xref: /freebsd/sys/vm/swap_pager.c (revision 6adf353a56a161443406b44a45d00c688ca7b857)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/sx.h>
84 #include <sys/vmmeter.h>
85 
86 #ifndef MAX_PAGEOUT_CLUSTER
87 #define MAX_PAGEOUT_CLUSTER 16
88 #endif
89 
90 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
91 
92 #include "opt_swap.h"
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_zone.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_extern.h>
104 
105 #define SWM_FREE	0x02	/* free, period			*/
106 #define SWM_POP		0x04	/* pop out			*/
107 
108 /*
109  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
110  * in the old system.
111  */
112 
113 extern int vm_swap_size;	/* number of free swap blocks, in pages */
114 
115 int swap_pager_full;		/* swap space exhaustion (task killing) */
116 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
117 static int nsw_rcount;		/* free read buffers			*/
118 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
119 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
120 static int nsw_wcount_async_max;/* assigned maximum			*/
121 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 static struct sx sw_alloc_sx;
128 
129 /* from vm_swap.c */
130 extern struct vnode *swapdev_vp;
131 extern struct swdevt *swdevt;
132 extern int nswdev;
133 
134 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
135         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
136 
137 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
138 
139 /*
140  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
141  * of searching a named list by hashing it just a little.
142  */
143 
144 #define NOBJLISTS		8
145 
146 #define NOBJLIST(handle)	\
147 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
148 
149 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
150 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
151 struct pagerlst		swap_pager_un_object_list;
152 vm_zone_t		swap_zone;
153 
154 /*
155  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
156  * calls hooked from other parts of the VM system and do not appear here.
157  * (see vm/swap_pager.h).
158  */
159 
160 static vm_object_t
161 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
162 				      vm_prot_t prot, vm_ooffset_t offset));
163 static void	swap_pager_dealloc __P((vm_object_t object));
164 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
165 static void	swap_pager_init __P((void));
166 static void	swap_pager_unswapped __P((vm_page_t));
167 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
168 
169 struct pagerops swappagerops = {
170 	swap_pager_init,	/* early system initialization of pager	*/
171 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
172 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
173 	swap_pager_getpages,	/* pagein				*/
174 	swap_pager_putpages,	/* pageout				*/
175 	swap_pager_haspage,	/* get backing store status for page	*/
176 	swap_pager_unswapped,	/* remove swap related to page		*/
177 	swap_pager_strategy	/* pager strategy call			*/
178 };
179 
180 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
181 static void flushchainbuf(struct buf *nbp);
182 static void waitchainbuf(struct bio *bp, int count, int done);
183 
184 /*
185  * dmmax is in page-sized chunks with the new swap system.  It was
186  * dev-bsized chunks in the old.  dmmax is always a power of 2.
187  *
188  * swap_*() routines are externally accessible.  swp_*() routines are
189  * internal.
190  */
191 
192 int dmmax;
193 static int dmmax_mask;
194 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
195 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
196 
197 SYSCTL_INT(_vm, OID_AUTO, dmmax,
198 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
199 
200 static __inline void	swp_sizecheck __P((void));
201 static void	swp_pager_sync_iodone __P((struct buf *bp));
202 static void	swp_pager_async_iodone __P((struct buf *bp));
203 
204 /*
205  * Swap bitmap functions
206  */
207 
208 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
209 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
210 
211 /*
212  * Metadata functions
213  */
214 
215 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
216 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
217 static void swp_pager_meta_free_all __P((vm_object_t));
218 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
219 
220 /*
221  * SWP_SIZECHECK() -	update swap_pager_full indication
222  *
223  *	update the swap_pager_almost_full indication and warn when we are
224  *	about to run out of swap space, using lowat/hiwat hysteresis.
225  *
226  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
227  *
228  *	No restrictions on call
229  *	This routine may not block.
230  *	This routine must be called at splvm()
231  */
232 
233 static __inline void
234 swp_sizecheck()
235 {
236 	GIANT_REQUIRED;
237 
238 	if (vm_swap_size < nswap_lowat) {
239 		if (swap_pager_almost_full == 0) {
240 			printf("swap_pager: out of swap space\n");
241 			swap_pager_almost_full = 1;
242 		}
243 	} else {
244 		swap_pager_full = 0;
245 		if (vm_swap_size > nswap_hiwat)
246 			swap_pager_almost_full = 0;
247 	}
248 }
249 
250 /*
251  * SWAP_PAGER_INIT() -	initialize the swap pager!
252  *
253  *	Expected to be started from system init.  NOTE:  This code is run
254  *	before much else so be careful what you depend on.  Most of the VM
255  *	system has yet to be initialized at this point.
256  */
257 
258 static void
259 swap_pager_init()
260 {
261 	/*
262 	 * Initialize object lists
263 	 */
264 	int i;
265 
266 	for (i = 0; i < NOBJLISTS; ++i)
267 		TAILQ_INIT(&swap_pager_object_list[i]);
268 	TAILQ_INIT(&swap_pager_un_object_list);
269 	mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF);
270 
271 	/*
272 	 * Device Stripe, in PAGE_SIZE'd blocks
273 	 */
274 
275 	dmmax = SWB_NPAGES * 2;
276 	dmmax_mask = ~(dmmax - 1);
277 }
278 
279 /*
280  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
281  *
282  *	Expected to be started from pageout process once, prior to entering
283  *	its main loop.
284  */
285 
286 void
287 swap_pager_swap_init()
288 {
289 	int n, n2;
290 
291 	/*
292 	 * Number of in-transit swap bp operations.  Don't
293 	 * exhaust the pbufs completely.  Make sure we
294 	 * initialize workable values (0 will work for hysteresis
295 	 * but it isn't very efficient).
296 	 *
297 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
298 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
299 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
300 	 * constrained by the swap device interleave stripe size.
301 	 *
302 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
303 	 * designed to prevent other I/O from having high latencies due to
304 	 * our pageout I/O.  The value 4 works well for one or two active swap
305 	 * devices but is probably a little low if you have more.  Even so,
306 	 * a higher value would probably generate only a limited improvement
307 	 * with three or four active swap devices since the system does not
308 	 * typically have to pageout at extreme bandwidths.   We will want
309 	 * at least 2 per swap devices, and 4 is a pretty good value if you
310 	 * have one NFS swap device due to the command/ack latency over NFS.
311 	 * So it all works out pretty well.
312 	 */
313 
314 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
315 
316 	mtx_lock(&pbuf_mtx);
317 	nsw_rcount = (nswbuf + 1) / 2;
318 	nsw_wcount_sync = (nswbuf + 3) / 4;
319 	nsw_wcount_async = 4;
320 	nsw_wcount_async_max = nsw_wcount_async;
321 	mtx_unlock(&pbuf_mtx);
322 
323 	/*
324 	 * Initialize our zone.  Right now I'm just guessing on the number
325 	 * we need based on the number of pages in the system.  Each swblock
326 	 * can hold 16 pages, so this is probably overkill.
327 	 */
328 
329 	n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2;
330 	n2 = n;
331 
332 	do {
333 		swap_zone = zinit(
334 		       "SWAPMETA",
335 		       sizeof(struct swblock),
336 		       n,
337 		       ZONE_INTERRUPT,
338 		       1
339 		       );
340 		if (swap_zone != NULL)
341 			break;
342 		/*
343 		 * if the allocation failed, try a zone two thirds the
344 		 * size of the previous attempt.
345 		 */
346 		n -= ((n + 2) / 3);
347 	} while (n > 0);
348 
349 	if (swap_zone == NULL)
350 		panic("failed to zinit swap_zone.");
351 	if (n2 != n)
352 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
353 	n2 = n;
354 
355 	/*
356 	 * Initialize our meta-data hash table.  The swapper does not need to
357 	 * be quite as efficient as the VM system, so we do not use an
358 	 * oversized hash table.
359 	 *
360 	 * 	n: 		size of hash table, must be power of 2
361 	 *	swhash_mask:	hash table index mask
362 	 */
363 
364 	for (n = 1; n < n2 / 8; n *= 2)
365 		;
366 
367 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
368 
369 	swhash_mask = n - 1;
370 }
371 
372 /*
373  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
374  *			its metadata structures.
375  *
376  *	This routine is called from the mmap and fork code to create a new
377  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
378  *	and then converting it with swp_pager_meta_build().
379  *
380  *	This routine may block in vm_object_allocate() and create a named
381  *	object lookup race, so we must interlock.   We must also run at
382  *	splvm() for the object lookup to handle races with interrupts, but
383  *	we do not have to maintain splvm() in between the lookup and the
384  *	add because (I believe) it is not possible to attempt to create
385  *	a new swap object w/handle when a default object with that handle
386  *	already exists.
387  */
388 
389 static vm_object_t
390 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
391 		 vm_ooffset_t offset)
392 {
393 	vm_object_t object;
394 
395 	GIANT_REQUIRED;
396 
397 	if (handle) {
398 		/*
399 		 * Reference existing named region or allocate new one.  There
400 		 * should not be a race here against swp_pager_meta_build()
401 		 * as called from vm_page_remove() in regards to the lookup
402 		 * of the handle.
403 		 */
404 		sx_xlock(&sw_alloc_sx);
405 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
406 
407 		if (object != NULL) {
408 			vm_object_reference(object);
409 		} else {
410 			object = vm_object_allocate(OBJT_DEFAULT,
411 				OFF_TO_IDX(offset + PAGE_MASK + size));
412 			object->handle = handle;
413 
414 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
415 		}
416 		sx_xunlock(&sw_alloc_sx);
417 	} else {
418 		object = vm_object_allocate(OBJT_DEFAULT,
419 			OFF_TO_IDX(offset + PAGE_MASK + size));
420 
421 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
422 	}
423 
424 	return (object);
425 }
426 
427 /*
428  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
429  *
430  *	The swap backing for the object is destroyed.  The code is
431  *	designed such that we can reinstantiate it later, but this
432  *	routine is typically called only when the entire object is
433  *	about to be destroyed.
434  *
435  *	This routine may block, but no longer does.
436  *
437  *	The object must be locked or unreferenceable.
438  */
439 
440 static void
441 swap_pager_dealloc(object)
442 	vm_object_t object;
443 {
444 	int s;
445 
446 	GIANT_REQUIRED;
447 
448 	/*
449 	 * Remove from list right away so lookups will fail if we block for
450 	 * pageout completion.
451 	 */
452 	mtx_lock(&sw_alloc_mtx);
453 	if (object->handle == NULL) {
454 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
455 	} else {
456 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
457 	}
458 	mtx_unlock(&sw_alloc_mtx);
459 
460 	vm_object_pip_wait(object, "swpdea");
461 
462 	/*
463 	 * Free all remaining metadata.  We only bother to free it from
464 	 * the swap meta data.  We do not attempt to free swapblk's still
465 	 * associated with vm_page_t's for this object.  We do not care
466 	 * if paging is still in progress on some objects.
467 	 */
468 	s = splvm();
469 	swp_pager_meta_free_all(object);
470 	splx(s);
471 }
472 
473 /************************************************************************
474  *			SWAP PAGER BITMAP ROUTINES			*
475  ************************************************************************/
476 
477 /*
478  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
479  *
480  *	Allocate swap for the requested number of pages.  The starting
481  *	swap block number (a page index) is returned or SWAPBLK_NONE
482  *	if the allocation failed.
483  *
484  *	Also has the side effect of advising that somebody made a mistake
485  *	when they configured swap and didn't configure enough.
486  *
487  *	Must be called at splvm() to avoid races with bitmap frees from
488  *	vm_page_remove() aka swap_pager_page_removed().
489  *
490  *	This routine may not block
491  *	This routine must be called at splvm().
492  */
493 
494 static __inline daddr_t
495 swp_pager_getswapspace(npages)
496 	int npages;
497 {
498 	daddr_t blk;
499 
500 	GIANT_REQUIRED;
501 
502 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
503 		if (swap_pager_full != 2) {
504 			printf("swap_pager_getswapspace: failed\n");
505 			swap_pager_full = 2;
506 			swap_pager_almost_full = 1;
507 		}
508 	} else {
509 		vm_swap_size -= npages;
510 		/* per-swap area stats */
511 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
512 		swp_sizecheck();
513 	}
514 	return(blk);
515 }
516 
517 /*
518  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
519  *
520  *	This routine returns the specified swap blocks back to the bitmap.
521  *
522  *	Note:  This routine may not block (it could in the old swap code),
523  *	and through the use of the new blist routines it does not block.
524  *
525  *	We must be called at splvm() to avoid races with bitmap frees from
526  *	vm_page_remove() aka swap_pager_page_removed().
527  *
528  *	This routine may not block
529  *	This routine must be called at splvm().
530  */
531 
532 static __inline void
533 swp_pager_freeswapspace(blk, npages)
534 	daddr_t blk;
535 	int npages;
536 {
537 	GIANT_REQUIRED;
538 
539 	blist_free(swapblist, blk, npages);
540 	vm_swap_size += npages;
541 	/* per-swap area stats */
542 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
543 	swp_sizecheck();
544 }
545 
546 /*
547  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
548  *				range within an object.
549  *
550  *	This is a globally accessible routine.
551  *
552  *	This routine removes swapblk assignments from swap metadata.
553  *
554  *	The external callers of this routine typically have already destroyed
555  *	or renamed vm_page_t's associated with this range in the object so
556  *	we should be ok.
557  *
558  *	This routine may be called at any spl.  We up our spl to splvm temporarily
559  *	in order to perform the metadata removal.
560  */
561 
562 void
563 swap_pager_freespace(object, start, size)
564 	vm_object_t object;
565 	vm_pindex_t start;
566 	vm_size_t size;
567 {
568 	int s = splvm();
569 
570 	GIANT_REQUIRED;
571 	swp_pager_meta_free(object, start, size);
572 	splx(s);
573 }
574 
575 /*
576  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
577  *
578  *	Assigns swap blocks to the specified range within the object.  The
579  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
580  *
581  *	Returns 0 on success, -1 on failure.
582  */
583 
584 int
585 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
586 {
587 	int s;
588 	int n = 0;
589 	daddr_t blk = SWAPBLK_NONE;
590 	vm_pindex_t beg = start;	/* save start index */
591 
592 	s = splvm();
593 	while (size) {
594 		if (n == 0) {
595 			n = BLIST_MAX_ALLOC;
596 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
597 				n >>= 1;
598 				if (n == 0) {
599 					swp_pager_meta_free(object, beg, start - beg);
600 					splx(s);
601 					return(-1);
602 				}
603 			}
604 		}
605 		swp_pager_meta_build(object, start, blk);
606 		--size;
607 		++start;
608 		++blk;
609 		--n;
610 	}
611 	swp_pager_meta_free(object, start, n);
612 	splx(s);
613 	return(0);
614 }
615 
616 /*
617  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
618  *			and destroy the source.
619  *
620  *	Copy any valid swapblks from the source to the destination.  In
621  *	cases where both the source and destination have a valid swapblk,
622  *	we keep the destination's.
623  *
624  *	This routine is allowed to block.  It may block allocating metadata
625  *	indirectly through swp_pager_meta_build() or if paging is still in
626  *	progress on the source.
627  *
628  *	This routine can be called at any spl
629  *
630  *	XXX vm_page_collapse() kinda expects us not to block because we
631  *	supposedly do not need to allocate memory, but for the moment we
632  *	*may* have to get a little memory from the zone allocator, but
633  *	it is taken from the interrupt memory.  We should be ok.
634  *
635  *	The source object contains no vm_page_t's (which is just as well)
636  *
637  *	The source object is of type OBJT_SWAP.
638  *
639  *	The source and destination objects must be locked or
640  *	inaccessible (XXX are they ?)
641  */
642 
643 void
644 swap_pager_copy(srcobject, dstobject, offset, destroysource)
645 	vm_object_t srcobject;
646 	vm_object_t dstobject;
647 	vm_pindex_t offset;
648 	int destroysource;
649 {
650 	vm_pindex_t i;
651 	int s;
652 
653 	GIANT_REQUIRED;
654 
655 	s = splvm();
656 	/*
657 	 * If destroysource is set, we remove the source object from the
658 	 * swap_pager internal queue now.
659 	 */
660 
661 	if (destroysource) {
662 		mtx_lock(&sw_alloc_mtx);
663 		if (srcobject->handle == NULL) {
664 			TAILQ_REMOVE(
665 			    &swap_pager_un_object_list,
666 			    srcobject,
667 			    pager_object_list
668 			);
669 		} else {
670 			TAILQ_REMOVE(
671 			    NOBJLIST(srcobject->handle),
672 			    srcobject,
673 			    pager_object_list
674 			);
675 		}
676 		mtx_unlock(&sw_alloc_mtx);
677 	}
678 
679 	/*
680 	 * transfer source to destination.
681 	 */
682 
683 	for (i = 0; i < dstobject->size; ++i) {
684 		daddr_t dstaddr;
685 
686 		/*
687 		 * Locate (without changing) the swapblk on the destination,
688 		 * unless it is invalid in which case free it silently, or
689 		 * if the destination is a resident page, in which case the
690 		 * source is thrown away.
691 		 */
692 
693 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
694 
695 		if (dstaddr == SWAPBLK_NONE) {
696 			/*
697 			 * Destination has no swapblk and is not resident,
698 			 * copy source.
699 			 */
700 			daddr_t srcaddr;
701 
702 			srcaddr = swp_pager_meta_ctl(
703 			    srcobject,
704 			    i + offset,
705 			    SWM_POP
706 			);
707 
708 			if (srcaddr != SWAPBLK_NONE)
709 				swp_pager_meta_build(dstobject, i, srcaddr);
710 		} else {
711 			/*
712 			 * Destination has valid swapblk or it is represented
713 			 * by a resident page.  We destroy the sourceblock.
714 			 */
715 
716 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
717 		}
718 	}
719 
720 	/*
721 	 * Free left over swap blocks in source.
722 	 *
723 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
724 	 * double-remove the object from the swap queues.
725 	 */
726 
727 	if (destroysource) {
728 		swp_pager_meta_free_all(srcobject);
729 		/*
730 		 * Reverting the type is not necessary, the caller is going
731 		 * to destroy srcobject directly, but I'm doing it here
732 		 * for consistency since we've removed the object from its
733 		 * queues.
734 		 */
735 		srcobject->type = OBJT_DEFAULT;
736 	}
737 	splx(s);
738 }
739 
740 /*
741  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
742  *				the requested page.
743  *
744  *	We determine whether good backing store exists for the requested
745  *	page and return TRUE if it does, FALSE if it doesn't.
746  *
747  *	If TRUE, we also try to determine how much valid, contiguous backing
748  *	store exists before and after the requested page within a reasonable
749  *	distance.  We do not try to restrict it to the swap device stripe
750  *	(that is handled in getpages/putpages).  It probably isn't worth
751  *	doing here.
752  */
753 
754 boolean_t
755 swap_pager_haspage(object, pindex, before, after)
756 	vm_object_t object;
757 	vm_pindex_t pindex;
758 	int *before;
759 	int *after;
760 {
761 	daddr_t blk0;
762 	int s;
763 
764 	/*
765 	 * do we have good backing store at the requested index ?
766 	 */
767 
768 	s = splvm();
769 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
770 
771 	if (blk0 == SWAPBLK_NONE) {
772 		splx(s);
773 		if (before)
774 			*before = 0;
775 		if (after)
776 			*after = 0;
777 		return (FALSE);
778 	}
779 
780 	/*
781 	 * find backwards-looking contiguous good backing store
782 	 */
783 
784 	if (before != NULL) {
785 		int i;
786 
787 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
788 			daddr_t blk;
789 
790 			if (i > pindex)
791 				break;
792 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
793 			if (blk != blk0 - i)
794 				break;
795 		}
796 		*before = (i - 1);
797 	}
798 
799 	/*
800 	 * find forward-looking contiguous good backing store
801 	 */
802 
803 	if (after != NULL) {
804 		int i;
805 
806 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
807 			daddr_t blk;
808 
809 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
810 			if (blk != blk0 + i)
811 				break;
812 		}
813 		*after = (i - 1);
814 	}
815 	splx(s);
816 	return (TRUE);
817 }
818 
819 /*
820  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
821  *
822  *	This removes any associated swap backing store, whether valid or
823  *	not, from the page.
824  *
825  *	This routine is typically called when a page is made dirty, at
826  *	which point any associated swap can be freed.  MADV_FREE also
827  *	calls us in a special-case situation
828  *
829  *	NOTE!!!  If the page is clean and the swap was valid, the caller
830  *	should make the page dirty before calling this routine.  This routine
831  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
832  *	depends on it.
833  *
834  *	This routine may not block
835  *	This routine must be called at splvm()
836  */
837 
838 static void
839 swap_pager_unswapped(m)
840 	vm_page_t m;
841 {
842 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
843 }
844 
845 /*
846  * SWAP_PAGER_STRATEGY() - read, write, free blocks
847  *
848  *	This implements the vm_pager_strategy() interface to swap and allows
849  *	other parts of the system to directly access swap as backing store
850  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
851  *	cacheless interface ( i.e. caching occurs at higher levels ).
852  *	Therefore we do not maintain any resident pages.  All I/O goes
853  *	directly to and from the swap device.
854  *
855  *	Note that b_blkno is scaled for PAGE_SIZE
856  *
857  *	We currently attempt to run I/O synchronously or asynchronously as
858  *	the caller requests.  This isn't perfect because we loose error
859  *	sequencing when we run multiple ops in parallel to satisfy a request.
860  *	But this is swap, so we let it all hang out.
861  */
862 
863 static void
864 swap_pager_strategy(vm_object_t object, struct bio *bp)
865 {
866 	vm_pindex_t start;
867 	int count;
868 	int s;
869 	char *data;
870 	struct buf *nbp = NULL;
871 
872 	GIANT_REQUIRED;
873 
874 	/* XXX: KASSERT instead ? */
875 	if (bp->bio_bcount & PAGE_MASK) {
876 		biofinish(bp, NULL, EINVAL);
877 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
878 		return;
879 	}
880 
881 	/*
882 	 * Clear error indication, initialize page index, count, data pointer.
883 	 */
884 
885 	bp->bio_error = 0;
886 	bp->bio_flags &= ~BIO_ERROR;
887 	bp->bio_resid = bp->bio_bcount;
888 
889 	start = bp->bio_pblkno;
890 	count = howmany(bp->bio_bcount, PAGE_SIZE);
891 	data = bp->bio_data;
892 
893 	s = splvm();
894 
895 	/*
896 	 * Deal with BIO_DELETE
897 	 */
898 
899 	if (bp->bio_cmd == BIO_DELETE) {
900 		/*
901 		 * FREE PAGE(s) - destroy underlying swap that is no longer
902 		 *		  needed.
903 		 */
904 		swp_pager_meta_free(object, start, count);
905 		splx(s);
906 		bp->bio_resid = 0;
907 		biodone(bp);
908 		return;
909 	}
910 
911 	/*
912 	 * Execute read or write
913 	 */
914 	while (count > 0) {
915 		daddr_t blk;
916 
917 		/*
918 		 * Obtain block.  If block not found and writing, allocate a
919 		 * new block and build it into the object.
920 		 */
921 
922 		blk = swp_pager_meta_ctl(object, start, 0);
923 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
924 			blk = swp_pager_getswapspace(1);
925 			if (blk == SWAPBLK_NONE) {
926 				bp->bio_error = ENOMEM;
927 				bp->bio_flags |= BIO_ERROR;
928 				break;
929 			}
930 			swp_pager_meta_build(object, start, blk);
931 		}
932 
933 		/*
934 		 * Do we have to flush our current collection?  Yes if:
935 		 *
936 		 *	- no swap block at this index
937 		 *	- swap block is not contiguous
938 		 *	- we cross a physical disk boundry in the
939 		 *	  stripe.
940 		 */
941 
942 		if (
943 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
944 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
945 		    )
946 		) {
947 			splx(s);
948 			if (bp->bio_cmd == BIO_READ) {
949 				++cnt.v_swapin;
950 				cnt.v_swappgsin += btoc(nbp->b_bcount);
951 			} else {
952 				++cnt.v_swapout;
953 				cnt.v_swappgsout += btoc(nbp->b_bcount);
954 				nbp->b_dirtyend = nbp->b_bcount;
955 			}
956 			flushchainbuf(nbp);
957 			s = splvm();
958 			nbp = NULL;
959 		}
960 
961 		/*
962 		 * Add new swapblk to nbp, instantiating nbp if necessary.
963 		 * Zero-fill reads are able to take a shortcut.
964 		 */
965 
966 		if (blk == SWAPBLK_NONE) {
967 			/*
968 			 * We can only get here if we are reading.  Since
969 			 * we are at splvm() we can safely modify b_resid,
970 			 * even if chain ops are in progress.
971 			 */
972 			bzero(data, PAGE_SIZE);
973 			bp->bio_resid -= PAGE_SIZE;
974 		} else {
975 			if (nbp == NULL) {
976 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
977 				nbp->b_blkno = blk;
978 				nbp->b_bcount = 0;
979 				nbp->b_data = data;
980 			}
981 			nbp->b_bcount += PAGE_SIZE;
982 		}
983 		--count;
984 		++start;
985 		data += PAGE_SIZE;
986 	}
987 
988 	/*
989 	 *  Flush out last buffer
990 	 */
991 
992 	splx(s);
993 
994 	if (nbp) {
995 		if (nbp->b_iocmd == BIO_READ) {
996 			++cnt.v_swapin;
997 			cnt.v_swappgsin += btoc(nbp->b_bcount);
998 		} else {
999 			++cnt.v_swapout;
1000 			cnt.v_swappgsout += btoc(nbp->b_bcount);
1001 			nbp->b_dirtyend = nbp->b_bcount;
1002 		}
1003 		flushchainbuf(nbp);
1004 		/* nbp = NULL; */
1005 	}
1006 	/*
1007 	 * Wait for completion.
1008 	 */
1009 
1010 	waitchainbuf(bp, 0, 1);
1011 }
1012 
1013 /*
1014  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1015  *
1016  *	Attempt to retrieve (m, count) pages from backing store, but make
1017  *	sure we retrieve at least m[reqpage].  We try to load in as large
1018  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1019  *	belongs to the same object.
1020  *
1021  *	The code is designed for asynchronous operation and
1022  *	immediate-notification of 'reqpage' but tends not to be
1023  *	used that way.  Please do not optimize-out this algorithmic
1024  *	feature, I intend to improve on it in the future.
1025  *
1026  *	The parent has a single vm_object_pip_add() reference prior to
1027  *	calling us and we should return with the same.
1028  *
1029  *	The parent has BUSY'd the pages.  We should return with 'm'
1030  *	left busy, but the others adjusted.
1031  */
1032 
1033 static int
1034 swap_pager_getpages(object, m, count, reqpage)
1035 	vm_object_t object;
1036 	vm_page_t *m;
1037 	int count, reqpage;
1038 {
1039 	struct buf *bp;
1040 	vm_page_t mreq;
1041 	int s;
1042 	int i;
1043 	int j;
1044 	daddr_t blk;
1045 	vm_offset_t kva;
1046 	vm_pindex_t lastpindex;
1047 
1048 	GIANT_REQUIRED;
1049 
1050 	mreq = m[reqpage];
1051 
1052 	if (mreq->object != object) {
1053 		panic("swap_pager_getpages: object mismatch %p/%p",
1054 		    object,
1055 		    mreq->object
1056 		);
1057 	}
1058 	/*
1059 	 * Calculate range to retrieve.  The pages have already been assigned
1060 	 * their swapblks.  We require a *contiguous* range that falls entirely
1061 	 * within a single device stripe.   If we do not supply it, bad things
1062 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1063 	 * loops are set up such that the case(s) are handled implicitly.
1064 	 *
1065 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1066 	 * not need to be, but it will go a little faster if it is.
1067 	 */
1068 
1069 	s = splvm();
1070 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1071 
1072 	for (i = reqpage - 1; i >= 0; --i) {
1073 		daddr_t iblk;
1074 
1075 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1076 		if (blk != iblk + (reqpage - i))
1077 			break;
1078 		if ((blk ^ iblk) & dmmax_mask)
1079 			break;
1080 	}
1081 	++i;
1082 
1083 	for (j = reqpage + 1; j < count; ++j) {
1084 		daddr_t jblk;
1085 
1086 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1087 		if (blk != jblk - (j - reqpage))
1088 			break;
1089 		if ((blk ^ jblk) & dmmax_mask)
1090 			break;
1091 	}
1092 
1093 	/*
1094 	 * free pages outside our collection range.   Note: we never free
1095 	 * mreq, it must remain busy throughout.
1096 	 */
1097 
1098 	{
1099 		int k;
1100 
1101 		for (k = 0; k < i; ++k)
1102 			vm_page_free(m[k]);
1103 		for (k = j; k < count; ++k)
1104 			vm_page_free(m[k]);
1105 	}
1106 	splx(s);
1107 
1108 
1109 	/*
1110 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1111 	 * still busy, but the others unbusied.
1112 	 */
1113 
1114 	if (blk == SWAPBLK_NONE)
1115 		return(VM_PAGER_FAIL);
1116 
1117 	/*
1118 	 * Get a swap buffer header to perform the IO
1119 	 */
1120 
1121 	bp = getpbuf(&nsw_rcount);
1122 	kva = (vm_offset_t) bp->b_data;
1123 
1124 	/*
1125 	 * map our page(s) into kva for input
1126 	 *
1127 	 * NOTE: B_PAGING is set by pbgetvp()
1128 	 */
1129 
1130 	pmap_qenter(kva, m + i, j - i);
1131 
1132 	bp->b_iocmd = BIO_READ;
1133 	bp->b_iodone = swp_pager_async_iodone;
1134 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1135 	bp->b_data = (caddr_t) kva;
1136 	crhold(bp->b_rcred);
1137 	crhold(bp->b_wcred);
1138 	bp->b_blkno = blk - (reqpage - i);
1139 	bp->b_bcount = PAGE_SIZE * (j - i);
1140 	bp->b_bufsize = PAGE_SIZE * (j - i);
1141 	bp->b_pager.pg_reqpage = reqpage - i;
1142 
1143 	{
1144 		int k;
1145 
1146 		for (k = i; k < j; ++k) {
1147 			bp->b_pages[k - i] = m[k];
1148 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1149 		}
1150 	}
1151 	bp->b_npages = j - i;
1152 
1153 	pbgetvp(swapdev_vp, bp);
1154 
1155 	cnt.v_swapin++;
1156 	cnt.v_swappgsin += bp->b_npages;
1157 
1158 	/*
1159 	 * We still hold the lock on mreq, and our automatic completion routine
1160 	 * does not remove it.
1161 	 */
1162 
1163 	vm_object_pip_add(mreq->object, bp->b_npages);
1164 	lastpindex = m[j-1]->pindex;
1165 
1166 	/*
1167 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1168 	 * this point because we automatically release it on completion.
1169 	 * Instead, we look at the one page we are interested in which we
1170 	 * still hold a lock on even through the I/O completion.
1171 	 *
1172 	 * The other pages in our m[] array are also released on completion,
1173 	 * so we cannot assume they are valid anymore either.
1174 	 *
1175 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1176 	 */
1177 	BUF_KERNPROC(bp);
1178 	BUF_STRATEGY(bp);
1179 
1180 	/*
1181 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1182 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1183 	 * is set in the meta-data.
1184 	 */
1185 
1186 	s = splvm();
1187 
1188 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1189 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1190 		cnt.v_intrans++;
1191 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1192 			printf(
1193 			    "swap_pager: indefinite wait buffer: device:"
1194 				" %s, blkno: %ld, size: %ld\n",
1195 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1196 			    bp->b_bcount
1197 			);
1198 		}
1199 	}
1200 
1201 	splx(s);
1202 
1203 	/*
1204 	 * mreq is left bussied after completion, but all the other pages
1205 	 * are freed.  If we had an unrecoverable read error the page will
1206 	 * not be valid.
1207 	 */
1208 
1209 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1210 		return(VM_PAGER_ERROR);
1211 	} else {
1212 		return(VM_PAGER_OK);
1213 	}
1214 
1215 	/*
1216 	 * A final note: in a low swap situation, we cannot deallocate swap
1217 	 * and mark a page dirty here because the caller is likely to mark
1218 	 * the page clean when we return, causing the page to possibly revert
1219 	 * to all-zero's later.
1220 	 */
1221 }
1222 
1223 /*
1224  *	swap_pager_putpages:
1225  *
1226  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1227  *
1228  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1229  *	are automatically converted to SWAP objects.
1230  *
1231  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1232  *	vm_page reservation system coupled with properly written VFS devices
1233  *	should ensure that no low-memory deadlock occurs.  This is an area
1234  *	which needs work.
1235  *
1236  *	The parent has N vm_object_pip_add() references prior to
1237  *	calling us and will remove references for rtvals[] that are
1238  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1239  *	completion.
1240  *
1241  *	The parent has soft-busy'd the pages it passes us and will unbusy
1242  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1243  *	We need to unbusy the rest on I/O completion.
1244  */
1245 
1246 void
1247 swap_pager_putpages(object, m, count, sync, rtvals)
1248 	vm_object_t object;
1249 	vm_page_t *m;
1250 	int count;
1251 	boolean_t sync;
1252 	int *rtvals;
1253 {
1254 	int i;
1255 	int n = 0;
1256 
1257 	GIANT_REQUIRED;
1258 	if (count && m[0]->object != object) {
1259 		panic("swap_pager_getpages: object mismatch %p/%p",
1260 		    object,
1261 		    m[0]->object
1262 		);
1263 	}
1264 	/*
1265 	 * Step 1
1266 	 *
1267 	 * Turn object into OBJT_SWAP
1268 	 * check for bogus sysops
1269 	 * force sync if not pageout process
1270 	 */
1271 
1272 	if (object->type != OBJT_SWAP)
1273 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1274 
1275 	if (curproc != pageproc)
1276 		sync = TRUE;
1277 
1278 	/*
1279 	 * Step 2
1280 	 *
1281 	 * Update nsw parameters from swap_async_max sysctl values.
1282 	 * Do not let the sysop crash the machine with bogus numbers.
1283 	 */
1284 
1285 	mtx_lock(&pbuf_mtx);
1286 	if (swap_async_max != nsw_wcount_async_max) {
1287 		int n;
1288 		int s;
1289 
1290 		/*
1291 		 * limit range
1292 		 */
1293 		if ((n = swap_async_max) > nswbuf / 2)
1294 			n = nswbuf / 2;
1295 		if (n < 1)
1296 			n = 1;
1297 		swap_async_max = n;
1298 
1299 		/*
1300 		 * Adjust difference ( if possible ).  If the current async
1301 		 * count is too low, we may not be able to make the adjustment
1302 		 * at this time.
1303 		 */
1304 		s = splvm();
1305 		n -= nsw_wcount_async_max;
1306 		if (nsw_wcount_async + n >= 0) {
1307 			nsw_wcount_async += n;
1308 			nsw_wcount_async_max += n;
1309 			wakeup(&nsw_wcount_async);
1310 		}
1311 		splx(s);
1312 	}
1313 	mtx_unlock(&pbuf_mtx);
1314 
1315 	/*
1316 	 * Step 3
1317 	 *
1318 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1319 	 * The page is left dirty until the pageout operation completes
1320 	 * successfully.
1321 	 */
1322 
1323 	for (i = 0; i < count; i += n) {
1324 		int s;
1325 		int j;
1326 		struct buf *bp;
1327 		daddr_t blk;
1328 
1329 		/*
1330 		 * Maximum I/O size is limited by a number of factors.
1331 		 */
1332 
1333 		n = min(BLIST_MAX_ALLOC, count - i);
1334 		n = min(n, nsw_cluster_max);
1335 
1336 		s = splvm();
1337 
1338 		/*
1339 		 * Get biggest block of swap we can.  If we fail, fall
1340 		 * back and try to allocate a smaller block.  Don't go
1341 		 * overboard trying to allocate space if it would overly
1342 		 * fragment swap.
1343 		 */
1344 		while (
1345 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1346 		    n > 4
1347 		) {
1348 			n >>= 1;
1349 		}
1350 		if (blk == SWAPBLK_NONE) {
1351 			for (j = 0; j < n; ++j)
1352 				rtvals[i+j] = VM_PAGER_FAIL;
1353 			splx(s);
1354 			continue;
1355 		}
1356 
1357 		/*
1358 		 * The I/O we are constructing cannot cross a physical
1359 		 * disk boundry in the swap stripe.  Note: we are still
1360 		 * at splvm().
1361 		 */
1362 		if ((blk ^ (blk + n)) & dmmax_mask) {
1363 			j = ((blk + dmmax) & dmmax_mask) - blk;
1364 			swp_pager_freeswapspace(blk + j, n - j);
1365 			n = j;
1366 		}
1367 
1368 		/*
1369 		 * All I/O parameters have been satisfied, build the I/O
1370 		 * request and assign the swap space.
1371 		 *
1372 		 * NOTE: B_PAGING is set by pbgetvp()
1373 		 */
1374 
1375 		if (sync == TRUE) {
1376 			bp = getpbuf(&nsw_wcount_sync);
1377 		} else {
1378 			bp = getpbuf(&nsw_wcount_async);
1379 			bp->b_flags = B_ASYNC;
1380 		}
1381 		bp->b_iocmd = BIO_WRITE;
1382 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1383 
1384 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1385 
1386 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1387 		bp->b_bcount = PAGE_SIZE * n;
1388 		bp->b_bufsize = PAGE_SIZE * n;
1389 		bp->b_blkno = blk;
1390 
1391 		crhold(bp->b_rcred);
1392 		crhold(bp->b_wcred);
1393 
1394 		pbgetvp(swapdev_vp, bp);
1395 
1396 		for (j = 0; j < n; ++j) {
1397 			vm_page_t mreq = m[i+j];
1398 
1399 			swp_pager_meta_build(
1400 			    mreq->object,
1401 			    mreq->pindex,
1402 			    blk + j
1403 			);
1404 			vm_page_dirty(mreq);
1405 			rtvals[i+j] = VM_PAGER_OK;
1406 
1407 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1408 			bp->b_pages[j] = mreq;
1409 		}
1410 		bp->b_npages = n;
1411 		/*
1412 		 * Must set dirty range for NFS to work.
1413 		 */
1414 		bp->b_dirtyoff = 0;
1415 		bp->b_dirtyend = bp->b_bcount;
1416 
1417 		cnt.v_swapout++;
1418 		cnt.v_swappgsout += bp->b_npages;
1419 		swapdev_vp->v_numoutput++;
1420 
1421 		splx(s);
1422 
1423 		/*
1424 		 * asynchronous
1425 		 *
1426 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1427 		 */
1428 
1429 		if (sync == FALSE) {
1430 			bp->b_iodone = swp_pager_async_iodone;
1431 			BUF_KERNPROC(bp);
1432 			BUF_STRATEGY(bp);
1433 
1434 			for (j = 0; j < n; ++j)
1435 				rtvals[i+j] = VM_PAGER_PEND;
1436 			/* restart outter loop */
1437 			continue;
1438 		}
1439 
1440 		/*
1441 		 * synchronous
1442 		 *
1443 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1444 		 */
1445 
1446 		bp->b_iodone = swp_pager_sync_iodone;
1447 		BUF_STRATEGY(bp);
1448 
1449 		/*
1450 		 * Wait for the sync I/O to complete, then update rtvals.
1451 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1452 		 * our async completion routine at the end, thus avoiding a
1453 		 * double-free.
1454 		 */
1455 		s = splbio();
1456 
1457 		while ((bp->b_flags & B_DONE) == 0) {
1458 			tsleep(bp, PVM, "swwrt", 0);
1459 		}
1460 
1461 		for (j = 0; j < n; ++j)
1462 			rtvals[i+j] = VM_PAGER_PEND;
1463 
1464 		/*
1465 		 * Now that we are through with the bp, we can call the
1466 		 * normal async completion, which frees everything up.
1467 		 */
1468 
1469 		swp_pager_async_iodone(bp);
1470 		splx(s);
1471 	}
1472 }
1473 
1474 /*
1475  *	swap_pager_sync_iodone:
1476  *
1477  *	Completion routine for synchronous reads and writes from/to swap.
1478  *	We just mark the bp is complete and wake up anyone waiting on it.
1479  *
1480  *	This routine may not block.  This routine is called at splbio() or better.
1481  */
1482 
1483 static void
1484 swp_pager_sync_iodone(bp)
1485 	struct buf *bp;
1486 {
1487 	bp->b_flags |= B_DONE;
1488 	bp->b_flags &= ~B_ASYNC;
1489 	wakeup(bp);
1490 }
1491 
1492 /*
1493  *	swp_pager_async_iodone:
1494  *
1495  *	Completion routine for asynchronous reads and writes from/to swap.
1496  *	Also called manually by synchronous code to finish up a bp.
1497  *
1498  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1499  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1500  *	unbusy all pages except the 'main' request page.  For WRITE
1501  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1502  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1503  *
1504  *	This routine may not block.
1505  *	This routine is called at splbio() or better
1506  *
1507  *	We up ourselves to splvm() as required for various vm_page related
1508  *	calls.
1509  */
1510 
1511 static void
1512 swp_pager_async_iodone(bp)
1513 	struct buf *bp;
1514 {
1515 	int s;
1516 	int i;
1517 	vm_object_t object = NULL;
1518 
1519 	GIANT_REQUIRED;
1520 
1521 	bp->b_flags |= B_DONE;
1522 
1523 	/*
1524 	 * report error
1525 	 */
1526 
1527 	if (bp->b_ioflags & BIO_ERROR) {
1528 		printf(
1529 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1530 			"size %ld, error %d\n",
1531 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1532 		    (long)bp->b_blkno,
1533 		    (long)bp->b_bcount,
1534 		    bp->b_error
1535 		);
1536 	}
1537 
1538 	/*
1539 	 * set object, raise to splvm().
1540 	 */
1541 
1542 	if (bp->b_npages)
1543 		object = bp->b_pages[0]->object;
1544 	s = splvm();
1545 
1546 	/*
1547 	 * remove the mapping for kernel virtual
1548 	 */
1549 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1550 
1551 	/*
1552 	 * cleanup pages.  If an error occurs writing to swap, we are in
1553 	 * very serious trouble.  If it happens to be a disk error, though,
1554 	 * we may be able to recover by reassigning the swap later on.  So
1555 	 * in this case we remove the m->swapblk assignment for the page
1556 	 * but do not free it in the rlist.  The errornous block(s) are thus
1557 	 * never reallocated as swap.  Redirty the page and continue.
1558 	 */
1559 
1560 	for (i = 0; i < bp->b_npages; ++i) {
1561 		vm_page_t m = bp->b_pages[i];
1562 
1563 		vm_page_flag_clear(m, PG_SWAPINPROG);
1564 
1565 		if (bp->b_ioflags & BIO_ERROR) {
1566 			/*
1567 			 * If an error occurs I'd love to throw the swapblk
1568 			 * away without freeing it back to swapspace, so it
1569 			 * can never be used again.  But I can't from an
1570 			 * interrupt.
1571 			 */
1572 
1573 			if (bp->b_iocmd == BIO_READ) {
1574 				/*
1575 				 * When reading, reqpage needs to stay
1576 				 * locked for the parent, but all other
1577 				 * pages can be freed.  We still want to
1578 				 * wakeup the parent waiting on the page,
1579 				 * though.  ( also: pg_reqpage can be -1 and
1580 				 * not match anything ).
1581 				 *
1582 				 * We have to wake specifically requested pages
1583 				 * up too because we cleared PG_SWAPINPROG and
1584 				 * someone may be waiting for that.
1585 				 *
1586 				 * NOTE: for reads, m->dirty will probably
1587 				 * be overridden by the original caller of
1588 				 * getpages so don't play cute tricks here.
1589 				 *
1590 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1591 				 * AS THIS MESSES WITH object->memq, and it is
1592 				 * not legal to mess with object->memq from an
1593 				 * interrupt.
1594 				 */
1595 
1596 				m->valid = 0;
1597 				vm_page_flag_clear(m, PG_ZERO);
1598 
1599 				if (i != bp->b_pager.pg_reqpage)
1600 					vm_page_free(m);
1601 				else
1602 					vm_page_flash(m);
1603 				/*
1604 				 * If i == bp->b_pager.pg_reqpage, do not wake
1605 				 * the page up.  The caller needs to.
1606 				 */
1607 			} else {
1608 				/*
1609 				 * If a write error occurs, reactivate page
1610 				 * so it doesn't clog the inactive list,
1611 				 * then finish the I/O.
1612 				 */
1613 				vm_page_dirty(m);
1614 				vm_page_activate(m);
1615 				vm_page_io_finish(m);
1616 			}
1617 		} else if (bp->b_iocmd == BIO_READ) {
1618 			/*
1619 			 * For read success, clear dirty bits.  Nobody should
1620 			 * have this page mapped but don't take any chances,
1621 			 * make sure the pmap modify bits are also cleared.
1622 			 *
1623 			 * NOTE: for reads, m->dirty will probably be
1624 			 * overridden by the original caller of getpages so
1625 			 * we cannot set them in order to free the underlying
1626 			 * swap in a low-swap situation.  I don't think we'd
1627 			 * want to do that anyway, but it was an optimization
1628 			 * that existed in the old swapper for a time before
1629 			 * it got ripped out due to precisely this problem.
1630 			 *
1631 			 * clear PG_ZERO in page.
1632 			 *
1633 			 * If not the requested page then deactivate it.
1634 			 *
1635 			 * Note that the requested page, reqpage, is left
1636 			 * busied, but we still have to wake it up.  The
1637 			 * other pages are released (unbusied) by
1638 			 * vm_page_wakeup().  We do not set reqpage's
1639 			 * valid bits here, it is up to the caller.
1640 			 */
1641 
1642 			pmap_clear_modify(m);
1643 			m->valid = VM_PAGE_BITS_ALL;
1644 			vm_page_undirty(m);
1645 			vm_page_flag_clear(m, PG_ZERO);
1646 
1647 			/*
1648 			 * We have to wake specifically requested pages
1649 			 * up too because we cleared PG_SWAPINPROG and
1650 			 * could be waiting for it in getpages.  However,
1651 			 * be sure to not unbusy getpages specifically
1652 			 * requested page - getpages expects it to be
1653 			 * left busy.
1654 			 */
1655 			if (i != bp->b_pager.pg_reqpage) {
1656 				vm_page_deactivate(m);
1657 				vm_page_wakeup(m);
1658 			} else {
1659 				vm_page_flash(m);
1660 			}
1661 		} else {
1662 			/*
1663 			 * For write success, clear the modify and dirty
1664 			 * status, then finish the I/O ( which decrements the
1665 			 * busy count and possibly wakes waiter's up ).
1666 			 */
1667 			pmap_clear_modify(m);
1668 			vm_page_undirty(m);
1669 			vm_page_io_finish(m);
1670 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1671 				vm_page_protect(m, VM_PROT_READ);
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * adjust pip.  NOTE: the original parent may still have its own
1677 	 * pip refs on the object.
1678 	 */
1679 
1680 	if (object)
1681 		vm_object_pip_wakeupn(object, bp->b_npages);
1682 
1683 	/*
1684 	 * release the physical I/O buffer
1685 	 */
1686 
1687 	relpbuf(
1688 	    bp,
1689 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1690 		((bp->b_flags & B_ASYNC) ?
1691 		    &nsw_wcount_async :
1692 		    &nsw_wcount_sync
1693 		)
1694 	    )
1695 	);
1696 	splx(s);
1697 }
1698 
1699 /************************************************************************
1700  *				SWAP META DATA 				*
1701  ************************************************************************
1702  *
1703  *	These routines manipulate the swap metadata stored in the
1704  *	OBJT_SWAP object.  All swp_*() routines must be called at
1705  *	splvm() because swap can be freed up by the low level vm_page
1706  *	code which might be called from interrupts beyond what splbio() covers.
1707  *
1708  *	Swap metadata is implemented with a global hash and not directly
1709  *	linked into the object.  Instead the object simply contains
1710  *	appropriate tracking counters.
1711  */
1712 
1713 /*
1714  * SWP_PAGER_HASH() -	hash swap meta data
1715  *
1716  *	This is an inline helper function which hashes the swapblk given
1717  *	the object and page index.  It returns a pointer to a pointer
1718  *	to the object, or a pointer to a NULL pointer if it could not
1719  *	find a swapblk.
1720  *
1721  *	This routine must be called at splvm().
1722  */
1723 
1724 static __inline struct swblock **
1725 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1726 {
1727 	struct swblock **pswap;
1728 	struct swblock *swap;
1729 
1730 	index &= ~SWAP_META_MASK;
1731 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1732 
1733 	while ((swap = *pswap) != NULL) {
1734 		if (swap->swb_object == object &&
1735 		    swap->swb_index == index
1736 		) {
1737 			break;
1738 		}
1739 		pswap = &swap->swb_hnext;
1740 	}
1741 	return(pswap);
1742 }
1743 
1744 /*
1745  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1746  *
1747  *	We first convert the object to a swap object if it is a default
1748  *	object.
1749  *
1750  *	The specified swapblk is added to the object's swap metadata.  If
1751  *	the swapblk is not valid, it is freed instead.  Any previously
1752  *	assigned swapblk is freed.
1753  *
1754  *	This routine must be called at splvm(), except when used to convert
1755  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1756  */
1757 
1758 static void
1759 swp_pager_meta_build(
1760 	vm_object_t object,
1761 	vm_pindex_t index,
1762 	daddr_t swapblk
1763 ) {
1764 	struct swblock *swap;
1765 	struct swblock **pswap;
1766 
1767 	GIANT_REQUIRED;
1768 	/*
1769 	 * Convert default object to swap object if necessary
1770 	 */
1771 
1772 	if (object->type != OBJT_SWAP) {
1773 		object->type = OBJT_SWAP;
1774 		object->un_pager.swp.swp_bcount = 0;
1775 
1776 		mtx_lock(&sw_alloc_mtx);
1777 		if (object->handle != NULL) {
1778 			TAILQ_INSERT_TAIL(
1779 			    NOBJLIST(object->handle),
1780 			    object,
1781 			    pager_object_list
1782 			);
1783 		} else {
1784 			TAILQ_INSERT_TAIL(
1785 			    &swap_pager_un_object_list,
1786 			    object,
1787 			    pager_object_list
1788 			);
1789 		}
1790 		mtx_unlock(&sw_alloc_mtx);
1791 	}
1792 
1793 	/*
1794 	 * Locate hash entry.  If not found create, but if we aren't adding
1795 	 * anything just return.  If we run out of space in the map we wait
1796 	 * and, since the hash table may have changed, retry.
1797 	 */
1798 
1799 retry:
1800 	pswap = swp_pager_hash(object, index);
1801 
1802 	if ((swap = *pswap) == NULL) {
1803 		int i;
1804 
1805 		if (swapblk == SWAPBLK_NONE)
1806 			return;
1807 
1808 		swap = *pswap = zalloc(swap_zone);
1809 		if (swap == NULL) {
1810 			VM_WAIT;
1811 			goto retry;
1812 		}
1813 		swap->swb_hnext = NULL;
1814 		swap->swb_object = object;
1815 		swap->swb_index = index & ~SWAP_META_MASK;
1816 		swap->swb_count = 0;
1817 
1818 		++object->un_pager.swp.swp_bcount;
1819 
1820 		for (i = 0; i < SWAP_META_PAGES; ++i)
1821 			swap->swb_pages[i] = SWAPBLK_NONE;
1822 	}
1823 
1824 	/*
1825 	 * Delete prior contents of metadata
1826 	 */
1827 
1828 	index &= SWAP_META_MASK;
1829 
1830 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1831 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1832 		--swap->swb_count;
1833 	}
1834 
1835 	/*
1836 	 * Enter block into metadata
1837 	 */
1838 
1839 	swap->swb_pages[index] = swapblk;
1840 	if (swapblk != SWAPBLK_NONE)
1841 		++swap->swb_count;
1842 }
1843 
1844 /*
1845  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1846  *
1847  *	The requested range of blocks is freed, with any associated swap
1848  *	returned to the swap bitmap.
1849  *
1850  *	This routine will free swap metadata structures as they are cleaned
1851  *	out.  This routine does *NOT* operate on swap metadata associated
1852  *	with resident pages.
1853  *
1854  *	This routine must be called at splvm()
1855  */
1856 
1857 static void
1858 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1859 {
1860 	GIANT_REQUIRED;
1861 
1862 	if (object->type != OBJT_SWAP)
1863 		return;
1864 
1865 	while (count > 0) {
1866 		struct swblock **pswap;
1867 		struct swblock *swap;
1868 
1869 		pswap = swp_pager_hash(object, index);
1870 
1871 		if ((swap = *pswap) != NULL) {
1872 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1873 
1874 			if (v != SWAPBLK_NONE) {
1875 				swp_pager_freeswapspace(v, 1);
1876 				swap->swb_pages[index & SWAP_META_MASK] =
1877 					SWAPBLK_NONE;
1878 				if (--swap->swb_count == 0) {
1879 					*pswap = swap->swb_hnext;
1880 					zfree(swap_zone, swap);
1881 					--object->un_pager.swp.swp_bcount;
1882 				}
1883 			}
1884 			--count;
1885 			++index;
1886 		} else {
1887 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1888 			count -= n;
1889 			index += n;
1890 		}
1891 	}
1892 }
1893 
1894 /*
1895  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1896  *
1897  *	This routine locates and destroys all swap metadata associated with
1898  *	an object.
1899  *
1900  *	This routine must be called at splvm()
1901  */
1902 
1903 static void
1904 swp_pager_meta_free_all(vm_object_t object)
1905 {
1906 	daddr_t index = 0;
1907 
1908 	GIANT_REQUIRED;
1909 
1910 	if (object->type != OBJT_SWAP)
1911 		return;
1912 
1913 	while (object->un_pager.swp.swp_bcount) {
1914 		struct swblock **pswap;
1915 		struct swblock *swap;
1916 
1917 		pswap = swp_pager_hash(object, index);
1918 		if ((swap = *pswap) != NULL) {
1919 			int i;
1920 
1921 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1922 				daddr_t v = swap->swb_pages[i];
1923 				if (v != SWAPBLK_NONE) {
1924 					--swap->swb_count;
1925 					swp_pager_freeswapspace(v, 1);
1926 				}
1927 			}
1928 			if (swap->swb_count != 0)
1929 				panic("swap_pager_meta_free_all: swb_count != 0");
1930 			*pswap = swap->swb_hnext;
1931 			zfree(swap_zone, swap);
1932 			--object->un_pager.swp.swp_bcount;
1933 		}
1934 		index += SWAP_META_PAGES;
1935 		if (index > 0x20000000)
1936 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1937 	}
1938 }
1939 
1940 /*
1941  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1942  *
1943  *	This routine is capable of looking up, popping, or freeing
1944  *	swapblk assignments in the swap meta data or in the vm_page_t.
1945  *	The routine typically returns the swapblk being looked-up, or popped,
1946  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1947  *	was invalid.  This routine will automatically free any invalid
1948  *	meta-data swapblks.
1949  *
1950  *	It is not possible to store invalid swapblks in the swap meta data
1951  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1952  *
1953  *	When acting on a busy resident page and paging is in progress, we
1954  *	have to wait until paging is complete but otherwise can act on the
1955  *	busy page.
1956  *
1957  *	This routine must be called at splvm().
1958  *
1959  *	SWM_FREE	remove and free swap block from metadata
1960  *	SWM_POP		remove from meta data but do not free.. pop it out
1961  */
1962 
1963 static daddr_t
1964 swp_pager_meta_ctl(
1965 	vm_object_t object,
1966 	vm_pindex_t index,
1967 	int flags
1968 ) {
1969 	struct swblock **pswap;
1970 	struct swblock *swap;
1971 	daddr_t r1;
1972 
1973 	GIANT_REQUIRED;
1974 	/*
1975 	 * The meta data only exists of the object is OBJT_SWAP
1976 	 * and even then might not be allocated yet.
1977 	 */
1978 
1979 	if (object->type != OBJT_SWAP)
1980 		return(SWAPBLK_NONE);
1981 
1982 	r1 = SWAPBLK_NONE;
1983 	pswap = swp_pager_hash(object, index);
1984 
1985 	if ((swap = *pswap) != NULL) {
1986 		index &= SWAP_META_MASK;
1987 		r1 = swap->swb_pages[index];
1988 
1989 		if (r1 != SWAPBLK_NONE) {
1990 			if (flags & SWM_FREE) {
1991 				swp_pager_freeswapspace(r1, 1);
1992 				r1 = SWAPBLK_NONE;
1993 			}
1994 			if (flags & (SWM_FREE|SWM_POP)) {
1995 				swap->swb_pages[index] = SWAPBLK_NONE;
1996 				if (--swap->swb_count == 0) {
1997 					*pswap = swap->swb_hnext;
1998 					zfree(swap_zone, swap);
1999 					--object->un_pager.swp.swp_bcount;
2000 				}
2001 			}
2002 		}
2003 	}
2004 	return(r1);
2005 }
2006 
2007 /********************************************************
2008  *		CHAINING FUNCTIONS			*
2009  ********************************************************
2010  *
2011  *	These functions support recursion of I/O operations
2012  *	on bp's, typically by chaining one or more 'child' bp's
2013  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2014  *	chaining is possible.
2015  */
2016 
2017 /*
2018  *	vm_pager_chain_iodone:
2019  *
2020  *	io completion routine for child bp.  Currently we fudge a bit
2021  *	on dealing with b_resid.   Since users of these routines may issue
2022  *	multiple children simultaneously, sequencing of the error can be lost.
2023  */
2024 
2025 static void
2026 vm_pager_chain_iodone(struct buf *nbp)
2027 {
2028 	struct bio *bp;
2029 	u_int *count;
2030 
2031 	bp = nbp->b_caller1;
2032 	count = (u_int *)&(bp->bio_caller1);
2033 	if (bp != NULL) {
2034 		if (nbp->b_ioflags & BIO_ERROR) {
2035 			bp->bio_flags |= BIO_ERROR;
2036 			bp->bio_error = nbp->b_error;
2037 		} else if (nbp->b_resid != 0) {
2038 			bp->bio_flags |= BIO_ERROR;
2039 			bp->bio_error = EINVAL;
2040 		} else {
2041 			bp->bio_resid -= nbp->b_bcount;
2042 		}
2043 		nbp->b_caller1 = NULL;
2044 		--(*count);
2045 		if (bp->bio_flags & BIO_FLAG1) {
2046 			bp->bio_flags &= ~BIO_FLAG1;
2047 			wakeup(bp);
2048 		}
2049 	}
2050 	nbp->b_flags |= B_DONE;
2051 	nbp->b_flags &= ~B_ASYNC;
2052 	relpbuf(nbp, NULL);
2053 }
2054 
2055 /*
2056  *	getchainbuf:
2057  *
2058  *	Obtain a physical buffer and chain it to its parent buffer.  When
2059  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2060  *	automatically propagated to the parent
2061  */
2062 
2063 struct buf *
2064 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2065 {
2066 	struct buf *nbp;
2067 	u_int *count;
2068 
2069 	GIANT_REQUIRED;
2070 	nbp = getpbuf(NULL);
2071 	count = (u_int *)&(bp->bio_caller1);
2072 
2073 	nbp->b_caller1 = bp;
2074 	++(*count);
2075 
2076 	if (*count > 4)
2077 		waitchainbuf(bp, 4, 0);
2078 
2079 	nbp->b_iocmd = bp->bio_cmd;
2080 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2081 	nbp->b_flags = flags;
2082 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2083 	nbp->b_iodone = vm_pager_chain_iodone;
2084 
2085 	crhold(nbp->b_rcred);
2086 	crhold(nbp->b_wcred);
2087 
2088 	if (vp)
2089 		pbgetvp(vp, nbp);
2090 	return(nbp);
2091 }
2092 
2093 void
2094 flushchainbuf(struct buf *nbp)
2095 {
2096 	GIANT_REQUIRED;
2097 	if (nbp->b_bcount) {
2098 		nbp->b_bufsize = nbp->b_bcount;
2099 		if (nbp->b_iocmd == BIO_WRITE)
2100 			nbp->b_dirtyend = nbp->b_bcount;
2101 		BUF_KERNPROC(nbp);
2102 		BUF_STRATEGY(nbp);
2103 	} else {
2104 		bufdone(nbp);
2105 	}
2106 }
2107 
2108 static void
2109 waitchainbuf(struct bio *bp, int limit, int done)
2110 {
2111  	int s;
2112 	u_int *count;
2113 
2114 	GIANT_REQUIRED;
2115 	count = (u_int *)&(bp->bio_caller1);
2116 	s = splbio();
2117 	while (*count > limit) {
2118 		bp->bio_flags |= BIO_FLAG1;
2119 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2120 	}
2121 	if (done) {
2122 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2123 			bp->bio_flags |= BIO_ERROR;
2124 			bp->bio_error = EINVAL;
2125 		}
2126 		biodone(bp);
2127 	}
2128 	splx(s);
2129 }
2130 
2131