2526 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2527 { 2528 struct bio *bio; 2529 struct g_consumer *cp; 2530 2531 cp = sp->sw_id; 2532 if (cp == NULL) { 2533 bp->b_error = ENXIO; 2534 bp->b_ioflags |= BIO_ERROR; 2535 bufdone(bp); 2536 return; 2537 } 2538 if (bp->b_iocmd == BIO_WRITE) 2539 bio = g_new_bio(); 2540 else 2541 bio = g_alloc_bio(); 2542 if (bio == NULL) { 2543 bp->b_error = ENOMEM; 2544 bp->b_ioflags |= BIO_ERROR; 2545 bufdone(bp); 2546 return; 2547 } 2548 2549 bio->bio_caller2 = bp; 2550 bio->bio_cmd = bp->b_iocmd; 2551 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2552 bio->bio_length = bp->b_bcount; 2553 bio->bio_done = swapgeom_done; 2554 if ((bp->b_flags & B_UNMAPPED) != 0) { 2555 bio->bio_ma = bp->b_pages; 2556 bio->bio_data = unmapped_buf; 2557 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2558 bio->bio_ma_n = bp->b_npages; 2559 bio->bio_flags |= BIO_UNMAPPED; 2560 } else { 2561 bio->bio_data = bp->b_data; 2562 bio->bio_ma = NULL; 2563 } 2564 g_io_request(bio, cp); 2565 return; 2566 } 2567 2568 static void 2569 swapgeom_orphan(struct g_consumer *cp) 2570 { 2571 struct swdevt *sp; 2572 2573 mtx_lock(&sw_dev_mtx); 2574 TAILQ_FOREACH(sp, &swtailq, sw_list) 2575 if (sp->sw_id == cp) 2576 sp->sw_flags |= SW_CLOSING; 2577 mtx_unlock(&sw_dev_mtx); 2578 } 2579 2580 static void 2581 swapgeom_close_ev(void *arg, int flags) 2582 { 2583 struct g_consumer *cp; 2584 2585 cp = arg; 2586 g_access(cp, -1, -1, 0); 2587 g_detach(cp); 2588 g_destroy_consumer(cp); 2589 } 2590 2591 static void 2592 swapgeom_close(struct thread *td, struct swdevt *sw) 2593 { 2594 2595 /* XXX: direct call when Giant untangled */ 2596 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2597 } 2598 2599 2600 struct swh0h0 { 2601 struct cdev *dev; 2602 struct vnode *vp; 2603 int error; 2604 }; 2605 2606 static void 2607 swapongeom_ev(void *arg, int flags) 2608 { 2609 struct swh0h0 *swh; 2610 struct g_provider *pp; 2611 struct g_consumer *cp; 2612 static struct g_geom *gp; 2613 struct swdevt *sp; 2614 u_long nblks; 2615 int error; 2616 2617 swh = arg; 2618 swh->error = 0; 2619 pp = g_dev_getprovider(swh->dev); 2620 if (pp == NULL) { 2621 swh->error = ENODEV; 2622 return; 2623 } 2624 mtx_lock(&sw_dev_mtx); 2625 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2626 cp = sp->sw_id; 2627 if (cp != NULL && cp->provider == pp) { 2628 mtx_unlock(&sw_dev_mtx); 2629 swh->error = EBUSY; 2630 return; 2631 } 2632 } 2633 mtx_unlock(&sw_dev_mtx); 2634 if (gp == NULL) 2635 gp = g_new_geomf(&g_swap_class, "swap"); 2636 cp = g_new_consumer(gp); 2637 g_attach(cp, pp); 2638 /* 2639 * XXX: Everytime you think you can improve the margin for 2640 * footshooting, somebody depends on the ability to do so: 2641 * savecore(8) wants to write to our swapdev so we cannot 2642 * set an exclusive count :-( 2643 */ 2644 error = g_access(cp, 1, 1, 0); 2645 if (error) { 2646 g_detach(cp); 2647 g_destroy_consumer(cp); 2648 swh->error = error; 2649 return; 2650 } 2651 nblks = pp->mediasize / DEV_BSIZE; 2652 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2653 swapgeom_close, dev2udev(swh->dev), 2654 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2655 swh->error = 0; 2656 } 2657 2658 static int 2659 swapongeom(struct thread *td, struct vnode *vp) 2660 { 2661 int error; 2662 struct swh0h0 swh; 2663 2664 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2665 2666 swh.dev = vp->v_rdev; 2667 swh.vp = vp; 2668 swh.error = 0; 2669 /* XXX: direct call when Giant untangled */ 2670 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2671 if (!error) 2672 error = swh.error; 2673 VOP_UNLOCK(vp, 0); 2674 return (error); 2675 } 2676 2677 /* 2678 * VNODE backend 2679 * 2680 * This is used mainly for network filesystem (read: probably only tested 2681 * with NFS) swapfiles. 2682 * 2683 */ 2684 2685 static void 2686 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2687 { 2688 struct vnode *vp2; 2689 2690 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2691 2692 vp2 = sp->sw_id; 2693 vhold(vp2); 2694 if (bp->b_iocmd == BIO_WRITE) { 2695 if (bp->b_bufobj) 2696 bufobj_wdrop(bp->b_bufobj); 2697 bufobj_wref(&vp2->v_bufobj); 2698 } 2699 if (bp->b_bufobj != &vp2->v_bufobj) 2700 bp->b_bufobj = &vp2->v_bufobj; 2701 bp->b_vp = vp2; 2702 bp->b_iooffset = dbtob(bp->b_blkno); 2703 bstrategy(bp); 2704 return; 2705 } 2706 2707 static void 2708 swapdev_close(struct thread *td, struct swdevt *sp) 2709 { 2710 2711 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2712 vrele(sp->sw_vp); 2713 } 2714 2715 2716 static int 2717 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2718 { 2719 struct swdevt *sp; 2720 int error; 2721 2722 if (nblks == 0) 2723 return (ENXIO); 2724 mtx_lock(&sw_dev_mtx); 2725 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2726 if (sp->sw_id == vp) { 2727 mtx_unlock(&sw_dev_mtx); 2728 return (EBUSY); 2729 } 2730 } 2731 mtx_unlock(&sw_dev_mtx); 2732 2733 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2734 #ifdef MAC 2735 error = mac_system_check_swapon(td->td_ucred, vp); 2736 if (error == 0) 2737 #endif 2738 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2739 (void) VOP_UNLOCK(vp, 0); 2740 if (error) 2741 return (error); 2742 2743 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2744 NODEV, 0); 2745 return (0); 2746 } 2747