1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 #define SWM_FREE 0x02 /* free, period */ 317 #define SWM_POP 0x04 /* pop out */ 318 319 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 321 static int nsw_rcount; /* free read buffers */ 322 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 323 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 324 static int nsw_wcount_async_max;/* assigned maximum */ 325 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 326 327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW, 329 NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops"); 330 331 static struct swblock **swhash; 332 static int swhash_mask; 333 static struct mtx swhash_mtx; 334 335 static struct sx sw_alloc_sx; 336 337 /* 338 * "named" and "unnamed" anon region objects. Try to reduce the overhead 339 * of searching a named list by hashing it just a little. 340 */ 341 342 #define NOBJLISTS 8 343 344 #define NOBJLIST(handle) \ 345 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 346 347 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 348 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 349 static uma_zone_t swap_zone; 350 351 /* 352 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 353 * calls hooked from other parts of the VM system and do not appear here. 354 * (see vm/swap_pager.h). 355 */ 356 static vm_object_t 357 swap_pager_alloc(void *handle, vm_ooffset_t size, 358 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 359 static void swap_pager_dealloc(vm_object_t object); 360 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 361 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int, 362 pgo_getpages_iodone_t, void *); 363 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 364 static boolean_t 365 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 366 static void swap_pager_init(void); 367 static void swap_pager_unswapped(vm_page_t); 368 static void swap_pager_swapoff(struct swdevt *sp); 369 370 struct pagerops swappagerops = { 371 .pgo_init = swap_pager_init, /* early system initialization of pager */ 372 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 373 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 374 .pgo_getpages = swap_pager_getpages, /* pagein */ 375 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 376 .pgo_putpages = swap_pager_putpages, /* pageout */ 377 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 378 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 379 }; 380 381 /* 382 * dmmax is in page-sized chunks with the new swap system. It was 383 * dev-bsized chunks in the old. dmmax is always a power of 2. 384 * 385 * swap_*() routines are externally accessible. swp_*() routines are 386 * internal. 387 */ 388 static int dmmax; 389 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 390 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 391 392 SYSCTL_INT(_vm, OID_AUTO, dmmax, 393 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 394 395 static void swp_sizecheck(void); 396 static void swp_pager_async_iodone(struct buf *bp); 397 static int swapongeom(struct thread *, struct vnode *); 398 static int swaponvp(struct thread *, struct vnode *, u_long); 399 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 400 401 /* 402 * Swap bitmap functions 403 */ 404 static void swp_pager_freeswapspace(daddr_t blk, int npages); 405 static daddr_t swp_pager_getswapspace(int npages); 406 407 /* 408 * Metadata functions 409 */ 410 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 411 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 412 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 413 static void swp_pager_meta_free_all(vm_object_t); 414 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 415 416 static void 417 swp_pager_free_nrpage(vm_page_t m) 418 { 419 420 vm_page_lock(m); 421 if (m->wire_count == 0) 422 vm_page_free(m); 423 vm_page_unlock(m); 424 } 425 426 /* 427 * SWP_SIZECHECK() - update swap_pager_full indication 428 * 429 * update the swap_pager_almost_full indication and warn when we are 430 * about to run out of swap space, using lowat/hiwat hysteresis. 431 * 432 * Clear swap_pager_full ( task killing ) indication when lowat is met. 433 * 434 * No restrictions on call 435 * This routine may not block. 436 */ 437 static void 438 swp_sizecheck(void) 439 { 440 441 if (swap_pager_avail < nswap_lowat) { 442 if (swap_pager_almost_full == 0) { 443 printf("swap_pager: out of swap space\n"); 444 swap_pager_almost_full = 1; 445 } 446 } else { 447 swap_pager_full = 0; 448 if (swap_pager_avail > nswap_hiwat) 449 swap_pager_almost_full = 0; 450 } 451 } 452 453 /* 454 * SWP_PAGER_HASH() - hash swap meta data 455 * 456 * This is an helper function which hashes the swapblk given 457 * the object and page index. It returns a pointer to a pointer 458 * to the object, or a pointer to a NULL pointer if it could not 459 * find a swapblk. 460 */ 461 static struct swblock ** 462 swp_pager_hash(vm_object_t object, vm_pindex_t index) 463 { 464 struct swblock **pswap; 465 struct swblock *swap; 466 467 index &= ~(vm_pindex_t)SWAP_META_MASK; 468 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 469 while ((swap = *pswap) != NULL) { 470 if (swap->swb_object == object && 471 swap->swb_index == index 472 ) { 473 break; 474 } 475 pswap = &swap->swb_hnext; 476 } 477 return (pswap); 478 } 479 480 /* 481 * SWAP_PAGER_INIT() - initialize the swap pager! 482 * 483 * Expected to be started from system init. NOTE: This code is run 484 * before much else so be careful what you depend on. Most of the VM 485 * system has yet to be initialized at this point. 486 */ 487 static void 488 swap_pager_init(void) 489 { 490 /* 491 * Initialize object lists 492 */ 493 int i; 494 495 for (i = 0; i < NOBJLISTS; ++i) 496 TAILQ_INIT(&swap_pager_object_list[i]); 497 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 498 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 499 500 /* 501 * Device Stripe, in PAGE_SIZE'd blocks 502 */ 503 dmmax = SWB_NPAGES * 2; 504 } 505 506 /* 507 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 508 * 509 * Expected to be started from pageout process once, prior to entering 510 * its main loop. 511 */ 512 void 513 swap_pager_swap_init(void) 514 { 515 unsigned long n, n2; 516 517 /* 518 * Number of in-transit swap bp operations. Don't 519 * exhaust the pbufs completely. Make sure we 520 * initialize workable values (0 will work for hysteresis 521 * but it isn't very efficient). 522 * 523 * The nsw_cluster_max is constrained by the bp->b_pages[] 524 * array (MAXPHYS/PAGE_SIZE) and our locally defined 525 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 526 * constrained by the swap device interleave stripe size. 527 * 528 * Currently we hardwire nsw_wcount_async to 4. This limit is 529 * designed to prevent other I/O from having high latencies due to 530 * our pageout I/O. The value 4 works well for one or two active swap 531 * devices but is probably a little low if you have more. Even so, 532 * a higher value would probably generate only a limited improvement 533 * with three or four active swap devices since the system does not 534 * typically have to pageout at extreme bandwidths. We will want 535 * at least 2 per swap devices, and 4 is a pretty good value if you 536 * have one NFS swap device due to the command/ack latency over NFS. 537 * So it all works out pretty well. 538 */ 539 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 540 541 mtx_lock(&pbuf_mtx); 542 nsw_rcount = (nswbuf + 1) / 2; 543 nsw_wcount_sync = (nswbuf + 3) / 4; 544 nsw_wcount_async = 4; 545 nsw_wcount_async_max = nsw_wcount_async; 546 mtx_unlock(&pbuf_mtx); 547 548 /* 549 * Initialize our zone. Right now I'm just guessing on the number 550 * we need based on the number of pages in the system. Each swblock 551 * can hold 32 pages, so this is probably overkill. This reservation 552 * is typically limited to around 32MB by default. 553 */ 554 n = vm_cnt.v_page_count / 2; 555 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 556 n = maxswzone / sizeof(struct swblock); 557 n2 = n; 558 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 559 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 560 if (swap_zone == NULL) 561 panic("failed to create swap_zone."); 562 do { 563 if (uma_zone_reserve_kva(swap_zone, n)) 564 break; 565 /* 566 * if the allocation failed, try a zone two thirds the 567 * size of the previous attempt. 568 */ 569 n -= ((n + 2) / 3); 570 } while (n > 0); 571 if (n2 != n) 572 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 573 swap_maxpages = n * SWAP_META_PAGES; 574 swzone = n * sizeof(struct swblock); 575 n2 = n; 576 577 /* 578 * Initialize our meta-data hash table. The swapper does not need to 579 * be quite as efficient as the VM system, so we do not use an 580 * oversized hash table. 581 * 582 * n: size of hash table, must be power of 2 583 * swhash_mask: hash table index mask 584 */ 585 for (n = 1; n < n2 / 8; n *= 2) 586 ; 587 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 588 swhash_mask = n - 1; 589 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 590 } 591 592 /* 593 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 594 * its metadata structures. 595 * 596 * This routine is called from the mmap and fork code to create a new 597 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 598 * and then converting it with swp_pager_meta_build(). 599 * 600 * This routine may block in vm_object_allocate() and create a named 601 * object lookup race, so we must interlock. 602 * 603 * MPSAFE 604 */ 605 static vm_object_t 606 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 607 vm_ooffset_t offset, struct ucred *cred) 608 { 609 vm_object_t object; 610 vm_pindex_t pindex; 611 612 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 613 if (handle) { 614 mtx_lock(&Giant); 615 /* 616 * Reference existing named region or allocate new one. There 617 * should not be a race here against swp_pager_meta_build() 618 * as called from vm_page_remove() in regards to the lookup 619 * of the handle. 620 */ 621 sx_xlock(&sw_alloc_sx); 622 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 623 if (object == NULL) { 624 if (cred != NULL) { 625 if (!swap_reserve_by_cred(size, cred)) { 626 sx_xunlock(&sw_alloc_sx); 627 mtx_unlock(&Giant); 628 return (NULL); 629 } 630 crhold(cred); 631 } 632 object = vm_object_allocate(OBJT_DEFAULT, pindex); 633 VM_OBJECT_WLOCK(object); 634 object->handle = handle; 635 if (cred != NULL) { 636 object->cred = cred; 637 object->charge = size; 638 } 639 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 640 VM_OBJECT_WUNLOCK(object); 641 } 642 sx_xunlock(&sw_alloc_sx); 643 mtx_unlock(&Giant); 644 } else { 645 if (cred != NULL) { 646 if (!swap_reserve_by_cred(size, cred)) 647 return (NULL); 648 crhold(cred); 649 } 650 object = vm_object_allocate(OBJT_DEFAULT, pindex); 651 VM_OBJECT_WLOCK(object); 652 if (cred != NULL) { 653 object->cred = cred; 654 object->charge = size; 655 } 656 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 657 VM_OBJECT_WUNLOCK(object); 658 } 659 return (object); 660 } 661 662 /* 663 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 664 * 665 * The swap backing for the object is destroyed. The code is 666 * designed such that we can reinstantiate it later, but this 667 * routine is typically called only when the entire object is 668 * about to be destroyed. 669 * 670 * The object must be locked. 671 */ 672 static void 673 swap_pager_dealloc(vm_object_t object) 674 { 675 676 /* 677 * Remove from list right away so lookups will fail if we block for 678 * pageout completion. 679 */ 680 if (object->handle != NULL) { 681 mtx_lock(&sw_alloc_mtx); 682 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 683 mtx_unlock(&sw_alloc_mtx); 684 } 685 686 VM_OBJECT_ASSERT_WLOCKED(object); 687 vm_object_pip_wait(object, "swpdea"); 688 689 /* 690 * Free all remaining metadata. We only bother to free it from 691 * the swap meta data. We do not attempt to free swapblk's still 692 * associated with vm_page_t's for this object. We do not care 693 * if paging is still in progress on some objects. 694 */ 695 swp_pager_meta_free_all(object); 696 object->handle = NULL; 697 object->type = OBJT_DEAD; 698 } 699 700 /************************************************************************ 701 * SWAP PAGER BITMAP ROUTINES * 702 ************************************************************************/ 703 704 /* 705 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 706 * 707 * Allocate swap for the requested number of pages. The starting 708 * swap block number (a page index) is returned or SWAPBLK_NONE 709 * if the allocation failed. 710 * 711 * Also has the side effect of advising that somebody made a mistake 712 * when they configured swap and didn't configure enough. 713 * 714 * This routine may not sleep. 715 * 716 * We allocate in round-robin fashion from the configured devices. 717 */ 718 static daddr_t 719 swp_pager_getswapspace(int npages) 720 { 721 daddr_t blk; 722 struct swdevt *sp; 723 int i; 724 725 blk = SWAPBLK_NONE; 726 mtx_lock(&sw_dev_mtx); 727 sp = swdevhd; 728 for (i = 0; i < nswapdev; i++) { 729 if (sp == NULL) 730 sp = TAILQ_FIRST(&swtailq); 731 if (!(sp->sw_flags & SW_CLOSING)) { 732 blk = blist_alloc(sp->sw_blist, npages); 733 if (blk != SWAPBLK_NONE) { 734 blk += sp->sw_first; 735 sp->sw_used += npages; 736 swap_pager_avail -= npages; 737 swp_sizecheck(); 738 swdevhd = TAILQ_NEXT(sp, sw_list); 739 goto done; 740 } 741 } 742 sp = TAILQ_NEXT(sp, sw_list); 743 } 744 if (swap_pager_full != 2) { 745 printf("swap_pager_getswapspace(%d): failed\n", npages); 746 swap_pager_full = 2; 747 swap_pager_almost_full = 1; 748 } 749 swdevhd = NULL; 750 done: 751 mtx_unlock(&sw_dev_mtx); 752 return (blk); 753 } 754 755 static int 756 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 757 { 758 759 return (blk >= sp->sw_first && blk < sp->sw_end); 760 } 761 762 static void 763 swp_pager_strategy(struct buf *bp) 764 { 765 struct swdevt *sp; 766 767 mtx_lock(&sw_dev_mtx); 768 TAILQ_FOREACH(sp, &swtailq, sw_list) { 769 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 770 mtx_unlock(&sw_dev_mtx); 771 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 772 unmapped_buf_allowed) { 773 bp->b_data = unmapped_buf; 774 bp->b_offset = 0; 775 } else { 776 pmap_qenter((vm_offset_t)bp->b_data, 777 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 778 } 779 sp->sw_strategy(bp, sp); 780 return; 781 } 782 } 783 panic("Swapdev not found"); 784 } 785 786 787 /* 788 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 789 * 790 * This routine returns the specified swap blocks back to the bitmap. 791 * 792 * This routine may not sleep. 793 */ 794 static void 795 swp_pager_freeswapspace(daddr_t blk, int npages) 796 { 797 struct swdevt *sp; 798 799 mtx_lock(&sw_dev_mtx); 800 TAILQ_FOREACH(sp, &swtailq, sw_list) { 801 if (blk >= sp->sw_first && blk < sp->sw_end) { 802 sp->sw_used -= npages; 803 /* 804 * If we are attempting to stop swapping on 805 * this device, we don't want to mark any 806 * blocks free lest they be reused. 807 */ 808 if ((sp->sw_flags & SW_CLOSING) == 0) { 809 blist_free(sp->sw_blist, blk - sp->sw_first, 810 npages); 811 swap_pager_avail += npages; 812 swp_sizecheck(); 813 } 814 mtx_unlock(&sw_dev_mtx); 815 return; 816 } 817 } 818 panic("Swapdev not found"); 819 } 820 821 /* 822 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 823 * range within an object. 824 * 825 * This is a globally accessible routine. 826 * 827 * This routine removes swapblk assignments from swap metadata. 828 * 829 * The external callers of this routine typically have already destroyed 830 * or renamed vm_page_t's associated with this range in the object so 831 * we should be ok. 832 * 833 * The object must be locked. 834 */ 835 void 836 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 837 { 838 839 swp_pager_meta_free(object, start, size); 840 } 841 842 /* 843 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 844 * 845 * Assigns swap blocks to the specified range within the object. The 846 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 847 * 848 * Returns 0 on success, -1 on failure. 849 */ 850 int 851 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 852 { 853 int n = 0; 854 daddr_t blk = SWAPBLK_NONE; 855 vm_pindex_t beg = start; /* save start index */ 856 857 VM_OBJECT_WLOCK(object); 858 while (size) { 859 if (n == 0) { 860 n = BLIST_MAX_ALLOC; 861 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 862 n >>= 1; 863 if (n == 0) { 864 swp_pager_meta_free(object, beg, start - beg); 865 VM_OBJECT_WUNLOCK(object); 866 return (-1); 867 } 868 } 869 } 870 swp_pager_meta_build(object, start, blk); 871 --size; 872 ++start; 873 ++blk; 874 --n; 875 } 876 swp_pager_meta_free(object, start, n); 877 VM_OBJECT_WUNLOCK(object); 878 return (0); 879 } 880 881 /* 882 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 883 * and destroy the source. 884 * 885 * Copy any valid swapblks from the source to the destination. In 886 * cases where both the source and destination have a valid swapblk, 887 * we keep the destination's. 888 * 889 * This routine is allowed to sleep. It may sleep allocating metadata 890 * indirectly through swp_pager_meta_build() or if paging is still in 891 * progress on the source. 892 * 893 * The source object contains no vm_page_t's (which is just as well) 894 * 895 * The source object is of type OBJT_SWAP. 896 * 897 * The source and destination objects must be locked. 898 * Both object locks may temporarily be released. 899 */ 900 void 901 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 902 vm_pindex_t offset, int destroysource) 903 { 904 vm_pindex_t i; 905 906 VM_OBJECT_ASSERT_WLOCKED(srcobject); 907 VM_OBJECT_ASSERT_WLOCKED(dstobject); 908 909 /* 910 * If destroysource is set, we remove the source object from the 911 * swap_pager internal queue now. 912 */ 913 if (destroysource) { 914 if (srcobject->handle != NULL) { 915 mtx_lock(&sw_alloc_mtx); 916 TAILQ_REMOVE( 917 NOBJLIST(srcobject->handle), 918 srcobject, 919 pager_object_list 920 ); 921 mtx_unlock(&sw_alloc_mtx); 922 } 923 } 924 925 /* 926 * transfer source to destination. 927 */ 928 for (i = 0; i < dstobject->size; ++i) { 929 daddr_t dstaddr; 930 931 /* 932 * Locate (without changing) the swapblk on the destination, 933 * unless it is invalid in which case free it silently, or 934 * if the destination is a resident page, in which case the 935 * source is thrown away. 936 */ 937 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 938 939 if (dstaddr == SWAPBLK_NONE) { 940 /* 941 * Destination has no swapblk and is not resident, 942 * copy source. 943 */ 944 daddr_t srcaddr; 945 946 srcaddr = swp_pager_meta_ctl( 947 srcobject, 948 i + offset, 949 SWM_POP 950 ); 951 952 if (srcaddr != SWAPBLK_NONE) { 953 /* 954 * swp_pager_meta_build() can sleep. 955 */ 956 vm_object_pip_add(srcobject, 1); 957 VM_OBJECT_WUNLOCK(srcobject); 958 vm_object_pip_add(dstobject, 1); 959 swp_pager_meta_build(dstobject, i, srcaddr); 960 vm_object_pip_wakeup(dstobject); 961 VM_OBJECT_WLOCK(srcobject); 962 vm_object_pip_wakeup(srcobject); 963 } 964 } else { 965 /* 966 * Destination has valid swapblk or it is represented 967 * by a resident page. We destroy the sourceblock. 968 */ 969 970 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 971 } 972 } 973 974 /* 975 * Free left over swap blocks in source. 976 * 977 * We have to revert the type to OBJT_DEFAULT so we do not accidently 978 * double-remove the object from the swap queues. 979 */ 980 if (destroysource) { 981 swp_pager_meta_free_all(srcobject); 982 /* 983 * Reverting the type is not necessary, the caller is going 984 * to destroy srcobject directly, but I'm doing it here 985 * for consistency since we've removed the object from its 986 * queues. 987 */ 988 srcobject->type = OBJT_DEFAULT; 989 } 990 } 991 992 /* 993 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 994 * the requested page. 995 * 996 * We determine whether good backing store exists for the requested 997 * page and return TRUE if it does, FALSE if it doesn't. 998 * 999 * If TRUE, we also try to determine how much valid, contiguous backing 1000 * store exists before and after the requested page within a reasonable 1001 * distance. We do not try to restrict it to the swap device stripe 1002 * (that is handled in getpages/putpages). It probably isn't worth 1003 * doing here. 1004 */ 1005 static boolean_t 1006 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 1007 { 1008 daddr_t blk0; 1009 1010 VM_OBJECT_ASSERT_LOCKED(object); 1011 /* 1012 * do we have good backing store at the requested index ? 1013 */ 1014 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1015 1016 if (blk0 == SWAPBLK_NONE) { 1017 if (before) 1018 *before = 0; 1019 if (after) 1020 *after = 0; 1021 return (FALSE); 1022 } 1023 1024 /* 1025 * find backwards-looking contiguous good backing store 1026 */ 1027 if (before != NULL) { 1028 int i; 1029 1030 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1031 daddr_t blk; 1032 1033 if (i > pindex) 1034 break; 1035 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1036 if (blk != blk0 - i) 1037 break; 1038 } 1039 *before = (i - 1); 1040 } 1041 1042 /* 1043 * find forward-looking contiguous good backing store 1044 */ 1045 if (after != NULL) { 1046 int i; 1047 1048 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1049 daddr_t blk; 1050 1051 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1052 if (blk != blk0 + i) 1053 break; 1054 } 1055 *after = (i - 1); 1056 } 1057 return (TRUE); 1058 } 1059 1060 /* 1061 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1062 * 1063 * This removes any associated swap backing store, whether valid or 1064 * not, from the page. 1065 * 1066 * This routine is typically called when a page is made dirty, at 1067 * which point any associated swap can be freed. MADV_FREE also 1068 * calls us in a special-case situation 1069 * 1070 * NOTE!!! If the page is clean and the swap was valid, the caller 1071 * should make the page dirty before calling this routine. This routine 1072 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1073 * depends on it. 1074 * 1075 * This routine may not sleep. 1076 * 1077 * The object containing the page must be locked. 1078 */ 1079 static void 1080 swap_pager_unswapped(vm_page_t m) 1081 { 1082 1083 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1084 } 1085 1086 /* 1087 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1088 * 1089 * Attempt to retrieve (m, count) pages from backing store, but make 1090 * sure we retrieve at least m[reqpage]. We try to load in as large 1091 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1092 * belongs to the same object. 1093 * 1094 * The code is designed for asynchronous operation and 1095 * immediate-notification of 'reqpage' but tends not to be 1096 * used that way. Please do not optimize-out this algorithmic 1097 * feature, I intend to improve on it in the future. 1098 * 1099 * The parent has a single vm_object_pip_add() reference prior to 1100 * calling us and we should return with the same. 1101 * 1102 * The parent has BUSY'd the pages. We should return with 'm' 1103 * left busy, but the others adjusted. 1104 */ 1105 static int 1106 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1107 { 1108 struct buf *bp; 1109 vm_page_t mreq; 1110 int i; 1111 int j; 1112 daddr_t blk; 1113 1114 mreq = m[reqpage]; 1115 1116 /* 1117 * Calculate range to retrieve. The pages have already been assigned 1118 * their swapblks. We require a *contiguous* range but we know it to 1119 * not span devices. If we do not supply it, bad things 1120 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1121 * loops are set up such that the case(s) are handled implicitly. 1122 * 1123 * The swp_*() calls must be made with the object locked. 1124 */ 1125 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1126 1127 for (i = reqpage - 1; i >= 0; --i) { 1128 daddr_t iblk; 1129 1130 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1131 if (blk != iblk + (reqpage - i)) 1132 break; 1133 } 1134 ++i; 1135 1136 for (j = reqpage + 1; j < count; ++j) { 1137 daddr_t jblk; 1138 1139 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1140 if (blk != jblk - (j - reqpage)) 1141 break; 1142 } 1143 1144 /* 1145 * free pages outside our collection range. Note: we never free 1146 * mreq, it must remain busy throughout. 1147 */ 1148 if (0 < i || j < count) { 1149 int k; 1150 1151 for (k = 0; k < i; ++k) 1152 swp_pager_free_nrpage(m[k]); 1153 for (k = j; k < count; ++k) 1154 swp_pager_free_nrpage(m[k]); 1155 } 1156 1157 /* 1158 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1159 * still busy, but the others unbusied. 1160 */ 1161 if (blk == SWAPBLK_NONE) 1162 return (VM_PAGER_FAIL); 1163 1164 /* 1165 * Getpbuf() can sleep. 1166 */ 1167 VM_OBJECT_WUNLOCK(object); 1168 /* 1169 * Get a swap buffer header to perform the IO 1170 */ 1171 bp = getpbuf(&nsw_rcount); 1172 bp->b_flags |= B_PAGING; 1173 1174 bp->b_iocmd = BIO_READ; 1175 bp->b_iodone = swp_pager_async_iodone; 1176 bp->b_rcred = crhold(thread0.td_ucred); 1177 bp->b_wcred = crhold(thread0.td_ucred); 1178 bp->b_blkno = blk - (reqpage - i); 1179 bp->b_bcount = PAGE_SIZE * (j - i); 1180 bp->b_bufsize = PAGE_SIZE * (j - i); 1181 bp->b_pager.pg_reqpage = reqpage - i; 1182 1183 VM_OBJECT_WLOCK(object); 1184 { 1185 int k; 1186 1187 for (k = i; k < j; ++k) { 1188 bp->b_pages[k - i] = m[k]; 1189 m[k]->oflags |= VPO_SWAPINPROG; 1190 } 1191 } 1192 bp->b_npages = j - i; 1193 1194 PCPU_INC(cnt.v_swapin); 1195 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1196 1197 /* 1198 * We still hold the lock on mreq, and our automatic completion routine 1199 * does not remove it. 1200 */ 1201 vm_object_pip_add(object, bp->b_npages); 1202 VM_OBJECT_WUNLOCK(object); 1203 1204 /* 1205 * perform the I/O. NOTE!!! bp cannot be considered valid after 1206 * this point because we automatically release it on completion. 1207 * Instead, we look at the one page we are interested in which we 1208 * still hold a lock on even through the I/O completion. 1209 * 1210 * The other pages in our m[] array are also released on completion, 1211 * so we cannot assume they are valid anymore either. 1212 * 1213 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1214 */ 1215 BUF_KERNPROC(bp); 1216 swp_pager_strategy(bp); 1217 1218 /* 1219 * wait for the page we want to complete. VPO_SWAPINPROG is always 1220 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1221 * is set in the meta-data. 1222 */ 1223 VM_OBJECT_WLOCK(object); 1224 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1225 mreq->oflags |= VPO_SWAPSLEEP; 1226 PCPU_INC(cnt.v_intrans); 1227 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1228 "swread", hz * 20)) { 1229 printf( 1230 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1231 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1232 } 1233 } 1234 1235 /* 1236 * mreq is left busied after completion, but all the other pages 1237 * are freed. If we had an unrecoverable read error the page will 1238 * not be valid. 1239 */ 1240 if (mreq->valid != VM_PAGE_BITS_ALL) { 1241 return (VM_PAGER_ERROR); 1242 } else { 1243 return (VM_PAGER_OK); 1244 } 1245 1246 /* 1247 * A final note: in a low swap situation, we cannot deallocate swap 1248 * and mark a page dirty here because the caller is likely to mark 1249 * the page clean when we return, causing the page to possibly revert 1250 * to all-zero's later. 1251 */ 1252 } 1253 1254 /* 1255 * swap_pager_getpages_async(): 1256 * 1257 * Right now this is emulation of asynchronous operation on top of 1258 * swap_pager_getpages(). 1259 */ 1260 static int 1261 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1262 int reqpage, pgo_getpages_iodone_t iodone, void *arg) 1263 { 1264 int r, error; 1265 1266 r = swap_pager_getpages(object, m, count, reqpage); 1267 VM_OBJECT_WUNLOCK(object); 1268 switch (r) { 1269 case VM_PAGER_OK: 1270 error = 0; 1271 break; 1272 case VM_PAGER_ERROR: 1273 error = EIO; 1274 break; 1275 case VM_PAGER_FAIL: 1276 error = EINVAL; 1277 break; 1278 default: 1279 panic("unhandled swap_pager_getpages() error %d", r); 1280 } 1281 (iodone)(arg, m, count, error); 1282 VM_OBJECT_WLOCK(object); 1283 1284 return (r); 1285 } 1286 1287 /* 1288 * swap_pager_putpages: 1289 * 1290 * Assign swap (if necessary) and initiate I/O on the specified pages. 1291 * 1292 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1293 * are automatically converted to SWAP objects. 1294 * 1295 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1296 * vm_page reservation system coupled with properly written VFS devices 1297 * should ensure that no low-memory deadlock occurs. This is an area 1298 * which needs work. 1299 * 1300 * The parent has N vm_object_pip_add() references prior to 1301 * calling us and will remove references for rtvals[] that are 1302 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1303 * completion. 1304 * 1305 * The parent has soft-busy'd the pages it passes us and will unbusy 1306 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1307 * We need to unbusy the rest on I/O completion. 1308 */ 1309 static void 1310 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1311 int flags, int *rtvals) 1312 { 1313 int i, n; 1314 boolean_t sync; 1315 1316 if (count && m[0]->object != object) { 1317 panic("swap_pager_putpages: object mismatch %p/%p", 1318 object, 1319 m[0]->object 1320 ); 1321 } 1322 1323 /* 1324 * Step 1 1325 * 1326 * Turn object into OBJT_SWAP 1327 * check for bogus sysops 1328 * force sync if not pageout process 1329 */ 1330 if (object->type != OBJT_SWAP) 1331 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1332 VM_OBJECT_WUNLOCK(object); 1333 1334 n = 0; 1335 if (curproc != pageproc) 1336 sync = TRUE; 1337 else 1338 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1339 1340 /* 1341 * Step 2 1342 * 1343 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1344 * The page is left dirty until the pageout operation completes 1345 * successfully. 1346 */ 1347 for (i = 0; i < count; i += n) { 1348 int j; 1349 struct buf *bp; 1350 daddr_t blk; 1351 1352 /* 1353 * Maximum I/O size is limited by a number of factors. 1354 */ 1355 n = min(BLIST_MAX_ALLOC, count - i); 1356 n = min(n, nsw_cluster_max); 1357 1358 /* 1359 * Get biggest block of swap we can. If we fail, fall 1360 * back and try to allocate a smaller block. Don't go 1361 * overboard trying to allocate space if it would overly 1362 * fragment swap. 1363 */ 1364 while ( 1365 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1366 n > 4 1367 ) { 1368 n >>= 1; 1369 } 1370 if (blk == SWAPBLK_NONE) { 1371 for (j = 0; j < n; ++j) 1372 rtvals[i+j] = VM_PAGER_FAIL; 1373 continue; 1374 } 1375 1376 /* 1377 * All I/O parameters have been satisfied, build the I/O 1378 * request and assign the swap space. 1379 */ 1380 if (sync == TRUE) { 1381 bp = getpbuf(&nsw_wcount_sync); 1382 } else { 1383 bp = getpbuf(&nsw_wcount_async); 1384 bp->b_flags = B_ASYNC; 1385 } 1386 bp->b_flags |= B_PAGING; 1387 bp->b_iocmd = BIO_WRITE; 1388 1389 bp->b_rcred = crhold(thread0.td_ucred); 1390 bp->b_wcred = crhold(thread0.td_ucred); 1391 bp->b_bcount = PAGE_SIZE * n; 1392 bp->b_bufsize = PAGE_SIZE * n; 1393 bp->b_blkno = blk; 1394 1395 VM_OBJECT_WLOCK(object); 1396 for (j = 0; j < n; ++j) { 1397 vm_page_t mreq = m[i+j]; 1398 1399 swp_pager_meta_build( 1400 mreq->object, 1401 mreq->pindex, 1402 blk + j 1403 ); 1404 vm_page_dirty(mreq); 1405 mreq->oflags |= VPO_SWAPINPROG; 1406 bp->b_pages[j] = mreq; 1407 } 1408 VM_OBJECT_WUNLOCK(object); 1409 bp->b_npages = n; 1410 /* 1411 * Must set dirty range for NFS to work. 1412 */ 1413 bp->b_dirtyoff = 0; 1414 bp->b_dirtyend = bp->b_bcount; 1415 1416 PCPU_INC(cnt.v_swapout); 1417 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1418 1419 /* 1420 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1421 * can call the async completion routine at the end of a 1422 * synchronous I/O operation. Otherwise, our caller would 1423 * perform duplicate unbusy and wakeup operations on the page 1424 * and object, respectively. 1425 */ 1426 for (j = 0; j < n; j++) 1427 rtvals[i + j] = VM_PAGER_PEND; 1428 1429 /* 1430 * asynchronous 1431 * 1432 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1433 */ 1434 if (sync == FALSE) { 1435 bp->b_iodone = swp_pager_async_iodone; 1436 BUF_KERNPROC(bp); 1437 swp_pager_strategy(bp); 1438 continue; 1439 } 1440 1441 /* 1442 * synchronous 1443 * 1444 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1445 */ 1446 bp->b_iodone = bdone; 1447 swp_pager_strategy(bp); 1448 1449 /* 1450 * Wait for the sync I/O to complete. 1451 */ 1452 bwait(bp, PVM, "swwrt"); 1453 1454 /* 1455 * Now that we are through with the bp, we can call the 1456 * normal async completion, which frees everything up. 1457 */ 1458 swp_pager_async_iodone(bp); 1459 } 1460 VM_OBJECT_WLOCK(object); 1461 } 1462 1463 /* 1464 * swp_pager_async_iodone: 1465 * 1466 * Completion routine for asynchronous reads and writes from/to swap. 1467 * Also called manually by synchronous code to finish up a bp. 1468 * 1469 * This routine may not sleep. 1470 */ 1471 static void 1472 swp_pager_async_iodone(struct buf *bp) 1473 { 1474 int i; 1475 vm_object_t object = NULL; 1476 1477 /* 1478 * report error 1479 */ 1480 if (bp->b_ioflags & BIO_ERROR) { 1481 printf( 1482 "swap_pager: I/O error - %s failed; blkno %ld," 1483 "size %ld, error %d\n", 1484 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1485 (long)bp->b_blkno, 1486 (long)bp->b_bcount, 1487 bp->b_error 1488 ); 1489 } 1490 1491 /* 1492 * remove the mapping for kernel virtual 1493 */ 1494 if (buf_mapped(bp)) 1495 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1496 else 1497 bp->b_data = bp->b_kvabase; 1498 1499 if (bp->b_npages) { 1500 object = bp->b_pages[0]->object; 1501 VM_OBJECT_WLOCK(object); 1502 } 1503 1504 /* 1505 * cleanup pages. If an error occurs writing to swap, we are in 1506 * very serious trouble. If it happens to be a disk error, though, 1507 * we may be able to recover by reassigning the swap later on. So 1508 * in this case we remove the m->swapblk assignment for the page 1509 * but do not free it in the rlist. The errornous block(s) are thus 1510 * never reallocated as swap. Redirty the page and continue. 1511 */ 1512 for (i = 0; i < bp->b_npages; ++i) { 1513 vm_page_t m = bp->b_pages[i]; 1514 1515 m->oflags &= ~VPO_SWAPINPROG; 1516 if (m->oflags & VPO_SWAPSLEEP) { 1517 m->oflags &= ~VPO_SWAPSLEEP; 1518 wakeup(&object->paging_in_progress); 1519 } 1520 1521 if (bp->b_ioflags & BIO_ERROR) { 1522 /* 1523 * If an error occurs I'd love to throw the swapblk 1524 * away without freeing it back to swapspace, so it 1525 * can never be used again. But I can't from an 1526 * interrupt. 1527 */ 1528 if (bp->b_iocmd == BIO_READ) { 1529 /* 1530 * When reading, reqpage needs to stay 1531 * locked for the parent, but all other 1532 * pages can be freed. We still want to 1533 * wakeup the parent waiting on the page, 1534 * though. ( also: pg_reqpage can be -1 and 1535 * not match anything ). 1536 * 1537 * We have to wake specifically requested pages 1538 * up too because we cleared VPO_SWAPINPROG and 1539 * someone may be waiting for that. 1540 * 1541 * NOTE: for reads, m->dirty will probably 1542 * be overridden by the original caller of 1543 * getpages so don't play cute tricks here. 1544 */ 1545 m->valid = 0; 1546 if (i != bp->b_pager.pg_reqpage) 1547 swp_pager_free_nrpage(m); 1548 else { 1549 vm_page_lock(m); 1550 vm_page_flash(m); 1551 vm_page_unlock(m); 1552 } 1553 /* 1554 * If i == bp->b_pager.pg_reqpage, do not wake 1555 * the page up. The caller needs to. 1556 */ 1557 } else { 1558 /* 1559 * If a write error occurs, reactivate page 1560 * so it doesn't clog the inactive list, 1561 * then finish the I/O. 1562 */ 1563 vm_page_dirty(m); 1564 vm_page_lock(m); 1565 vm_page_activate(m); 1566 vm_page_unlock(m); 1567 vm_page_sunbusy(m); 1568 } 1569 } else if (bp->b_iocmd == BIO_READ) { 1570 /* 1571 * NOTE: for reads, m->dirty will probably be 1572 * overridden by the original caller of getpages so 1573 * we cannot set them in order to free the underlying 1574 * swap in a low-swap situation. I don't think we'd 1575 * want to do that anyway, but it was an optimization 1576 * that existed in the old swapper for a time before 1577 * it got ripped out due to precisely this problem. 1578 * 1579 * If not the requested page then deactivate it. 1580 * 1581 * Note that the requested page, reqpage, is left 1582 * busied, but we still have to wake it up. The 1583 * other pages are released (unbusied) by 1584 * vm_page_xunbusy(). 1585 */ 1586 KASSERT(!pmap_page_is_mapped(m), 1587 ("swp_pager_async_iodone: page %p is mapped", m)); 1588 m->valid = VM_PAGE_BITS_ALL; 1589 KASSERT(m->dirty == 0, 1590 ("swp_pager_async_iodone: page %p is dirty", m)); 1591 1592 /* 1593 * We have to wake specifically requested pages 1594 * up too because we cleared VPO_SWAPINPROG and 1595 * could be waiting for it in getpages. However, 1596 * be sure to not unbusy getpages specifically 1597 * requested page - getpages expects it to be 1598 * left busy. 1599 */ 1600 if (i != bp->b_pager.pg_reqpage) { 1601 vm_page_lock(m); 1602 vm_page_deactivate(m); 1603 vm_page_unlock(m); 1604 vm_page_xunbusy(m); 1605 } else { 1606 vm_page_lock(m); 1607 vm_page_flash(m); 1608 vm_page_unlock(m); 1609 } 1610 } else { 1611 /* 1612 * For write success, clear the dirty 1613 * status, then finish the I/O ( which decrements the 1614 * busy count and possibly wakes waiter's up ). 1615 */ 1616 KASSERT(!pmap_page_is_write_mapped(m), 1617 ("swp_pager_async_iodone: page %p is not write" 1618 " protected", m)); 1619 vm_page_undirty(m); 1620 vm_page_sunbusy(m); 1621 if (vm_page_count_severe()) { 1622 vm_page_lock(m); 1623 vm_page_try_to_cache(m); 1624 vm_page_unlock(m); 1625 } 1626 } 1627 } 1628 1629 /* 1630 * adjust pip. NOTE: the original parent may still have its own 1631 * pip refs on the object. 1632 */ 1633 if (object != NULL) { 1634 vm_object_pip_wakeupn(object, bp->b_npages); 1635 VM_OBJECT_WUNLOCK(object); 1636 } 1637 1638 /* 1639 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1640 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1641 * trigger a KASSERT in relpbuf(). 1642 */ 1643 if (bp->b_vp) { 1644 bp->b_vp = NULL; 1645 bp->b_bufobj = NULL; 1646 } 1647 /* 1648 * release the physical I/O buffer 1649 */ 1650 relpbuf( 1651 bp, 1652 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1653 ((bp->b_flags & B_ASYNC) ? 1654 &nsw_wcount_async : 1655 &nsw_wcount_sync 1656 ) 1657 ) 1658 ); 1659 } 1660 1661 /* 1662 * swap_pager_isswapped: 1663 * 1664 * Return 1 if at least one page in the given object is paged 1665 * out to the given swap device. 1666 * 1667 * This routine may not sleep. 1668 */ 1669 int 1670 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1671 { 1672 daddr_t index = 0; 1673 int bcount; 1674 int i; 1675 1676 VM_OBJECT_ASSERT_WLOCKED(object); 1677 if (object->type != OBJT_SWAP) 1678 return (0); 1679 1680 mtx_lock(&swhash_mtx); 1681 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1682 struct swblock *swap; 1683 1684 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1685 for (i = 0; i < SWAP_META_PAGES; ++i) { 1686 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1687 mtx_unlock(&swhash_mtx); 1688 return (1); 1689 } 1690 } 1691 } 1692 index += SWAP_META_PAGES; 1693 } 1694 mtx_unlock(&swhash_mtx); 1695 return (0); 1696 } 1697 1698 /* 1699 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1700 * 1701 * This routine dissociates the page at the given index within a 1702 * swap block from its backing store, paging it in if necessary. 1703 * If the page is paged in, it is placed in the inactive queue, 1704 * since it had its backing store ripped out from under it. 1705 * We also attempt to swap in all other pages in the swap block, 1706 * we only guarantee that the one at the specified index is 1707 * paged in. 1708 * 1709 * XXX - The code to page the whole block in doesn't work, so we 1710 * revert to the one-by-one behavior for now. Sigh. 1711 */ 1712 static inline void 1713 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1714 { 1715 vm_page_t m; 1716 1717 vm_object_pip_add(object, 1); 1718 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1719 if (m->valid == VM_PAGE_BITS_ALL) { 1720 vm_object_pip_wakeup(object); 1721 vm_page_dirty(m); 1722 vm_page_lock(m); 1723 vm_page_activate(m); 1724 vm_page_unlock(m); 1725 vm_page_xunbusy(m); 1726 vm_pager_page_unswapped(m); 1727 return; 1728 } 1729 1730 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1731 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1732 vm_object_pip_wakeup(object); 1733 vm_page_dirty(m); 1734 vm_page_lock(m); 1735 vm_page_deactivate(m); 1736 vm_page_unlock(m); 1737 vm_page_xunbusy(m); 1738 vm_pager_page_unswapped(m); 1739 } 1740 1741 /* 1742 * swap_pager_swapoff: 1743 * 1744 * Page in all of the pages that have been paged out to the 1745 * given device. The corresponding blocks in the bitmap must be 1746 * marked as allocated and the device must be flagged SW_CLOSING. 1747 * There may be no processes swapped out to the device. 1748 * 1749 * This routine may block. 1750 */ 1751 static void 1752 swap_pager_swapoff(struct swdevt *sp) 1753 { 1754 struct swblock *swap; 1755 int i, j, retries; 1756 1757 GIANT_REQUIRED; 1758 1759 retries = 0; 1760 full_rescan: 1761 mtx_lock(&swhash_mtx); 1762 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1763 restart: 1764 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1765 vm_object_t object = swap->swb_object; 1766 vm_pindex_t pindex = swap->swb_index; 1767 for (j = 0; j < SWAP_META_PAGES; ++j) { 1768 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1769 /* avoid deadlock */ 1770 if (!VM_OBJECT_TRYWLOCK(object)) { 1771 break; 1772 } else { 1773 mtx_unlock(&swhash_mtx); 1774 swp_pager_force_pagein(object, 1775 pindex + j); 1776 VM_OBJECT_WUNLOCK(object); 1777 mtx_lock(&swhash_mtx); 1778 goto restart; 1779 } 1780 } 1781 } 1782 } 1783 } 1784 mtx_unlock(&swhash_mtx); 1785 if (sp->sw_used) { 1786 /* 1787 * Objects may be locked or paging to the device being 1788 * removed, so we will miss their pages and need to 1789 * make another pass. We have marked this device as 1790 * SW_CLOSING, so the activity should finish soon. 1791 */ 1792 retries++; 1793 if (retries > 100) { 1794 panic("swapoff: failed to locate %d swap blocks", 1795 sp->sw_used); 1796 } 1797 pause("swpoff", hz / 20); 1798 goto full_rescan; 1799 } 1800 } 1801 1802 /************************************************************************ 1803 * SWAP META DATA * 1804 ************************************************************************ 1805 * 1806 * These routines manipulate the swap metadata stored in the 1807 * OBJT_SWAP object. 1808 * 1809 * Swap metadata is implemented with a global hash and not directly 1810 * linked into the object. Instead the object simply contains 1811 * appropriate tracking counters. 1812 */ 1813 1814 /* 1815 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1816 * 1817 * We first convert the object to a swap object if it is a default 1818 * object. 1819 * 1820 * The specified swapblk is added to the object's swap metadata. If 1821 * the swapblk is not valid, it is freed instead. Any previously 1822 * assigned swapblk is freed. 1823 */ 1824 static void 1825 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1826 { 1827 static volatile int exhausted; 1828 struct swblock *swap; 1829 struct swblock **pswap; 1830 int idx; 1831 1832 VM_OBJECT_ASSERT_WLOCKED(object); 1833 /* 1834 * Convert default object to swap object if necessary 1835 */ 1836 if (object->type != OBJT_SWAP) { 1837 object->type = OBJT_SWAP; 1838 object->un_pager.swp.swp_bcount = 0; 1839 1840 if (object->handle != NULL) { 1841 mtx_lock(&sw_alloc_mtx); 1842 TAILQ_INSERT_TAIL( 1843 NOBJLIST(object->handle), 1844 object, 1845 pager_object_list 1846 ); 1847 mtx_unlock(&sw_alloc_mtx); 1848 } 1849 } 1850 1851 /* 1852 * Locate hash entry. If not found create, but if we aren't adding 1853 * anything just return. If we run out of space in the map we wait 1854 * and, since the hash table may have changed, retry. 1855 */ 1856 retry: 1857 mtx_lock(&swhash_mtx); 1858 pswap = swp_pager_hash(object, pindex); 1859 1860 if ((swap = *pswap) == NULL) { 1861 int i; 1862 1863 if (swapblk == SWAPBLK_NONE) 1864 goto done; 1865 1866 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1867 (curproc == pageproc ? M_USE_RESERVE : 0)); 1868 if (swap == NULL) { 1869 mtx_unlock(&swhash_mtx); 1870 VM_OBJECT_WUNLOCK(object); 1871 if (uma_zone_exhausted(swap_zone)) { 1872 if (atomic_cmpset_int(&exhausted, 0, 1)) 1873 printf("swap zone exhausted, " 1874 "increase kern.maxswzone\n"); 1875 vm_pageout_oom(VM_OOM_SWAPZ); 1876 pause("swzonex", 10); 1877 } else 1878 VM_WAIT; 1879 VM_OBJECT_WLOCK(object); 1880 goto retry; 1881 } 1882 1883 if (atomic_cmpset_int(&exhausted, 1, 0)) 1884 printf("swap zone ok\n"); 1885 1886 swap->swb_hnext = NULL; 1887 swap->swb_object = object; 1888 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1889 swap->swb_count = 0; 1890 1891 ++object->un_pager.swp.swp_bcount; 1892 1893 for (i = 0; i < SWAP_META_PAGES; ++i) 1894 swap->swb_pages[i] = SWAPBLK_NONE; 1895 } 1896 1897 /* 1898 * Delete prior contents of metadata 1899 */ 1900 idx = pindex & SWAP_META_MASK; 1901 1902 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1903 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1904 --swap->swb_count; 1905 } 1906 1907 /* 1908 * Enter block into metadata 1909 */ 1910 swap->swb_pages[idx] = swapblk; 1911 if (swapblk != SWAPBLK_NONE) 1912 ++swap->swb_count; 1913 done: 1914 mtx_unlock(&swhash_mtx); 1915 } 1916 1917 /* 1918 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1919 * 1920 * The requested range of blocks is freed, with any associated swap 1921 * returned to the swap bitmap. 1922 * 1923 * This routine will free swap metadata structures as they are cleaned 1924 * out. This routine does *NOT* operate on swap metadata associated 1925 * with resident pages. 1926 */ 1927 static void 1928 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1929 { 1930 1931 VM_OBJECT_ASSERT_LOCKED(object); 1932 if (object->type != OBJT_SWAP) 1933 return; 1934 1935 while (count > 0) { 1936 struct swblock **pswap; 1937 struct swblock *swap; 1938 1939 mtx_lock(&swhash_mtx); 1940 pswap = swp_pager_hash(object, index); 1941 1942 if ((swap = *pswap) != NULL) { 1943 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1944 1945 if (v != SWAPBLK_NONE) { 1946 swp_pager_freeswapspace(v, 1); 1947 swap->swb_pages[index & SWAP_META_MASK] = 1948 SWAPBLK_NONE; 1949 if (--swap->swb_count == 0) { 1950 *pswap = swap->swb_hnext; 1951 uma_zfree(swap_zone, swap); 1952 --object->un_pager.swp.swp_bcount; 1953 } 1954 } 1955 --count; 1956 ++index; 1957 } else { 1958 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1959 count -= n; 1960 index += n; 1961 } 1962 mtx_unlock(&swhash_mtx); 1963 } 1964 } 1965 1966 /* 1967 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1968 * 1969 * This routine locates and destroys all swap metadata associated with 1970 * an object. 1971 */ 1972 static void 1973 swp_pager_meta_free_all(vm_object_t object) 1974 { 1975 daddr_t index = 0; 1976 1977 VM_OBJECT_ASSERT_WLOCKED(object); 1978 if (object->type != OBJT_SWAP) 1979 return; 1980 1981 while (object->un_pager.swp.swp_bcount) { 1982 struct swblock **pswap; 1983 struct swblock *swap; 1984 1985 mtx_lock(&swhash_mtx); 1986 pswap = swp_pager_hash(object, index); 1987 if ((swap = *pswap) != NULL) { 1988 int i; 1989 1990 for (i = 0; i < SWAP_META_PAGES; ++i) { 1991 daddr_t v = swap->swb_pages[i]; 1992 if (v != SWAPBLK_NONE) { 1993 --swap->swb_count; 1994 swp_pager_freeswapspace(v, 1); 1995 } 1996 } 1997 if (swap->swb_count != 0) 1998 panic("swap_pager_meta_free_all: swb_count != 0"); 1999 *pswap = swap->swb_hnext; 2000 uma_zfree(swap_zone, swap); 2001 --object->un_pager.swp.swp_bcount; 2002 } 2003 mtx_unlock(&swhash_mtx); 2004 index += SWAP_META_PAGES; 2005 } 2006 } 2007 2008 /* 2009 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2010 * 2011 * This routine is capable of looking up, popping, or freeing 2012 * swapblk assignments in the swap meta data or in the vm_page_t. 2013 * The routine typically returns the swapblk being looked-up, or popped, 2014 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2015 * was invalid. This routine will automatically free any invalid 2016 * meta-data swapblks. 2017 * 2018 * It is not possible to store invalid swapblks in the swap meta data 2019 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2020 * 2021 * When acting on a busy resident page and paging is in progress, we 2022 * have to wait until paging is complete but otherwise can act on the 2023 * busy page. 2024 * 2025 * SWM_FREE remove and free swap block from metadata 2026 * SWM_POP remove from meta data but do not free.. pop it out 2027 */ 2028 static daddr_t 2029 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2030 { 2031 struct swblock **pswap; 2032 struct swblock *swap; 2033 daddr_t r1; 2034 int idx; 2035 2036 VM_OBJECT_ASSERT_LOCKED(object); 2037 /* 2038 * The meta data only exists of the object is OBJT_SWAP 2039 * and even then might not be allocated yet. 2040 */ 2041 if (object->type != OBJT_SWAP) 2042 return (SWAPBLK_NONE); 2043 2044 r1 = SWAPBLK_NONE; 2045 mtx_lock(&swhash_mtx); 2046 pswap = swp_pager_hash(object, pindex); 2047 2048 if ((swap = *pswap) != NULL) { 2049 idx = pindex & SWAP_META_MASK; 2050 r1 = swap->swb_pages[idx]; 2051 2052 if (r1 != SWAPBLK_NONE) { 2053 if (flags & SWM_FREE) { 2054 swp_pager_freeswapspace(r1, 1); 2055 r1 = SWAPBLK_NONE; 2056 } 2057 if (flags & (SWM_FREE|SWM_POP)) { 2058 swap->swb_pages[idx] = SWAPBLK_NONE; 2059 if (--swap->swb_count == 0) { 2060 *pswap = swap->swb_hnext; 2061 uma_zfree(swap_zone, swap); 2062 --object->un_pager.swp.swp_bcount; 2063 } 2064 } 2065 } 2066 } 2067 mtx_unlock(&swhash_mtx); 2068 return (r1); 2069 } 2070 2071 /* 2072 * System call swapon(name) enables swapping on device name, 2073 * which must be in the swdevsw. Return EBUSY 2074 * if already swapping on this device. 2075 */ 2076 #ifndef _SYS_SYSPROTO_H_ 2077 struct swapon_args { 2078 char *name; 2079 }; 2080 #endif 2081 2082 /* 2083 * MPSAFE 2084 */ 2085 /* ARGSUSED */ 2086 int 2087 sys_swapon(struct thread *td, struct swapon_args *uap) 2088 { 2089 struct vattr attr; 2090 struct vnode *vp; 2091 struct nameidata nd; 2092 int error; 2093 2094 error = priv_check(td, PRIV_SWAPON); 2095 if (error) 2096 return (error); 2097 2098 mtx_lock(&Giant); 2099 while (swdev_syscall_active) 2100 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2101 swdev_syscall_active = 1; 2102 2103 /* 2104 * Swap metadata may not fit in the KVM if we have physical 2105 * memory of >1GB. 2106 */ 2107 if (swap_zone == NULL) { 2108 error = ENOMEM; 2109 goto done; 2110 } 2111 2112 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2113 uap->name, td); 2114 error = namei(&nd); 2115 if (error) 2116 goto done; 2117 2118 NDFREE(&nd, NDF_ONLY_PNBUF); 2119 vp = nd.ni_vp; 2120 2121 if (vn_isdisk(vp, &error)) { 2122 error = swapongeom(td, vp); 2123 } else if (vp->v_type == VREG && 2124 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2125 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2126 /* 2127 * Allow direct swapping to NFS regular files in the same 2128 * way that nfs_mountroot() sets up diskless swapping. 2129 */ 2130 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2131 } 2132 2133 if (error) 2134 vrele(vp); 2135 done: 2136 swdev_syscall_active = 0; 2137 wakeup_one(&swdev_syscall_active); 2138 mtx_unlock(&Giant); 2139 return (error); 2140 } 2141 2142 /* 2143 * Check that the total amount of swap currently configured does not 2144 * exceed half the theoretical maximum. If it does, print a warning 2145 * message and return -1; otherwise, return 0. 2146 */ 2147 static int 2148 swapon_check_swzone(unsigned long npages) 2149 { 2150 unsigned long maxpages; 2151 2152 /* absolute maximum we can handle assuming 100% efficiency */ 2153 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2154 2155 /* recommend using no more than half that amount */ 2156 if (npages > maxpages / 2) { 2157 printf("warning: total configured swap (%lu pages) " 2158 "exceeds maximum recommended amount (%lu pages).\n", 2159 npages, maxpages / 2); 2160 printf("warning: increase kern.maxswzone " 2161 "or reduce amount of swap.\n"); 2162 return (-1); 2163 } 2164 return (0); 2165 } 2166 2167 static void 2168 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2169 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2170 { 2171 struct swdevt *sp, *tsp; 2172 swblk_t dvbase; 2173 u_long mblocks; 2174 2175 /* 2176 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2177 * First chop nblks off to page-align it, then convert. 2178 * 2179 * sw->sw_nblks is in page-sized chunks now too. 2180 */ 2181 nblks &= ~(ctodb(1) - 1); 2182 nblks = dbtoc(nblks); 2183 2184 /* 2185 * If we go beyond this, we get overflows in the radix 2186 * tree bitmap code. 2187 */ 2188 mblocks = 0x40000000 / BLIST_META_RADIX; 2189 if (nblks > mblocks) { 2190 printf( 2191 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2192 mblocks / 1024 / 1024 * PAGE_SIZE); 2193 nblks = mblocks; 2194 } 2195 2196 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2197 sp->sw_vp = vp; 2198 sp->sw_id = id; 2199 sp->sw_dev = dev; 2200 sp->sw_flags = 0; 2201 sp->sw_nblks = nblks; 2202 sp->sw_used = 0; 2203 sp->sw_strategy = strategy; 2204 sp->sw_close = close; 2205 sp->sw_flags = flags; 2206 2207 sp->sw_blist = blist_create(nblks, M_WAITOK); 2208 /* 2209 * Do not free the first two block in order to avoid overwriting 2210 * any bsd label at the front of the partition 2211 */ 2212 blist_free(sp->sw_blist, 2, nblks - 2); 2213 2214 dvbase = 0; 2215 mtx_lock(&sw_dev_mtx); 2216 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2217 if (tsp->sw_end >= dvbase) { 2218 /* 2219 * We put one uncovered page between the devices 2220 * in order to definitively prevent any cross-device 2221 * I/O requests 2222 */ 2223 dvbase = tsp->sw_end + 1; 2224 } 2225 } 2226 sp->sw_first = dvbase; 2227 sp->sw_end = dvbase + nblks; 2228 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2229 nswapdev++; 2230 swap_pager_avail += nblks; 2231 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2232 swapon_check_swzone(swap_total / PAGE_SIZE); 2233 swp_sizecheck(); 2234 mtx_unlock(&sw_dev_mtx); 2235 } 2236 2237 /* 2238 * SYSCALL: swapoff(devname) 2239 * 2240 * Disable swapping on the given device. 2241 * 2242 * XXX: Badly designed system call: it should use a device index 2243 * rather than filename as specification. We keep sw_vp around 2244 * only to make this work. 2245 */ 2246 #ifndef _SYS_SYSPROTO_H_ 2247 struct swapoff_args { 2248 char *name; 2249 }; 2250 #endif 2251 2252 /* 2253 * MPSAFE 2254 */ 2255 /* ARGSUSED */ 2256 int 2257 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2258 { 2259 struct vnode *vp; 2260 struct nameidata nd; 2261 struct swdevt *sp; 2262 int error; 2263 2264 error = priv_check(td, PRIV_SWAPOFF); 2265 if (error) 2266 return (error); 2267 2268 mtx_lock(&Giant); 2269 while (swdev_syscall_active) 2270 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2271 swdev_syscall_active = 1; 2272 2273 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2274 td); 2275 error = namei(&nd); 2276 if (error) 2277 goto done; 2278 NDFREE(&nd, NDF_ONLY_PNBUF); 2279 vp = nd.ni_vp; 2280 2281 mtx_lock(&sw_dev_mtx); 2282 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2283 if (sp->sw_vp == vp) 2284 break; 2285 } 2286 mtx_unlock(&sw_dev_mtx); 2287 if (sp == NULL) { 2288 error = EINVAL; 2289 goto done; 2290 } 2291 error = swapoff_one(sp, td->td_ucred); 2292 done: 2293 swdev_syscall_active = 0; 2294 wakeup_one(&swdev_syscall_active); 2295 mtx_unlock(&Giant); 2296 return (error); 2297 } 2298 2299 static int 2300 swapoff_one(struct swdevt *sp, struct ucred *cred) 2301 { 2302 u_long nblks, dvbase; 2303 #ifdef MAC 2304 int error; 2305 #endif 2306 2307 mtx_assert(&Giant, MA_OWNED); 2308 #ifdef MAC 2309 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2310 error = mac_system_check_swapoff(cred, sp->sw_vp); 2311 (void) VOP_UNLOCK(sp->sw_vp, 0); 2312 if (error != 0) 2313 return (error); 2314 #endif 2315 nblks = sp->sw_nblks; 2316 2317 /* 2318 * We can turn off this swap device safely only if the 2319 * available virtual memory in the system will fit the amount 2320 * of data we will have to page back in, plus an epsilon so 2321 * the system doesn't become critically low on swap space. 2322 */ 2323 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2324 nblks + nswap_lowat) { 2325 return (ENOMEM); 2326 } 2327 2328 /* 2329 * Prevent further allocations on this device. 2330 */ 2331 mtx_lock(&sw_dev_mtx); 2332 sp->sw_flags |= SW_CLOSING; 2333 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2334 swap_pager_avail -= blist_fill(sp->sw_blist, 2335 dvbase, dmmax); 2336 } 2337 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2338 mtx_unlock(&sw_dev_mtx); 2339 2340 /* 2341 * Page in the contents of the device and close it. 2342 */ 2343 swap_pager_swapoff(sp); 2344 2345 sp->sw_close(curthread, sp); 2346 mtx_lock(&sw_dev_mtx); 2347 sp->sw_id = NULL; 2348 TAILQ_REMOVE(&swtailq, sp, sw_list); 2349 nswapdev--; 2350 if (nswapdev == 0) { 2351 swap_pager_full = 2; 2352 swap_pager_almost_full = 1; 2353 } 2354 if (swdevhd == sp) 2355 swdevhd = NULL; 2356 mtx_unlock(&sw_dev_mtx); 2357 blist_destroy(sp->sw_blist); 2358 free(sp, M_VMPGDATA); 2359 return (0); 2360 } 2361 2362 void 2363 swapoff_all(void) 2364 { 2365 struct swdevt *sp, *spt; 2366 const char *devname; 2367 int error; 2368 2369 mtx_lock(&Giant); 2370 while (swdev_syscall_active) 2371 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2372 swdev_syscall_active = 1; 2373 2374 mtx_lock(&sw_dev_mtx); 2375 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2376 mtx_unlock(&sw_dev_mtx); 2377 if (vn_isdisk(sp->sw_vp, NULL)) 2378 devname = devtoname(sp->sw_vp->v_rdev); 2379 else 2380 devname = "[file]"; 2381 error = swapoff_one(sp, thread0.td_ucred); 2382 if (error != 0) { 2383 printf("Cannot remove swap device %s (error=%d), " 2384 "skipping.\n", devname, error); 2385 } else if (bootverbose) { 2386 printf("Swap device %s removed.\n", devname); 2387 } 2388 mtx_lock(&sw_dev_mtx); 2389 } 2390 mtx_unlock(&sw_dev_mtx); 2391 2392 swdev_syscall_active = 0; 2393 wakeup_one(&swdev_syscall_active); 2394 mtx_unlock(&Giant); 2395 } 2396 2397 void 2398 swap_pager_status(int *total, int *used) 2399 { 2400 struct swdevt *sp; 2401 2402 *total = 0; 2403 *used = 0; 2404 mtx_lock(&sw_dev_mtx); 2405 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2406 *total += sp->sw_nblks; 2407 *used += sp->sw_used; 2408 } 2409 mtx_unlock(&sw_dev_mtx); 2410 } 2411 2412 int 2413 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2414 { 2415 struct swdevt *sp; 2416 const char *tmp_devname; 2417 int error, n; 2418 2419 n = 0; 2420 error = ENOENT; 2421 mtx_lock(&sw_dev_mtx); 2422 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2423 if (n != name) { 2424 n++; 2425 continue; 2426 } 2427 xs->xsw_version = XSWDEV_VERSION; 2428 xs->xsw_dev = sp->sw_dev; 2429 xs->xsw_flags = sp->sw_flags; 2430 xs->xsw_nblks = sp->sw_nblks; 2431 xs->xsw_used = sp->sw_used; 2432 if (devname != NULL) { 2433 if (vn_isdisk(sp->sw_vp, NULL)) 2434 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2435 else 2436 tmp_devname = "[file]"; 2437 strncpy(devname, tmp_devname, len); 2438 } 2439 error = 0; 2440 break; 2441 } 2442 mtx_unlock(&sw_dev_mtx); 2443 return (error); 2444 } 2445 2446 static int 2447 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2448 { 2449 struct xswdev xs; 2450 int error; 2451 2452 if (arg2 != 1) /* name length */ 2453 return (EINVAL); 2454 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2455 if (error != 0) 2456 return (error); 2457 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2458 return (error); 2459 } 2460 2461 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2462 "Number of swap devices"); 2463 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2464 "Swap statistics by device"); 2465 2466 /* 2467 * vmspace_swap_count() - count the approximate swap usage in pages for a 2468 * vmspace. 2469 * 2470 * The map must be locked. 2471 * 2472 * Swap usage is determined by taking the proportional swap used by 2473 * VM objects backing the VM map. To make up for fractional losses, 2474 * if the VM object has any swap use at all the associated map entries 2475 * count for at least 1 swap page. 2476 */ 2477 long 2478 vmspace_swap_count(struct vmspace *vmspace) 2479 { 2480 vm_map_t map; 2481 vm_map_entry_t cur; 2482 vm_object_t object; 2483 long count, n; 2484 2485 map = &vmspace->vm_map; 2486 count = 0; 2487 2488 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2489 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2490 (object = cur->object.vm_object) != NULL) { 2491 VM_OBJECT_WLOCK(object); 2492 if (object->type == OBJT_SWAP && 2493 object->un_pager.swp.swp_bcount != 0) { 2494 n = (cur->end - cur->start) / PAGE_SIZE; 2495 count += object->un_pager.swp.swp_bcount * 2496 SWAP_META_PAGES * n / object->size + 1; 2497 } 2498 VM_OBJECT_WUNLOCK(object); 2499 } 2500 } 2501 return (count); 2502 } 2503 2504 /* 2505 * GEOM backend 2506 * 2507 * Swapping onto disk devices. 2508 * 2509 */ 2510 2511 static g_orphan_t swapgeom_orphan; 2512 2513 static struct g_class g_swap_class = { 2514 .name = "SWAP", 2515 .version = G_VERSION, 2516 .orphan = swapgeom_orphan, 2517 }; 2518 2519 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2520 2521 2522 static void 2523 swapgeom_close_ev(void *arg, int flags) 2524 { 2525 struct g_consumer *cp; 2526 2527 cp = arg; 2528 g_access(cp, -1, -1, 0); 2529 g_detach(cp); 2530 g_destroy_consumer(cp); 2531 } 2532 2533 /* 2534 * Add a reference to the g_consumer for an inflight transaction. 2535 */ 2536 static void 2537 swapgeom_acquire(struct g_consumer *cp) 2538 { 2539 2540 mtx_assert(&sw_dev_mtx, MA_OWNED); 2541 cp->index++; 2542 } 2543 2544 /* 2545 * Remove a reference from the g_consumer. Post a close event if 2546 * all referneces go away. 2547 */ 2548 static void 2549 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2550 { 2551 2552 mtx_assert(&sw_dev_mtx, MA_OWNED); 2553 cp->index--; 2554 if (cp->index == 0) { 2555 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2556 sp->sw_id = NULL; 2557 } 2558 } 2559 2560 static void 2561 swapgeom_done(struct bio *bp2) 2562 { 2563 struct swdevt *sp; 2564 struct buf *bp; 2565 struct g_consumer *cp; 2566 2567 bp = bp2->bio_caller2; 2568 cp = bp2->bio_from; 2569 bp->b_ioflags = bp2->bio_flags; 2570 if (bp2->bio_error) 2571 bp->b_ioflags |= BIO_ERROR; 2572 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2573 bp->b_error = bp2->bio_error; 2574 bufdone(bp); 2575 sp = bp2->bio_caller1; 2576 mtx_lock(&sw_dev_mtx); 2577 swapgeom_release(cp, sp); 2578 mtx_unlock(&sw_dev_mtx); 2579 g_destroy_bio(bp2); 2580 } 2581 2582 static void 2583 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2584 { 2585 struct bio *bio; 2586 struct g_consumer *cp; 2587 2588 mtx_lock(&sw_dev_mtx); 2589 cp = sp->sw_id; 2590 if (cp == NULL) { 2591 mtx_unlock(&sw_dev_mtx); 2592 bp->b_error = ENXIO; 2593 bp->b_ioflags |= BIO_ERROR; 2594 bufdone(bp); 2595 return; 2596 } 2597 swapgeom_acquire(cp); 2598 mtx_unlock(&sw_dev_mtx); 2599 if (bp->b_iocmd == BIO_WRITE) 2600 bio = g_new_bio(); 2601 else 2602 bio = g_alloc_bio(); 2603 if (bio == NULL) { 2604 mtx_lock(&sw_dev_mtx); 2605 swapgeom_release(cp, sp); 2606 mtx_unlock(&sw_dev_mtx); 2607 bp->b_error = ENOMEM; 2608 bp->b_ioflags |= BIO_ERROR; 2609 bufdone(bp); 2610 return; 2611 } 2612 2613 bio->bio_caller1 = sp; 2614 bio->bio_caller2 = bp; 2615 bio->bio_cmd = bp->b_iocmd; 2616 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2617 bio->bio_length = bp->b_bcount; 2618 bio->bio_done = swapgeom_done; 2619 if (!buf_mapped(bp)) { 2620 bio->bio_ma = bp->b_pages; 2621 bio->bio_data = unmapped_buf; 2622 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2623 bio->bio_ma_n = bp->b_npages; 2624 bio->bio_flags |= BIO_UNMAPPED; 2625 } else { 2626 bio->bio_data = bp->b_data; 2627 bio->bio_ma = NULL; 2628 } 2629 g_io_request(bio, cp); 2630 return; 2631 } 2632 2633 static void 2634 swapgeom_orphan(struct g_consumer *cp) 2635 { 2636 struct swdevt *sp; 2637 int destroy; 2638 2639 mtx_lock(&sw_dev_mtx); 2640 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2641 if (sp->sw_id == cp) { 2642 sp->sw_flags |= SW_CLOSING; 2643 break; 2644 } 2645 } 2646 /* 2647 * Drop reference we were created with. Do directly since we're in a 2648 * special context where we don't have to queue the call to 2649 * swapgeom_close_ev(). 2650 */ 2651 cp->index--; 2652 destroy = ((sp != NULL) && (cp->index == 0)); 2653 if (destroy) 2654 sp->sw_id = NULL; 2655 mtx_unlock(&sw_dev_mtx); 2656 if (destroy) 2657 swapgeom_close_ev(cp, 0); 2658 } 2659 2660 static void 2661 swapgeom_close(struct thread *td, struct swdevt *sw) 2662 { 2663 struct g_consumer *cp; 2664 2665 mtx_lock(&sw_dev_mtx); 2666 cp = sw->sw_id; 2667 sw->sw_id = NULL; 2668 mtx_unlock(&sw_dev_mtx); 2669 /* XXX: direct call when Giant untangled */ 2670 if (cp != NULL) 2671 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2672 } 2673 2674 2675 struct swh0h0 { 2676 struct cdev *dev; 2677 struct vnode *vp; 2678 int error; 2679 }; 2680 2681 static void 2682 swapongeom_ev(void *arg, int flags) 2683 { 2684 struct swh0h0 *swh; 2685 struct g_provider *pp; 2686 struct g_consumer *cp; 2687 static struct g_geom *gp; 2688 struct swdevt *sp; 2689 u_long nblks; 2690 int error; 2691 2692 swh = arg; 2693 swh->error = 0; 2694 pp = g_dev_getprovider(swh->dev); 2695 if (pp == NULL) { 2696 swh->error = ENODEV; 2697 return; 2698 } 2699 mtx_lock(&sw_dev_mtx); 2700 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2701 cp = sp->sw_id; 2702 if (cp != NULL && cp->provider == pp) { 2703 mtx_unlock(&sw_dev_mtx); 2704 swh->error = EBUSY; 2705 return; 2706 } 2707 } 2708 mtx_unlock(&sw_dev_mtx); 2709 if (gp == NULL) 2710 gp = g_new_geomf(&g_swap_class, "swap"); 2711 cp = g_new_consumer(gp); 2712 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2713 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2714 g_attach(cp, pp); 2715 /* 2716 * XXX: Everytime you think you can improve the margin for 2717 * footshooting, somebody depends on the ability to do so: 2718 * savecore(8) wants to write to our swapdev so we cannot 2719 * set an exclusive count :-( 2720 */ 2721 error = g_access(cp, 1, 1, 0); 2722 if (error) { 2723 g_detach(cp); 2724 g_destroy_consumer(cp); 2725 swh->error = error; 2726 return; 2727 } 2728 nblks = pp->mediasize / DEV_BSIZE; 2729 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2730 swapgeom_close, dev2udev(swh->dev), 2731 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2732 swh->error = 0; 2733 } 2734 2735 static int 2736 swapongeom(struct thread *td, struct vnode *vp) 2737 { 2738 int error; 2739 struct swh0h0 swh; 2740 2741 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2742 2743 swh.dev = vp->v_rdev; 2744 swh.vp = vp; 2745 swh.error = 0; 2746 /* XXX: direct call when Giant untangled */ 2747 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2748 if (!error) 2749 error = swh.error; 2750 VOP_UNLOCK(vp, 0); 2751 return (error); 2752 } 2753 2754 /* 2755 * VNODE backend 2756 * 2757 * This is used mainly for network filesystem (read: probably only tested 2758 * with NFS) swapfiles. 2759 * 2760 */ 2761 2762 static void 2763 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2764 { 2765 struct vnode *vp2; 2766 2767 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2768 2769 vp2 = sp->sw_id; 2770 vhold(vp2); 2771 if (bp->b_iocmd == BIO_WRITE) { 2772 if (bp->b_bufobj) 2773 bufobj_wdrop(bp->b_bufobj); 2774 bufobj_wref(&vp2->v_bufobj); 2775 } 2776 if (bp->b_bufobj != &vp2->v_bufobj) 2777 bp->b_bufobj = &vp2->v_bufobj; 2778 bp->b_vp = vp2; 2779 bp->b_iooffset = dbtob(bp->b_blkno); 2780 bstrategy(bp); 2781 return; 2782 } 2783 2784 static void 2785 swapdev_close(struct thread *td, struct swdevt *sp) 2786 { 2787 2788 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2789 vrele(sp->sw_vp); 2790 } 2791 2792 2793 static int 2794 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2795 { 2796 struct swdevt *sp; 2797 int error; 2798 2799 if (nblks == 0) 2800 return (ENXIO); 2801 mtx_lock(&sw_dev_mtx); 2802 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2803 if (sp->sw_id == vp) { 2804 mtx_unlock(&sw_dev_mtx); 2805 return (EBUSY); 2806 } 2807 } 2808 mtx_unlock(&sw_dev_mtx); 2809 2810 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2811 #ifdef MAC 2812 error = mac_system_check_swapon(td->td_ucred, vp); 2813 if (error == 0) 2814 #endif 2815 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2816 (void) VOP_UNLOCK(vp, 0); 2817 if (error) 2818 return (error); 2819 2820 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2821 NODEV, 0); 2822 return (0); 2823 } 2824 2825 static int 2826 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2827 { 2828 int error, new, n; 2829 2830 new = nsw_wcount_async_max; 2831 error = sysctl_handle_int(oidp, &new, 0, req); 2832 if (error != 0 || req->newptr == NULL) 2833 return (error); 2834 2835 if (new > nswbuf / 2 || new < 1) 2836 return (EINVAL); 2837 2838 mtx_lock(&pbuf_mtx); 2839 while (nsw_wcount_async_max != new) { 2840 /* 2841 * Adjust difference. If the current async count is too low, 2842 * we will need to sqeeze our update slowly in. Sleep with a 2843 * higher priority than getpbuf() to finish faster. 2844 */ 2845 n = new - nsw_wcount_async_max; 2846 if (nsw_wcount_async + n >= 0) { 2847 nsw_wcount_async += n; 2848 nsw_wcount_async_max += n; 2849 wakeup(&nsw_wcount_async); 2850 } else { 2851 nsw_wcount_async_max -= nsw_wcount_async; 2852 nsw_wcount_async = 0; 2853 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2854 "swpsysctl", 0); 2855 } 2856 } 2857 mtx_unlock(&pbuf_mtx); 2858 2859 return (0); 2860 } 2861