xref: /freebsd/sys/vm/swap_pager.c (revision 64db83a8ab2d1f72a9b2174b39d2ef42b5b0580c)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 
84 #ifndef MAX_PAGEOUT_CLUSTER
85 #define MAX_PAGEOUT_CLUSTER 16
86 #endif
87 
88 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
89 
90 #include "opt_swap.h"
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_zone.h>
99 
100 #define SWM_FREE	0x02	/* free, period			*/
101 #define SWM_POP		0x04	/* pop out			*/
102 
103 /*
104  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
105  * in the old system.
106  */
107 
108 extern int vm_swap_size;	/* number of free swap blocks, in pages */
109 
110 int swap_pager_full;		/* swap space exhaustion (task killing) */
111 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
112 static int nsw_rcount;		/* free read buffers			*/
113 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
114 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
115 static int nsw_wcount_async_max;/* assigned maximum			*/
116 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
117 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
118 
119 struct blist *swapblist;
120 static struct swblock **swhash;
121 static int swhash_mask;
122 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
123 
124 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
125 
126 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
127         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
128 
129 /*
130  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
131  * of searching a named list by hashing it just a little.
132  */
133 
134 #define NOBJLISTS		8
135 
136 #define NOBJLIST(handle)	\
137 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
138 
139 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
140 struct pagerlst		swap_pager_un_object_list;
141 vm_zone_t		swap_zone;
142 
143 /*
144  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
145  * calls hooked from other parts of the VM system and do not appear here.
146  * (see vm/swap_pager.h).
147  */
148 
149 static vm_object_t
150 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
151 				      vm_prot_t prot, vm_ooffset_t offset));
152 static void	swap_pager_dealloc __P((vm_object_t object));
153 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
154 static void	swap_pager_init __P((void));
155 static void	swap_pager_unswapped __P((vm_page_t));
156 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
157 
158 struct pagerops swappagerops = {
159 	swap_pager_init,	/* early system initialization of pager	*/
160 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
161 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
162 	swap_pager_getpages,	/* pagein				*/
163 	swap_pager_putpages,	/* pageout				*/
164 	swap_pager_haspage,	/* get backing store status for page	*/
165 	swap_pager_unswapped,	/* remove swap related to page		*/
166 	swap_pager_strategy	/* pager strategy call			*/
167 };
168 
169 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
170 static void flushchainbuf(struct buf *nbp);
171 static void waitchainbuf(struct bio *bp, int count, int done);
172 
173 /*
174  * dmmax is in page-sized chunks with the new swap system.  It was
175  * dev-bsized chunks in the old.
176  *
177  * swap_*() routines are externally accessible.  swp_*() routines are
178  * internal.
179  */
180 
181 int dmmax;
182 static int dmmax_mask;
183 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
184 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
185 
186 static __inline void	swp_sizecheck __P((void));
187 static void	swp_pager_sync_iodone __P((struct buf *bp));
188 static void	swp_pager_async_iodone __P((struct buf *bp));
189 
190 /*
191  * Swap bitmap functions
192  */
193 
194 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
195 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
196 
197 /*
198  * Metadata functions
199  */
200 
201 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
202 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
203 static void swp_pager_meta_free_all __P((vm_object_t));
204 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
205 
206 /*
207  * SWP_SIZECHECK() -	update swap_pager_full indication
208  *
209  *	update the swap_pager_almost_full indication and warn when we are
210  *	about to run out of swap space, using lowat/hiwat hysteresis.
211  *
212  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
213  *
214  *	No restrictions on call
215  *	This routine may not block.
216  *	This routine must be called at splvm()
217  */
218 
219 static __inline void
220 swp_sizecheck()
221 {
222 	if (vm_swap_size < nswap_lowat) {
223 		if (swap_pager_almost_full == 0) {
224 			printf("swap_pager: out of swap space\n");
225 			swap_pager_almost_full = 1;
226 		}
227 	} else {
228 		swap_pager_full = 0;
229 		if (vm_swap_size > nswap_hiwat)
230 			swap_pager_almost_full = 0;
231 	}
232 }
233 
234 /*
235  * SWAP_PAGER_INIT() -	initialize the swap pager!
236  *
237  *	Expected to be started from system init.  NOTE:  This code is run
238  *	before much else so be careful what you depend on.  Most of the VM
239  *	system has yet to be initialized at this point.
240  */
241 
242 static void
243 swap_pager_init()
244 {
245 	/*
246 	 * Initialize object lists
247 	 */
248 	int i;
249 
250 	for (i = 0; i < NOBJLISTS; ++i)
251 		TAILQ_INIT(&swap_pager_object_list[i]);
252 	TAILQ_INIT(&swap_pager_un_object_list);
253 
254 	/*
255 	 * Device Stripe, in PAGE_SIZE'd blocks
256 	 */
257 
258 	dmmax = SWB_NPAGES * 2;
259 	dmmax_mask = ~(dmmax - 1);
260 }
261 
262 /*
263  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
264  *
265  *	Expected to be started from pageout process once, prior to entering
266  *	its main loop.
267  */
268 
269 void
270 swap_pager_swap_init()
271 {
272 	int n;
273 
274 	/*
275 	 * Number of in-transit swap bp operations.  Don't
276 	 * exhaust the pbufs completely.  Make sure we
277 	 * initialize workable values (0 will work for hysteresis
278 	 * but it isn't very efficient).
279 	 *
280 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
281 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
282 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
283 	 * constrained by the swap device interleave stripe size.
284 	 *
285 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
286 	 * designed to prevent other I/O from having high latencies due to
287 	 * our pageout I/O.  The value 4 works well for one or two active swap
288 	 * devices but is probably a little low if you have more.  Even so,
289 	 * a higher value would probably generate only a limited improvement
290 	 * with three or four active swap devices since the system does not
291 	 * typically have to pageout at extreme bandwidths.   We will want
292 	 * at least 2 per swap devices, and 4 is a pretty good value if you
293 	 * have one NFS swap device due to the command/ack latency over NFS.
294 	 * So it all works out pretty well.
295 	 */
296 
297 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
298 
299 	nsw_rcount = (nswbuf + 1) / 2;
300 	nsw_wcount_sync = (nswbuf + 3) / 4;
301 	nsw_wcount_async = 4;
302 	nsw_wcount_async_max = nsw_wcount_async;
303 
304 	/*
305 	 * Initialize our zone.  Right now I'm just guessing on the number
306 	 * we need based on the number of pages in the system.  Each swblock
307 	 * can hold 16 pages, so this is probably overkill.
308 	 */
309 
310 	n = cnt.v_page_count * 2;
311 
312 	swap_zone = zinit(
313 	    "SWAPMETA",
314 	    sizeof(struct swblock),
315 	    n,
316 	    ZONE_INTERRUPT,
317 	    1
318 	);
319 
320 	/*
321 	 * Initialize our meta-data hash table.  The swapper does not need to
322 	 * be quite as efficient as the VM system, so we do not use an
323 	 * oversized hash table.
324 	 *
325 	 * 	n: 		size of hash table, must be power of 2
326 	 *	swhash_mask:	hash table index mask
327 	 */
328 
329 	for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
330 		;
331 
332 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
333 	bzero(swhash, sizeof(struct swblock *) * n);
334 
335 	swhash_mask = n - 1;
336 }
337 
338 /*
339  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
340  *			its metadata structures.
341  *
342  *	This routine is called from the mmap and fork code to create a new
343  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
344  *	and then converting it with swp_pager_meta_build().
345  *
346  *	This routine may block in vm_object_allocate() and create a named
347  *	object lookup race, so we must interlock.   We must also run at
348  *	splvm() for the object lookup to handle races with interrupts, but
349  *	we do not have to maintain splvm() in between the lookup and the
350  *	add because (I believe) it is not possible to attempt to create
351  *	a new swap object w/handle when a default object with that handle
352  *	already exists.
353  */
354 
355 static vm_object_t
356 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
357 		 vm_ooffset_t offset)
358 {
359 	vm_object_t object;
360 
361 	if (handle) {
362 		/*
363 		 * Reference existing named region or allocate new one.  There
364 		 * should not be a race here against swp_pager_meta_build()
365 		 * as called from vm_page_remove() in regards to the lookup
366 		 * of the handle.
367 		 */
368 
369 		while (sw_alloc_interlock) {
370 			sw_alloc_interlock = -1;
371 			tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
372 		}
373 		sw_alloc_interlock = 1;
374 
375 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
376 
377 		if (object != NULL) {
378 			vm_object_reference(object);
379 		} else {
380 			object = vm_object_allocate(OBJT_DEFAULT,
381 				OFF_TO_IDX(offset + PAGE_MASK + size));
382 			object->handle = handle;
383 
384 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
385 		}
386 
387 		if (sw_alloc_interlock < 0)
388 			wakeup(&sw_alloc_interlock);
389 
390 		sw_alloc_interlock = 0;
391 	} else {
392 		object = vm_object_allocate(OBJT_DEFAULT,
393 			OFF_TO_IDX(offset + PAGE_MASK + size));
394 
395 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
396 	}
397 
398 	return (object);
399 }
400 
401 /*
402  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
403  *
404  *	The swap backing for the object is destroyed.  The code is
405  *	designed such that we can reinstantiate it later, but this
406  *	routine is typically called only when the entire object is
407  *	about to be destroyed.
408  *
409  *	This routine may block, but no longer does.
410  *
411  *	The object must be locked or unreferenceable.
412  */
413 
414 static void
415 swap_pager_dealloc(object)
416 	vm_object_t object;
417 {
418 	int s;
419 
420 	/*
421 	 * Remove from list right away so lookups will fail if we block for
422 	 * pageout completion.
423 	 */
424 
425 	if (object->handle == NULL) {
426 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
427 	} else {
428 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
429 	}
430 
431 	vm_object_pip_wait(object, "swpdea");
432 
433 	/*
434 	 * Free all remaining metadata.  We only bother to free it from
435 	 * the swap meta data.  We do not attempt to free swapblk's still
436 	 * associated with vm_page_t's for this object.  We do not care
437 	 * if paging is still in progress on some objects.
438 	 */
439 	s = splvm();
440 	swp_pager_meta_free_all(object);
441 	splx(s);
442 }
443 
444 /************************************************************************
445  *			SWAP PAGER BITMAP ROUTINES			*
446  ************************************************************************/
447 
448 /*
449  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
450  *
451  *	Allocate swap for the requested number of pages.  The starting
452  *	swap block number (a page index) is returned or SWAPBLK_NONE
453  *	if the allocation failed.
454  *
455  *	Also has the side effect of advising that somebody made a mistake
456  *	when they configured swap and didn't configure enough.
457  *
458  *	Must be called at splvm() to avoid races with bitmap frees from
459  *	vm_page_remove() aka swap_pager_page_removed().
460  *
461  *	This routine may not block
462  *	This routine must be called at splvm().
463  */
464 
465 static __inline daddr_t
466 swp_pager_getswapspace(npages)
467 	int npages;
468 {
469 	daddr_t blk;
470 
471 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
472 		if (swap_pager_full != 2) {
473 			printf("swap_pager_getswapspace: failed\n");
474 			swap_pager_full = 2;
475 			swap_pager_almost_full = 1;
476 		}
477 	} else {
478 		vm_swap_size -= npages;
479 		swp_sizecheck();
480 	}
481 	return(blk);
482 }
483 
484 /*
485  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
486  *
487  *	This routine returns the specified swap blocks back to the bitmap.
488  *
489  *	Note:  This routine may not block (it could in the old swap code),
490  *	and through the use of the new blist routines it does not block.
491  *
492  *	We must be called at splvm() to avoid races with bitmap frees from
493  *	vm_page_remove() aka swap_pager_page_removed().
494  *
495  *	This routine may not block
496  *	This routine must be called at splvm().
497  */
498 
499 static __inline void
500 swp_pager_freeswapspace(blk, npages)
501 	daddr_t blk;
502 	int npages;
503 {
504 	blist_free(swapblist, blk, npages);
505 	vm_swap_size += npages;
506 	swp_sizecheck();
507 }
508 
509 /*
510  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
511  *				range within an object.
512  *
513  *	This is a globally accessible routine.
514  *
515  *	This routine removes swapblk assignments from swap metadata.
516  *
517  *	The external callers of this routine typically have already destroyed
518  *	or renamed vm_page_t's associated with this range in the object so
519  *	we should be ok.
520  *
521  *	This routine may be called at any spl.  We up our spl to splvm temporarily
522  *	in order to perform the metadata removal.
523  */
524 
525 void
526 swap_pager_freespace(object, start, size)
527 	vm_object_t object;
528 	vm_pindex_t start;
529 	vm_size_t size;
530 {
531 	int s = splvm();
532 	swp_pager_meta_free(object, start, size);
533 	splx(s);
534 }
535 
536 /*
537  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
538  *
539  *	Assigns swap blocks to the specified range within the object.  The
540  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
541  *
542  *	Returns 0 on success, -1 on failure.
543  */
544 
545 int
546 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
547 {
548 	int s;
549 	int n = 0;
550 	daddr_t blk = SWAPBLK_NONE;
551 	vm_pindex_t beg = start;	/* save start index */
552 
553 	s = splvm();
554 	while (size) {
555 		if (n == 0) {
556 			n = BLIST_MAX_ALLOC;
557 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
558 				n >>= 1;
559 				if (n == 0) {
560 					swp_pager_meta_free(object, beg, start - beg);
561 					splx(s);
562 					return(-1);
563 				}
564 			}
565 		}
566 		swp_pager_meta_build(object, start, blk);
567 		--size;
568 		++start;
569 		++blk;
570 		--n;
571 	}
572 	swp_pager_meta_free(object, start, n);
573 	splx(s);
574 	return(0);
575 }
576 
577 /*
578  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
579  *			and destroy the source.
580  *
581  *	Copy any valid swapblks from the source to the destination.  In
582  *	cases where both the source and destination have a valid swapblk,
583  *	we keep the destination's.
584  *
585  *	This routine is allowed to block.  It may block allocating metadata
586  *	indirectly through swp_pager_meta_build() or if paging is still in
587  *	progress on the source.
588  *
589  *	This routine can be called at any spl
590  *
591  *	XXX vm_page_collapse() kinda expects us not to block because we
592  *	supposedly do not need to allocate memory, but for the moment we
593  *	*may* have to get a little memory from the zone allocator, but
594  *	it is taken from the interrupt memory.  We should be ok.
595  *
596  *	The source object contains no vm_page_t's (which is just as well)
597  *
598  *	The source object is of type OBJT_SWAP.
599  *
600  *	The source and destination objects must be locked or
601  *	inaccessible (XXX are they ?)
602  */
603 
604 void
605 swap_pager_copy(srcobject, dstobject, offset, destroysource)
606 	vm_object_t srcobject;
607 	vm_object_t dstobject;
608 	vm_pindex_t offset;
609 	int destroysource;
610 {
611 	vm_pindex_t i;
612 	int s;
613 
614 	s = splvm();
615 
616 	/*
617 	 * If destroysource is set, we remove the source object from the
618 	 * swap_pager internal queue now.
619 	 */
620 
621 	if (destroysource) {
622 		if (srcobject->handle == NULL) {
623 			TAILQ_REMOVE(
624 			    &swap_pager_un_object_list,
625 			    srcobject,
626 			    pager_object_list
627 			);
628 		} else {
629 			TAILQ_REMOVE(
630 			    NOBJLIST(srcobject->handle),
631 			    srcobject,
632 			    pager_object_list
633 			);
634 		}
635 	}
636 
637 	/*
638 	 * transfer source to destination.
639 	 */
640 
641 	for (i = 0; i < dstobject->size; ++i) {
642 		daddr_t dstaddr;
643 
644 		/*
645 		 * Locate (without changing) the swapblk on the destination,
646 		 * unless it is invalid in which case free it silently, or
647 		 * if the destination is a resident page, in which case the
648 		 * source is thrown away.
649 		 */
650 
651 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
652 
653 		if (dstaddr == SWAPBLK_NONE) {
654 			/*
655 			 * Destination has no swapblk and is not resident,
656 			 * copy source.
657 			 */
658 			daddr_t srcaddr;
659 
660 			srcaddr = swp_pager_meta_ctl(
661 			    srcobject,
662 			    i + offset,
663 			    SWM_POP
664 			);
665 
666 			if (srcaddr != SWAPBLK_NONE)
667 				swp_pager_meta_build(dstobject, i, srcaddr);
668 		} else {
669 			/*
670 			 * Destination has valid swapblk or it is represented
671 			 * by a resident page.  We destroy the sourceblock.
672 			 */
673 
674 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
675 		}
676 	}
677 
678 	/*
679 	 * Free left over swap blocks in source.
680 	 *
681 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
682 	 * double-remove the object from the swap queues.
683 	 */
684 
685 	if (destroysource) {
686 		swp_pager_meta_free_all(srcobject);
687 		/*
688 		 * Reverting the type is not necessary, the caller is going
689 		 * to destroy srcobject directly, but I'm doing it here
690 		 * for consistency since we've removed the object from its
691 		 * queues.
692 		 */
693 		srcobject->type = OBJT_DEFAULT;
694 	}
695 	splx(s);
696 }
697 
698 /*
699  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
700  *				the requested page.
701  *
702  *	We determine whether good backing store exists for the requested
703  *	page and return TRUE if it does, FALSE if it doesn't.
704  *
705  *	If TRUE, we also try to determine how much valid, contiguous backing
706  *	store exists before and after the requested page within a reasonable
707  *	distance.  We do not try to restrict it to the swap device stripe
708  *	(that is handled in getpages/putpages).  It probably isn't worth
709  *	doing here.
710  */
711 
712 boolean_t
713 swap_pager_haspage(object, pindex, before, after)
714 	vm_object_t object;
715 	vm_pindex_t pindex;
716 	int *before;
717 	int *after;
718 {
719 	daddr_t blk0;
720 	int s;
721 
722 	/*
723 	 * do we have good backing store at the requested index ?
724 	 */
725 
726 	s = splvm();
727 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
728 
729 	if (blk0 == SWAPBLK_NONE) {
730 		splx(s);
731 		if (before)
732 			*before = 0;
733 		if (after)
734 			*after = 0;
735 		return (FALSE);
736 	}
737 
738 	/*
739 	 * find backwards-looking contiguous good backing store
740 	 */
741 
742 	if (before != NULL) {
743 		int i;
744 
745 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
746 			daddr_t blk;
747 
748 			if (i > pindex)
749 				break;
750 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
751 			if (blk != blk0 - i)
752 				break;
753 		}
754 		*before = (i - 1);
755 	}
756 
757 	/*
758 	 * find forward-looking contiguous good backing store
759 	 */
760 
761 	if (after != NULL) {
762 		int i;
763 
764 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
765 			daddr_t blk;
766 
767 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
768 			if (blk != blk0 + i)
769 				break;
770 		}
771 		*after = (i - 1);
772 	}
773 	splx(s);
774 	return (TRUE);
775 }
776 
777 /*
778  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
779  *
780  *	This removes any associated swap backing store, whether valid or
781  *	not, from the page.
782  *
783  *	This routine is typically called when a page is made dirty, at
784  *	which point any associated swap can be freed.  MADV_FREE also
785  *	calls us in a special-case situation
786  *
787  *	NOTE!!!  If the page is clean and the swap was valid, the caller
788  *	should make the page dirty before calling this routine.  This routine
789  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
790  *	depends on it.
791  *
792  *	This routine may not block
793  *	This routine must be called at splvm()
794  */
795 
796 static void
797 swap_pager_unswapped(m)
798 	vm_page_t m;
799 {
800 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
801 }
802 
803 /*
804  * SWAP_PAGER_STRATEGY() - read, write, free blocks
805  *
806  *	This implements the vm_pager_strategy() interface to swap and allows
807  *	other parts of the system to directly access swap as backing store
808  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
809  *	cacheless interface ( i.e. caching occurs at higher levels ).
810  *	Therefore we do not maintain any resident pages.  All I/O goes
811  *	directly to and from the swap device.
812  *
813  *	Note that b_blkno is scaled for PAGE_SIZE
814  *
815  *	We currently attempt to run I/O synchronously or asynchronously as
816  *	the caller requests.  This isn't perfect because we loose error
817  *	sequencing when we run multiple ops in parallel to satisfy a request.
818  *	But this is swap, so we let it all hang out.
819  */
820 
821 static void
822 swap_pager_strategy(vm_object_t object, struct bio *bp)
823 {
824 	vm_pindex_t start;
825 	int count;
826 	int s;
827 	char *data;
828 	struct buf *nbp = NULL;
829 
830 	/* XXX: KASSERT instead ? */
831 	if (bp->bio_bcount & PAGE_MASK) {
832 		bp->bio_error = EINVAL;
833 		bp->bio_flags |= BIO_ERROR;
834 		biodone(bp);
835 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
836 		return;
837 	}
838 
839 	/*
840 	 * Clear error indication, initialize page index, count, data pointer.
841 	 */
842 
843 	bp->bio_error = 0;
844 	bp->bio_flags &= ~BIO_ERROR;
845 	bp->bio_resid = bp->bio_bcount;
846 
847 	start = bp->bio_pblkno;
848 	count = howmany(bp->bio_bcount, PAGE_SIZE);
849 	data = bp->bio_data;
850 
851 	s = splvm();
852 
853 	/*
854 	 * Deal with BIO_DELETE
855 	 */
856 
857 	if (bp->bio_cmd == BIO_DELETE) {
858 		/*
859 		 * FREE PAGE(s) - destroy underlying swap that is no longer
860 		 *		  needed.
861 		 */
862 		swp_pager_meta_free(object, start, count);
863 		splx(s);
864 		bp->bio_resid = 0;
865 		biodone(bp);
866 		return;
867 	}
868 
869 	/*
870 	 * Execute read or write
871 	 */
872 
873 	while (count > 0) {
874 		daddr_t blk;
875 
876 		/*
877 		 * Obtain block.  If block not found and writing, allocate a
878 		 * new block and build it into the object.
879 		 */
880 
881 		blk = swp_pager_meta_ctl(object, start, 0);
882 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
883 			blk = swp_pager_getswapspace(1);
884 			if (blk == SWAPBLK_NONE) {
885 				bp->bio_error = ENOMEM;
886 				bp->bio_flags |= BIO_ERROR;
887 				break;
888 			}
889 			swp_pager_meta_build(object, start, blk);
890 		}
891 
892 		/*
893 		 * Do we have to flush our current collection?  Yes if:
894 		 *
895 		 *	- no swap block at this index
896 		 *	- swap block is not contiguous
897 		 *	- we cross a physical disk boundry in the
898 		 *	  stripe.
899 		 */
900 
901 		if (
902 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
903 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
904 		    )
905 		) {
906 			splx(s);
907 			if (bp->bio_cmd == BIO_READ) {
908 				++cnt.v_swapin;
909 				cnt.v_swappgsin += btoc(nbp->b_bcount);
910 			} else {
911 				++cnt.v_swapout;
912 				cnt.v_swappgsout += btoc(nbp->b_bcount);
913 				nbp->b_dirtyend = nbp->b_bcount;
914 			}
915 			flushchainbuf(nbp);
916 			s = splvm();
917 			nbp = NULL;
918 		}
919 
920 		/*
921 		 * Add new swapblk to nbp, instantiating nbp if necessary.
922 		 * Zero-fill reads are able to take a shortcut.
923 		 */
924 
925 		if (blk == SWAPBLK_NONE) {
926 			/*
927 			 * We can only get here if we are reading.  Since
928 			 * we are at splvm() we can safely modify b_resid,
929 			 * even if chain ops are in progress.
930 			 */
931 			bzero(data, PAGE_SIZE);
932 			bp->bio_resid -= PAGE_SIZE;
933 		} else {
934 			if (nbp == NULL) {
935 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
936 				nbp->b_blkno = blk;
937 				nbp->b_bcount = 0;
938 				nbp->b_data = data;
939 			}
940 			nbp->b_bcount += PAGE_SIZE;
941 		}
942 		--count;
943 		++start;
944 		data += PAGE_SIZE;
945 	}
946 
947 	/*
948 	 *  Flush out last buffer
949 	 */
950 
951 	splx(s);
952 
953 	if (nbp) {
954 		if (nbp->b_iocmd == BIO_READ) {
955 			++cnt.v_swapin;
956 			cnt.v_swappgsin += btoc(nbp->b_bcount);
957 		} else {
958 			++cnt.v_swapout;
959 			cnt.v_swappgsout += btoc(nbp->b_bcount);
960 			nbp->b_dirtyend = nbp->b_bcount;
961 		}
962 		flushchainbuf(nbp);
963 		/* nbp = NULL; */
964 	}
965 
966 	/*
967 	 * Wait for completion.
968 	 */
969 
970 	waitchainbuf(bp, 0, 1);
971 }
972 
973 /*
974  * SWAP_PAGER_GETPAGES() - bring pages in from swap
975  *
976  *	Attempt to retrieve (m, count) pages from backing store, but make
977  *	sure we retrieve at least m[reqpage].  We try to load in as large
978  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
979  *	belongs to the same object.
980  *
981  *	The code is designed for asynchronous operation and
982  *	immediate-notification of 'reqpage' but tends not to be
983  *	used that way.  Please do not optimize-out this algorithmic
984  *	feature, I intend to improve on it in the future.
985  *
986  *	The parent has a single vm_object_pip_add() reference prior to
987  *	calling us and we should return with the same.
988  *
989  *	The parent has BUSY'd the pages.  We should return with 'm'
990  *	left busy, but the others adjusted.
991  */
992 
993 static int
994 swap_pager_getpages(object, m, count, reqpage)
995 	vm_object_t object;
996 	vm_page_t *m;
997 	int count, reqpage;
998 {
999 	struct buf *bp;
1000 	vm_page_t mreq;
1001 	int s;
1002 	int i;
1003 	int j;
1004 	daddr_t blk;
1005 	vm_offset_t kva;
1006 	vm_pindex_t lastpindex;
1007 
1008 	mreq = m[reqpage];
1009 
1010 	if (mreq->object != object) {
1011 		panic("swap_pager_getpages: object mismatch %p/%p",
1012 		    object,
1013 		    mreq->object
1014 		);
1015 	}
1016 	/*
1017 	 * Calculate range to retrieve.  The pages have already been assigned
1018 	 * their swapblks.  We require a *contiguous* range that falls entirely
1019 	 * within a single device stripe.   If we do not supply it, bad things
1020 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1021 	 * loops are set up such that the case(s) are handled implicitly.
1022 	 *
1023 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1024 	 * not need to be, but it will go a little faster if it is.
1025 	 */
1026 
1027 	s = splvm();
1028 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1029 
1030 	for (i = reqpage - 1; i >= 0; --i) {
1031 		daddr_t iblk;
1032 
1033 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1034 		if (blk != iblk + (reqpage - i))
1035 			break;
1036 		if ((blk ^ iblk) & dmmax_mask)
1037 			break;
1038 	}
1039 	++i;
1040 
1041 	for (j = reqpage + 1; j < count; ++j) {
1042 		daddr_t jblk;
1043 
1044 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1045 		if (blk != jblk - (j - reqpage))
1046 			break;
1047 		if ((blk ^ jblk) & dmmax_mask)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * free pages outside our collection range.   Note: we never free
1053 	 * mreq, it must remain busy throughout.
1054 	 */
1055 
1056 	{
1057 		int k;
1058 
1059 		for (k = 0; k < i; ++k)
1060 			vm_page_free(m[k]);
1061 		for (k = j; k < count; ++k)
1062 			vm_page_free(m[k]);
1063 	}
1064 	splx(s);
1065 
1066 
1067 	/*
1068 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1069 	 * still busy, but the others unbusied.
1070 	 */
1071 
1072 	if (blk == SWAPBLK_NONE)
1073 		return(VM_PAGER_FAIL);
1074 
1075 	/*
1076 	 * Get a swap buffer header to perform the IO
1077 	 */
1078 
1079 	bp = getpbuf(&nsw_rcount);
1080 	kva = (vm_offset_t) bp->b_data;
1081 
1082 	/*
1083 	 * map our page(s) into kva for input
1084 	 *
1085 	 * NOTE: B_PAGING is set by pbgetvp()
1086 	 */
1087 
1088 	pmap_qenter(kva, m + i, j - i);
1089 
1090 	bp->b_iocmd = BIO_READ;
1091 	bp->b_iodone = swp_pager_async_iodone;
1092 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1093 	bp->b_data = (caddr_t) kva;
1094 	crhold(bp->b_rcred);
1095 	crhold(bp->b_wcred);
1096 	bp->b_blkno = blk - (reqpage - i);
1097 	bp->b_bcount = PAGE_SIZE * (j - i);
1098 	bp->b_bufsize = PAGE_SIZE * (j - i);
1099 	bp->b_pager.pg_reqpage = reqpage - i;
1100 
1101 	{
1102 		int k;
1103 
1104 		for (k = i; k < j; ++k) {
1105 			bp->b_pages[k - i] = m[k];
1106 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1107 		}
1108 	}
1109 	bp->b_npages = j - i;
1110 
1111 	pbgetvp(swapdev_vp, bp);
1112 
1113 	cnt.v_swapin++;
1114 	cnt.v_swappgsin += bp->b_npages;
1115 
1116 	/*
1117 	 * We still hold the lock on mreq, and our automatic completion routine
1118 	 * does not remove it.
1119 	 */
1120 
1121 	vm_object_pip_add(mreq->object, bp->b_npages);
1122 	lastpindex = m[j-1]->pindex;
1123 
1124 	/*
1125 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1126 	 * this point because we automatically release it on completion.
1127 	 * Instead, we look at the one page we are interested in which we
1128 	 * still hold a lock on even through the I/O completion.
1129 	 *
1130 	 * The other pages in our m[] array are also released on completion,
1131 	 * so we cannot assume they are valid anymore either.
1132 	 *
1133 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1134 	 */
1135 
1136 	BUF_KERNPROC(bp);
1137 	BUF_STRATEGY(bp);
1138 
1139 	/*
1140 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1141 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1142 	 * is set in the meta-data.
1143 	 */
1144 
1145 	s = splvm();
1146 
1147 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1148 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1149 		cnt.v_intrans++;
1150 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1151 			printf(
1152 			    "swap_pager: indefinite wait buffer: device:"
1153 				" %s, blkno: %ld, size: %ld\n",
1154 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1155 			    bp->b_bcount
1156 			);
1157 		}
1158 	}
1159 
1160 	splx(s);
1161 
1162 	/*
1163 	 * mreq is left bussied after completion, but all the other pages
1164 	 * are freed.  If we had an unrecoverable read error the page will
1165 	 * not be valid.
1166 	 */
1167 
1168 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1169 		return(VM_PAGER_ERROR);
1170 	} else {
1171 		return(VM_PAGER_OK);
1172 	}
1173 
1174 	/*
1175 	 * A final note: in a low swap situation, we cannot deallocate swap
1176 	 * and mark a page dirty here because the caller is likely to mark
1177 	 * the page clean when we return, causing the page to possibly revert
1178 	 * to all-zero's later.
1179 	 */
1180 }
1181 
1182 /*
1183  *	swap_pager_putpages:
1184  *
1185  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1186  *
1187  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1188  *	are automatically converted to SWAP objects.
1189  *
1190  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1191  *	vm_page reservation system coupled with properly written VFS devices
1192  *	should ensure that no low-memory deadlock occurs.  This is an area
1193  *	which needs work.
1194  *
1195  *	The parent has N vm_object_pip_add() references prior to
1196  *	calling us and will remove references for rtvals[] that are
1197  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1198  *	completion.
1199  *
1200  *	The parent has soft-busy'd the pages it passes us and will unbusy
1201  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1202  *	We need to unbusy the rest on I/O completion.
1203  */
1204 
1205 void
1206 swap_pager_putpages(object, m, count, sync, rtvals)
1207 	vm_object_t object;
1208 	vm_page_t *m;
1209 	int count;
1210 	boolean_t sync;
1211 	int *rtvals;
1212 {
1213 	int i;
1214 	int n = 0;
1215 
1216 	if (count && m[0]->object != object) {
1217 		panic("swap_pager_getpages: object mismatch %p/%p",
1218 		    object,
1219 		    m[0]->object
1220 		);
1221 	}
1222 	/*
1223 	 * Step 1
1224 	 *
1225 	 * Turn object into OBJT_SWAP
1226 	 * check for bogus sysops
1227 	 * force sync if not pageout process
1228 	 */
1229 
1230 	if (object->type != OBJT_SWAP)
1231 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1232 
1233 	if (curproc != pageproc)
1234 		sync = TRUE;
1235 
1236 	/*
1237 	 * Step 2
1238 	 *
1239 	 * Update nsw parameters from swap_async_max sysctl values.
1240 	 * Do not let the sysop crash the machine with bogus numbers.
1241 	 */
1242 
1243 	if (swap_async_max != nsw_wcount_async_max) {
1244 		int n;
1245 		int s;
1246 
1247 		/*
1248 		 * limit range
1249 		 */
1250 		if ((n = swap_async_max) > nswbuf / 2)
1251 			n = nswbuf / 2;
1252 		if (n < 1)
1253 			n = 1;
1254 		swap_async_max = n;
1255 
1256 		/*
1257 		 * Adjust difference ( if possible ).  If the current async
1258 		 * count is too low, we may not be able to make the adjustment
1259 		 * at this time.
1260 		 */
1261 		s = splvm();
1262 		n -= nsw_wcount_async_max;
1263 		if (nsw_wcount_async + n >= 0) {
1264 			nsw_wcount_async += n;
1265 			nsw_wcount_async_max += n;
1266 			wakeup(&nsw_wcount_async);
1267 		}
1268 		splx(s);
1269 	}
1270 
1271 	/*
1272 	 * Step 3
1273 	 *
1274 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1275 	 * The page is left dirty until the pageout operation completes
1276 	 * successfully.
1277 	 */
1278 
1279 	for (i = 0; i < count; i += n) {
1280 		int s;
1281 		int j;
1282 		struct buf *bp;
1283 		daddr_t blk;
1284 
1285 		/*
1286 		 * Maximum I/O size is limited by a number of factors.
1287 		 */
1288 
1289 		n = min(BLIST_MAX_ALLOC, count - i);
1290 		n = min(n, nsw_cluster_max);
1291 
1292 		s = splvm();
1293 
1294 		/*
1295 		 * Get biggest block of swap we can.  If we fail, fall
1296 		 * back and try to allocate a smaller block.  Don't go
1297 		 * overboard trying to allocate space if it would overly
1298 		 * fragment swap.
1299 		 */
1300 		while (
1301 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1302 		    n > 4
1303 		) {
1304 			n >>= 1;
1305 		}
1306 		if (blk == SWAPBLK_NONE) {
1307 			for (j = 0; j < n; ++j)
1308 				rtvals[i+j] = VM_PAGER_FAIL;
1309 			splx(s);
1310 			continue;
1311 		}
1312 
1313 		/*
1314 		 * The I/O we are constructing cannot cross a physical
1315 		 * disk boundry in the swap stripe.  Note: we are still
1316 		 * at splvm().
1317 		 */
1318 		if ((blk ^ (blk + n)) & dmmax_mask) {
1319 			j = ((blk + dmmax) & dmmax_mask) - blk;
1320 			swp_pager_freeswapspace(blk + j, n - j);
1321 			n = j;
1322 		}
1323 
1324 		/*
1325 		 * All I/O parameters have been satisfied, build the I/O
1326 		 * request and assign the swap space.
1327 		 *
1328 		 * NOTE: B_PAGING is set by pbgetvp()
1329 		 */
1330 
1331 		if (sync == TRUE) {
1332 			bp = getpbuf(&nsw_wcount_sync);
1333 		} else {
1334 			bp = getpbuf(&nsw_wcount_async);
1335 			bp->b_flags = B_ASYNC;
1336 		}
1337 		bp->b_iocmd = BIO_WRITE;
1338 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1339 
1340 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1341 
1342 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1343 		bp->b_bcount = PAGE_SIZE * n;
1344 		bp->b_bufsize = PAGE_SIZE * n;
1345 		bp->b_blkno = blk;
1346 
1347 		crhold(bp->b_rcred);
1348 		crhold(bp->b_wcred);
1349 
1350 		pbgetvp(swapdev_vp, bp);
1351 
1352 		for (j = 0; j < n; ++j) {
1353 			vm_page_t mreq = m[i+j];
1354 
1355 			swp_pager_meta_build(
1356 			    mreq->object,
1357 			    mreq->pindex,
1358 			    blk + j
1359 			);
1360 			vm_page_dirty(mreq);
1361 			rtvals[i+j] = VM_PAGER_OK;
1362 
1363 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1364 			bp->b_pages[j] = mreq;
1365 		}
1366 		bp->b_npages = n;
1367 		/*
1368 		 * Must set dirty range for NFS to work.
1369 		 */
1370 		bp->b_dirtyoff = 0;
1371 		bp->b_dirtyend = bp->b_bcount;
1372 
1373 		cnt.v_swapout++;
1374 		cnt.v_swappgsout += bp->b_npages;
1375 		swapdev_vp->v_numoutput++;
1376 
1377 		splx(s);
1378 
1379 		/*
1380 		 * asynchronous
1381 		 *
1382 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1383 		 */
1384 
1385 		if (sync == FALSE) {
1386 			bp->b_iodone = swp_pager_async_iodone;
1387 			BUF_KERNPROC(bp);
1388 			BUF_STRATEGY(bp);
1389 
1390 			for (j = 0; j < n; ++j)
1391 				rtvals[i+j] = VM_PAGER_PEND;
1392 			continue;
1393 		}
1394 
1395 		/*
1396 		 * synchronous
1397 		 *
1398 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1399 		 */
1400 
1401 		bp->b_iodone = swp_pager_sync_iodone;
1402 		BUF_STRATEGY(bp);
1403 
1404 		/*
1405 		 * Wait for the sync I/O to complete, then update rtvals.
1406 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1407 		 * our async completion routine at the end, thus avoiding a
1408 		 * double-free.
1409 		 */
1410 		s = splbio();
1411 
1412 		while ((bp->b_flags & B_DONE) == 0) {
1413 			tsleep(bp, PVM, "swwrt", 0);
1414 		}
1415 
1416 		for (j = 0; j < n; ++j)
1417 			rtvals[i+j] = VM_PAGER_PEND;
1418 
1419 		/*
1420 		 * Now that we are through with the bp, we can call the
1421 		 * normal async completion, which frees everything up.
1422 		 */
1423 
1424 		swp_pager_async_iodone(bp);
1425 
1426 		splx(s);
1427 	}
1428 }
1429 
1430 /*
1431  *	swap_pager_sync_iodone:
1432  *
1433  *	Completion routine for synchronous reads and writes from/to swap.
1434  *	We just mark the bp is complete and wake up anyone waiting on it.
1435  *
1436  *	This routine may not block.  This routine is called at splbio() or better.
1437  */
1438 
1439 static void
1440 swp_pager_sync_iodone(bp)
1441 	struct buf *bp;
1442 {
1443 	bp->b_flags |= B_DONE;
1444 	bp->b_flags &= ~B_ASYNC;
1445 	wakeup(bp);
1446 }
1447 
1448 /*
1449  *	swp_pager_async_iodone:
1450  *
1451  *	Completion routine for asynchronous reads and writes from/to swap.
1452  *	Also called manually by synchronous code to finish up a bp.
1453  *
1454  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1455  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1456  *	unbusy all pages except the 'main' request page.  For WRITE
1457  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1458  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1459  *
1460  *	This routine may not block.
1461  *	This routine is called at splbio() or better
1462  *
1463  *	We up ourselves to splvm() as required for various vm_page related
1464  *	calls.
1465  */
1466 
1467 static void
1468 swp_pager_async_iodone(bp)
1469 	register struct buf *bp;
1470 {
1471 	int s;
1472 	int i;
1473 	vm_object_t object = NULL;
1474 
1475 	bp->b_flags |= B_DONE;
1476 
1477 	/*
1478 	 * report error
1479 	 */
1480 
1481 	if (bp->b_ioflags & BIO_ERROR) {
1482 		printf(
1483 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1484 			"size %ld, error %d\n",
1485 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1486 		    (long)bp->b_blkno,
1487 		    (long)bp->b_bcount,
1488 		    bp->b_error
1489 		);
1490 	}
1491 
1492 	/*
1493 	 * set object, raise to splvm().
1494 	 */
1495 
1496 	if (bp->b_npages)
1497 		object = bp->b_pages[0]->object;
1498 	s = splvm();
1499 
1500 	/*
1501 	 * remove the mapping for kernel virtual
1502 	 */
1503 
1504 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1505 
1506 	/*
1507 	 * cleanup pages.  If an error occurs writing to swap, we are in
1508 	 * very serious trouble.  If it happens to be a disk error, though,
1509 	 * we may be able to recover by reassigning the swap later on.  So
1510 	 * in this case we remove the m->swapblk assignment for the page
1511 	 * but do not free it in the rlist.  The errornous block(s) are thus
1512 	 * never reallocated as swap.  Redirty the page and continue.
1513 	 */
1514 
1515 	for (i = 0; i < bp->b_npages; ++i) {
1516 		vm_page_t m = bp->b_pages[i];
1517 
1518 		vm_page_flag_clear(m, PG_SWAPINPROG);
1519 
1520 		if (bp->b_ioflags & BIO_ERROR) {
1521 			/*
1522 			 * If an error occurs I'd love to throw the swapblk
1523 			 * away without freeing it back to swapspace, so it
1524 			 * can never be used again.  But I can't from an
1525 			 * interrupt.
1526 			 */
1527 
1528 			if (bp->b_iocmd == BIO_READ) {
1529 				/*
1530 				 * When reading, reqpage needs to stay
1531 				 * locked for the parent, but all other
1532 				 * pages can be freed.  We still want to
1533 				 * wakeup the parent waiting on the page,
1534 				 * though.  ( also: pg_reqpage can be -1 and
1535 				 * not match anything ).
1536 				 *
1537 				 * We have to wake specifically requested pages
1538 				 * up too because we cleared PG_SWAPINPROG and
1539 				 * someone may be waiting for that.
1540 				 *
1541 				 * NOTE: for reads, m->dirty will probably
1542 				 * be overridden by the original caller of
1543 				 * getpages so don't play cute tricks here.
1544 				 *
1545 				 * XXX it may not be legal to free the page
1546 				 * here as this messes with the object->memq's.
1547 				 */
1548 
1549 				m->valid = 0;
1550 				vm_page_flag_clear(m, PG_ZERO);
1551 
1552 				if (i != bp->b_pager.pg_reqpage)
1553 					vm_page_free(m);
1554 				else
1555 					vm_page_flash(m);
1556 				/*
1557 				 * If i == bp->b_pager.pg_reqpage, do not wake
1558 				 * the page up.  The caller needs to.
1559 				 */
1560 			} else {
1561 				/*
1562 				 * If a write error occurs, reactivate page
1563 				 * so it doesn't clog the inactive list,
1564 				 * then finish the I/O.
1565 				 */
1566 				vm_page_dirty(m);
1567 				vm_page_activate(m);
1568 				vm_page_io_finish(m);
1569 			}
1570 		} else if (bp->b_iocmd == BIO_READ) {
1571 			/*
1572 			 * For read success, clear dirty bits.  Nobody should
1573 			 * have this page mapped but don't take any chances,
1574 			 * make sure the pmap modify bits are also cleared.
1575 			 *
1576 			 * NOTE: for reads, m->dirty will probably be
1577 			 * overridden by the original caller of getpages so
1578 			 * we cannot set them in order to free the underlying
1579 			 * swap in a low-swap situation.  I don't think we'd
1580 			 * want to do that anyway, but it was an optimization
1581 			 * that existed in the old swapper for a time before
1582 			 * it got ripped out due to precisely this problem.
1583 			 *
1584 			 * clear PG_ZERO in page.
1585 			 *
1586 			 * If not the requested page then deactivate it.
1587 			 *
1588 			 * Note that the requested page, reqpage, is left
1589 			 * busied, but we still have to wake it up.  The
1590 			 * other pages are released (unbusied) by
1591 			 * vm_page_wakeup().  We do not set reqpage's
1592 			 * valid bits here, it is up to the caller.
1593 			 */
1594 
1595 			pmap_clear_modify(m);
1596 			m->valid = VM_PAGE_BITS_ALL;
1597 			vm_page_undirty(m);
1598 			vm_page_flag_clear(m, PG_ZERO);
1599 
1600 			/*
1601 			 * We have to wake specifically requested pages
1602 			 * up too because we cleared PG_SWAPINPROG and
1603 			 * could be waiting for it in getpages.  However,
1604 			 * be sure to not unbusy getpages specifically
1605 			 * requested page - getpages expects it to be
1606 			 * left busy.
1607 			 */
1608 			if (i != bp->b_pager.pg_reqpage) {
1609 				vm_page_deactivate(m);
1610 				vm_page_wakeup(m);
1611 			} else {
1612 				vm_page_flash(m);
1613 			}
1614 		} else {
1615 			/*
1616 			 * For write success, clear the modify and dirty
1617 			 * status, then finish the I/O ( which decrements the
1618 			 * busy count and possibly wakes waiter's up ).
1619 			 */
1620 			vm_page_protect(m, VM_PROT_READ);
1621 			pmap_clear_modify(m);
1622 			vm_page_undirty(m);
1623 			vm_page_io_finish(m);
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * adjust pip.  NOTE: the original parent may still have its own
1629 	 * pip refs on the object.
1630 	 */
1631 
1632 	if (object)
1633 		vm_object_pip_wakeupn(object, bp->b_npages);
1634 
1635 	/*
1636 	 * release the physical I/O buffer
1637 	 */
1638 
1639 	relpbuf(
1640 	    bp,
1641 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1642 		((bp->b_flags & B_ASYNC) ?
1643 		    &nsw_wcount_async :
1644 		    &nsw_wcount_sync
1645 		)
1646 	    )
1647 	);
1648 	splx(s);
1649 }
1650 
1651 /************************************************************************
1652  *				SWAP META DATA 				*
1653  ************************************************************************
1654  *
1655  *	These routines manipulate the swap metadata stored in the
1656  *	OBJT_SWAP object.  All swp_*() routines must be called at
1657  *	splvm() because swap can be freed up by the low level vm_page
1658  *	code which might be called from interrupts beyond what splbio() covers.
1659  *
1660  *	Swap metadata is implemented with a global hash and not directly
1661  *	linked into the object.  Instead the object simply contains
1662  *	appropriate tracking counters.
1663  */
1664 
1665 /*
1666  * SWP_PAGER_HASH() -	hash swap meta data
1667  *
1668  *	This is an inline helper function which hashes the swapblk given
1669  *	the object and page index.  It returns a pointer to a pointer
1670  *	to the object, or a pointer to a NULL pointer if it could not
1671  *	find a swapblk.
1672  *
1673  *	This routine must be called at splvm().
1674  */
1675 
1676 static __inline struct swblock **
1677 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1678 {
1679 	struct swblock **pswap;
1680 	struct swblock *swap;
1681 
1682 	index &= ~SWAP_META_MASK;
1683 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1684 
1685 	while ((swap = *pswap) != NULL) {
1686 		if (swap->swb_object == object &&
1687 		    swap->swb_index == index
1688 		) {
1689 			break;
1690 		}
1691 		pswap = &swap->swb_hnext;
1692 	}
1693 	return(pswap);
1694 }
1695 
1696 /*
1697  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1698  *
1699  *	We first convert the object to a swap object if it is a default
1700  *	object.
1701  *
1702  *	The specified swapblk is added to the object's swap metadata.  If
1703  *	the swapblk is not valid, it is freed instead.  Any previously
1704  *	assigned swapblk is freed.
1705  *
1706  *	This routine must be called at splvm(), except when used to convert
1707  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1708 
1709  */
1710 
1711 static void
1712 swp_pager_meta_build(
1713 	vm_object_t object,
1714 	vm_pindex_t index,
1715 	daddr_t swapblk
1716 ) {
1717 	struct swblock *swap;
1718 	struct swblock **pswap;
1719 
1720 	/*
1721 	 * Convert default object to swap object if necessary
1722 	 */
1723 
1724 	if (object->type != OBJT_SWAP) {
1725 		object->type = OBJT_SWAP;
1726 		object->un_pager.swp.swp_bcount = 0;
1727 
1728 		if (object->handle != NULL) {
1729 			TAILQ_INSERT_TAIL(
1730 			    NOBJLIST(object->handle),
1731 			    object,
1732 			    pager_object_list
1733 			);
1734 		} else {
1735 			TAILQ_INSERT_TAIL(
1736 			    &swap_pager_un_object_list,
1737 			    object,
1738 			    pager_object_list
1739 			);
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * Locate hash entry.  If not found create, but if we aren't adding
1745 	 * anything just return.  If we run out of space in the map we wait
1746 	 * and, since the hash table may have changed, retry.
1747 	 */
1748 
1749 retry:
1750 	pswap = swp_pager_hash(object, index);
1751 
1752 	if ((swap = *pswap) == NULL) {
1753 		int i;
1754 
1755 		if (swapblk == SWAPBLK_NONE)
1756 			return;
1757 
1758 		swap = *pswap = zalloc(swap_zone);
1759 		if (swap == NULL) {
1760 			VM_WAIT;
1761 			goto retry;
1762 		}
1763 		swap->swb_hnext = NULL;
1764 		swap->swb_object = object;
1765 		swap->swb_index = index & ~SWAP_META_MASK;
1766 		swap->swb_count = 0;
1767 
1768 		++object->un_pager.swp.swp_bcount;
1769 
1770 		for (i = 0; i < SWAP_META_PAGES; ++i)
1771 			swap->swb_pages[i] = SWAPBLK_NONE;
1772 	}
1773 
1774 	/*
1775 	 * Delete prior contents of metadata
1776 	 */
1777 
1778 	index &= SWAP_META_MASK;
1779 
1780 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1781 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1782 		--swap->swb_count;
1783 	}
1784 
1785 	/*
1786 	 * Enter block into metadata
1787 	 */
1788 
1789 	swap->swb_pages[index] = swapblk;
1790 	if (swapblk != SWAPBLK_NONE)
1791 		++swap->swb_count;
1792 }
1793 
1794 /*
1795  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1796  *
1797  *	The requested range of blocks is freed, with any associated swap
1798  *	returned to the swap bitmap.
1799  *
1800  *	This routine will free swap metadata structures as they are cleaned
1801  *	out.  This routine does *NOT* operate on swap metadata associated
1802  *	with resident pages.
1803  *
1804  *	This routine must be called at splvm()
1805  */
1806 
1807 static void
1808 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1809 {
1810 	if (object->type != OBJT_SWAP)
1811 		return;
1812 
1813 	while (count > 0) {
1814 		struct swblock **pswap;
1815 		struct swblock *swap;
1816 
1817 		pswap = swp_pager_hash(object, index);
1818 
1819 		if ((swap = *pswap) != NULL) {
1820 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1821 
1822 			if (v != SWAPBLK_NONE) {
1823 				swp_pager_freeswapspace(v, 1);
1824 				swap->swb_pages[index & SWAP_META_MASK] =
1825 					SWAPBLK_NONE;
1826 				if (--swap->swb_count == 0) {
1827 					*pswap = swap->swb_hnext;
1828 					zfree(swap_zone, swap);
1829 					--object->un_pager.swp.swp_bcount;
1830 				}
1831 			}
1832 			--count;
1833 			++index;
1834 		} else {
1835 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1836 			count -= n;
1837 			index += n;
1838 		}
1839 	}
1840 }
1841 
1842 /*
1843  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1844  *
1845  *	This routine locates and destroys all swap metadata associated with
1846  *	an object.
1847  *
1848  *	This routine must be called at splvm()
1849  */
1850 
1851 static void
1852 swp_pager_meta_free_all(vm_object_t object)
1853 {
1854 	daddr_t index = 0;
1855 
1856 	if (object->type != OBJT_SWAP)
1857 		return;
1858 
1859 	while (object->un_pager.swp.swp_bcount) {
1860 		struct swblock **pswap;
1861 		struct swblock *swap;
1862 
1863 		pswap = swp_pager_hash(object, index);
1864 		if ((swap = *pswap) != NULL) {
1865 			int i;
1866 
1867 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1868 				daddr_t v = swap->swb_pages[i];
1869 				if (v != SWAPBLK_NONE) {
1870 					--swap->swb_count;
1871 					swp_pager_freeswapspace(v, 1);
1872 				}
1873 			}
1874 			if (swap->swb_count != 0)
1875 				panic("swap_pager_meta_free_all: swb_count != 0");
1876 			*pswap = swap->swb_hnext;
1877 			zfree(swap_zone, swap);
1878 			--object->un_pager.swp.swp_bcount;
1879 		}
1880 		index += SWAP_META_PAGES;
1881 		if (index > 0x20000000)
1882 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1883 	}
1884 }
1885 
1886 /*
1887  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1888  *
1889  *	This routine is capable of looking up, popping, or freeing
1890  *	swapblk assignments in the swap meta data or in the vm_page_t.
1891  *	The routine typically returns the swapblk being looked-up, or popped,
1892  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1893  *	was invalid.  This routine will automatically free any invalid
1894  *	meta-data swapblks.
1895  *
1896  *	It is not possible to store invalid swapblks in the swap meta data
1897  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1898  *
1899  *	When acting on a busy resident page and paging is in progress, we
1900  *	have to wait until paging is complete but otherwise can act on the
1901  *	busy page.
1902  *
1903  *	This routine must be called at splvm().
1904  *
1905  *	SWM_FREE	remove and free swap block from metadata
1906  *	SWM_POP		remove from meta data but do not free.. pop it out
1907  */
1908 
1909 static daddr_t
1910 swp_pager_meta_ctl(
1911 	vm_object_t object,
1912 	vm_pindex_t index,
1913 	int flags
1914 ) {
1915 	struct swblock **pswap;
1916 	struct swblock *swap;
1917 	daddr_t r1;
1918 
1919 	/*
1920 	 * The meta data only exists of the object is OBJT_SWAP
1921 	 * and even then might not be allocated yet.
1922 	 */
1923 
1924 	if (object->type != OBJT_SWAP)
1925 		return(SWAPBLK_NONE);
1926 
1927 	r1 = SWAPBLK_NONE;
1928 	pswap = swp_pager_hash(object, index);
1929 
1930 	if ((swap = *pswap) != NULL) {
1931 		index &= SWAP_META_MASK;
1932 		r1 = swap->swb_pages[index];
1933 
1934 		if (r1 != SWAPBLK_NONE) {
1935 			if (flags & SWM_FREE) {
1936 				swp_pager_freeswapspace(r1, 1);
1937 				r1 = SWAPBLK_NONE;
1938 			}
1939 			if (flags & (SWM_FREE|SWM_POP)) {
1940 				swap->swb_pages[index] = SWAPBLK_NONE;
1941 				if (--swap->swb_count == 0) {
1942 					*pswap = swap->swb_hnext;
1943 					zfree(swap_zone, swap);
1944 					--object->un_pager.swp.swp_bcount;
1945 				}
1946 			}
1947 		}
1948 	}
1949 	return(r1);
1950 }
1951 
1952 /********************************************************
1953  *		CHAINING FUNCTIONS			*
1954  ********************************************************
1955  *
1956  *	These functions support recursion of I/O operations
1957  *	on bp's, typically by chaining one or more 'child' bp's
1958  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1959  *	chaining is possible.
1960  */
1961 
1962 /*
1963  *	vm_pager_chain_iodone:
1964  *
1965  *	io completion routine for child bp.  Currently we fudge a bit
1966  *	on dealing with b_resid.   Since users of these routines may issue
1967  *	multiple children simultaneously, sequencing of the error can be lost.
1968  */
1969 
1970 static void
1971 vm_pager_chain_iodone(struct buf *nbp)
1972 {
1973 	struct bio *bp;
1974 	u_int *count;
1975 
1976 	bp = nbp->b_caller1;
1977 	count = (u_int *)&(bp->bio_caller1);
1978 	if (bp != NULL) {
1979 		if (nbp->b_ioflags & BIO_ERROR) {
1980 			bp->bio_flags |= BIO_ERROR;
1981 			bp->bio_error = nbp->b_error;
1982 		} else if (nbp->b_resid != 0) {
1983 			bp->bio_flags |= BIO_ERROR;
1984 			bp->bio_error = EINVAL;
1985 		} else {
1986 			bp->bio_resid -= nbp->b_bcount;
1987 		}
1988 		nbp->b_caller1 = NULL;
1989 		--(*count);
1990 		if (bp->bio_flags & BIO_FLAG1) {
1991 			bp->bio_flags &= ~BIO_FLAG1;
1992 			wakeup(bp);
1993 		}
1994 	}
1995 	nbp->b_flags |= B_DONE;
1996 	nbp->b_flags &= ~B_ASYNC;
1997 	relpbuf(nbp, NULL);
1998 }
1999 
2000 /*
2001  *	getchainbuf:
2002  *
2003  *	Obtain a physical buffer and chain it to its parent buffer.  When
2004  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2005  *	automatically propagated to the parent
2006  */
2007 
2008 struct buf *
2009 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2010 {
2011 	struct buf *nbp = getpbuf(NULL);
2012 	u_int *count = (u_int *)&(bp->bio_caller1);
2013 
2014 	nbp->b_caller1 = bp;
2015 	++(*count);
2016 
2017 	if (*count > 4)
2018 		waitchainbuf(bp, 4, 0);
2019 
2020 	nbp->b_iocmd = bp->bio_cmd;
2021 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2022 	nbp->b_flags = flags;
2023 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2024 	nbp->b_iodone = vm_pager_chain_iodone;
2025 
2026 	crhold(nbp->b_rcred);
2027 	crhold(nbp->b_wcred);
2028 
2029 	if (vp)
2030 		pbgetvp(vp, nbp);
2031 	return(nbp);
2032 }
2033 
2034 void
2035 flushchainbuf(struct buf *nbp)
2036 {
2037 	if (nbp->b_bcount) {
2038 		nbp->b_bufsize = nbp->b_bcount;
2039 		if (nbp->b_iocmd == BIO_WRITE)
2040 			nbp->b_dirtyend = nbp->b_bcount;
2041 		BUF_KERNPROC(nbp);
2042 		BUF_STRATEGY(nbp);
2043 	} else {
2044 		bufdone(nbp);
2045 	}
2046 }
2047 
2048 void
2049 waitchainbuf(struct bio *bp, int limit, int done)
2050 {
2051  	int s;
2052 	u_int *count = (u_int *)&(bp->bio_caller1);
2053 
2054 	s = splbio();
2055 	while (*count > limit) {
2056 		bp->bio_flags |= BIO_FLAG1;
2057 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2058 	}
2059 	if (done) {
2060 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2061 			bp->bio_flags |= BIO_ERROR;
2062 			bp->bio_error = EINVAL;
2063 		}
2064 		biodone(bp);
2065 	}
2066 	splx(s);
2067 }
2068 
2069