xref: /freebsd/sys/vm/swap_pager.c (revision 5773cccf19ef7b97e56c1101aa481c43149224da)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 #include <sys/sx.h>
83 #include <sys/vmmeter.h>
84 
85 #ifndef MAX_PAGEOUT_CLUSTER
86 #define MAX_PAGEOUT_CLUSTER 16
87 #endif
88 
89 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
90 
91 #include "opt_swap.h"
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/swap_pager.h>
101 #include <vm/vm_extern.h>
102 #include <vm/uma.h>
103 
104 #define SWM_FREE	0x02	/* free, period			*/
105 #define SWM_POP		0x04	/* pop out			*/
106 
107 /*
108  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
109  * in the old system.
110  */
111 extern int vm_swap_size;	/* number of free swap blocks, in pages */
112 
113 int swap_pager_full;		/* swap space exhaustion (task killing) */
114 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
115 static int nsw_rcount;		/* free read buffers			*/
116 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
117 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
118 static int nsw_wcount_async_max;/* assigned maximum			*/
119 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
120 
121 struct blist *swapblist;
122 static struct swblock **swhash;
123 static int swhash_mask;
124 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
125 static struct sx sw_alloc_sx;
126 
127 /* from vm_swap.c */
128 extern struct vnode *swapdev_vp;
129 extern struct swdevt *swdevt;
130 extern int nswdev;
131 
132 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
133         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
134 
135 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
136 
137 /*
138  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
139  * of searching a named list by hashing it just a little.
140  */
141 
142 #define NOBJLISTS		8
143 
144 #define NOBJLIST(handle)	\
145 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
146 
147 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
148 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
149 struct pagerlst		swap_pager_un_object_list;
150 uma_zone_t		swap_zone;
151 
152 /*
153  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
154  * calls hooked from other parts of the VM system and do not appear here.
155  * (see vm/swap_pager.h).
156  */
157 static vm_object_t
158 		swap_pager_alloc(void *handle, vm_ooffset_t size,
159 				      vm_prot_t prot, vm_ooffset_t offset);
160 static void	swap_pager_dealloc(vm_object_t object);
161 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
162 static void	swap_pager_init(void);
163 static void	swap_pager_unswapped(vm_page_t);
164 static void	swap_pager_strategy(vm_object_t, struct bio *);
165 
166 struct pagerops swappagerops = {
167 	swap_pager_init,	/* early system initialization of pager	*/
168 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
169 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
170 	swap_pager_getpages,	/* pagein				*/
171 	swap_pager_putpages,	/* pageout				*/
172 	swap_pager_haspage,	/* get backing store status for page	*/
173 	swap_pager_unswapped,	/* remove swap related to page		*/
174 	swap_pager_strategy	/* pager strategy call			*/
175 };
176 
177 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
178 static void flushchainbuf(struct buf *nbp);
179 static void waitchainbuf(struct bio *bp, int count, int done);
180 
181 /*
182  * dmmax is in page-sized chunks with the new swap system.  It was
183  * dev-bsized chunks in the old.  dmmax is always a power of 2.
184  *
185  * swap_*() routines are externally accessible.  swp_*() routines are
186  * internal.
187  */
188 int dmmax;
189 static int dmmax_mask;
190 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
191 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
192 
193 SYSCTL_INT(_vm, OID_AUTO, dmmax,
194 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
195 
196 static __inline void	swp_sizecheck(void);
197 static void	swp_pager_sync_iodone(struct buf *bp);
198 static void	swp_pager_async_iodone(struct buf *bp);
199 
200 /*
201  * Swap bitmap functions
202  */
203 static __inline void	swp_pager_freeswapspace(daddr_t blk, int npages);
204 static __inline daddr_t	swp_pager_getswapspace(int npages);
205 
206 /*
207  * Metadata functions
208  */
209 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
210 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
211 static void swp_pager_meta_free_all(vm_object_t);
212 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
213 
214 /*
215  * SWP_SIZECHECK() -	update swap_pager_full indication
216  *
217  *	update the swap_pager_almost_full indication and warn when we are
218  *	about to run out of swap space, using lowat/hiwat hysteresis.
219  *
220  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
221  *
222  *	No restrictions on call
223  *	This routine may not block.
224  *	This routine must be called at splvm()
225  */
226 static __inline void
227 swp_sizecheck()
228 {
229 	GIANT_REQUIRED;
230 
231 	if (vm_swap_size < nswap_lowat) {
232 		if (swap_pager_almost_full == 0) {
233 			printf("swap_pager: out of swap space\n");
234 			swap_pager_almost_full = 1;
235 		}
236 	} else {
237 		swap_pager_full = 0;
238 		if (vm_swap_size > nswap_hiwat)
239 			swap_pager_almost_full = 0;
240 	}
241 }
242 
243 /*
244  * SWAP_PAGER_INIT() -	initialize the swap pager!
245  *
246  *	Expected to be started from system init.  NOTE:  This code is run
247  *	before much else so be careful what you depend on.  Most of the VM
248  *	system has yet to be initialized at this point.
249  */
250 static void
251 swap_pager_init()
252 {
253 	/*
254 	 * Initialize object lists
255 	 */
256 	int i;
257 
258 	for (i = 0; i < NOBJLISTS; ++i)
259 		TAILQ_INIT(&swap_pager_object_list[i]);
260 	TAILQ_INIT(&swap_pager_un_object_list);
261 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
262 
263 	/*
264 	 * Device Stripe, in PAGE_SIZE'd blocks
265 	 */
266 	dmmax = SWB_NPAGES * 2;
267 	dmmax_mask = ~(dmmax - 1);
268 }
269 
270 /*
271  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
272  *
273  *	Expected to be started from pageout process once, prior to entering
274  *	its main loop.
275  */
276 void
277 swap_pager_swap_init()
278 {
279 	int n, n2;
280 
281 	/*
282 	 * Number of in-transit swap bp operations.  Don't
283 	 * exhaust the pbufs completely.  Make sure we
284 	 * initialize workable values (0 will work for hysteresis
285 	 * but it isn't very efficient).
286 	 *
287 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
288 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
289 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
290 	 * constrained by the swap device interleave stripe size.
291 	 *
292 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
293 	 * designed to prevent other I/O from having high latencies due to
294 	 * our pageout I/O.  The value 4 works well for one or two active swap
295 	 * devices but is probably a little low if you have more.  Even so,
296 	 * a higher value would probably generate only a limited improvement
297 	 * with three or four active swap devices since the system does not
298 	 * typically have to pageout at extreme bandwidths.   We will want
299 	 * at least 2 per swap devices, and 4 is a pretty good value if you
300 	 * have one NFS swap device due to the command/ack latency over NFS.
301 	 * So it all works out pretty well.
302 	 */
303 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
304 
305 	mtx_lock(&pbuf_mtx);
306 	nsw_rcount = (nswbuf + 1) / 2;
307 	nsw_wcount_sync = (nswbuf + 3) / 4;
308 	nsw_wcount_async = 4;
309 	nsw_wcount_async_max = nsw_wcount_async;
310 	mtx_unlock(&pbuf_mtx);
311 
312 	/*
313 	 * Initialize our zone.  Right now I'm just guessing on the number
314 	 * we need based on the number of pages in the system.  Each swblock
315 	 * can hold 16 pages, so this is probably overkill.  This reservation
316 	 * is typically limited to around 32MB by default.
317 	 */
318 	n = cnt.v_page_count / 2;
319 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
320 		n = maxswzone / sizeof(struct swblock);
321 	n2 = n;
322 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
323 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
324 	do {
325 		if (uma_zone_set_obj(swap_zone, NULL, n))
326 			break;
327 		/*
328 		 * if the allocation failed, try a zone two thirds the
329 		 * size of the previous attempt.
330 		 */
331 		n -= ((n + 2) / 3);
332 	} while (n > 0);
333 	if (swap_zone == NULL)
334 		panic("failed to create swap_zone.");
335 	if (n2 != n)
336 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
337 	n2 = n;
338 
339 	/*
340 	 * Initialize our meta-data hash table.  The swapper does not need to
341 	 * be quite as efficient as the VM system, so we do not use an
342 	 * oversized hash table.
343 	 *
344 	 * 	n: 		size of hash table, must be power of 2
345 	 *	swhash_mask:	hash table index mask
346 	 */
347 	for (n = 1; n < n2 / 8; n *= 2)
348 		;
349 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
350 	swhash_mask = n - 1;
351 }
352 
353 /*
354  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
355  *			its metadata structures.
356  *
357  *	This routine is called from the mmap and fork code to create a new
358  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
359  *	and then converting it with swp_pager_meta_build().
360  *
361  *	This routine may block in vm_object_allocate() and create a named
362  *	object lookup race, so we must interlock.   We must also run at
363  *	splvm() for the object lookup to handle races with interrupts, but
364  *	we do not have to maintain splvm() in between the lookup and the
365  *	add because (I believe) it is not possible to attempt to create
366  *	a new swap object w/handle when a default object with that handle
367  *	already exists.
368  *
369  * MPSAFE
370  */
371 static vm_object_t
372 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
373 		 vm_ooffset_t offset)
374 {
375 	vm_object_t object;
376 
377 	mtx_lock(&Giant);
378 	if (handle) {
379 		/*
380 		 * Reference existing named region or allocate new one.  There
381 		 * should not be a race here against swp_pager_meta_build()
382 		 * as called from vm_page_remove() in regards to the lookup
383 		 * of the handle.
384 		 */
385 		sx_xlock(&sw_alloc_sx);
386 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
387 
388 		if (object != NULL) {
389 			vm_object_reference(object);
390 		} else {
391 			object = vm_object_allocate(OBJT_DEFAULT,
392 				OFF_TO_IDX(offset + PAGE_MASK + size));
393 			object->handle = handle;
394 
395 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
396 		}
397 		sx_xunlock(&sw_alloc_sx);
398 	} else {
399 		object = vm_object_allocate(OBJT_DEFAULT,
400 			OFF_TO_IDX(offset + PAGE_MASK + size));
401 
402 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
403 	}
404 	mtx_unlock(&Giant);
405 	return (object);
406 }
407 
408 /*
409  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
410  *
411  *	The swap backing for the object is destroyed.  The code is
412  *	designed such that we can reinstantiate it later, but this
413  *	routine is typically called only when the entire object is
414  *	about to be destroyed.
415  *
416  *	This routine may block, but no longer does.
417  *
418  *	The object must be locked or unreferenceable.
419  */
420 static void
421 swap_pager_dealloc(object)
422 	vm_object_t object;
423 {
424 	int s;
425 
426 	GIANT_REQUIRED;
427 
428 	/*
429 	 * Remove from list right away so lookups will fail if we block for
430 	 * pageout completion.
431 	 */
432 	mtx_lock(&sw_alloc_mtx);
433 	if (object->handle == NULL) {
434 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
435 	} else {
436 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
437 	}
438 	mtx_unlock(&sw_alloc_mtx);
439 
440 	vm_object_pip_wait(object, "swpdea");
441 
442 	/*
443 	 * Free all remaining metadata.  We only bother to free it from
444 	 * the swap meta data.  We do not attempt to free swapblk's still
445 	 * associated with vm_page_t's for this object.  We do not care
446 	 * if paging is still in progress on some objects.
447 	 */
448 	s = splvm();
449 	swp_pager_meta_free_all(object);
450 	splx(s);
451 }
452 
453 /************************************************************************
454  *			SWAP PAGER BITMAP ROUTINES			*
455  ************************************************************************/
456 
457 /*
458  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
459  *
460  *	Allocate swap for the requested number of pages.  The starting
461  *	swap block number (a page index) is returned or SWAPBLK_NONE
462  *	if the allocation failed.
463  *
464  *	Also has the side effect of advising that somebody made a mistake
465  *	when they configured swap and didn't configure enough.
466  *
467  *	Must be called at splvm() to avoid races with bitmap frees from
468  *	vm_page_remove() aka swap_pager_page_removed().
469  *
470  *	This routine may not block
471  *	This routine must be called at splvm().
472  */
473 static __inline daddr_t
474 swp_pager_getswapspace(npages)
475 	int npages;
476 {
477 	daddr_t blk;
478 
479 	GIANT_REQUIRED;
480 
481 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
482 		if (swap_pager_full != 2) {
483 			printf("swap_pager_getswapspace: failed\n");
484 			swap_pager_full = 2;
485 			swap_pager_almost_full = 1;
486 		}
487 	} else {
488 		vm_swap_size -= npages;
489 		/* per-swap area stats */
490 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
491 		swp_sizecheck();
492 	}
493 	return (blk);
494 }
495 
496 /*
497  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
498  *
499  *	This routine returns the specified swap blocks back to the bitmap.
500  *
501  *	Note:  This routine may not block (it could in the old swap code),
502  *	and through the use of the new blist routines it does not block.
503  *
504  *	We must be called at splvm() to avoid races with bitmap frees from
505  *	vm_page_remove() aka swap_pager_page_removed().
506  *
507  *	This routine may not block
508  *	This routine must be called at splvm().
509  */
510 static __inline void
511 swp_pager_freeswapspace(blk, npages)
512 	daddr_t blk;
513 	int npages;
514 {
515 	GIANT_REQUIRED;
516 
517 	blist_free(swapblist, blk, npages);
518 	vm_swap_size += npages;
519 	/* per-swap area stats */
520 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
521 	swp_sizecheck();
522 }
523 
524 /*
525  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
526  *				range within an object.
527  *
528  *	This is a globally accessible routine.
529  *
530  *	This routine removes swapblk assignments from swap metadata.
531  *
532  *	The external callers of this routine typically have already destroyed
533  *	or renamed vm_page_t's associated with this range in the object so
534  *	we should be ok.
535  *
536  *	This routine may be called at any spl.  We up our spl to splvm temporarily
537  *	in order to perform the metadata removal.
538  */
539 void
540 swap_pager_freespace(object, start, size)
541 	vm_object_t object;
542 	vm_pindex_t start;
543 	vm_size_t size;
544 {
545 	int s = splvm();
546 
547 	GIANT_REQUIRED;
548 	swp_pager_meta_free(object, start, size);
549 	splx(s);
550 }
551 
552 /*
553  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
554  *
555  *	Assigns swap blocks to the specified range within the object.  The
556  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
557  *
558  *	Returns 0 on success, -1 on failure.
559  */
560 int
561 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
562 {
563 	int s;
564 	int n = 0;
565 	daddr_t blk = SWAPBLK_NONE;
566 	vm_pindex_t beg = start;	/* save start index */
567 
568 	s = splvm();
569 	while (size) {
570 		if (n == 0) {
571 			n = BLIST_MAX_ALLOC;
572 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
573 				n >>= 1;
574 				if (n == 0) {
575 					swp_pager_meta_free(object, beg, start - beg);
576 					splx(s);
577 					return (-1);
578 				}
579 			}
580 		}
581 		swp_pager_meta_build(object, start, blk);
582 		--size;
583 		++start;
584 		++blk;
585 		--n;
586 	}
587 	swp_pager_meta_free(object, start, n);
588 	splx(s);
589 	return (0);
590 }
591 
592 /*
593  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
594  *			and destroy the source.
595  *
596  *	Copy any valid swapblks from the source to the destination.  In
597  *	cases where both the source and destination have a valid swapblk,
598  *	we keep the destination's.
599  *
600  *	This routine is allowed to block.  It may block allocating metadata
601  *	indirectly through swp_pager_meta_build() or if paging is still in
602  *	progress on the source.
603  *
604  *	This routine can be called at any spl
605  *
606  *	XXX vm_page_collapse() kinda expects us not to block because we
607  *	supposedly do not need to allocate memory, but for the moment we
608  *	*may* have to get a little memory from the zone allocator, but
609  *	it is taken from the interrupt memory.  We should be ok.
610  *
611  *	The source object contains no vm_page_t's (which is just as well)
612  *
613  *	The source object is of type OBJT_SWAP.
614  *
615  *	The source and destination objects must be locked or
616  *	inaccessible (XXX are they ?)
617  */
618 void
619 swap_pager_copy(srcobject, dstobject, offset, destroysource)
620 	vm_object_t srcobject;
621 	vm_object_t dstobject;
622 	vm_pindex_t offset;
623 	int destroysource;
624 {
625 	vm_pindex_t i;
626 	int s;
627 
628 	GIANT_REQUIRED;
629 
630 	s = splvm();
631 	/*
632 	 * If destroysource is set, we remove the source object from the
633 	 * swap_pager internal queue now.
634 	 */
635 	if (destroysource) {
636 		mtx_lock(&sw_alloc_mtx);
637 		if (srcobject->handle == NULL) {
638 			TAILQ_REMOVE(
639 			    &swap_pager_un_object_list,
640 			    srcobject,
641 			    pager_object_list
642 			);
643 		} else {
644 			TAILQ_REMOVE(
645 			    NOBJLIST(srcobject->handle),
646 			    srcobject,
647 			    pager_object_list
648 			);
649 		}
650 		mtx_unlock(&sw_alloc_mtx);
651 	}
652 
653 	/*
654 	 * transfer source to destination.
655 	 */
656 	for (i = 0; i < dstobject->size; ++i) {
657 		daddr_t dstaddr;
658 
659 		/*
660 		 * Locate (without changing) the swapblk on the destination,
661 		 * unless it is invalid in which case free it silently, or
662 		 * if the destination is a resident page, in which case the
663 		 * source is thrown away.
664 		 */
665 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
666 
667 		if (dstaddr == SWAPBLK_NONE) {
668 			/*
669 			 * Destination has no swapblk and is not resident,
670 			 * copy source.
671 			 */
672 			daddr_t srcaddr;
673 
674 			srcaddr = swp_pager_meta_ctl(
675 			    srcobject,
676 			    i + offset,
677 			    SWM_POP
678 			);
679 
680 			if (srcaddr != SWAPBLK_NONE)
681 				swp_pager_meta_build(dstobject, i, srcaddr);
682 		} else {
683 			/*
684 			 * Destination has valid swapblk or it is represented
685 			 * by a resident page.  We destroy the sourceblock.
686 			 */
687 
688 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
689 		}
690 	}
691 
692 	/*
693 	 * Free left over swap blocks in source.
694 	 *
695 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
696 	 * double-remove the object from the swap queues.
697 	 */
698 	if (destroysource) {
699 		swp_pager_meta_free_all(srcobject);
700 		/*
701 		 * Reverting the type is not necessary, the caller is going
702 		 * to destroy srcobject directly, but I'm doing it here
703 		 * for consistency since we've removed the object from its
704 		 * queues.
705 		 */
706 		srcobject->type = OBJT_DEFAULT;
707 	}
708 	splx(s);
709 }
710 
711 /*
712  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
713  *				the requested page.
714  *
715  *	We determine whether good backing store exists for the requested
716  *	page and return TRUE if it does, FALSE if it doesn't.
717  *
718  *	If TRUE, we also try to determine how much valid, contiguous backing
719  *	store exists before and after the requested page within a reasonable
720  *	distance.  We do not try to restrict it to the swap device stripe
721  *	(that is handled in getpages/putpages).  It probably isn't worth
722  *	doing here.
723  */
724 boolean_t
725 swap_pager_haspage(object, pindex, before, after)
726 	vm_object_t object;
727 	vm_pindex_t pindex;
728 	int *before;
729 	int *after;
730 {
731 	daddr_t blk0;
732 	int s;
733 
734 	/*
735 	 * do we have good backing store at the requested index ?
736 	 */
737 	s = splvm();
738 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
739 
740 	if (blk0 == SWAPBLK_NONE) {
741 		splx(s);
742 		if (before)
743 			*before = 0;
744 		if (after)
745 			*after = 0;
746 		return (FALSE);
747 	}
748 
749 	/*
750 	 * find backwards-looking contiguous good backing store
751 	 */
752 	if (before != NULL) {
753 		int i;
754 
755 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
756 			daddr_t blk;
757 
758 			if (i > pindex)
759 				break;
760 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
761 			if (blk != blk0 - i)
762 				break;
763 		}
764 		*before = (i - 1);
765 	}
766 
767 	/*
768 	 * find forward-looking contiguous good backing store
769 	 */
770 	if (after != NULL) {
771 		int i;
772 
773 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
774 			daddr_t blk;
775 
776 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
777 			if (blk != blk0 + i)
778 				break;
779 		}
780 		*after = (i - 1);
781 	}
782 	splx(s);
783 	return (TRUE);
784 }
785 
786 /*
787  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
788  *
789  *	This removes any associated swap backing store, whether valid or
790  *	not, from the page.
791  *
792  *	This routine is typically called when a page is made dirty, at
793  *	which point any associated swap can be freed.  MADV_FREE also
794  *	calls us in a special-case situation
795  *
796  *	NOTE!!!  If the page is clean and the swap was valid, the caller
797  *	should make the page dirty before calling this routine.  This routine
798  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
799  *	depends on it.
800  *
801  *	This routine may not block
802  *	This routine must be called at splvm()
803  */
804 static void
805 swap_pager_unswapped(m)
806 	vm_page_t m;
807 {
808 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
809 }
810 
811 /*
812  * SWAP_PAGER_STRATEGY() - read, write, free blocks
813  *
814  *	This implements the vm_pager_strategy() interface to swap and allows
815  *	other parts of the system to directly access swap as backing store
816  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
817  *	cacheless interface ( i.e. caching occurs at higher levels ).
818  *	Therefore we do not maintain any resident pages.  All I/O goes
819  *	directly to and from the swap device.
820  *
821  *	Note that b_blkno is scaled for PAGE_SIZE
822  *
823  *	We currently attempt to run I/O synchronously or asynchronously as
824  *	the caller requests.  This isn't perfect because we loose error
825  *	sequencing when we run multiple ops in parallel to satisfy a request.
826  *	But this is swap, so we let it all hang out.
827  */
828 static void
829 swap_pager_strategy(vm_object_t object, struct bio *bp)
830 {
831 	vm_pindex_t start;
832 	int count;
833 	int s;
834 	char *data;
835 	struct buf *nbp = NULL;
836 
837 	GIANT_REQUIRED;
838 
839 	/* XXX: KASSERT instead ? */
840 	if (bp->bio_bcount & PAGE_MASK) {
841 		biofinish(bp, NULL, EINVAL);
842 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
843 		return;
844 	}
845 
846 	/*
847 	 * Clear error indication, initialize page index, count, data pointer.
848 	 */
849 	bp->bio_error = 0;
850 	bp->bio_flags &= ~BIO_ERROR;
851 	bp->bio_resid = bp->bio_bcount;
852 	*(u_int *) &bp->bio_driver1 = 0;
853 
854 	start = bp->bio_pblkno;
855 	count = howmany(bp->bio_bcount, PAGE_SIZE);
856 	data = bp->bio_data;
857 
858 	s = splvm();
859 
860 	/*
861 	 * Deal with BIO_DELETE
862 	 */
863 	if (bp->bio_cmd == BIO_DELETE) {
864 		/*
865 		 * FREE PAGE(s) - destroy underlying swap that is no longer
866 		 *		  needed.
867 		 */
868 		swp_pager_meta_free(object, start, count);
869 		splx(s);
870 		bp->bio_resid = 0;
871 		biodone(bp);
872 		return;
873 	}
874 
875 	/*
876 	 * Execute read or write
877 	 */
878 	while (count > 0) {
879 		daddr_t blk;
880 
881 		/*
882 		 * Obtain block.  If block not found and writing, allocate a
883 		 * new block and build it into the object.
884 		 */
885 
886 		blk = swp_pager_meta_ctl(object, start, 0);
887 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
888 			blk = swp_pager_getswapspace(1);
889 			if (blk == SWAPBLK_NONE) {
890 				bp->bio_error = ENOMEM;
891 				bp->bio_flags |= BIO_ERROR;
892 				break;
893 			}
894 			swp_pager_meta_build(object, start, blk);
895 		}
896 
897 		/*
898 		 * Do we have to flush our current collection?  Yes if:
899 		 *
900 		 *	- no swap block at this index
901 		 *	- swap block is not contiguous
902 		 *	- we cross a physical disk boundry in the
903 		 *	  stripe.
904 		 */
905 		if (
906 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
907 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
908 		    )
909 		) {
910 			splx(s);
911 			if (bp->bio_cmd == BIO_READ) {
912 				++cnt.v_swapin;
913 				cnt.v_swappgsin += btoc(nbp->b_bcount);
914 			} else {
915 				++cnt.v_swapout;
916 				cnt.v_swappgsout += btoc(nbp->b_bcount);
917 				nbp->b_dirtyend = nbp->b_bcount;
918 			}
919 			flushchainbuf(nbp);
920 			s = splvm();
921 			nbp = NULL;
922 		}
923 
924 		/*
925 		 * Add new swapblk to nbp, instantiating nbp if necessary.
926 		 * Zero-fill reads are able to take a shortcut.
927 		 */
928 		if (blk == SWAPBLK_NONE) {
929 			/*
930 			 * We can only get here if we are reading.  Since
931 			 * we are at splvm() we can safely modify b_resid,
932 			 * even if chain ops are in progress.
933 			 */
934 			bzero(data, PAGE_SIZE);
935 			bp->bio_resid -= PAGE_SIZE;
936 		} else {
937 			if (nbp == NULL) {
938 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
939 				nbp->b_blkno = blk;
940 				nbp->b_bcount = 0;
941 				nbp->b_data = data;
942 			}
943 			nbp->b_bcount += PAGE_SIZE;
944 		}
945 		--count;
946 		++start;
947 		data += PAGE_SIZE;
948 	}
949 
950 	/*
951 	 *  Flush out last buffer
952 	 */
953 	splx(s);
954 
955 	if (nbp) {
956 		if (nbp->b_iocmd == BIO_READ) {
957 			++cnt.v_swapin;
958 			cnt.v_swappgsin += btoc(nbp->b_bcount);
959 		} else {
960 			++cnt.v_swapout;
961 			cnt.v_swappgsout += btoc(nbp->b_bcount);
962 			nbp->b_dirtyend = nbp->b_bcount;
963 		}
964 		flushchainbuf(nbp);
965 		/* nbp = NULL; */
966 	}
967 	/*
968 	 * Wait for completion.
969 	 */
970 	waitchainbuf(bp, 0, 1);
971 }
972 
973 /*
974  * SWAP_PAGER_GETPAGES() - bring pages in from swap
975  *
976  *	Attempt to retrieve (m, count) pages from backing store, but make
977  *	sure we retrieve at least m[reqpage].  We try to load in as large
978  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
979  *	belongs to the same object.
980  *
981  *	The code is designed for asynchronous operation and
982  *	immediate-notification of 'reqpage' but tends not to be
983  *	used that way.  Please do not optimize-out this algorithmic
984  *	feature, I intend to improve on it in the future.
985  *
986  *	The parent has a single vm_object_pip_add() reference prior to
987  *	calling us and we should return with the same.
988  *
989  *	The parent has BUSY'd the pages.  We should return with 'm'
990  *	left busy, but the others adjusted.
991  */
992 static int
993 swap_pager_getpages(object, m, count, reqpage)
994 	vm_object_t object;
995 	vm_page_t *m;
996 	int count, reqpage;
997 {
998 	struct buf *bp;
999 	vm_page_t mreq;
1000 	int s;
1001 	int i;
1002 	int j;
1003 	daddr_t blk;
1004 	vm_offset_t kva;
1005 	vm_pindex_t lastpindex;
1006 
1007 	GIANT_REQUIRED;
1008 
1009 	mreq = m[reqpage];
1010 
1011 	if (mreq->object != object) {
1012 		panic("swap_pager_getpages: object mismatch %p/%p",
1013 		    object,
1014 		    mreq->object
1015 		);
1016 	}
1017 	/*
1018 	 * Calculate range to retrieve.  The pages have already been assigned
1019 	 * their swapblks.  We require a *contiguous* range that falls entirely
1020 	 * within a single device stripe.   If we do not supply it, bad things
1021 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1022 	 * loops are set up such that the case(s) are handled implicitly.
1023 	 *
1024 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1025 	 * not need to be, but it will go a little faster if it is.
1026 	 */
1027 	s = splvm();
1028 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1029 
1030 	for (i = reqpage - 1; i >= 0; --i) {
1031 		daddr_t iblk;
1032 
1033 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1034 		if (blk != iblk + (reqpage - i))
1035 			break;
1036 		if ((blk ^ iblk) & dmmax_mask)
1037 			break;
1038 	}
1039 	++i;
1040 
1041 	for (j = reqpage + 1; j < count; ++j) {
1042 		daddr_t jblk;
1043 
1044 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1045 		if (blk != jblk - (j - reqpage))
1046 			break;
1047 		if ((blk ^ jblk) & dmmax_mask)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * free pages outside our collection range.   Note: we never free
1053 	 * mreq, it must remain busy throughout.
1054 	 */
1055 	vm_page_lock_queues();
1056 	{
1057 		int k;
1058 
1059 		for (k = 0; k < i; ++k)
1060 			vm_page_free(m[k]);
1061 		for (k = j; k < count; ++k)
1062 			vm_page_free(m[k]);
1063 	}
1064 	vm_page_unlock_queues();
1065 	splx(s);
1066 
1067 
1068 	/*
1069 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1070 	 * still busy, but the others unbusied.
1071 	 */
1072 	if (blk == SWAPBLK_NONE)
1073 		return (VM_PAGER_FAIL);
1074 
1075 	/*
1076 	 * Get a swap buffer header to perform the IO
1077 	 */
1078 	bp = getpbuf(&nsw_rcount);
1079 	kva = (vm_offset_t) bp->b_data;
1080 
1081 	/*
1082 	 * map our page(s) into kva for input
1083 	 *
1084 	 * NOTE: B_PAGING is set by pbgetvp()
1085 	 */
1086 	pmap_qenter(kva, m + i, j - i);
1087 
1088 	bp->b_iocmd = BIO_READ;
1089 	bp->b_iodone = swp_pager_async_iodone;
1090 	bp->b_rcred = crhold(thread0.td_ucred);
1091 	bp->b_wcred = crhold(thread0.td_ucred);
1092 	bp->b_data = (caddr_t) kva;
1093 	bp->b_blkno = blk - (reqpage - i);
1094 	bp->b_bcount = PAGE_SIZE * (j - i);
1095 	bp->b_bufsize = PAGE_SIZE * (j - i);
1096 	bp->b_pager.pg_reqpage = reqpage - i;
1097 
1098 	{
1099 		int k;
1100 
1101 		for (k = i; k < j; ++k) {
1102 			bp->b_pages[k - i] = m[k];
1103 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1104 		}
1105 	}
1106 	bp->b_npages = j - i;
1107 
1108 	pbgetvp(swapdev_vp, bp);
1109 
1110 	cnt.v_swapin++;
1111 	cnt.v_swappgsin += bp->b_npages;
1112 
1113 	/*
1114 	 * We still hold the lock on mreq, and our automatic completion routine
1115 	 * does not remove it.
1116 	 */
1117 	vm_object_pip_add(mreq->object, bp->b_npages);
1118 	lastpindex = m[j-1]->pindex;
1119 
1120 	/*
1121 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1122 	 * this point because we automatically release it on completion.
1123 	 * Instead, we look at the one page we are interested in which we
1124 	 * still hold a lock on even through the I/O completion.
1125 	 *
1126 	 * The other pages in our m[] array are also released on completion,
1127 	 * so we cannot assume they are valid anymore either.
1128 	 *
1129 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1130 	 */
1131 	BUF_KERNPROC(bp);
1132 	BUF_STRATEGY(bp);
1133 
1134 	/*
1135 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1136 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1137 	 * is set in the meta-data.
1138 	 */
1139 	s = splvm();
1140 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1141 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1142 		cnt.v_intrans++;
1143 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1144 			printf(
1145 			    "swap_pager: indefinite wait buffer: device:"
1146 				" %s, blkno: %ld, size: %ld\n",
1147 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1148 			    bp->b_bcount
1149 			);
1150 		}
1151 	}
1152 	splx(s);
1153 
1154 	/*
1155 	 * mreq is left busied after completion, but all the other pages
1156 	 * are freed.  If we had an unrecoverable read error the page will
1157 	 * not be valid.
1158 	 */
1159 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1160 		return (VM_PAGER_ERROR);
1161 	} else {
1162 		return (VM_PAGER_OK);
1163 	}
1164 
1165 	/*
1166 	 * A final note: in a low swap situation, we cannot deallocate swap
1167 	 * and mark a page dirty here because the caller is likely to mark
1168 	 * the page clean when we return, causing the page to possibly revert
1169 	 * to all-zero's later.
1170 	 */
1171 }
1172 
1173 /*
1174  *	swap_pager_putpages:
1175  *
1176  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1177  *
1178  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1179  *	are automatically converted to SWAP objects.
1180  *
1181  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1182  *	vm_page reservation system coupled with properly written VFS devices
1183  *	should ensure that no low-memory deadlock occurs.  This is an area
1184  *	which needs work.
1185  *
1186  *	The parent has N vm_object_pip_add() references prior to
1187  *	calling us and will remove references for rtvals[] that are
1188  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1189  *	completion.
1190  *
1191  *	The parent has soft-busy'd the pages it passes us and will unbusy
1192  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1193  *	We need to unbusy the rest on I/O completion.
1194  */
1195 void
1196 swap_pager_putpages(object, m, count, sync, rtvals)
1197 	vm_object_t object;
1198 	vm_page_t *m;
1199 	int count;
1200 	boolean_t sync;
1201 	int *rtvals;
1202 {
1203 	int i;
1204 	int n = 0;
1205 
1206 	GIANT_REQUIRED;
1207 	if (count && m[0]->object != object) {
1208 		panic("swap_pager_getpages: object mismatch %p/%p",
1209 		    object,
1210 		    m[0]->object
1211 		);
1212 	}
1213 	/*
1214 	 * Step 1
1215 	 *
1216 	 * Turn object into OBJT_SWAP
1217 	 * check for bogus sysops
1218 	 * force sync if not pageout process
1219 	 */
1220 	if (object->type != OBJT_SWAP)
1221 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1222 
1223 	if (curproc != pageproc)
1224 		sync = TRUE;
1225 
1226 	/*
1227 	 * Step 2
1228 	 *
1229 	 * Update nsw parameters from swap_async_max sysctl values.
1230 	 * Do not let the sysop crash the machine with bogus numbers.
1231 	 */
1232 	mtx_lock(&pbuf_mtx);
1233 	if (swap_async_max != nsw_wcount_async_max) {
1234 		int n;
1235 		int s;
1236 
1237 		/*
1238 		 * limit range
1239 		 */
1240 		if ((n = swap_async_max) > nswbuf / 2)
1241 			n = nswbuf / 2;
1242 		if (n < 1)
1243 			n = 1;
1244 		swap_async_max = n;
1245 
1246 		/*
1247 		 * Adjust difference ( if possible ).  If the current async
1248 		 * count is too low, we may not be able to make the adjustment
1249 		 * at this time.
1250 		 */
1251 		s = splvm();
1252 		n -= nsw_wcount_async_max;
1253 		if (nsw_wcount_async + n >= 0) {
1254 			nsw_wcount_async += n;
1255 			nsw_wcount_async_max += n;
1256 			wakeup(&nsw_wcount_async);
1257 		}
1258 		splx(s);
1259 	}
1260 	mtx_unlock(&pbuf_mtx);
1261 
1262 	/*
1263 	 * Step 3
1264 	 *
1265 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1266 	 * The page is left dirty until the pageout operation completes
1267 	 * successfully.
1268 	 */
1269 	for (i = 0; i < count; i += n) {
1270 		int s;
1271 		int j;
1272 		struct buf *bp;
1273 		daddr_t blk;
1274 
1275 		/*
1276 		 * Maximum I/O size is limited by a number of factors.
1277 		 */
1278 		n = min(BLIST_MAX_ALLOC, count - i);
1279 		n = min(n, nsw_cluster_max);
1280 
1281 		s = splvm();
1282 
1283 		/*
1284 		 * Get biggest block of swap we can.  If we fail, fall
1285 		 * back and try to allocate a smaller block.  Don't go
1286 		 * overboard trying to allocate space if it would overly
1287 		 * fragment swap.
1288 		 */
1289 		while (
1290 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1291 		    n > 4
1292 		) {
1293 			n >>= 1;
1294 		}
1295 		if (blk == SWAPBLK_NONE) {
1296 			for (j = 0; j < n; ++j)
1297 				rtvals[i+j] = VM_PAGER_FAIL;
1298 			splx(s);
1299 			continue;
1300 		}
1301 
1302 		/*
1303 		 * The I/O we are constructing cannot cross a physical
1304 		 * disk boundry in the swap stripe.  Note: we are still
1305 		 * at splvm().
1306 		 */
1307 		if ((blk ^ (blk + n)) & dmmax_mask) {
1308 			j = ((blk + dmmax) & dmmax_mask) - blk;
1309 			swp_pager_freeswapspace(blk + j, n - j);
1310 			n = j;
1311 		}
1312 
1313 		/*
1314 		 * All I/O parameters have been satisfied, build the I/O
1315 		 * request and assign the swap space.
1316 		 *
1317 		 * NOTE: B_PAGING is set by pbgetvp()
1318 		 */
1319 		if (sync == TRUE) {
1320 			bp = getpbuf(&nsw_wcount_sync);
1321 		} else {
1322 			bp = getpbuf(&nsw_wcount_async);
1323 			bp->b_flags = B_ASYNC;
1324 		}
1325 		bp->b_iocmd = BIO_WRITE;
1326 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1327 
1328 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1329 
1330 		bp->b_rcred = crhold(thread0.td_ucred);
1331 		bp->b_wcred = crhold(thread0.td_ucred);
1332 		bp->b_bcount = PAGE_SIZE * n;
1333 		bp->b_bufsize = PAGE_SIZE * n;
1334 		bp->b_blkno = blk;
1335 
1336 		pbgetvp(swapdev_vp, bp);
1337 
1338 		for (j = 0; j < n; ++j) {
1339 			vm_page_t mreq = m[i+j];
1340 
1341 			swp_pager_meta_build(
1342 			    mreq->object,
1343 			    mreq->pindex,
1344 			    blk + j
1345 			);
1346 			vm_page_dirty(mreq);
1347 			rtvals[i+j] = VM_PAGER_OK;
1348 
1349 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1350 			bp->b_pages[j] = mreq;
1351 		}
1352 		bp->b_npages = n;
1353 		/*
1354 		 * Must set dirty range for NFS to work.
1355 		 */
1356 		bp->b_dirtyoff = 0;
1357 		bp->b_dirtyend = bp->b_bcount;
1358 
1359 		cnt.v_swapout++;
1360 		cnt.v_swappgsout += bp->b_npages;
1361 		VI_LOCK(swapdev_vp);
1362 		swapdev_vp->v_numoutput++;
1363 		VI_UNLOCK(swapdev_vp);
1364 
1365 		splx(s);
1366 
1367 		/*
1368 		 * asynchronous
1369 		 *
1370 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1371 		 */
1372 		if (sync == FALSE) {
1373 			bp->b_iodone = swp_pager_async_iodone;
1374 			BUF_KERNPROC(bp);
1375 			BUF_STRATEGY(bp);
1376 
1377 			for (j = 0; j < n; ++j)
1378 				rtvals[i+j] = VM_PAGER_PEND;
1379 			/* restart outter loop */
1380 			continue;
1381 		}
1382 
1383 		/*
1384 		 * synchronous
1385 		 *
1386 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1387 		 */
1388 		bp->b_iodone = swp_pager_sync_iodone;
1389 		BUF_STRATEGY(bp);
1390 
1391 		/*
1392 		 * Wait for the sync I/O to complete, then update rtvals.
1393 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1394 		 * our async completion routine at the end, thus avoiding a
1395 		 * double-free.
1396 		 */
1397 		s = splbio();
1398 		while ((bp->b_flags & B_DONE) == 0) {
1399 			tsleep(bp, PVM, "swwrt", 0);
1400 		}
1401 		for (j = 0; j < n; ++j)
1402 			rtvals[i+j] = VM_PAGER_PEND;
1403 		/*
1404 		 * Now that we are through with the bp, we can call the
1405 		 * normal async completion, which frees everything up.
1406 		 */
1407 		swp_pager_async_iodone(bp);
1408 		splx(s);
1409 	}
1410 }
1411 
1412 /*
1413  *	swap_pager_sync_iodone:
1414  *
1415  *	Completion routine for synchronous reads and writes from/to swap.
1416  *	We just mark the bp is complete and wake up anyone waiting on it.
1417  *
1418  *	This routine may not block.  This routine is called at splbio() or better.
1419  */
1420 static void
1421 swp_pager_sync_iodone(bp)
1422 	struct buf *bp;
1423 {
1424 	bp->b_flags |= B_DONE;
1425 	bp->b_flags &= ~B_ASYNC;
1426 	wakeup(bp);
1427 }
1428 
1429 /*
1430  *	swp_pager_async_iodone:
1431  *
1432  *	Completion routine for asynchronous reads and writes from/to swap.
1433  *	Also called manually by synchronous code to finish up a bp.
1434  *
1435  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1436  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1437  *	unbusy all pages except the 'main' request page.  For WRITE
1438  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1439  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1440  *
1441  *	This routine may not block.
1442  *	This routine is called at splbio() or better
1443  *
1444  *	We up ourselves to splvm() as required for various vm_page related
1445  *	calls.
1446  */
1447 static void
1448 swp_pager_async_iodone(bp)
1449 	struct buf *bp;
1450 {
1451 	int s;
1452 	int i;
1453 	vm_object_t object = NULL;
1454 
1455 	GIANT_REQUIRED;
1456 	bp->b_flags |= B_DONE;
1457 
1458 	/*
1459 	 * report error
1460 	 */
1461 	if (bp->b_ioflags & BIO_ERROR) {
1462 		printf(
1463 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1464 			"size %ld, error %d\n",
1465 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1466 		    (long)bp->b_blkno,
1467 		    (long)bp->b_bcount,
1468 		    bp->b_error
1469 		);
1470 	}
1471 
1472 	/*
1473 	 * set object, raise to splvm().
1474 	 */
1475 	if (bp->b_npages)
1476 		object = bp->b_pages[0]->object;
1477 	s = splvm();
1478 
1479 	/*
1480 	 * remove the mapping for kernel virtual
1481 	 */
1482 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1483 
1484 	vm_page_lock_queues();
1485 	/*
1486 	 * cleanup pages.  If an error occurs writing to swap, we are in
1487 	 * very serious trouble.  If it happens to be a disk error, though,
1488 	 * we may be able to recover by reassigning the swap later on.  So
1489 	 * in this case we remove the m->swapblk assignment for the page
1490 	 * but do not free it in the rlist.  The errornous block(s) are thus
1491 	 * never reallocated as swap.  Redirty the page and continue.
1492 	 */
1493 	for (i = 0; i < bp->b_npages; ++i) {
1494 		vm_page_t m = bp->b_pages[i];
1495 
1496 		vm_page_flag_clear(m, PG_SWAPINPROG);
1497 
1498 		if (bp->b_ioflags & BIO_ERROR) {
1499 			/*
1500 			 * If an error occurs I'd love to throw the swapblk
1501 			 * away without freeing it back to swapspace, so it
1502 			 * can never be used again.  But I can't from an
1503 			 * interrupt.
1504 			 */
1505 			if (bp->b_iocmd == BIO_READ) {
1506 				/*
1507 				 * When reading, reqpage needs to stay
1508 				 * locked for the parent, but all other
1509 				 * pages can be freed.  We still want to
1510 				 * wakeup the parent waiting on the page,
1511 				 * though.  ( also: pg_reqpage can be -1 and
1512 				 * not match anything ).
1513 				 *
1514 				 * We have to wake specifically requested pages
1515 				 * up too because we cleared PG_SWAPINPROG and
1516 				 * someone may be waiting for that.
1517 				 *
1518 				 * NOTE: for reads, m->dirty will probably
1519 				 * be overridden by the original caller of
1520 				 * getpages so don't play cute tricks here.
1521 				 *
1522 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1523 				 * AS THIS MESSES WITH object->memq, and it is
1524 				 * not legal to mess with object->memq from an
1525 				 * interrupt.
1526 				 */
1527 				m->valid = 0;
1528 				vm_page_flag_clear(m, PG_ZERO);
1529 				if (i != bp->b_pager.pg_reqpage)
1530 					vm_page_free(m);
1531 				else
1532 					vm_page_flash(m);
1533 				/*
1534 				 * If i == bp->b_pager.pg_reqpage, do not wake
1535 				 * the page up.  The caller needs to.
1536 				 */
1537 			} else {
1538 				/*
1539 				 * If a write error occurs, reactivate page
1540 				 * so it doesn't clog the inactive list,
1541 				 * then finish the I/O.
1542 				 */
1543 				vm_page_dirty(m);
1544 				vm_page_activate(m);
1545 				vm_page_io_finish(m);
1546 			}
1547 		} else if (bp->b_iocmd == BIO_READ) {
1548 			/*
1549 			 * For read success, clear dirty bits.  Nobody should
1550 			 * have this page mapped but don't take any chances,
1551 			 * make sure the pmap modify bits are also cleared.
1552 			 *
1553 			 * NOTE: for reads, m->dirty will probably be
1554 			 * overridden by the original caller of getpages so
1555 			 * we cannot set them in order to free the underlying
1556 			 * swap in a low-swap situation.  I don't think we'd
1557 			 * want to do that anyway, but it was an optimization
1558 			 * that existed in the old swapper for a time before
1559 			 * it got ripped out due to precisely this problem.
1560 			 *
1561 			 * clear PG_ZERO in page.
1562 			 *
1563 			 * If not the requested page then deactivate it.
1564 			 *
1565 			 * Note that the requested page, reqpage, is left
1566 			 * busied, but we still have to wake it up.  The
1567 			 * other pages are released (unbusied) by
1568 			 * vm_page_wakeup().  We do not set reqpage's
1569 			 * valid bits here, it is up to the caller.
1570 			 */
1571 			pmap_clear_modify(m);
1572 			m->valid = VM_PAGE_BITS_ALL;
1573 			vm_page_undirty(m);
1574 			vm_page_flag_clear(m, PG_ZERO);
1575 
1576 			/*
1577 			 * We have to wake specifically requested pages
1578 			 * up too because we cleared PG_SWAPINPROG and
1579 			 * could be waiting for it in getpages.  However,
1580 			 * be sure to not unbusy getpages specifically
1581 			 * requested page - getpages expects it to be
1582 			 * left busy.
1583 			 */
1584 			if (i != bp->b_pager.pg_reqpage) {
1585 				vm_page_deactivate(m);
1586 				vm_page_wakeup(m);
1587 			} else {
1588 				vm_page_flash(m);
1589 			}
1590 		} else {
1591 			/*
1592 			 * For write success, clear the modify and dirty
1593 			 * status, then finish the I/O ( which decrements the
1594 			 * busy count and possibly wakes waiter's up ).
1595 			 */
1596 			pmap_clear_modify(m);
1597 			vm_page_undirty(m);
1598 			vm_page_io_finish(m);
1599 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1600 				pmap_page_protect(m, VM_PROT_READ);
1601 		}
1602 	}
1603 	vm_page_unlock_queues();
1604 
1605 	/*
1606 	 * adjust pip.  NOTE: the original parent may still have its own
1607 	 * pip refs on the object.
1608 	 */
1609 	if (object)
1610 		vm_object_pip_wakeupn(object, bp->b_npages);
1611 
1612 	/*
1613 	 * release the physical I/O buffer
1614 	 */
1615 	relpbuf(
1616 	    bp,
1617 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1618 		((bp->b_flags & B_ASYNC) ?
1619 		    &nsw_wcount_async :
1620 		    &nsw_wcount_sync
1621 		)
1622 	    )
1623 	);
1624 	splx(s);
1625 }
1626 
1627 /************************************************************************
1628  *				SWAP META DATA 				*
1629  ************************************************************************
1630  *
1631  *	These routines manipulate the swap metadata stored in the
1632  *	OBJT_SWAP object.  All swp_*() routines must be called at
1633  *	splvm() because swap can be freed up by the low level vm_page
1634  *	code which might be called from interrupts beyond what splbio() covers.
1635  *
1636  *	Swap metadata is implemented with a global hash and not directly
1637  *	linked into the object.  Instead the object simply contains
1638  *	appropriate tracking counters.
1639  */
1640 
1641 /*
1642  * SWP_PAGER_HASH() -	hash swap meta data
1643  *
1644  *	This is an inline helper function which hashes the swapblk given
1645  *	the object and page index.  It returns a pointer to a pointer
1646  *	to the object, or a pointer to a NULL pointer if it could not
1647  *	find a swapblk.
1648  *
1649  *	This routine must be called at splvm().
1650  */
1651 static __inline struct swblock **
1652 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1653 {
1654 	struct swblock **pswap;
1655 	struct swblock *swap;
1656 
1657 	index &= ~(vm_pindex_t)SWAP_META_MASK;
1658 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1659 	while ((swap = *pswap) != NULL) {
1660 		if (swap->swb_object == object &&
1661 		    swap->swb_index == index
1662 		) {
1663 			break;
1664 		}
1665 		pswap = &swap->swb_hnext;
1666 	}
1667 	return (pswap);
1668 }
1669 
1670 /*
1671  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1672  *
1673  *	We first convert the object to a swap object if it is a default
1674  *	object.
1675  *
1676  *	The specified swapblk is added to the object's swap metadata.  If
1677  *	the swapblk is not valid, it is freed instead.  Any previously
1678  *	assigned swapblk is freed.
1679  *
1680  *	This routine must be called at splvm(), except when used to convert
1681  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1682  */
1683 static void
1684 swp_pager_meta_build(
1685 	vm_object_t object,
1686 	vm_pindex_t pindex,
1687 	daddr_t swapblk
1688 ) {
1689 	struct swblock *swap;
1690 	struct swblock **pswap;
1691 	int idx;
1692 
1693 	GIANT_REQUIRED;
1694 	/*
1695 	 * Convert default object to swap object if necessary
1696 	 */
1697 	if (object->type != OBJT_SWAP) {
1698 		object->type = OBJT_SWAP;
1699 		object->un_pager.swp.swp_bcount = 0;
1700 
1701 		mtx_lock(&sw_alloc_mtx);
1702 		if (object->handle != NULL) {
1703 			TAILQ_INSERT_TAIL(
1704 			    NOBJLIST(object->handle),
1705 			    object,
1706 			    pager_object_list
1707 			);
1708 		} else {
1709 			TAILQ_INSERT_TAIL(
1710 			    &swap_pager_un_object_list,
1711 			    object,
1712 			    pager_object_list
1713 			);
1714 		}
1715 		mtx_unlock(&sw_alloc_mtx);
1716 	}
1717 
1718 	/*
1719 	 * Locate hash entry.  If not found create, but if we aren't adding
1720 	 * anything just return.  If we run out of space in the map we wait
1721 	 * and, since the hash table may have changed, retry.
1722 	 */
1723 retry:
1724 	pswap = swp_pager_hash(object, pindex);
1725 
1726 	if ((swap = *pswap) == NULL) {
1727 		int i;
1728 
1729 		if (swapblk == SWAPBLK_NONE)
1730 			return;
1731 
1732 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1733 		if (swap == NULL) {
1734 			VM_WAIT;
1735 			goto retry;
1736 		}
1737 
1738 		swap->swb_hnext = NULL;
1739 		swap->swb_object = object;
1740 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1741 		swap->swb_count = 0;
1742 
1743 		++object->un_pager.swp.swp_bcount;
1744 
1745 		for (i = 0; i < SWAP_META_PAGES; ++i)
1746 			swap->swb_pages[i] = SWAPBLK_NONE;
1747 	}
1748 
1749 	/*
1750 	 * Delete prior contents of metadata
1751 	 */
1752 	idx = pindex & SWAP_META_MASK;
1753 
1754 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1755 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1756 		--swap->swb_count;
1757 	}
1758 
1759 	/*
1760 	 * Enter block into metadata
1761 	 */
1762 	swap->swb_pages[idx] = swapblk;
1763 	if (swapblk != SWAPBLK_NONE)
1764 		++swap->swb_count;
1765 }
1766 
1767 /*
1768  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1769  *
1770  *	The requested range of blocks is freed, with any associated swap
1771  *	returned to the swap bitmap.
1772  *
1773  *	This routine will free swap metadata structures as they are cleaned
1774  *	out.  This routine does *NOT* operate on swap metadata associated
1775  *	with resident pages.
1776  *
1777  *	This routine must be called at splvm()
1778  */
1779 static void
1780 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1781 {
1782 	GIANT_REQUIRED;
1783 
1784 	if (object->type != OBJT_SWAP)
1785 		return;
1786 
1787 	while (count > 0) {
1788 		struct swblock **pswap;
1789 		struct swblock *swap;
1790 
1791 		pswap = swp_pager_hash(object, index);
1792 
1793 		if ((swap = *pswap) != NULL) {
1794 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1795 
1796 			if (v != SWAPBLK_NONE) {
1797 				swp_pager_freeswapspace(v, 1);
1798 				swap->swb_pages[index & SWAP_META_MASK] =
1799 					SWAPBLK_NONE;
1800 				if (--swap->swb_count == 0) {
1801 					*pswap = swap->swb_hnext;
1802 					uma_zfree(swap_zone, swap);
1803 					--object->un_pager.swp.swp_bcount;
1804 				}
1805 			}
1806 			--count;
1807 			++index;
1808 		} else {
1809 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1810 			count -= n;
1811 			index += n;
1812 		}
1813 	}
1814 }
1815 
1816 /*
1817  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1818  *
1819  *	This routine locates and destroys all swap metadata associated with
1820  *	an object.
1821  *
1822  *	This routine must be called at splvm()
1823  */
1824 static void
1825 swp_pager_meta_free_all(vm_object_t object)
1826 {
1827 	daddr_t index = 0;
1828 
1829 	GIANT_REQUIRED;
1830 
1831 	if (object->type != OBJT_SWAP)
1832 		return;
1833 
1834 	while (object->un_pager.swp.swp_bcount) {
1835 		struct swblock **pswap;
1836 		struct swblock *swap;
1837 
1838 		pswap = swp_pager_hash(object, index);
1839 		if ((swap = *pswap) != NULL) {
1840 			int i;
1841 
1842 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1843 				daddr_t v = swap->swb_pages[i];
1844 				if (v != SWAPBLK_NONE) {
1845 					--swap->swb_count;
1846 					swp_pager_freeswapspace(v, 1);
1847 				}
1848 			}
1849 			if (swap->swb_count != 0)
1850 				panic("swap_pager_meta_free_all: swb_count != 0");
1851 			*pswap = swap->swb_hnext;
1852 			uma_zfree(swap_zone, swap);
1853 			--object->un_pager.swp.swp_bcount;
1854 		}
1855 		index += SWAP_META_PAGES;
1856 		if (index > 0x20000000)
1857 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1858 	}
1859 }
1860 
1861 /*
1862  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1863  *
1864  *	This routine is capable of looking up, popping, or freeing
1865  *	swapblk assignments in the swap meta data or in the vm_page_t.
1866  *	The routine typically returns the swapblk being looked-up, or popped,
1867  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1868  *	was invalid.  This routine will automatically free any invalid
1869  *	meta-data swapblks.
1870  *
1871  *	It is not possible to store invalid swapblks in the swap meta data
1872  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1873  *
1874  *	When acting on a busy resident page and paging is in progress, we
1875  *	have to wait until paging is complete but otherwise can act on the
1876  *	busy page.
1877  *
1878  *	This routine must be called at splvm().
1879  *
1880  *	SWM_FREE	remove and free swap block from metadata
1881  *	SWM_POP		remove from meta data but do not free.. pop it out
1882  */
1883 static daddr_t
1884 swp_pager_meta_ctl(
1885 	vm_object_t object,
1886 	vm_pindex_t pindex,
1887 	int flags
1888 ) {
1889 	struct swblock **pswap;
1890 	struct swblock *swap;
1891 	daddr_t r1;
1892 	int idx;
1893 
1894 	GIANT_REQUIRED;
1895 	/*
1896 	 * The meta data only exists of the object is OBJT_SWAP
1897 	 * and even then might not be allocated yet.
1898 	 */
1899 	if (object->type != OBJT_SWAP)
1900 		return (SWAPBLK_NONE);
1901 
1902 	r1 = SWAPBLK_NONE;
1903 	pswap = swp_pager_hash(object, pindex);
1904 
1905 	if ((swap = *pswap) != NULL) {
1906 		idx = pindex & SWAP_META_MASK;
1907 		r1 = swap->swb_pages[idx];
1908 
1909 		if (r1 != SWAPBLK_NONE) {
1910 			if (flags & SWM_FREE) {
1911 				swp_pager_freeswapspace(r1, 1);
1912 				r1 = SWAPBLK_NONE;
1913 			}
1914 			if (flags & (SWM_FREE|SWM_POP)) {
1915 				swap->swb_pages[idx] = SWAPBLK_NONE;
1916 				if (--swap->swb_count == 0) {
1917 					*pswap = swap->swb_hnext;
1918 					uma_zfree(swap_zone, swap);
1919 					--object->un_pager.swp.swp_bcount;
1920 				}
1921 			}
1922 		}
1923 	}
1924 	return (r1);
1925 }
1926 
1927 /********************************************************
1928  *		CHAINING FUNCTIONS			*
1929  ********************************************************
1930  *
1931  *	These functions support recursion of I/O operations
1932  *	on bp's, typically by chaining one or more 'child' bp's
1933  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1934  *	chaining is possible.
1935  */
1936 
1937 /*
1938  *	vm_pager_chain_iodone:
1939  *
1940  *	io completion routine for child bp.  Currently we fudge a bit
1941  *	on dealing with b_resid.   Since users of these routines may issue
1942  *	multiple children simultaneously, sequencing of the error can be lost.
1943  */
1944 static void
1945 vm_pager_chain_iodone(struct buf *nbp)
1946 {
1947 	struct bio *bp;
1948 	u_int *count;
1949 
1950 	bp = nbp->b_caller1;
1951 	count = (u_int *)&(bp->bio_driver1);
1952 	if (bp != NULL) {
1953 		if (nbp->b_ioflags & BIO_ERROR) {
1954 			bp->bio_flags |= BIO_ERROR;
1955 			bp->bio_error = nbp->b_error;
1956 		} else if (nbp->b_resid != 0) {
1957 			bp->bio_flags |= BIO_ERROR;
1958 			bp->bio_error = EINVAL;
1959 		} else {
1960 			bp->bio_resid -= nbp->b_bcount;
1961 		}
1962 		nbp->b_caller1 = NULL;
1963 		--(*count);
1964 		if (bp->bio_flags & BIO_FLAG1) {
1965 			bp->bio_flags &= ~BIO_FLAG1;
1966 			wakeup(bp);
1967 		}
1968 	}
1969 	nbp->b_flags |= B_DONE;
1970 	nbp->b_flags &= ~B_ASYNC;
1971 	relpbuf(nbp, NULL);
1972 }
1973 
1974 /*
1975  *	getchainbuf:
1976  *
1977  *	Obtain a physical buffer and chain it to its parent buffer.  When
1978  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
1979  *	automatically propagated to the parent
1980  */
1981 static struct buf *
1982 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
1983 {
1984 	struct buf *nbp;
1985 	u_int *count;
1986 
1987 	GIANT_REQUIRED;
1988 	nbp = getpbuf(NULL);
1989 	count = (u_int *)&(bp->bio_driver1);
1990 
1991 	nbp->b_caller1 = bp;
1992 	++(*count);
1993 
1994 	if (*count > 4)
1995 		waitchainbuf(bp, 4, 0);
1996 
1997 	nbp->b_iocmd = bp->bio_cmd;
1998 	nbp->b_ioflags = 0;
1999 	nbp->b_flags = flags;
2000 	nbp->b_rcred = crhold(thread0.td_ucred);
2001 	nbp->b_wcred = crhold(thread0.td_ucred);
2002 	nbp->b_iodone = vm_pager_chain_iodone;
2003 
2004 	if (vp)
2005 		pbgetvp(vp, nbp);
2006 	return (nbp);
2007 }
2008 
2009 static void
2010 flushchainbuf(struct buf *nbp)
2011 {
2012 	GIANT_REQUIRED;
2013 	if (nbp->b_bcount) {
2014 		nbp->b_bufsize = nbp->b_bcount;
2015 		if (nbp->b_iocmd == BIO_WRITE)
2016 			nbp->b_dirtyend = nbp->b_bcount;
2017 		BUF_KERNPROC(nbp);
2018 		BUF_STRATEGY(nbp);
2019 	} else {
2020 		bufdone(nbp);
2021 	}
2022 }
2023 
2024 static void
2025 waitchainbuf(struct bio *bp, int limit, int done)
2026 {
2027  	int s;
2028 	u_int *count;
2029 
2030 	GIANT_REQUIRED;
2031 	count = (u_int *)&(bp->bio_driver1);
2032 	s = splbio();
2033 	while (*count > limit) {
2034 		bp->bio_flags |= BIO_FLAG1;
2035 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2036 	}
2037 	if (done) {
2038 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2039 			bp->bio_flags |= BIO_ERROR;
2040 			bp->bio_error = EINVAL;
2041 		}
2042 		biodone(bp);
2043 	}
2044 	splx(s);
2045 }
2046 
2047