xref: /freebsd/sys/vm/swap_pager.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/bio.h>
76 #include <sys/buf.h>
77 #include <sys/vnode.h>
78 #include <sys/malloc.h>
79 #include <sys/vmmeter.h>
80 #include <sys/sysctl.h>
81 #include <sys/blist.h>
82 #include <sys/lock.h>
83 #include <sys/sx.h>
84 #include <sys/vmmeter.h>
85 
86 #ifndef MAX_PAGEOUT_CLUSTER
87 #define MAX_PAGEOUT_CLUSTER 16
88 #endif
89 
90 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
91 
92 #include "opt_swap.h"
93 #include <vm/vm.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_object.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_zone.h>
102 #include <vm/swap_pager.h>
103 #include <vm/vm_extern.h>
104 
105 #define SWM_FREE	0x02	/* free, period			*/
106 #define SWM_POP		0x04	/* pop out			*/
107 
108 /*
109  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
110  * in the old system.
111  */
112 
113 extern int vm_swap_size;	/* number of free swap blocks, in pages */
114 
115 int swap_pager_full;		/* swap space exhaustion (task killing) */
116 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
117 static int nsw_rcount;		/* free read buffers			*/
118 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
119 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
120 static int nsw_wcount_async_max;/* assigned maximum			*/
121 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
122 
123 struct blist *swapblist;
124 static struct swblock **swhash;
125 static int swhash_mask;
126 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
127 static struct sx sw_alloc_sx;
128 
129 /* from vm_swap.c */
130 extern struct vnode *swapdev_vp;
131 extern struct swdevt *swdevt;
132 extern int nswdev;
133 
134 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
135         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
136 
137 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
138 
139 /*
140  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
141  * of searching a named list by hashing it just a little.
142  */
143 
144 #define NOBJLISTS		8
145 
146 #define NOBJLIST(handle)	\
147 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
148 
149 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
150 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
151 struct pagerlst		swap_pager_un_object_list;
152 vm_zone_t		swap_zone;
153 
154 /*
155  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
156  * calls hooked from other parts of the VM system and do not appear here.
157  * (see vm/swap_pager.h).
158  */
159 
160 static vm_object_t
161 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
162 				      vm_prot_t prot, vm_ooffset_t offset));
163 static void	swap_pager_dealloc __P((vm_object_t object));
164 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
165 static void	swap_pager_init __P((void));
166 static void	swap_pager_unswapped __P((vm_page_t));
167 static void	swap_pager_strategy __P((vm_object_t, struct bio *));
168 
169 struct pagerops swappagerops = {
170 	swap_pager_init,	/* early system initialization of pager	*/
171 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
172 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
173 	swap_pager_getpages,	/* pagein				*/
174 	swap_pager_putpages,	/* pageout				*/
175 	swap_pager_haspage,	/* get backing store status for page	*/
176 	swap_pager_unswapped,	/* remove swap related to page		*/
177 	swap_pager_strategy	/* pager strategy call			*/
178 };
179 
180 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags);
181 static void flushchainbuf(struct buf *nbp);
182 static void waitchainbuf(struct bio *bp, int count, int done);
183 
184 /*
185  * dmmax is in page-sized chunks with the new swap system.  It was
186  * dev-bsized chunks in the old.  dmmax is always a power of 2.
187  *
188  * swap_*() routines are externally accessible.  swp_*() routines are
189  * internal.
190  */
191 
192 int dmmax;
193 static int dmmax_mask;
194 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
195 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
196 
197 SYSCTL_INT(_vm, OID_AUTO, dmmax,
198 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
199 
200 static __inline void	swp_sizecheck __P((void));
201 static void	swp_pager_sync_iodone __P((struct buf *bp));
202 static void	swp_pager_async_iodone __P((struct buf *bp));
203 
204 /*
205  * Swap bitmap functions
206  */
207 
208 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
209 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
210 
211 /*
212  * Metadata functions
213  */
214 
215 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
216 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
217 static void swp_pager_meta_free_all __P((vm_object_t));
218 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
219 
220 /*
221  * SWP_SIZECHECK() -	update swap_pager_full indication
222  *
223  *	update the swap_pager_almost_full indication and warn when we are
224  *	about to run out of swap space, using lowat/hiwat hysteresis.
225  *
226  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
227  *
228  *	No restrictions on call
229  *	This routine may not block.
230  *	This routine must be called at splvm()
231  */
232 
233 static __inline void
234 swp_sizecheck()
235 {
236 	GIANT_REQUIRED;
237 
238 	if (vm_swap_size < nswap_lowat) {
239 		if (swap_pager_almost_full == 0) {
240 			printf("swap_pager: out of swap space\n");
241 			swap_pager_almost_full = 1;
242 		}
243 	} else {
244 		swap_pager_full = 0;
245 		if (vm_swap_size > nswap_hiwat)
246 			swap_pager_almost_full = 0;
247 	}
248 }
249 
250 /*
251  * SWAP_PAGER_INIT() -	initialize the swap pager!
252  *
253  *	Expected to be started from system init.  NOTE:  This code is run
254  *	before much else so be careful what you depend on.  Most of the VM
255  *	system has yet to be initialized at this point.
256  */
257 
258 static void
259 swap_pager_init()
260 {
261 	/*
262 	 * Initialize object lists
263 	 */
264 	int i;
265 
266 	for (i = 0; i < NOBJLISTS; ++i)
267 		TAILQ_INIT(&swap_pager_object_list[i]);
268 	TAILQ_INIT(&swap_pager_un_object_list);
269 	mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF);
270 
271 	/*
272 	 * Device Stripe, in PAGE_SIZE'd blocks
273 	 */
274 
275 	dmmax = SWB_NPAGES * 2;
276 	dmmax_mask = ~(dmmax - 1);
277 }
278 
279 /*
280  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
281  *
282  *	Expected to be started from pageout process once, prior to entering
283  *	its main loop.
284  */
285 
286 void
287 swap_pager_swap_init()
288 {
289 	int n, n2;
290 
291 	/*
292 	 * Number of in-transit swap bp operations.  Don't
293 	 * exhaust the pbufs completely.  Make sure we
294 	 * initialize workable values (0 will work for hysteresis
295 	 * but it isn't very efficient).
296 	 *
297 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
298 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
299 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
300 	 * constrained by the swap device interleave stripe size.
301 	 *
302 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
303 	 * designed to prevent other I/O from having high latencies due to
304 	 * our pageout I/O.  The value 4 works well for one or two active swap
305 	 * devices but is probably a little low if you have more.  Even so,
306 	 * a higher value would probably generate only a limited improvement
307 	 * with three or four active swap devices since the system does not
308 	 * typically have to pageout at extreme bandwidths.   We will want
309 	 * at least 2 per swap devices, and 4 is a pretty good value if you
310 	 * have one NFS swap device due to the command/ack latency over NFS.
311 	 * So it all works out pretty well.
312 	 */
313 
314 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
315 
316 	mtx_lock(&pbuf_mtx);
317 	nsw_rcount = (nswbuf + 1) / 2;
318 	nsw_wcount_sync = (nswbuf + 3) / 4;
319 	nsw_wcount_async = 4;
320 	nsw_wcount_async_max = nsw_wcount_async;
321 	mtx_unlock(&pbuf_mtx);
322 
323 	/*
324 	 * Initialize our zone.  Right now I'm just guessing on the number
325 	 * we need based on the number of pages in the system.  Each swblock
326 	 * can hold 16 pages, so this is probably overkill.
327 	 */
328 
329 	n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2;
330 	n2 = n;
331 
332 	while (n > 0
333 	       && (swap_zone = zinit(
334 		       "SWAPMETA",
335 		       sizeof(struct swblock),
336 		       n,
337 		       ZONE_INTERRUPT,
338 		       1
339 		       )) == NULL)
340 		n >>= 1;
341 	if (swap_zone == NULL)
342 		printf("WARNING: failed to init swap_zone!\n");
343 	if (n2 != n)
344 		printf("Swap zone entries reduced to %d.\n", n);
345 	n2 = n;
346 
347 	/*
348 	 * Initialize our meta-data hash table.  The swapper does not need to
349 	 * be quite as efficient as the VM system, so we do not use an
350 	 * oversized hash table.
351 	 *
352 	 * 	n: 		size of hash table, must be power of 2
353 	 *	swhash_mask:	hash table index mask
354 	 */
355 
356 	for (n = 1; n < n2 ; n <<= 1)
357 		;
358 
359 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
360 
361 	swhash_mask = n - 1;
362 }
363 
364 /*
365  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
366  *			its metadata structures.
367  *
368  *	This routine is called from the mmap and fork code to create a new
369  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
370  *	and then converting it with swp_pager_meta_build().
371  *
372  *	This routine may block in vm_object_allocate() and create a named
373  *	object lookup race, so we must interlock.   We must also run at
374  *	splvm() for the object lookup to handle races with interrupts, but
375  *	we do not have to maintain splvm() in between the lookup and the
376  *	add because (I believe) it is not possible to attempt to create
377  *	a new swap object w/handle when a default object with that handle
378  *	already exists.
379  */
380 
381 static vm_object_t
382 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
383 		 vm_ooffset_t offset)
384 {
385 	vm_object_t object;
386 
387 	GIANT_REQUIRED;
388 
389 	if (handle) {
390 		/*
391 		 * Reference existing named region or allocate new one.  There
392 		 * should not be a race here against swp_pager_meta_build()
393 		 * as called from vm_page_remove() in regards to the lookup
394 		 * of the handle.
395 		 */
396 		sx_xlock(&sw_alloc_sx);
397 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
398 
399 		if (object != NULL) {
400 			vm_object_reference(object);
401 		} else {
402 			object = vm_object_allocate(OBJT_DEFAULT,
403 				OFF_TO_IDX(offset + PAGE_MASK + size));
404 			object->handle = handle;
405 
406 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
407 		}
408 		sx_xunlock(&sw_alloc_sx);
409 	} else {
410 		object = vm_object_allocate(OBJT_DEFAULT,
411 			OFF_TO_IDX(offset + PAGE_MASK + size));
412 
413 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
414 	}
415 
416 	return (object);
417 }
418 
419 /*
420  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
421  *
422  *	The swap backing for the object is destroyed.  The code is
423  *	designed such that we can reinstantiate it later, but this
424  *	routine is typically called only when the entire object is
425  *	about to be destroyed.
426  *
427  *	This routine may block, but no longer does.
428  *
429  *	The object must be locked or unreferenceable.
430  */
431 
432 static void
433 swap_pager_dealloc(object)
434 	vm_object_t object;
435 {
436 	int s;
437 
438 	GIANT_REQUIRED;
439 
440 	/*
441 	 * Remove from list right away so lookups will fail if we block for
442 	 * pageout completion.
443 	 */
444 	mtx_lock(&sw_alloc_mtx);
445 	if (object->handle == NULL) {
446 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
447 	} else {
448 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
449 	}
450 	mtx_unlock(&sw_alloc_mtx);
451 
452 	vm_object_pip_wait(object, "swpdea");
453 
454 	/*
455 	 * Free all remaining metadata.  We only bother to free it from
456 	 * the swap meta data.  We do not attempt to free swapblk's still
457 	 * associated with vm_page_t's for this object.  We do not care
458 	 * if paging is still in progress on some objects.
459 	 */
460 	s = splvm();
461 	swp_pager_meta_free_all(object);
462 	splx(s);
463 }
464 
465 /************************************************************************
466  *			SWAP PAGER BITMAP ROUTINES			*
467  ************************************************************************/
468 
469 /*
470  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
471  *
472  *	Allocate swap for the requested number of pages.  The starting
473  *	swap block number (a page index) is returned or SWAPBLK_NONE
474  *	if the allocation failed.
475  *
476  *	Also has the side effect of advising that somebody made a mistake
477  *	when they configured swap and didn't configure enough.
478  *
479  *	Must be called at splvm() to avoid races with bitmap frees from
480  *	vm_page_remove() aka swap_pager_page_removed().
481  *
482  *	This routine may not block
483  *	This routine must be called at splvm().
484  */
485 
486 static __inline daddr_t
487 swp_pager_getswapspace(npages)
488 	int npages;
489 {
490 	daddr_t blk;
491 
492 	GIANT_REQUIRED;
493 
494 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
495 		if (swap_pager_full != 2) {
496 			printf("swap_pager_getswapspace: failed\n");
497 			swap_pager_full = 2;
498 			swap_pager_almost_full = 1;
499 		}
500 	} else {
501 		vm_swap_size -= npages;
502 		/* per-swap area stats */
503 		swdevt[BLK2DEVIDX(blk)].sw_used += npages;
504 		swp_sizecheck();
505 	}
506 	return(blk);
507 }
508 
509 /*
510  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
511  *
512  *	This routine returns the specified swap blocks back to the bitmap.
513  *
514  *	Note:  This routine may not block (it could in the old swap code),
515  *	and through the use of the new blist routines it does not block.
516  *
517  *	We must be called at splvm() to avoid races with bitmap frees from
518  *	vm_page_remove() aka swap_pager_page_removed().
519  *
520  *	This routine may not block
521  *	This routine must be called at splvm().
522  */
523 
524 static __inline void
525 swp_pager_freeswapspace(blk, npages)
526 	daddr_t blk;
527 	int npages;
528 {
529 	GIANT_REQUIRED;
530 
531 	blist_free(swapblist, blk, npages);
532 	vm_swap_size += npages;
533 	/* per-swap area stats */
534 	swdevt[BLK2DEVIDX(blk)].sw_used -= npages;
535 	swp_sizecheck();
536 }
537 
538 /*
539  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
540  *				range within an object.
541  *
542  *	This is a globally accessible routine.
543  *
544  *	This routine removes swapblk assignments from swap metadata.
545  *
546  *	The external callers of this routine typically have already destroyed
547  *	or renamed vm_page_t's associated with this range in the object so
548  *	we should be ok.
549  *
550  *	This routine may be called at any spl.  We up our spl to splvm temporarily
551  *	in order to perform the metadata removal.
552  */
553 
554 void
555 swap_pager_freespace(object, start, size)
556 	vm_object_t object;
557 	vm_pindex_t start;
558 	vm_size_t size;
559 {
560 	int s = splvm();
561 
562 	GIANT_REQUIRED;
563 	swp_pager_meta_free(object, start, size);
564 	splx(s);
565 }
566 
567 /*
568  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
569  *
570  *	Assigns swap blocks to the specified range within the object.  The
571  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
572  *
573  *	Returns 0 on success, -1 on failure.
574  */
575 
576 int
577 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
578 {
579 	int s;
580 	int n = 0;
581 	daddr_t blk = SWAPBLK_NONE;
582 	vm_pindex_t beg = start;	/* save start index */
583 
584 	s = splvm();
585 	while (size) {
586 		if (n == 0) {
587 			n = BLIST_MAX_ALLOC;
588 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
589 				n >>= 1;
590 				if (n == 0) {
591 					swp_pager_meta_free(object, beg, start - beg);
592 					splx(s);
593 					return(-1);
594 				}
595 			}
596 		}
597 		swp_pager_meta_build(object, start, blk);
598 		--size;
599 		++start;
600 		++blk;
601 		--n;
602 	}
603 	swp_pager_meta_free(object, start, n);
604 	splx(s);
605 	return(0);
606 }
607 
608 /*
609  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
610  *			and destroy the source.
611  *
612  *	Copy any valid swapblks from the source to the destination.  In
613  *	cases where both the source and destination have a valid swapblk,
614  *	we keep the destination's.
615  *
616  *	This routine is allowed to block.  It may block allocating metadata
617  *	indirectly through swp_pager_meta_build() or if paging is still in
618  *	progress on the source.
619  *
620  *	This routine can be called at any spl
621  *
622  *	XXX vm_page_collapse() kinda expects us not to block because we
623  *	supposedly do not need to allocate memory, but for the moment we
624  *	*may* have to get a little memory from the zone allocator, but
625  *	it is taken from the interrupt memory.  We should be ok.
626  *
627  *	The source object contains no vm_page_t's (which is just as well)
628  *
629  *	The source object is of type OBJT_SWAP.
630  *
631  *	The source and destination objects must be locked or
632  *	inaccessible (XXX are they ?)
633  */
634 
635 void
636 swap_pager_copy(srcobject, dstobject, offset, destroysource)
637 	vm_object_t srcobject;
638 	vm_object_t dstobject;
639 	vm_pindex_t offset;
640 	int destroysource;
641 {
642 	vm_pindex_t i;
643 	int s;
644 
645 	GIANT_REQUIRED;
646 
647 	s = splvm();
648 	/*
649 	 * If destroysource is set, we remove the source object from the
650 	 * swap_pager internal queue now.
651 	 */
652 
653 	if (destroysource) {
654 		mtx_lock(&sw_alloc_mtx);
655 		if (srcobject->handle == NULL) {
656 			TAILQ_REMOVE(
657 			    &swap_pager_un_object_list,
658 			    srcobject,
659 			    pager_object_list
660 			);
661 		} else {
662 			TAILQ_REMOVE(
663 			    NOBJLIST(srcobject->handle),
664 			    srcobject,
665 			    pager_object_list
666 			);
667 		}
668 		mtx_unlock(&sw_alloc_mtx);
669 	}
670 
671 	/*
672 	 * transfer source to destination.
673 	 */
674 
675 	for (i = 0; i < dstobject->size; ++i) {
676 		daddr_t dstaddr;
677 
678 		/*
679 		 * Locate (without changing) the swapblk on the destination,
680 		 * unless it is invalid in which case free it silently, or
681 		 * if the destination is a resident page, in which case the
682 		 * source is thrown away.
683 		 */
684 
685 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
686 
687 		if (dstaddr == SWAPBLK_NONE) {
688 			/*
689 			 * Destination has no swapblk and is not resident,
690 			 * copy source.
691 			 */
692 			daddr_t srcaddr;
693 
694 			srcaddr = swp_pager_meta_ctl(
695 			    srcobject,
696 			    i + offset,
697 			    SWM_POP
698 			);
699 
700 			if (srcaddr != SWAPBLK_NONE)
701 				swp_pager_meta_build(dstobject, i, srcaddr);
702 		} else {
703 			/*
704 			 * Destination has valid swapblk or it is represented
705 			 * by a resident page.  We destroy the sourceblock.
706 			 */
707 
708 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
709 		}
710 	}
711 
712 	/*
713 	 * Free left over swap blocks in source.
714 	 *
715 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
716 	 * double-remove the object from the swap queues.
717 	 */
718 
719 	if (destroysource) {
720 		swp_pager_meta_free_all(srcobject);
721 		/*
722 		 * Reverting the type is not necessary, the caller is going
723 		 * to destroy srcobject directly, but I'm doing it here
724 		 * for consistency since we've removed the object from its
725 		 * queues.
726 		 */
727 		srcobject->type = OBJT_DEFAULT;
728 	}
729 	splx(s);
730 }
731 
732 /*
733  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
734  *				the requested page.
735  *
736  *	We determine whether good backing store exists for the requested
737  *	page and return TRUE if it does, FALSE if it doesn't.
738  *
739  *	If TRUE, we also try to determine how much valid, contiguous backing
740  *	store exists before and after the requested page within a reasonable
741  *	distance.  We do not try to restrict it to the swap device stripe
742  *	(that is handled in getpages/putpages).  It probably isn't worth
743  *	doing here.
744  */
745 
746 boolean_t
747 swap_pager_haspage(object, pindex, before, after)
748 	vm_object_t object;
749 	vm_pindex_t pindex;
750 	int *before;
751 	int *after;
752 {
753 	daddr_t blk0;
754 	int s;
755 
756 	/*
757 	 * do we have good backing store at the requested index ?
758 	 */
759 
760 	s = splvm();
761 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
762 
763 	if (blk0 == SWAPBLK_NONE) {
764 		splx(s);
765 		if (before)
766 			*before = 0;
767 		if (after)
768 			*after = 0;
769 		return (FALSE);
770 	}
771 
772 	/*
773 	 * find backwards-looking contiguous good backing store
774 	 */
775 
776 	if (before != NULL) {
777 		int i;
778 
779 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
780 			daddr_t blk;
781 
782 			if (i > pindex)
783 				break;
784 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
785 			if (blk != blk0 - i)
786 				break;
787 		}
788 		*before = (i - 1);
789 	}
790 
791 	/*
792 	 * find forward-looking contiguous good backing store
793 	 */
794 
795 	if (after != NULL) {
796 		int i;
797 
798 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
799 			daddr_t blk;
800 
801 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
802 			if (blk != blk0 + i)
803 				break;
804 		}
805 		*after = (i - 1);
806 	}
807 	splx(s);
808 	return (TRUE);
809 }
810 
811 /*
812  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
813  *
814  *	This removes any associated swap backing store, whether valid or
815  *	not, from the page.
816  *
817  *	This routine is typically called when a page is made dirty, at
818  *	which point any associated swap can be freed.  MADV_FREE also
819  *	calls us in a special-case situation
820  *
821  *	NOTE!!!  If the page is clean and the swap was valid, the caller
822  *	should make the page dirty before calling this routine.  This routine
823  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
824  *	depends on it.
825  *
826  *	This routine may not block
827  *	This routine must be called at splvm()
828  */
829 
830 static void
831 swap_pager_unswapped(m)
832 	vm_page_t m;
833 {
834 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
835 }
836 
837 /*
838  * SWAP_PAGER_STRATEGY() - read, write, free blocks
839  *
840  *	This implements the vm_pager_strategy() interface to swap and allows
841  *	other parts of the system to directly access swap as backing store
842  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
843  *	cacheless interface ( i.e. caching occurs at higher levels ).
844  *	Therefore we do not maintain any resident pages.  All I/O goes
845  *	directly to and from the swap device.
846  *
847  *	Note that b_blkno is scaled for PAGE_SIZE
848  *
849  *	We currently attempt to run I/O synchronously or asynchronously as
850  *	the caller requests.  This isn't perfect because we loose error
851  *	sequencing when we run multiple ops in parallel to satisfy a request.
852  *	But this is swap, so we let it all hang out.
853  */
854 
855 static void
856 swap_pager_strategy(vm_object_t object, struct bio *bp)
857 {
858 	vm_pindex_t start;
859 	int count;
860 	int s;
861 	char *data;
862 	struct buf *nbp = NULL;
863 
864 	GIANT_REQUIRED;
865 
866 	/* XXX: KASSERT instead ? */
867 	if (bp->bio_bcount & PAGE_MASK) {
868 		biofinish(bp, NULL, EINVAL);
869 		printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount);
870 		return;
871 	}
872 
873 	/*
874 	 * Clear error indication, initialize page index, count, data pointer.
875 	 */
876 
877 	bp->bio_error = 0;
878 	bp->bio_flags &= ~BIO_ERROR;
879 	bp->bio_resid = bp->bio_bcount;
880 
881 	start = bp->bio_pblkno;
882 	count = howmany(bp->bio_bcount, PAGE_SIZE);
883 	data = bp->bio_data;
884 
885 	s = splvm();
886 
887 	/*
888 	 * Deal with BIO_DELETE
889 	 */
890 
891 	if (bp->bio_cmd == BIO_DELETE) {
892 		/*
893 		 * FREE PAGE(s) - destroy underlying swap that is no longer
894 		 *		  needed.
895 		 */
896 		swp_pager_meta_free(object, start, count);
897 		splx(s);
898 		bp->bio_resid = 0;
899 		biodone(bp);
900 		return;
901 	}
902 
903 	/*
904 	 * Execute read or write
905 	 */
906 	while (count > 0) {
907 		daddr_t blk;
908 
909 		/*
910 		 * Obtain block.  If block not found and writing, allocate a
911 		 * new block and build it into the object.
912 		 */
913 
914 		blk = swp_pager_meta_ctl(object, start, 0);
915 		if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) {
916 			blk = swp_pager_getswapspace(1);
917 			if (blk == SWAPBLK_NONE) {
918 				bp->bio_error = ENOMEM;
919 				bp->bio_flags |= BIO_ERROR;
920 				break;
921 			}
922 			swp_pager_meta_build(object, start, blk);
923 		}
924 
925 		/*
926 		 * Do we have to flush our current collection?  Yes if:
927 		 *
928 		 *	- no swap block at this index
929 		 *	- swap block is not contiguous
930 		 *	- we cross a physical disk boundry in the
931 		 *	  stripe.
932 		 */
933 
934 		if (
935 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
936 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
937 		    )
938 		) {
939 			splx(s);
940 			if (bp->bio_cmd == BIO_READ) {
941 				++cnt.v_swapin;
942 				cnt.v_swappgsin += btoc(nbp->b_bcount);
943 			} else {
944 				++cnt.v_swapout;
945 				cnt.v_swappgsout += btoc(nbp->b_bcount);
946 				nbp->b_dirtyend = nbp->b_bcount;
947 			}
948 			flushchainbuf(nbp);
949 			s = splvm();
950 			nbp = NULL;
951 		}
952 
953 		/*
954 		 * Add new swapblk to nbp, instantiating nbp if necessary.
955 		 * Zero-fill reads are able to take a shortcut.
956 		 */
957 
958 		if (blk == SWAPBLK_NONE) {
959 			/*
960 			 * We can only get here if we are reading.  Since
961 			 * we are at splvm() we can safely modify b_resid,
962 			 * even if chain ops are in progress.
963 			 */
964 			bzero(data, PAGE_SIZE);
965 			bp->bio_resid -= PAGE_SIZE;
966 		} else {
967 			if (nbp == NULL) {
968 				nbp = getchainbuf(bp, swapdev_vp, B_ASYNC);
969 				nbp->b_blkno = blk;
970 				nbp->b_bcount = 0;
971 				nbp->b_data = data;
972 			}
973 			nbp->b_bcount += PAGE_SIZE;
974 		}
975 		--count;
976 		++start;
977 		data += PAGE_SIZE;
978 	}
979 
980 	/*
981 	 *  Flush out last buffer
982 	 */
983 
984 	splx(s);
985 
986 	if (nbp) {
987 		if (nbp->b_iocmd == BIO_READ) {
988 			++cnt.v_swapin;
989 			cnt.v_swappgsin += btoc(nbp->b_bcount);
990 		} else {
991 			++cnt.v_swapout;
992 			cnt.v_swappgsout += btoc(nbp->b_bcount);
993 			nbp->b_dirtyend = nbp->b_bcount;
994 		}
995 		flushchainbuf(nbp);
996 		/* nbp = NULL; */
997 	}
998 	/*
999 	 * Wait for completion.
1000 	 */
1001 
1002 	waitchainbuf(bp, 0, 1);
1003 }
1004 
1005 /*
1006  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1007  *
1008  *	Attempt to retrieve (m, count) pages from backing store, but make
1009  *	sure we retrieve at least m[reqpage].  We try to load in as large
1010  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1011  *	belongs to the same object.
1012  *
1013  *	The code is designed for asynchronous operation and
1014  *	immediate-notification of 'reqpage' but tends not to be
1015  *	used that way.  Please do not optimize-out this algorithmic
1016  *	feature, I intend to improve on it in the future.
1017  *
1018  *	The parent has a single vm_object_pip_add() reference prior to
1019  *	calling us and we should return with the same.
1020  *
1021  *	The parent has BUSY'd the pages.  We should return with 'm'
1022  *	left busy, but the others adjusted.
1023  */
1024 
1025 static int
1026 swap_pager_getpages(object, m, count, reqpage)
1027 	vm_object_t object;
1028 	vm_page_t *m;
1029 	int count, reqpage;
1030 {
1031 	struct buf *bp;
1032 	vm_page_t mreq;
1033 	int s;
1034 	int i;
1035 	int j;
1036 	daddr_t blk;
1037 	vm_offset_t kva;
1038 	vm_pindex_t lastpindex;
1039 
1040 	GIANT_REQUIRED;
1041 
1042 	mreq = m[reqpage];
1043 
1044 	if (mreq->object != object) {
1045 		panic("swap_pager_getpages: object mismatch %p/%p",
1046 		    object,
1047 		    mreq->object
1048 		);
1049 	}
1050 	/*
1051 	 * Calculate range to retrieve.  The pages have already been assigned
1052 	 * their swapblks.  We require a *contiguous* range that falls entirely
1053 	 * within a single device stripe.   If we do not supply it, bad things
1054 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1055 	 * loops are set up such that the case(s) are handled implicitly.
1056 	 *
1057 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1058 	 * not need to be, but it will go a little faster if it is.
1059 	 */
1060 
1061 	s = splvm();
1062 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1063 
1064 	for (i = reqpage - 1; i >= 0; --i) {
1065 		daddr_t iblk;
1066 
1067 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1068 		if (blk != iblk + (reqpage - i))
1069 			break;
1070 		if ((blk ^ iblk) & dmmax_mask)
1071 			break;
1072 	}
1073 	++i;
1074 
1075 	for (j = reqpage + 1; j < count; ++j) {
1076 		daddr_t jblk;
1077 
1078 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1079 		if (blk != jblk - (j - reqpage))
1080 			break;
1081 		if ((blk ^ jblk) & dmmax_mask)
1082 			break;
1083 	}
1084 
1085 	/*
1086 	 * free pages outside our collection range.   Note: we never free
1087 	 * mreq, it must remain busy throughout.
1088 	 */
1089 
1090 	{
1091 		int k;
1092 
1093 		for (k = 0; k < i; ++k)
1094 			vm_page_free(m[k]);
1095 		for (k = j; k < count; ++k)
1096 			vm_page_free(m[k]);
1097 	}
1098 	splx(s);
1099 
1100 
1101 	/*
1102 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1103 	 * still busy, but the others unbusied.
1104 	 */
1105 
1106 	if (blk == SWAPBLK_NONE)
1107 		return(VM_PAGER_FAIL);
1108 
1109 	/*
1110 	 * Get a swap buffer header to perform the IO
1111 	 */
1112 
1113 	bp = getpbuf(&nsw_rcount);
1114 	kva = (vm_offset_t) bp->b_data;
1115 
1116 	/*
1117 	 * map our page(s) into kva for input
1118 	 *
1119 	 * NOTE: B_PAGING is set by pbgetvp()
1120 	 */
1121 
1122 	pmap_qenter(kva, m + i, j - i);
1123 
1124 	bp->b_iocmd = BIO_READ;
1125 	bp->b_iodone = swp_pager_async_iodone;
1126 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1127 	bp->b_data = (caddr_t) kva;
1128 	crhold(bp->b_rcred);
1129 	crhold(bp->b_wcred);
1130 	bp->b_blkno = blk - (reqpage - i);
1131 	bp->b_bcount = PAGE_SIZE * (j - i);
1132 	bp->b_bufsize = PAGE_SIZE * (j - i);
1133 	bp->b_pager.pg_reqpage = reqpage - i;
1134 
1135 	{
1136 		int k;
1137 
1138 		for (k = i; k < j; ++k) {
1139 			bp->b_pages[k - i] = m[k];
1140 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1141 		}
1142 	}
1143 	bp->b_npages = j - i;
1144 
1145 	pbgetvp(swapdev_vp, bp);
1146 
1147 	cnt.v_swapin++;
1148 	cnt.v_swappgsin += bp->b_npages;
1149 
1150 	/*
1151 	 * We still hold the lock on mreq, and our automatic completion routine
1152 	 * does not remove it.
1153 	 */
1154 
1155 	vm_object_pip_add(mreq->object, bp->b_npages);
1156 	lastpindex = m[j-1]->pindex;
1157 
1158 	/*
1159 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1160 	 * this point because we automatically release it on completion.
1161 	 * Instead, we look at the one page we are interested in which we
1162 	 * still hold a lock on even through the I/O completion.
1163 	 *
1164 	 * The other pages in our m[] array are also released on completion,
1165 	 * so we cannot assume they are valid anymore either.
1166 	 *
1167 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1168 	 */
1169 	BUF_KERNPROC(bp);
1170 	BUF_STRATEGY(bp);
1171 
1172 	/*
1173 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1174 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1175 	 * is set in the meta-data.
1176 	 */
1177 
1178 	s = splvm();
1179 
1180 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1181 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1182 		cnt.v_intrans++;
1183 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1184 			printf(
1185 			    "swap_pager: indefinite wait buffer: device:"
1186 				" %s, blkno: %ld, size: %ld\n",
1187 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1188 			    bp->b_bcount
1189 			);
1190 		}
1191 	}
1192 
1193 	splx(s);
1194 
1195 	/*
1196 	 * mreq is left bussied after completion, but all the other pages
1197 	 * are freed.  If we had an unrecoverable read error the page will
1198 	 * not be valid.
1199 	 */
1200 
1201 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1202 		return(VM_PAGER_ERROR);
1203 	} else {
1204 		return(VM_PAGER_OK);
1205 	}
1206 
1207 	/*
1208 	 * A final note: in a low swap situation, we cannot deallocate swap
1209 	 * and mark a page dirty here because the caller is likely to mark
1210 	 * the page clean when we return, causing the page to possibly revert
1211 	 * to all-zero's later.
1212 	 */
1213 }
1214 
1215 /*
1216  *	swap_pager_putpages:
1217  *
1218  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1219  *
1220  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1221  *	are automatically converted to SWAP objects.
1222  *
1223  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1224  *	vm_page reservation system coupled with properly written VFS devices
1225  *	should ensure that no low-memory deadlock occurs.  This is an area
1226  *	which needs work.
1227  *
1228  *	The parent has N vm_object_pip_add() references prior to
1229  *	calling us and will remove references for rtvals[] that are
1230  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1231  *	completion.
1232  *
1233  *	The parent has soft-busy'd the pages it passes us and will unbusy
1234  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1235  *	We need to unbusy the rest on I/O completion.
1236  */
1237 
1238 void
1239 swap_pager_putpages(object, m, count, sync, rtvals)
1240 	vm_object_t object;
1241 	vm_page_t *m;
1242 	int count;
1243 	boolean_t sync;
1244 	int *rtvals;
1245 {
1246 	int i;
1247 	int n = 0;
1248 
1249 	GIANT_REQUIRED;
1250 	if (count && m[0]->object != object) {
1251 		panic("swap_pager_getpages: object mismatch %p/%p",
1252 		    object,
1253 		    m[0]->object
1254 		);
1255 	}
1256 	/*
1257 	 * Step 1
1258 	 *
1259 	 * Turn object into OBJT_SWAP
1260 	 * check for bogus sysops
1261 	 * force sync if not pageout process
1262 	 */
1263 
1264 	if (object->type != OBJT_SWAP)
1265 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1266 
1267 	if (curproc != pageproc)
1268 		sync = TRUE;
1269 
1270 	/*
1271 	 * Step 2
1272 	 *
1273 	 * Update nsw parameters from swap_async_max sysctl values.
1274 	 * Do not let the sysop crash the machine with bogus numbers.
1275 	 */
1276 
1277 	mtx_lock(&pbuf_mtx);
1278 	if (swap_async_max != nsw_wcount_async_max) {
1279 		int n;
1280 		int s;
1281 
1282 		/*
1283 		 * limit range
1284 		 */
1285 		if ((n = swap_async_max) > nswbuf / 2)
1286 			n = nswbuf / 2;
1287 		if (n < 1)
1288 			n = 1;
1289 		swap_async_max = n;
1290 
1291 		/*
1292 		 * Adjust difference ( if possible ).  If the current async
1293 		 * count is too low, we may not be able to make the adjustment
1294 		 * at this time.
1295 		 */
1296 		s = splvm();
1297 		n -= nsw_wcount_async_max;
1298 		if (nsw_wcount_async + n >= 0) {
1299 			nsw_wcount_async += n;
1300 			nsw_wcount_async_max += n;
1301 			wakeup(&nsw_wcount_async);
1302 		}
1303 		splx(s);
1304 	}
1305 	mtx_unlock(&pbuf_mtx);
1306 
1307 	/*
1308 	 * Step 3
1309 	 *
1310 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1311 	 * The page is left dirty until the pageout operation completes
1312 	 * successfully.
1313 	 */
1314 
1315 	for (i = 0; i < count; i += n) {
1316 		int s;
1317 		int j;
1318 		struct buf *bp;
1319 		daddr_t blk;
1320 
1321 		/*
1322 		 * Maximum I/O size is limited by a number of factors.
1323 		 */
1324 
1325 		n = min(BLIST_MAX_ALLOC, count - i);
1326 		n = min(n, nsw_cluster_max);
1327 
1328 		s = splvm();
1329 
1330 		/*
1331 		 * Get biggest block of swap we can.  If we fail, fall
1332 		 * back and try to allocate a smaller block.  Don't go
1333 		 * overboard trying to allocate space if it would overly
1334 		 * fragment swap.
1335 		 */
1336 		while (
1337 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1338 		    n > 4
1339 		) {
1340 			n >>= 1;
1341 		}
1342 		if (blk == SWAPBLK_NONE) {
1343 			for (j = 0; j < n; ++j)
1344 				rtvals[i+j] = VM_PAGER_FAIL;
1345 			splx(s);
1346 			continue;
1347 		}
1348 
1349 		/*
1350 		 * The I/O we are constructing cannot cross a physical
1351 		 * disk boundry in the swap stripe.  Note: we are still
1352 		 * at splvm().
1353 		 */
1354 		if ((blk ^ (blk + n)) & dmmax_mask) {
1355 			j = ((blk + dmmax) & dmmax_mask) - blk;
1356 			swp_pager_freeswapspace(blk + j, n - j);
1357 			n = j;
1358 		}
1359 
1360 		/*
1361 		 * All I/O parameters have been satisfied, build the I/O
1362 		 * request and assign the swap space.
1363 		 *
1364 		 * NOTE: B_PAGING is set by pbgetvp()
1365 		 */
1366 
1367 		if (sync == TRUE) {
1368 			bp = getpbuf(&nsw_wcount_sync);
1369 		} else {
1370 			bp = getpbuf(&nsw_wcount_async);
1371 			bp->b_flags = B_ASYNC;
1372 		}
1373 		bp->b_iocmd = BIO_WRITE;
1374 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1375 
1376 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1377 
1378 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1379 		bp->b_bcount = PAGE_SIZE * n;
1380 		bp->b_bufsize = PAGE_SIZE * n;
1381 		bp->b_blkno = blk;
1382 
1383 		crhold(bp->b_rcred);
1384 		crhold(bp->b_wcred);
1385 
1386 		pbgetvp(swapdev_vp, bp);
1387 
1388 		for (j = 0; j < n; ++j) {
1389 			vm_page_t mreq = m[i+j];
1390 
1391 			swp_pager_meta_build(
1392 			    mreq->object,
1393 			    mreq->pindex,
1394 			    blk + j
1395 			);
1396 			vm_page_dirty(mreq);
1397 			rtvals[i+j] = VM_PAGER_OK;
1398 
1399 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1400 			bp->b_pages[j] = mreq;
1401 		}
1402 		bp->b_npages = n;
1403 		/*
1404 		 * Must set dirty range for NFS to work.
1405 		 */
1406 		bp->b_dirtyoff = 0;
1407 		bp->b_dirtyend = bp->b_bcount;
1408 
1409 		cnt.v_swapout++;
1410 		cnt.v_swappgsout += bp->b_npages;
1411 		swapdev_vp->v_numoutput++;
1412 
1413 		splx(s);
1414 
1415 		/*
1416 		 * asynchronous
1417 		 *
1418 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1419 		 */
1420 
1421 		if (sync == FALSE) {
1422 			bp->b_iodone = swp_pager_async_iodone;
1423 			BUF_KERNPROC(bp);
1424 			BUF_STRATEGY(bp);
1425 
1426 			for (j = 0; j < n; ++j)
1427 				rtvals[i+j] = VM_PAGER_PEND;
1428 			/* restart outter loop */
1429 			continue;
1430 		}
1431 
1432 		/*
1433 		 * synchronous
1434 		 *
1435 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1436 		 */
1437 
1438 		bp->b_iodone = swp_pager_sync_iodone;
1439 		BUF_STRATEGY(bp);
1440 
1441 		/*
1442 		 * Wait for the sync I/O to complete, then update rtvals.
1443 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1444 		 * our async completion routine at the end, thus avoiding a
1445 		 * double-free.
1446 		 */
1447 		s = splbio();
1448 
1449 		while ((bp->b_flags & B_DONE) == 0) {
1450 			tsleep(bp, PVM, "swwrt", 0);
1451 		}
1452 
1453 		for (j = 0; j < n; ++j)
1454 			rtvals[i+j] = VM_PAGER_PEND;
1455 
1456 		/*
1457 		 * Now that we are through with the bp, we can call the
1458 		 * normal async completion, which frees everything up.
1459 		 */
1460 
1461 		swp_pager_async_iodone(bp);
1462 		splx(s);
1463 	}
1464 }
1465 
1466 /*
1467  *	swap_pager_sync_iodone:
1468  *
1469  *	Completion routine for synchronous reads and writes from/to swap.
1470  *	We just mark the bp is complete and wake up anyone waiting on it.
1471  *
1472  *	This routine may not block.  This routine is called at splbio() or better.
1473  */
1474 
1475 static void
1476 swp_pager_sync_iodone(bp)
1477 	struct buf *bp;
1478 {
1479 	bp->b_flags |= B_DONE;
1480 	bp->b_flags &= ~B_ASYNC;
1481 	wakeup(bp);
1482 }
1483 
1484 /*
1485  *	swp_pager_async_iodone:
1486  *
1487  *	Completion routine for asynchronous reads and writes from/to swap.
1488  *	Also called manually by synchronous code to finish up a bp.
1489  *
1490  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1491  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1492  *	unbusy all pages except the 'main' request page.  For WRITE
1493  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1494  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1495  *
1496  *	This routine may not block.
1497  *	This routine is called at splbio() or better
1498  *
1499  *	We up ourselves to splvm() as required for various vm_page related
1500  *	calls.
1501  */
1502 
1503 static void
1504 swp_pager_async_iodone(bp)
1505 	struct buf *bp;
1506 {
1507 	int s;
1508 	int i;
1509 	vm_object_t object = NULL;
1510 
1511 	GIANT_REQUIRED;
1512 
1513 	bp->b_flags |= B_DONE;
1514 
1515 	/*
1516 	 * report error
1517 	 */
1518 
1519 	if (bp->b_ioflags & BIO_ERROR) {
1520 		printf(
1521 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1522 			"size %ld, error %d\n",
1523 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1524 		    (long)bp->b_blkno,
1525 		    (long)bp->b_bcount,
1526 		    bp->b_error
1527 		);
1528 	}
1529 
1530 	/*
1531 	 * set object, raise to splvm().
1532 	 */
1533 
1534 	if (bp->b_npages)
1535 		object = bp->b_pages[0]->object;
1536 	s = splvm();
1537 
1538 	/*
1539 	 * remove the mapping for kernel virtual
1540 	 */
1541 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1542 
1543 	/*
1544 	 * cleanup pages.  If an error occurs writing to swap, we are in
1545 	 * very serious trouble.  If it happens to be a disk error, though,
1546 	 * we may be able to recover by reassigning the swap later on.  So
1547 	 * in this case we remove the m->swapblk assignment for the page
1548 	 * but do not free it in the rlist.  The errornous block(s) are thus
1549 	 * never reallocated as swap.  Redirty the page and continue.
1550 	 */
1551 
1552 	for (i = 0; i < bp->b_npages; ++i) {
1553 		vm_page_t m = bp->b_pages[i];
1554 
1555 		vm_page_flag_clear(m, PG_SWAPINPROG);
1556 
1557 		if (bp->b_ioflags & BIO_ERROR) {
1558 			/*
1559 			 * If an error occurs I'd love to throw the swapblk
1560 			 * away without freeing it back to swapspace, so it
1561 			 * can never be used again.  But I can't from an
1562 			 * interrupt.
1563 			 */
1564 
1565 			if (bp->b_iocmd == BIO_READ) {
1566 				/*
1567 				 * When reading, reqpage needs to stay
1568 				 * locked for the parent, but all other
1569 				 * pages can be freed.  We still want to
1570 				 * wakeup the parent waiting on the page,
1571 				 * though.  ( also: pg_reqpage can be -1 and
1572 				 * not match anything ).
1573 				 *
1574 				 * We have to wake specifically requested pages
1575 				 * up too because we cleared PG_SWAPINPROG and
1576 				 * someone may be waiting for that.
1577 				 *
1578 				 * NOTE: for reads, m->dirty will probably
1579 				 * be overridden by the original caller of
1580 				 * getpages so don't play cute tricks here.
1581 				 *
1582 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1583 				 * AS THIS MESSES WITH object->memq, and it is
1584 				 * not legal to mess with object->memq from an
1585 				 * interrupt.
1586 				 */
1587 
1588 				m->valid = 0;
1589 				vm_page_flag_clear(m, PG_ZERO);
1590 
1591 				if (i != bp->b_pager.pg_reqpage)
1592 					vm_page_free(m);
1593 				else
1594 					vm_page_flash(m);
1595 				/*
1596 				 * If i == bp->b_pager.pg_reqpage, do not wake
1597 				 * the page up.  The caller needs to.
1598 				 */
1599 			} else {
1600 				/*
1601 				 * If a write error occurs, reactivate page
1602 				 * so it doesn't clog the inactive list,
1603 				 * then finish the I/O.
1604 				 */
1605 				vm_page_dirty(m);
1606 				vm_page_activate(m);
1607 				vm_page_io_finish(m);
1608 			}
1609 		} else if (bp->b_iocmd == BIO_READ) {
1610 			/*
1611 			 * For read success, clear dirty bits.  Nobody should
1612 			 * have this page mapped but don't take any chances,
1613 			 * make sure the pmap modify bits are also cleared.
1614 			 *
1615 			 * NOTE: for reads, m->dirty will probably be
1616 			 * overridden by the original caller of getpages so
1617 			 * we cannot set them in order to free the underlying
1618 			 * swap in a low-swap situation.  I don't think we'd
1619 			 * want to do that anyway, but it was an optimization
1620 			 * that existed in the old swapper for a time before
1621 			 * it got ripped out due to precisely this problem.
1622 			 *
1623 			 * clear PG_ZERO in page.
1624 			 *
1625 			 * If not the requested page then deactivate it.
1626 			 *
1627 			 * Note that the requested page, reqpage, is left
1628 			 * busied, but we still have to wake it up.  The
1629 			 * other pages are released (unbusied) by
1630 			 * vm_page_wakeup().  We do not set reqpage's
1631 			 * valid bits here, it is up to the caller.
1632 			 */
1633 
1634 			pmap_clear_modify(m);
1635 			m->valid = VM_PAGE_BITS_ALL;
1636 			vm_page_undirty(m);
1637 			vm_page_flag_clear(m, PG_ZERO);
1638 
1639 			/*
1640 			 * We have to wake specifically requested pages
1641 			 * up too because we cleared PG_SWAPINPROG and
1642 			 * could be waiting for it in getpages.  However,
1643 			 * be sure to not unbusy getpages specifically
1644 			 * requested page - getpages expects it to be
1645 			 * left busy.
1646 			 */
1647 			if (i != bp->b_pager.pg_reqpage) {
1648 				vm_page_deactivate(m);
1649 				vm_page_wakeup(m);
1650 			} else {
1651 				vm_page_flash(m);
1652 			}
1653 		} else {
1654 			/*
1655 			 * For write success, clear the modify and dirty
1656 			 * status, then finish the I/O ( which decrements the
1657 			 * busy count and possibly wakes waiter's up ).
1658 			 */
1659 			pmap_clear_modify(m);
1660 			vm_page_undirty(m);
1661 			vm_page_io_finish(m);
1662 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1663 				vm_page_protect(m, VM_PROT_READ);
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * adjust pip.  NOTE: the original parent may still have its own
1669 	 * pip refs on the object.
1670 	 */
1671 
1672 	if (object)
1673 		vm_object_pip_wakeupn(object, bp->b_npages);
1674 
1675 	/*
1676 	 * release the physical I/O buffer
1677 	 */
1678 
1679 	relpbuf(
1680 	    bp,
1681 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1682 		((bp->b_flags & B_ASYNC) ?
1683 		    &nsw_wcount_async :
1684 		    &nsw_wcount_sync
1685 		)
1686 	    )
1687 	);
1688 	splx(s);
1689 }
1690 
1691 /************************************************************************
1692  *				SWAP META DATA 				*
1693  ************************************************************************
1694  *
1695  *	These routines manipulate the swap metadata stored in the
1696  *	OBJT_SWAP object.  All swp_*() routines must be called at
1697  *	splvm() because swap can be freed up by the low level vm_page
1698  *	code which might be called from interrupts beyond what splbio() covers.
1699  *
1700  *	Swap metadata is implemented with a global hash and not directly
1701  *	linked into the object.  Instead the object simply contains
1702  *	appropriate tracking counters.
1703  */
1704 
1705 /*
1706  * SWP_PAGER_HASH() -	hash swap meta data
1707  *
1708  *	This is an inline helper function which hashes the swapblk given
1709  *	the object and page index.  It returns a pointer to a pointer
1710  *	to the object, or a pointer to a NULL pointer if it could not
1711  *	find a swapblk.
1712  *
1713  *	This routine must be called at splvm().
1714  */
1715 
1716 static __inline struct swblock **
1717 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1718 {
1719 	struct swblock **pswap;
1720 	struct swblock *swap;
1721 
1722 	index &= ~SWAP_META_MASK;
1723 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1724 
1725 	while ((swap = *pswap) != NULL) {
1726 		if (swap->swb_object == object &&
1727 		    swap->swb_index == index
1728 		) {
1729 			break;
1730 		}
1731 		pswap = &swap->swb_hnext;
1732 	}
1733 	return(pswap);
1734 }
1735 
1736 /*
1737  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1738  *
1739  *	We first convert the object to a swap object if it is a default
1740  *	object.
1741  *
1742  *	The specified swapblk is added to the object's swap metadata.  If
1743  *	the swapblk is not valid, it is freed instead.  Any previously
1744  *	assigned swapblk is freed.
1745  *
1746  *	This routine must be called at splvm(), except when used to convert
1747  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1748  */
1749 
1750 static void
1751 swp_pager_meta_build(
1752 	vm_object_t object,
1753 	vm_pindex_t index,
1754 	daddr_t swapblk
1755 ) {
1756 	struct swblock *swap;
1757 	struct swblock **pswap;
1758 
1759 	GIANT_REQUIRED;
1760 	/*
1761 	 * Convert default object to swap object if necessary
1762 	 */
1763 
1764 	if (object->type != OBJT_SWAP) {
1765 		object->type = OBJT_SWAP;
1766 		object->un_pager.swp.swp_bcount = 0;
1767 
1768 		mtx_lock(&sw_alloc_mtx);
1769 		if (object->handle != NULL) {
1770 			TAILQ_INSERT_TAIL(
1771 			    NOBJLIST(object->handle),
1772 			    object,
1773 			    pager_object_list
1774 			);
1775 		} else {
1776 			TAILQ_INSERT_TAIL(
1777 			    &swap_pager_un_object_list,
1778 			    object,
1779 			    pager_object_list
1780 			);
1781 		}
1782 		mtx_unlock(&sw_alloc_mtx);
1783 	}
1784 
1785 	/*
1786 	 * Locate hash entry.  If not found create, but if we aren't adding
1787 	 * anything just return.  If we run out of space in the map we wait
1788 	 * and, since the hash table may have changed, retry.
1789 	 */
1790 
1791 retry:
1792 	pswap = swp_pager_hash(object, index);
1793 
1794 	if ((swap = *pswap) == NULL) {
1795 		int i;
1796 
1797 		if (swapblk == SWAPBLK_NONE)
1798 			return;
1799 
1800 		swap = *pswap = zalloc(swap_zone);
1801 		if (swap == NULL) {
1802 			VM_WAIT;
1803 			goto retry;
1804 		}
1805 		swap->swb_hnext = NULL;
1806 		swap->swb_object = object;
1807 		swap->swb_index = index & ~SWAP_META_MASK;
1808 		swap->swb_count = 0;
1809 
1810 		++object->un_pager.swp.swp_bcount;
1811 
1812 		for (i = 0; i < SWAP_META_PAGES; ++i)
1813 			swap->swb_pages[i] = SWAPBLK_NONE;
1814 	}
1815 
1816 	/*
1817 	 * Delete prior contents of metadata
1818 	 */
1819 
1820 	index &= SWAP_META_MASK;
1821 
1822 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1823 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1824 		--swap->swb_count;
1825 	}
1826 
1827 	/*
1828 	 * Enter block into metadata
1829 	 */
1830 
1831 	swap->swb_pages[index] = swapblk;
1832 	if (swapblk != SWAPBLK_NONE)
1833 		++swap->swb_count;
1834 }
1835 
1836 /*
1837  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1838  *
1839  *	The requested range of blocks is freed, with any associated swap
1840  *	returned to the swap bitmap.
1841  *
1842  *	This routine will free swap metadata structures as they are cleaned
1843  *	out.  This routine does *NOT* operate on swap metadata associated
1844  *	with resident pages.
1845  *
1846  *	This routine must be called at splvm()
1847  */
1848 
1849 static void
1850 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1851 {
1852 	GIANT_REQUIRED;
1853 
1854 	if (object->type != OBJT_SWAP)
1855 		return;
1856 
1857 	while (count > 0) {
1858 		struct swblock **pswap;
1859 		struct swblock *swap;
1860 
1861 		pswap = swp_pager_hash(object, index);
1862 
1863 		if ((swap = *pswap) != NULL) {
1864 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1865 
1866 			if (v != SWAPBLK_NONE) {
1867 				swp_pager_freeswapspace(v, 1);
1868 				swap->swb_pages[index & SWAP_META_MASK] =
1869 					SWAPBLK_NONE;
1870 				if (--swap->swb_count == 0) {
1871 					*pswap = swap->swb_hnext;
1872 					zfree(swap_zone, swap);
1873 					--object->un_pager.swp.swp_bcount;
1874 				}
1875 			}
1876 			--count;
1877 			++index;
1878 		} else {
1879 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1880 			count -= n;
1881 			index += n;
1882 		}
1883 	}
1884 }
1885 
1886 /*
1887  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1888  *
1889  *	This routine locates and destroys all swap metadata associated with
1890  *	an object.
1891  *
1892  *	This routine must be called at splvm()
1893  */
1894 
1895 static void
1896 swp_pager_meta_free_all(vm_object_t object)
1897 {
1898 	daddr_t index = 0;
1899 
1900 	GIANT_REQUIRED;
1901 
1902 	if (object->type != OBJT_SWAP)
1903 		return;
1904 
1905 	while (object->un_pager.swp.swp_bcount) {
1906 		struct swblock **pswap;
1907 		struct swblock *swap;
1908 
1909 		pswap = swp_pager_hash(object, index);
1910 		if ((swap = *pswap) != NULL) {
1911 			int i;
1912 
1913 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1914 				daddr_t v = swap->swb_pages[i];
1915 				if (v != SWAPBLK_NONE) {
1916 					--swap->swb_count;
1917 					swp_pager_freeswapspace(v, 1);
1918 				}
1919 			}
1920 			if (swap->swb_count != 0)
1921 				panic("swap_pager_meta_free_all: swb_count != 0");
1922 			*pswap = swap->swb_hnext;
1923 			zfree(swap_zone, swap);
1924 			--object->un_pager.swp.swp_bcount;
1925 		}
1926 		index += SWAP_META_PAGES;
1927 		if (index > 0x20000000)
1928 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1929 	}
1930 }
1931 
1932 /*
1933  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1934  *
1935  *	This routine is capable of looking up, popping, or freeing
1936  *	swapblk assignments in the swap meta data or in the vm_page_t.
1937  *	The routine typically returns the swapblk being looked-up, or popped,
1938  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1939  *	was invalid.  This routine will automatically free any invalid
1940  *	meta-data swapblks.
1941  *
1942  *	It is not possible to store invalid swapblks in the swap meta data
1943  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1944  *
1945  *	When acting on a busy resident page and paging is in progress, we
1946  *	have to wait until paging is complete but otherwise can act on the
1947  *	busy page.
1948  *
1949  *	This routine must be called at splvm().
1950  *
1951  *	SWM_FREE	remove and free swap block from metadata
1952  *	SWM_POP		remove from meta data but do not free.. pop it out
1953  */
1954 
1955 static daddr_t
1956 swp_pager_meta_ctl(
1957 	vm_object_t object,
1958 	vm_pindex_t index,
1959 	int flags
1960 ) {
1961 	struct swblock **pswap;
1962 	struct swblock *swap;
1963 	daddr_t r1;
1964 
1965 	GIANT_REQUIRED;
1966 	/*
1967 	 * The meta data only exists of the object is OBJT_SWAP
1968 	 * and even then might not be allocated yet.
1969 	 */
1970 
1971 	if (object->type != OBJT_SWAP)
1972 		return(SWAPBLK_NONE);
1973 
1974 	r1 = SWAPBLK_NONE;
1975 	pswap = swp_pager_hash(object, index);
1976 
1977 	if ((swap = *pswap) != NULL) {
1978 		index &= SWAP_META_MASK;
1979 		r1 = swap->swb_pages[index];
1980 
1981 		if (r1 != SWAPBLK_NONE) {
1982 			if (flags & SWM_FREE) {
1983 				swp_pager_freeswapspace(r1, 1);
1984 				r1 = SWAPBLK_NONE;
1985 			}
1986 			if (flags & (SWM_FREE|SWM_POP)) {
1987 				swap->swb_pages[index] = SWAPBLK_NONE;
1988 				if (--swap->swb_count == 0) {
1989 					*pswap = swap->swb_hnext;
1990 					zfree(swap_zone, swap);
1991 					--object->un_pager.swp.swp_bcount;
1992 				}
1993 			}
1994 		}
1995 	}
1996 	return(r1);
1997 }
1998 
1999 /********************************************************
2000  *		CHAINING FUNCTIONS			*
2001  ********************************************************
2002  *
2003  *	These functions support recursion of I/O operations
2004  *	on bp's, typically by chaining one or more 'child' bp's
2005  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
2006  *	chaining is possible.
2007  */
2008 
2009 /*
2010  *	vm_pager_chain_iodone:
2011  *
2012  *	io completion routine for child bp.  Currently we fudge a bit
2013  *	on dealing with b_resid.   Since users of these routines may issue
2014  *	multiple children simultaneously, sequencing of the error can be lost.
2015  */
2016 
2017 static void
2018 vm_pager_chain_iodone(struct buf *nbp)
2019 {
2020 	struct bio *bp;
2021 	u_int *count;
2022 
2023 	bp = nbp->b_caller1;
2024 	count = (u_int *)&(bp->bio_caller1);
2025 	if (bp != NULL) {
2026 		if (nbp->b_ioflags & BIO_ERROR) {
2027 			bp->bio_flags |= BIO_ERROR;
2028 			bp->bio_error = nbp->b_error;
2029 		} else if (nbp->b_resid != 0) {
2030 			bp->bio_flags |= BIO_ERROR;
2031 			bp->bio_error = EINVAL;
2032 		} else {
2033 			bp->bio_resid -= nbp->b_bcount;
2034 		}
2035 		nbp->b_caller1 = NULL;
2036 		--(*count);
2037 		if (bp->bio_flags & BIO_FLAG1) {
2038 			bp->bio_flags &= ~BIO_FLAG1;
2039 			wakeup(bp);
2040 		}
2041 	}
2042 	nbp->b_flags |= B_DONE;
2043 	nbp->b_flags &= ~B_ASYNC;
2044 	relpbuf(nbp, NULL);
2045 }
2046 
2047 /*
2048  *	getchainbuf:
2049  *
2050  *	Obtain a physical buffer and chain it to its parent buffer.  When
2051  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
2052  *	automatically propagated to the parent
2053  */
2054 
2055 struct buf *
2056 getchainbuf(struct bio *bp, struct vnode *vp, int flags)
2057 {
2058 	struct buf *nbp;
2059 	u_int *count;
2060 
2061 	GIANT_REQUIRED;
2062 	nbp = getpbuf(NULL);
2063 	count = (u_int *)&(bp->bio_caller1);
2064 
2065 	nbp->b_caller1 = bp;
2066 	++(*count);
2067 
2068 	if (*count > 4)
2069 		waitchainbuf(bp, 4, 0);
2070 
2071 	nbp->b_iocmd = bp->bio_cmd;
2072 	nbp->b_ioflags = bp->bio_flags & BIO_ORDERED;
2073 	nbp->b_flags = flags;
2074 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
2075 	nbp->b_iodone = vm_pager_chain_iodone;
2076 
2077 	crhold(nbp->b_rcred);
2078 	crhold(nbp->b_wcred);
2079 
2080 	if (vp)
2081 		pbgetvp(vp, nbp);
2082 	return(nbp);
2083 }
2084 
2085 void
2086 flushchainbuf(struct buf *nbp)
2087 {
2088 	GIANT_REQUIRED;
2089 	if (nbp->b_bcount) {
2090 		nbp->b_bufsize = nbp->b_bcount;
2091 		if (nbp->b_iocmd == BIO_WRITE)
2092 			nbp->b_dirtyend = nbp->b_bcount;
2093 		BUF_KERNPROC(nbp);
2094 		BUF_STRATEGY(nbp);
2095 	} else {
2096 		bufdone(nbp);
2097 	}
2098 }
2099 
2100 static void
2101 waitchainbuf(struct bio *bp, int limit, int done)
2102 {
2103  	int s;
2104 	u_int *count;
2105 
2106 	GIANT_REQUIRED;
2107 	count = (u_int *)&(bp->bio_caller1);
2108 	s = splbio();
2109 	while (*count > limit) {
2110 		bp->bio_flags |= BIO_FLAG1;
2111 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
2112 	}
2113 	if (done) {
2114 		if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) {
2115 			bp->bio_flags |= BIO_ERROR;
2116 			bp->bio_error = EINVAL;
2117 		}
2118 		biodone(bp);
2119 	}
2120 	splx(s);
2121 }
2122 
2123