xref: /freebsd/sys/vm/swap_pager.c (revision 5f0216bd883edee71bf81051e3c20505e4820903)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 static void swapdev_strategy(struct buf *, struct swdevt *sw);
317 
318 #define SWM_FREE	0x02	/* free, period			*/
319 #define SWM_POP		0x04	/* pop out			*/
320 
321 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
323 static int nsw_rcount;		/* free read buffers			*/
324 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
325 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
326 static int nsw_wcount_async_max;/* assigned maximum			*/
327 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
328 
329 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
330 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW,
331     NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops");
332 
333 static struct swblock **swhash;
334 static int swhash_mask;
335 static struct mtx swhash_mtx;
336 
337 static struct sx sw_alloc_sx;
338 
339 /*
340  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
341  * of searching a named list by hashing it just a little.
342  */
343 
344 #define NOBJLISTS		8
345 
346 #define NOBJLIST(handle)	\
347 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
348 
349 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
350 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
351 static uma_zone_t	swap_zone;
352 
353 /*
354  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
355  * calls hooked from other parts of the VM system and do not appear here.
356  * (see vm/swap_pager.h).
357  */
358 static vm_object_t
359 		swap_pager_alloc(void *handle, vm_ooffset_t size,
360 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
361 static void	swap_pager_dealloc(vm_object_t object);
362 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
363 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int,
364     pgo_getpages_iodone_t, void *);
365 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
366 static boolean_t
367 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
368 static void	swap_pager_init(void);
369 static void	swap_pager_unswapped(vm_page_t);
370 static void	swap_pager_swapoff(struct swdevt *sp);
371 
372 struct pagerops swappagerops = {
373 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
374 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
375 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
376 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
377 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
378 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
379 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
380 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
381 };
382 
383 /*
384  * dmmax is in page-sized chunks with the new swap system.  It was
385  * dev-bsized chunks in the old.  dmmax is always a power of 2.
386  *
387  * swap_*() routines are externally accessible.  swp_*() routines are
388  * internal.
389  */
390 static int dmmax;
391 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
392 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
393 
394 SYSCTL_INT(_vm, OID_AUTO, dmmax,
395 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
396 
397 static void	swp_sizecheck(void);
398 static void	swp_pager_async_iodone(struct buf *bp);
399 static int	swapongeom(struct thread *, struct vnode *);
400 static int	swaponvp(struct thread *, struct vnode *, u_long);
401 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
402 
403 /*
404  * Swap bitmap functions
405  */
406 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
407 static daddr_t	swp_pager_getswapspace(int npages);
408 
409 /*
410  * Metadata functions
411  */
412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
415 static void swp_pager_meta_free_all(vm_object_t);
416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
417 
418 static void
419 swp_pager_free_nrpage(vm_page_t m)
420 {
421 
422 	vm_page_lock(m);
423 	if (m->wire_count == 0)
424 		vm_page_free(m);
425 	vm_page_unlock(m);
426 }
427 
428 /*
429  * SWP_SIZECHECK() -	update swap_pager_full indication
430  *
431  *	update the swap_pager_almost_full indication and warn when we are
432  *	about to run out of swap space, using lowat/hiwat hysteresis.
433  *
434  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
435  *
436  *	No restrictions on call
437  *	This routine may not block.
438  */
439 static void
440 swp_sizecheck(void)
441 {
442 
443 	if (swap_pager_avail < nswap_lowat) {
444 		if (swap_pager_almost_full == 0) {
445 			printf("swap_pager: out of swap space\n");
446 			swap_pager_almost_full = 1;
447 		}
448 	} else {
449 		swap_pager_full = 0;
450 		if (swap_pager_avail > nswap_hiwat)
451 			swap_pager_almost_full = 0;
452 	}
453 }
454 
455 /*
456  * SWP_PAGER_HASH() -	hash swap meta data
457  *
458  *	This is an helper function which hashes the swapblk given
459  *	the object and page index.  It returns a pointer to a pointer
460  *	to the object, or a pointer to a NULL pointer if it could not
461  *	find a swapblk.
462  */
463 static struct swblock **
464 swp_pager_hash(vm_object_t object, vm_pindex_t index)
465 {
466 	struct swblock **pswap;
467 	struct swblock *swap;
468 
469 	index &= ~(vm_pindex_t)SWAP_META_MASK;
470 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
471 	while ((swap = *pswap) != NULL) {
472 		if (swap->swb_object == object &&
473 		    swap->swb_index == index
474 		) {
475 			break;
476 		}
477 		pswap = &swap->swb_hnext;
478 	}
479 	return (pswap);
480 }
481 
482 /*
483  * SWAP_PAGER_INIT() -	initialize the swap pager!
484  *
485  *	Expected to be started from system init.  NOTE:  This code is run
486  *	before much else so be careful what you depend on.  Most of the VM
487  *	system has yet to be initialized at this point.
488  */
489 static void
490 swap_pager_init(void)
491 {
492 	/*
493 	 * Initialize object lists
494 	 */
495 	int i;
496 
497 	for (i = 0; i < NOBJLISTS; ++i)
498 		TAILQ_INIT(&swap_pager_object_list[i]);
499 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
500 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
501 
502 	/*
503 	 * Device Stripe, in PAGE_SIZE'd blocks
504 	 */
505 	dmmax = SWB_NPAGES * 2;
506 }
507 
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *	Expected to be started from pageout process once, prior to entering
512  *	its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517 	unsigned long n, n2;
518 
519 	/*
520 	 * Number of in-transit swap bp operations.  Don't
521 	 * exhaust the pbufs completely.  Make sure we
522 	 * initialize workable values (0 will work for hysteresis
523 	 * but it isn't very efficient).
524 	 *
525 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
526 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
527 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528 	 * constrained by the swap device interleave stripe size.
529 	 *
530 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
531 	 * designed to prevent other I/O from having high latencies due to
532 	 * our pageout I/O.  The value 4 works well for one or two active swap
533 	 * devices but is probably a little low if you have more.  Even so,
534 	 * a higher value would probably generate only a limited improvement
535 	 * with three or four active swap devices since the system does not
536 	 * typically have to pageout at extreme bandwidths.   We will want
537 	 * at least 2 per swap devices, and 4 is a pretty good value if you
538 	 * have one NFS swap device due to the command/ack latency over NFS.
539 	 * So it all works out pretty well.
540 	 */
541 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
542 
543 	mtx_lock(&pbuf_mtx);
544 	nsw_rcount = (nswbuf + 1) / 2;
545 	nsw_wcount_sync = (nswbuf + 3) / 4;
546 	nsw_wcount_async = 4;
547 	nsw_wcount_async_max = nsw_wcount_async;
548 	mtx_unlock(&pbuf_mtx);
549 
550 	/*
551 	 * Initialize our zone.  Right now I'm just guessing on the number
552 	 * we need based on the number of pages in the system.  Each swblock
553 	 * can hold 32 pages, so this is probably overkill.  This reservation
554 	 * is typically limited to around 32MB by default.
555 	 */
556 	n = vm_cnt.v_page_count / 2;
557 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
558 		n = maxswzone / sizeof(struct swblock);
559 	n2 = n;
560 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
561 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
562 	if (swap_zone == NULL)
563 		panic("failed to create swap_zone.");
564 	do {
565 		if (uma_zone_reserve_kva(swap_zone, n))
566 			break;
567 		/*
568 		 * if the allocation failed, try a zone two thirds the
569 		 * size of the previous attempt.
570 		 */
571 		n -= ((n + 2) / 3);
572 	} while (n > 0);
573 	if (n2 != n)
574 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
575 	swap_maxpages = n * SWAP_META_PAGES;
576 	swzone = n * sizeof(struct swblock);
577 	n2 = n;
578 
579 	/*
580 	 * Initialize our meta-data hash table.  The swapper does not need to
581 	 * be quite as efficient as the VM system, so we do not use an
582 	 * oversized hash table.
583 	 *
584 	 * 	n: 		size of hash table, must be power of 2
585 	 *	swhash_mask:	hash table index mask
586 	 */
587 	for (n = 1; n < n2 / 8; n *= 2)
588 		;
589 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
590 	swhash_mask = n - 1;
591 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
592 }
593 
594 /*
595  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
596  *			its metadata structures.
597  *
598  *	This routine is called from the mmap and fork code to create a new
599  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
600  *	and then converting it with swp_pager_meta_build().
601  *
602  *	This routine may block in vm_object_allocate() and create a named
603  *	object lookup race, so we must interlock.
604  *
605  * MPSAFE
606  */
607 static vm_object_t
608 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
609     vm_ooffset_t offset, struct ucred *cred)
610 {
611 	vm_object_t object;
612 	vm_pindex_t pindex;
613 
614 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
615 	if (handle) {
616 		mtx_lock(&Giant);
617 		/*
618 		 * Reference existing named region or allocate new one.  There
619 		 * should not be a race here against swp_pager_meta_build()
620 		 * as called from vm_page_remove() in regards to the lookup
621 		 * of the handle.
622 		 */
623 		sx_xlock(&sw_alloc_sx);
624 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
625 		if (object == NULL) {
626 			if (cred != NULL) {
627 				if (!swap_reserve_by_cred(size, cred)) {
628 					sx_xunlock(&sw_alloc_sx);
629 					mtx_unlock(&Giant);
630 					return (NULL);
631 				}
632 				crhold(cred);
633 			}
634 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
635 			VM_OBJECT_WLOCK(object);
636 			object->handle = handle;
637 			if (cred != NULL) {
638 				object->cred = cred;
639 				object->charge = size;
640 			}
641 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
642 			VM_OBJECT_WUNLOCK(object);
643 		}
644 		sx_xunlock(&sw_alloc_sx);
645 		mtx_unlock(&Giant);
646 	} else {
647 		if (cred != NULL) {
648 			if (!swap_reserve_by_cred(size, cred))
649 				return (NULL);
650 			crhold(cred);
651 		}
652 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
653 		VM_OBJECT_WLOCK(object);
654 		if (cred != NULL) {
655 			object->cred = cred;
656 			object->charge = size;
657 		}
658 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
659 		VM_OBJECT_WUNLOCK(object);
660 	}
661 	return (object);
662 }
663 
664 /*
665  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
666  *
667  *	The swap backing for the object is destroyed.  The code is
668  *	designed such that we can reinstantiate it later, but this
669  *	routine is typically called only when the entire object is
670  *	about to be destroyed.
671  *
672  *	The object must be locked.
673  */
674 static void
675 swap_pager_dealloc(vm_object_t object)
676 {
677 
678 	/*
679 	 * Remove from list right away so lookups will fail if we block for
680 	 * pageout completion.
681 	 */
682 	if (object->handle != NULL) {
683 		mtx_lock(&sw_alloc_mtx);
684 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
685 		mtx_unlock(&sw_alloc_mtx);
686 	}
687 
688 	VM_OBJECT_ASSERT_WLOCKED(object);
689 	vm_object_pip_wait(object, "swpdea");
690 
691 	/*
692 	 * Free all remaining metadata.  We only bother to free it from
693 	 * the swap meta data.  We do not attempt to free swapblk's still
694 	 * associated with vm_page_t's for this object.  We do not care
695 	 * if paging is still in progress on some objects.
696 	 */
697 	swp_pager_meta_free_all(object);
698 	object->handle = NULL;
699 	object->type = OBJT_DEAD;
700 }
701 
702 /************************************************************************
703  *			SWAP PAGER BITMAP ROUTINES			*
704  ************************************************************************/
705 
706 /*
707  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
708  *
709  *	Allocate swap for the requested number of pages.  The starting
710  *	swap block number (a page index) is returned or SWAPBLK_NONE
711  *	if the allocation failed.
712  *
713  *	Also has the side effect of advising that somebody made a mistake
714  *	when they configured swap and didn't configure enough.
715  *
716  *	This routine may not sleep.
717  *
718  *	We allocate in round-robin fashion from the configured devices.
719  */
720 static daddr_t
721 swp_pager_getswapspace(int npages)
722 {
723 	daddr_t blk;
724 	struct swdevt *sp;
725 	int i;
726 
727 	blk = SWAPBLK_NONE;
728 	mtx_lock(&sw_dev_mtx);
729 	sp = swdevhd;
730 	for (i = 0; i < nswapdev; i++) {
731 		if (sp == NULL)
732 			sp = TAILQ_FIRST(&swtailq);
733 		if (!(sp->sw_flags & SW_CLOSING)) {
734 			blk = blist_alloc(sp->sw_blist, npages);
735 			if (blk != SWAPBLK_NONE) {
736 				blk += sp->sw_first;
737 				sp->sw_used += npages;
738 				swap_pager_avail -= npages;
739 				swp_sizecheck();
740 				swdevhd = TAILQ_NEXT(sp, sw_list);
741 				goto done;
742 			}
743 		}
744 		sp = TAILQ_NEXT(sp, sw_list);
745 	}
746 	if (swap_pager_full != 2) {
747 		printf("swap_pager_getswapspace(%d): failed\n", npages);
748 		swap_pager_full = 2;
749 		swap_pager_almost_full = 1;
750 	}
751 	swdevhd = NULL;
752 done:
753 	mtx_unlock(&sw_dev_mtx);
754 	return (blk);
755 }
756 
757 static int
758 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
759 {
760 
761 	return (blk >= sp->sw_first && blk < sp->sw_end);
762 }
763 
764 static void
765 swp_pager_strategy(struct buf *bp)
766 {
767 	struct swdevt *sp;
768 
769 	mtx_lock(&sw_dev_mtx);
770 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
771 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
772 			mtx_unlock(&sw_dev_mtx);
773 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
774 			    unmapped_buf_allowed) {
775 				bp->b_kvaalloc = bp->b_data;
776 				bp->b_data = unmapped_buf;
777 				bp->b_kvabase = unmapped_buf;
778 				bp->b_offset = 0;
779 				bp->b_flags |= B_UNMAPPED;
780 			} else {
781 				pmap_qenter((vm_offset_t)bp->b_data,
782 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
783 			}
784 			sp->sw_strategy(bp, sp);
785 			return;
786 		}
787 	}
788 	panic("Swapdev not found");
789 }
790 
791 
792 /*
793  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
794  *
795  *	This routine returns the specified swap blocks back to the bitmap.
796  *
797  *	This routine may not sleep.
798  */
799 static void
800 swp_pager_freeswapspace(daddr_t blk, int npages)
801 {
802 	struct swdevt *sp;
803 
804 	mtx_lock(&sw_dev_mtx);
805 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
806 		if (blk >= sp->sw_first && blk < sp->sw_end) {
807 			sp->sw_used -= npages;
808 			/*
809 			 * If we are attempting to stop swapping on
810 			 * this device, we don't want to mark any
811 			 * blocks free lest they be reused.
812 			 */
813 			if ((sp->sw_flags & SW_CLOSING) == 0) {
814 				blist_free(sp->sw_blist, blk - sp->sw_first,
815 				    npages);
816 				swap_pager_avail += npages;
817 				swp_sizecheck();
818 			}
819 			mtx_unlock(&sw_dev_mtx);
820 			return;
821 		}
822 	}
823 	panic("Swapdev not found");
824 }
825 
826 /*
827  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
828  *				range within an object.
829  *
830  *	This is a globally accessible routine.
831  *
832  *	This routine removes swapblk assignments from swap metadata.
833  *
834  *	The external callers of this routine typically have already destroyed
835  *	or renamed vm_page_t's associated with this range in the object so
836  *	we should be ok.
837  *
838  *	The object must be locked.
839  */
840 void
841 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
842 {
843 
844 	swp_pager_meta_free(object, start, size);
845 }
846 
847 /*
848  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
849  *
850  *	Assigns swap blocks to the specified range within the object.  The
851  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
852  *
853  *	Returns 0 on success, -1 on failure.
854  */
855 int
856 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
857 {
858 	int n = 0;
859 	daddr_t blk = SWAPBLK_NONE;
860 	vm_pindex_t beg = start;	/* save start index */
861 
862 	VM_OBJECT_WLOCK(object);
863 	while (size) {
864 		if (n == 0) {
865 			n = BLIST_MAX_ALLOC;
866 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
867 				n >>= 1;
868 				if (n == 0) {
869 					swp_pager_meta_free(object, beg, start - beg);
870 					VM_OBJECT_WUNLOCK(object);
871 					return (-1);
872 				}
873 			}
874 		}
875 		swp_pager_meta_build(object, start, blk);
876 		--size;
877 		++start;
878 		++blk;
879 		--n;
880 	}
881 	swp_pager_meta_free(object, start, n);
882 	VM_OBJECT_WUNLOCK(object);
883 	return (0);
884 }
885 
886 /*
887  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
888  *			and destroy the source.
889  *
890  *	Copy any valid swapblks from the source to the destination.  In
891  *	cases where both the source and destination have a valid swapblk,
892  *	we keep the destination's.
893  *
894  *	This routine is allowed to sleep.  It may sleep allocating metadata
895  *	indirectly through swp_pager_meta_build() or if paging is still in
896  *	progress on the source.
897  *
898  *	The source object contains no vm_page_t's (which is just as well)
899  *
900  *	The source object is of type OBJT_SWAP.
901  *
902  *	The source and destination objects must be locked.
903  *	Both object locks may temporarily be released.
904  */
905 void
906 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
907     vm_pindex_t offset, int destroysource)
908 {
909 	vm_pindex_t i;
910 
911 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
912 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
913 
914 	/*
915 	 * If destroysource is set, we remove the source object from the
916 	 * swap_pager internal queue now.
917 	 */
918 	if (destroysource) {
919 		if (srcobject->handle != NULL) {
920 			mtx_lock(&sw_alloc_mtx);
921 			TAILQ_REMOVE(
922 			    NOBJLIST(srcobject->handle),
923 			    srcobject,
924 			    pager_object_list
925 			);
926 			mtx_unlock(&sw_alloc_mtx);
927 		}
928 	}
929 
930 	/*
931 	 * transfer source to destination.
932 	 */
933 	for (i = 0; i < dstobject->size; ++i) {
934 		daddr_t dstaddr;
935 
936 		/*
937 		 * Locate (without changing) the swapblk on the destination,
938 		 * unless it is invalid in which case free it silently, or
939 		 * if the destination is a resident page, in which case the
940 		 * source is thrown away.
941 		 */
942 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
943 
944 		if (dstaddr == SWAPBLK_NONE) {
945 			/*
946 			 * Destination has no swapblk and is not resident,
947 			 * copy source.
948 			 */
949 			daddr_t srcaddr;
950 
951 			srcaddr = swp_pager_meta_ctl(
952 			    srcobject,
953 			    i + offset,
954 			    SWM_POP
955 			);
956 
957 			if (srcaddr != SWAPBLK_NONE) {
958 				/*
959 				 * swp_pager_meta_build() can sleep.
960 				 */
961 				vm_object_pip_add(srcobject, 1);
962 				VM_OBJECT_WUNLOCK(srcobject);
963 				vm_object_pip_add(dstobject, 1);
964 				swp_pager_meta_build(dstobject, i, srcaddr);
965 				vm_object_pip_wakeup(dstobject);
966 				VM_OBJECT_WLOCK(srcobject);
967 				vm_object_pip_wakeup(srcobject);
968 			}
969 		} else {
970 			/*
971 			 * Destination has valid swapblk or it is represented
972 			 * by a resident page.  We destroy the sourceblock.
973 			 */
974 
975 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
976 		}
977 	}
978 
979 	/*
980 	 * Free left over swap blocks in source.
981 	 *
982 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
983 	 * double-remove the object from the swap queues.
984 	 */
985 	if (destroysource) {
986 		swp_pager_meta_free_all(srcobject);
987 		/*
988 		 * Reverting the type is not necessary, the caller is going
989 		 * to destroy srcobject directly, but I'm doing it here
990 		 * for consistency since we've removed the object from its
991 		 * queues.
992 		 */
993 		srcobject->type = OBJT_DEFAULT;
994 	}
995 }
996 
997 /*
998  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
999  *				the requested page.
1000  *
1001  *	We determine whether good backing store exists for the requested
1002  *	page and return TRUE if it does, FALSE if it doesn't.
1003  *
1004  *	If TRUE, we also try to determine how much valid, contiguous backing
1005  *	store exists before and after the requested page within a reasonable
1006  *	distance.  We do not try to restrict it to the swap device stripe
1007  *	(that is handled in getpages/putpages).  It probably isn't worth
1008  *	doing here.
1009  */
1010 static boolean_t
1011 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1012 {
1013 	daddr_t blk0;
1014 
1015 	VM_OBJECT_ASSERT_LOCKED(object);
1016 	/*
1017 	 * do we have good backing store at the requested index ?
1018 	 */
1019 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1020 
1021 	if (blk0 == SWAPBLK_NONE) {
1022 		if (before)
1023 			*before = 0;
1024 		if (after)
1025 			*after = 0;
1026 		return (FALSE);
1027 	}
1028 
1029 	/*
1030 	 * find backwards-looking contiguous good backing store
1031 	 */
1032 	if (before != NULL) {
1033 		int i;
1034 
1035 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1036 			daddr_t blk;
1037 
1038 			if (i > pindex)
1039 				break;
1040 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1041 			if (blk != blk0 - i)
1042 				break;
1043 		}
1044 		*before = (i - 1);
1045 	}
1046 
1047 	/*
1048 	 * find forward-looking contiguous good backing store
1049 	 */
1050 	if (after != NULL) {
1051 		int i;
1052 
1053 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1054 			daddr_t blk;
1055 
1056 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1057 			if (blk != blk0 + i)
1058 				break;
1059 		}
1060 		*after = (i - 1);
1061 	}
1062 	return (TRUE);
1063 }
1064 
1065 /*
1066  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1067  *
1068  *	This removes any associated swap backing store, whether valid or
1069  *	not, from the page.
1070  *
1071  *	This routine is typically called when a page is made dirty, at
1072  *	which point any associated swap can be freed.  MADV_FREE also
1073  *	calls us in a special-case situation
1074  *
1075  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1076  *	should make the page dirty before calling this routine.  This routine
1077  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1078  *	depends on it.
1079  *
1080  *	This routine may not sleep.
1081  *
1082  *	The object containing the page must be locked.
1083  */
1084 static void
1085 swap_pager_unswapped(vm_page_t m)
1086 {
1087 
1088 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1089 }
1090 
1091 /*
1092  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1093  *
1094  *	Attempt to retrieve (m, count) pages from backing store, but make
1095  *	sure we retrieve at least m[reqpage].  We try to load in as large
1096  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1097  *	belongs to the same object.
1098  *
1099  *	The code is designed for asynchronous operation and
1100  *	immediate-notification of 'reqpage' but tends not to be
1101  *	used that way.  Please do not optimize-out this algorithmic
1102  *	feature, I intend to improve on it in the future.
1103  *
1104  *	The parent has a single vm_object_pip_add() reference prior to
1105  *	calling us and we should return with the same.
1106  *
1107  *	The parent has BUSY'd the pages.  We should return with 'm'
1108  *	left busy, but the others adjusted.
1109  */
1110 static int
1111 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1112 {
1113 	struct buf *bp;
1114 	vm_page_t mreq;
1115 	int i;
1116 	int j;
1117 	daddr_t blk;
1118 
1119 	mreq = m[reqpage];
1120 
1121 	KASSERT(mreq->object == object,
1122 	    ("swap_pager_getpages: object mismatch %p/%p",
1123 	    object, mreq->object));
1124 
1125 	/*
1126 	 * Calculate range to retrieve.  The pages have already been assigned
1127 	 * their swapblks.  We require a *contiguous* range but we know it to
1128 	 * not span devices.   If we do not supply it, bad things
1129 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1130 	 * loops are set up such that the case(s) are handled implicitly.
1131 	 *
1132 	 * The swp_*() calls must be made with the object locked.
1133 	 */
1134 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1135 
1136 	for (i = reqpage - 1; i >= 0; --i) {
1137 		daddr_t iblk;
1138 
1139 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1140 		if (blk != iblk + (reqpage - i))
1141 			break;
1142 	}
1143 	++i;
1144 
1145 	for (j = reqpage + 1; j < count; ++j) {
1146 		daddr_t jblk;
1147 
1148 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1149 		if (blk != jblk - (j - reqpage))
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * free pages outside our collection range.   Note: we never free
1155 	 * mreq, it must remain busy throughout.
1156 	 */
1157 	if (0 < i || j < count) {
1158 		int k;
1159 
1160 		for (k = 0; k < i; ++k)
1161 			swp_pager_free_nrpage(m[k]);
1162 		for (k = j; k < count; ++k)
1163 			swp_pager_free_nrpage(m[k]);
1164 	}
1165 
1166 	/*
1167 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1168 	 * still busy, but the others unbusied.
1169 	 */
1170 	if (blk == SWAPBLK_NONE)
1171 		return (VM_PAGER_FAIL);
1172 
1173 	/*
1174 	 * Getpbuf() can sleep.
1175 	 */
1176 	VM_OBJECT_WUNLOCK(object);
1177 	/*
1178 	 * Get a swap buffer header to perform the IO
1179 	 */
1180 	bp = getpbuf(&nsw_rcount);
1181 	bp->b_flags |= B_PAGING;
1182 
1183 	bp->b_iocmd = BIO_READ;
1184 	bp->b_iodone = swp_pager_async_iodone;
1185 	bp->b_rcred = crhold(thread0.td_ucred);
1186 	bp->b_wcred = crhold(thread0.td_ucred);
1187 	bp->b_blkno = blk - (reqpage - i);
1188 	bp->b_bcount = PAGE_SIZE * (j - i);
1189 	bp->b_bufsize = PAGE_SIZE * (j - i);
1190 	bp->b_pager.pg_reqpage = reqpage - i;
1191 
1192 	VM_OBJECT_WLOCK(object);
1193 	{
1194 		int k;
1195 
1196 		for (k = i; k < j; ++k) {
1197 			bp->b_pages[k - i] = m[k];
1198 			m[k]->oflags |= VPO_SWAPINPROG;
1199 		}
1200 	}
1201 	bp->b_npages = j - i;
1202 
1203 	PCPU_INC(cnt.v_swapin);
1204 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1205 
1206 	/*
1207 	 * We still hold the lock on mreq, and our automatic completion routine
1208 	 * does not remove it.
1209 	 */
1210 	vm_object_pip_add(object, bp->b_npages);
1211 	VM_OBJECT_WUNLOCK(object);
1212 
1213 	/*
1214 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1215 	 * this point because we automatically release it on completion.
1216 	 * Instead, we look at the one page we are interested in which we
1217 	 * still hold a lock on even through the I/O completion.
1218 	 *
1219 	 * The other pages in our m[] array are also released on completion,
1220 	 * so we cannot assume they are valid anymore either.
1221 	 *
1222 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1223 	 */
1224 	BUF_KERNPROC(bp);
1225 	swp_pager_strategy(bp);
1226 
1227 	/*
1228 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1229 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1230 	 * is set in the meta-data.
1231 	 */
1232 	VM_OBJECT_WLOCK(object);
1233 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1234 		mreq->oflags |= VPO_SWAPSLEEP;
1235 		PCPU_INC(cnt.v_intrans);
1236 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1237 		    "swread", hz * 20)) {
1238 			printf(
1239 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1240 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1241 		}
1242 	}
1243 
1244 	/*
1245 	 * mreq is left busied after completion, but all the other pages
1246 	 * are freed.  If we had an unrecoverable read error the page will
1247 	 * not be valid.
1248 	 */
1249 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1250 		return (VM_PAGER_ERROR);
1251 	} else {
1252 		return (VM_PAGER_OK);
1253 	}
1254 
1255 	/*
1256 	 * A final note: in a low swap situation, we cannot deallocate swap
1257 	 * and mark a page dirty here because the caller is likely to mark
1258 	 * the page clean when we return, causing the page to possibly revert
1259 	 * to all-zero's later.
1260 	 */
1261 }
1262 
1263 /*
1264  * 	swap_pager_getpages_async():
1265  *
1266  *	Right now this is emulation of asynchronous operation on top of
1267  *	swap_pager_getpages().
1268  */
1269 static int
1270 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1271     int reqpage, pgo_getpages_iodone_t iodone, void *arg)
1272 {
1273 	int r, error;
1274 
1275 	r = swap_pager_getpages(object, m, count, reqpage);
1276 	VM_OBJECT_WUNLOCK(object);
1277 	switch (r) {
1278 	case VM_PAGER_OK:
1279 		error = 0;
1280 		break;
1281 	case VM_PAGER_ERROR:
1282 		error = EIO;
1283 		break;
1284 	case VM_PAGER_FAIL:
1285 		error = EINVAL;
1286 		break;
1287 	default:
1288 		panic("unhandled swap_pager_getpages() error %d", r);
1289 	}
1290 	(iodone)(arg, m, count, error);
1291 	VM_OBJECT_WLOCK(object);
1292 
1293 	return (r);
1294 }
1295 
1296 /*
1297  *	swap_pager_putpages:
1298  *
1299  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1300  *
1301  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1302  *	are automatically converted to SWAP objects.
1303  *
1304  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1305  *	vm_page reservation system coupled with properly written VFS devices
1306  *	should ensure that no low-memory deadlock occurs.  This is an area
1307  *	which needs work.
1308  *
1309  *	The parent has N vm_object_pip_add() references prior to
1310  *	calling us and will remove references for rtvals[] that are
1311  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1312  *	completion.
1313  *
1314  *	The parent has soft-busy'd the pages it passes us and will unbusy
1315  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1316  *	We need to unbusy the rest on I/O completion.
1317  */
1318 void
1319 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1320     int flags, int *rtvals)
1321 {
1322 	int i, n;
1323 	boolean_t sync;
1324 
1325 	if (count && m[0]->object != object) {
1326 		panic("swap_pager_putpages: object mismatch %p/%p",
1327 		    object,
1328 		    m[0]->object
1329 		);
1330 	}
1331 
1332 	/*
1333 	 * Step 1
1334 	 *
1335 	 * Turn object into OBJT_SWAP
1336 	 * check for bogus sysops
1337 	 * force sync if not pageout process
1338 	 */
1339 	if (object->type != OBJT_SWAP)
1340 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1341 	VM_OBJECT_WUNLOCK(object);
1342 
1343 	n = 0;
1344 	if (curproc != pageproc)
1345 		sync = TRUE;
1346 	else
1347 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1348 
1349 	/*
1350 	 * Step 2
1351 	 *
1352 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1353 	 * The page is left dirty until the pageout operation completes
1354 	 * successfully.
1355 	 */
1356 	for (i = 0; i < count; i += n) {
1357 		int j;
1358 		struct buf *bp;
1359 		daddr_t blk;
1360 
1361 		/*
1362 		 * Maximum I/O size is limited by a number of factors.
1363 		 */
1364 		n = min(BLIST_MAX_ALLOC, count - i);
1365 		n = min(n, nsw_cluster_max);
1366 
1367 		/*
1368 		 * Get biggest block of swap we can.  If we fail, fall
1369 		 * back and try to allocate a smaller block.  Don't go
1370 		 * overboard trying to allocate space if it would overly
1371 		 * fragment swap.
1372 		 */
1373 		while (
1374 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1375 		    n > 4
1376 		) {
1377 			n >>= 1;
1378 		}
1379 		if (blk == SWAPBLK_NONE) {
1380 			for (j = 0; j < n; ++j)
1381 				rtvals[i+j] = VM_PAGER_FAIL;
1382 			continue;
1383 		}
1384 
1385 		/*
1386 		 * All I/O parameters have been satisfied, build the I/O
1387 		 * request and assign the swap space.
1388 		 */
1389 		if (sync == TRUE) {
1390 			bp = getpbuf(&nsw_wcount_sync);
1391 		} else {
1392 			bp = getpbuf(&nsw_wcount_async);
1393 			bp->b_flags = B_ASYNC;
1394 		}
1395 		bp->b_flags |= B_PAGING;
1396 		bp->b_iocmd = BIO_WRITE;
1397 
1398 		bp->b_rcred = crhold(thread0.td_ucred);
1399 		bp->b_wcred = crhold(thread0.td_ucred);
1400 		bp->b_bcount = PAGE_SIZE * n;
1401 		bp->b_bufsize = PAGE_SIZE * n;
1402 		bp->b_blkno = blk;
1403 
1404 		VM_OBJECT_WLOCK(object);
1405 		for (j = 0; j < n; ++j) {
1406 			vm_page_t mreq = m[i+j];
1407 
1408 			swp_pager_meta_build(
1409 			    mreq->object,
1410 			    mreq->pindex,
1411 			    blk + j
1412 			);
1413 			vm_page_dirty(mreq);
1414 			rtvals[i+j] = VM_PAGER_OK;
1415 
1416 			mreq->oflags |= VPO_SWAPINPROG;
1417 			bp->b_pages[j] = mreq;
1418 		}
1419 		VM_OBJECT_WUNLOCK(object);
1420 		bp->b_npages = n;
1421 		/*
1422 		 * Must set dirty range for NFS to work.
1423 		 */
1424 		bp->b_dirtyoff = 0;
1425 		bp->b_dirtyend = bp->b_bcount;
1426 
1427 		PCPU_INC(cnt.v_swapout);
1428 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1429 
1430 		/*
1431 		 * asynchronous
1432 		 *
1433 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1434 		 */
1435 		if (sync == FALSE) {
1436 			bp->b_iodone = swp_pager_async_iodone;
1437 			BUF_KERNPROC(bp);
1438 			swp_pager_strategy(bp);
1439 
1440 			for (j = 0; j < n; ++j)
1441 				rtvals[i+j] = VM_PAGER_PEND;
1442 			/* restart outter loop */
1443 			continue;
1444 		}
1445 
1446 		/*
1447 		 * synchronous
1448 		 *
1449 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1450 		 */
1451 		bp->b_iodone = bdone;
1452 		swp_pager_strategy(bp);
1453 
1454 		/*
1455 		 * Wait for the sync I/O to complete, then update rtvals.
1456 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1457 		 * our async completion routine at the end, thus avoiding a
1458 		 * double-free.
1459 		 */
1460 		bwait(bp, PVM, "swwrt");
1461 		for (j = 0; j < n; ++j)
1462 			rtvals[i+j] = VM_PAGER_PEND;
1463 		/*
1464 		 * Now that we are through with the bp, we can call the
1465 		 * normal async completion, which frees everything up.
1466 		 */
1467 		swp_pager_async_iodone(bp);
1468 	}
1469 	VM_OBJECT_WLOCK(object);
1470 }
1471 
1472 /*
1473  *	swp_pager_async_iodone:
1474  *
1475  *	Completion routine for asynchronous reads and writes from/to swap.
1476  *	Also called manually by synchronous code to finish up a bp.
1477  *
1478  *	This routine may not sleep.
1479  */
1480 static void
1481 swp_pager_async_iodone(struct buf *bp)
1482 {
1483 	int i;
1484 	vm_object_t object = NULL;
1485 
1486 	/*
1487 	 * report error
1488 	 */
1489 	if (bp->b_ioflags & BIO_ERROR) {
1490 		printf(
1491 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1492 			"size %ld, error %d\n",
1493 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1494 		    (long)bp->b_blkno,
1495 		    (long)bp->b_bcount,
1496 		    bp->b_error
1497 		);
1498 	}
1499 
1500 	/*
1501 	 * remove the mapping for kernel virtual
1502 	 */
1503 	if ((bp->b_flags & B_UNMAPPED) != 0) {
1504 		bp->b_data = bp->b_kvaalloc;
1505 		bp->b_kvabase = bp->b_kvaalloc;
1506 		bp->b_flags &= ~B_UNMAPPED;
1507 	} else
1508 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1509 
1510 	if (bp->b_npages) {
1511 		object = bp->b_pages[0]->object;
1512 		VM_OBJECT_WLOCK(object);
1513 	}
1514 
1515 	/*
1516 	 * cleanup pages.  If an error occurs writing to swap, we are in
1517 	 * very serious trouble.  If it happens to be a disk error, though,
1518 	 * we may be able to recover by reassigning the swap later on.  So
1519 	 * in this case we remove the m->swapblk assignment for the page
1520 	 * but do not free it in the rlist.  The errornous block(s) are thus
1521 	 * never reallocated as swap.  Redirty the page and continue.
1522 	 */
1523 	for (i = 0; i < bp->b_npages; ++i) {
1524 		vm_page_t m = bp->b_pages[i];
1525 
1526 		m->oflags &= ~VPO_SWAPINPROG;
1527 		if (m->oflags & VPO_SWAPSLEEP) {
1528 			m->oflags &= ~VPO_SWAPSLEEP;
1529 			wakeup(&object->paging_in_progress);
1530 		}
1531 
1532 		if (bp->b_ioflags & BIO_ERROR) {
1533 			/*
1534 			 * If an error occurs I'd love to throw the swapblk
1535 			 * away without freeing it back to swapspace, so it
1536 			 * can never be used again.  But I can't from an
1537 			 * interrupt.
1538 			 */
1539 			if (bp->b_iocmd == BIO_READ) {
1540 				/*
1541 				 * When reading, reqpage needs to stay
1542 				 * locked for the parent, but all other
1543 				 * pages can be freed.  We still want to
1544 				 * wakeup the parent waiting on the page,
1545 				 * though.  ( also: pg_reqpage can be -1 and
1546 				 * not match anything ).
1547 				 *
1548 				 * We have to wake specifically requested pages
1549 				 * up too because we cleared VPO_SWAPINPROG and
1550 				 * someone may be waiting for that.
1551 				 *
1552 				 * NOTE: for reads, m->dirty will probably
1553 				 * be overridden by the original caller of
1554 				 * getpages so don't play cute tricks here.
1555 				 */
1556 				m->valid = 0;
1557 				if (i != bp->b_pager.pg_reqpage)
1558 					swp_pager_free_nrpage(m);
1559 				else {
1560 					vm_page_lock(m);
1561 					vm_page_flash(m);
1562 					vm_page_unlock(m);
1563 				}
1564 				/*
1565 				 * If i == bp->b_pager.pg_reqpage, do not wake
1566 				 * the page up.  The caller needs to.
1567 				 */
1568 			} else {
1569 				/*
1570 				 * If a write error occurs, reactivate page
1571 				 * so it doesn't clog the inactive list,
1572 				 * then finish the I/O.
1573 				 */
1574 				vm_page_dirty(m);
1575 				vm_page_lock(m);
1576 				vm_page_activate(m);
1577 				vm_page_unlock(m);
1578 				vm_page_sunbusy(m);
1579 			}
1580 		} else if (bp->b_iocmd == BIO_READ) {
1581 			/*
1582 			 * NOTE: for reads, m->dirty will probably be
1583 			 * overridden by the original caller of getpages so
1584 			 * we cannot set them in order to free the underlying
1585 			 * swap in a low-swap situation.  I don't think we'd
1586 			 * want to do that anyway, but it was an optimization
1587 			 * that existed in the old swapper for a time before
1588 			 * it got ripped out due to precisely this problem.
1589 			 *
1590 			 * If not the requested page then deactivate it.
1591 			 *
1592 			 * Note that the requested page, reqpage, is left
1593 			 * busied, but we still have to wake it up.  The
1594 			 * other pages are released (unbusied) by
1595 			 * vm_page_xunbusy().
1596 			 */
1597 			KASSERT(!pmap_page_is_mapped(m),
1598 			    ("swp_pager_async_iodone: page %p is mapped", m));
1599 			m->valid = VM_PAGE_BITS_ALL;
1600 			KASSERT(m->dirty == 0,
1601 			    ("swp_pager_async_iodone: page %p is dirty", m));
1602 
1603 			/*
1604 			 * We have to wake specifically requested pages
1605 			 * up too because we cleared VPO_SWAPINPROG and
1606 			 * could be waiting for it in getpages.  However,
1607 			 * be sure to not unbusy getpages specifically
1608 			 * requested page - getpages expects it to be
1609 			 * left busy.
1610 			 */
1611 			if (i != bp->b_pager.pg_reqpage) {
1612 				vm_page_lock(m);
1613 				vm_page_deactivate(m);
1614 				vm_page_unlock(m);
1615 				vm_page_xunbusy(m);
1616 			} else {
1617 				vm_page_lock(m);
1618 				vm_page_flash(m);
1619 				vm_page_unlock(m);
1620 			}
1621 		} else {
1622 			/*
1623 			 * For write success, clear the dirty
1624 			 * status, then finish the I/O ( which decrements the
1625 			 * busy count and possibly wakes waiter's up ).
1626 			 */
1627 			KASSERT(!pmap_page_is_write_mapped(m),
1628 			    ("swp_pager_async_iodone: page %p is not write"
1629 			    " protected", m));
1630 			vm_page_undirty(m);
1631 			vm_page_sunbusy(m);
1632 			if (vm_page_count_severe()) {
1633 				vm_page_lock(m);
1634 				vm_page_try_to_cache(m);
1635 				vm_page_unlock(m);
1636 			}
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * adjust pip.  NOTE: the original parent may still have its own
1642 	 * pip refs on the object.
1643 	 */
1644 	if (object != NULL) {
1645 		vm_object_pip_wakeupn(object, bp->b_npages);
1646 		VM_OBJECT_WUNLOCK(object);
1647 	}
1648 
1649 	/*
1650 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1651 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1652 	 * trigger a KASSERT in relpbuf().
1653 	 */
1654 	if (bp->b_vp) {
1655 		    bp->b_vp = NULL;
1656 		    bp->b_bufobj = NULL;
1657 	}
1658 	/*
1659 	 * release the physical I/O buffer
1660 	 */
1661 	relpbuf(
1662 	    bp,
1663 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1664 		((bp->b_flags & B_ASYNC) ?
1665 		    &nsw_wcount_async :
1666 		    &nsw_wcount_sync
1667 		)
1668 	    )
1669 	);
1670 }
1671 
1672 /*
1673  *	swap_pager_isswapped:
1674  *
1675  *	Return 1 if at least one page in the given object is paged
1676  *	out to the given swap device.
1677  *
1678  *	This routine may not sleep.
1679  */
1680 int
1681 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1682 {
1683 	daddr_t index = 0;
1684 	int bcount;
1685 	int i;
1686 
1687 	VM_OBJECT_ASSERT_WLOCKED(object);
1688 	if (object->type != OBJT_SWAP)
1689 		return (0);
1690 
1691 	mtx_lock(&swhash_mtx);
1692 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1693 		struct swblock *swap;
1694 
1695 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1696 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1697 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1698 					mtx_unlock(&swhash_mtx);
1699 					return (1);
1700 				}
1701 			}
1702 		}
1703 		index += SWAP_META_PAGES;
1704 	}
1705 	mtx_unlock(&swhash_mtx);
1706 	return (0);
1707 }
1708 
1709 /*
1710  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1711  *
1712  *	This routine dissociates the page at the given index within a
1713  *	swap block from its backing store, paging it in if necessary.
1714  *	If the page is paged in, it is placed in the inactive queue,
1715  *	since it had its backing store ripped out from under it.
1716  *	We also attempt to swap in all other pages in the swap block,
1717  *	we only guarantee that the one at the specified index is
1718  *	paged in.
1719  *
1720  *	XXX - The code to page the whole block in doesn't work, so we
1721  *	      revert to the one-by-one behavior for now.  Sigh.
1722  */
1723 static inline void
1724 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1725 {
1726 	vm_page_t m;
1727 
1728 	vm_object_pip_add(object, 1);
1729 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1730 	if (m->valid == VM_PAGE_BITS_ALL) {
1731 		vm_object_pip_wakeup(object);
1732 		vm_page_dirty(m);
1733 		vm_page_lock(m);
1734 		vm_page_activate(m);
1735 		vm_page_unlock(m);
1736 		vm_page_xunbusy(m);
1737 		vm_pager_page_unswapped(m);
1738 		return;
1739 	}
1740 
1741 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1742 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1743 	vm_object_pip_wakeup(object);
1744 	vm_page_dirty(m);
1745 	vm_page_lock(m);
1746 	vm_page_deactivate(m);
1747 	vm_page_unlock(m);
1748 	vm_page_xunbusy(m);
1749 	vm_pager_page_unswapped(m);
1750 }
1751 
1752 /*
1753  *	swap_pager_swapoff:
1754  *
1755  *	Page in all of the pages that have been paged out to the
1756  *	given device.  The corresponding blocks in the bitmap must be
1757  *	marked as allocated and the device must be flagged SW_CLOSING.
1758  *	There may be no processes swapped out to the device.
1759  *
1760  *	This routine may block.
1761  */
1762 static void
1763 swap_pager_swapoff(struct swdevt *sp)
1764 {
1765 	struct swblock *swap;
1766 	int i, j, retries;
1767 
1768 	GIANT_REQUIRED;
1769 
1770 	retries = 0;
1771 full_rescan:
1772 	mtx_lock(&swhash_mtx);
1773 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1774 restart:
1775 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1776 			vm_object_t object = swap->swb_object;
1777 			vm_pindex_t pindex = swap->swb_index;
1778 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1779 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1780 					/* avoid deadlock */
1781 					if (!VM_OBJECT_TRYWLOCK(object)) {
1782 						break;
1783 					} else {
1784 						mtx_unlock(&swhash_mtx);
1785 						swp_pager_force_pagein(object,
1786 						    pindex + j);
1787 						VM_OBJECT_WUNLOCK(object);
1788 						mtx_lock(&swhash_mtx);
1789 						goto restart;
1790 					}
1791 				}
1792 			}
1793 		}
1794 	}
1795 	mtx_unlock(&swhash_mtx);
1796 	if (sp->sw_used) {
1797 		/*
1798 		 * Objects may be locked or paging to the device being
1799 		 * removed, so we will miss their pages and need to
1800 		 * make another pass.  We have marked this device as
1801 		 * SW_CLOSING, so the activity should finish soon.
1802 		 */
1803 		retries++;
1804 		if (retries > 100) {
1805 			panic("swapoff: failed to locate %d swap blocks",
1806 			    sp->sw_used);
1807 		}
1808 		pause("swpoff", hz / 20);
1809 		goto full_rescan;
1810 	}
1811 }
1812 
1813 /************************************************************************
1814  *				SWAP META DATA 				*
1815  ************************************************************************
1816  *
1817  *	These routines manipulate the swap metadata stored in the
1818  *	OBJT_SWAP object.
1819  *
1820  *	Swap metadata is implemented with a global hash and not directly
1821  *	linked into the object.  Instead the object simply contains
1822  *	appropriate tracking counters.
1823  */
1824 
1825 /*
1826  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1827  *
1828  *	We first convert the object to a swap object if it is a default
1829  *	object.
1830  *
1831  *	The specified swapblk is added to the object's swap metadata.  If
1832  *	the swapblk is not valid, it is freed instead.  Any previously
1833  *	assigned swapblk is freed.
1834  */
1835 static void
1836 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1837 {
1838 	static volatile int exhausted;
1839 	struct swblock *swap;
1840 	struct swblock **pswap;
1841 	int idx;
1842 
1843 	VM_OBJECT_ASSERT_WLOCKED(object);
1844 	/*
1845 	 * Convert default object to swap object if necessary
1846 	 */
1847 	if (object->type != OBJT_SWAP) {
1848 		object->type = OBJT_SWAP;
1849 		object->un_pager.swp.swp_bcount = 0;
1850 
1851 		if (object->handle != NULL) {
1852 			mtx_lock(&sw_alloc_mtx);
1853 			TAILQ_INSERT_TAIL(
1854 			    NOBJLIST(object->handle),
1855 			    object,
1856 			    pager_object_list
1857 			);
1858 			mtx_unlock(&sw_alloc_mtx);
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * Locate hash entry.  If not found create, but if we aren't adding
1864 	 * anything just return.  If we run out of space in the map we wait
1865 	 * and, since the hash table may have changed, retry.
1866 	 */
1867 retry:
1868 	mtx_lock(&swhash_mtx);
1869 	pswap = swp_pager_hash(object, pindex);
1870 
1871 	if ((swap = *pswap) == NULL) {
1872 		int i;
1873 
1874 		if (swapblk == SWAPBLK_NONE)
1875 			goto done;
1876 
1877 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1878 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1879 		if (swap == NULL) {
1880 			mtx_unlock(&swhash_mtx);
1881 			VM_OBJECT_WUNLOCK(object);
1882 			if (uma_zone_exhausted(swap_zone)) {
1883 				if (atomic_cmpset_int(&exhausted, 0, 1))
1884 					printf("swap zone exhausted, "
1885 					    "increase kern.maxswzone\n");
1886 				vm_pageout_oom(VM_OOM_SWAPZ);
1887 				pause("swzonex", 10);
1888 			} else
1889 				VM_WAIT;
1890 			VM_OBJECT_WLOCK(object);
1891 			goto retry;
1892 		}
1893 
1894 		if (atomic_cmpset_int(&exhausted, 1, 0))
1895 			printf("swap zone ok\n");
1896 
1897 		swap->swb_hnext = NULL;
1898 		swap->swb_object = object;
1899 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1900 		swap->swb_count = 0;
1901 
1902 		++object->un_pager.swp.swp_bcount;
1903 
1904 		for (i = 0; i < SWAP_META_PAGES; ++i)
1905 			swap->swb_pages[i] = SWAPBLK_NONE;
1906 	}
1907 
1908 	/*
1909 	 * Delete prior contents of metadata
1910 	 */
1911 	idx = pindex & SWAP_META_MASK;
1912 
1913 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1914 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1915 		--swap->swb_count;
1916 	}
1917 
1918 	/*
1919 	 * Enter block into metadata
1920 	 */
1921 	swap->swb_pages[idx] = swapblk;
1922 	if (swapblk != SWAPBLK_NONE)
1923 		++swap->swb_count;
1924 done:
1925 	mtx_unlock(&swhash_mtx);
1926 }
1927 
1928 /*
1929  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1930  *
1931  *	The requested range of blocks is freed, with any associated swap
1932  *	returned to the swap bitmap.
1933  *
1934  *	This routine will free swap metadata structures as they are cleaned
1935  *	out.  This routine does *NOT* operate on swap metadata associated
1936  *	with resident pages.
1937  */
1938 static void
1939 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1940 {
1941 
1942 	VM_OBJECT_ASSERT_LOCKED(object);
1943 	if (object->type != OBJT_SWAP)
1944 		return;
1945 
1946 	while (count > 0) {
1947 		struct swblock **pswap;
1948 		struct swblock *swap;
1949 
1950 		mtx_lock(&swhash_mtx);
1951 		pswap = swp_pager_hash(object, index);
1952 
1953 		if ((swap = *pswap) != NULL) {
1954 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1955 
1956 			if (v != SWAPBLK_NONE) {
1957 				swp_pager_freeswapspace(v, 1);
1958 				swap->swb_pages[index & SWAP_META_MASK] =
1959 					SWAPBLK_NONE;
1960 				if (--swap->swb_count == 0) {
1961 					*pswap = swap->swb_hnext;
1962 					uma_zfree(swap_zone, swap);
1963 					--object->un_pager.swp.swp_bcount;
1964 				}
1965 			}
1966 			--count;
1967 			++index;
1968 		} else {
1969 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1970 			count -= n;
1971 			index += n;
1972 		}
1973 		mtx_unlock(&swhash_mtx);
1974 	}
1975 }
1976 
1977 /*
1978  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1979  *
1980  *	This routine locates and destroys all swap metadata associated with
1981  *	an object.
1982  */
1983 static void
1984 swp_pager_meta_free_all(vm_object_t object)
1985 {
1986 	daddr_t index = 0;
1987 
1988 	VM_OBJECT_ASSERT_WLOCKED(object);
1989 	if (object->type != OBJT_SWAP)
1990 		return;
1991 
1992 	while (object->un_pager.swp.swp_bcount) {
1993 		struct swblock **pswap;
1994 		struct swblock *swap;
1995 
1996 		mtx_lock(&swhash_mtx);
1997 		pswap = swp_pager_hash(object, index);
1998 		if ((swap = *pswap) != NULL) {
1999 			int i;
2000 
2001 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2002 				daddr_t v = swap->swb_pages[i];
2003 				if (v != SWAPBLK_NONE) {
2004 					--swap->swb_count;
2005 					swp_pager_freeswapspace(v, 1);
2006 				}
2007 			}
2008 			if (swap->swb_count != 0)
2009 				panic("swap_pager_meta_free_all: swb_count != 0");
2010 			*pswap = swap->swb_hnext;
2011 			uma_zfree(swap_zone, swap);
2012 			--object->un_pager.swp.swp_bcount;
2013 		}
2014 		mtx_unlock(&swhash_mtx);
2015 		index += SWAP_META_PAGES;
2016 	}
2017 }
2018 
2019 /*
2020  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2021  *
2022  *	This routine is capable of looking up, popping, or freeing
2023  *	swapblk assignments in the swap meta data or in the vm_page_t.
2024  *	The routine typically returns the swapblk being looked-up, or popped,
2025  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2026  *	was invalid.  This routine will automatically free any invalid
2027  *	meta-data swapblks.
2028  *
2029  *	It is not possible to store invalid swapblks in the swap meta data
2030  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2031  *
2032  *	When acting on a busy resident page and paging is in progress, we
2033  *	have to wait until paging is complete but otherwise can act on the
2034  *	busy page.
2035  *
2036  *	SWM_FREE	remove and free swap block from metadata
2037  *	SWM_POP		remove from meta data but do not free.. pop it out
2038  */
2039 static daddr_t
2040 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2041 {
2042 	struct swblock **pswap;
2043 	struct swblock *swap;
2044 	daddr_t r1;
2045 	int idx;
2046 
2047 	VM_OBJECT_ASSERT_LOCKED(object);
2048 	/*
2049 	 * The meta data only exists of the object is OBJT_SWAP
2050 	 * and even then might not be allocated yet.
2051 	 */
2052 	if (object->type != OBJT_SWAP)
2053 		return (SWAPBLK_NONE);
2054 
2055 	r1 = SWAPBLK_NONE;
2056 	mtx_lock(&swhash_mtx);
2057 	pswap = swp_pager_hash(object, pindex);
2058 
2059 	if ((swap = *pswap) != NULL) {
2060 		idx = pindex & SWAP_META_MASK;
2061 		r1 = swap->swb_pages[idx];
2062 
2063 		if (r1 != SWAPBLK_NONE) {
2064 			if (flags & SWM_FREE) {
2065 				swp_pager_freeswapspace(r1, 1);
2066 				r1 = SWAPBLK_NONE;
2067 			}
2068 			if (flags & (SWM_FREE|SWM_POP)) {
2069 				swap->swb_pages[idx] = SWAPBLK_NONE;
2070 				if (--swap->swb_count == 0) {
2071 					*pswap = swap->swb_hnext;
2072 					uma_zfree(swap_zone, swap);
2073 					--object->un_pager.swp.swp_bcount;
2074 				}
2075 			}
2076 		}
2077 	}
2078 	mtx_unlock(&swhash_mtx);
2079 	return (r1);
2080 }
2081 
2082 /*
2083  * System call swapon(name) enables swapping on device name,
2084  * which must be in the swdevsw.  Return EBUSY
2085  * if already swapping on this device.
2086  */
2087 #ifndef _SYS_SYSPROTO_H_
2088 struct swapon_args {
2089 	char *name;
2090 };
2091 #endif
2092 
2093 /*
2094  * MPSAFE
2095  */
2096 /* ARGSUSED */
2097 int
2098 sys_swapon(struct thread *td, struct swapon_args *uap)
2099 {
2100 	struct vattr attr;
2101 	struct vnode *vp;
2102 	struct nameidata nd;
2103 	int error;
2104 
2105 	error = priv_check(td, PRIV_SWAPON);
2106 	if (error)
2107 		return (error);
2108 
2109 	mtx_lock(&Giant);
2110 	while (swdev_syscall_active)
2111 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2112 	swdev_syscall_active = 1;
2113 
2114 	/*
2115 	 * Swap metadata may not fit in the KVM if we have physical
2116 	 * memory of >1GB.
2117 	 */
2118 	if (swap_zone == NULL) {
2119 		error = ENOMEM;
2120 		goto done;
2121 	}
2122 
2123 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2124 	    uap->name, td);
2125 	error = namei(&nd);
2126 	if (error)
2127 		goto done;
2128 
2129 	NDFREE(&nd, NDF_ONLY_PNBUF);
2130 	vp = nd.ni_vp;
2131 
2132 	if (vn_isdisk(vp, &error)) {
2133 		error = swapongeom(td, vp);
2134 	} else if (vp->v_type == VREG &&
2135 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2136 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2137 		/*
2138 		 * Allow direct swapping to NFS regular files in the same
2139 		 * way that nfs_mountroot() sets up diskless swapping.
2140 		 */
2141 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2142 	}
2143 
2144 	if (error)
2145 		vrele(vp);
2146 done:
2147 	swdev_syscall_active = 0;
2148 	wakeup_one(&swdev_syscall_active);
2149 	mtx_unlock(&Giant);
2150 	return (error);
2151 }
2152 
2153 /*
2154  * Check that the total amount of swap currently configured does not
2155  * exceed half the theoretical maximum.  If it does, print a warning
2156  * message and return -1; otherwise, return 0.
2157  */
2158 static int
2159 swapon_check_swzone(unsigned long npages)
2160 {
2161 	unsigned long maxpages;
2162 
2163 	/* absolute maximum we can handle assuming 100% efficiency */
2164 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2165 
2166 	/* recommend using no more than half that amount */
2167 	if (npages > maxpages / 2) {
2168 		printf("warning: total configured swap (%lu pages) "
2169 		    "exceeds maximum recommended amount (%lu pages).\n",
2170 		    npages, maxpages / 2);
2171 		printf("warning: increase kern.maxswzone "
2172 		    "or reduce amount of swap.\n");
2173 		return (-1);
2174 	}
2175 	return (0);
2176 }
2177 
2178 static void
2179 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2180     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2181 {
2182 	struct swdevt *sp, *tsp;
2183 	swblk_t dvbase;
2184 	u_long mblocks;
2185 
2186 	/*
2187 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2188 	 * First chop nblks off to page-align it, then convert.
2189 	 *
2190 	 * sw->sw_nblks is in page-sized chunks now too.
2191 	 */
2192 	nblks &= ~(ctodb(1) - 1);
2193 	nblks = dbtoc(nblks);
2194 
2195 	/*
2196 	 * If we go beyond this, we get overflows in the radix
2197 	 * tree bitmap code.
2198 	 */
2199 	mblocks = 0x40000000 / BLIST_META_RADIX;
2200 	if (nblks > mblocks) {
2201 		printf(
2202     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2203 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2204 		nblks = mblocks;
2205 	}
2206 
2207 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2208 	sp->sw_vp = vp;
2209 	sp->sw_id = id;
2210 	sp->sw_dev = dev;
2211 	sp->sw_flags = 0;
2212 	sp->sw_nblks = nblks;
2213 	sp->sw_used = 0;
2214 	sp->sw_strategy = strategy;
2215 	sp->sw_close = close;
2216 	sp->sw_flags = flags;
2217 
2218 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2219 	/*
2220 	 * Do not free the first two block in order to avoid overwriting
2221 	 * any bsd label at the front of the partition
2222 	 */
2223 	blist_free(sp->sw_blist, 2, nblks - 2);
2224 
2225 	dvbase = 0;
2226 	mtx_lock(&sw_dev_mtx);
2227 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2228 		if (tsp->sw_end >= dvbase) {
2229 			/*
2230 			 * We put one uncovered page between the devices
2231 			 * in order to definitively prevent any cross-device
2232 			 * I/O requests
2233 			 */
2234 			dvbase = tsp->sw_end + 1;
2235 		}
2236 	}
2237 	sp->sw_first = dvbase;
2238 	sp->sw_end = dvbase + nblks;
2239 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2240 	nswapdev++;
2241 	swap_pager_avail += nblks;
2242 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2243 	swapon_check_swzone(swap_total / PAGE_SIZE);
2244 	swp_sizecheck();
2245 	mtx_unlock(&sw_dev_mtx);
2246 }
2247 
2248 /*
2249  * SYSCALL: swapoff(devname)
2250  *
2251  * Disable swapping on the given device.
2252  *
2253  * XXX: Badly designed system call: it should use a device index
2254  * rather than filename as specification.  We keep sw_vp around
2255  * only to make this work.
2256  */
2257 #ifndef _SYS_SYSPROTO_H_
2258 struct swapoff_args {
2259 	char *name;
2260 };
2261 #endif
2262 
2263 /*
2264  * MPSAFE
2265  */
2266 /* ARGSUSED */
2267 int
2268 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2269 {
2270 	struct vnode *vp;
2271 	struct nameidata nd;
2272 	struct swdevt *sp;
2273 	int error;
2274 
2275 	error = priv_check(td, PRIV_SWAPOFF);
2276 	if (error)
2277 		return (error);
2278 
2279 	mtx_lock(&Giant);
2280 	while (swdev_syscall_active)
2281 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2282 	swdev_syscall_active = 1;
2283 
2284 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2285 	    td);
2286 	error = namei(&nd);
2287 	if (error)
2288 		goto done;
2289 	NDFREE(&nd, NDF_ONLY_PNBUF);
2290 	vp = nd.ni_vp;
2291 
2292 	mtx_lock(&sw_dev_mtx);
2293 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2294 		if (sp->sw_vp == vp)
2295 			break;
2296 	}
2297 	mtx_unlock(&sw_dev_mtx);
2298 	if (sp == NULL) {
2299 		error = EINVAL;
2300 		goto done;
2301 	}
2302 	error = swapoff_one(sp, td->td_ucred);
2303 done:
2304 	swdev_syscall_active = 0;
2305 	wakeup_one(&swdev_syscall_active);
2306 	mtx_unlock(&Giant);
2307 	return (error);
2308 }
2309 
2310 static int
2311 swapoff_one(struct swdevt *sp, struct ucred *cred)
2312 {
2313 	u_long nblks, dvbase;
2314 #ifdef MAC
2315 	int error;
2316 #endif
2317 
2318 	mtx_assert(&Giant, MA_OWNED);
2319 #ifdef MAC
2320 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2321 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2322 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2323 	if (error != 0)
2324 		return (error);
2325 #endif
2326 	nblks = sp->sw_nblks;
2327 
2328 	/*
2329 	 * We can turn off this swap device safely only if the
2330 	 * available virtual memory in the system will fit the amount
2331 	 * of data we will have to page back in, plus an epsilon so
2332 	 * the system doesn't become critically low on swap space.
2333 	 */
2334 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2335 	    nblks + nswap_lowat) {
2336 		return (ENOMEM);
2337 	}
2338 
2339 	/*
2340 	 * Prevent further allocations on this device.
2341 	 */
2342 	mtx_lock(&sw_dev_mtx);
2343 	sp->sw_flags |= SW_CLOSING;
2344 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2345 		swap_pager_avail -= blist_fill(sp->sw_blist,
2346 		     dvbase, dmmax);
2347 	}
2348 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2349 	mtx_unlock(&sw_dev_mtx);
2350 
2351 	/*
2352 	 * Page in the contents of the device and close it.
2353 	 */
2354 	swap_pager_swapoff(sp);
2355 
2356 	sp->sw_close(curthread, sp);
2357 	sp->sw_id = NULL;
2358 	mtx_lock(&sw_dev_mtx);
2359 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2360 	nswapdev--;
2361 	if (nswapdev == 0) {
2362 		swap_pager_full = 2;
2363 		swap_pager_almost_full = 1;
2364 	}
2365 	if (swdevhd == sp)
2366 		swdevhd = NULL;
2367 	mtx_unlock(&sw_dev_mtx);
2368 	blist_destroy(sp->sw_blist);
2369 	free(sp, M_VMPGDATA);
2370 	return (0);
2371 }
2372 
2373 void
2374 swapoff_all(void)
2375 {
2376 	struct swdevt *sp, *spt;
2377 	const char *devname;
2378 	int error;
2379 
2380 	mtx_lock(&Giant);
2381 	while (swdev_syscall_active)
2382 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2383 	swdev_syscall_active = 1;
2384 
2385 	mtx_lock(&sw_dev_mtx);
2386 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2387 		mtx_unlock(&sw_dev_mtx);
2388 		if (vn_isdisk(sp->sw_vp, NULL))
2389 			devname = devtoname(sp->sw_vp->v_rdev);
2390 		else
2391 			devname = "[file]";
2392 		error = swapoff_one(sp, thread0.td_ucred);
2393 		if (error != 0) {
2394 			printf("Cannot remove swap device %s (error=%d), "
2395 			    "skipping.\n", devname, error);
2396 		} else if (bootverbose) {
2397 			printf("Swap device %s removed.\n", devname);
2398 		}
2399 		mtx_lock(&sw_dev_mtx);
2400 	}
2401 	mtx_unlock(&sw_dev_mtx);
2402 
2403 	swdev_syscall_active = 0;
2404 	wakeup_one(&swdev_syscall_active);
2405 	mtx_unlock(&Giant);
2406 }
2407 
2408 void
2409 swap_pager_status(int *total, int *used)
2410 {
2411 	struct swdevt *sp;
2412 
2413 	*total = 0;
2414 	*used = 0;
2415 	mtx_lock(&sw_dev_mtx);
2416 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2417 		*total += sp->sw_nblks;
2418 		*used += sp->sw_used;
2419 	}
2420 	mtx_unlock(&sw_dev_mtx);
2421 }
2422 
2423 int
2424 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2425 {
2426 	struct swdevt *sp;
2427 	const char *tmp_devname;
2428 	int error, n;
2429 
2430 	n = 0;
2431 	error = ENOENT;
2432 	mtx_lock(&sw_dev_mtx);
2433 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2434 		if (n != name) {
2435 			n++;
2436 			continue;
2437 		}
2438 		xs->xsw_version = XSWDEV_VERSION;
2439 		xs->xsw_dev = sp->sw_dev;
2440 		xs->xsw_flags = sp->sw_flags;
2441 		xs->xsw_nblks = sp->sw_nblks;
2442 		xs->xsw_used = sp->sw_used;
2443 		if (devname != NULL) {
2444 			if (vn_isdisk(sp->sw_vp, NULL))
2445 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2446 			else
2447 				tmp_devname = "[file]";
2448 			strncpy(devname, tmp_devname, len);
2449 		}
2450 		error = 0;
2451 		break;
2452 	}
2453 	mtx_unlock(&sw_dev_mtx);
2454 	return (error);
2455 }
2456 
2457 static int
2458 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2459 {
2460 	struct xswdev xs;
2461 	int error;
2462 
2463 	if (arg2 != 1)			/* name length */
2464 		return (EINVAL);
2465 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2466 	if (error != 0)
2467 		return (error);
2468 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2469 	return (error);
2470 }
2471 
2472 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2473     "Number of swap devices");
2474 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2475     "Swap statistics by device");
2476 
2477 /*
2478  * vmspace_swap_count() - count the approximate swap usage in pages for a
2479  *			  vmspace.
2480  *
2481  *	The map must be locked.
2482  *
2483  *	Swap usage is determined by taking the proportional swap used by
2484  *	VM objects backing the VM map.  To make up for fractional losses,
2485  *	if the VM object has any swap use at all the associated map entries
2486  *	count for at least 1 swap page.
2487  */
2488 long
2489 vmspace_swap_count(struct vmspace *vmspace)
2490 {
2491 	vm_map_t map;
2492 	vm_map_entry_t cur;
2493 	vm_object_t object;
2494 	long count, n;
2495 
2496 	map = &vmspace->vm_map;
2497 	count = 0;
2498 
2499 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2500 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2501 		    (object = cur->object.vm_object) != NULL) {
2502 			VM_OBJECT_WLOCK(object);
2503 			if (object->type == OBJT_SWAP &&
2504 			    object->un_pager.swp.swp_bcount != 0) {
2505 				n = (cur->end - cur->start) / PAGE_SIZE;
2506 				count += object->un_pager.swp.swp_bcount *
2507 				    SWAP_META_PAGES * n / object->size + 1;
2508 			}
2509 			VM_OBJECT_WUNLOCK(object);
2510 		}
2511 	}
2512 	return (count);
2513 }
2514 
2515 /*
2516  * GEOM backend
2517  *
2518  * Swapping onto disk devices.
2519  *
2520  */
2521 
2522 static g_orphan_t swapgeom_orphan;
2523 
2524 static struct g_class g_swap_class = {
2525 	.name = "SWAP",
2526 	.version = G_VERSION,
2527 	.orphan = swapgeom_orphan,
2528 };
2529 
2530 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2531 
2532 
2533 static void
2534 swapgeom_close_ev(void *arg, int flags)
2535 {
2536 	struct g_consumer *cp;
2537 
2538 	cp = arg;
2539 	g_access(cp, -1, -1, 0);
2540 	g_detach(cp);
2541 	g_destroy_consumer(cp);
2542 }
2543 
2544 static void
2545 swapgeom_done(struct bio *bp2)
2546 {
2547 	struct swdevt *sp;
2548 	struct buf *bp;
2549 	struct g_consumer *cp;
2550 
2551 	bp = bp2->bio_caller2;
2552 	cp = bp2->bio_from;
2553 	bp->b_ioflags = bp2->bio_flags;
2554 	if (bp2->bio_error)
2555 		bp->b_ioflags |= BIO_ERROR;
2556 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2557 	bp->b_error = bp2->bio_error;
2558 	bufdone(bp);
2559 	mtx_lock(&sw_dev_mtx);
2560 	if ((--cp->index) == 0 && cp->private) {
2561 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) {
2562 			sp = bp2->bio_caller1;
2563 			sp->sw_id = NULL;
2564 		}
2565 	}
2566 	mtx_unlock(&sw_dev_mtx);
2567 	g_destroy_bio(bp2);
2568 }
2569 
2570 static void
2571 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2572 {
2573 	struct bio *bio;
2574 	struct g_consumer *cp;
2575 
2576 	mtx_lock(&sw_dev_mtx);
2577 	cp = sp->sw_id;
2578 	if (cp == NULL) {
2579 		mtx_unlock(&sw_dev_mtx);
2580 		bp->b_error = ENXIO;
2581 		bp->b_ioflags |= BIO_ERROR;
2582 		bufdone(bp);
2583 		return;
2584 	}
2585 	cp->index++;
2586 	mtx_unlock(&sw_dev_mtx);
2587 	if (bp->b_iocmd == BIO_WRITE)
2588 		bio = g_new_bio();
2589 	else
2590 		bio = g_alloc_bio();
2591 	if (bio == NULL) {
2592 		bp->b_error = ENOMEM;
2593 		bp->b_ioflags |= BIO_ERROR;
2594 		bufdone(bp);
2595 		return;
2596 	}
2597 
2598 	bio->bio_caller1 = sp;
2599 	bio->bio_caller2 = bp;
2600 	bio->bio_cmd = bp->b_iocmd;
2601 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2602 	bio->bio_length = bp->b_bcount;
2603 	bio->bio_done = swapgeom_done;
2604 	if ((bp->b_flags & B_UNMAPPED) != 0) {
2605 		bio->bio_ma = bp->b_pages;
2606 		bio->bio_data = unmapped_buf;
2607 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2608 		bio->bio_ma_n = bp->b_npages;
2609 		bio->bio_flags |= BIO_UNMAPPED;
2610 	} else {
2611 		bio->bio_data = bp->b_data;
2612 		bio->bio_ma = NULL;
2613 	}
2614 	g_io_request(bio, cp);
2615 	return;
2616 }
2617 
2618 static void
2619 swapgeom_orphan(struct g_consumer *cp)
2620 {
2621 	struct swdevt *sp;
2622 	int destroy;
2623 
2624 	mtx_lock(&sw_dev_mtx);
2625 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2626 		if (sp->sw_id == cp) {
2627 			sp->sw_flags |= SW_CLOSING;
2628 			break;
2629 		}
2630 	}
2631 	cp->private = (void *)(uintptr_t)1;
2632 	destroy = ((sp != NULL) && (cp->index == 0));
2633 	if (destroy)
2634 		sp->sw_id = NULL;
2635 	mtx_unlock(&sw_dev_mtx);
2636 	if (destroy)
2637 		swapgeom_close_ev(cp, 0);
2638 }
2639 
2640 static void
2641 swapgeom_close(struct thread *td, struct swdevt *sw)
2642 {
2643 	struct g_consumer *cp;
2644 
2645 	mtx_lock(&sw_dev_mtx);
2646 	cp = sw->sw_id;
2647 	sw->sw_id = NULL;
2648 	mtx_unlock(&sw_dev_mtx);
2649 	/* XXX: direct call when Giant untangled */
2650 	if (cp != NULL)
2651 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2652 }
2653 
2654 
2655 struct swh0h0 {
2656 	struct cdev *dev;
2657 	struct vnode *vp;
2658 	int	error;
2659 };
2660 
2661 static void
2662 swapongeom_ev(void *arg, int flags)
2663 {
2664 	struct swh0h0 *swh;
2665 	struct g_provider *pp;
2666 	struct g_consumer *cp;
2667 	static struct g_geom *gp;
2668 	struct swdevt *sp;
2669 	u_long nblks;
2670 	int error;
2671 
2672 	swh = arg;
2673 	swh->error = 0;
2674 	pp = g_dev_getprovider(swh->dev);
2675 	if (pp == NULL) {
2676 		swh->error = ENODEV;
2677 		return;
2678 	}
2679 	mtx_lock(&sw_dev_mtx);
2680 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2681 		cp = sp->sw_id;
2682 		if (cp != NULL && cp->provider == pp) {
2683 			mtx_unlock(&sw_dev_mtx);
2684 			swh->error = EBUSY;
2685 			return;
2686 		}
2687 	}
2688 	mtx_unlock(&sw_dev_mtx);
2689 	if (gp == NULL)
2690 		gp = g_new_geomf(&g_swap_class, "swap");
2691 	cp = g_new_consumer(gp);
2692 	cp->index = 0;		/* Number of active I/Os. */
2693 	cp->private = NULL;	/* Orphanization flag */
2694 	g_attach(cp, pp);
2695 	/*
2696 	 * XXX: Everytime you think you can improve the margin for
2697 	 * footshooting, somebody depends on the ability to do so:
2698 	 * savecore(8) wants to write to our swapdev so we cannot
2699 	 * set an exclusive count :-(
2700 	 */
2701 	error = g_access(cp, 1, 1, 0);
2702 	if (error) {
2703 		g_detach(cp);
2704 		g_destroy_consumer(cp);
2705 		swh->error = error;
2706 		return;
2707 	}
2708 	nblks = pp->mediasize / DEV_BSIZE;
2709 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2710 	    swapgeom_close, dev2udev(swh->dev),
2711 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2712 	swh->error = 0;
2713 }
2714 
2715 static int
2716 swapongeom(struct thread *td, struct vnode *vp)
2717 {
2718 	int error;
2719 	struct swh0h0 swh;
2720 
2721 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2722 
2723 	swh.dev = vp->v_rdev;
2724 	swh.vp = vp;
2725 	swh.error = 0;
2726 	/* XXX: direct call when Giant untangled */
2727 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2728 	if (!error)
2729 		error = swh.error;
2730 	VOP_UNLOCK(vp, 0);
2731 	return (error);
2732 }
2733 
2734 /*
2735  * VNODE backend
2736  *
2737  * This is used mainly for network filesystem (read: probably only tested
2738  * with NFS) swapfiles.
2739  *
2740  */
2741 
2742 static void
2743 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2744 {
2745 	struct vnode *vp2;
2746 
2747 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2748 
2749 	vp2 = sp->sw_id;
2750 	vhold(vp2);
2751 	if (bp->b_iocmd == BIO_WRITE) {
2752 		if (bp->b_bufobj)
2753 			bufobj_wdrop(bp->b_bufobj);
2754 		bufobj_wref(&vp2->v_bufobj);
2755 	}
2756 	if (bp->b_bufobj != &vp2->v_bufobj)
2757 		bp->b_bufobj = &vp2->v_bufobj;
2758 	bp->b_vp = vp2;
2759 	bp->b_iooffset = dbtob(bp->b_blkno);
2760 	bstrategy(bp);
2761 	return;
2762 }
2763 
2764 static void
2765 swapdev_close(struct thread *td, struct swdevt *sp)
2766 {
2767 
2768 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2769 	vrele(sp->sw_vp);
2770 }
2771 
2772 
2773 static int
2774 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2775 {
2776 	struct swdevt *sp;
2777 	int error;
2778 
2779 	if (nblks == 0)
2780 		return (ENXIO);
2781 	mtx_lock(&sw_dev_mtx);
2782 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2783 		if (sp->sw_id == vp) {
2784 			mtx_unlock(&sw_dev_mtx);
2785 			return (EBUSY);
2786 		}
2787 	}
2788 	mtx_unlock(&sw_dev_mtx);
2789 
2790 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2791 #ifdef MAC
2792 	error = mac_system_check_swapon(td->td_ucred, vp);
2793 	if (error == 0)
2794 #endif
2795 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2796 	(void) VOP_UNLOCK(vp, 0);
2797 	if (error)
2798 		return (error);
2799 
2800 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2801 	    NODEV, 0);
2802 	return (0);
2803 }
2804 
2805 static int
2806 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2807 {
2808 	int error, new, n;
2809 
2810 	new = nsw_wcount_async_max;
2811 	error = sysctl_handle_int(oidp, &new, 0, req);
2812 	if (error != 0 || req->newptr == NULL)
2813 		return (error);
2814 
2815 	if (new > nswbuf / 2 || new < 1)
2816 		return (EINVAL);
2817 
2818 	mtx_lock(&pbuf_mtx);
2819 	while (nsw_wcount_async_max != new) {
2820 		/*
2821 		 * Adjust difference.  If the current async count is too low,
2822 		 * we will need to sqeeze our update slowly in.  Sleep with a
2823 		 * higher priority than getpbuf() to finish faster.
2824 		 */
2825 		n = new - nsw_wcount_async_max;
2826 		if (nsw_wcount_async + n >= 0) {
2827 			nsw_wcount_async += n;
2828 			nsw_wcount_async_max += n;
2829 			wakeup(&nsw_wcount_async);
2830 		} else {
2831 			nsw_wcount_async_max -= nsw_wcount_async;
2832 			nsw_wcount_async = 0;
2833 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2834 			    "swpsysctl", 0);
2835 		}
2836 	}
2837 	mtx_unlock(&pbuf_mtx);
2838 
2839 	return (0);
2840 }
2841