xref: /freebsd/sys/vm/swap_pager.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/resource.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysproto.h>
93 #include <sys/blist.h>
94 #include <sys/lock.h>
95 #include <sys/sx.h>
96 #include <sys/vmmeter.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/vm.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_param.h>
109 #include <vm/swap_pager.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 
113 #include <geom/geom.h>
114 
115 /*
116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
117  * pages per allocation.  We recommend you stick with the default of 8.
118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
119  */
120 #ifndef MAX_PAGEOUT_CLUSTER
121 #define MAX_PAGEOUT_CLUSTER 16
122 #endif
123 
124 #if !defined(SWB_NPAGES)
125 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
126 #endif
127 
128 /*
129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
130  *
131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
133  * 32K worth of data, two levels represent 256K, three levels represent
134  * 2 MBytes.   This is acceptable.
135  *
136  * Overall memory utilization is about the same as the old swap structure.
137  */
138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
139 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
140 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
141 
142 struct swblock {
143 	struct swblock	*swb_hnext;
144 	vm_object_t	swb_object;
145 	vm_pindex_t	swb_index;
146 	int		swb_count;
147 	daddr_t		swb_pages[SWAP_META_PAGES];
148 };
149 
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, "");
159 static vm_ooffset_t swap_reserved;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, "");
161 static int overcommit = 0;
162 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, "");
163 
164 /* bits from overcommit */
165 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
166 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
167 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
168 
169 int
170 swap_reserve(vm_ooffset_t incr)
171 {
172 
173 	return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo));
174 }
175 
176 int
177 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip)
178 {
179 	vm_ooffset_t r, s, max;
180 	int res, error;
181 	static int curfail;
182 	static struct timeval lastfail;
183 
184 	if (incr & PAGE_MASK)
185 		panic("swap_reserve: & PAGE_MASK");
186 
187 	res = 0;
188 	error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA);
189 	mtx_lock(&sw_dev_mtx);
190 	r = swap_reserved + incr;
191 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
192 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
193 		s *= PAGE_SIZE;
194 	} else
195 		s = 0;
196 	s += swap_total;
197 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
198 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
199 		res = 1;
200 		swap_reserved = r;
201 	}
202 	mtx_unlock(&sw_dev_mtx);
203 
204 	if (res) {
205 		PROC_LOCK(curproc);
206 		UIDINFO_VMSIZE_LOCK(uip);
207 		error = priv_check(curthread, PRIV_VM_SWAP_NORLIMIT);
208 		max = (error != 0) ? lim_cur(curproc, RLIMIT_SWAP) : 0;
209 		if (max != 0 && uip->ui_vmsize + incr > max &&
210 		    (overcommit & SWAP_RESERVE_RLIMIT_ON) != 0)
211 			res = 0;
212 		else
213 			uip->ui_vmsize += incr;
214 		UIDINFO_VMSIZE_UNLOCK(uip);
215 		PROC_UNLOCK(curproc);
216 		if (!res) {
217 			mtx_lock(&sw_dev_mtx);
218 			swap_reserved -= incr;
219 			mtx_unlock(&sw_dev_mtx);
220 		}
221 	}
222 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
223 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
224 		    curproc->p_pid, uip->ui_uid, incr);
225 	}
226 
227 	return (res);
228 }
229 
230 void
231 swap_reserve_force(vm_ooffset_t incr)
232 {
233 	struct uidinfo *uip;
234 
235 	mtx_lock(&sw_dev_mtx);
236 	swap_reserved += incr;
237 	mtx_unlock(&sw_dev_mtx);
238 
239 	uip = curthread->td_ucred->cr_ruidinfo;
240 	PROC_LOCK(curproc);
241 	UIDINFO_VMSIZE_LOCK(uip);
242 	uip->ui_vmsize += incr;
243 	UIDINFO_VMSIZE_UNLOCK(uip);
244 	PROC_UNLOCK(curproc);
245 }
246 
247 void
248 swap_release(vm_ooffset_t decr)
249 {
250 	struct uidinfo *uip;
251 
252 	PROC_LOCK(curproc);
253 	uip = curthread->td_ucred->cr_ruidinfo;
254 	swap_release_by_uid(decr, uip);
255 	PROC_UNLOCK(curproc);
256 }
257 
258 void
259 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip)
260 {
261 
262 	if (decr & PAGE_MASK)
263 		panic("swap_release: & PAGE_MASK");
264 
265 	mtx_lock(&sw_dev_mtx);
266 	if (swap_reserved < decr)
267 		panic("swap_reserved < decr");
268 	swap_reserved -= decr;
269 	mtx_unlock(&sw_dev_mtx);
270 
271 	UIDINFO_VMSIZE_LOCK(uip);
272 	if (uip->ui_vmsize < decr)
273 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
274 	uip->ui_vmsize -= decr;
275 	UIDINFO_VMSIZE_UNLOCK(uip);
276 }
277 
278 static void swapdev_strategy(struct buf *, struct swdevt *sw);
279 
280 #define SWM_FREE	0x02	/* free, period			*/
281 #define SWM_POP		0x04	/* pop out			*/
282 
283 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
284 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
285 static int nsw_rcount;		/* free read buffers			*/
286 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
287 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
288 static int nsw_wcount_async_max;/* assigned maximum			*/
289 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
290 
291 static struct swblock **swhash;
292 static int swhash_mask;
293 static struct mtx swhash_mtx;
294 
295 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
296 static struct sx sw_alloc_sx;
297 
298 
299 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
300         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
301 
302 /*
303  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
304  * of searching a named list by hashing it just a little.
305  */
306 
307 #define NOBJLISTS		8
308 
309 #define NOBJLIST(handle)	\
310 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
311 
312 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
313 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
314 static uma_zone_t	swap_zone;
315 static struct vm_object	swap_zone_obj;
316 
317 /*
318  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
319  * calls hooked from other parts of the VM system and do not appear here.
320  * (see vm/swap_pager.h).
321  */
322 static vm_object_t
323 		swap_pager_alloc(void *handle, vm_ooffset_t size,
324 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
325 static void	swap_pager_dealloc(vm_object_t object);
326 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
327 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
328 static boolean_t
329 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
330 static void	swap_pager_init(void);
331 static void	swap_pager_unswapped(vm_page_t);
332 static void	swap_pager_swapoff(struct swdevt *sp);
333 
334 struct pagerops swappagerops = {
335 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
336 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
337 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
338 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
339 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
340 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
341 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
342 };
343 
344 /*
345  * dmmax is in page-sized chunks with the new swap system.  It was
346  * dev-bsized chunks in the old.  dmmax is always a power of 2.
347  *
348  * swap_*() routines are externally accessible.  swp_*() routines are
349  * internal.
350  */
351 static int dmmax;
352 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
353 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
354 
355 SYSCTL_INT(_vm, OID_AUTO, dmmax,
356 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
357 
358 static void	swp_sizecheck(void);
359 static void	swp_pager_async_iodone(struct buf *bp);
360 static int	swapongeom(struct thread *, struct vnode *);
361 static int	swaponvp(struct thread *, struct vnode *, u_long);
362 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
363 
364 /*
365  * Swap bitmap functions
366  */
367 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
368 static daddr_t	swp_pager_getswapspace(int npages);
369 
370 /*
371  * Metadata functions
372  */
373 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
374 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
375 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
376 static void swp_pager_meta_free_all(vm_object_t);
377 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
378 
379 /*
380  * SWP_SIZECHECK() -	update swap_pager_full indication
381  *
382  *	update the swap_pager_almost_full indication and warn when we are
383  *	about to run out of swap space, using lowat/hiwat hysteresis.
384  *
385  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
386  *
387  *	No restrictions on call
388  *	This routine may not block.
389  *	This routine must be called at splvm()
390  */
391 static void
392 swp_sizecheck(void)
393 {
394 
395 	if (swap_pager_avail < nswap_lowat) {
396 		if (swap_pager_almost_full == 0) {
397 			printf("swap_pager: out of swap space\n");
398 			swap_pager_almost_full = 1;
399 		}
400 	} else {
401 		swap_pager_full = 0;
402 		if (swap_pager_avail > nswap_hiwat)
403 			swap_pager_almost_full = 0;
404 	}
405 }
406 
407 /*
408  * SWP_PAGER_HASH() -	hash swap meta data
409  *
410  *	This is an helper function which hashes the swapblk given
411  *	the object and page index.  It returns a pointer to a pointer
412  *	to the object, or a pointer to a NULL pointer if it could not
413  *	find a swapblk.
414  *
415  *	This routine must be called at splvm().
416  */
417 static struct swblock **
418 swp_pager_hash(vm_object_t object, vm_pindex_t index)
419 {
420 	struct swblock **pswap;
421 	struct swblock *swap;
422 
423 	index &= ~(vm_pindex_t)SWAP_META_MASK;
424 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
425 	while ((swap = *pswap) != NULL) {
426 		if (swap->swb_object == object &&
427 		    swap->swb_index == index
428 		) {
429 			break;
430 		}
431 		pswap = &swap->swb_hnext;
432 	}
433 	return (pswap);
434 }
435 
436 /*
437  * SWAP_PAGER_INIT() -	initialize the swap pager!
438  *
439  *	Expected to be started from system init.  NOTE:  This code is run
440  *	before much else so be careful what you depend on.  Most of the VM
441  *	system has yet to be initialized at this point.
442  */
443 static void
444 swap_pager_init(void)
445 {
446 	/*
447 	 * Initialize object lists
448 	 */
449 	int i;
450 
451 	for (i = 0; i < NOBJLISTS; ++i)
452 		TAILQ_INIT(&swap_pager_object_list[i]);
453 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
454 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
455 
456 	/*
457 	 * Device Stripe, in PAGE_SIZE'd blocks
458 	 */
459 	dmmax = SWB_NPAGES * 2;
460 }
461 
462 /*
463  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
464  *
465  *	Expected to be started from pageout process once, prior to entering
466  *	its main loop.
467  */
468 void
469 swap_pager_swap_init(void)
470 {
471 	int n, n2;
472 
473 	/*
474 	 * Number of in-transit swap bp operations.  Don't
475 	 * exhaust the pbufs completely.  Make sure we
476 	 * initialize workable values (0 will work for hysteresis
477 	 * but it isn't very efficient).
478 	 *
479 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
480 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
481 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
482 	 * constrained by the swap device interleave stripe size.
483 	 *
484 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
485 	 * designed to prevent other I/O from having high latencies due to
486 	 * our pageout I/O.  The value 4 works well for one or two active swap
487 	 * devices but is probably a little low if you have more.  Even so,
488 	 * a higher value would probably generate only a limited improvement
489 	 * with three or four active swap devices since the system does not
490 	 * typically have to pageout at extreme bandwidths.   We will want
491 	 * at least 2 per swap devices, and 4 is a pretty good value if you
492 	 * have one NFS swap device due to the command/ack latency over NFS.
493 	 * So it all works out pretty well.
494 	 */
495 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
496 
497 	mtx_lock(&pbuf_mtx);
498 	nsw_rcount = (nswbuf + 1) / 2;
499 	nsw_wcount_sync = (nswbuf + 3) / 4;
500 	nsw_wcount_async = 4;
501 	nsw_wcount_async_max = nsw_wcount_async;
502 	mtx_unlock(&pbuf_mtx);
503 
504 	/*
505 	 * Initialize our zone.  Right now I'm just guessing on the number
506 	 * we need based on the number of pages in the system.  Each swblock
507 	 * can hold 16 pages, so this is probably overkill.  This reservation
508 	 * is typically limited to around 32MB by default.
509 	 */
510 	n = cnt.v_page_count / 2;
511 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
512 		n = maxswzone / sizeof(struct swblock);
513 	n2 = n;
514 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
515 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
516 	if (swap_zone == NULL)
517 		panic("failed to create swap_zone.");
518 	do {
519 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
520 			break;
521 		/*
522 		 * if the allocation failed, try a zone two thirds the
523 		 * size of the previous attempt.
524 		 */
525 		n -= ((n + 2) / 3);
526 	} while (n > 0);
527 	if (n2 != n)
528 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
529 	n2 = n;
530 
531 	/*
532 	 * Initialize our meta-data hash table.  The swapper does not need to
533 	 * be quite as efficient as the VM system, so we do not use an
534 	 * oversized hash table.
535 	 *
536 	 * 	n: 		size of hash table, must be power of 2
537 	 *	swhash_mask:	hash table index mask
538 	 */
539 	for (n = 1; n < n2 / 8; n *= 2)
540 		;
541 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
542 	swhash_mask = n - 1;
543 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
544 }
545 
546 /*
547  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
548  *			its metadata structures.
549  *
550  *	This routine is called from the mmap and fork code to create a new
551  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
552  *	and then converting it with swp_pager_meta_build().
553  *
554  *	This routine may block in vm_object_allocate() and create a named
555  *	object lookup race, so we must interlock.   We must also run at
556  *	splvm() for the object lookup to handle races with interrupts, but
557  *	we do not have to maintain splvm() in between the lookup and the
558  *	add because (I believe) it is not possible to attempt to create
559  *	a new swap object w/handle when a default object with that handle
560  *	already exists.
561  *
562  * MPSAFE
563  */
564 static vm_object_t
565 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
566     vm_ooffset_t offset, struct ucred *cred)
567 {
568 	vm_object_t object;
569 	vm_pindex_t pindex;
570 	struct uidinfo *uip;
571 
572 	uip = NULL;
573 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
574 	if (handle) {
575 		mtx_lock(&Giant);
576 		/*
577 		 * Reference existing named region or allocate new one.  There
578 		 * should not be a race here against swp_pager_meta_build()
579 		 * as called from vm_page_remove() in regards to the lookup
580 		 * of the handle.
581 		 */
582 		sx_xlock(&sw_alloc_sx);
583 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
584 		if (object == NULL) {
585 			if (cred != NULL) {
586 				uip = cred->cr_ruidinfo;
587 				if (!swap_reserve_by_uid(size, uip)) {
588 					sx_xunlock(&sw_alloc_sx);
589 					mtx_unlock(&Giant);
590 					return (NULL);
591 				}
592 				uihold(uip);
593 			}
594 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
595 			VM_OBJECT_LOCK(object);
596 			object->handle = handle;
597 			if (cred != NULL) {
598 				object->uip = uip;
599 				object->charge = size;
600 			}
601 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
602 			VM_OBJECT_UNLOCK(object);
603 		}
604 		sx_xunlock(&sw_alloc_sx);
605 		mtx_unlock(&Giant);
606 	} else {
607 		if (cred != NULL) {
608 			uip = cred->cr_ruidinfo;
609 			if (!swap_reserve_by_uid(size, uip))
610 				return (NULL);
611 			uihold(uip);
612 		}
613 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
614 		VM_OBJECT_LOCK(object);
615 		if (cred != NULL) {
616 			object->uip = uip;
617 			object->charge = size;
618 		}
619 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
620 		VM_OBJECT_UNLOCK(object);
621 	}
622 	return (object);
623 }
624 
625 /*
626  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
627  *
628  *	The swap backing for the object is destroyed.  The code is
629  *	designed such that we can reinstantiate it later, but this
630  *	routine is typically called only when the entire object is
631  *	about to be destroyed.
632  *
633  *	This routine may block, but no longer does.
634  *
635  *	The object must be locked or unreferenceable.
636  */
637 static void
638 swap_pager_dealloc(vm_object_t object)
639 {
640 
641 	/*
642 	 * Remove from list right away so lookups will fail if we block for
643 	 * pageout completion.
644 	 */
645 	if (object->handle != NULL) {
646 		mtx_lock(&sw_alloc_mtx);
647 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
648 		mtx_unlock(&sw_alloc_mtx);
649 	}
650 
651 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
652 	vm_object_pip_wait(object, "swpdea");
653 
654 	/*
655 	 * Free all remaining metadata.  We only bother to free it from
656 	 * the swap meta data.  We do not attempt to free swapblk's still
657 	 * associated with vm_page_t's for this object.  We do not care
658 	 * if paging is still in progress on some objects.
659 	 */
660 	swp_pager_meta_free_all(object);
661 }
662 
663 /************************************************************************
664  *			SWAP PAGER BITMAP ROUTINES			*
665  ************************************************************************/
666 
667 /*
668  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
669  *
670  *	Allocate swap for the requested number of pages.  The starting
671  *	swap block number (a page index) is returned or SWAPBLK_NONE
672  *	if the allocation failed.
673  *
674  *	Also has the side effect of advising that somebody made a mistake
675  *	when they configured swap and didn't configure enough.
676  *
677  *	Must be called at splvm() to avoid races with bitmap frees from
678  *	vm_page_remove() aka swap_pager_page_removed().
679  *
680  *	This routine may not block
681  *	This routine must be called at splvm().
682  *
683  *	We allocate in round-robin fashion from the configured devices.
684  */
685 static daddr_t
686 swp_pager_getswapspace(int npages)
687 {
688 	daddr_t blk;
689 	struct swdevt *sp;
690 	int i;
691 
692 	blk = SWAPBLK_NONE;
693 	mtx_lock(&sw_dev_mtx);
694 	sp = swdevhd;
695 	for (i = 0; i < nswapdev; i++) {
696 		if (sp == NULL)
697 			sp = TAILQ_FIRST(&swtailq);
698 		if (!(sp->sw_flags & SW_CLOSING)) {
699 			blk = blist_alloc(sp->sw_blist, npages);
700 			if (blk != SWAPBLK_NONE) {
701 				blk += sp->sw_first;
702 				sp->sw_used += npages;
703 				swap_pager_avail -= npages;
704 				swp_sizecheck();
705 				swdevhd = TAILQ_NEXT(sp, sw_list);
706 				goto done;
707 			}
708 		}
709 		sp = TAILQ_NEXT(sp, sw_list);
710 	}
711 	if (swap_pager_full != 2) {
712 		printf("swap_pager_getswapspace(%d): failed\n", npages);
713 		swap_pager_full = 2;
714 		swap_pager_almost_full = 1;
715 	}
716 	swdevhd = NULL;
717 done:
718 	mtx_unlock(&sw_dev_mtx);
719 	return (blk);
720 }
721 
722 static int
723 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
724 {
725 
726 	return (blk >= sp->sw_first && blk < sp->sw_end);
727 }
728 
729 static void
730 swp_pager_strategy(struct buf *bp)
731 {
732 	struct swdevt *sp;
733 
734 	mtx_lock(&sw_dev_mtx);
735 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
736 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
737 			mtx_unlock(&sw_dev_mtx);
738 			sp->sw_strategy(bp, sp);
739 			return;
740 		}
741 	}
742 	panic("Swapdev not found");
743 }
744 
745 
746 /*
747  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
748  *
749  *	This routine returns the specified swap blocks back to the bitmap.
750  *
751  *	Note:  This routine may not block (it could in the old swap code),
752  *	and through the use of the new blist routines it does not block.
753  *
754  *	We must be called at splvm() to avoid races with bitmap frees from
755  *	vm_page_remove() aka swap_pager_page_removed().
756  *
757  *	This routine may not block
758  *	This routine must be called at splvm().
759  */
760 static void
761 swp_pager_freeswapspace(daddr_t blk, int npages)
762 {
763 	struct swdevt *sp;
764 
765 	mtx_lock(&sw_dev_mtx);
766 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
767 		if (blk >= sp->sw_first && blk < sp->sw_end) {
768 			sp->sw_used -= npages;
769 			/*
770 			 * If we are attempting to stop swapping on
771 			 * this device, we don't want to mark any
772 			 * blocks free lest they be reused.
773 			 */
774 			if ((sp->sw_flags & SW_CLOSING) == 0) {
775 				blist_free(sp->sw_blist, blk - sp->sw_first,
776 				    npages);
777 				swap_pager_avail += npages;
778 				swp_sizecheck();
779 			}
780 			mtx_unlock(&sw_dev_mtx);
781 			return;
782 		}
783 	}
784 	panic("Swapdev not found");
785 }
786 
787 /*
788  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
789  *				range within an object.
790  *
791  *	This is a globally accessible routine.
792  *
793  *	This routine removes swapblk assignments from swap metadata.
794  *
795  *	The external callers of this routine typically have already destroyed
796  *	or renamed vm_page_t's associated with this range in the object so
797  *	we should be ok.
798  *
799  *	This routine may be called at any spl.  We up our spl to splvm temporarily
800  *	in order to perform the metadata removal.
801  */
802 void
803 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
804 {
805 
806 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
807 	swp_pager_meta_free(object, start, size);
808 }
809 
810 /*
811  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
812  *
813  *	Assigns swap blocks to the specified range within the object.  The
814  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
815  *
816  *	Returns 0 on success, -1 on failure.
817  */
818 int
819 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
820 {
821 	int n = 0;
822 	daddr_t blk = SWAPBLK_NONE;
823 	vm_pindex_t beg = start;	/* save start index */
824 
825 	VM_OBJECT_LOCK(object);
826 	while (size) {
827 		if (n == 0) {
828 			n = BLIST_MAX_ALLOC;
829 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
830 				n >>= 1;
831 				if (n == 0) {
832 					swp_pager_meta_free(object, beg, start - beg);
833 					VM_OBJECT_UNLOCK(object);
834 					return (-1);
835 				}
836 			}
837 		}
838 		swp_pager_meta_build(object, start, blk);
839 		--size;
840 		++start;
841 		++blk;
842 		--n;
843 	}
844 	swp_pager_meta_free(object, start, n);
845 	VM_OBJECT_UNLOCK(object);
846 	return (0);
847 }
848 
849 /*
850  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
851  *			and destroy the source.
852  *
853  *	Copy any valid swapblks from the source to the destination.  In
854  *	cases where both the source and destination have a valid swapblk,
855  *	we keep the destination's.
856  *
857  *	This routine is allowed to block.  It may block allocating metadata
858  *	indirectly through swp_pager_meta_build() or if paging is still in
859  *	progress on the source.
860  *
861  *	This routine can be called at any spl
862  *
863  *	XXX vm_page_collapse() kinda expects us not to block because we
864  *	supposedly do not need to allocate memory, but for the moment we
865  *	*may* have to get a little memory from the zone allocator, but
866  *	it is taken from the interrupt memory.  We should be ok.
867  *
868  *	The source object contains no vm_page_t's (which is just as well)
869  *
870  *	The source object is of type OBJT_SWAP.
871  *
872  *	The source and destination objects must be locked or
873  *	inaccessible (XXX are they ?)
874  */
875 void
876 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
877     vm_pindex_t offset, int destroysource)
878 {
879 	vm_pindex_t i;
880 
881 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
882 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
883 
884 	/*
885 	 * If destroysource is set, we remove the source object from the
886 	 * swap_pager internal queue now.
887 	 */
888 	if (destroysource) {
889 		if (srcobject->handle != NULL) {
890 			mtx_lock(&sw_alloc_mtx);
891 			TAILQ_REMOVE(
892 			    NOBJLIST(srcobject->handle),
893 			    srcobject,
894 			    pager_object_list
895 			);
896 			mtx_unlock(&sw_alloc_mtx);
897 		}
898 	}
899 
900 	/*
901 	 * transfer source to destination.
902 	 */
903 	for (i = 0; i < dstobject->size; ++i) {
904 		daddr_t dstaddr;
905 
906 		/*
907 		 * Locate (without changing) the swapblk on the destination,
908 		 * unless it is invalid in which case free it silently, or
909 		 * if the destination is a resident page, in which case the
910 		 * source is thrown away.
911 		 */
912 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
913 
914 		if (dstaddr == SWAPBLK_NONE) {
915 			/*
916 			 * Destination has no swapblk and is not resident,
917 			 * copy source.
918 			 */
919 			daddr_t srcaddr;
920 
921 			srcaddr = swp_pager_meta_ctl(
922 			    srcobject,
923 			    i + offset,
924 			    SWM_POP
925 			);
926 
927 			if (srcaddr != SWAPBLK_NONE) {
928 				/*
929 				 * swp_pager_meta_build() can sleep.
930 				 */
931 				vm_object_pip_add(srcobject, 1);
932 				VM_OBJECT_UNLOCK(srcobject);
933 				vm_object_pip_add(dstobject, 1);
934 				swp_pager_meta_build(dstobject, i, srcaddr);
935 				vm_object_pip_wakeup(dstobject);
936 				VM_OBJECT_LOCK(srcobject);
937 				vm_object_pip_wakeup(srcobject);
938 			}
939 		} else {
940 			/*
941 			 * Destination has valid swapblk or it is represented
942 			 * by a resident page.  We destroy the sourceblock.
943 			 */
944 
945 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
946 		}
947 	}
948 
949 	/*
950 	 * Free left over swap blocks in source.
951 	 *
952 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
953 	 * double-remove the object from the swap queues.
954 	 */
955 	if (destroysource) {
956 		swp_pager_meta_free_all(srcobject);
957 		/*
958 		 * Reverting the type is not necessary, the caller is going
959 		 * to destroy srcobject directly, but I'm doing it here
960 		 * for consistency since we've removed the object from its
961 		 * queues.
962 		 */
963 		srcobject->type = OBJT_DEFAULT;
964 	}
965 }
966 
967 /*
968  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
969  *				the requested page.
970  *
971  *	We determine whether good backing store exists for the requested
972  *	page and return TRUE if it does, FALSE if it doesn't.
973  *
974  *	If TRUE, we also try to determine how much valid, contiguous backing
975  *	store exists before and after the requested page within a reasonable
976  *	distance.  We do not try to restrict it to the swap device stripe
977  *	(that is handled in getpages/putpages).  It probably isn't worth
978  *	doing here.
979  */
980 static boolean_t
981 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
982 {
983 	daddr_t blk0;
984 
985 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
986 	/*
987 	 * do we have good backing store at the requested index ?
988 	 */
989 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
990 
991 	if (blk0 == SWAPBLK_NONE) {
992 		if (before)
993 			*before = 0;
994 		if (after)
995 			*after = 0;
996 		return (FALSE);
997 	}
998 
999 	/*
1000 	 * find backwards-looking contiguous good backing store
1001 	 */
1002 	if (before != NULL) {
1003 		int i;
1004 
1005 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1006 			daddr_t blk;
1007 
1008 			if (i > pindex)
1009 				break;
1010 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1011 			if (blk != blk0 - i)
1012 				break;
1013 		}
1014 		*before = (i - 1);
1015 	}
1016 
1017 	/*
1018 	 * find forward-looking contiguous good backing store
1019 	 */
1020 	if (after != NULL) {
1021 		int i;
1022 
1023 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1024 			daddr_t blk;
1025 
1026 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1027 			if (blk != blk0 + i)
1028 				break;
1029 		}
1030 		*after = (i - 1);
1031 	}
1032 	return (TRUE);
1033 }
1034 
1035 /*
1036  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1037  *
1038  *	This removes any associated swap backing store, whether valid or
1039  *	not, from the page.
1040  *
1041  *	This routine is typically called when a page is made dirty, at
1042  *	which point any associated swap can be freed.  MADV_FREE also
1043  *	calls us in a special-case situation
1044  *
1045  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1046  *	should make the page dirty before calling this routine.  This routine
1047  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1048  *	depends on it.
1049  *
1050  *	This routine may not block
1051  *	This routine must be called at splvm()
1052  */
1053 static void
1054 swap_pager_unswapped(vm_page_t m)
1055 {
1056 
1057 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1058 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1059 }
1060 
1061 /*
1062  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1063  *
1064  *	Attempt to retrieve (m, count) pages from backing store, but make
1065  *	sure we retrieve at least m[reqpage].  We try to load in as large
1066  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1067  *	belongs to the same object.
1068  *
1069  *	The code is designed for asynchronous operation and
1070  *	immediate-notification of 'reqpage' but tends not to be
1071  *	used that way.  Please do not optimize-out this algorithmic
1072  *	feature, I intend to improve on it in the future.
1073  *
1074  *	The parent has a single vm_object_pip_add() reference prior to
1075  *	calling us and we should return with the same.
1076  *
1077  *	The parent has BUSY'd the pages.  We should return with 'm'
1078  *	left busy, but the others adjusted.
1079  */
1080 static int
1081 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1082 {
1083 	struct buf *bp;
1084 	vm_page_t mreq;
1085 	int i;
1086 	int j;
1087 	daddr_t blk;
1088 
1089 	mreq = m[reqpage];
1090 
1091 	KASSERT(mreq->object == object,
1092 	    ("swap_pager_getpages: object mismatch %p/%p",
1093 	    object, mreq->object));
1094 
1095 	/*
1096 	 * Calculate range to retrieve.  The pages have already been assigned
1097 	 * their swapblks.  We require a *contiguous* range but we know it to
1098 	 * not span devices.   If we do not supply it, bad things
1099 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1100 	 * loops are set up such that the case(s) are handled implicitly.
1101 	 *
1102 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1103 	 * not need to be, but it will go a little faster if it is.
1104 	 */
1105 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1106 
1107 	for (i = reqpage - 1; i >= 0; --i) {
1108 		daddr_t iblk;
1109 
1110 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1111 		if (blk != iblk + (reqpage - i))
1112 			break;
1113 	}
1114 	++i;
1115 
1116 	for (j = reqpage + 1; j < count; ++j) {
1117 		daddr_t jblk;
1118 
1119 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1120 		if (blk != jblk - (j - reqpage))
1121 			break;
1122 	}
1123 
1124 	/*
1125 	 * free pages outside our collection range.   Note: we never free
1126 	 * mreq, it must remain busy throughout.
1127 	 */
1128 	if (0 < i || j < count) {
1129 		int k;
1130 
1131 		vm_page_lock_queues();
1132 		for (k = 0; k < i; ++k)
1133 			vm_page_free(m[k]);
1134 		for (k = j; k < count; ++k)
1135 			vm_page_free(m[k]);
1136 		vm_page_unlock_queues();
1137 	}
1138 
1139 	/*
1140 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1141 	 * still busy, but the others unbusied.
1142 	 */
1143 	if (blk == SWAPBLK_NONE)
1144 		return (VM_PAGER_FAIL);
1145 
1146 	/*
1147 	 * Getpbuf() can sleep.
1148 	 */
1149 	VM_OBJECT_UNLOCK(object);
1150 	/*
1151 	 * Get a swap buffer header to perform the IO
1152 	 */
1153 	bp = getpbuf(&nsw_rcount);
1154 	bp->b_flags |= B_PAGING;
1155 
1156 	/*
1157 	 * map our page(s) into kva for input
1158 	 */
1159 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1160 
1161 	bp->b_iocmd = BIO_READ;
1162 	bp->b_iodone = swp_pager_async_iodone;
1163 	bp->b_rcred = crhold(thread0.td_ucred);
1164 	bp->b_wcred = crhold(thread0.td_ucred);
1165 	bp->b_blkno = blk - (reqpage - i);
1166 	bp->b_bcount = PAGE_SIZE * (j - i);
1167 	bp->b_bufsize = PAGE_SIZE * (j - i);
1168 	bp->b_pager.pg_reqpage = reqpage - i;
1169 
1170 	VM_OBJECT_LOCK(object);
1171 	{
1172 		int k;
1173 
1174 		for (k = i; k < j; ++k) {
1175 			bp->b_pages[k - i] = m[k];
1176 			m[k]->oflags |= VPO_SWAPINPROG;
1177 		}
1178 	}
1179 	bp->b_npages = j - i;
1180 
1181 	PCPU_INC(cnt.v_swapin);
1182 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1183 
1184 	/*
1185 	 * We still hold the lock on mreq, and our automatic completion routine
1186 	 * does not remove it.
1187 	 */
1188 	vm_object_pip_add(object, bp->b_npages);
1189 	VM_OBJECT_UNLOCK(object);
1190 
1191 	/*
1192 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1193 	 * this point because we automatically release it on completion.
1194 	 * Instead, we look at the one page we are interested in which we
1195 	 * still hold a lock on even through the I/O completion.
1196 	 *
1197 	 * The other pages in our m[] array are also released on completion,
1198 	 * so we cannot assume they are valid anymore either.
1199 	 *
1200 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1201 	 */
1202 	BUF_KERNPROC(bp);
1203 	swp_pager_strategy(bp);
1204 
1205 	/*
1206 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1207 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1208 	 * is set in the meta-data.
1209 	 */
1210 	VM_OBJECT_LOCK(object);
1211 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1212 		mreq->oflags |= VPO_WANTED;
1213 		vm_page_lock_queues();
1214 		vm_page_flag_set(mreq, PG_REFERENCED);
1215 		vm_page_unlock_queues();
1216 		PCPU_INC(cnt.v_intrans);
1217 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1218 			printf(
1219 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1220 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1221 		}
1222 	}
1223 
1224 	/*
1225 	 * mreq is left busied after completion, but all the other pages
1226 	 * are freed.  If we had an unrecoverable read error the page will
1227 	 * not be valid.
1228 	 */
1229 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1230 		return (VM_PAGER_ERROR);
1231 	} else {
1232 		return (VM_PAGER_OK);
1233 	}
1234 
1235 	/*
1236 	 * A final note: in a low swap situation, we cannot deallocate swap
1237 	 * and mark a page dirty here because the caller is likely to mark
1238 	 * the page clean when we return, causing the page to possibly revert
1239 	 * to all-zero's later.
1240 	 */
1241 }
1242 
1243 /*
1244  *	swap_pager_putpages:
1245  *
1246  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1247  *
1248  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1249  *	are automatically converted to SWAP objects.
1250  *
1251  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1252  *	vm_page reservation system coupled with properly written VFS devices
1253  *	should ensure that no low-memory deadlock occurs.  This is an area
1254  *	which needs work.
1255  *
1256  *	The parent has N vm_object_pip_add() references prior to
1257  *	calling us and will remove references for rtvals[] that are
1258  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1259  *	completion.
1260  *
1261  *	The parent has soft-busy'd the pages it passes us and will unbusy
1262  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1263  *	We need to unbusy the rest on I/O completion.
1264  */
1265 void
1266 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1267     boolean_t sync, int *rtvals)
1268 {
1269 	int i;
1270 	int n = 0;
1271 
1272 	if (count && m[0]->object != object) {
1273 		panic("swap_pager_putpages: object mismatch %p/%p",
1274 		    object,
1275 		    m[0]->object
1276 		);
1277 	}
1278 
1279 	/*
1280 	 * Step 1
1281 	 *
1282 	 * Turn object into OBJT_SWAP
1283 	 * check for bogus sysops
1284 	 * force sync if not pageout process
1285 	 */
1286 	if (object->type != OBJT_SWAP)
1287 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1288 	VM_OBJECT_UNLOCK(object);
1289 
1290 	if (curproc != pageproc)
1291 		sync = TRUE;
1292 
1293 	/*
1294 	 * Step 2
1295 	 *
1296 	 * Update nsw parameters from swap_async_max sysctl values.
1297 	 * Do not let the sysop crash the machine with bogus numbers.
1298 	 */
1299 	mtx_lock(&pbuf_mtx);
1300 	if (swap_async_max != nsw_wcount_async_max) {
1301 		int n;
1302 
1303 		/*
1304 		 * limit range
1305 		 */
1306 		if ((n = swap_async_max) > nswbuf / 2)
1307 			n = nswbuf / 2;
1308 		if (n < 1)
1309 			n = 1;
1310 		swap_async_max = n;
1311 
1312 		/*
1313 		 * Adjust difference ( if possible ).  If the current async
1314 		 * count is too low, we may not be able to make the adjustment
1315 		 * at this time.
1316 		 */
1317 		n -= nsw_wcount_async_max;
1318 		if (nsw_wcount_async + n >= 0) {
1319 			nsw_wcount_async += n;
1320 			nsw_wcount_async_max += n;
1321 			wakeup(&nsw_wcount_async);
1322 		}
1323 	}
1324 	mtx_unlock(&pbuf_mtx);
1325 
1326 	/*
1327 	 * Step 3
1328 	 *
1329 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1330 	 * The page is left dirty until the pageout operation completes
1331 	 * successfully.
1332 	 */
1333 	for (i = 0; i < count; i += n) {
1334 		int j;
1335 		struct buf *bp;
1336 		daddr_t blk;
1337 
1338 		/*
1339 		 * Maximum I/O size is limited by a number of factors.
1340 		 */
1341 		n = min(BLIST_MAX_ALLOC, count - i);
1342 		n = min(n, nsw_cluster_max);
1343 
1344 		/*
1345 		 * Get biggest block of swap we can.  If we fail, fall
1346 		 * back and try to allocate a smaller block.  Don't go
1347 		 * overboard trying to allocate space if it would overly
1348 		 * fragment swap.
1349 		 */
1350 		while (
1351 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1352 		    n > 4
1353 		) {
1354 			n >>= 1;
1355 		}
1356 		if (blk == SWAPBLK_NONE) {
1357 			for (j = 0; j < n; ++j)
1358 				rtvals[i+j] = VM_PAGER_FAIL;
1359 			continue;
1360 		}
1361 
1362 		/*
1363 		 * All I/O parameters have been satisfied, build the I/O
1364 		 * request and assign the swap space.
1365 		 */
1366 		if (sync == TRUE) {
1367 			bp = getpbuf(&nsw_wcount_sync);
1368 		} else {
1369 			bp = getpbuf(&nsw_wcount_async);
1370 			bp->b_flags = B_ASYNC;
1371 		}
1372 		bp->b_flags |= B_PAGING;
1373 		bp->b_iocmd = BIO_WRITE;
1374 
1375 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1376 
1377 		bp->b_rcred = crhold(thread0.td_ucred);
1378 		bp->b_wcred = crhold(thread0.td_ucred);
1379 		bp->b_bcount = PAGE_SIZE * n;
1380 		bp->b_bufsize = PAGE_SIZE * n;
1381 		bp->b_blkno = blk;
1382 
1383 		VM_OBJECT_LOCK(object);
1384 		for (j = 0; j < n; ++j) {
1385 			vm_page_t mreq = m[i+j];
1386 
1387 			swp_pager_meta_build(
1388 			    mreq->object,
1389 			    mreq->pindex,
1390 			    blk + j
1391 			);
1392 			vm_page_dirty(mreq);
1393 			rtvals[i+j] = VM_PAGER_OK;
1394 
1395 			mreq->oflags |= VPO_SWAPINPROG;
1396 			bp->b_pages[j] = mreq;
1397 		}
1398 		VM_OBJECT_UNLOCK(object);
1399 		bp->b_npages = n;
1400 		/*
1401 		 * Must set dirty range for NFS to work.
1402 		 */
1403 		bp->b_dirtyoff = 0;
1404 		bp->b_dirtyend = bp->b_bcount;
1405 
1406 		PCPU_INC(cnt.v_swapout);
1407 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1408 
1409 		/*
1410 		 * asynchronous
1411 		 *
1412 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1413 		 */
1414 		if (sync == FALSE) {
1415 			bp->b_iodone = swp_pager_async_iodone;
1416 			BUF_KERNPROC(bp);
1417 			swp_pager_strategy(bp);
1418 
1419 			for (j = 0; j < n; ++j)
1420 				rtvals[i+j] = VM_PAGER_PEND;
1421 			/* restart outter loop */
1422 			continue;
1423 		}
1424 
1425 		/*
1426 		 * synchronous
1427 		 *
1428 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1429 		 */
1430 		bp->b_iodone = bdone;
1431 		swp_pager_strategy(bp);
1432 
1433 		/*
1434 		 * Wait for the sync I/O to complete, then update rtvals.
1435 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1436 		 * our async completion routine at the end, thus avoiding a
1437 		 * double-free.
1438 		 */
1439 		bwait(bp, PVM, "swwrt");
1440 		for (j = 0; j < n; ++j)
1441 			rtvals[i+j] = VM_PAGER_PEND;
1442 		/*
1443 		 * Now that we are through with the bp, we can call the
1444 		 * normal async completion, which frees everything up.
1445 		 */
1446 		swp_pager_async_iodone(bp);
1447 	}
1448 	VM_OBJECT_LOCK(object);
1449 }
1450 
1451 /*
1452  *	swp_pager_async_iodone:
1453  *
1454  *	Completion routine for asynchronous reads and writes from/to swap.
1455  *	Also called manually by synchronous code to finish up a bp.
1456  *
1457  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1458  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1459  *	unbusy all pages except the 'main' request page.  For WRITE
1460  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1461  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1462  *
1463  *	This routine may not block.
1464  */
1465 static void
1466 swp_pager_async_iodone(struct buf *bp)
1467 {
1468 	int i;
1469 	vm_object_t object = NULL;
1470 
1471 	/*
1472 	 * report error
1473 	 */
1474 	if (bp->b_ioflags & BIO_ERROR) {
1475 		printf(
1476 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1477 			"size %ld, error %d\n",
1478 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1479 		    (long)bp->b_blkno,
1480 		    (long)bp->b_bcount,
1481 		    bp->b_error
1482 		);
1483 	}
1484 
1485 	/*
1486 	 * remove the mapping for kernel virtual
1487 	 */
1488 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1489 
1490 	if (bp->b_npages) {
1491 		object = bp->b_pages[0]->object;
1492 		VM_OBJECT_LOCK(object);
1493 	}
1494 	vm_page_lock_queues();
1495 	/*
1496 	 * cleanup pages.  If an error occurs writing to swap, we are in
1497 	 * very serious trouble.  If it happens to be a disk error, though,
1498 	 * we may be able to recover by reassigning the swap later on.  So
1499 	 * in this case we remove the m->swapblk assignment for the page
1500 	 * but do not free it in the rlist.  The errornous block(s) are thus
1501 	 * never reallocated as swap.  Redirty the page and continue.
1502 	 */
1503 	for (i = 0; i < bp->b_npages; ++i) {
1504 		vm_page_t m = bp->b_pages[i];
1505 
1506 		m->oflags &= ~VPO_SWAPINPROG;
1507 
1508 		if (bp->b_ioflags & BIO_ERROR) {
1509 			/*
1510 			 * If an error occurs I'd love to throw the swapblk
1511 			 * away without freeing it back to swapspace, so it
1512 			 * can never be used again.  But I can't from an
1513 			 * interrupt.
1514 			 */
1515 			if (bp->b_iocmd == BIO_READ) {
1516 				/*
1517 				 * When reading, reqpage needs to stay
1518 				 * locked for the parent, but all other
1519 				 * pages can be freed.  We still want to
1520 				 * wakeup the parent waiting on the page,
1521 				 * though.  ( also: pg_reqpage can be -1 and
1522 				 * not match anything ).
1523 				 *
1524 				 * We have to wake specifically requested pages
1525 				 * up too because we cleared VPO_SWAPINPROG and
1526 				 * someone may be waiting for that.
1527 				 *
1528 				 * NOTE: for reads, m->dirty will probably
1529 				 * be overridden by the original caller of
1530 				 * getpages so don't play cute tricks here.
1531 				 */
1532 				m->valid = 0;
1533 				if (i != bp->b_pager.pg_reqpage)
1534 					vm_page_free(m);
1535 				else
1536 					vm_page_flash(m);
1537 				/*
1538 				 * If i == bp->b_pager.pg_reqpage, do not wake
1539 				 * the page up.  The caller needs to.
1540 				 */
1541 			} else {
1542 				/*
1543 				 * If a write error occurs, reactivate page
1544 				 * so it doesn't clog the inactive list,
1545 				 * then finish the I/O.
1546 				 */
1547 				vm_page_dirty(m);
1548 				vm_page_activate(m);
1549 				vm_page_io_finish(m);
1550 			}
1551 		} else if (bp->b_iocmd == BIO_READ) {
1552 			/*
1553 			 * NOTE: for reads, m->dirty will probably be
1554 			 * overridden by the original caller of getpages so
1555 			 * we cannot set them in order to free the underlying
1556 			 * swap in a low-swap situation.  I don't think we'd
1557 			 * want to do that anyway, but it was an optimization
1558 			 * that existed in the old swapper for a time before
1559 			 * it got ripped out due to precisely this problem.
1560 			 *
1561 			 * If not the requested page then deactivate it.
1562 			 *
1563 			 * Note that the requested page, reqpage, is left
1564 			 * busied, but we still have to wake it up.  The
1565 			 * other pages are released (unbusied) by
1566 			 * vm_page_wakeup().
1567 			 */
1568 			KASSERT(!pmap_page_is_mapped(m),
1569 			    ("swp_pager_async_iodone: page %p is mapped", m));
1570 			m->valid = VM_PAGE_BITS_ALL;
1571 			KASSERT(m->dirty == 0,
1572 			    ("swp_pager_async_iodone: page %p is dirty", m));
1573 
1574 			/*
1575 			 * We have to wake specifically requested pages
1576 			 * up too because we cleared VPO_SWAPINPROG and
1577 			 * could be waiting for it in getpages.  However,
1578 			 * be sure to not unbusy getpages specifically
1579 			 * requested page - getpages expects it to be
1580 			 * left busy.
1581 			 */
1582 			if (i != bp->b_pager.pg_reqpage) {
1583 				vm_page_deactivate(m);
1584 				vm_page_wakeup(m);
1585 			} else {
1586 				vm_page_flash(m);
1587 			}
1588 		} else {
1589 			/*
1590 			 * For write success, clear the dirty
1591 			 * status, then finish the I/O ( which decrements the
1592 			 * busy count and possibly wakes waiter's up ).
1593 			 */
1594 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1595 			    ("swp_pager_async_iodone: page %p is not write"
1596 			    " protected", m));
1597 			vm_page_undirty(m);
1598 			vm_page_io_finish(m);
1599 			if (vm_page_count_severe())
1600 				vm_page_try_to_cache(m);
1601 		}
1602 	}
1603 	vm_page_unlock_queues();
1604 
1605 	/*
1606 	 * adjust pip.  NOTE: the original parent may still have its own
1607 	 * pip refs on the object.
1608 	 */
1609 	if (object != NULL) {
1610 		vm_object_pip_wakeupn(object, bp->b_npages);
1611 		VM_OBJECT_UNLOCK(object);
1612 	}
1613 
1614 	/*
1615 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1616 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1617 	 * trigger a KASSERT in relpbuf().
1618 	 */
1619 	if (bp->b_vp) {
1620 		    bp->b_vp = NULL;
1621 		    bp->b_bufobj = NULL;
1622 	}
1623 	/*
1624 	 * release the physical I/O buffer
1625 	 */
1626 	relpbuf(
1627 	    bp,
1628 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1629 		((bp->b_flags & B_ASYNC) ?
1630 		    &nsw_wcount_async :
1631 		    &nsw_wcount_sync
1632 		)
1633 	    )
1634 	);
1635 }
1636 
1637 /*
1638  *	swap_pager_isswapped:
1639  *
1640  *	Return 1 if at least one page in the given object is paged
1641  *	out to the given swap device.
1642  *
1643  *	This routine may not block.
1644  */
1645 int
1646 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1647 {
1648 	daddr_t index = 0;
1649 	int bcount;
1650 	int i;
1651 
1652 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1653 	if (object->type != OBJT_SWAP)
1654 		return (0);
1655 
1656 	mtx_lock(&swhash_mtx);
1657 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1658 		struct swblock *swap;
1659 
1660 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1661 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1662 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1663 					mtx_unlock(&swhash_mtx);
1664 					return (1);
1665 				}
1666 			}
1667 		}
1668 		index += SWAP_META_PAGES;
1669 		if (index > 0x20000000)
1670 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1671 	}
1672 	mtx_unlock(&swhash_mtx);
1673 	return (0);
1674 }
1675 
1676 /*
1677  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1678  *
1679  *	This routine dissociates the page at the given index within a
1680  *	swap block from its backing store, paging it in if necessary.
1681  *	If the page is paged in, it is placed in the inactive queue,
1682  *	since it had its backing store ripped out from under it.
1683  *	We also attempt to swap in all other pages in the swap block,
1684  *	we only guarantee that the one at the specified index is
1685  *	paged in.
1686  *
1687  *	XXX - The code to page the whole block in doesn't work, so we
1688  *	      revert to the one-by-one behavior for now.  Sigh.
1689  */
1690 static inline void
1691 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1692 {
1693 	vm_page_t m;
1694 
1695 	vm_object_pip_add(object, 1);
1696 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1697 	if (m->valid == VM_PAGE_BITS_ALL) {
1698 		vm_object_pip_subtract(object, 1);
1699 		vm_page_lock_queues();
1700 		vm_page_activate(m);
1701 		vm_page_dirty(m);
1702 		vm_page_unlock_queues();
1703 		vm_page_wakeup(m);
1704 		vm_pager_page_unswapped(m);
1705 		return;
1706 	}
1707 
1708 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1709 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1710 	vm_object_pip_subtract(object, 1);
1711 	vm_page_lock_queues();
1712 	vm_page_dirty(m);
1713 	vm_page_dontneed(m);
1714 	vm_page_unlock_queues();
1715 	vm_page_wakeup(m);
1716 	vm_pager_page_unswapped(m);
1717 }
1718 
1719 /*
1720  *	swap_pager_swapoff:
1721  *
1722  *	Page in all of the pages that have been paged out to the
1723  *	given device.  The corresponding blocks in the bitmap must be
1724  *	marked as allocated and the device must be flagged SW_CLOSING.
1725  *	There may be no processes swapped out to the device.
1726  *
1727  *	This routine may block.
1728  */
1729 static void
1730 swap_pager_swapoff(struct swdevt *sp)
1731 {
1732 	struct swblock *swap;
1733 	int i, j, retries;
1734 
1735 	GIANT_REQUIRED;
1736 
1737 	retries = 0;
1738 full_rescan:
1739 	mtx_lock(&swhash_mtx);
1740 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1741 restart:
1742 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1743 			vm_object_t object = swap->swb_object;
1744 			vm_pindex_t pindex = swap->swb_index;
1745                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1746                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1747 					/* avoid deadlock */
1748 					if (!VM_OBJECT_TRYLOCK(object)) {
1749 						break;
1750 					} else {
1751 						mtx_unlock(&swhash_mtx);
1752 						swp_pager_force_pagein(object,
1753 						    pindex + j);
1754 						VM_OBJECT_UNLOCK(object);
1755 						mtx_lock(&swhash_mtx);
1756 						goto restart;
1757 					}
1758 				}
1759                         }
1760 		}
1761 	}
1762 	mtx_unlock(&swhash_mtx);
1763 	if (sp->sw_used) {
1764 		/*
1765 		 * Objects may be locked or paging to the device being
1766 		 * removed, so we will miss their pages and need to
1767 		 * make another pass.  We have marked this device as
1768 		 * SW_CLOSING, so the activity should finish soon.
1769 		 */
1770 		retries++;
1771 		if (retries > 100) {
1772 			panic("swapoff: failed to locate %d swap blocks",
1773 			    sp->sw_used);
1774 		}
1775 		pause("swpoff", hz / 20);
1776 		goto full_rescan;
1777 	}
1778 }
1779 
1780 /************************************************************************
1781  *				SWAP META DATA 				*
1782  ************************************************************************
1783  *
1784  *	These routines manipulate the swap metadata stored in the
1785  *	OBJT_SWAP object.  All swp_*() routines must be called at
1786  *	splvm() because swap can be freed up by the low level vm_page
1787  *	code which might be called from interrupts beyond what splbio() covers.
1788  *
1789  *	Swap metadata is implemented with a global hash and not directly
1790  *	linked into the object.  Instead the object simply contains
1791  *	appropriate tracking counters.
1792  */
1793 
1794 /*
1795  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1796  *
1797  *	We first convert the object to a swap object if it is a default
1798  *	object.
1799  *
1800  *	The specified swapblk is added to the object's swap metadata.  If
1801  *	the swapblk is not valid, it is freed instead.  Any previously
1802  *	assigned swapblk is freed.
1803  *
1804  *	This routine must be called at splvm(), except when used to convert
1805  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1806  */
1807 static void
1808 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1809 {
1810 	struct swblock *swap;
1811 	struct swblock **pswap;
1812 	int idx;
1813 
1814 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1815 	/*
1816 	 * Convert default object to swap object if necessary
1817 	 */
1818 	if (object->type != OBJT_SWAP) {
1819 		object->type = OBJT_SWAP;
1820 		object->un_pager.swp.swp_bcount = 0;
1821 
1822 		if (object->handle != NULL) {
1823 			mtx_lock(&sw_alloc_mtx);
1824 			TAILQ_INSERT_TAIL(
1825 			    NOBJLIST(object->handle),
1826 			    object,
1827 			    pager_object_list
1828 			);
1829 			mtx_unlock(&sw_alloc_mtx);
1830 		}
1831 	}
1832 
1833 	/*
1834 	 * Locate hash entry.  If not found create, but if we aren't adding
1835 	 * anything just return.  If we run out of space in the map we wait
1836 	 * and, since the hash table may have changed, retry.
1837 	 */
1838 retry:
1839 	mtx_lock(&swhash_mtx);
1840 	pswap = swp_pager_hash(object, pindex);
1841 
1842 	if ((swap = *pswap) == NULL) {
1843 		int i;
1844 
1845 		if (swapblk == SWAPBLK_NONE)
1846 			goto done;
1847 
1848 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1849 		if (swap == NULL) {
1850 			mtx_unlock(&swhash_mtx);
1851 			VM_OBJECT_UNLOCK(object);
1852 			if (uma_zone_exhausted(swap_zone)) {
1853 				printf("swap zone exhausted, increase kern.maxswzone\n");
1854 				vm_pageout_oom(VM_OOM_SWAPZ);
1855 				pause("swzonex", 10);
1856 			} else
1857 				VM_WAIT;
1858 			VM_OBJECT_LOCK(object);
1859 			goto retry;
1860 		}
1861 
1862 		swap->swb_hnext = NULL;
1863 		swap->swb_object = object;
1864 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1865 		swap->swb_count = 0;
1866 
1867 		++object->un_pager.swp.swp_bcount;
1868 
1869 		for (i = 0; i < SWAP_META_PAGES; ++i)
1870 			swap->swb_pages[i] = SWAPBLK_NONE;
1871 	}
1872 
1873 	/*
1874 	 * Delete prior contents of metadata
1875 	 */
1876 	idx = pindex & SWAP_META_MASK;
1877 
1878 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1879 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1880 		--swap->swb_count;
1881 	}
1882 
1883 	/*
1884 	 * Enter block into metadata
1885 	 */
1886 	swap->swb_pages[idx] = swapblk;
1887 	if (swapblk != SWAPBLK_NONE)
1888 		++swap->swb_count;
1889 done:
1890 	mtx_unlock(&swhash_mtx);
1891 }
1892 
1893 /*
1894  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1895  *
1896  *	The requested range of blocks is freed, with any associated swap
1897  *	returned to the swap bitmap.
1898  *
1899  *	This routine will free swap metadata structures as they are cleaned
1900  *	out.  This routine does *NOT* operate on swap metadata associated
1901  *	with resident pages.
1902  *
1903  *	This routine must be called at splvm()
1904  */
1905 static void
1906 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1907 {
1908 
1909 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1910 	if (object->type != OBJT_SWAP)
1911 		return;
1912 
1913 	while (count > 0) {
1914 		struct swblock **pswap;
1915 		struct swblock *swap;
1916 
1917 		mtx_lock(&swhash_mtx);
1918 		pswap = swp_pager_hash(object, index);
1919 
1920 		if ((swap = *pswap) != NULL) {
1921 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1922 
1923 			if (v != SWAPBLK_NONE) {
1924 				swp_pager_freeswapspace(v, 1);
1925 				swap->swb_pages[index & SWAP_META_MASK] =
1926 					SWAPBLK_NONE;
1927 				if (--swap->swb_count == 0) {
1928 					*pswap = swap->swb_hnext;
1929 					uma_zfree(swap_zone, swap);
1930 					--object->un_pager.swp.swp_bcount;
1931 				}
1932 			}
1933 			--count;
1934 			++index;
1935 		} else {
1936 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1937 			count -= n;
1938 			index += n;
1939 		}
1940 		mtx_unlock(&swhash_mtx);
1941 	}
1942 }
1943 
1944 /*
1945  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1946  *
1947  *	This routine locates and destroys all swap metadata associated with
1948  *	an object.
1949  *
1950  *	This routine must be called at splvm()
1951  */
1952 static void
1953 swp_pager_meta_free_all(vm_object_t object)
1954 {
1955 	daddr_t index = 0;
1956 
1957 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1958 	if (object->type != OBJT_SWAP)
1959 		return;
1960 
1961 	while (object->un_pager.swp.swp_bcount) {
1962 		struct swblock **pswap;
1963 		struct swblock *swap;
1964 
1965 		mtx_lock(&swhash_mtx);
1966 		pswap = swp_pager_hash(object, index);
1967 		if ((swap = *pswap) != NULL) {
1968 			int i;
1969 
1970 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1971 				daddr_t v = swap->swb_pages[i];
1972 				if (v != SWAPBLK_NONE) {
1973 					--swap->swb_count;
1974 					swp_pager_freeswapspace(v, 1);
1975 				}
1976 			}
1977 			if (swap->swb_count != 0)
1978 				panic("swap_pager_meta_free_all: swb_count != 0");
1979 			*pswap = swap->swb_hnext;
1980 			uma_zfree(swap_zone, swap);
1981 			--object->un_pager.swp.swp_bcount;
1982 		}
1983 		mtx_unlock(&swhash_mtx);
1984 		index += SWAP_META_PAGES;
1985 		if (index > 0x20000000)
1986 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1987 	}
1988 }
1989 
1990 /*
1991  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1992  *
1993  *	This routine is capable of looking up, popping, or freeing
1994  *	swapblk assignments in the swap meta data or in the vm_page_t.
1995  *	The routine typically returns the swapblk being looked-up, or popped,
1996  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1997  *	was invalid.  This routine will automatically free any invalid
1998  *	meta-data swapblks.
1999  *
2000  *	It is not possible to store invalid swapblks in the swap meta data
2001  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2002  *
2003  *	When acting on a busy resident page and paging is in progress, we
2004  *	have to wait until paging is complete but otherwise can act on the
2005  *	busy page.
2006  *
2007  *	This routine must be called at splvm().
2008  *
2009  *	SWM_FREE	remove and free swap block from metadata
2010  *	SWM_POP		remove from meta data but do not free.. pop it out
2011  */
2012 static daddr_t
2013 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2014 {
2015 	struct swblock **pswap;
2016 	struct swblock *swap;
2017 	daddr_t r1;
2018 	int idx;
2019 
2020 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2021 	/*
2022 	 * The meta data only exists of the object is OBJT_SWAP
2023 	 * and even then might not be allocated yet.
2024 	 */
2025 	if (object->type != OBJT_SWAP)
2026 		return (SWAPBLK_NONE);
2027 
2028 	r1 = SWAPBLK_NONE;
2029 	mtx_lock(&swhash_mtx);
2030 	pswap = swp_pager_hash(object, pindex);
2031 
2032 	if ((swap = *pswap) != NULL) {
2033 		idx = pindex & SWAP_META_MASK;
2034 		r1 = swap->swb_pages[idx];
2035 
2036 		if (r1 != SWAPBLK_NONE) {
2037 			if (flags & SWM_FREE) {
2038 				swp_pager_freeswapspace(r1, 1);
2039 				r1 = SWAPBLK_NONE;
2040 			}
2041 			if (flags & (SWM_FREE|SWM_POP)) {
2042 				swap->swb_pages[idx] = SWAPBLK_NONE;
2043 				if (--swap->swb_count == 0) {
2044 					*pswap = swap->swb_hnext;
2045 					uma_zfree(swap_zone, swap);
2046 					--object->un_pager.swp.swp_bcount;
2047 				}
2048 			}
2049 		}
2050 	}
2051 	mtx_unlock(&swhash_mtx);
2052 	return (r1);
2053 }
2054 
2055 /*
2056  * System call swapon(name) enables swapping on device name,
2057  * which must be in the swdevsw.  Return EBUSY
2058  * if already swapping on this device.
2059  */
2060 #ifndef _SYS_SYSPROTO_H_
2061 struct swapon_args {
2062 	char *name;
2063 };
2064 #endif
2065 
2066 /*
2067  * MPSAFE
2068  */
2069 /* ARGSUSED */
2070 int
2071 swapon(struct thread *td, struct swapon_args *uap)
2072 {
2073 	struct vattr attr;
2074 	struct vnode *vp;
2075 	struct nameidata nd;
2076 	int error;
2077 
2078 	error = priv_check(td, PRIV_SWAPON);
2079 	if (error)
2080 		return (error);
2081 
2082 	mtx_lock(&Giant);
2083 	while (swdev_syscall_active)
2084 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2085 	swdev_syscall_active = 1;
2086 
2087 	/*
2088 	 * Swap metadata may not fit in the KVM if we have physical
2089 	 * memory of >1GB.
2090 	 */
2091 	if (swap_zone == NULL) {
2092 		error = ENOMEM;
2093 		goto done;
2094 	}
2095 
2096 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2097 	    uap->name, td);
2098 	error = namei(&nd);
2099 	if (error)
2100 		goto done;
2101 
2102 	NDFREE(&nd, NDF_ONLY_PNBUF);
2103 	vp = nd.ni_vp;
2104 
2105 	if (vn_isdisk(vp, &error)) {
2106 		error = swapongeom(td, vp);
2107 	} else if (vp->v_type == VREG &&
2108 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2109 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2110 		/*
2111 		 * Allow direct swapping to NFS regular files in the same
2112 		 * way that nfs_mountroot() sets up diskless swapping.
2113 		 */
2114 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2115 	}
2116 
2117 	if (error)
2118 		vrele(vp);
2119 done:
2120 	swdev_syscall_active = 0;
2121 	wakeup_one(&swdev_syscall_active);
2122 	mtx_unlock(&Giant);
2123 	return (error);
2124 }
2125 
2126 static void
2127 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2128 {
2129 	struct swdevt *sp, *tsp;
2130 	swblk_t dvbase;
2131 	u_long mblocks;
2132 
2133 	/*
2134 	 * If we go beyond this, we get overflows in the radix
2135 	 * tree bitmap code.
2136 	 */
2137 	mblocks = 0x40000000 / BLIST_META_RADIX;
2138 	if (nblks > mblocks) {
2139 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2140 			mblocks);
2141 		nblks = mblocks;
2142 	}
2143 	/*
2144 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2145 	 * First chop nblks off to page-align it, then convert.
2146 	 *
2147 	 * sw->sw_nblks is in page-sized chunks now too.
2148 	 */
2149 	nblks &= ~(ctodb(1) - 1);
2150 	nblks = dbtoc(nblks);
2151 
2152 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2153 	sp->sw_vp = vp;
2154 	sp->sw_id = id;
2155 	sp->sw_dev = dev;
2156 	sp->sw_flags = 0;
2157 	sp->sw_nblks = nblks;
2158 	sp->sw_used = 0;
2159 	sp->sw_strategy = strategy;
2160 	sp->sw_close = close;
2161 
2162 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2163 	/*
2164 	 * Do not free the first two block in order to avoid overwriting
2165 	 * any bsd label at the front of the partition
2166 	 */
2167 	blist_free(sp->sw_blist, 2, nblks - 2);
2168 
2169 	dvbase = 0;
2170 	mtx_lock(&sw_dev_mtx);
2171 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2172 		if (tsp->sw_end >= dvbase) {
2173 			/*
2174 			 * We put one uncovered page between the devices
2175 			 * in order to definitively prevent any cross-device
2176 			 * I/O requests
2177 			 */
2178 			dvbase = tsp->sw_end + 1;
2179 		}
2180 	}
2181 	sp->sw_first = dvbase;
2182 	sp->sw_end = dvbase + nblks;
2183 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2184 	nswapdev++;
2185 	swap_pager_avail += nblks;
2186 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2187 	swp_sizecheck();
2188 	mtx_unlock(&sw_dev_mtx);
2189 }
2190 
2191 /*
2192  * SYSCALL: swapoff(devname)
2193  *
2194  * Disable swapping on the given device.
2195  *
2196  * XXX: Badly designed system call: it should use a device index
2197  * rather than filename as specification.  We keep sw_vp around
2198  * only to make this work.
2199  */
2200 #ifndef _SYS_SYSPROTO_H_
2201 struct swapoff_args {
2202 	char *name;
2203 };
2204 #endif
2205 
2206 /*
2207  * MPSAFE
2208  */
2209 /* ARGSUSED */
2210 int
2211 swapoff(struct thread *td, struct swapoff_args *uap)
2212 {
2213 	struct vnode *vp;
2214 	struct nameidata nd;
2215 	struct swdevt *sp;
2216 	int error;
2217 
2218 	error = priv_check(td, PRIV_SWAPOFF);
2219 	if (error)
2220 		return (error);
2221 
2222 	mtx_lock(&Giant);
2223 	while (swdev_syscall_active)
2224 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2225 	swdev_syscall_active = 1;
2226 
2227 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2228 	    td);
2229 	error = namei(&nd);
2230 	if (error)
2231 		goto done;
2232 	NDFREE(&nd, NDF_ONLY_PNBUF);
2233 	vp = nd.ni_vp;
2234 
2235 	mtx_lock(&sw_dev_mtx);
2236 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2237 		if (sp->sw_vp == vp)
2238 			break;
2239 	}
2240 	mtx_unlock(&sw_dev_mtx);
2241 	if (sp == NULL) {
2242 		error = EINVAL;
2243 		goto done;
2244 	}
2245 	error = swapoff_one(sp, td->td_ucred);
2246 done:
2247 	swdev_syscall_active = 0;
2248 	wakeup_one(&swdev_syscall_active);
2249 	mtx_unlock(&Giant);
2250 	return (error);
2251 }
2252 
2253 static int
2254 swapoff_one(struct swdevt *sp, struct ucred *cred)
2255 {
2256 	u_long nblks, dvbase;
2257 #ifdef MAC
2258 	int error;
2259 #endif
2260 
2261 	mtx_assert(&Giant, MA_OWNED);
2262 #ifdef MAC
2263 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2264 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2265 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2266 	if (error != 0)
2267 		return (error);
2268 #endif
2269 	nblks = sp->sw_nblks;
2270 
2271 	/*
2272 	 * We can turn off this swap device safely only if the
2273 	 * available virtual memory in the system will fit the amount
2274 	 * of data we will have to page back in, plus an epsilon so
2275 	 * the system doesn't become critically low on swap space.
2276 	 */
2277 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2278 	    nblks + nswap_lowat) {
2279 		return (ENOMEM);
2280 	}
2281 
2282 	/*
2283 	 * Prevent further allocations on this device.
2284 	 */
2285 	mtx_lock(&sw_dev_mtx);
2286 	sp->sw_flags |= SW_CLOSING;
2287 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2288 		swap_pager_avail -= blist_fill(sp->sw_blist,
2289 		     dvbase, dmmax);
2290 	}
2291 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2292 	mtx_unlock(&sw_dev_mtx);
2293 
2294 	/*
2295 	 * Page in the contents of the device and close it.
2296 	 */
2297 	swap_pager_swapoff(sp);
2298 
2299 	sp->sw_close(curthread, sp);
2300 	sp->sw_id = NULL;
2301 	mtx_lock(&sw_dev_mtx);
2302 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2303 	nswapdev--;
2304 	if (nswapdev == 0) {
2305 		swap_pager_full = 2;
2306 		swap_pager_almost_full = 1;
2307 	}
2308 	if (swdevhd == sp)
2309 		swdevhd = NULL;
2310 	mtx_unlock(&sw_dev_mtx);
2311 	blist_destroy(sp->sw_blist);
2312 	free(sp, M_VMPGDATA);
2313 	return (0);
2314 }
2315 
2316 void
2317 swapoff_all(void)
2318 {
2319 	struct swdevt *sp, *spt;
2320 	const char *devname;
2321 	int error;
2322 
2323 	mtx_lock(&Giant);
2324 	while (swdev_syscall_active)
2325 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2326 	swdev_syscall_active = 1;
2327 
2328 	mtx_lock(&sw_dev_mtx);
2329 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2330 		mtx_unlock(&sw_dev_mtx);
2331 		if (vn_isdisk(sp->sw_vp, NULL))
2332 			devname = sp->sw_vp->v_rdev->si_name;
2333 		else
2334 			devname = "[file]";
2335 		error = swapoff_one(sp, thread0.td_ucred);
2336 		if (error != 0) {
2337 			printf("Cannot remove swap device %s (error=%d), "
2338 			    "skipping.\n", devname, error);
2339 		} else if (bootverbose) {
2340 			printf("Swap device %s removed.\n", devname);
2341 		}
2342 		mtx_lock(&sw_dev_mtx);
2343 	}
2344 	mtx_unlock(&sw_dev_mtx);
2345 
2346 	swdev_syscall_active = 0;
2347 	wakeup_one(&swdev_syscall_active);
2348 	mtx_unlock(&Giant);
2349 }
2350 
2351 void
2352 swap_pager_status(int *total, int *used)
2353 {
2354 	struct swdevt *sp;
2355 
2356 	*total = 0;
2357 	*used = 0;
2358 	mtx_lock(&sw_dev_mtx);
2359 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2360 		*total += sp->sw_nblks;
2361 		*used += sp->sw_used;
2362 	}
2363 	mtx_unlock(&sw_dev_mtx);
2364 }
2365 
2366 static int
2367 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2368 {
2369 	int	*name = (int *)arg1;
2370 	int	error, n;
2371 	struct xswdev xs;
2372 	struct swdevt *sp;
2373 
2374 	if (arg2 != 1) /* name length */
2375 		return (EINVAL);
2376 
2377 	n = 0;
2378 	mtx_lock(&sw_dev_mtx);
2379 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2380 		if (n == *name) {
2381 			mtx_unlock(&sw_dev_mtx);
2382 			xs.xsw_version = XSWDEV_VERSION;
2383 			xs.xsw_dev = sp->sw_dev;
2384 			xs.xsw_flags = sp->sw_flags;
2385 			xs.xsw_nblks = sp->sw_nblks;
2386 			xs.xsw_used = sp->sw_used;
2387 
2388 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2389 			return (error);
2390 		}
2391 		n++;
2392 	}
2393 	mtx_unlock(&sw_dev_mtx);
2394 	return (ENOENT);
2395 }
2396 
2397 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2398     "Number of swap devices");
2399 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2400     "Swap statistics by device");
2401 
2402 /*
2403  * vmspace_swap_count() - count the approximate swap usage in pages for a
2404  *			  vmspace.
2405  *
2406  *	The map must be locked.
2407  *
2408  *	Swap usage is determined by taking the proportional swap used by
2409  *	VM objects backing the VM map.  To make up for fractional losses,
2410  *	if the VM object has any swap use at all the associated map entries
2411  *	count for at least 1 swap page.
2412  */
2413 int
2414 vmspace_swap_count(struct vmspace *vmspace)
2415 {
2416 	vm_map_t map = &vmspace->vm_map;
2417 	vm_map_entry_t cur;
2418 	int count = 0;
2419 
2420 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2421 		vm_object_t object;
2422 
2423 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2424 		    (object = cur->object.vm_object) != NULL) {
2425 			VM_OBJECT_LOCK(object);
2426 			if (object->type == OBJT_SWAP &&
2427 			    object->un_pager.swp.swp_bcount != 0) {
2428 				int n = (cur->end - cur->start) / PAGE_SIZE;
2429 
2430 				count += object->un_pager.swp.swp_bcount *
2431 				    SWAP_META_PAGES * n / object->size + 1;
2432 			}
2433 			VM_OBJECT_UNLOCK(object);
2434 		}
2435 	}
2436 	return (count);
2437 }
2438 
2439 /*
2440  * GEOM backend
2441  *
2442  * Swapping onto disk devices.
2443  *
2444  */
2445 
2446 static g_orphan_t swapgeom_orphan;
2447 
2448 static struct g_class g_swap_class = {
2449 	.name = "SWAP",
2450 	.version = G_VERSION,
2451 	.orphan = swapgeom_orphan,
2452 };
2453 
2454 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2455 
2456 
2457 static void
2458 swapgeom_done(struct bio *bp2)
2459 {
2460 	struct buf *bp;
2461 
2462 	bp = bp2->bio_caller2;
2463 	bp->b_ioflags = bp2->bio_flags;
2464 	if (bp2->bio_error)
2465 		bp->b_ioflags |= BIO_ERROR;
2466 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2467 	bp->b_error = bp2->bio_error;
2468 	bufdone(bp);
2469 	g_destroy_bio(bp2);
2470 }
2471 
2472 static void
2473 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2474 {
2475 	struct bio *bio;
2476 	struct g_consumer *cp;
2477 
2478 	cp = sp->sw_id;
2479 	if (cp == NULL) {
2480 		bp->b_error = ENXIO;
2481 		bp->b_ioflags |= BIO_ERROR;
2482 		bufdone(bp);
2483 		return;
2484 	}
2485 	if (bp->b_iocmd == BIO_WRITE)
2486 		bio = g_new_bio();
2487 	else
2488 		bio = g_alloc_bio();
2489 	if (bio == NULL) {
2490 		bp->b_error = ENOMEM;
2491 		bp->b_ioflags |= BIO_ERROR;
2492 		bufdone(bp);
2493 		return;
2494 	}
2495 
2496 	bio->bio_caller2 = bp;
2497 	bio->bio_cmd = bp->b_iocmd;
2498 	bio->bio_data = bp->b_data;
2499 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2500 	bio->bio_length = bp->b_bcount;
2501 	bio->bio_done = swapgeom_done;
2502 	g_io_request(bio, cp);
2503 	return;
2504 }
2505 
2506 static void
2507 swapgeom_orphan(struct g_consumer *cp)
2508 {
2509 	struct swdevt *sp;
2510 
2511 	mtx_lock(&sw_dev_mtx);
2512 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2513 		if (sp->sw_id == cp)
2514 			sp->sw_id = NULL;
2515 	mtx_unlock(&sw_dev_mtx);
2516 }
2517 
2518 static void
2519 swapgeom_close_ev(void *arg, int flags)
2520 {
2521 	struct g_consumer *cp;
2522 
2523 	cp = arg;
2524 	g_access(cp, -1, -1, 0);
2525 	g_detach(cp);
2526 	g_destroy_consumer(cp);
2527 }
2528 
2529 static void
2530 swapgeom_close(struct thread *td, struct swdevt *sw)
2531 {
2532 
2533 	/* XXX: direct call when Giant untangled */
2534 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2535 }
2536 
2537 
2538 struct swh0h0 {
2539 	struct cdev *dev;
2540 	struct vnode *vp;
2541 	int	error;
2542 };
2543 
2544 static void
2545 swapongeom_ev(void *arg, int flags)
2546 {
2547 	struct swh0h0 *swh;
2548 	struct g_provider *pp;
2549 	struct g_consumer *cp;
2550 	static struct g_geom *gp;
2551 	struct swdevt *sp;
2552 	u_long nblks;
2553 	int error;
2554 
2555 	swh = arg;
2556 	swh->error = 0;
2557 	pp = g_dev_getprovider(swh->dev);
2558 	if (pp == NULL) {
2559 		swh->error = ENODEV;
2560 		return;
2561 	}
2562 	mtx_lock(&sw_dev_mtx);
2563 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2564 		cp = sp->sw_id;
2565 		if (cp != NULL && cp->provider == pp) {
2566 			mtx_unlock(&sw_dev_mtx);
2567 			swh->error = EBUSY;
2568 			return;
2569 		}
2570 	}
2571 	mtx_unlock(&sw_dev_mtx);
2572 	if (gp == NULL)
2573 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2574 	cp = g_new_consumer(gp);
2575 	g_attach(cp, pp);
2576 	/*
2577 	 * XXX: Everytime you think you can improve the margin for
2578 	 * footshooting, somebody depends on the ability to do so:
2579 	 * savecore(8) wants to write to our swapdev so we cannot
2580 	 * set an exclusive count :-(
2581 	 */
2582 	error = g_access(cp, 1, 1, 0);
2583 	if (error) {
2584 		g_detach(cp);
2585 		g_destroy_consumer(cp);
2586 		swh->error = error;
2587 		return;
2588 	}
2589 	nblks = pp->mediasize / DEV_BSIZE;
2590 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2591 	    swapgeom_close, dev2udev(swh->dev));
2592 	swh->error = 0;
2593 	return;
2594 }
2595 
2596 static int
2597 swapongeom(struct thread *td, struct vnode *vp)
2598 {
2599 	int error;
2600 	struct swh0h0 swh;
2601 
2602 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2603 
2604 	swh.dev = vp->v_rdev;
2605 	swh.vp = vp;
2606 	swh.error = 0;
2607 	/* XXX: direct call when Giant untangled */
2608 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2609 	if (!error)
2610 		error = swh.error;
2611 	VOP_UNLOCK(vp, 0);
2612 	return (error);
2613 }
2614 
2615 /*
2616  * VNODE backend
2617  *
2618  * This is used mainly for network filesystem (read: probably only tested
2619  * with NFS) swapfiles.
2620  *
2621  */
2622 
2623 static void
2624 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2625 {
2626 	struct vnode *vp2;
2627 
2628 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2629 
2630 	vp2 = sp->sw_id;
2631 	vhold(vp2);
2632 	if (bp->b_iocmd == BIO_WRITE) {
2633 		if (bp->b_bufobj)
2634 			bufobj_wdrop(bp->b_bufobj);
2635 		bufobj_wref(&vp2->v_bufobj);
2636 	}
2637 	if (bp->b_bufobj != &vp2->v_bufobj)
2638 		bp->b_bufobj = &vp2->v_bufobj;
2639 	bp->b_vp = vp2;
2640 	bp->b_iooffset = dbtob(bp->b_blkno);
2641 	bstrategy(bp);
2642 	return;
2643 }
2644 
2645 static void
2646 swapdev_close(struct thread *td, struct swdevt *sp)
2647 {
2648 
2649 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2650 	vrele(sp->sw_vp);
2651 }
2652 
2653 
2654 static int
2655 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2656 {
2657 	struct swdevt *sp;
2658 	int error;
2659 
2660 	if (nblks == 0)
2661 		return (ENXIO);
2662 	mtx_lock(&sw_dev_mtx);
2663 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2664 		if (sp->sw_id == vp) {
2665 			mtx_unlock(&sw_dev_mtx);
2666 			return (EBUSY);
2667 		}
2668 	}
2669 	mtx_unlock(&sw_dev_mtx);
2670 
2671 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2672 #ifdef MAC
2673 	error = mac_system_check_swapon(td->td_ucred, vp);
2674 	if (error == 0)
2675 #endif
2676 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2677 	(void) VOP_UNLOCK(vp, 0);
2678 	if (error)
2679 		return (error);
2680 
2681 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2682 	    NODEV);
2683 	return (0);
2684 }
2685