1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysproto.h> 93 #include <sys/blist.h> 94 #include <sys/lock.h> 95 #include <sys/sx.h> 96 #include <sys/vmmeter.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #include <vm/vm.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_param.h> 109 #include <vm/swap_pager.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 113 #include <geom/geom.h> 114 115 /* 116 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 117 * pages per allocation. We recommend you stick with the default of 8. 118 * The 16-page limit is due to the radix code (kern/subr_blist.c). 119 */ 120 #ifndef MAX_PAGEOUT_CLUSTER 121 #define MAX_PAGEOUT_CLUSTER 16 122 #endif 123 124 #if !defined(SWB_NPAGES) 125 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 126 #endif 127 128 /* 129 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 130 * 131 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 132 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 133 * 32K worth of data, two levels represent 256K, three levels represent 134 * 2 MBytes. This is acceptable. 135 * 136 * Overall memory utilization is about the same as the old swap structure. 137 */ 138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 139 #define SWAP_META_PAGES (SWB_NPAGES * 2) 140 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 141 142 struct swblock { 143 struct swblock *swb_hnext; 144 vm_object_t swb_object; 145 vm_pindex_t swb_index; 146 int swb_count; 147 daddr_t swb_pages[SWAP_META_PAGES]; 148 }; 149 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, ""); 159 static vm_ooffset_t swap_reserved; 160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, ""); 161 static int overcommit = 0; 162 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, ""); 163 164 /* bits from overcommit */ 165 #define SWAP_RESERVE_FORCE_ON (1 << 0) 166 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 167 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 168 169 int 170 swap_reserve(vm_ooffset_t incr) 171 { 172 173 return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo)); 174 } 175 176 int 177 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip) 178 { 179 vm_ooffset_t r, s, max; 180 int res, error; 181 static int curfail; 182 static struct timeval lastfail; 183 184 if (incr & PAGE_MASK) 185 panic("swap_reserve: & PAGE_MASK"); 186 187 res = 0; 188 error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA); 189 mtx_lock(&sw_dev_mtx); 190 r = swap_reserved + incr; 191 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 192 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 193 s *= PAGE_SIZE; 194 } else 195 s = 0; 196 s += swap_total; 197 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 198 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 199 res = 1; 200 swap_reserved = r; 201 } 202 mtx_unlock(&sw_dev_mtx); 203 204 if (res) { 205 PROC_LOCK(curproc); 206 UIDINFO_VMSIZE_LOCK(uip); 207 error = priv_check(curthread, PRIV_VM_SWAP_NORLIMIT); 208 max = (error != 0) ? lim_cur(curproc, RLIMIT_SWAP) : 0; 209 if (max != 0 && uip->ui_vmsize + incr > max && 210 (overcommit & SWAP_RESERVE_RLIMIT_ON) != 0) 211 res = 0; 212 else 213 uip->ui_vmsize += incr; 214 UIDINFO_VMSIZE_UNLOCK(uip); 215 PROC_UNLOCK(curproc); 216 if (!res) { 217 mtx_lock(&sw_dev_mtx); 218 swap_reserved -= incr; 219 mtx_unlock(&sw_dev_mtx); 220 } 221 } 222 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 223 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 224 curproc->p_pid, uip->ui_uid, incr); 225 } 226 227 return (res); 228 } 229 230 void 231 swap_reserve_force(vm_ooffset_t incr) 232 { 233 struct uidinfo *uip; 234 235 mtx_lock(&sw_dev_mtx); 236 swap_reserved += incr; 237 mtx_unlock(&sw_dev_mtx); 238 239 uip = curthread->td_ucred->cr_ruidinfo; 240 PROC_LOCK(curproc); 241 UIDINFO_VMSIZE_LOCK(uip); 242 uip->ui_vmsize += incr; 243 UIDINFO_VMSIZE_UNLOCK(uip); 244 PROC_UNLOCK(curproc); 245 } 246 247 void 248 swap_release(vm_ooffset_t decr) 249 { 250 struct uidinfo *uip; 251 252 PROC_LOCK(curproc); 253 uip = curthread->td_ucred->cr_ruidinfo; 254 swap_release_by_uid(decr, uip); 255 PROC_UNLOCK(curproc); 256 } 257 258 void 259 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip) 260 { 261 262 if (decr & PAGE_MASK) 263 panic("swap_release: & PAGE_MASK"); 264 265 mtx_lock(&sw_dev_mtx); 266 if (swap_reserved < decr) 267 panic("swap_reserved < decr"); 268 swap_reserved -= decr; 269 mtx_unlock(&sw_dev_mtx); 270 271 UIDINFO_VMSIZE_LOCK(uip); 272 if (uip->ui_vmsize < decr) 273 printf("negative vmsize for uid = %d\n", uip->ui_uid); 274 uip->ui_vmsize -= decr; 275 UIDINFO_VMSIZE_UNLOCK(uip); 276 } 277 278 static void swapdev_strategy(struct buf *, struct swdevt *sw); 279 280 #define SWM_FREE 0x02 /* free, period */ 281 #define SWM_POP 0x04 /* pop out */ 282 283 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 284 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 285 static int nsw_rcount; /* free read buffers */ 286 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 287 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 288 static int nsw_wcount_async_max;/* assigned maximum */ 289 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 290 291 static struct swblock **swhash; 292 static int swhash_mask; 293 static struct mtx swhash_mtx; 294 295 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 296 static struct sx sw_alloc_sx; 297 298 299 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 300 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 301 302 /* 303 * "named" and "unnamed" anon region objects. Try to reduce the overhead 304 * of searching a named list by hashing it just a little. 305 */ 306 307 #define NOBJLISTS 8 308 309 #define NOBJLIST(handle) \ 310 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 311 312 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 313 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 314 static uma_zone_t swap_zone; 315 static struct vm_object swap_zone_obj; 316 317 /* 318 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 319 * calls hooked from other parts of the VM system and do not appear here. 320 * (see vm/swap_pager.h). 321 */ 322 static vm_object_t 323 swap_pager_alloc(void *handle, vm_ooffset_t size, 324 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 325 static void swap_pager_dealloc(vm_object_t object); 326 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 327 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 328 static boolean_t 329 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 330 static void swap_pager_init(void); 331 static void swap_pager_unswapped(vm_page_t); 332 static void swap_pager_swapoff(struct swdevt *sp); 333 334 struct pagerops swappagerops = { 335 .pgo_init = swap_pager_init, /* early system initialization of pager */ 336 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 337 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 338 .pgo_getpages = swap_pager_getpages, /* pagein */ 339 .pgo_putpages = swap_pager_putpages, /* pageout */ 340 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 341 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 342 }; 343 344 /* 345 * dmmax is in page-sized chunks with the new swap system. It was 346 * dev-bsized chunks in the old. dmmax is always a power of 2. 347 * 348 * swap_*() routines are externally accessible. swp_*() routines are 349 * internal. 350 */ 351 static int dmmax; 352 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 353 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 354 355 SYSCTL_INT(_vm, OID_AUTO, dmmax, 356 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 357 358 static void swp_sizecheck(void); 359 static void swp_pager_async_iodone(struct buf *bp); 360 static int swapongeom(struct thread *, struct vnode *); 361 static int swaponvp(struct thread *, struct vnode *, u_long); 362 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 363 364 /* 365 * Swap bitmap functions 366 */ 367 static void swp_pager_freeswapspace(daddr_t blk, int npages); 368 static daddr_t swp_pager_getswapspace(int npages); 369 370 /* 371 * Metadata functions 372 */ 373 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 374 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 375 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 376 static void swp_pager_meta_free_all(vm_object_t); 377 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 378 379 /* 380 * SWP_SIZECHECK() - update swap_pager_full indication 381 * 382 * update the swap_pager_almost_full indication and warn when we are 383 * about to run out of swap space, using lowat/hiwat hysteresis. 384 * 385 * Clear swap_pager_full ( task killing ) indication when lowat is met. 386 * 387 * No restrictions on call 388 * This routine may not block. 389 * This routine must be called at splvm() 390 */ 391 static void 392 swp_sizecheck(void) 393 { 394 395 if (swap_pager_avail < nswap_lowat) { 396 if (swap_pager_almost_full == 0) { 397 printf("swap_pager: out of swap space\n"); 398 swap_pager_almost_full = 1; 399 } 400 } else { 401 swap_pager_full = 0; 402 if (swap_pager_avail > nswap_hiwat) 403 swap_pager_almost_full = 0; 404 } 405 } 406 407 /* 408 * SWP_PAGER_HASH() - hash swap meta data 409 * 410 * This is an helper function which hashes the swapblk given 411 * the object and page index. It returns a pointer to a pointer 412 * to the object, or a pointer to a NULL pointer if it could not 413 * find a swapblk. 414 * 415 * This routine must be called at splvm(). 416 */ 417 static struct swblock ** 418 swp_pager_hash(vm_object_t object, vm_pindex_t index) 419 { 420 struct swblock **pswap; 421 struct swblock *swap; 422 423 index &= ~(vm_pindex_t)SWAP_META_MASK; 424 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 425 while ((swap = *pswap) != NULL) { 426 if (swap->swb_object == object && 427 swap->swb_index == index 428 ) { 429 break; 430 } 431 pswap = &swap->swb_hnext; 432 } 433 return (pswap); 434 } 435 436 /* 437 * SWAP_PAGER_INIT() - initialize the swap pager! 438 * 439 * Expected to be started from system init. NOTE: This code is run 440 * before much else so be careful what you depend on. Most of the VM 441 * system has yet to be initialized at this point. 442 */ 443 static void 444 swap_pager_init(void) 445 { 446 /* 447 * Initialize object lists 448 */ 449 int i; 450 451 for (i = 0; i < NOBJLISTS; ++i) 452 TAILQ_INIT(&swap_pager_object_list[i]); 453 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 454 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 455 456 /* 457 * Device Stripe, in PAGE_SIZE'd blocks 458 */ 459 dmmax = SWB_NPAGES * 2; 460 } 461 462 /* 463 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 464 * 465 * Expected to be started from pageout process once, prior to entering 466 * its main loop. 467 */ 468 void 469 swap_pager_swap_init(void) 470 { 471 int n, n2; 472 473 /* 474 * Number of in-transit swap bp operations. Don't 475 * exhaust the pbufs completely. Make sure we 476 * initialize workable values (0 will work for hysteresis 477 * but it isn't very efficient). 478 * 479 * The nsw_cluster_max is constrained by the bp->b_pages[] 480 * array (MAXPHYS/PAGE_SIZE) and our locally defined 481 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 482 * constrained by the swap device interleave stripe size. 483 * 484 * Currently we hardwire nsw_wcount_async to 4. This limit is 485 * designed to prevent other I/O from having high latencies due to 486 * our pageout I/O. The value 4 works well for one or two active swap 487 * devices but is probably a little low if you have more. Even so, 488 * a higher value would probably generate only a limited improvement 489 * with three or four active swap devices since the system does not 490 * typically have to pageout at extreme bandwidths. We will want 491 * at least 2 per swap devices, and 4 is a pretty good value if you 492 * have one NFS swap device due to the command/ack latency over NFS. 493 * So it all works out pretty well. 494 */ 495 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 496 497 mtx_lock(&pbuf_mtx); 498 nsw_rcount = (nswbuf + 1) / 2; 499 nsw_wcount_sync = (nswbuf + 3) / 4; 500 nsw_wcount_async = 4; 501 nsw_wcount_async_max = nsw_wcount_async; 502 mtx_unlock(&pbuf_mtx); 503 504 /* 505 * Initialize our zone. Right now I'm just guessing on the number 506 * we need based on the number of pages in the system. Each swblock 507 * can hold 16 pages, so this is probably overkill. This reservation 508 * is typically limited to around 32MB by default. 509 */ 510 n = cnt.v_page_count / 2; 511 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 512 n = maxswzone / sizeof(struct swblock); 513 n2 = n; 514 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 515 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 516 if (swap_zone == NULL) 517 panic("failed to create swap_zone."); 518 do { 519 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 520 break; 521 /* 522 * if the allocation failed, try a zone two thirds the 523 * size of the previous attempt. 524 */ 525 n -= ((n + 2) / 3); 526 } while (n > 0); 527 if (n2 != n) 528 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 529 n2 = n; 530 531 /* 532 * Initialize our meta-data hash table. The swapper does not need to 533 * be quite as efficient as the VM system, so we do not use an 534 * oversized hash table. 535 * 536 * n: size of hash table, must be power of 2 537 * swhash_mask: hash table index mask 538 */ 539 for (n = 1; n < n2 / 8; n *= 2) 540 ; 541 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 542 swhash_mask = n - 1; 543 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 544 } 545 546 /* 547 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 548 * its metadata structures. 549 * 550 * This routine is called from the mmap and fork code to create a new 551 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 552 * and then converting it with swp_pager_meta_build(). 553 * 554 * This routine may block in vm_object_allocate() and create a named 555 * object lookup race, so we must interlock. We must also run at 556 * splvm() for the object lookup to handle races with interrupts, but 557 * we do not have to maintain splvm() in between the lookup and the 558 * add because (I believe) it is not possible to attempt to create 559 * a new swap object w/handle when a default object with that handle 560 * already exists. 561 * 562 * MPSAFE 563 */ 564 static vm_object_t 565 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 566 vm_ooffset_t offset, struct ucred *cred) 567 { 568 vm_object_t object; 569 vm_pindex_t pindex; 570 struct uidinfo *uip; 571 572 uip = NULL; 573 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 574 if (handle) { 575 mtx_lock(&Giant); 576 /* 577 * Reference existing named region or allocate new one. There 578 * should not be a race here against swp_pager_meta_build() 579 * as called from vm_page_remove() in regards to the lookup 580 * of the handle. 581 */ 582 sx_xlock(&sw_alloc_sx); 583 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 584 if (object == NULL) { 585 if (cred != NULL) { 586 uip = cred->cr_ruidinfo; 587 if (!swap_reserve_by_uid(size, uip)) { 588 sx_xunlock(&sw_alloc_sx); 589 mtx_unlock(&Giant); 590 return (NULL); 591 } 592 uihold(uip); 593 } 594 object = vm_object_allocate(OBJT_DEFAULT, pindex); 595 VM_OBJECT_LOCK(object); 596 object->handle = handle; 597 if (cred != NULL) { 598 object->uip = uip; 599 object->charge = size; 600 } 601 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 602 VM_OBJECT_UNLOCK(object); 603 } 604 sx_xunlock(&sw_alloc_sx); 605 mtx_unlock(&Giant); 606 } else { 607 if (cred != NULL) { 608 uip = cred->cr_ruidinfo; 609 if (!swap_reserve_by_uid(size, uip)) 610 return (NULL); 611 uihold(uip); 612 } 613 object = vm_object_allocate(OBJT_DEFAULT, pindex); 614 VM_OBJECT_LOCK(object); 615 if (cred != NULL) { 616 object->uip = uip; 617 object->charge = size; 618 } 619 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 620 VM_OBJECT_UNLOCK(object); 621 } 622 return (object); 623 } 624 625 /* 626 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 627 * 628 * The swap backing for the object is destroyed. The code is 629 * designed such that we can reinstantiate it later, but this 630 * routine is typically called only when the entire object is 631 * about to be destroyed. 632 * 633 * This routine may block, but no longer does. 634 * 635 * The object must be locked or unreferenceable. 636 */ 637 static void 638 swap_pager_dealloc(vm_object_t object) 639 { 640 641 /* 642 * Remove from list right away so lookups will fail if we block for 643 * pageout completion. 644 */ 645 if (object->handle != NULL) { 646 mtx_lock(&sw_alloc_mtx); 647 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 648 mtx_unlock(&sw_alloc_mtx); 649 } 650 651 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 652 vm_object_pip_wait(object, "swpdea"); 653 654 /* 655 * Free all remaining metadata. We only bother to free it from 656 * the swap meta data. We do not attempt to free swapblk's still 657 * associated with vm_page_t's for this object. We do not care 658 * if paging is still in progress on some objects. 659 */ 660 swp_pager_meta_free_all(object); 661 } 662 663 /************************************************************************ 664 * SWAP PAGER BITMAP ROUTINES * 665 ************************************************************************/ 666 667 /* 668 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 669 * 670 * Allocate swap for the requested number of pages. The starting 671 * swap block number (a page index) is returned or SWAPBLK_NONE 672 * if the allocation failed. 673 * 674 * Also has the side effect of advising that somebody made a mistake 675 * when they configured swap and didn't configure enough. 676 * 677 * Must be called at splvm() to avoid races with bitmap frees from 678 * vm_page_remove() aka swap_pager_page_removed(). 679 * 680 * This routine may not block 681 * This routine must be called at splvm(). 682 * 683 * We allocate in round-robin fashion from the configured devices. 684 */ 685 static daddr_t 686 swp_pager_getswapspace(int npages) 687 { 688 daddr_t blk; 689 struct swdevt *sp; 690 int i; 691 692 blk = SWAPBLK_NONE; 693 mtx_lock(&sw_dev_mtx); 694 sp = swdevhd; 695 for (i = 0; i < nswapdev; i++) { 696 if (sp == NULL) 697 sp = TAILQ_FIRST(&swtailq); 698 if (!(sp->sw_flags & SW_CLOSING)) { 699 blk = blist_alloc(sp->sw_blist, npages); 700 if (blk != SWAPBLK_NONE) { 701 blk += sp->sw_first; 702 sp->sw_used += npages; 703 swap_pager_avail -= npages; 704 swp_sizecheck(); 705 swdevhd = TAILQ_NEXT(sp, sw_list); 706 goto done; 707 } 708 } 709 sp = TAILQ_NEXT(sp, sw_list); 710 } 711 if (swap_pager_full != 2) { 712 printf("swap_pager_getswapspace(%d): failed\n", npages); 713 swap_pager_full = 2; 714 swap_pager_almost_full = 1; 715 } 716 swdevhd = NULL; 717 done: 718 mtx_unlock(&sw_dev_mtx); 719 return (blk); 720 } 721 722 static int 723 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 724 { 725 726 return (blk >= sp->sw_first && blk < sp->sw_end); 727 } 728 729 static void 730 swp_pager_strategy(struct buf *bp) 731 { 732 struct swdevt *sp; 733 734 mtx_lock(&sw_dev_mtx); 735 TAILQ_FOREACH(sp, &swtailq, sw_list) { 736 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 737 mtx_unlock(&sw_dev_mtx); 738 sp->sw_strategy(bp, sp); 739 return; 740 } 741 } 742 panic("Swapdev not found"); 743 } 744 745 746 /* 747 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 748 * 749 * This routine returns the specified swap blocks back to the bitmap. 750 * 751 * Note: This routine may not block (it could in the old swap code), 752 * and through the use of the new blist routines it does not block. 753 * 754 * We must be called at splvm() to avoid races with bitmap frees from 755 * vm_page_remove() aka swap_pager_page_removed(). 756 * 757 * This routine may not block 758 * This routine must be called at splvm(). 759 */ 760 static void 761 swp_pager_freeswapspace(daddr_t blk, int npages) 762 { 763 struct swdevt *sp; 764 765 mtx_lock(&sw_dev_mtx); 766 TAILQ_FOREACH(sp, &swtailq, sw_list) { 767 if (blk >= sp->sw_first && blk < sp->sw_end) { 768 sp->sw_used -= npages; 769 /* 770 * If we are attempting to stop swapping on 771 * this device, we don't want to mark any 772 * blocks free lest they be reused. 773 */ 774 if ((sp->sw_flags & SW_CLOSING) == 0) { 775 blist_free(sp->sw_blist, blk - sp->sw_first, 776 npages); 777 swap_pager_avail += npages; 778 swp_sizecheck(); 779 } 780 mtx_unlock(&sw_dev_mtx); 781 return; 782 } 783 } 784 panic("Swapdev not found"); 785 } 786 787 /* 788 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 789 * range within an object. 790 * 791 * This is a globally accessible routine. 792 * 793 * This routine removes swapblk assignments from swap metadata. 794 * 795 * The external callers of this routine typically have already destroyed 796 * or renamed vm_page_t's associated with this range in the object so 797 * we should be ok. 798 * 799 * This routine may be called at any spl. We up our spl to splvm temporarily 800 * in order to perform the metadata removal. 801 */ 802 void 803 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 804 { 805 806 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 807 swp_pager_meta_free(object, start, size); 808 } 809 810 /* 811 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 812 * 813 * Assigns swap blocks to the specified range within the object. The 814 * swap blocks are not zerod. Any previous swap assignment is destroyed. 815 * 816 * Returns 0 on success, -1 on failure. 817 */ 818 int 819 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 820 { 821 int n = 0; 822 daddr_t blk = SWAPBLK_NONE; 823 vm_pindex_t beg = start; /* save start index */ 824 825 VM_OBJECT_LOCK(object); 826 while (size) { 827 if (n == 0) { 828 n = BLIST_MAX_ALLOC; 829 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 830 n >>= 1; 831 if (n == 0) { 832 swp_pager_meta_free(object, beg, start - beg); 833 VM_OBJECT_UNLOCK(object); 834 return (-1); 835 } 836 } 837 } 838 swp_pager_meta_build(object, start, blk); 839 --size; 840 ++start; 841 ++blk; 842 --n; 843 } 844 swp_pager_meta_free(object, start, n); 845 VM_OBJECT_UNLOCK(object); 846 return (0); 847 } 848 849 /* 850 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 851 * and destroy the source. 852 * 853 * Copy any valid swapblks from the source to the destination. In 854 * cases where both the source and destination have a valid swapblk, 855 * we keep the destination's. 856 * 857 * This routine is allowed to block. It may block allocating metadata 858 * indirectly through swp_pager_meta_build() or if paging is still in 859 * progress on the source. 860 * 861 * This routine can be called at any spl 862 * 863 * XXX vm_page_collapse() kinda expects us not to block because we 864 * supposedly do not need to allocate memory, but for the moment we 865 * *may* have to get a little memory from the zone allocator, but 866 * it is taken from the interrupt memory. We should be ok. 867 * 868 * The source object contains no vm_page_t's (which is just as well) 869 * 870 * The source object is of type OBJT_SWAP. 871 * 872 * The source and destination objects must be locked or 873 * inaccessible (XXX are they ?) 874 */ 875 void 876 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 877 vm_pindex_t offset, int destroysource) 878 { 879 vm_pindex_t i; 880 881 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 882 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 883 884 /* 885 * If destroysource is set, we remove the source object from the 886 * swap_pager internal queue now. 887 */ 888 if (destroysource) { 889 if (srcobject->handle != NULL) { 890 mtx_lock(&sw_alloc_mtx); 891 TAILQ_REMOVE( 892 NOBJLIST(srcobject->handle), 893 srcobject, 894 pager_object_list 895 ); 896 mtx_unlock(&sw_alloc_mtx); 897 } 898 } 899 900 /* 901 * transfer source to destination. 902 */ 903 for (i = 0; i < dstobject->size; ++i) { 904 daddr_t dstaddr; 905 906 /* 907 * Locate (without changing) the swapblk on the destination, 908 * unless it is invalid in which case free it silently, or 909 * if the destination is a resident page, in which case the 910 * source is thrown away. 911 */ 912 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 913 914 if (dstaddr == SWAPBLK_NONE) { 915 /* 916 * Destination has no swapblk and is not resident, 917 * copy source. 918 */ 919 daddr_t srcaddr; 920 921 srcaddr = swp_pager_meta_ctl( 922 srcobject, 923 i + offset, 924 SWM_POP 925 ); 926 927 if (srcaddr != SWAPBLK_NONE) { 928 /* 929 * swp_pager_meta_build() can sleep. 930 */ 931 vm_object_pip_add(srcobject, 1); 932 VM_OBJECT_UNLOCK(srcobject); 933 vm_object_pip_add(dstobject, 1); 934 swp_pager_meta_build(dstobject, i, srcaddr); 935 vm_object_pip_wakeup(dstobject); 936 VM_OBJECT_LOCK(srcobject); 937 vm_object_pip_wakeup(srcobject); 938 } 939 } else { 940 /* 941 * Destination has valid swapblk or it is represented 942 * by a resident page. We destroy the sourceblock. 943 */ 944 945 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 946 } 947 } 948 949 /* 950 * Free left over swap blocks in source. 951 * 952 * We have to revert the type to OBJT_DEFAULT so we do not accidently 953 * double-remove the object from the swap queues. 954 */ 955 if (destroysource) { 956 swp_pager_meta_free_all(srcobject); 957 /* 958 * Reverting the type is not necessary, the caller is going 959 * to destroy srcobject directly, but I'm doing it here 960 * for consistency since we've removed the object from its 961 * queues. 962 */ 963 srcobject->type = OBJT_DEFAULT; 964 } 965 } 966 967 /* 968 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 969 * the requested page. 970 * 971 * We determine whether good backing store exists for the requested 972 * page and return TRUE if it does, FALSE if it doesn't. 973 * 974 * If TRUE, we also try to determine how much valid, contiguous backing 975 * store exists before and after the requested page within a reasonable 976 * distance. We do not try to restrict it to the swap device stripe 977 * (that is handled in getpages/putpages). It probably isn't worth 978 * doing here. 979 */ 980 static boolean_t 981 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 982 { 983 daddr_t blk0; 984 985 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 986 /* 987 * do we have good backing store at the requested index ? 988 */ 989 blk0 = swp_pager_meta_ctl(object, pindex, 0); 990 991 if (blk0 == SWAPBLK_NONE) { 992 if (before) 993 *before = 0; 994 if (after) 995 *after = 0; 996 return (FALSE); 997 } 998 999 /* 1000 * find backwards-looking contiguous good backing store 1001 */ 1002 if (before != NULL) { 1003 int i; 1004 1005 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1006 daddr_t blk; 1007 1008 if (i > pindex) 1009 break; 1010 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1011 if (blk != blk0 - i) 1012 break; 1013 } 1014 *before = (i - 1); 1015 } 1016 1017 /* 1018 * find forward-looking contiguous good backing store 1019 */ 1020 if (after != NULL) { 1021 int i; 1022 1023 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1024 daddr_t blk; 1025 1026 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1027 if (blk != blk0 + i) 1028 break; 1029 } 1030 *after = (i - 1); 1031 } 1032 return (TRUE); 1033 } 1034 1035 /* 1036 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1037 * 1038 * This removes any associated swap backing store, whether valid or 1039 * not, from the page. 1040 * 1041 * This routine is typically called when a page is made dirty, at 1042 * which point any associated swap can be freed. MADV_FREE also 1043 * calls us in a special-case situation 1044 * 1045 * NOTE!!! If the page is clean and the swap was valid, the caller 1046 * should make the page dirty before calling this routine. This routine 1047 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1048 * depends on it. 1049 * 1050 * This routine may not block 1051 * This routine must be called at splvm() 1052 */ 1053 static void 1054 swap_pager_unswapped(vm_page_t m) 1055 { 1056 1057 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1058 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1059 } 1060 1061 /* 1062 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1063 * 1064 * Attempt to retrieve (m, count) pages from backing store, but make 1065 * sure we retrieve at least m[reqpage]. We try to load in as large 1066 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1067 * belongs to the same object. 1068 * 1069 * The code is designed for asynchronous operation and 1070 * immediate-notification of 'reqpage' but tends not to be 1071 * used that way. Please do not optimize-out this algorithmic 1072 * feature, I intend to improve on it in the future. 1073 * 1074 * The parent has a single vm_object_pip_add() reference prior to 1075 * calling us and we should return with the same. 1076 * 1077 * The parent has BUSY'd the pages. We should return with 'm' 1078 * left busy, but the others adjusted. 1079 */ 1080 static int 1081 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1082 { 1083 struct buf *bp; 1084 vm_page_t mreq; 1085 int i; 1086 int j; 1087 daddr_t blk; 1088 1089 mreq = m[reqpage]; 1090 1091 KASSERT(mreq->object == object, 1092 ("swap_pager_getpages: object mismatch %p/%p", 1093 object, mreq->object)); 1094 1095 /* 1096 * Calculate range to retrieve. The pages have already been assigned 1097 * their swapblks. We require a *contiguous* range but we know it to 1098 * not span devices. If we do not supply it, bad things 1099 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1100 * loops are set up such that the case(s) are handled implicitly. 1101 * 1102 * The swp_*() calls must be made at splvm(). vm_page_free() does 1103 * not need to be, but it will go a little faster if it is. 1104 */ 1105 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1106 1107 for (i = reqpage - 1; i >= 0; --i) { 1108 daddr_t iblk; 1109 1110 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1111 if (blk != iblk + (reqpage - i)) 1112 break; 1113 } 1114 ++i; 1115 1116 for (j = reqpage + 1; j < count; ++j) { 1117 daddr_t jblk; 1118 1119 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1120 if (blk != jblk - (j - reqpage)) 1121 break; 1122 } 1123 1124 /* 1125 * free pages outside our collection range. Note: we never free 1126 * mreq, it must remain busy throughout. 1127 */ 1128 if (0 < i || j < count) { 1129 int k; 1130 1131 vm_page_lock_queues(); 1132 for (k = 0; k < i; ++k) 1133 vm_page_free(m[k]); 1134 for (k = j; k < count; ++k) 1135 vm_page_free(m[k]); 1136 vm_page_unlock_queues(); 1137 } 1138 1139 /* 1140 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1141 * still busy, but the others unbusied. 1142 */ 1143 if (blk == SWAPBLK_NONE) 1144 return (VM_PAGER_FAIL); 1145 1146 /* 1147 * Getpbuf() can sleep. 1148 */ 1149 VM_OBJECT_UNLOCK(object); 1150 /* 1151 * Get a swap buffer header to perform the IO 1152 */ 1153 bp = getpbuf(&nsw_rcount); 1154 bp->b_flags |= B_PAGING; 1155 1156 /* 1157 * map our page(s) into kva for input 1158 */ 1159 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1160 1161 bp->b_iocmd = BIO_READ; 1162 bp->b_iodone = swp_pager_async_iodone; 1163 bp->b_rcred = crhold(thread0.td_ucred); 1164 bp->b_wcred = crhold(thread0.td_ucred); 1165 bp->b_blkno = blk - (reqpage - i); 1166 bp->b_bcount = PAGE_SIZE * (j - i); 1167 bp->b_bufsize = PAGE_SIZE * (j - i); 1168 bp->b_pager.pg_reqpage = reqpage - i; 1169 1170 VM_OBJECT_LOCK(object); 1171 { 1172 int k; 1173 1174 for (k = i; k < j; ++k) { 1175 bp->b_pages[k - i] = m[k]; 1176 m[k]->oflags |= VPO_SWAPINPROG; 1177 } 1178 } 1179 bp->b_npages = j - i; 1180 1181 PCPU_INC(cnt.v_swapin); 1182 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1183 1184 /* 1185 * We still hold the lock on mreq, and our automatic completion routine 1186 * does not remove it. 1187 */ 1188 vm_object_pip_add(object, bp->b_npages); 1189 VM_OBJECT_UNLOCK(object); 1190 1191 /* 1192 * perform the I/O. NOTE!!! bp cannot be considered valid after 1193 * this point because we automatically release it on completion. 1194 * Instead, we look at the one page we are interested in which we 1195 * still hold a lock on even through the I/O completion. 1196 * 1197 * The other pages in our m[] array are also released on completion, 1198 * so we cannot assume they are valid anymore either. 1199 * 1200 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1201 */ 1202 BUF_KERNPROC(bp); 1203 swp_pager_strategy(bp); 1204 1205 /* 1206 * wait for the page we want to complete. VPO_SWAPINPROG is always 1207 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1208 * is set in the meta-data. 1209 */ 1210 VM_OBJECT_LOCK(object); 1211 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1212 mreq->oflags |= VPO_WANTED; 1213 vm_page_lock_queues(); 1214 vm_page_flag_set(mreq, PG_REFERENCED); 1215 vm_page_unlock_queues(); 1216 PCPU_INC(cnt.v_intrans); 1217 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1218 printf( 1219 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1220 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1221 } 1222 } 1223 1224 /* 1225 * mreq is left busied after completion, but all the other pages 1226 * are freed. If we had an unrecoverable read error the page will 1227 * not be valid. 1228 */ 1229 if (mreq->valid != VM_PAGE_BITS_ALL) { 1230 return (VM_PAGER_ERROR); 1231 } else { 1232 return (VM_PAGER_OK); 1233 } 1234 1235 /* 1236 * A final note: in a low swap situation, we cannot deallocate swap 1237 * and mark a page dirty here because the caller is likely to mark 1238 * the page clean when we return, causing the page to possibly revert 1239 * to all-zero's later. 1240 */ 1241 } 1242 1243 /* 1244 * swap_pager_putpages: 1245 * 1246 * Assign swap (if necessary) and initiate I/O on the specified pages. 1247 * 1248 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1249 * are automatically converted to SWAP objects. 1250 * 1251 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1252 * vm_page reservation system coupled with properly written VFS devices 1253 * should ensure that no low-memory deadlock occurs. This is an area 1254 * which needs work. 1255 * 1256 * The parent has N vm_object_pip_add() references prior to 1257 * calling us and will remove references for rtvals[] that are 1258 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1259 * completion. 1260 * 1261 * The parent has soft-busy'd the pages it passes us and will unbusy 1262 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1263 * We need to unbusy the rest on I/O completion. 1264 */ 1265 void 1266 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1267 boolean_t sync, int *rtvals) 1268 { 1269 int i; 1270 int n = 0; 1271 1272 if (count && m[0]->object != object) { 1273 panic("swap_pager_putpages: object mismatch %p/%p", 1274 object, 1275 m[0]->object 1276 ); 1277 } 1278 1279 /* 1280 * Step 1 1281 * 1282 * Turn object into OBJT_SWAP 1283 * check for bogus sysops 1284 * force sync if not pageout process 1285 */ 1286 if (object->type != OBJT_SWAP) 1287 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1288 VM_OBJECT_UNLOCK(object); 1289 1290 if (curproc != pageproc) 1291 sync = TRUE; 1292 1293 /* 1294 * Step 2 1295 * 1296 * Update nsw parameters from swap_async_max sysctl values. 1297 * Do not let the sysop crash the machine with bogus numbers. 1298 */ 1299 mtx_lock(&pbuf_mtx); 1300 if (swap_async_max != nsw_wcount_async_max) { 1301 int n; 1302 1303 /* 1304 * limit range 1305 */ 1306 if ((n = swap_async_max) > nswbuf / 2) 1307 n = nswbuf / 2; 1308 if (n < 1) 1309 n = 1; 1310 swap_async_max = n; 1311 1312 /* 1313 * Adjust difference ( if possible ). If the current async 1314 * count is too low, we may not be able to make the adjustment 1315 * at this time. 1316 */ 1317 n -= nsw_wcount_async_max; 1318 if (nsw_wcount_async + n >= 0) { 1319 nsw_wcount_async += n; 1320 nsw_wcount_async_max += n; 1321 wakeup(&nsw_wcount_async); 1322 } 1323 } 1324 mtx_unlock(&pbuf_mtx); 1325 1326 /* 1327 * Step 3 1328 * 1329 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1330 * The page is left dirty until the pageout operation completes 1331 * successfully. 1332 */ 1333 for (i = 0; i < count; i += n) { 1334 int j; 1335 struct buf *bp; 1336 daddr_t blk; 1337 1338 /* 1339 * Maximum I/O size is limited by a number of factors. 1340 */ 1341 n = min(BLIST_MAX_ALLOC, count - i); 1342 n = min(n, nsw_cluster_max); 1343 1344 /* 1345 * Get biggest block of swap we can. If we fail, fall 1346 * back and try to allocate a smaller block. Don't go 1347 * overboard trying to allocate space if it would overly 1348 * fragment swap. 1349 */ 1350 while ( 1351 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1352 n > 4 1353 ) { 1354 n >>= 1; 1355 } 1356 if (blk == SWAPBLK_NONE) { 1357 for (j = 0; j < n; ++j) 1358 rtvals[i+j] = VM_PAGER_FAIL; 1359 continue; 1360 } 1361 1362 /* 1363 * All I/O parameters have been satisfied, build the I/O 1364 * request and assign the swap space. 1365 */ 1366 if (sync == TRUE) { 1367 bp = getpbuf(&nsw_wcount_sync); 1368 } else { 1369 bp = getpbuf(&nsw_wcount_async); 1370 bp->b_flags = B_ASYNC; 1371 } 1372 bp->b_flags |= B_PAGING; 1373 bp->b_iocmd = BIO_WRITE; 1374 1375 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1376 1377 bp->b_rcred = crhold(thread0.td_ucred); 1378 bp->b_wcred = crhold(thread0.td_ucred); 1379 bp->b_bcount = PAGE_SIZE * n; 1380 bp->b_bufsize = PAGE_SIZE * n; 1381 bp->b_blkno = blk; 1382 1383 VM_OBJECT_LOCK(object); 1384 for (j = 0; j < n; ++j) { 1385 vm_page_t mreq = m[i+j]; 1386 1387 swp_pager_meta_build( 1388 mreq->object, 1389 mreq->pindex, 1390 blk + j 1391 ); 1392 vm_page_dirty(mreq); 1393 rtvals[i+j] = VM_PAGER_OK; 1394 1395 mreq->oflags |= VPO_SWAPINPROG; 1396 bp->b_pages[j] = mreq; 1397 } 1398 VM_OBJECT_UNLOCK(object); 1399 bp->b_npages = n; 1400 /* 1401 * Must set dirty range for NFS to work. 1402 */ 1403 bp->b_dirtyoff = 0; 1404 bp->b_dirtyend = bp->b_bcount; 1405 1406 PCPU_INC(cnt.v_swapout); 1407 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1408 1409 /* 1410 * asynchronous 1411 * 1412 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1413 */ 1414 if (sync == FALSE) { 1415 bp->b_iodone = swp_pager_async_iodone; 1416 BUF_KERNPROC(bp); 1417 swp_pager_strategy(bp); 1418 1419 for (j = 0; j < n; ++j) 1420 rtvals[i+j] = VM_PAGER_PEND; 1421 /* restart outter loop */ 1422 continue; 1423 } 1424 1425 /* 1426 * synchronous 1427 * 1428 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1429 */ 1430 bp->b_iodone = bdone; 1431 swp_pager_strategy(bp); 1432 1433 /* 1434 * Wait for the sync I/O to complete, then update rtvals. 1435 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1436 * our async completion routine at the end, thus avoiding a 1437 * double-free. 1438 */ 1439 bwait(bp, PVM, "swwrt"); 1440 for (j = 0; j < n; ++j) 1441 rtvals[i+j] = VM_PAGER_PEND; 1442 /* 1443 * Now that we are through with the bp, we can call the 1444 * normal async completion, which frees everything up. 1445 */ 1446 swp_pager_async_iodone(bp); 1447 } 1448 VM_OBJECT_LOCK(object); 1449 } 1450 1451 /* 1452 * swp_pager_async_iodone: 1453 * 1454 * Completion routine for asynchronous reads and writes from/to swap. 1455 * Also called manually by synchronous code to finish up a bp. 1456 * 1457 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1458 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1459 * unbusy all pages except the 'main' request page. For WRITE 1460 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1461 * because we marked them all VM_PAGER_PEND on return from putpages ). 1462 * 1463 * This routine may not block. 1464 */ 1465 static void 1466 swp_pager_async_iodone(struct buf *bp) 1467 { 1468 int i; 1469 vm_object_t object = NULL; 1470 1471 /* 1472 * report error 1473 */ 1474 if (bp->b_ioflags & BIO_ERROR) { 1475 printf( 1476 "swap_pager: I/O error - %s failed; blkno %ld," 1477 "size %ld, error %d\n", 1478 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1479 (long)bp->b_blkno, 1480 (long)bp->b_bcount, 1481 bp->b_error 1482 ); 1483 } 1484 1485 /* 1486 * remove the mapping for kernel virtual 1487 */ 1488 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1489 1490 if (bp->b_npages) { 1491 object = bp->b_pages[0]->object; 1492 VM_OBJECT_LOCK(object); 1493 } 1494 vm_page_lock_queues(); 1495 /* 1496 * cleanup pages. If an error occurs writing to swap, we are in 1497 * very serious trouble. If it happens to be a disk error, though, 1498 * we may be able to recover by reassigning the swap later on. So 1499 * in this case we remove the m->swapblk assignment for the page 1500 * but do not free it in the rlist. The errornous block(s) are thus 1501 * never reallocated as swap. Redirty the page and continue. 1502 */ 1503 for (i = 0; i < bp->b_npages; ++i) { 1504 vm_page_t m = bp->b_pages[i]; 1505 1506 m->oflags &= ~VPO_SWAPINPROG; 1507 1508 if (bp->b_ioflags & BIO_ERROR) { 1509 /* 1510 * If an error occurs I'd love to throw the swapblk 1511 * away without freeing it back to swapspace, so it 1512 * can never be used again. But I can't from an 1513 * interrupt. 1514 */ 1515 if (bp->b_iocmd == BIO_READ) { 1516 /* 1517 * When reading, reqpage needs to stay 1518 * locked for the parent, but all other 1519 * pages can be freed. We still want to 1520 * wakeup the parent waiting on the page, 1521 * though. ( also: pg_reqpage can be -1 and 1522 * not match anything ). 1523 * 1524 * We have to wake specifically requested pages 1525 * up too because we cleared VPO_SWAPINPROG and 1526 * someone may be waiting for that. 1527 * 1528 * NOTE: for reads, m->dirty will probably 1529 * be overridden by the original caller of 1530 * getpages so don't play cute tricks here. 1531 */ 1532 m->valid = 0; 1533 if (i != bp->b_pager.pg_reqpage) 1534 vm_page_free(m); 1535 else 1536 vm_page_flash(m); 1537 /* 1538 * If i == bp->b_pager.pg_reqpage, do not wake 1539 * the page up. The caller needs to. 1540 */ 1541 } else { 1542 /* 1543 * If a write error occurs, reactivate page 1544 * so it doesn't clog the inactive list, 1545 * then finish the I/O. 1546 */ 1547 vm_page_dirty(m); 1548 vm_page_activate(m); 1549 vm_page_io_finish(m); 1550 } 1551 } else if (bp->b_iocmd == BIO_READ) { 1552 /* 1553 * NOTE: for reads, m->dirty will probably be 1554 * overridden by the original caller of getpages so 1555 * we cannot set them in order to free the underlying 1556 * swap in a low-swap situation. I don't think we'd 1557 * want to do that anyway, but it was an optimization 1558 * that existed in the old swapper for a time before 1559 * it got ripped out due to precisely this problem. 1560 * 1561 * If not the requested page then deactivate it. 1562 * 1563 * Note that the requested page, reqpage, is left 1564 * busied, but we still have to wake it up. The 1565 * other pages are released (unbusied) by 1566 * vm_page_wakeup(). 1567 */ 1568 KASSERT(!pmap_page_is_mapped(m), 1569 ("swp_pager_async_iodone: page %p is mapped", m)); 1570 m->valid = VM_PAGE_BITS_ALL; 1571 KASSERT(m->dirty == 0, 1572 ("swp_pager_async_iodone: page %p is dirty", m)); 1573 1574 /* 1575 * We have to wake specifically requested pages 1576 * up too because we cleared VPO_SWAPINPROG and 1577 * could be waiting for it in getpages. However, 1578 * be sure to not unbusy getpages specifically 1579 * requested page - getpages expects it to be 1580 * left busy. 1581 */ 1582 if (i != bp->b_pager.pg_reqpage) { 1583 vm_page_deactivate(m); 1584 vm_page_wakeup(m); 1585 } else { 1586 vm_page_flash(m); 1587 } 1588 } else { 1589 /* 1590 * For write success, clear the dirty 1591 * status, then finish the I/O ( which decrements the 1592 * busy count and possibly wakes waiter's up ). 1593 */ 1594 KASSERT((m->flags & PG_WRITEABLE) == 0, 1595 ("swp_pager_async_iodone: page %p is not write" 1596 " protected", m)); 1597 vm_page_undirty(m); 1598 vm_page_io_finish(m); 1599 if (vm_page_count_severe()) 1600 vm_page_try_to_cache(m); 1601 } 1602 } 1603 vm_page_unlock_queues(); 1604 1605 /* 1606 * adjust pip. NOTE: the original parent may still have its own 1607 * pip refs on the object. 1608 */ 1609 if (object != NULL) { 1610 vm_object_pip_wakeupn(object, bp->b_npages); 1611 VM_OBJECT_UNLOCK(object); 1612 } 1613 1614 /* 1615 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1616 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1617 * trigger a KASSERT in relpbuf(). 1618 */ 1619 if (bp->b_vp) { 1620 bp->b_vp = NULL; 1621 bp->b_bufobj = NULL; 1622 } 1623 /* 1624 * release the physical I/O buffer 1625 */ 1626 relpbuf( 1627 bp, 1628 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1629 ((bp->b_flags & B_ASYNC) ? 1630 &nsw_wcount_async : 1631 &nsw_wcount_sync 1632 ) 1633 ) 1634 ); 1635 } 1636 1637 /* 1638 * swap_pager_isswapped: 1639 * 1640 * Return 1 if at least one page in the given object is paged 1641 * out to the given swap device. 1642 * 1643 * This routine may not block. 1644 */ 1645 int 1646 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1647 { 1648 daddr_t index = 0; 1649 int bcount; 1650 int i; 1651 1652 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1653 if (object->type != OBJT_SWAP) 1654 return (0); 1655 1656 mtx_lock(&swhash_mtx); 1657 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1658 struct swblock *swap; 1659 1660 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1661 for (i = 0; i < SWAP_META_PAGES; ++i) { 1662 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1663 mtx_unlock(&swhash_mtx); 1664 return (1); 1665 } 1666 } 1667 } 1668 index += SWAP_META_PAGES; 1669 if (index > 0x20000000) 1670 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1671 } 1672 mtx_unlock(&swhash_mtx); 1673 return (0); 1674 } 1675 1676 /* 1677 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1678 * 1679 * This routine dissociates the page at the given index within a 1680 * swap block from its backing store, paging it in if necessary. 1681 * If the page is paged in, it is placed in the inactive queue, 1682 * since it had its backing store ripped out from under it. 1683 * We also attempt to swap in all other pages in the swap block, 1684 * we only guarantee that the one at the specified index is 1685 * paged in. 1686 * 1687 * XXX - The code to page the whole block in doesn't work, so we 1688 * revert to the one-by-one behavior for now. Sigh. 1689 */ 1690 static inline void 1691 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1692 { 1693 vm_page_t m; 1694 1695 vm_object_pip_add(object, 1); 1696 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1697 if (m->valid == VM_PAGE_BITS_ALL) { 1698 vm_object_pip_subtract(object, 1); 1699 vm_page_lock_queues(); 1700 vm_page_activate(m); 1701 vm_page_dirty(m); 1702 vm_page_unlock_queues(); 1703 vm_page_wakeup(m); 1704 vm_pager_page_unswapped(m); 1705 return; 1706 } 1707 1708 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1709 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1710 vm_object_pip_subtract(object, 1); 1711 vm_page_lock_queues(); 1712 vm_page_dirty(m); 1713 vm_page_dontneed(m); 1714 vm_page_unlock_queues(); 1715 vm_page_wakeup(m); 1716 vm_pager_page_unswapped(m); 1717 } 1718 1719 /* 1720 * swap_pager_swapoff: 1721 * 1722 * Page in all of the pages that have been paged out to the 1723 * given device. The corresponding blocks in the bitmap must be 1724 * marked as allocated and the device must be flagged SW_CLOSING. 1725 * There may be no processes swapped out to the device. 1726 * 1727 * This routine may block. 1728 */ 1729 static void 1730 swap_pager_swapoff(struct swdevt *sp) 1731 { 1732 struct swblock *swap; 1733 int i, j, retries; 1734 1735 GIANT_REQUIRED; 1736 1737 retries = 0; 1738 full_rescan: 1739 mtx_lock(&swhash_mtx); 1740 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1741 restart: 1742 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1743 vm_object_t object = swap->swb_object; 1744 vm_pindex_t pindex = swap->swb_index; 1745 for (j = 0; j < SWAP_META_PAGES; ++j) { 1746 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1747 /* avoid deadlock */ 1748 if (!VM_OBJECT_TRYLOCK(object)) { 1749 break; 1750 } else { 1751 mtx_unlock(&swhash_mtx); 1752 swp_pager_force_pagein(object, 1753 pindex + j); 1754 VM_OBJECT_UNLOCK(object); 1755 mtx_lock(&swhash_mtx); 1756 goto restart; 1757 } 1758 } 1759 } 1760 } 1761 } 1762 mtx_unlock(&swhash_mtx); 1763 if (sp->sw_used) { 1764 /* 1765 * Objects may be locked or paging to the device being 1766 * removed, so we will miss their pages and need to 1767 * make another pass. We have marked this device as 1768 * SW_CLOSING, so the activity should finish soon. 1769 */ 1770 retries++; 1771 if (retries > 100) { 1772 panic("swapoff: failed to locate %d swap blocks", 1773 sp->sw_used); 1774 } 1775 pause("swpoff", hz / 20); 1776 goto full_rescan; 1777 } 1778 } 1779 1780 /************************************************************************ 1781 * SWAP META DATA * 1782 ************************************************************************ 1783 * 1784 * These routines manipulate the swap metadata stored in the 1785 * OBJT_SWAP object. All swp_*() routines must be called at 1786 * splvm() because swap can be freed up by the low level vm_page 1787 * code which might be called from interrupts beyond what splbio() covers. 1788 * 1789 * Swap metadata is implemented with a global hash and not directly 1790 * linked into the object. Instead the object simply contains 1791 * appropriate tracking counters. 1792 */ 1793 1794 /* 1795 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1796 * 1797 * We first convert the object to a swap object if it is a default 1798 * object. 1799 * 1800 * The specified swapblk is added to the object's swap metadata. If 1801 * the swapblk is not valid, it is freed instead. Any previously 1802 * assigned swapblk is freed. 1803 * 1804 * This routine must be called at splvm(), except when used to convert 1805 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1806 */ 1807 static void 1808 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1809 { 1810 struct swblock *swap; 1811 struct swblock **pswap; 1812 int idx; 1813 1814 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1815 /* 1816 * Convert default object to swap object if necessary 1817 */ 1818 if (object->type != OBJT_SWAP) { 1819 object->type = OBJT_SWAP; 1820 object->un_pager.swp.swp_bcount = 0; 1821 1822 if (object->handle != NULL) { 1823 mtx_lock(&sw_alloc_mtx); 1824 TAILQ_INSERT_TAIL( 1825 NOBJLIST(object->handle), 1826 object, 1827 pager_object_list 1828 ); 1829 mtx_unlock(&sw_alloc_mtx); 1830 } 1831 } 1832 1833 /* 1834 * Locate hash entry. If not found create, but if we aren't adding 1835 * anything just return. If we run out of space in the map we wait 1836 * and, since the hash table may have changed, retry. 1837 */ 1838 retry: 1839 mtx_lock(&swhash_mtx); 1840 pswap = swp_pager_hash(object, pindex); 1841 1842 if ((swap = *pswap) == NULL) { 1843 int i; 1844 1845 if (swapblk == SWAPBLK_NONE) 1846 goto done; 1847 1848 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1849 if (swap == NULL) { 1850 mtx_unlock(&swhash_mtx); 1851 VM_OBJECT_UNLOCK(object); 1852 if (uma_zone_exhausted(swap_zone)) { 1853 printf("swap zone exhausted, increase kern.maxswzone\n"); 1854 vm_pageout_oom(VM_OOM_SWAPZ); 1855 pause("swzonex", 10); 1856 } else 1857 VM_WAIT; 1858 VM_OBJECT_LOCK(object); 1859 goto retry; 1860 } 1861 1862 swap->swb_hnext = NULL; 1863 swap->swb_object = object; 1864 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1865 swap->swb_count = 0; 1866 1867 ++object->un_pager.swp.swp_bcount; 1868 1869 for (i = 0; i < SWAP_META_PAGES; ++i) 1870 swap->swb_pages[i] = SWAPBLK_NONE; 1871 } 1872 1873 /* 1874 * Delete prior contents of metadata 1875 */ 1876 idx = pindex & SWAP_META_MASK; 1877 1878 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1879 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1880 --swap->swb_count; 1881 } 1882 1883 /* 1884 * Enter block into metadata 1885 */ 1886 swap->swb_pages[idx] = swapblk; 1887 if (swapblk != SWAPBLK_NONE) 1888 ++swap->swb_count; 1889 done: 1890 mtx_unlock(&swhash_mtx); 1891 } 1892 1893 /* 1894 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1895 * 1896 * The requested range of blocks is freed, with any associated swap 1897 * returned to the swap bitmap. 1898 * 1899 * This routine will free swap metadata structures as they are cleaned 1900 * out. This routine does *NOT* operate on swap metadata associated 1901 * with resident pages. 1902 * 1903 * This routine must be called at splvm() 1904 */ 1905 static void 1906 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1907 { 1908 1909 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1910 if (object->type != OBJT_SWAP) 1911 return; 1912 1913 while (count > 0) { 1914 struct swblock **pswap; 1915 struct swblock *swap; 1916 1917 mtx_lock(&swhash_mtx); 1918 pswap = swp_pager_hash(object, index); 1919 1920 if ((swap = *pswap) != NULL) { 1921 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1922 1923 if (v != SWAPBLK_NONE) { 1924 swp_pager_freeswapspace(v, 1); 1925 swap->swb_pages[index & SWAP_META_MASK] = 1926 SWAPBLK_NONE; 1927 if (--swap->swb_count == 0) { 1928 *pswap = swap->swb_hnext; 1929 uma_zfree(swap_zone, swap); 1930 --object->un_pager.swp.swp_bcount; 1931 } 1932 } 1933 --count; 1934 ++index; 1935 } else { 1936 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1937 count -= n; 1938 index += n; 1939 } 1940 mtx_unlock(&swhash_mtx); 1941 } 1942 } 1943 1944 /* 1945 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1946 * 1947 * This routine locates and destroys all swap metadata associated with 1948 * an object. 1949 * 1950 * This routine must be called at splvm() 1951 */ 1952 static void 1953 swp_pager_meta_free_all(vm_object_t object) 1954 { 1955 daddr_t index = 0; 1956 1957 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1958 if (object->type != OBJT_SWAP) 1959 return; 1960 1961 while (object->un_pager.swp.swp_bcount) { 1962 struct swblock **pswap; 1963 struct swblock *swap; 1964 1965 mtx_lock(&swhash_mtx); 1966 pswap = swp_pager_hash(object, index); 1967 if ((swap = *pswap) != NULL) { 1968 int i; 1969 1970 for (i = 0; i < SWAP_META_PAGES; ++i) { 1971 daddr_t v = swap->swb_pages[i]; 1972 if (v != SWAPBLK_NONE) { 1973 --swap->swb_count; 1974 swp_pager_freeswapspace(v, 1); 1975 } 1976 } 1977 if (swap->swb_count != 0) 1978 panic("swap_pager_meta_free_all: swb_count != 0"); 1979 *pswap = swap->swb_hnext; 1980 uma_zfree(swap_zone, swap); 1981 --object->un_pager.swp.swp_bcount; 1982 } 1983 mtx_unlock(&swhash_mtx); 1984 index += SWAP_META_PAGES; 1985 if (index > 0x20000000) 1986 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1987 } 1988 } 1989 1990 /* 1991 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1992 * 1993 * This routine is capable of looking up, popping, or freeing 1994 * swapblk assignments in the swap meta data or in the vm_page_t. 1995 * The routine typically returns the swapblk being looked-up, or popped, 1996 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1997 * was invalid. This routine will automatically free any invalid 1998 * meta-data swapblks. 1999 * 2000 * It is not possible to store invalid swapblks in the swap meta data 2001 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2002 * 2003 * When acting on a busy resident page and paging is in progress, we 2004 * have to wait until paging is complete but otherwise can act on the 2005 * busy page. 2006 * 2007 * This routine must be called at splvm(). 2008 * 2009 * SWM_FREE remove and free swap block from metadata 2010 * SWM_POP remove from meta data but do not free.. pop it out 2011 */ 2012 static daddr_t 2013 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2014 { 2015 struct swblock **pswap; 2016 struct swblock *swap; 2017 daddr_t r1; 2018 int idx; 2019 2020 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2021 /* 2022 * The meta data only exists of the object is OBJT_SWAP 2023 * and even then might not be allocated yet. 2024 */ 2025 if (object->type != OBJT_SWAP) 2026 return (SWAPBLK_NONE); 2027 2028 r1 = SWAPBLK_NONE; 2029 mtx_lock(&swhash_mtx); 2030 pswap = swp_pager_hash(object, pindex); 2031 2032 if ((swap = *pswap) != NULL) { 2033 idx = pindex & SWAP_META_MASK; 2034 r1 = swap->swb_pages[idx]; 2035 2036 if (r1 != SWAPBLK_NONE) { 2037 if (flags & SWM_FREE) { 2038 swp_pager_freeswapspace(r1, 1); 2039 r1 = SWAPBLK_NONE; 2040 } 2041 if (flags & (SWM_FREE|SWM_POP)) { 2042 swap->swb_pages[idx] = SWAPBLK_NONE; 2043 if (--swap->swb_count == 0) { 2044 *pswap = swap->swb_hnext; 2045 uma_zfree(swap_zone, swap); 2046 --object->un_pager.swp.swp_bcount; 2047 } 2048 } 2049 } 2050 } 2051 mtx_unlock(&swhash_mtx); 2052 return (r1); 2053 } 2054 2055 /* 2056 * System call swapon(name) enables swapping on device name, 2057 * which must be in the swdevsw. Return EBUSY 2058 * if already swapping on this device. 2059 */ 2060 #ifndef _SYS_SYSPROTO_H_ 2061 struct swapon_args { 2062 char *name; 2063 }; 2064 #endif 2065 2066 /* 2067 * MPSAFE 2068 */ 2069 /* ARGSUSED */ 2070 int 2071 swapon(struct thread *td, struct swapon_args *uap) 2072 { 2073 struct vattr attr; 2074 struct vnode *vp; 2075 struct nameidata nd; 2076 int error; 2077 2078 error = priv_check(td, PRIV_SWAPON); 2079 if (error) 2080 return (error); 2081 2082 mtx_lock(&Giant); 2083 while (swdev_syscall_active) 2084 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2085 swdev_syscall_active = 1; 2086 2087 /* 2088 * Swap metadata may not fit in the KVM if we have physical 2089 * memory of >1GB. 2090 */ 2091 if (swap_zone == NULL) { 2092 error = ENOMEM; 2093 goto done; 2094 } 2095 2096 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2097 uap->name, td); 2098 error = namei(&nd); 2099 if (error) 2100 goto done; 2101 2102 NDFREE(&nd, NDF_ONLY_PNBUF); 2103 vp = nd.ni_vp; 2104 2105 if (vn_isdisk(vp, &error)) { 2106 error = swapongeom(td, vp); 2107 } else if (vp->v_type == VREG && 2108 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2109 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2110 /* 2111 * Allow direct swapping to NFS regular files in the same 2112 * way that nfs_mountroot() sets up diskless swapping. 2113 */ 2114 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2115 } 2116 2117 if (error) 2118 vrele(vp); 2119 done: 2120 swdev_syscall_active = 0; 2121 wakeup_one(&swdev_syscall_active); 2122 mtx_unlock(&Giant); 2123 return (error); 2124 } 2125 2126 static void 2127 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2128 { 2129 struct swdevt *sp, *tsp; 2130 swblk_t dvbase; 2131 u_long mblocks; 2132 2133 /* 2134 * If we go beyond this, we get overflows in the radix 2135 * tree bitmap code. 2136 */ 2137 mblocks = 0x40000000 / BLIST_META_RADIX; 2138 if (nblks > mblocks) { 2139 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2140 mblocks); 2141 nblks = mblocks; 2142 } 2143 /* 2144 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2145 * First chop nblks off to page-align it, then convert. 2146 * 2147 * sw->sw_nblks is in page-sized chunks now too. 2148 */ 2149 nblks &= ~(ctodb(1) - 1); 2150 nblks = dbtoc(nblks); 2151 2152 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2153 sp->sw_vp = vp; 2154 sp->sw_id = id; 2155 sp->sw_dev = dev; 2156 sp->sw_flags = 0; 2157 sp->sw_nblks = nblks; 2158 sp->sw_used = 0; 2159 sp->sw_strategy = strategy; 2160 sp->sw_close = close; 2161 2162 sp->sw_blist = blist_create(nblks, M_WAITOK); 2163 /* 2164 * Do not free the first two block in order to avoid overwriting 2165 * any bsd label at the front of the partition 2166 */ 2167 blist_free(sp->sw_blist, 2, nblks - 2); 2168 2169 dvbase = 0; 2170 mtx_lock(&sw_dev_mtx); 2171 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2172 if (tsp->sw_end >= dvbase) { 2173 /* 2174 * We put one uncovered page between the devices 2175 * in order to definitively prevent any cross-device 2176 * I/O requests 2177 */ 2178 dvbase = tsp->sw_end + 1; 2179 } 2180 } 2181 sp->sw_first = dvbase; 2182 sp->sw_end = dvbase + nblks; 2183 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2184 nswapdev++; 2185 swap_pager_avail += nblks; 2186 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2187 swp_sizecheck(); 2188 mtx_unlock(&sw_dev_mtx); 2189 } 2190 2191 /* 2192 * SYSCALL: swapoff(devname) 2193 * 2194 * Disable swapping on the given device. 2195 * 2196 * XXX: Badly designed system call: it should use a device index 2197 * rather than filename as specification. We keep sw_vp around 2198 * only to make this work. 2199 */ 2200 #ifndef _SYS_SYSPROTO_H_ 2201 struct swapoff_args { 2202 char *name; 2203 }; 2204 #endif 2205 2206 /* 2207 * MPSAFE 2208 */ 2209 /* ARGSUSED */ 2210 int 2211 swapoff(struct thread *td, struct swapoff_args *uap) 2212 { 2213 struct vnode *vp; 2214 struct nameidata nd; 2215 struct swdevt *sp; 2216 int error; 2217 2218 error = priv_check(td, PRIV_SWAPOFF); 2219 if (error) 2220 return (error); 2221 2222 mtx_lock(&Giant); 2223 while (swdev_syscall_active) 2224 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2225 swdev_syscall_active = 1; 2226 2227 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2228 td); 2229 error = namei(&nd); 2230 if (error) 2231 goto done; 2232 NDFREE(&nd, NDF_ONLY_PNBUF); 2233 vp = nd.ni_vp; 2234 2235 mtx_lock(&sw_dev_mtx); 2236 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2237 if (sp->sw_vp == vp) 2238 break; 2239 } 2240 mtx_unlock(&sw_dev_mtx); 2241 if (sp == NULL) { 2242 error = EINVAL; 2243 goto done; 2244 } 2245 error = swapoff_one(sp, td->td_ucred); 2246 done: 2247 swdev_syscall_active = 0; 2248 wakeup_one(&swdev_syscall_active); 2249 mtx_unlock(&Giant); 2250 return (error); 2251 } 2252 2253 static int 2254 swapoff_one(struct swdevt *sp, struct ucred *cred) 2255 { 2256 u_long nblks, dvbase; 2257 #ifdef MAC 2258 int error; 2259 #endif 2260 2261 mtx_assert(&Giant, MA_OWNED); 2262 #ifdef MAC 2263 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2264 error = mac_system_check_swapoff(cred, sp->sw_vp); 2265 (void) VOP_UNLOCK(sp->sw_vp, 0); 2266 if (error != 0) 2267 return (error); 2268 #endif 2269 nblks = sp->sw_nblks; 2270 2271 /* 2272 * We can turn off this swap device safely only if the 2273 * available virtual memory in the system will fit the amount 2274 * of data we will have to page back in, plus an epsilon so 2275 * the system doesn't become critically low on swap space. 2276 */ 2277 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2278 nblks + nswap_lowat) { 2279 return (ENOMEM); 2280 } 2281 2282 /* 2283 * Prevent further allocations on this device. 2284 */ 2285 mtx_lock(&sw_dev_mtx); 2286 sp->sw_flags |= SW_CLOSING; 2287 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2288 swap_pager_avail -= blist_fill(sp->sw_blist, 2289 dvbase, dmmax); 2290 } 2291 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2292 mtx_unlock(&sw_dev_mtx); 2293 2294 /* 2295 * Page in the contents of the device and close it. 2296 */ 2297 swap_pager_swapoff(sp); 2298 2299 sp->sw_close(curthread, sp); 2300 sp->sw_id = NULL; 2301 mtx_lock(&sw_dev_mtx); 2302 TAILQ_REMOVE(&swtailq, sp, sw_list); 2303 nswapdev--; 2304 if (nswapdev == 0) { 2305 swap_pager_full = 2; 2306 swap_pager_almost_full = 1; 2307 } 2308 if (swdevhd == sp) 2309 swdevhd = NULL; 2310 mtx_unlock(&sw_dev_mtx); 2311 blist_destroy(sp->sw_blist); 2312 free(sp, M_VMPGDATA); 2313 return (0); 2314 } 2315 2316 void 2317 swapoff_all(void) 2318 { 2319 struct swdevt *sp, *spt; 2320 const char *devname; 2321 int error; 2322 2323 mtx_lock(&Giant); 2324 while (swdev_syscall_active) 2325 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2326 swdev_syscall_active = 1; 2327 2328 mtx_lock(&sw_dev_mtx); 2329 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2330 mtx_unlock(&sw_dev_mtx); 2331 if (vn_isdisk(sp->sw_vp, NULL)) 2332 devname = sp->sw_vp->v_rdev->si_name; 2333 else 2334 devname = "[file]"; 2335 error = swapoff_one(sp, thread0.td_ucred); 2336 if (error != 0) { 2337 printf("Cannot remove swap device %s (error=%d), " 2338 "skipping.\n", devname, error); 2339 } else if (bootverbose) { 2340 printf("Swap device %s removed.\n", devname); 2341 } 2342 mtx_lock(&sw_dev_mtx); 2343 } 2344 mtx_unlock(&sw_dev_mtx); 2345 2346 swdev_syscall_active = 0; 2347 wakeup_one(&swdev_syscall_active); 2348 mtx_unlock(&Giant); 2349 } 2350 2351 void 2352 swap_pager_status(int *total, int *used) 2353 { 2354 struct swdevt *sp; 2355 2356 *total = 0; 2357 *used = 0; 2358 mtx_lock(&sw_dev_mtx); 2359 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2360 *total += sp->sw_nblks; 2361 *used += sp->sw_used; 2362 } 2363 mtx_unlock(&sw_dev_mtx); 2364 } 2365 2366 static int 2367 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2368 { 2369 int *name = (int *)arg1; 2370 int error, n; 2371 struct xswdev xs; 2372 struct swdevt *sp; 2373 2374 if (arg2 != 1) /* name length */ 2375 return (EINVAL); 2376 2377 n = 0; 2378 mtx_lock(&sw_dev_mtx); 2379 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2380 if (n == *name) { 2381 mtx_unlock(&sw_dev_mtx); 2382 xs.xsw_version = XSWDEV_VERSION; 2383 xs.xsw_dev = sp->sw_dev; 2384 xs.xsw_flags = sp->sw_flags; 2385 xs.xsw_nblks = sp->sw_nblks; 2386 xs.xsw_used = sp->sw_used; 2387 2388 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2389 return (error); 2390 } 2391 n++; 2392 } 2393 mtx_unlock(&sw_dev_mtx); 2394 return (ENOENT); 2395 } 2396 2397 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2398 "Number of swap devices"); 2399 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2400 "Swap statistics by device"); 2401 2402 /* 2403 * vmspace_swap_count() - count the approximate swap usage in pages for a 2404 * vmspace. 2405 * 2406 * The map must be locked. 2407 * 2408 * Swap usage is determined by taking the proportional swap used by 2409 * VM objects backing the VM map. To make up for fractional losses, 2410 * if the VM object has any swap use at all the associated map entries 2411 * count for at least 1 swap page. 2412 */ 2413 int 2414 vmspace_swap_count(struct vmspace *vmspace) 2415 { 2416 vm_map_t map = &vmspace->vm_map; 2417 vm_map_entry_t cur; 2418 int count = 0; 2419 2420 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2421 vm_object_t object; 2422 2423 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2424 (object = cur->object.vm_object) != NULL) { 2425 VM_OBJECT_LOCK(object); 2426 if (object->type == OBJT_SWAP && 2427 object->un_pager.swp.swp_bcount != 0) { 2428 int n = (cur->end - cur->start) / PAGE_SIZE; 2429 2430 count += object->un_pager.swp.swp_bcount * 2431 SWAP_META_PAGES * n / object->size + 1; 2432 } 2433 VM_OBJECT_UNLOCK(object); 2434 } 2435 } 2436 return (count); 2437 } 2438 2439 /* 2440 * GEOM backend 2441 * 2442 * Swapping onto disk devices. 2443 * 2444 */ 2445 2446 static g_orphan_t swapgeom_orphan; 2447 2448 static struct g_class g_swap_class = { 2449 .name = "SWAP", 2450 .version = G_VERSION, 2451 .orphan = swapgeom_orphan, 2452 }; 2453 2454 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2455 2456 2457 static void 2458 swapgeom_done(struct bio *bp2) 2459 { 2460 struct buf *bp; 2461 2462 bp = bp2->bio_caller2; 2463 bp->b_ioflags = bp2->bio_flags; 2464 if (bp2->bio_error) 2465 bp->b_ioflags |= BIO_ERROR; 2466 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2467 bp->b_error = bp2->bio_error; 2468 bufdone(bp); 2469 g_destroy_bio(bp2); 2470 } 2471 2472 static void 2473 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2474 { 2475 struct bio *bio; 2476 struct g_consumer *cp; 2477 2478 cp = sp->sw_id; 2479 if (cp == NULL) { 2480 bp->b_error = ENXIO; 2481 bp->b_ioflags |= BIO_ERROR; 2482 bufdone(bp); 2483 return; 2484 } 2485 if (bp->b_iocmd == BIO_WRITE) 2486 bio = g_new_bio(); 2487 else 2488 bio = g_alloc_bio(); 2489 if (bio == NULL) { 2490 bp->b_error = ENOMEM; 2491 bp->b_ioflags |= BIO_ERROR; 2492 bufdone(bp); 2493 return; 2494 } 2495 2496 bio->bio_caller2 = bp; 2497 bio->bio_cmd = bp->b_iocmd; 2498 bio->bio_data = bp->b_data; 2499 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2500 bio->bio_length = bp->b_bcount; 2501 bio->bio_done = swapgeom_done; 2502 g_io_request(bio, cp); 2503 return; 2504 } 2505 2506 static void 2507 swapgeom_orphan(struct g_consumer *cp) 2508 { 2509 struct swdevt *sp; 2510 2511 mtx_lock(&sw_dev_mtx); 2512 TAILQ_FOREACH(sp, &swtailq, sw_list) 2513 if (sp->sw_id == cp) 2514 sp->sw_id = NULL; 2515 mtx_unlock(&sw_dev_mtx); 2516 } 2517 2518 static void 2519 swapgeom_close_ev(void *arg, int flags) 2520 { 2521 struct g_consumer *cp; 2522 2523 cp = arg; 2524 g_access(cp, -1, -1, 0); 2525 g_detach(cp); 2526 g_destroy_consumer(cp); 2527 } 2528 2529 static void 2530 swapgeom_close(struct thread *td, struct swdevt *sw) 2531 { 2532 2533 /* XXX: direct call when Giant untangled */ 2534 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2535 } 2536 2537 2538 struct swh0h0 { 2539 struct cdev *dev; 2540 struct vnode *vp; 2541 int error; 2542 }; 2543 2544 static void 2545 swapongeom_ev(void *arg, int flags) 2546 { 2547 struct swh0h0 *swh; 2548 struct g_provider *pp; 2549 struct g_consumer *cp; 2550 static struct g_geom *gp; 2551 struct swdevt *sp; 2552 u_long nblks; 2553 int error; 2554 2555 swh = arg; 2556 swh->error = 0; 2557 pp = g_dev_getprovider(swh->dev); 2558 if (pp == NULL) { 2559 swh->error = ENODEV; 2560 return; 2561 } 2562 mtx_lock(&sw_dev_mtx); 2563 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2564 cp = sp->sw_id; 2565 if (cp != NULL && cp->provider == pp) { 2566 mtx_unlock(&sw_dev_mtx); 2567 swh->error = EBUSY; 2568 return; 2569 } 2570 } 2571 mtx_unlock(&sw_dev_mtx); 2572 if (gp == NULL) 2573 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2574 cp = g_new_consumer(gp); 2575 g_attach(cp, pp); 2576 /* 2577 * XXX: Everytime you think you can improve the margin for 2578 * footshooting, somebody depends on the ability to do so: 2579 * savecore(8) wants to write to our swapdev so we cannot 2580 * set an exclusive count :-( 2581 */ 2582 error = g_access(cp, 1, 1, 0); 2583 if (error) { 2584 g_detach(cp); 2585 g_destroy_consumer(cp); 2586 swh->error = error; 2587 return; 2588 } 2589 nblks = pp->mediasize / DEV_BSIZE; 2590 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2591 swapgeom_close, dev2udev(swh->dev)); 2592 swh->error = 0; 2593 return; 2594 } 2595 2596 static int 2597 swapongeom(struct thread *td, struct vnode *vp) 2598 { 2599 int error; 2600 struct swh0h0 swh; 2601 2602 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2603 2604 swh.dev = vp->v_rdev; 2605 swh.vp = vp; 2606 swh.error = 0; 2607 /* XXX: direct call when Giant untangled */ 2608 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2609 if (!error) 2610 error = swh.error; 2611 VOP_UNLOCK(vp, 0); 2612 return (error); 2613 } 2614 2615 /* 2616 * VNODE backend 2617 * 2618 * This is used mainly for network filesystem (read: probably only tested 2619 * with NFS) swapfiles. 2620 * 2621 */ 2622 2623 static void 2624 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2625 { 2626 struct vnode *vp2; 2627 2628 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2629 2630 vp2 = sp->sw_id; 2631 vhold(vp2); 2632 if (bp->b_iocmd == BIO_WRITE) { 2633 if (bp->b_bufobj) 2634 bufobj_wdrop(bp->b_bufobj); 2635 bufobj_wref(&vp2->v_bufobj); 2636 } 2637 if (bp->b_bufobj != &vp2->v_bufobj) 2638 bp->b_bufobj = &vp2->v_bufobj; 2639 bp->b_vp = vp2; 2640 bp->b_iooffset = dbtob(bp->b_blkno); 2641 bstrategy(bp); 2642 return; 2643 } 2644 2645 static void 2646 swapdev_close(struct thread *td, struct swdevt *sp) 2647 { 2648 2649 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2650 vrele(sp->sw_vp); 2651 } 2652 2653 2654 static int 2655 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2656 { 2657 struct swdevt *sp; 2658 int error; 2659 2660 if (nblks == 0) 2661 return (ENXIO); 2662 mtx_lock(&sw_dev_mtx); 2663 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2664 if (sp->sw_id == vp) { 2665 mtx_unlock(&sw_dev_mtx); 2666 return (EBUSY); 2667 } 2668 } 2669 mtx_unlock(&sw_dev_mtx); 2670 2671 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2672 #ifdef MAC 2673 error = mac_system_check_swapon(td->td_ucred, vp); 2674 if (error == 0) 2675 #endif 2676 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2677 (void) VOP_UNLOCK(vp, 0); 2678 if (error) 2679 return (error); 2680 2681 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2682 NODEV); 2683 return (0); 2684 } 2685