xref: /freebsd/sys/vm/swap_pager.c (revision 56ca39961bd1c9946a505c41c3fc634ef63fdd42)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/vnode.h>
77 #include <sys/malloc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 
83 #ifndef MAX_PAGEOUT_CLUSTER
84 #define MAX_PAGEOUT_CLUSTER 16
85 #endif
86 
87 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
88 
89 #include "opt_swap.h"
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_zone.h>
98 
99 #define SWM_FREE	0x02	/* free, period			*/
100 #define SWM_POP		0x04	/* pop out			*/
101 
102 /*
103  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
104  * in the old system.
105  */
106 
107 extern int vm_swap_size;	/* number of free swap blocks, in pages */
108 
109 int swap_pager_full;		/* swap space exhaustion (task killing) */
110 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
111 static int nsw_rcount;		/* free read buffers			*/
112 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
113 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
114 static int nsw_wcount_async_max;/* assigned maximum			*/
115 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
116 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
117 
118 struct blist *swapblist;
119 static struct swblock **swhash;
120 static int swhash_mask;
121 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
122 
123 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
124 
125 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
126         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
127 
128 /*
129  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
130  * of searching a named list by hashing it just a little.
131  */
132 
133 #define NOBJLISTS		8
134 
135 #define NOBJLIST(handle)	\
136 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
137 
138 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
139 struct pagerlst		swap_pager_un_object_list;
140 vm_zone_t		swap_zone;
141 
142 /*
143  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
144  * calls hooked from other parts of the VM system and do not appear here.
145  * (see vm/swap_pager.h).
146  */
147 
148 static vm_object_t
149 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
150 				      vm_prot_t prot, vm_ooffset_t offset));
151 static void	swap_pager_dealloc __P((vm_object_t object));
152 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
153 static void	swap_pager_init __P((void));
154 static void	swap_pager_unswapped __P((vm_page_t));
155 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
156 
157 struct pagerops swappagerops = {
158 	swap_pager_init,	/* early system initialization of pager	*/
159 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
160 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
161 	swap_pager_getpages,	/* pagein				*/
162 	swap_pager_putpages,	/* pageout				*/
163 	swap_pager_haspage,	/* get backing store status for page	*/
164 	swap_pager_unswapped,	/* remove swap related to page		*/
165 	swap_pager_strategy	/* pager strategy call			*/
166 };
167 
168 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
169 static void flushchainbuf(struct buf *nbp);
170 static void waitchainbuf(struct bio *bp, int count, int done);
171 
172 /*
173  * dmmax is in page-sized chunks with the new swap system.  It was
174  * dev-bsized chunks in the old.
175  *
176  * swap_*() routines are externally accessible.  swp_*() routines are
177  * internal.
178  */
179 
180 int dmmax;
181 static int dmmax_mask;
182 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
183 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
184 
185 static __inline void	swp_sizecheck __P((void));
186 static void	swp_pager_sync_iodone __P((struct buf *bp));
187 static void	swp_pager_async_iodone __P((struct buf *bp));
188 
189 /*
190  * Swap bitmap functions
191  */
192 
193 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
194 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
195 
196 /*
197  * Metadata functions
198  */
199 
200 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
201 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
202 static void swp_pager_meta_free_all __P((vm_object_t));
203 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
204 
205 /*
206  * SWP_SIZECHECK() -	update swap_pager_full indication
207  *
208  *	update the swap_pager_almost_full indication and warn when we are
209  *	about to run out of swap space, using lowat/hiwat hysteresis.
210  *
211  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
212  *
213  *	No restrictions on call
214  *	This routine may not block.
215  *	This routine must be called at splvm()
216  */
217 
218 static __inline void
219 swp_sizecheck()
220 {
221 	if (vm_swap_size < nswap_lowat) {
222 		if (swap_pager_almost_full == 0) {
223 			printf("swap_pager: out of swap space\n");
224 			swap_pager_almost_full = 1;
225 		}
226 	} else {
227 		swap_pager_full = 0;
228 		if (vm_swap_size > nswap_hiwat)
229 			swap_pager_almost_full = 0;
230 	}
231 }
232 
233 /*
234  * SWAP_PAGER_INIT() -	initialize the swap pager!
235  *
236  *	Expected to be started from system init.  NOTE:  This code is run
237  *	before much else so be careful what you depend on.  Most of the VM
238  *	system has yet to be initialized at this point.
239  */
240 
241 static void
242 swap_pager_init()
243 {
244 	/*
245 	 * Initialize object lists
246 	 */
247 	int i;
248 
249 	for (i = 0; i < NOBJLISTS; ++i)
250 		TAILQ_INIT(&swap_pager_object_list[i]);
251 	TAILQ_INIT(&swap_pager_un_object_list);
252 
253 	/*
254 	 * Device Stripe, in PAGE_SIZE'd blocks
255 	 */
256 
257 	dmmax = SWB_NPAGES * 2;
258 	dmmax_mask = ~(dmmax - 1);
259 }
260 
261 /*
262  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
263  *
264  *	Expected to be started from pageout process once, prior to entering
265  *	its main loop.
266  */
267 
268 void
269 swap_pager_swap_init()
270 {
271 	int n;
272 
273 	/*
274 	 * Number of in-transit swap bp operations.  Don't
275 	 * exhaust the pbufs completely.  Make sure we
276 	 * initialize workable values (0 will work for hysteresis
277 	 * but it isn't very efficient).
278 	 *
279 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
280 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
281 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
282 	 * constrained by the swap device interleave stripe size.
283 	 *
284 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
285 	 * designed to prevent other I/O from having high latencies due to
286 	 * our pageout I/O.  The value 4 works well for one or two active swap
287 	 * devices but is probably a little low if you have more.  Even so,
288 	 * a higher value would probably generate only a limited improvement
289 	 * with three or four active swap devices since the system does not
290 	 * typically have to pageout at extreme bandwidths.   We will want
291 	 * at least 2 per swap devices, and 4 is a pretty good value if you
292 	 * have one NFS swap device due to the command/ack latency over NFS.
293 	 * So it all works out pretty well.
294 	 */
295 
296 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
297 
298 	nsw_rcount = (nswbuf + 1) / 2;
299 	nsw_wcount_sync = (nswbuf + 3) / 4;
300 	nsw_wcount_async = 4;
301 	nsw_wcount_async_max = nsw_wcount_async;
302 
303 	/*
304 	 * Initialize our zone.  Right now I'm just guessing on the number
305 	 * we need based on the number of pages in the system.  Each swblock
306 	 * can hold 16 pages, so this is probably overkill.
307 	 */
308 
309 	n = cnt.v_page_count * 2;
310 
311 	swap_zone = zinit(
312 	    "SWAPMETA",
313 	    sizeof(struct swblock),
314 	    n,
315 	    ZONE_INTERRUPT,
316 	    1
317 	);
318 
319 	/*
320 	 * Initialize our meta-data hash table.  The swapper does not need to
321 	 * be quite as efficient as the VM system, so we do not use an
322 	 * oversized hash table.
323 	 *
324 	 * 	n: 		size of hash table, must be power of 2
325 	 *	swhash_mask:	hash table index mask
326 	 */
327 
328 	for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
329 		;
330 
331 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
332 	bzero(swhash, sizeof(struct swblock *) * n);
333 
334 	swhash_mask = n - 1;
335 }
336 
337 /*
338  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
339  *			its metadata structures.
340  *
341  *	This routine is called from the mmap and fork code to create a new
342  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
343  *	and then converting it with swp_pager_meta_build().
344  *
345  *	This routine may block in vm_object_allocate() and create a named
346  *	object lookup race, so we must interlock.   We must also run at
347  *	splvm() for the object lookup to handle races with interrupts, but
348  *	we do not have to maintain splvm() in between the lookup and the
349  *	add because (I believe) it is not possible to attempt to create
350  *	a new swap object w/handle when a default object with that handle
351  *	already exists.
352  */
353 
354 static vm_object_t
355 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
356 		 vm_ooffset_t offset)
357 {
358 	vm_object_t object;
359 
360 	if (handle) {
361 		/*
362 		 * Reference existing named region or allocate new one.  There
363 		 * should not be a race here against swp_pager_meta_build()
364 		 * as called from vm_page_remove() in regards to the lookup
365 		 * of the handle.
366 		 */
367 
368 		while (sw_alloc_interlock) {
369 			sw_alloc_interlock = -1;
370 			tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
371 		}
372 		sw_alloc_interlock = 1;
373 
374 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
375 
376 		if (object != NULL) {
377 			vm_object_reference(object);
378 		} else {
379 			object = vm_object_allocate(OBJT_DEFAULT,
380 				OFF_TO_IDX(offset + PAGE_MASK + size));
381 			object->handle = handle;
382 
383 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
384 		}
385 
386 		if (sw_alloc_interlock < 0)
387 			wakeup(&sw_alloc_interlock);
388 
389 		sw_alloc_interlock = 0;
390 	} else {
391 		object = vm_object_allocate(OBJT_DEFAULT,
392 			OFF_TO_IDX(offset + PAGE_MASK + size));
393 
394 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
395 	}
396 
397 	return (object);
398 }
399 
400 /*
401  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
402  *
403  *	The swap backing for the object is destroyed.  The code is
404  *	designed such that we can reinstantiate it later, but this
405  *	routine is typically called only when the entire object is
406  *	about to be destroyed.
407  *
408  *	This routine may block, but no longer does.
409  *
410  *	The object must be locked or unreferenceable.
411  */
412 
413 static void
414 swap_pager_dealloc(object)
415 	vm_object_t object;
416 {
417 	int s;
418 
419 	/*
420 	 * Remove from list right away so lookups will fail if we block for
421 	 * pageout completion.
422 	 */
423 
424 	if (object->handle == NULL) {
425 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
426 	} else {
427 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
428 	}
429 
430 	vm_object_pip_wait(object, "swpdea");
431 
432 	/*
433 	 * Free all remaining metadata.  We only bother to free it from
434 	 * the swap meta data.  We do not attempt to free swapblk's still
435 	 * associated with vm_page_t's for this object.  We do not care
436 	 * if paging is still in progress on some objects.
437 	 */
438 	s = splvm();
439 	swp_pager_meta_free_all(object);
440 	splx(s);
441 }
442 
443 /************************************************************************
444  *			SWAP PAGER BITMAP ROUTINES			*
445  ************************************************************************/
446 
447 /*
448  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
449  *
450  *	Allocate swap for the requested number of pages.  The starting
451  *	swap block number (a page index) is returned or SWAPBLK_NONE
452  *	if the allocation failed.
453  *
454  *	Also has the side effect of advising that somebody made a mistake
455  *	when they configured swap and didn't configure enough.
456  *
457  *	Must be called at splvm() to avoid races with bitmap frees from
458  *	vm_page_remove() aka swap_pager_page_removed().
459  *
460  *	This routine may not block
461  *	This routine must be called at splvm().
462  */
463 
464 static __inline daddr_t
465 swp_pager_getswapspace(npages)
466 	int npages;
467 {
468 	daddr_t blk;
469 
470 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
471 		if (swap_pager_full != 2) {
472 			printf("swap_pager_getswapspace: failed\n");
473 			swap_pager_full = 2;
474 			swap_pager_almost_full = 1;
475 		}
476 	} else {
477 		vm_swap_size -= npages;
478 		swp_sizecheck();
479 	}
480 	return(blk);
481 }
482 
483 /*
484  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
485  *
486  *	This routine returns the specified swap blocks back to the bitmap.
487  *
488  *	Note:  This routine may not block (it could in the old swap code),
489  *	and through the use of the new blist routines it does not block.
490  *
491  *	We must be called at splvm() to avoid races with bitmap frees from
492  *	vm_page_remove() aka swap_pager_page_removed().
493  *
494  *	This routine may not block
495  *	This routine must be called at splvm().
496  */
497 
498 static __inline void
499 swp_pager_freeswapspace(blk, npages)
500 	daddr_t blk;
501 	int npages;
502 {
503 	blist_free(swapblist, blk, npages);
504 	vm_swap_size += npages;
505 	swp_sizecheck();
506 }
507 
508 /*
509  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
510  *				range within an object.
511  *
512  *	This is a globally accessible routine.
513  *
514  *	This routine removes swapblk assignments from swap metadata.
515  *
516  *	The external callers of this routine typically have already destroyed
517  *	or renamed vm_page_t's associated with this range in the object so
518  *	we should be ok.
519  *
520  *	This routine may be called at any spl.  We up our spl to splvm temporarily
521  *	in order to perform the metadata removal.
522  */
523 
524 void
525 swap_pager_freespace(object, start, size)
526 	vm_object_t object;
527 	vm_pindex_t start;
528 	vm_size_t size;
529 {
530 	int s = splvm();
531 	swp_pager_meta_free(object, start, size);
532 	splx(s);
533 }
534 
535 /*
536  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
537  *
538  *	Assigns swap blocks to the specified range within the object.  The
539  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
540  *
541  *	Returns 0 on success, -1 on failure.
542  */
543 
544 int
545 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
546 {
547 	int s;
548 	int n = 0;
549 	daddr_t blk = SWAPBLK_NONE;
550 	vm_pindex_t beg = start;	/* save start index */
551 
552 	s = splvm();
553 	while (size) {
554 		if (n == 0) {
555 			n = BLIST_MAX_ALLOC;
556 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
557 				n >>= 1;
558 				if (n == 0) {
559 					swp_pager_meta_free(object, beg, start - beg);
560 					splx(s);
561 					return(-1);
562 				}
563 			}
564 		}
565 		swp_pager_meta_build(object, start, blk);
566 		--size;
567 		++start;
568 		++blk;
569 		--n;
570 	}
571 	swp_pager_meta_free(object, start, n);
572 	splx(s);
573 	return(0);
574 }
575 
576 /*
577  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
578  *			and destroy the source.
579  *
580  *	Copy any valid swapblks from the source to the destination.  In
581  *	cases where both the source and destination have a valid swapblk,
582  *	we keep the destination's.
583  *
584  *	This routine is allowed to block.  It may block allocating metadata
585  *	indirectly through swp_pager_meta_build() or if paging is still in
586  *	progress on the source.
587  *
588  *	This routine can be called at any spl
589  *
590  *	XXX vm_page_collapse() kinda expects us not to block because we
591  *	supposedly do not need to allocate memory, but for the moment we
592  *	*may* have to get a little memory from the zone allocator, but
593  *	it is taken from the interrupt memory.  We should be ok.
594  *
595  *	The source object contains no vm_page_t's (which is just as well)
596  *
597  *	The source object is of type OBJT_SWAP.
598  *
599  *	The source and destination objects must be locked or
600  *	inaccessible (XXX are they ?)
601  */
602 
603 void
604 swap_pager_copy(srcobject, dstobject, offset, destroysource)
605 	vm_object_t srcobject;
606 	vm_object_t dstobject;
607 	vm_pindex_t offset;
608 	int destroysource;
609 {
610 	vm_pindex_t i;
611 	int s;
612 
613 	s = splvm();
614 
615 	/*
616 	 * If destroysource is set, we remove the source object from the
617 	 * swap_pager internal queue now.
618 	 */
619 
620 	if (destroysource) {
621 		if (srcobject->handle == NULL) {
622 			TAILQ_REMOVE(
623 			    &swap_pager_un_object_list,
624 			    srcobject,
625 			    pager_object_list
626 			);
627 		} else {
628 			TAILQ_REMOVE(
629 			    NOBJLIST(srcobject->handle),
630 			    srcobject,
631 			    pager_object_list
632 			);
633 		}
634 	}
635 
636 	/*
637 	 * transfer source to destination.
638 	 */
639 
640 	for (i = 0; i < dstobject->size; ++i) {
641 		daddr_t dstaddr;
642 
643 		/*
644 		 * Locate (without changing) the swapblk on the destination,
645 		 * unless it is invalid in which case free it silently, or
646 		 * if the destination is a resident page, in which case the
647 		 * source is thrown away.
648 		 */
649 
650 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
651 
652 		if (dstaddr == SWAPBLK_NONE) {
653 			/*
654 			 * Destination has no swapblk and is not resident,
655 			 * copy source.
656 			 */
657 			daddr_t srcaddr;
658 
659 			srcaddr = swp_pager_meta_ctl(
660 			    srcobject,
661 			    i + offset,
662 			    SWM_POP
663 			);
664 
665 			if (srcaddr != SWAPBLK_NONE)
666 				swp_pager_meta_build(dstobject, i, srcaddr);
667 		} else {
668 			/*
669 			 * Destination has valid swapblk or it is represented
670 			 * by a resident page.  We destroy the sourceblock.
671 			 */
672 
673 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
674 		}
675 	}
676 
677 	/*
678 	 * Free left over swap blocks in source.
679 	 *
680 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
681 	 * double-remove the object from the swap queues.
682 	 */
683 
684 	if (destroysource) {
685 		swp_pager_meta_free_all(srcobject);
686 		/*
687 		 * Reverting the type is not necessary, the caller is going
688 		 * to destroy srcobject directly, but I'm doing it here
689 		 * for consistency since we've removed the object from its
690 		 * queues.
691 		 */
692 		srcobject->type = OBJT_DEFAULT;
693 	}
694 	splx(s);
695 }
696 
697 /*
698  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
699  *				the requested page.
700  *
701  *	We determine whether good backing store exists for the requested
702  *	page and return TRUE if it does, FALSE if it doesn't.
703  *
704  *	If TRUE, we also try to determine how much valid, contiguous backing
705  *	store exists before and after the requested page within a reasonable
706  *	distance.  We do not try to restrict it to the swap device stripe
707  *	(that is handled in getpages/putpages).  It probably isn't worth
708  *	doing here.
709  */
710 
711 boolean_t
712 swap_pager_haspage(object, pindex, before, after)
713 	vm_object_t object;
714 	vm_pindex_t pindex;
715 	int *before;
716 	int *after;
717 {
718 	daddr_t blk0;
719 	int s;
720 
721 	/*
722 	 * do we have good backing store at the requested index ?
723 	 */
724 
725 	s = splvm();
726 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
727 
728 	if (blk0 == SWAPBLK_NONE) {
729 		splx(s);
730 		if (before)
731 			*before = 0;
732 		if (after)
733 			*after = 0;
734 		return (FALSE);
735 	}
736 
737 	/*
738 	 * find backwards-looking contiguous good backing store
739 	 */
740 
741 	if (before != NULL) {
742 		int i;
743 
744 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
745 			daddr_t blk;
746 
747 			if (i > pindex)
748 				break;
749 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
750 			if (blk != blk0 - i)
751 				break;
752 		}
753 		*before = (i - 1);
754 	}
755 
756 	/*
757 	 * find forward-looking contiguous good backing store
758 	 */
759 
760 	if (after != NULL) {
761 		int i;
762 
763 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
764 			daddr_t blk;
765 
766 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
767 			if (blk != blk0 + i)
768 				break;
769 		}
770 		*after = (i - 1);
771 	}
772 	splx(s);
773 	return (TRUE);
774 }
775 
776 /*
777  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
778  *
779  *	This removes any associated swap backing store, whether valid or
780  *	not, from the page.
781  *
782  *	This routine is typically called when a page is made dirty, at
783  *	which point any associated swap can be freed.  MADV_FREE also
784  *	calls us in a special-case situation
785  *
786  *	NOTE!!!  If the page is clean and the swap was valid, the caller
787  *	should make the page dirty before calling this routine.  This routine
788  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
789  *	depends on it.
790  *
791  *	This routine may not block
792  *	This routine must be called at splvm()
793  */
794 
795 static void
796 swap_pager_unswapped(m)
797 	vm_page_t m;
798 {
799 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
800 }
801 
802 /*
803  * SWAP_PAGER_STRATEGY() - read, write, free blocks
804  *
805  *	This implements the vm_pager_strategy() interface to swap and allows
806  *	other parts of the system to directly access swap as backing store
807  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
808  *	cacheless interface ( i.e. caching occurs at higher levels ).
809  *	Therefore we do not maintain any resident pages.  All I/O goes
810  *	directly to and from the swap device.
811  *
812  *	Note that b_blkno is scaled for PAGE_SIZE
813  *
814  *	We currently attempt to run I/O synchronously or asynchronously as
815  *	the caller requests.  This isn't perfect because we loose error
816  *	sequencing when we run multiple ops in parallel to satisfy a request.
817  *	But this is swap, so we let it all hang out.
818  */
819 
820 static void
821 swap_pager_strategy(vm_object_t object, struct bio *bp)
822 {
823 	vm_pindex_t start;
824 	int count;
825 	int s;
826 	char *data;
827 	struct buf *nbp = NULL;
828 
829 	/* XXX: KASSERT instead ? */
830 	if (bp->bio_bcount & PAGE_MASK) {
831 		bp->bio_error = EINVAL;
832 		bp->bio_flags |= BIO_ERROR;
833 		biodone(bp);
834 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
835 		return;
836 	}
837 
838 	/*
839 	 * Clear error indication, initialize page index, count, data pointer.
840 	 */
841 
842 	bp->bio_error = 0;
843 	bp->bio_flags &= ~BIO_ERROR;
844 	bp->bio_resid = bp->bio_bcount;
845 
846 	start = bp->bio_pblkno;
847 	count = howmany(bp->bio_bcount, PAGE_SIZE);
848 	data = bp->bio_data;
849 
850 	s = splvm();
851 
852 	/*
853 	 * Deal with BIO_DELETE
854 	 */
855 
856 	if (bp->bio_cmd == BIO_DELETE) {
857 		/*
858 		 * FREE PAGE(s) - destroy underlying swap that is no longer
859 		 *		  needed.
860 		 */
861 		swp_pager_meta_free(object, start, count);
862 		splx(s);
863 		bp->bio_resid = 0;
864 		biodone(bp);
865 		return;
866 	}
867 
868 	/*
869 	 * Execute read or write
870 	 */
871 
872 	while (count > 0) {
873 		daddr_t blk;
874 
875 		/*
876 		 * Obtain block.  If block not found and writing, allocate a
877 		 * new block and build it into the object.
878 		 */
879 
880 		blk = swp_pager_meta_ctl(object, start, 0);
881 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
882 			blk = swp_pager_getswapspace(1);
883 			if (blk == SWAPBLK_NONE) {
884 				bp->bio_error = ENOMEM;
885 				bp->bio_flags |= BIO_ERROR;
886 				break;
887 			}
888 			swp_pager_meta_build(object, start, blk);
889 		}
890 
891 		/*
892 		 * Do we have to flush our current collection?  Yes if:
893 		 *
894 		 *	- no swap block at this index
895 		 *	- swap block is not contiguous
896 		 *	- we cross a physical disk boundry in the
897 		 *	  stripe.
898 		 */
899 
900 		if (
901 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
902 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
903 		    )
904 		) {
905 			splx(s);
906 			if (bp->bio_cmd == BIO_READ) {
907 				++cnt.v_swapin;
908 				cnt.v_swappgsin += btoc(nbp->b_bcount);
909 			} else {
910 				++cnt.v_swapout;
911 				cnt.v_swappgsout += btoc(nbp->b_bcount);
912 				nbp->b_dirtyend = nbp->b_bcount;
913 			}
914 			flushchainbuf(nbp);
915 			s = splvm();
916 			nbp = NULL;
917 		}
918 
919 		/*
920 		 * Add new swapblk to nbp, instantiating nbp if necessary.
921 		 * Zero-fill reads are able to take a shortcut.
922 		 */
923 
924 		if (blk == SWAPBLK_NONE) {
925 			/*
926 			 * We can only get here if we are reading.  Since
927 			 * we are at splvm() we can safely modify b_resid,
928 			 * even if chain ops are in progress.
929 			 */
930 			bzero(data, PAGE_SIZE);
931 			bp->bio_resid -= PAGE_SIZE;
932 		} else {
933 			if (nbp == NULL) {
934 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
935 				nbp->b_blkno = blk;
936 				nbp->b_bcount = 0;
937 				nbp->b_data = data;
938 			}
939 			nbp->b_bcount += PAGE_SIZE;
940 		}
941 		--count;
942 		++start;
943 		data += PAGE_SIZE;
944 	}
945 
946 	/*
947 	 *  Flush out last buffer
948 	 */
949 
950 	splx(s);
951 
952 	if (nbp) {
953 		if (nbp->b_iocmd == BIO_READ) {
954 			++cnt.v_swapin;
955 			cnt.v_swappgsin += btoc(nbp->b_bcount);
956 		} else {
957 			++cnt.v_swapout;
958 			cnt.v_swappgsout += btoc(nbp->b_bcount);
959 			nbp->b_dirtyend = nbp->b_bcount;
960 		}
961 		flushchainbuf(nbp);
962 		/* nbp = NULL; */
963 	}
964 
965 	/*
966 	 * Wait for completion.
967 	 */
968 
969 	waitchainbuf(bp, 0, 1);
970 }
971 
972 /*
973  * SWAP_PAGER_GETPAGES() - bring pages in from swap
974  *
975  *	Attempt to retrieve (m, count) pages from backing store, but make
976  *	sure we retrieve at least m[reqpage].  We try to load in as large
977  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
978  *	belongs to the same object.
979  *
980  *	The code is designed for asynchronous operation and
981  *	immediate-notification of 'reqpage' but tends not to be
982  *	used that way.  Please do not optimize-out this algorithmic
983  *	feature, I intend to improve on it in the future.
984  *
985  *	The parent has a single vm_object_pip_add() reference prior to
986  *	calling us and we should return with the same.
987  *
988  *	The parent has BUSY'd the pages.  We should return with 'm'
989  *	left busy, but the others adjusted.
990  */
991 
992 static int
993 swap_pager_getpages(object, m, count, reqpage)
994 	vm_object_t object;
995 	vm_page_t *m;
996 	int count, reqpage;
997 {
998 	struct buf *bp;
999 	vm_page_t mreq;
1000 	int s;
1001 	int i;
1002 	int j;
1003 	daddr_t blk;
1004 	vm_offset_t kva;
1005 	vm_pindex_t lastpindex;
1006 
1007 	mreq = m[reqpage];
1008 
1009 	if (mreq->object != object) {
1010 		panic("swap_pager_getpages: object mismatch %p/%p",
1011 		    object,
1012 		    mreq->object
1013 		);
1014 	}
1015 	/*
1016 	 * Calculate range to retrieve.  The pages have already been assigned
1017 	 * their swapblks.  We require a *contiguous* range that falls entirely
1018 	 * within a single device stripe.   If we do not supply it, bad things
1019 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1020 	 * loops are set up such that the case(s) are handled implicitly.
1021 	 *
1022 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1023 	 * not need to be, but it will go a little faster if it is.
1024 	 */
1025 
1026 	s = splvm();
1027 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1028 
1029 	for (i = reqpage - 1; i >= 0; --i) {
1030 		daddr_t iblk;
1031 
1032 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1033 		if (blk != iblk + (reqpage - i))
1034 			break;
1035 		if ((blk ^ iblk) & dmmax_mask)
1036 			break;
1037 	}
1038 	++i;
1039 
1040 	for (j = reqpage + 1; j < count; ++j) {
1041 		daddr_t jblk;
1042 
1043 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1044 		if (blk != jblk - (j - reqpage))
1045 			break;
1046 		if ((blk ^ jblk) & dmmax_mask)
1047 			break;
1048 	}
1049 
1050 	/*
1051 	 * free pages outside our collection range.   Note: we never free
1052 	 * mreq, it must remain busy throughout.
1053 	 */
1054 
1055 	{
1056 		int k;
1057 
1058 		for (k = 0; k < i; ++k)
1059 			vm_page_free(m[k]);
1060 		for (k = j; k < count; ++k)
1061 			vm_page_free(m[k]);
1062 	}
1063 	splx(s);
1064 
1065 
1066 	/*
1067 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1068 	 * still busy, but the others unbusied.
1069 	 */
1070 
1071 	if (blk == SWAPBLK_NONE)
1072 		return(VM_PAGER_FAIL);
1073 
1074 	/*
1075 	 * Get a swap buffer header to perform the IO
1076 	 */
1077 
1078 	bp = getpbuf(&nsw_rcount);
1079 	kva = (vm_offset_t) bp->b_data;
1080 
1081 	/*
1082 	 * map our page(s) into kva for input
1083 	 *
1084 	 * NOTE: B_PAGING is set by pbgetvp()
1085 	 */
1086 
1087 	pmap_qenter(kva, m + i, j - i);
1088 
1089 	bp->b_iocmd = BIO_READ;
1090 	bp->b_iodone = swp_pager_async_iodone;
1091 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1092 	bp->b_data = (caddr_t) kva;
1093 	crhold(bp->b_rcred);
1094 	crhold(bp->b_wcred);
1095 	bp->b_blkno = blk - (reqpage - i);
1096 	bp->b_bcount = PAGE_SIZE * (j - i);
1097 	bp->b_bufsize = PAGE_SIZE * (j - i);
1098 	bp->b_pager.pg_reqpage = reqpage - i;
1099 
1100 	{
1101 		int k;
1102 
1103 		for (k = i; k < j; ++k) {
1104 			bp->b_pages[k - i] = m[k];
1105 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1106 		}
1107 	}
1108 	bp->b_npages = j - i;
1109 
1110 	pbgetvp(swapdev_vp, bp);
1111 
1112 	cnt.v_swapin++;
1113 	cnt.v_swappgsin += bp->b_npages;
1114 
1115 	/*
1116 	 * We still hold the lock on mreq, and our automatic completion routine
1117 	 * does not remove it.
1118 	 */
1119 
1120 	vm_object_pip_add(mreq->object, bp->b_npages);
1121 	lastpindex = m[j-1]->pindex;
1122 
1123 	/*
1124 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1125 	 * this point because we automatically release it on completion.
1126 	 * Instead, we look at the one page we are interested in which we
1127 	 * still hold a lock on even through the I/O completion.
1128 	 *
1129 	 * The other pages in our m[] array are also released on completion,
1130 	 * so we cannot assume they are valid anymore either.
1131 	 *
1132 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1133 	 */
1134 
1135 	BUF_KERNPROC(bp);
1136 	BUF_STRATEGY(bp);
1137 
1138 	/*
1139 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1140 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1141 	 * is set in the meta-data.
1142 	 */
1143 
1144 	s = splvm();
1145 
1146 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1147 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1148 		cnt.v_intrans++;
1149 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1150 			printf(
1151 			    "swap_pager: indefinite wait buffer: device:"
1152 				" %s, blkno: %ld, size: %ld\n",
1153 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1154 			    bp->b_bcount
1155 			);
1156 		}
1157 	}
1158 
1159 	splx(s);
1160 
1161 	/*
1162 	 * mreq is left bussied after completion, but all the other pages
1163 	 * are freed.  If we had an unrecoverable read error the page will
1164 	 * not be valid.
1165 	 */
1166 
1167 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1168 		return(VM_PAGER_ERROR);
1169 	} else {
1170 		return(VM_PAGER_OK);
1171 	}
1172 
1173 	/*
1174 	 * A final note: in a low swap situation, we cannot deallocate swap
1175 	 * and mark a page dirty here because the caller is likely to mark
1176 	 * the page clean when we return, causing the page to possibly revert
1177 	 * to all-zero's later.
1178 	 */
1179 }
1180 
1181 /*
1182  *	swap_pager_putpages:
1183  *
1184  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1185  *
1186  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1187  *	are automatically converted to SWAP objects.
1188  *
1189  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1190  *	vm_page reservation system coupled with properly written VFS devices
1191  *	should ensure that no low-memory deadlock occurs.  This is an area
1192  *	which needs work.
1193  *
1194  *	The parent has N vm_object_pip_add() references prior to
1195  *	calling us and will remove references for rtvals[] that are
1196  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1197  *	completion.
1198  *
1199  *	The parent has soft-busy'd the pages it passes us and will unbusy
1200  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1201  *	We need to unbusy the rest on I/O completion.
1202  */
1203 
1204 void
1205 swap_pager_putpages(object, m, count, sync, rtvals)
1206 	vm_object_t object;
1207 	vm_page_t *m;
1208 	int count;
1209 	boolean_t sync;
1210 	int *rtvals;
1211 {
1212 	int i;
1213 	int n = 0;
1214 
1215 	if (count && m[0]->object != object) {
1216 		panic("swap_pager_getpages: object mismatch %p/%p",
1217 		    object,
1218 		    m[0]->object
1219 		);
1220 	}
1221 	/*
1222 	 * Step 1
1223 	 *
1224 	 * Turn object into OBJT_SWAP
1225 	 * check for bogus sysops
1226 	 * force sync if not pageout process
1227 	 */
1228 
1229 	if (object->type != OBJT_SWAP)
1230 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1231 
1232 	if (curproc != pageproc)
1233 		sync = TRUE;
1234 
1235 	/*
1236 	 * Step 2
1237 	 *
1238 	 * Update nsw parameters from swap_async_max sysctl values.
1239 	 * Do not let the sysop crash the machine with bogus numbers.
1240 	 */
1241 
1242 	if (swap_async_max != nsw_wcount_async_max) {
1243 		int n;
1244 		int s;
1245 
1246 		/*
1247 		 * limit range
1248 		 */
1249 		if ((n = swap_async_max) > nswbuf / 2)
1250 			n = nswbuf / 2;
1251 		if (n < 1)
1252 			n = 1;
1253 		swap_async_max = n;
1254 
1255 		/*
1256 		 * Adjust difference ( if possible ).  If the current async
1257 		 * count is too low, we may not be able to make the adjustment
1258 		 * at this time.
1259 		 */
1260 		s = splvm();
1261 		n -= nsw_wcount_async_max;
1262 		if (nsw_wcount_async + n >= 0) {
1263 			nsw_wcount_async += n;
1264 			nsw_wcount_async_max += n;
1265 			wakeup(&nsw_wcount_async);
1266 		}
1267 		splx(s);
1268 	}
1269 
1270 	/*
1271 	 * Step 3
1272 	 *
1273 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1274 	 * The page is left dirty until the pageout operation completes
1275 	 * successfully.
1276 	 */
1277 
1278 	for (i = 0; i < count; i += n) {
1279 		int s;
1280 		int j;
1281 		struct buf *bp;
1282 		daddr_t blk;
1283 
1284 		/*
1285 		 * Maximum I/O size is limited by a number of factors.
1286 		 */
1287 
1288 		n = min(BLIST_MAX_ALLOC, count - i);
1289 		n = min(n, nsw_cluster_max);
1290 
1291 		s = splvm();
1292 
1293 		/*
1294 		 * Get biggest block of swap we can.  If we fail, fall
1295 		 * back and try to allocate a smaller block.  Don't go
1296 		 * overboard trying to allocate space if it would overly
1297 		 * fragment swap.
1298 		 */
1299 		while (
1300 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1301 		    n > 4
1302 		) {
1303 			n >>= 1;
1304 		}
1305 		if (blk == SWAPBLK_NONE) {
1306 			for (j = 0; j < n; ++j)
1307 				rtvals[i+j] = VM_PAGER_FAIL;
1308 			splx(s);
1309 			continue;
1310 		}
1311 
1312 		/*
1313 		 * The I/O we are constructing cannot cross a physical
1314 		 * disk boundry in the swap stripe.  Note: we are still
1315 		 * at splvm().
1316 		 */
1317 		if ((blk ^ (blk + n)) & dmmax_mask) {
1318 			j = ((blk + dmmax) & dmmax_mask) - blk;
1319 			swp_pager_freeswapspace(blk + j, n - j);
1320 			n = j;
1321 		}
1322 
1323 		/*
1324 		 * All I/O parameters have been satisfied, build the I/O
1325 		 * request and assign the swap space.
1326 		 *
1327 		 * NOTE: B_PAGING is set by pbgetvp()
1328 		 */
1329 
1330 		if (sync == TRUE) {
1331 			bp = getpbuf(&nsw_wcount_sync);
1332 		} else {
1333 			bp = getpbuf(&nsw_wcount_async);
1334 			bp->b_flags = B_ASYNC;
1335 		}
1336 		bp->b_iocmd = BIO_WRITE;
1337 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1338 
1339 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1340 
1341 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1342 		bp->b_bcount = PAGE_SIZE * n;
1343 		bp->b_bufsize = PAGE_SIZE * n;
1344 		bp->b_blkno = blk;
1345 
1346 		crhold(bp->b_rcred);
1347 		crhold(bp->b_wcred);
1348 
1349 		pbgetvp(swapdev_vp, bp);
1350 
1351 		for (j = 0; j < n; ++j) {
1352 			vm_page_t mreq = m[i+j];
1353 
1354 			swp_pager_meta_build(
1355 			    mreq->object,
1356 			    mreq->pindex,
1357 			    blk + j
1358 			);
1359 			vm_page_dirty(mreq);
1360 			rtvals[i+j] = VM_PAGER_OK;
1361 
1362 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1363 			bp->b_pages[j] = mreq;
1364 		}
1365 		bp->b_npages = n;
1366 		/*
1367 		 * Must set dirty range for NFS to work.
1368 		 */
1369 		bp->b_dirtyoff = 0;
1370 		bp->b_dirtyend = bp->b_bcount;
1371 
1372 		cnt.v_swapout++;
1373 		cnt.v_swappgsout += bp->b_npages;
1374 		swapdev_vp->v_numoutput++;
1375 
1376 		splx(s);
1377 
1378 		/*
1379 		 * asynchronous
1380 		 *
1381 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1382 		 */
1383 
1384 		if (sync == FALSE) {
1385 			bp->b_iodone = swp_pager_async_iodone;
1386 			BUF_KERNPROC(bp);
1387 			BUF_STRATEGY(bp);
1388 
1389 			for (j = 0; j < n; ++j)
1390 				rtvals[i+j] = VM_PAGER_PEND;
1391 			continue;
1392 		}
1393 
1394 		/*
1395 		 * synchronous
1396 		 *
1397 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1398 		 */
1399 
1400 		bp->b_iodone = swp_pager_sync_iodone;
1401 		BUF_STRATEGY(bp);
1402 
1403 		/*
1404 		 * Wait for the sync I/O to complete, then update rtvals.
1405 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1406 		 * our async completion routine at the end, thus avoiding a
1407 		 * double-free.
1408 		 */
1409 		s = splbio();
1410 
1411 		while ((bp->b_flags & B_DONE) == 0) {
1412 			tsleep(bp, PVM, "swwrt", 0);
1413 		}
1414 
1415 		for (j = 0; j < n; ++j)
1416 			rtvals[i+j] = VM_PAGER_PEND;
1417 
1418 		/*
1419 		 * Now that we are through with the bp, we can call the
1420 		 * normal async completion, which frees everything up.
1421 		 */
1422 
1423 		swp_pager_async_iodone(bp);
1424 
1425 		splx(s);
1426 	}
1427 }
1428 
1429 /*
1430  *	swap_pager_sync_iodone:
1431  *
1432  *	Completion routine for synchronous reads and writes from/to swap.
1433  *	We just mark the bp is complete and wake up anyone waiting on it.
1434  *
1435  *	This routine may not block.  This routine is called at splbio() or better.
1436  */
1437 
1438 static void
1439 swp_pager_sync_iodone(bp)
1440 	struct buf *bp;
1441 {
1442 	bp->b_flags |= B_DONE;
1443 	bp->b_flags &= ~B_ASYNC;
1444 	wakeup(bp);
1445 }
1446 
1447 /*
1448  *	swp_pager_async_iodone:
1449  *
1450  *	Completion routine for asynchronous reads and writes from/to swap.
1451  *	Also called manually by synchronous code to finish up a bp.
1452  *
1453  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1454  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1455  *	unbusy all pages except the 'main' request page.  For WRITE
1456  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1457  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1458  *
1459  *	This routine may not block.
1460  *	This routine is called at splbio() or better
1461  *
1462  *	We up ourselves to splvm() as required for various vm_page related
1463  *	calls.
1464  */
1465 
1466 static void
1467 swp_pager_async_iodone(bp)
1468 	register struct buf *bp;
1469 {
1470 	int s;
1471 	int i;
1472 	vm_object_t object = NULL;
1473 
1474 	bp->b_flags |= B_DONE;
1475 
1476 	/*
1477 	 * report error
1478 	 */
1479 
1480 	if (bp->b_ioflags & BIO_ERROR) {
1481 		printf(
1482 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1483 			"size %ld, error %d\n",
1484 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1485 		    (long)bp->b_blkno,
1486 		    (long)bp->b_bcount,
1487 		    bp->b_error
1488 		);
1489 	}
1490 
1491 	/*
1492 	 * set object, raise to splvm().
1493 	 */
1494 
1495 	if (bp->b_npages)
1496 		object = bp->b_pages[0]->object;
1497 	s = splvm();
1498 
1499 	/*
1500 	 * remove the mapping for kernel virtual
1501 	 */
1502 
1503 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1504 
1505 	/*
1506 	 * cleanup pages.  If an error occurs writing to swap, we are in
1507 	 * very serious trouble.  If it happens to be a disk error, though,
1508 	 * we may be able to recover by reassigning the swap later on.  So
1509 	 * in this case we remove the m->swapblk assignment for the page
1510 	 * but do not free it in the rlist.  The errornous block(s) are thus
1511 	 * never reallocated as swap.  Redirty the page and continue.
1512 	 */
1513 
1514 	for (i = 0; i < bp->b_npages; ++i) {
1515 		vm_page_t m = bp->b_pages[i];
1516 
1517 		vm_page_flag_clear(m, PG_SWAPINPROG);
1518 
1519 		if (bp->b_ioflags & BIO_ERROR) {
1520 			/*
1521 			 * If an error occurs I'd love to throw the swapblk
1522 			 * away without freeing it back to swapspace, so it
1523 			 * can never be used again.  But I can't from an
1524 			 * interrupt.
1525 			 */
1526 
1527 			if (bp->b_iocmd == BIO_READ) {
1528 				/*
1529 				 * When reading, reqpage needs to stay
1530 				 * locked for the parent, but all other
1531 				 * pages can be freed.  We still want to
1532 				 * wakeup the parent waiting on the page,
1533 				 * though.  ( also: pg_reqpage can be -1 and
1534 				 * not match anything ).
1535 				 *
1536 				 * We have to wake specifically requested pages
1537 				 * up too because we cleared PG_SWAPINPROG and
1538 				 * someone may be waiting for that.
1539 				 *
1540 				 * NOTE: for reads, m->dirty will probably
1541 				 * be overridden by the original caller of
1542 				 * getpages so don't play cute tricks here.
1543 				 *
1544 				 * XXX it may not be legal to free the page
1545 				 * here as this messes with the object->memq's.
1546 				 */
1547 
1548 				m->valid = 0;
1549 				vm_page_flag_clear(m, PG_ZERO);
1550 
1551 				if (i != bp->b_pager.pg_reqpage)
1552 					vm_page_free(m);
1553 				else
1554 					vm_page_flash(m);
1555 				/*
1556 				 * If i == bp->b_pager.pg_reqpage, do not wake
1557 				 * the page up.  The caller needs to.
1558 				 */
1559 			} else {
1560 				/*
1561 				 * If a write error occurs, reactivate page
1562 				 * so it doesn't clog the inactive list,
1563 				 * then finish the I/O.
1564 				 */
1565 				vm_page_dirty(m);
1566 				vm_page_activate(m);
1567 				vm_page_io_finish(m);
1568 			}
1569 		} else if (bp->b_iocmd == BIO_READ) {
1570 			/*
1571 			 * For read success, clear dirty bits.  Nobody should
1572 			 * have this page mapped but don't take any chances,
1573 			 * make sure the pmap modify bits are also cleared.
1574 			 *
1575 			 * NOTE: for reads, m->dirty will probably be
1576 			 * overridden by the original caller of getpages so
1577 			 * we cannot set them in order to free the underlying
1578 			 * swap in a low-swap situation.  I don't think we'd
1579 			 * want to do that anyway, but it was an optimization
1580 			 * that existed in the old swapper for a time before
1581 			 * it got ripped out due to precisely this problem.
1582 			 *
1583 			 * clear PG_ZERO in page.
1584 			 *
1585 			 * If not the requested page then deactivate it.
1586 			 *
1587 			 * Note that the requested page, reqpage, is left
1588 			 * busied, but we still have to wake it up.  The
1589 			 * other pages are released (unbusied) by
1590 			 * vm_page_wakeup().  We do not set reqpage's
1591 			 * valid bits here, it is up to the caller.
1592 			 */
1593 
1594 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1595 			m->valid = VM_PAGE_BITS_ALL;
1596 			vm_page_undirty(m);
1597 			vm_page_flag_clear(m, PG_ZERO);
1598 
1599 			/*
1600 			 * We have to wake specifically requested pages
1601 			 * up too because we cleared PG_SWAPINPROG and
1602 			 * could be waiting for it in getpages.  However,
1603 			 * be sure to not unbusy getpages specifically
1604 			 * requested page - getpages expects it to be
1605 			 * left busy.
1606 			 */
1607 			if (i != bp->b_pager.pg_reqpage) {
1608 				vm_page_deactivate(m);
1609 				vm_page_wakeup(m);
1610 			} else {
1611 				vm_page_flash(m);
1612 			}
1613 		} else {
1614 			/*
1615 			 * For write success, clear the modify and dirty
1616 			 * status, then finish the I/O ( which decrements the
1617 			 * busy count and possibly wakes waiter's up ).
1618 			 */
1619 			vm_page_protect(m, VM_PROT_READ);
1620 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1621 			vm_page_undirty(m);
1622 			vm_page_io_finish(m);
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * adjust pip.  NOTE: the original parent may still have its own
1628 	 * pip refs on the object.
1629 	 */
1630 
1631 	if (object)
1632 		vm_object_pip_wakeupn(object, bp->b_npages);
1633 
1634 	/*
1635 	 * release the physical I/O buffer
1636 	 */
1637 
1638 	relpbuf(
1639 	    bp,
1640 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1641 		((bp->b_flags & B_ASYNC) ?
1642 		    &nsw_wcount_async :
1643 		    &nsw_wcount_sync
1644 		)
1645 	    )
1646 	);
1647 	splx(s);
1648 }
1649 
1650 /************************************************************************
1651  *				SWAP META DATA 				*
1652  ************************************************************************
1653  *
1654  *	These routines manipulate the swap metadata stored in the
1655  *	OBJT_SWAP object.  All swp_*() routines must be called at
1656  *	splvm() because swap can be freed up by the low level vm_page
1657  *	code which might be called from interrupts beyond what splbio() covers.
1658  *
1659  *	Swap metadata is implemented with a global hash and not directly
1660  *	linked into the object.  Instead the object simply contains
1661  *	appropriate tracking counters.
1662  */
1663 
1664 /*
1665  * SWP_PAGER_HASH() -	hash swap meta data
1666  *
1667  *	This is an inline helper function which hashes the swapblk given
1668  *	the object and page index.  It returns a pointer to a pointer
1669  *	to the object, or a pointer to a NULL pointer if it could not
1670  *	find a swapblk.
1671  *
1672  *	This routine must be called at splvm().
1673  */
1674 
1675 static __inline struct swblock **
1676 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1677 {
1678 	struct swblock **pswap;
1679 	struct swblock *swap;
1680 
1681 	index &= ~SWAP_META_MASK;
1682 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1683 
1684 	while ((swap = *pswap) != NULL) {
1685 		if (swap->swb_object == object &&
1686 		    swap->swb_index == index
1687 		) {
1688 			break;
1689 		}
1690 		pswap = &swap->swb_hnext;
1691 	}
1692 	return(pswap);
1693 }
1694 
1695 /*
1696  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1697  *
1698  *	We first convert the object to a swap object if it is a default
1699  *	object.
1700  *
1701  *	The specified swapblk is added to the object's swap metadata.  If
1702  *	the swapblk is not valid, it is freed instead.  Any previously
1703  *	assigned swapblk is freed.
1704  *
1705  *	This routine must be called at splvm(), except when used to convert
1706  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1707 
1708  */
1709 
1710 static void
1711 swp_pager_meta_build(
1712 	vm_object_t object,
1713 	vm_pindex_t index,
1714 	daddr_t swapblk
1715 ) {
1716 	struct swblock *swap;
1717 	struct swblock **pswap;
1718 
1719 	/*
1720 	 * Convert default object to swap object if necessary
1721 	 */
1722 
1723 	if (object->type != OBJT_SWAP) {
1724 		object->type = OBJT_SWAP;
1725 		object->un_pager.swp.swp_bcount = 0;
1726 
1727 		if (object->handle != NULL) {
1728 			TAILQ_INSERT_TAIL(
1729 			    NOBJLIST(object->handle),
1730 			    object,
1731 			    pager_object_list
1732 			);
1733 		} else {
1734 			TAILQ_INSERT_TAIL(
1735 			    &swap_pager_un_object_list,
1736 			    object,
1737 			    pager_object_list
1738 			);
1739 		}
1740 	}
1741 
1742 	/*
1743 	 * Locate hash entry.  If not found create, but if we aren't adding
1744 	 * anything just return.  If we run out of space in the map we wait
1745 	 * and, since the hash table may have changed, retry.
1746 	 */
1747 
1748 retry:
1749 	pswap = swp_pager_hash(object, index);
1750 
1751 	if ((swap = *pswap) == NULL) {
1752 		int i;
1753 
1754 		if (swapblk == SWAPBLK_NONE)
1755 			return;
1756 
1757 		swap = *pswap = zalloc(swap_zone);
1758 		if (swap == NULL) {
1759 			VM_WAIT;
1760 			goto retry;
1761 		}
1762 		swap->swb_hnext = NULL;
1763 		swap->swb_object = object;
1764 		swap->swb_index = index & ~SWAP_META_MASK;
1765 		swap->swb_count = 0;
1766 
1767 		++object->un_pager.swp.swp_bcount;
1768 
1769 		for (i = 0; i < SWAP_META_PAGES; ++i)
1770 			swap->swb_pages[i] = SWAPBLK_NONE;
1771 	}
1772 
1773 	/*
1774 	 * Delete prior contents of metadata
1775 	 */
1776 
1777 	index &= SWAP_META_MASK;
1778 
1779 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1780 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1781 		--swap->swb_count;
1782 	}
1783 
1784 	/*
1785 	 * Enter block into metadata
1786 	 */
1787 
1788 	swap->swb_pages[index] = swapblk;
1789 	if (swapblk != SWAPBLK_NONE)
1790 		++swap->swb_count;
1791 }
1792 
1793 /*
1794  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1795  *
1796  *	The requested range of blocks is freed, with any associated swap
1797  *	returned to the swap bitmap.
1798  *
1799  *	This routine will free swap metadata structures as they are cleaned
1800  *	out.  This routine does *NOT* operate on swap metadata associated
1801  *	with resident pages.
1802  *
1803  *	This routine must be called at splvm()
1804  */
1805 
1806 static void
1807 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1808 {
1809 	if (object->type != OBJT_SWAP)
1810 		return;
1811 
1812 	while (count > 0) {
1813 		struct swblock **pswap;
1814 		struct swblock *swap;
1815 
1816 		pswap = swp_pager_hash(object, index);
1817 
1818 		if ((swap = *pswap) != NULL) {
1819 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1820 
1821 			if (v != SWAPBLK_NONE) {
1822 				swp_pager_freeswapspace(v, 1);
1823 				swap->swb_pages[index & SWAP_META_MASK] =
1824 					SWAPBLK_NONE;
1825 				if (--swap->swb_count == 0) {
1826 					*pswap = swap->swb_hnext;
1827 					zfree(swap_zone, swap);
1828 					--object->un_pager.swp.swp_bcount;
1829 				}
1830 			}
1831 			--count;
1832 			++index;
1833 		} else {
1834 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1835 			count -= n;
1836 			index += n;
1837 		}
1838 	}
1839 }
1840 
1841 /*
1842  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1843  *
1844  *	This routine locates and destroys all swap metadata associated with
1845  *	an object.
1846  *
1847  *	This routine must be called at splvm()
1848  */
1849 
1850 static void
1851 swp_pager_meta_free_all(vm_object_t object)
1852 {
1853 	daddr_t index = 0;
1854 
1855 	if (object->type != OBJT_SWAP)
1856 		return;
1857 
1858 	while (object->un_pager.swp.swp_bcount) {
1859 		struct swblock **pswap;
1860 		struct swblock *swap;
1861 
1862 		pswap = swp_pager_hash(object, index);
1863 		if ((swap = *pswap) != NULL) {
1864 			int i;
1865 
1866 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1867 				daddr_t v = swap->swb_pages[i];
1868 				if (v != SWAPBLK_NONE) {
1869 					--swap->swb_count;
1870 					swp_pager_freeswapspace(v, 1);
1871 				}
1872 			}
1873 			if (swap->swb_count != 0)
1874 				panic("swap_pager_meta_free_all: swb_count != 0");
1875 			*pswap = swap->swb_hnext;
1876 			zfree(swap_zone, swap);
1877 			--object->un_pager.swp.swp_bcount;
1878 		}
1879 		index += SWAP_META_PAGES;
1880 		if (index > 0x20000000)
1881 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1882 	}
1883 }
1884 
1885 /*
1886  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1887  *
1888  *	This routine is capable of looking up, popping, or freeing
1889  *	swapblk assignments in the swap meta data or in the vm_page_t.
1890  *	The routine typically returns the swapblk being looked-up, or popped,
1891  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1892  *	was invalid.  This routine will automatically free any invalid
1893  *	meta-data swapblks.
1894  *
1895  *	It is not possible to store invalid swapblks in the swap meta data
1896  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1897  *
1898  *	When acting on a busy resident page and paging is in progress, we
1899  *	have to wait until paging is complete but otherwise can act on the
1900  *	busy page.
1901  *
1902  *	This routine must be called at splvm().
1903  *
1904  *	SWM_FREE	remove and free swap block from metadata
1905  *	SWM_POP		remove from meta data but do not free.. pop it out
1906  */
1907 
1908 static daddr_t
1909 swp_pager_meta_ctl(
1910 	vm_object_t object,
1911 	vm_pindex_t index,
1912 	int flags
1913 ) {
1914 	struct swblock **pswap;
1915 	struct swblock *swap;
1916 	daddr_t r1;
1917 
1918 	/*
1919 	 * The meta data only exists of the object is OBJT_SWAP
1920 	 * and even then might not be allocated yet.
1921 	 */
1922 
1923 	if (object->type != OBJT_SWAP)
1924 		return(SWAPBLK_NONE);
1925 
1926 	r1 = SWAPBLK_NONE;
1927 	pswap = swp_pager_hash(object, index);
1928 
1929 	if ((swap = *pswap) != NULL) {
1930 		index &= SWAP_META_MASK;
1931 		r1 = swap->swb_pages[index];
1932 
1933 		if (r1 != SWAPBLK_NONE) {
1934 			if (flags & SWM_FREE) {
1935 				swp_pager_freeswapspace(r1, 1);
1936 				r1 = SWAPBLK_NONE;
1937 			}
1938 			if (flags & (SWM_FREE|SWM_POP)) {
1939 				swap->swb_pages[index] = SWAPBLK_NONE;
1940 				if (--swap->swb_count == 0) {
1941 					*pswap = swap->swb_hnext;
1942 					zfree(swap_zone, swap);
1943 					--object->un_pager.swp.swp_bcount;
1944 				}
1945 			}
1946 		}
1947 	}
1948 	return(r1);
1949 }
1950 
1951 /********************************************************
1952  *		CHAINING FUNCTIONS			*
1953  ********************************************************
1954  *
1955  *	These functions support recursion of I/O operations
1956  *	on bp's, typically by chaining one or more 'child' bp's
1957  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
1958  *	chaining is possible.
1959  */
1960 
1961 /*
1962  *	vm_pager_chain_iodone:
1963  *
1964  *	io completion routine for child bp.  Currently we fudge a bit
1965  *	on dealing with b_resid.   Since users of these routines may issue
1966  *	multiple children simultaneously, sequencing of the error can be lost.
1967  */
1968 
1969 static void
1970 vm_pager_chain_iodone(struct buf *nbp)
1971 {
1972 	struct bio *bp;
1973 	u_int *count;
1974 
1975 	bp = nbp->b_caller1;
1976 	count = (u_int *)&(bp->bio_caller1);
1977 	if (bp != NULL) {
1978 		if (nbp->b_ioflags & BIO_ERROR) {
1979 			bp->bio_flags |= BIO_ERROR;
1980 			bp->bio_error = nbp->b_error;
1981 		} else if (nbp->b_resid != 0) {
1982 			bp->bio_flags |= BIO_ERROR;
1983 			bp->bio_error = EINVAL;
1984 		} else {
1985 			bp->bio_resid -= nbp->b_bcount;
1986 		}
1987 		nbp->b_caller1 = NULL;
1988 		--(*count);
1989 		if (bp->bio_flags & BIO_FLAG1) {
1990 			bp->bio_flags &= ~BIO_FLAG1;
1991 			wakeup(bp);
1992 		}
1993 	}
1994 	nbp->b_flags |= B_DONE;
1995 	nbp->b_flags &= ~B_ASYNC;
1996 	relpbuf(nbp, NULL);
1997 }
1998 
1999 /*
2000  *	getchainbuf:
2001  *
2002  *	Obtain a physical buffer and chain it to its parent buffer.  When
2003  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2004  *	automatically propagated to the parent
2005  */
2006 
2007 struct buf *
2008 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2009 {
2010 	struct buf *nbp = getpbuf(NULL);
2011 	u_int *count = (u_int *)&(bp->bio_caller1);
2012 
2013 	nbp->b_caller1 = bp;
2014 	++(*count);
2015 
2016 	if (*count > 4)
2017 		waitchainbuf(bp, 4, 0);
2018 
2019 	nbp->b_iocmd = bp->bio_cmd;
2020 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2021 	nbp->b_flags = flags;
2022 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2023 	nbp->b_iodone = vm_pager_chain_iodone;
2024 
2025 	crhold(nbp->b_rcred);
2026 	crhold(nbp->b_wcred);
2027 
2028 	if (vp)
2029 		pbgetvp(vp, nbp);
2030 	return(nbp);
2031 }
2032 
2033 void
2034 flushchainbuf(struct buf *nbp)
2035 {
2036 	if (nbp->b_bcount) {
2037 		nbp->b_bufsize = nbp->b_bcount;
2038 		if (nbp->b_iocmd == BIO_WRITE)
2039 			nbp->b_dirtyend = nbp->b_bcount;
2040 		BUF_KERNPROC(nbp);
2041 		BUF_STRATEGY(nbp);
2042 	} else {
2043 		bufdone(nbp);
2044 	}
2045 }
2046 
2047 void
2048 waitchainbuf(struct bio *bp, int limit, int done)
2049 {
2050  	int s;
2051 	u_int *count = (u_int *)&(bp->bio_caller1);
2052 
2053 	s = splbio();
2054 	while (*count > limit) {
2055 		bp->bio_flags |= BIO_FLAG1;
2056 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2057 	}
2058 	if (done) {
2059 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2060 			bp->bio_flags |= BIO_ERROR;
2061 			bp->bio_error = EINVAL;
2062 		}
2063 		biodone(bp);
2064 	}
2065 	splx(s);
2066 }
2067 
2068