1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/bio.h> 76 #include <sys/buf.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sysctl.h> 81 #include <sys/blist.h> 82 #include <sys/lock.h> 83 #include <sys/sx.h> 84 #include <sys/vmmeter.h> 85 86 #ifndef MAX_PAGEOUT_CLUSTER 87 #define MAX_PAGEOUT_CLUSTER 16 88 #endif 89 90 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 91 92 #include "opt_swap.h" 93 #include <vm/vm.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_object.h> 98 #include <vm/vm_page.h> 99 #include <vm/vm_pager.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_zone.h> 102 #include <vm/swap_pager.h> 103 #include <vm/vm_extern.h> 104 105 #define SWM_FREE 0x02 /* free, period */ 106 #define SWM_POP 0x04 /* pop out */ 107 108 /* 109 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 110 * in the old system. 111 */ 112 113 extern int vm_swap_size; /* number of free swap blocks, in pages */ 114 115 int swap_pager_full; /* swap space exhaustion (task killing) */ 116 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 117 static int nsw_rcount; /* free read buffers */ 118 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 119 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 120 static int nsw_wcount_async_max;/* assigned maximum */ 121 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 122 123 struct blist *swapblist; 124 static struct swblock **swhash; 125 static int swhash_mask; 126 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 127 static struct sx sw_alloc_sx; 128 129 /* from vm_swap.c */ 130 extern struct vnode *swapdev_vp; 131 extern struct swdevt *swdevt; 132 extern int nswdev; 133 134 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 135 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 136 137 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 138 139 /* 140 * "named" and "unnamed" anon region objects. Try to reduce the overhead 141 * of searching a named list by hashing it just a little. 142 */ 143 144 #define NOBJLISTS 8 145 146 #define NOBJLIST(handle) \ 147 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 148 149 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 150 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 151 struct pagerlst swap_pager_un_object_list; 152 vm_zone_t swap_zone; 153 154 /* 155 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 156 * calls hooked from other parts of the VM system and do not appear here. 157 * (see vm/swap_pager.h). 158 */ 159 160 static vm_object_t 161 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 162 vm_prot_t prot, vm_ooffset_t offset)); 163 static void swap_pager_dealloc __P((vm_object_t object)); 164 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 165 static void swap_pager_init __P((void)); 166 static void swap_pager_unswapped __P((vm_page_t)); 167 static void swap_pager_strategy __P((vm_object_t, struct bio *)); 168 169 struct pagerops swappagerops = { 170 swap_pager_init, /* early system initialization of pager */ 171 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 172 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 173 swap_pager_getpages, /* pagein */ 174 swap_pager_putpages, /* pageout */ 175 swap_pager_haspage, /* get backing store status for page */ 176 swap_pager_unswapped, /* remove swap related to page */ 177 swap_pager_strategy /* pager strategy call */ 178 }; 179 180 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 181 static void flushchainbuf(struct buf *nbp); 182 static void waitchainbuf(struct bio *bp, int count, int done); 183 184 /* 185 * dmmax is in page-sized chunks with the new swap system. It was 186 * dev-bsized chunks in the old. dmmax is always a power of 2. 187 * 188 * swap_*() routines are externally accessible. swp_*() routines are 189 * internal. 190 */ 191 192 int dmmax; 193 static int dmmax_mask; 194 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 195 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 196 197 SYSCTL_INT(_vm, OID_AUTO, dmmax, 198 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 199 200 static __inline void swp_sizecheck __P((void)); 201 static void swp_pager_sync_iodone __P((struct buf *bp)); 202 static void swp_pager_async_iodone __P((struct buf *bp)); 203 204 /* 205 * Swap bitmap functions 206 */ 207 208 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 209 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 210 211 /* 212 * Metadata functions 213 */ 214 215 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 216 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 217 static void swp_pager_meta_free_all __P((vm_object_t)); 218 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 219 220 /* 221 * SWP_SIZECHECK() - update swap_pager_full indication 222 * 223 * update the swap_pager_almost_full indication and warn when we are 224 * about to run out of swap space, using lowat/hiwat hysteresis. 225 * 226 * Clear swap_pager_full ( task killing ) indication when lowat is met. 227 * 228 * No restrictions on call 229 * This routine may not block. 230 * This routine must be called at splvm() 231 */ 232 233 static __inline void 234 swp_sizecheck() 235 { 236 GIANT_REQUIRED; 237 238 if (vm_swap_size < nswap_lowat) { 239 if (swap_pager_almost_full == 0) { 240 printf("swap_pager: out of swap space\n"); 241 swap_pager_almost_full = 1; 242 } 243 } else { 244 swap_pager_full = 0; 245 if (vm_swap_size > nswap_hiwat) 246 swap_pager_almost_full = 0; 247 } 248 } 249 250 /* 251 * SWAP_PAGER_INIT() - initialize the swap pager! 252 * 253 * Expected to be started from system init. NOTE: This code is run 254 * before much else so be careful what you depend on. Most of the VM 255 * system has yet to be initialized at this point. 256 */ 257 258 static void 259 swap_pager_init() 260 { 261 /* 262 * Initialize object lists 263 */ 264 int i; 265 266 for (i = 0; i < NOBJLISTS; ++i) 267 TAILQ_INIT(&swap_pager_object_list[i]); 268 TAILQ_INIT(&swap_pager_un_object_list); 269 mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF); 270 271 /* 272 * Device Stripe, in PAGE_SIZE'd blocks 273 */ 274 275 dmmax = SWB_NPAGES * 2; 276 dmmax_mask = ~(dmmax - 1); 277 } 278 279 /* 280 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 281 * 282 * Expected to be started from pageout process once, prior to entering 283 * its main loop. 284 */ 285 286 void 287 swap_pager_swap_init() 288 { 289 int n, n2; 290 291 /* 292 * Number of in-transit swap bp operations. Don't 293 * exhaust the pbufs completely. Make sure we 294 * initialize workable values (0 will work for hysteresis 295 * but it isn't very efficient). 296 * 297 * The nsw_cluster_max is constrained by the bp->b_pages[] 298 * array (MAXPHYS/PAGE_SIZE) and our locally defined 299 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 300 * constrained by the swap device interleave stripe size. 301 * 302 * Currently we hardwire nsw_wcount_async to 4. This limit is 303 * designed to prevent other I/O from having high latencies due to 304 * our pageout I/O. The value 4 works well for one or two active swap 305 * devices but is probably a little low if you have more. Even so, 306 * a higher value would probably generate only a limited improvement 307 * with three or four active swap devices since the system does not 308 * typically have to pageout at extreme bandwidths. We will want 309 * at least 2 per swap devices, and 4 is a pretty good value if you 310 * have one NFS swap device due to the command/ack latency over NFS. 311 * So it all works out pretty well. 312 */ 313 314 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 315 316 mtx_lock(&pbuf_mtx); 317 nsw_rcount = (nswbuf + 1) / 2; 318 nsw_wcount_sync = (nswbuf + 3) / 4; 319 nsw_wcount_async = 4; 320 nsw_wcount_async_max = nsw_wcount_async; 321 mtx_unlock(&pbuf_mtx); 322 323 /* 324 * Initialize our zone. Right now I'm just guessing on the number 325 * we need based on the number of pages in the system. Each swblock 326 * can hold 16 pages, so this is probably overkill. 327 */ 328 329 n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2; 330 n2 = n; 331 332 do { 333 swap_zone = zinit( 334 "SWAPMETA", 335 sizeof(struct swblock), 336 n, 337 ZONE_INTERRUPT, 338 1 339 ); 340 if (swap_zone != NULL) 341 break; 342 /* 343 * if the allocation failed, try a zone two thirds the 344 * size of the previous attempt. 345 */ 346 n -= ((n + 2) / 3); 347 } while (n > 0); 348 349 if (swap_zone == NULL) 350 panic("failed to zinit swap_zone."); 351 if (n2 != n) 352 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 353 n2 = n; 354 355 /* 356 * Initialize our meta-data hash table. The swapper does not need to 357 * be quite as efficient as the VM system, so we do not use an 358 * oversized hash table. 359 * 360 * n: size of hash table, must be power of 2 361 * swhash_mask: hash table index mask 362 */ 363 364 for (n = 1; n < n2 / 8; n *= 2) 365 ; 366 367 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 368 369 swhash_mask = n - 1; 370 } 371 372 /* 373 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 374 * its metadata structures. 375 * 376 * This routine is called from the mmap and fork code to create a new 377 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 378 * and then converting it with swp_pager_meta_build(). 379 * 380 * This routine may block in vm_object_allocate() and create a named 381 * object lookup race, so we must interlock. We must also run at 382 * splvm() for the object lookup to handle races with interrupts, but 383 * we do not have to maintain splvm() in between the lookup and the 384 * add because (I believe) it is not possible to attempt to create 385 * a new swap object w/handle when a default object with that handle 386 * already exists. 387 */ 388 389 static vm_object_t 390 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 391 vm_ooffset_t offset) 392 { 393 vm_object_t object; 394 395 GIANT_REQUIRED; 396 397 if (handle) { 398 /* 399 * Reference existing named region or allocate new one. There 400 * should not be a race here against swp_pager_meta_build() 401 * as called from vm_page_remove() in regards to the lookup 402 * of the handle. 403 */ 404 sx_xlock(&sw_alloc_sx); 405 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 406 407 if (object != NULL) { 408 vm_object_reference(object); 409 } else { 410 object = vm_object_allocate(OBJT_DEFAULT, 411 OFF_TO_IDX(offset + PAGE_MASK + size)); 412 object->handle = handle; 413 414 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 415 } 416 sx_xunlock(&sw_alloc_sx); 417 } else { 418 object = vm_object_allocate(OBJT_DEFAULT, 419 OFF_TO_IDX(offset + PAGE_MASK + size)); 420 421 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 422 } 423 424 return (object); 425 } 426 427 /* 428 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 429 * 430 * The swap backing for the object is destroyed. The code is 431 * designed such that we can reinstantiate it later, but this 432 * routine is typically called only when the entire object is 433 * about to be destroyed. 434 * 435 * This routine may block, but no longer does. 436 * 437 * The object must be locked or unreferenceable. 438 */ 439 440 static void 441 swap_pager_dealloc(object) 442 vm_object_t object; 443 { 444 int s; 445 446 GIANT_REQUIRED; 447 448 /* 449 * Remove from list right away so lookups will fail if we block for 450 * pageout completion. 451 */ 452 mtx_lock(&sw_alloc_mtx); 453 if (object->handle == NULL) { 454 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 455 } else { 456 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 457 } 458 mtx_unlock(&sw_alloc_mtx); 459 460 vm_object_pip_wait(object, "swpdea"); 461 462 /* 463 * Free all remaining metadata. We only bother to free it from 464 * the swap meta data. We do not attempt to free swapblk's still 465 * associated with vm_page_t's for this object. We do not care 466 * if paging is still in progress on some objects. 467 */ 468 s = splvm(); 469 swp_pager_meta_free_all(object); 470 splx(s); 471 } 472 473 /************************************************************************ 474 * SWAP PAGER BITMAP ROUTINES * 475 ************************************************************************/ 476 477 /* 478 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 479 * 480 * Allocate swap for the requested number of pages. The starting 481 * swap block number (a page index) is returned or SWAPBLK_NONE 482 * if the allocation failed. 483 * 484 * Also has the side effect of advising that somebody made a mistake 485 * when they configured swap and didn't configure enough. 486 * 487 * Must be called at splvm() to avoid races with bitmap frees from 488 * vm_page_remove() aka swap_pager_page_removed(). 489 * 490 * This routine may not block 491 * This routine must be called at splvm(). 492 */ 493 494 static __inline daddr_t 495 swp_pager_getswapspace(npages) 496 int npages; 497 { 498 daddr_t blk; 499 500 GIANT_REQUIRED; 501 502 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 503 if (swap_pager_full != 2) { 504 printf("swap_pager_getswapspace: failed\n"); 505 swap_pager_full = 2; 506 swap_pager_almost_full = 1; 507 } 508 } else { 509 vm_swap_size -= npages; 510 /* per-swap area stats */ 511 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 512 swp_sizecheck(); 513 } 514 return(blk); 515 } 516 517 /* 518 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 519 * 520 * This routine returns the specified swap blocks back to the bitmap. 521 * 522 * Note: This routine may not block (it could in the old swap code), 523 * and through the use of the new blist routines it does not block. 524 * 525 * We must be called at splvm() to avoid races with bitmap frees from 526 * vm_page_remove() aka swap_pager_page_removed(). 527 * 528 * This routine may not block 529 * This routine must be called at splvm(). 530 */ 531 532 static __inline void 533 swp_pager_freeswapspace(blk, npages) 534 daddr_t blk; 535 int npages; 536 { 537 GIANT_REQUIRED; 538 539 blist_free(swapblist, blk, npages); 540 vm_swap_size += npages; 541 /* per-swap area stats */ 542 swdevt[BLK2DEVIDX(blk)].sw_used -= npages; 543 swp_sizecheck(); 544 } 545 546 /* 547 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 548 * range within an object. 549 * 550 * This is a globally accessible routine. 551 * 552 * This routine removes swapblk assignments from swap metadata. 553 * 554 * The external callers of this routine typically have already destroyed 555 * or renamed vm_page_t's associated with this range in the object so 556 * we should be ok. 557 * 558 * This routine may be called at any spl. We up our spl to splvm temporarily 559 * in order to perform the metadata removal. 560 */ 561 562 void 563 swap_pager_freespace(object, start, size) 564 vm_object_t object; 565 vm_pindex_t start; 566 vm_size_t size; 567 { 568 int s = splvm(); 569 570 GIANT_REQUIRED; 571 swp_pager_meta_free(object, start, size); 572 splx(s); 573 } 574 575 /* 576 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 577 * 578 * Assigns swap blocks to the specified range within the object. The 579 * swap blocks are not zerod. Any previous swap assignment is destroyed. 580 * 581 * Returns 0 on success, -1 on failure. 582 */ 583 584 int 585 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 586 { 587 int s; 588 int n = 0; 589 daddr_t blk = SWAPBLK_NONE; 590 vm_pindex_t beg = start; /* save start index */ 591 592 s = splvm(); 593 while (size) { 594 if (n == 0) { 595 n = BLIST_MAX_ALLOC; 596 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 597 n >>= 1; 598 if (n == 0) { 599 swp_pager_meta_free(object, beg, start - beg); 600 splx(s); 601 return(-1); 602 } 603 } 604 } 605 swp_pager_meta_build(object, start, blk); 606 --size; 607 ++start; 608 ++blk; 609 --n; 610 } 611 swp_pager_meta_free(object, start, n); 612 splx(s); 613 return(0); 614 } 615 616 /* 617 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 618 * and destroy the source. 619 * 620 * Copy any valid swapblks from the source to the destination. In 621 * cases where both the source and destination have a valid swapblk, 622 * we keep the destination's. 623 * 624 * This routine is allowed to block. It may block allocating metadata 625 * indirectly through swp_pager_meta_build() or if paging is still in 626 * progress on the source. 627 * 628 * This routine can be called at any spl 629 * 630 * XXX vm_page_collapse() kinda expects us not to block because we 631 * supposedly do not need to allocate memory, but for the moment we 632 * *may* have to get a little memory from the zone allocator, but 633 * it is taken from the interrupt memory. We should be ok. 634 * 635 * The source object contains no vm_page_t's (which is just as well) 636 * 637 * The source object is of type OBJT_SWAP. 638 * 639 * The source and destination objects must be locked or 640 * inaccessible (XXX are they ?) 641 */ 642 643 void 644 swap_pager_copy(srcobject, dstobject, offset, destroysource) 645 vm_object_t srcobject; 646 vm_object_t dstobject; 647 vm_pindex_t offset; 648 int destroysource; 649 { 650 vm_pindex_t i; 651 int s; 652 653 GIANT_REQUIRED; 654 655 s = splvm(); 656 /* 657 * If destroysource is set, we remove the source object from the 658 * swap_pager internal queue now. 659 */ 660 661 if (destroysource) { 662 mtx_lock(&sw_alloc_mtx); 663 if (srcobject->handle == NULL) { 664 TAILQ_REMOVE( 665 &swap_pager_un_object_list, 666 srcobject, 667 pager_object_list 668 ); 669 } else { 670 TAILQ_REMOVE( 671 NOBJLIST(srcobject->handle), 672 srcobject, 673 pager_object_list 674 ); 675 } 676 mtx_unlock(&sw_alloc_mtx); 677 } 678 679 /* 680 * transfer source to destination. 681 */ 682 683 for (i = 0; i < dstobject->size; ++i) { 684 daddr_t dstaddr; 685 686 /* 687 * Locate (without changing) the swapblk on the destination, 688 * unless it is invalid in which case free it silently, or 689 * if the destination is a resident page, in which case the 690 * source is thrown away. 691 */ 692 693 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 694 695 if (dstaddr == SWAPBLK_NONE) { 696 /* 697 * Destination has no swapblk and is not resident, 698 * copy source. 699 */ 700 daddr_t srcaddr; 701 702 srcaddr = swp_pager_meta_ctl( 703 srcobject, 704 i + offset, 705 SWM_POP 706 ); 707 708 if (srcaddr != SWAPBLK_NONE) 709 swp_pager_meta_build(dstobject, i, srcaddr); 710 } else { 711 /* 712 * Destination has valid swapblk or it is represented 713 * by a resident page. We destroy the sourceblock. 714 */ 715 716 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 717 } 718 } 719 720 /* 721 * Free left over swap blocks in source. 722 * 723 * We have to revert the type to OBJT_DEFAULT so we do not accidently 724 * double-remove the object from the swap queues. 725 */ 726 727 if (destroysource) { 728 swp_pager_meta_free_all(srcobject); 729 /* 730 * Reverting the type is not necessary, the caller is going 731 * to destroy srcobject directly, but I'm doing it here 732 * for consistency since we've removed the object from its 733 * queues. 734 */ 735 srcobject->type = OBJT_DEFAULT; 736 } 737 splx(s); 738 } 739 740 /* 741 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 742 * the requested page. 743 * 744 * We determine whether good backing store exists for the requested 745 * page and return TRUE if it does, FALSE if it doesn't. 746 * 747 * If TRUE, we also try to determine how much valid, contiguous backing 748 * store exists before and after the requested page within a reasonable 749 * distance. We do not try to restrict it to the swap device stripe 750 * (that is handled in getpages/putpages). It probably isn't worth 751 * doing here. 752 */ 753 754 boolean_t 755 swap_pager_haspage(object, pindex, before, after) 756 vm_object_t object; 757 vm_pindex_t pindex; 758 int *before; 759 int *after; 760 { 761 daddr_t blk0; 762 int s; 763 764 /* 765 * do we have good backing store at the requested index ? 766 */ 767 768 s = splvm(); 769 blk0 = swp_pager_meta_ctl(object, pindex, 0); 770 771 if (blk0 == SWAPBLK_NONE) { 772 splx(s); 773 if (before) 774 *before = 0; 775 if (after) 776 *after = 0; 777 return (FALSE); 778 } 779 780 /* 781 * find backwards-looking contiguous good backing store 782 */ 783 784 if (before != NULL) { 785 int i; 786 787 for (i = 1; i < (SWB_NPAGES/2); ++i) { 788 daddr_t blk; 789 790 if (i > pindex) 791 break; 792 blk = swp_pager_meta_ctl(object, pindex - i, 0); 793 if (blk != blk0 - i) 794 break; 795 } 796 *before = (i - 1); 797 } 798 799 /* 800 * find forward-looking contiguous good backing store 801 */ 802 803 if (after != NULL) { 804 int i; 805 806 for (i = 1; i < (SWB_NPAGES/2); ++i) { 807 daddr_t blk; 808 809 blk = swp_pager_meta_ctl(object, pindex + i, 0); 810 if (blk != blk0 + i) 811 break; 812 } 813 *after = (i - 1); 814 } 815 splx(s); 816 return (TRUE); 817 } 818 819 /* 820 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 821 * 822 * This removes any associated swap backing store, whether valid or 823 * not, from the page. 824 * 825 * This routine is typically called when a page is made dirty, at 826 * which point any associated swap can be freed. MADV_FREE also 827 * calls us in a special-case situation 828 * 829 * NOTE!!! If the page is clean and the swap was valid, the caller 830 * should make the page dirty before calling this routine. This routine 831 * does NOT change the m->dirty status of the page. Also: MADV_FREE 832 * depends on it. 833 * 834 * This routine may not block 835 * This routine must be called at splvm() 836 */ 837 838 static void 839 swap_pager_unswapped(m) 840 vm_page_t m; 841 { 842 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 843 } 844 845 /* 846 * SWAP_PAGER_STRATEGY() - read, write, free blocks 847 * 848 * This implements the vm_pager_strategy() interface to swap and allows 849 * other parts of the system to directly access swap as backing store 850 * through vm_objects of type OBJT_SWAP. This is intended to be a 851 * cacheless interface ( i.e. caching occurs at higher levels ). 852 * Therefore we do not maintain any resident pages. All I/O goes 853 * directly to and from the swap device. 854 * 855 * Note that b_blkno is scaled for PAGE_SIZE 856 * 857 * We currently attempt to run I/O synchronously or asynchronously as 858 * the caller requests. This isn't perfect because we loose error 859 * sequencing when we run multiple ops in parallel to satisfy a request. 860 * But this is swap, so we let it all hang out. 861 */ 862 863 static void 864 swap_pager_strategy(vm_object_t object, struct bio *bp) 865 { 866 vm_pindex_t start; 867 int count; 868 int s; 869 char *data; 870 struct buf *nbp = NULL; 871 872 GIANT_REQUIRED; 873 874 /* XXX: KASSERT instead ? */ 875 if (bp->bio_bcount & PAGE_MASK) { 876 biofinish(bp, NULL, EINVAL); 877 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 878 return; 879 } 880 881 /* 882 * Clear error indication, initialize page index, count, data pointer. 883 */ 884 885 bp->bio_error = 0; 886 bp->bio_flags &= ~BIO_ERROR; 887 bp->bio_resid = bp->bio_bcount; 888 889 start = bp->bio_pblkno; 890 count = howmany(bp->bio_bcount, PAGE_SIZE); 891 data = bp->bio_data; 892 893 s = splvm(); 894 895 /* 896 * Deal with BIO_DELETE 897 */ 898 899 if (bp->bio_cmd == BIO_DELETE) { 900 /* 901 * FREE PAGE(s) - destroy underlying swap that is no longer 902 * needed. 903 */ 904 swp_pager_meta_free(object, start, count); 905 splx(s); 906 bp->bio_resid = 0; 907 biodone(bp); 908 return; 909 } 910 911 /* 912 * Execute read or write 913 */ 914 while (count > 0) { 915 daddr_t blk; 916 917 /* 918 * Obtain block. If block not found and writing, allocate a 919 * new block and build it into the object. 920 */ 921 922 blk = swp_pager_meta_ctl(object, start, 0); 923 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 924 blk = swp_pager_getswapspace(1); 925 if (blk == SWAPBLK_NONE) { 926 bp->bio_error = ENOMEM; 927 bp->bio_flags |= BIO_ERROR; 928 break; 929 } 930 swp_pager_meta_build(object, start, blk); 931 } 932 933 /* 934 * Do we have to flush our current collection? Yes if: 935 * 936 * - no swap block at this index 937 * - swap block is not contiguous 938 * - we cross a physical disk boundry in the 939 * stripe. 940 */ 941 942 if ( 943 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 944 ((nbp->b_blkno ^ blk) & dmmax_mask) 945 ) 946 ) { 947 splx(s); 948 if (bp->bio_cmd == BIO_READ) { 949 ++cnt.v_swapin; 950 cnt.v_swappgsin += btoc(nbp->b_bcount); 951 } else { 952 ++cnt.v_swapout; 953 cnt.v_swappgsout += btoc(nbp->b_bcount); 954 nbp->b_dirtyend = nbp->b_bcount; 955 } 956 flushchainbuf(nbp); 957 s = splvm(); 958 nbp = NULL; 959 } 960 961 /* 962 * Add new swapblk to nbp, instantiating nbp if necessary. 963 * Zero-fill reads are able to take a shortcut. 964 */ 965 966 if (blk == SWAPBLK_NONE) { 967 /* 968 * We can only get here if we are reading. Since 969 * we are at splvm() we can safely modify b_resid, 970 * even if chain ops are in progress. 971 */ 972 bzero(data, PAGE_SIZE); 973 bp->bio_resid -= PAGE_SIZE; 974 } else { 975 if (nbp == NULL) { 976 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 977 nbp->b_blkno = blk; 978 nbp->b_bcount = 0; 979 nbp->b_data = data; 980 } 981 nbp->b_bcount += PAGE_SIZE; 982 } 983 --count; 984 ++start; 985 data += PAGE_SIZE; 986 } 987 988 /* 989 * Flush out last buffer 990 */ 991 992 splx(s); 993 994 if (nbp) { 995 if (nbp->b_iocmd == BIO_READ) { 996 ++cnt.v_swapin; 997 cnt.v_swappgsin += btoc(nbp->b_bcount); 998 } else { 999 ++cnt.v_swapout; 1000 cnt.v_swappgsout += btoc(nbp->b_bcount); 1001 nbp->b_dirtyend = nbp->b_bcount; 1002 } 1003 flushchainbuf(nbp); 1004 /* nbp = NULL; */ 1005 } 1006 /* 1007 * Wait for completion. 1008 */ 1009 1010 waitchainbuf(bp, 0, 1); 1011 } 1012 1013 /* 1014 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1015 * 1016 * Attempt to retrieve (m, count) pages from backing store, but make 1017 * sure we retrieve at least m[reqpage]. We try to load in as large 1018 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1019 * belongs to the same object. 1020 * 1021 * The code is designed for asynchronous operation and 1022 * immediate-notification of 'reqpage' but tends not to be 1023 * used that way. Please do not optimize-out this algorithmic 1024 * feature, I intend to improve on it in the future. 1025 * 1026 * The parent has a single vm_object_pip_add() reference prior to 1027 * calling us and we should return with the same. 1028 * 1029 * The parent has BUSY'd the pages. We should return with 'm' 1030 * left busy, but the others adjusted. 1031 */ 1032 1033 static int 1034 swap_pager_getpages(object, m, count, reqpage) 1035 vm_object_t object; 1036 vm_page_t *m; 1037 int count, reqpage; 1038 { 1039 struct buf *bp; 1040 vm_page_t mreq; 1041 int s; 1042 int i; 1043 int j; 1044 daddr_t blk; 1045 vm_offset_t kva; 1046 vm_pindex_t lastpindex; 1047 1048 GIANT_REQUIRED; 1049 1050 mreq = m[reqpage]; 1051 1052 if (mreq->object != object) { 1053 panic("swap_pager_getpages: object mismatch %p/%p", 1054 object, 1055 mreq->object 1056 ); 1057 } 1058 /* 1059 * Calculate range to retrieve. The pages have already been assigned 1060 * their swapblks. We require a *contiguous* range that falls entirely 1061 * within a single device stripe. If we do not supply it, bad things 1062 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1063 * loops are set up such that the case(s) are handled implicitly. 1064 * 1065 * The swp_*() calls must be made at splvm(). vm_page_free() does 1066 * not need to be, but it will go a little faster if it is. 1067 */ 1068 1069 s = splvm(); 1070 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1071 1072 for (i = reqpage - 1; i >= 0; --i) { 1073 daddr_t iblk; 1074 1075 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1076 if (blk != iblk + (reqpage - i)) 1077 break; 1078 if ((blk ^ iblk) & dmmax_mask) 1079 break; 1080 } 1081 ++i; 1082 1083 for (j = reqpage + 1; j < count; ++j) { 1084 daddr_t jblk; 1085 1086 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1087 if (blk != jblk - (j - reqpage)) 1088 break; 1089 if ((blk ^ jblk) & dmmax_mask) 1090 break; 1091 } 1092 1093 /* 1094 * free pages outside our collection range. Note: we never free 1095 * mreq, it must remain busy throughout. 1096 */ 1097 1098 { 1099 int k; 1100 1101 for (k = 0; k < i; ++k) 1102 vm_page_free(m[k]); 1103 for (k = j; k < count; ++k) 1104 vm_page_free(m[k]); 1105 } 1106 splx(s); 1107 1108 1109 /* 1110 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1111 * still busy, but the others unbusied. 1112 */ 1113 1114 if (blk == SWAPBLK_NONE) 1115 return(VM_PAGER_FAIL); 1116 1117 /* 1118 * Get a swap buffer header to perform the IO 1119 */ 1120 1121 bp = getpbuf(&nsw_rcount); 1122 kva = (vm_offset_t) bp->b_data; 1123 1124 /* 1125 * map our page(s) into kva for input 1126 * 1127 * NOTE: B_PAGING is set by pbgetvp() 1128 */ 1129 1130 pmap_qenter(kva, m + i, j - i); 1131 1132 bp->b_iocmd = BIO_READ; 1133 bp->b_iodone = swp_pager_async_iodone; 1134 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1135 bp->b_data = (caddr_t) kva; 1136 crhold(bp->b_rcred); 1137 crhold(bp->b_wcred); 1138 bp->b_blkno = blk - (reqpage - i); 1139 bp->b_bcount = PAGE_SIZE * (j - i); 1140 bp->b_bufsize = PAGE_SIZE * (j - i); 1141 bp->b_pager.pg_reqpage = reqpage - i; 1142 1143 { 1144 int k; 1145 1146 for (k = i; k < j; ++k) { 1147 bp->b_pages[k - i] = m[k]; 1148 vm_page_flag_set(m[k], PG_SWAPINPROG); 1149 } 1150 } 1151 bp->b_npages = j - i; 1152 1153 pbgetvp(swapdev_vp, bp); 1154 1155 cnt.v_swapin++; 1156 cnt.v_swappgsin += bp->b_npages; 1157 1158 /* 1159 * We still hold the lock on mreq, and our automatic completion routine 1160 * does not remove it. 1161 */ 1162 1163 vm_object_pip_add(mreq->object, bp->b_npages); 1164 lastpindex = m[j-1]->pindex; 1165 1166 /* 1167 * perform the I/O. NOTE!!! bp cannot be considered valid after 1168 * this point because we automatically release it on completion. 1169 * Instead, we look at the one page we are interested in which we 1170 * still hold a lock on even through the I/O completion. 1171 * 1172 * The other pages in our m[] array are also released on completion, 1173 * so we cannot assume they are valid anymore either. 1174 * 1175 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1176 */ 1177 BUF_KERNPROC(bp); 1178 BUF_STRATEGY(bp); 1179 1180 /* 1181 * wait for the page we want to complete. PG_SWAPINPROG is always 1182 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1183 * is set in the meta-data. 1184 */ 1185 1186 s = splvm(); 1187 1188 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1189 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1190 cnt.v_intrans++; 1191 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1192 printf( 1193 "swap_pager: indefinite wait buffer: device:" 1194 " %s, blkno: %ld, size: %ld\n", 1195 devtoname(bp->b_dev), (long)bp->b_blkno, 1196 bp->b_bcount 1197 ); 1198 } 1199 } 1200 1201 splx(s); 1202 1203 /* 1204 * mreq is left bussied after completion, but all the other pages 1205 * are freed. If we had an unrecoverable read error the page will 1206 * not be valid. 1207 */ 1208 1209 if (mreq->valid != VM_PAGE_BITS_ALL) { 1210 return(VM_PAGER_ERROR); 1211 } else { 1212 return(VM_PAGER_OK); 1213 } 1214 1215 /* 1216 * A final note: in a low swap situation, we cannot deallocate swap 1217 * and mark a page dirty here because the caller is likely to mark 1218 * the page clean when we return, causing the page to possibly revert 1219 * to all-zero's later. 1220 */ 1221 } 1222 1223 /* 1224 * swap_pager_putpages: 1225 * 1226 * Assign swap (if necessary) and initiate I/O on the specified pages. 1227 * 1228 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1229 * are automatically converted to SWAP objects. 1230 * 1231 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1232 * vm_page reservation system coupled with properly written VFS devices 1233 * should ensure that no low-memory deadlock occurs. This is an area 1234 * which needs work. 1235 * 1236 * The parent has N vm_object_pip_add() references prior to 1237 * calling us and will remove references for rtvals[] that are 1238 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1239 * completion. 1240 * 1241 * The parent has soft-busy'd the pages it passes us and will unbusy 1242 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1243 * We need to unbusy the rest on I/O completion. 1244 */ 1245 1246 void 1247 swap_pager_putpages(object, m, count, sync, rtvals) 1248 vm_object_t object; 1249 vm_page_t *m; 1250 int count; 1251 boolean_t sync; 1252 int *rtvals; 1253 { 1254 int i; 1255 int n = 0; 1256 1257 GIANT_REQUIRED; 1258 if (count && m[0]->object != object) { 1259 panic("swap_pager_getpages: object mismatch %p/%p", 1260 object, 1261 m[0]->object 1262 ); 1263 } 1264 /* 1265 * Step 1 1266 * 1267 * Turn object into OBJT_SWAP 1268 * check for bogus sysops 1269 * force sync if not pageout process 1270 */ 1271 1272 if (object->type != OBJT_SWAP) 1273 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1274 1275 if (curproc != pageproc) 1276 sync = TRUE; 1277 1278 /* 1279 * Step 2 1280 * 1281 * Update nsw parameters from swap_async_max sysctl values. 1282 * Do not let the sysop crash the machine with bogus numbers. 1283 */ 1284 1285 mtx_lock(&pbuf_mtx); 1286 if (swap_async_max != nsw_wcount_async_max) { 1287 int n; 1288 int s; 1289 1290 /* 1291 * limit range 1292 */ 1293 if ((n = swap_async_max) > nswbuf / 2) 1294 n = nswbuf / 2; 1295 if (n < 1) 1296 n = 1; 1297 swap_async_max = n; 1298 1299 /* 1300 * Adjust difference ( if possible ). If the current async 1301 * count is too low, we may not be able to make the adjustment 1302 * at this time. 1303 */ 1304 s = splvm(); 1305 n -= nsw_wcount_async_max; 1306 if (nsw_wcount_async + n >= 0) { 1307 nsw_wcount_async += n; 1308 nsw_wcount_async_max += n; 1309 wakeup(&nsw_wcount_async); 1310 } 1311 splx(s); 1312 } 1313 mtx_unlock(&pbuf_mtx); 1314 1315 /* 1316 * Step 3 1317 * 1318 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1319 * The page is left dirty until the pageout operation completes 1320 * successfully. 1321 */ 1322 1323 for (i = 0; i < count; i += n) { 1324 int s; 1325 int j; 1326 struct buf *bp; 1327 daddr_t blk; 1328 1329 /* 1330 * Maximum I/O size is limited by a number of factors. 1331 */ 1332 1333 n = min(BLIST_MAX_ALLOC, count - i); 1334 n = min(n, nsw_cluster_max); 1335 1336 s = splvm(); 1337 1338 /* 1339 * Get biggest block of swap we can. If we fail, fall 1340 * back and try to allocate a smaller block. Don't go 1341 * overboard trying to allocate space if it would overly 1342 * fragment swap. 1343 */ 1344 while ( 1345 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1346 n > 4 1347 ) { 1348 n >>= 1; 1349 } 1350 if (blk == SWAPBLK_NONE) { 1351 for (j = 0; j < n; ++j) 1352 rtvals[i+j] = VM_PAGER_FAIL; 1353 splx(s); 1354 continue; 1355 } 1356 1357 /* 1358 * The I/O we are constructing cannot cross a physical 1359 * disk boundry in the swap stripe. Note: we are still 1360 * at splvm(). 1361 */ 1362 if ((blk ^ (blk + n)) & dmmax_mask) { 1363 j = ((blk + dmmax) & dmmax_mask) - blk; 1364 swp_pager_freeswapspace(blk + j, n - j); 1365 n = j; 1366 } 1367 1368 /* 1369 * All I/O parameters have been satisfied, build the I/O 1370 * request and assign the swap space. 1371 * 1372 * NOTE: B_PAGING is set by pbgetvp() 1373 */ 1374 1375 if (sync == TRUE) { 1376 bp = getpbuf(&nsw_wcount_sync); 1377 } else { 1378 bp = getpbuf(&nsw_wcount_async); 1379 bp->b_flags = B_ASYNC; 1380 } 1381 bp->b_iocmd = BIO_WRITE; 1382 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1383 1384 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1385 1386 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1387 bp->b_bcount = PAGE_SIZE * n; 1388 bp->b_bufsize = PAGE_SIZE * n; 1389 bp->b_blkno = blk; 1390 1391 crhold(bp->b_rcred); 1392 crhold(bp->b_wcred); 1393 1394 pbgetvp(swapdev_vp, bp); 1395 1396 for (j = 0; j < n; ++j) { 1397 vm_page_t mreq = m[i+j]; 1398 1399 swp_pager_meta_build( 1400 mreq->object, 1401 mreq->pindex, 1402 blk + j 1403 ); 1404 vm_page_dirty(mreq); 1405 rtvals[i+j] = VM_PAGER_OK; 1406 1407 vm_page_flag_set(mreq, PG_SWAPINPROG); 1408 bp->b_pages[j] = mreq; 1409 } 1410 bp->b_npages = n; 1411 /* 1412 * Must set dirty range for NFS to work. 1413 */ 1414 bp->b_dirtyoff = 0; 1415 bp->b_dirtyend = bp->b_bcount; 1416 1417 cnt.v_swapout++; 1418 cnt.v_swappgsout += bp->b_npages; 1419 swapdev_vp->v_numoutput++; 1420 1421 splx(s); 1422 1423 /* 1424 * asynchronous 1425 * 1426 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1427 */ 1428 1429 if (sync == FALSE) { 1430 bp->b_iodone = swp_pager_async_iodone; 1431 BUF_KERNPROC(bp); 1432 BUF_STRATEGY(bp); 1433 1434 for (j = 0; j < n; ++j) 1435 rtvals[i+j] = VM_PAGER_PEND; 1436 /* restart outter loop */ 1437 continue; 1438 } 1439 1440 /* 1441 * synchronous 1442 * 1443 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1444 */ 1445 1446 bp->b_iodone = swp_pager_sync_iodone; 1447 BUF_STRATEGY(bp); 1448 1449 /* 1450 * Wait for the sync I/O to complete, then update rtvals. 1451 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1452 * our async completion routine at the end, thus avoiding a 1453 * double-free. 1454 */ 1455 s = splbio(); 1456 1457 while ((bp->b_flags & B_DONE) == 0) { 1458 tsleep(bp, PVM, "swwrt", 0); 1459 } 1460 1461 for (j = 0; j < n; ++j) 1462 rtvals[i+j] = VM_PAGER_PEND; 1463 1464 /* 1465 * Now that we are through with the bp, we can call the 1466 * normal async completion, which frees everything up. 1467 */ 1468 1469 swp_pager_async_iodone(bp); 1470 splx(s); 1471 } 1472 } 1473 1474 /* 1475 * swap_pager_sync_iodone: 1476 * 1477 * Completion routine for synchronous reads and writes from/to swap. 1478 * We just mark the bp is complete and wake up anyone waiting on it. 1479 * 1480 * This routine may not block. This routine is called at splbio() or better. 1481 */ 1482 1483 static void 1484 swp_pager_sync_iodone(bp) 1485 struct buf *bp; 1486 { 1487 bp->b_flags |= B_DONE; 1488 bp->b_flags &= ~B_ASYNC; 1489 wakeup(bp); 1490 } 1491 1492 /* 1493 * swp_pager_async_iodone: 1494 * 1495 * Completion routine for asynchronous reads and writes from/to swap. 1496 * Also called manually by synchronous code to finish up a bp. 1497 * 1498 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1499 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1500 * unbusy all pages except the 'main' request page. For WRITE 1501 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1502 * because we marked them all VM_PAGER_PEND on return from putpages ). 1503 * 1504 * This routine may not block. 1505 * This routine is called at splbio() or better 1506 * 1507 * We up ourselves to splvm() as required for various vm_page related 1508 * calls. 1509 */ 1510 1511 static void 1512 swp_pager_async_iodone(bp) 1513 struct buf *bp; 1514 { 1515 int s; 1516 int i; 1517 vm_object_t object = NULL; 1518 1519 GIANT_REQUIRED; 1520 1521 bp->b_flags |= B_DONE; 1522 1523 /* 1524 * report error 1525 */ 1526 1527 if (bp->b_ioflags & BIO_ERROR) { 1528 printf( 1529 "swap_pager: I/O error - %s failed; blkno %ld," 1530 "size %ld, error %d\n", 1531 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1532 (long)bp->b_blkno, 1533 (long)bp->b_bcount, 1534 bp->b_error 1535 ); 1536 } 1537 1538 /* 1539 * set object, raise to splvm(). 1540 */ 1541 1542 if (bp->b_npages) 1543 object = bp->b_pages[0]->object; 1544 s = splvm(); 1545 1546 /* 1547 * remove the mapping for kernel virtual 1548 */ 1549 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1550 1551 /* 1552 * cleanup pages. If an error occurs writing to swap, we are in 1553 * very serious trouble. If it happens to be a disk error, though, 1554 * we may be able to recover by reassigning the swap later on. So 1555 * in this case we remove the m->swapblk assignment for the page 1556 * but do not free it in the rlist. The errornous block(s) are thus 1557 * never reallocated as swap. Redirty the page and continue. 1558 */ 1559 1560 for (i = 0; i < bp->b_npages; ++i) { 1561 vm_page_t m = bp->b_pages[i]; 1562 1563 vm_page_flag_clear(m, PG_SWAPINPROG); 1564 1565 if (bp->b_ioflags & BIO_ERROR) { 1566 /* 1567 * If an error occurs I'd love to throw the swapblk 1568 * away without freeing it back to swapspace, so it 1569 * can never be used again. But I can't from an 1570 * interrupt. 1571 */ 1572 1573 if (bp->b_iocmd == BIO_READ) { 1574 /* 1575 * When reading, reqpage needs to stay 1576 * locked for the parent, but all other 1577 * pages can be freed. We still want to 1578 * wakeup the parent waiting on the page, 1579 * though. ( also: pg_reqpage can be -1 and 1580 * not match anything ). 1581 * 1582 * We have to wake specifically requested pages 1583 * up too because we cleared PG_SWAPINPROG and 1584 * someone may be waiting for that. 1585 * 1586 * NOTE: for reads, m->dirty will probably 1587 * be overridden by the original caller of 1588 * getpages so don't play cute tricks here. 1589 * 1590 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1591 * AS THIS MESSES WITH object->memq, and it is 1592 * not legal to mess with object->memq from an 1593 * interrupt. 1594 */ 1595 1596 m->valid = 0; 1597 vm_page_flag_clear(m, PG_ZERO); 1598 1599 if (i != bp->b_pager.pg_reqpage) 1600 vm_page_free(m); 1601 else 1602 vm_page_flash(m); 1603 /* 1604 * If i == bp->b_pager.pg_reqpage, do not wake 1605 * the page up. The caller needs to. 1606 */ 1607 } else { 1608 /* 1609 * If a write error occurs, reactivate page 1610 * so it doesn't clog the inactive list, 1611 * then finish the I/O. 1612 */ 1613 vm_page_dirty(m); 1614 vm_page_activate(m); 1615 vm_page_io_finish(m); 1616 } 1617 } else if (bp->b_iocmd == BIO_READ) { 1618 /* 1619 * For read success, clear dirty bits. Nobody should 1620 * have this page mapped but don't take any chances, 1621 * make sure the pmap modify bits are also cleared. 1622 * 1623 * NOTE: for reads, m->dirty will probably be 1624 * overridden by the original caller of getpages so 1625 * we cannot set them in order to free the underlying 1626 * swap in a low-swap situation. I don't think we'd 1627 * want to do that anyway, but it was an optimization 1628 * that existed in the old swapper for a time before 1629 * it got ripped out due to precisely this problem. 1630 * 1631 * clear PG_ZERO in page. 1632 * 1633 * If not the requested page then deactivate it. 1634 * 1635 * Note that the requested page, reqpage, is left 1636 * busied, but we still have to wake it up. The 1637 * other pages are released (unbusied) by 1638 * vm_page_wakeup(). We do not set reqpage's 1639 * valid bits here, it is up to the caller. 1640 */ 1641 1642 pmap_clear_modify(m); 1643 m->valid = VM_PAGE_BITS_ALL; 1644 vm_page_undirty(m); 1645 vm_page_flag_clear(m, PG_ZERO); 1646 1647 /* 1648 * We have to wake specifically requested pages 1649 * up too because we cleared PG_SWAPINPROG and 1650 * could be waiting for it in getpages. However, 1651 * be sure to not unbusy getpages specifically 1652 * requested page - getpages expects it to be 1653 * left busy. 1654 */ 1655 if (i != bp->b_pager.pg_reqpage) { 1656 vm_page_deactivate(m); 1657 vm_page_wakeup(m); 1658 } else { 1659 vm_page_flash(m); 1660 } 1661 } else { 1662 /* 1663 * For write success, clear the modify and dirty 1664 * status, then finish the I/O ( which decrements the 1665 * busy count and possibly wakes waiter's up ). 1666 */ 1667 pmap_clear_modify(m); 1668 vm_page_undirty(m); 1669 vm_page_io_finish(m); 1670 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1671 vm_page_protect(m, VM_PROT_READ); 1672 } 1673 } 1674 1675 /* 1676 * adjust pip. NOTE: the original parent may still have its own 1677 * pip refs on the object. 1678 */ 1679 1680 if (object) 1681 vm_object_pip_wakeupn(object, bp->b_npages); 1682 1683 /* 1684 * release the physical I/O buffer 1685 */ 1686 1687 relpbuf( 1688 bp, 1689 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1690 ((bp->b_flags & B_ASYNC) ? 1691 &nsw_wcount_async : 1692 &nsw_wcount_sync 1693 ) 1694 ) 1695 ); 1696 splx(s); 1697 } 1698 1699 /************************************************************************ 1700 * SWAP META DATA * 1701 ************************************************************************ 1702 * 1703 * These routines manipulate the swap metadata stored in the 1704 * OBJT_SWAP object. All swp_*() routines must be called at 1705 * splvm() because swap can be freed up by the low level vm_page 1706 * code which might be called from interrupts beyond what splbio() covers. 1707 * 1708 * Swap metadata is implemented with a global hash and not directly 1709 * linked into the object. Instead the object simply contains 1710 * appropriate tracking counters. 1711 */ 1712 1713 /* 1714 * SWP_PAGER_HASH() - hash swap meta data 1715 * 1716 * This is an inline helper function which hashes the swapblk given 1717 * the object and page index. It returns a pointer to a pointer 1718 * to the object, or a pointer to a NULL pointer if it could not 1719 * find a swapblk. 1720 * 1721 * This routine must be called at splvm(). 1722 */ 1723 1724 static __inline struct swblock ** 1725 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1726 { 1727 struct swblock **pswap; 1728 struct swblock *swap; 1729 1730 index &= ~SWAP_META_MASK; 1731 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1732 1733 while ((swap = *pswap) != NULL) { 1734 if (swap->swb_object == object && 1735 swap->swb_index == index 1736 ) { 1737 break; 1738 } 1739 pswap = &swap->swb_hnext; 1740 } 1741 return(pswap); 1742 } 1743 1744 /* 1745 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1746 * 1747 * We first convert the object to a swap object if it is a default 1748 * object. 1749 * 1750 * The specified swapblk is added to the object's swap metadata. If 1751 * the swapblk is not valid, it is freed instead. Any previously 1752 * assigned swapblk is freed. 1753 * 1754 * This routine must be called at splvm(), except when used to convert 1755 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1756 */ 1757 1758 static void 1759 swp_pager_meta_build( 1760 vm_object_t object, 1761 vm_pindex_t index, 1762 daddr_t swapblk 1763 ) { 1764 struct swblock *swap; 1765 struct swblock **pswap; 1766 1767 GIANT_REQUIRED; 1768 /* 1769 * Convert default object to swap object if necessary 1770 */ 1771 1772 if (object->type != OBJT_SWAP) { 1773 object->type = OBJT_SWAP; 1774 object->un_pager.swp.swp_bcount = 0; 1775 1776 mtx_lock(&sw_alloc_mtx); 1777 if (object->handle != NULL) { 1778 TAILQ_INSERT_TAIL( 1779 NOBJLIST(object->handle), 1780 object, 1781 pager_object_list 1782 ); 1783 } else { 1784 TAILQ_INSERT_TAIL( 1785 &swap_pager_un_object_list, 1786 object, 1787 pager_object_list 1788 ); 1789 } 1790 mtx_unlock(&sw_alloc_mtx); 1791 } 1792 1793 /* 1794 * Locate hash entry. If not found create, but if we aren't adding 1795 * anything just return. If we run out of space in the map we wait 1796 * and, since the hash table may have changed, retry. 1797 */ 1798 1799 retry: 1800 pswap = swp_pager_hash(object, index); 1801 1802 if ((swap = *pswap) == NULL) { 1803 int i; 1804 1805 if (swapblk == SWAPBLK_NONE) 1806 return; 1807 1808 swap = *pswap = zalloc(swap_zone); 1809 if (swap == NULL) { 1810 VM_WAIT; 1811 goto retry; 1812 } 1813 swap->swb_hnext = NULL; 1814 swap->swb_object = object; 1815 swap->swb_index = index & ~SWAP_META_MASK; 1816 swap->swb_count = 0; 1817 1818 ++object->un_pager.swp.swp_bcount; 1819 1820 for (i = 0; i < SWAP_META_PAGES; ++i) 1821 swap->swb_pages[i] = SWAPBLK_NONE; 1822 } 1823 1824 /* 1825 * Delete prior contents of metadata 1826 */ 1827 1828 index &= SWAP_META_MASK; 1829 1830 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1831 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1832 --swap->swb_count; 1833 } 1834 1835 /* 1836 * Enter block into metadata 1837 */ 1838 1839 swap->swb_pages[index] = swapblk; 1840 if (swapblk != SWAPBLK_NONE) 1841 ++swap->swb_count; 1842 } 1843 1844 /* 1845 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1846 * 1847 * The requested range of blocks is freed, with any associated swap 1848 * returned to the swap bitmap. 1849 * 1850 * This routine will free swap metadata structures as they are cleaned 1851 * out. This routine does *NOT* operate on swap metadata associated 1852 * with resident pages. 1853 * 1854 * This routine must be called at splvm() 1855 */ 1856 1857 static void 1858 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1859 { 1860 GIANT_REQUIRED; 1861 1862 if (object->type != OBJT_SWAP) 1863 return; 1864 1865 while (count > 0) { 1866 struct swblock **pswap; 1867 struct swblock *swap; 1868 1869 pswap = swp_pager_hash(object, index); 1870 1871 if ((swap = *pswap) != NULL) { 1872 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1873 1874 if (v != SWAPBLK_NONE) { 1875 swp_pager_freeswapspace(v, 1); 1876 swap->swb_pages[index & SWAP_META_MASK] = 1877 SWAPBLK_NONE; 1878 if (--swap->swb_count == 0) { 1879 *pswap = swap->swb_hnext; 1880 zfree(swap_zone, swap); 1881 --object->un_pager.swp.swp_bcount; 1882 } 1883 } 1884 --count; 1885 ++index; 1886 } else { 1887 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1888 count -= n; 1889 index += n; 1890 } 1891 } 1892 } 1893 1894 /* 1895 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1896 * 1897 * This routine locates and destroys all swap metadata associated with 1898 * an object. 1899 * 1900 * This routine must be called at splvm() 1901 */ 1902 1903 static void 1904 swp_pager_meta_free_all(vm_object_t object) 1905 { 1906 daddr_t index = 0; 1907 1908 GIANT_REQUIRED; 1909 1910 if (object->type != OBJT_SWAP) 1911 return; 1912 1913 while (object->un_pager.swp.swp_bcount) { 1914 struct swblock **pswap; 1915 struct swblock *swap; 1916 1917 pswap = swp_pager_hash(object, index); 1918 if ((swap = *pswap) != NULL) { 1919 int i; 1920 1921 for (i = 0; i < SWAP_META_PAGES; ++i) { 1922 daddr_t v = swap->swb_pages[i]; 1923 if (v != SWAPBLK_NONE) { 1924 --swap->swb_count; 1925 swp_pager_freeswapspace(v, 1); 1926 } 1927 } 1928 if (swap->swb_count != 0) 1929 panic("swap_pager_meta_free_all: swb_count != 0"); 1930 *pswap = swap->swb_hnext; 1931 zfree(swap_zone, swap); 1932 --object->un_pager.swp.swp_bcount; 1933 } 1934 index += SWAP_META_PAGES; 1935 if (index > 0x20000000) 1936 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1937 } 1938 } 1939 1940 /* 1941 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1942 * 1943 * This routine is capable of looking up, popping, or freeing 1944 * swapblk assignments in the swap meta data or in the vm_page_t. 1945 * The routine typically returns the swapblk being looked-up, or popped, 1946 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1947 * was invalid. This routine will automatically free any invalid 1948 * meta-data swapblks. 1949 * 1950 * It is not possible to store invalid swapblks in the swap meta data 1951 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1952 * 1953 * When acting on a busy resident page and paging is in progress, we 1954 * have to wait until paging is complete but otherwise can act on the 1955 * busy page. 1956 * 1957 * This routine must be called at splvm(). 1958 * 1959 * SWM_FREE remove and free swap block from metadata 1960 * SWM_POP remove from meta data but do not free.. pop it out 1961 */ 1962 1963 static daddr_t 1964 swp_pager_meta_ctl( 1965 vm_object_t object, 1966 vm_pindex_t index, 1967 int flags 1968 ) { 1969 struct swblock **pswap; 1970 struct swblock *swap; 1971 daddr_t r1; 1972 1973 GIANT_REQUIRED; 1974 /* 1975 * The meta data only exists of the object is OBJT_SWAP 1976 * and even then might not be allocated yet. 1977 */ 1978 1979 if (object->type != OBJT_SWAP) 1980 return(SWAPBLK_NONE); 1981 1982 r1 = SWAPBLK_NONE; 1983 pswap = swp_pager_hash(object, index); 1984 1985 if ((swap = *pswap) != NULL) { 1986 index &= SWAP_META_MASK; 1987 r1 = swap->swb_pages[index]; 1988 1989 if (r1 != SWAPBLK_NONE) { 1990 if (flags & SWM_FREE) { 1991 swp_pager_freeswapspace(r1, 1); 1992 r1 = SWAPBLK_NONE; 1993 } 1994 if (flags & (SWM_FREE|SWM_POP)) { 1995 swap->swb_pages[index] = SWAPBLK_NONE; 1996 if (--swap->swb_count == 0) { 1997 *pswap = swap->swb_hnext; 1998 zfree(swap_zone, swap); 1999 --object->un_pager.swp.swp_bcount; 2000 } 2001 } 2002 } 2003 } 2004 return(r1); 2005 } 2006 2007 /******************************************************** 2008 * CHAINING FUNCTIONS * 2009 ******************************************************** 2010 * 2011 * These functions support recursion of I/O operations 2012 * on bp's, typically by chaining one or more 'child' bp's 2013 * to the parent. Synchronous, asynchronous, and semi-synchronous 2014 * chaining is possible. 2015 */ 2016 2017 /* 2018 * vm_pager_chain_iodone: 2019 * 2020 * io completion routine for child bp. Currently we fudge a bit 2021 * on dealing with b_resid. Since users of these routines may issue 2022 * multiple children simultaneously, sequencing of the error can be lost. 2023 */ 2024 2025 static void 2026 vm_pager_chain_iodone(struct buf *nbp) 2027 { 2028 struct bio *bp; 2029 u_int *count; 2030 2031 bp = nbp->b_caller1; 2032 count = (u_int *)&(bp->bio_caller1); 2033 if (bp != NULL) { 2034 if (nbp->b_ioflags & BIO_ERROR) { 2035 bp->bio_flags |= BIO_ERROR; 2036 bp->bio_error = nbp->b_error; 2037 } else if (nbp->b_resid != 0) { 2038 bp->bio_flags |= BIO_ERROR; 2039 bp->bio_error = EINVAL; 2040 } else { 2041 bp->bio_resid -= nbp->b_bcount; 2042 } 2043 nbp->b_caller1 = NULL; 2044 --(*count); 2045 if (bp->bio_flags & BIO_FLAG1) { 2046 bp->bio_flags &= ~BIO_FLAG1; 2047 wakeup(bp); 2048 } 2049 } 2050 nbp->b_flags |= B_DONE; 2051 nbp->b_flags &= ~B_ASYNC; 2052 relpbuf(nbp, NULL); 2053 } 2054 2055 /* 2056 * getchainbuf: 2057 * 2058 * Obtain a physical buffer and chain it to its parent buffer. When 2059 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 2060 * automatically propagated to the parent 2061 */ 2062 2063 struct buf * 2064 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 2065 { 2066 struct buf *nbp; 2067 u_int *count; 2068 2069 GIANT_REQUIRED; 2070 nbp = getpbuf(NULL); 2071 count = (u_int *)&(bp->bio_caller1); 2072 2073 nbp->b_caller1 = bp; 2074 ++(*count); 2075 2076 if (*count > 4) 2077 waitchainbuf(bp, 4, 0); 2078 2079 nbp->b_iocmd = bp->bio_cmd; 2080 nbp->b_ioflags = bp->bio_flags & BIO_ORDERED; 2081 nbp->b_flags = flags; 2082 nbp->b_rcred = nbp->b_wcred = proc0.p_ucred; 2083 nbp->b_iodone = vm_pager_chain_iodone; 2084 2085 crhold(nbp->b_rcred); 2086 crhold(nbp->b_wcred); 2087 2088 if (vp) 2089 pbgetvp(vp, nbp); 2090 return(nbp); 2091 } 2092 2093 void 2094 flushchainbuf(struct buf *nbp) 2095 { 2096 GIANT_REQUIRED; 2097 if (nbp->b_bcount) { 2098 nbp->b_bufsize = nbp->b_bcount; 2099 if (nbp->b_iocmd == BIO_WRITE) 2100 nbp->b_dirtyend = nbp->b_bcount; 2101 BUF_KERNPROC(nbp); 2102 BUF_STRATEGY(nbp); 2103 } else { 2104 bufdone(nbp); 2105 } 2106 } 2107 2108 static void 2109 waitchainbuf(struct bio *bp, int limit, int done) 2110 { 2111 int s; 2112 u_int *count; 2113 2114 GIANT_REQUIRED; 2115 count = (u_int *)&(bp->bio_caller1); 2116 s = splbio(); 2117 while (*count > limit) { 2118 bp->bio_flags |= BIO_FLAG1; 2119 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2120 } 2121 if (done) { 2122 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2123 bp->bio_flags |= BIO_ERROR; 2124 bp->bio_error = EINVAL; 2125 } 2126 biodone(bp); 2127 } 2128 splx(s); 2129 } 2130 2131