xref: /freebsd/sys/vm/swap_pager.c (revision 54c1a65736ec012b583ade1d53c477e182c574e4)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/user.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <security/mac/mac_framework.h>
108 
109 #include <vm/vm.h>
110 #include <vm/pmap.h>
111 #include <vm/vm_map.h>
112 #include <vm/vm_kern.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_param.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/uma.h>
121 
122 #include <geom/geom.h>
123 
124 /*
125  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
126  * The 64-page limit is due to the radix code (kern/subr_blist.c).
127  */
128 #ifndef MAX_PAGEOUT_CLUSTER
129 #define	MAX_PAGEOUT_CLUSTER	32
130 #endif
131 
132 #if !defined(SWB_NPAGES)
133 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
134 #endif
135 
136 #define	SWAP_META_PAGES		PCTRIE_COUNT
137 
138 /*
139  * A swblk structure maps each page index within a
140  * SWAP_META_PAGES-aligned and sized range to the address of an
141  * on-disk swap block (or SWAPBLK_NONE). The collection of these
142  * mappings for an entire vm object is implemented as a pc-trie.
143  */
144 struct swblk {
145 	vm_pindex_t	p;
146 	daddr_t		d[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156 
157 static __exclusive_cache_line u_long swap_reserved;
158 static u_long swap_total;
159 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
160 
161 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "VM swap stats");
163 
164 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_reserved, 0, sysctl_page_shift, "A",
166     "Amount of swap storage needed to back all allocated anonymous memory.");
167 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
168     &swap_total, 0, sysctl_page_shift, "A",
169     "Total amount of available swap storage.");
170 
171 static int overcommit = 0;
172 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
173     "Configure virtual memory overcommit behavior. See tuning(7) "
174     "for details.");
175 static unsigned long swzone;
176 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
177     "Actual size of swap metadata zone");
178 static unsigned long swap_maxpages;
179 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
180     "Maximum amount of swap supported");
181 
182 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
183 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
184     CTLFLAG_RD, &swap_free_deferred,
185     "Number of pages that deferred freeing swap space");
186 
187 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
188 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
189     CTLFLAG_RD, &swap_free_completed,
190     "Number of deferred frees completed");
191 
192 /* bits from overcommit */
193 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
194 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
195 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
196 
197 static int
198 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
199 {
200 	uint64_t newval;
201 	u_long value = *(u_long *)arg1;
202 
203 	newval = ((uint64_t)value) << PAGE_SHIFT;
204 	return (sysctl_handle_64(oidp, &newval, 0, req));
205 }
206 
207 static bool
208 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
209 {
210 	struct uidinfo *uip;
211 	u_long prev;
212 
213 	uip = cred->cr_ruidinfo;
214 
215 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
216 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
217 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
218 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
219 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
220 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
221 		return (false);
222 	}
223 	return (true);
224 }
225 
226 static void
227 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
228 {
229 	struct uidinfo *uip;
230 #ifdef INVARIANTS
231 	u_long prev;
232 #endif
233 
234 	uip = cred->cr_ruidinfo;
235 
236 #ifdef INVARIANTS
237 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
238 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
239 #else
240 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
241 #endif
242 }
243 
244 static void
245 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
246 {
247 	struct uidinfo *uip;
248 
249 	uip = cred->cr_ruidinfo;
250 	atomic_add_long(&uip->ui_vmsize, pincr);
251 }
252 
253 bool
254 swap_reserve(vm_ooffset_t incr)
255 {
256 
257 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
258 }
259 
260 bool
261 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
262 {
263 	u_long r, s, prev, pincr;
264 #ifdef RACCT
265 	int error;
266 #endif
267 	int oc;
268 	static int curfail;
269 	static struct timeval lastfail;
270 
271 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
272 	    (uintmax_t)incr));
273 
274 #ifdef RACCT
275 	if (RACCT_ENABLED()) {
276 		PROC_LOCK(curproc);
277 		error = racct_add(curproc, RACCT_SWAP, incr);
278 		PROC_UNLOCK(curproc);
279 		if (error != 0)
280 			return (false);
281 	}
282 #endif
283 
284 	pincr = atop(incr);
285 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
286 	r = prev + pincr;
287 	s = swap_total;
288 	oc = atomic_load_int(&overcommit);
289 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
290 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
291 		    vm_wire_count();
292 	}
293 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
294 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
295 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
296 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
297 		goto out_error;
298 	}
299 
300 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
301 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
302 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
303 		goto out_error;
304 	}
305 
306 	return (true);
307 
308 out_error:
309 	if (ppsratecheck(&lastfail, &curfail, 1)) {
310 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
311 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
312 	}
313 #ifdef RACCT
314 	if (RACCT_ENABLED()) {
315 		PROC_LOCK(curproc);
316 		racct_sub(curproc, RACCT_SWAP, incr);
317 		PROC_UNLOCK(curproc);
318 	}
319 #endif
320 
321 	return (false);
322 }
323 
324 void
325 swap_reserve_force(vm_ooffset_t incr)
326 {
327 	u_long pincr;
328 
329 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
330 	    (uintmax_t)incr));
331 
332 #ifdef RACCT
333 	if (RACCT_ENABLED()) {
334 		PROC_LOCK(curproc);
335 		racct_add_force(curproc, RACCT_SWAP, incr);
336 		PROC_UNLOCK(curproc);
337 	}
338 #endif
339 	pincr = atop(incr);
340 	atomic_add_long(&swap_reserved, pincr);
341 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
342 }
343 
344 void
345 swap_release(vm_ooffset_t decr)
346 {
347 	struct ucred *cred;
348 
349 	PROC_LOCK(curproc);
350 	cred = curproc->p_ucred;
351 	swap_release_by_cred(decr, cred);
352 	PROC_UNLOCK(curproc);
353 }
354 
355 void
356 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
357 {
358 	u_long pdecr;
359 #ifdef INVARIANTS
360 	u_long prev;
361 #endif
362 
363 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
364 	    (uintmax_t)decr));
365 
366 	pdecr = atop(decr);
367 #ifdef INVARIANTS
368 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
369 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
370 #else
371 	atomic_subtract_long(&swap_reserved, pdecr);
372 #endif
373 
374 	swap_release_by_cred_rlimit(pdecr, cred);
375 #ifdef RACCT
376 	if (racct_enable)
377 		racct_sub_cred(cred, RACCT_SWAP, decr);
378 #endif
379 }
380 
381 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
382 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
383 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
384 static int nsw_wcount_async;	/* limit async write buffers */
385 static int nsw_wcount_async_max;/* assigned maximum			*/
386 int nsw_cluster_max; 		/* maximum VOP I/O allowed		*/
387 
388 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
389 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
390     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
391     "Maximum running async swap ops");
392 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
393 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
394     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
395     "Swap Fragmentation Info");
396 
397 static struct sx sw_alloc_sx;
398 
399 /*
400  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
401  * of searching a named list by hashing it just a little.
402  */
403 
404 #define NOBJLISTS		8
405 
406 #define NOBJLIST(handle)	\
407 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
408 
409 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
410 static uma_zone_t swwbuf_zone;
411 static uma_zone_t swrbuf_zone;
412 static uma_zone_t swblk_zone;
413 static uma_zone_t swpctrie_zone;
414 
415 /*
416  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
417  * calls hooked from other parts of the VM system and do not appear here.
418  * (see vm/swap_pager.h).
419  */
420 static vm_object_t
421 		swap_pager_alloc(void *handle, vm_ooffset_t size,
422 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
423 static void	swap_pager_dealloc(vm_object_t object);
424 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
425     int *);
426 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
427     int *, pgo_getpages_iodone_t, void *);
428 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
429 static boolean_t
430 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
431 static void	swap_pager_init(void);
432 static void	swap_pager_unswapped(vm_page_t);
433 static void	swap_pager_swapoff(struct swdevt *sp);
434 static void	swap_pager_update_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 static void	swap_pager_release_writecount(vm_object_t object,
437     vm_offset_t start, vm_offset_t end);
438 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
439     vm_size_t size);
440 
441 const struct pagerops swappagerops = {
442 	.pgo_kvme_type = KVME_TYPE_SWAP,
443 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
444 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
445 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
446 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
447 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
448 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
449 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
450 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
451 	.pgo_update_writecount = swap_pager_update_writecount,
452 	.pgo_release_writecount = swap_pager_release_writecount,
453 	.pgo_freespace = swap_pager_freespace,
454 };
455 
456 /*
457  * swap_*() routines are externally accessible.  swp_*() routines are
458  * internal.
459  */
460 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
461 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
462 
463 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
464     "Maximum size of a swap block in pages");
465 
466 static void	swp_sizecheck(void);
467 static void	swp_pager_async_iodone(struct buf *bp);
468 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
469 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
470 static int	swapongeom(struct vnode *);
471 static int	swaponvp(struct thread *, struct vnode *, u_long);
472 static int	swapoff_one(struct swdevt *sp, struct ucred *cred,
473 		    bool ignore_check);
474 
475 /*
476  * Swap bitmap functions
477  */
478 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
479 static daddr_t	swp_pager_getswapspace(int *npages);
480 
481 /*
482  * Metadata functions
483  */
484 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
485 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
486 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
487     vm_pindex_t pindex, vm_pindex_t count);
488 static void swp_pager_meta_free_all(vm_object_t);
489 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
490 
491 static void
492 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
493 {
494 
495 	*start = SWAPBLK_NONE;
496 	*num = 0;
497 }
498 
499 static void
500 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
501 {
502 
503 	if (*start + *num == addr) {
504 		(*num)++;
505 	} else {
506 		swp_pager_freeswapspace(*start, *num);
507 		*start = addr;
508 		*num = 1;
509 	}
510 }
511 
512 static void *
513 swblk_trie_alloc(struct pctrie *ptree)
514 {
515 
516 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
517 	    M_USE_RESERVE : 0)));
518 }
519 
520 static void
521 swblk_trie_free(struct pctrie *ptree, void *node)
522 {
523 
524 	uma_zfree(swpctrie_zone, node);
525 }
526 
527 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
528 
529 /*
530  * SWP_SIZECHECK() -	update swap_pager_full indication
531  *
532  *	update the swap_pager_almost_full indication and warn when we are
533  *	about to run out of swap space, using lowat/hiwat hysteresis.
534  *
535  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
536  *
537  *	No restrictions on call
538  *	This routine may not block.
539  */
540 static void
541 swp_sizecheck(void)
542 {
543 
544 	if (swap_pager_avail < nswap_lowat) {
545 		if (swap_pager_almost_full == 0) {
546 			printf("swap_pager: out of swap space\n");
547 			swap_pager_almost_full = 1;
548 		}
549 	} else {
550 		swap_pager_full = 0;
551 		if (swap_pager_avail > nswap_hiwat)
552 			swap_pager_almost_full = 0;
553 	}
554 }
555 
556 /*
557  * SWAP_PAGER_INIT() -	initialize the swap pager!
558  *
559  *	Expected to be started from system init.  NOTE:  This code is run
560  *	before much else so be careful what you depend on.  Most of the VM
561  *	system has yet to be initialized at this point.
562  */
563 static void
564 swap_pager_init(void)
565 {
566 	/*
567 	 * Initialize object lists
568 	 */
569 	int i;
570 
571 	for (i = 0; i < NOBJLISTS; ++i)
572 		TAILQ_INIT(&swap_pager_object_list[i]);
573 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
574 	sx_init(&sw_alloc_sx, "swspsx");
575 	sx_init(&swdev_syscall_lock, "swsysc");
576 
577 	/*
578 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
579 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
580 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
581 	 * constrained by the swap device interleave stripe size.
582 	 *
583 	 * Initialized early so that GEOM_ELI can see it.
584 	 */
585 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
586 }
587 
588 /*
589  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
590  *
591  *	Expected to be started from pageout process once, prior to entering
592  *	its main loop.
593  */
594 void
595 swap_pager_swap_init(void)
596 {
597 	unsigned long n, n2;
598 
599 	/*
600 	 * Number of in-transit swap bp operations.  Don't
601 	 * exhaust the pbufs completely.  Make sure we
602 	 * initialize workable values (0 will work for hysteresis
603 	 * but it isn't very efficient).
604 	 *
605 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
606 	 * designed to prevent other I/O from having high latencies due to
607 	 * our pageout I/O.  The value 4 works well for one or two active swap
608 	 * devices but is probably a little low if you have more.  Even so,
609 	 * a higher value would probably generate only a limited improvement
610 	 * with three or four active swap devices since the system does not
611 	 * typically have to pageout at extreme bandwidths.   We will want
612 	 * at least 2 per swap devices, and 4 is a pretty good value if you
613 	 * have one NFS swap device due to the command/ack latency over NFS.
614 	 * So it all works out pretty well.
615 	 *
616 	 * nsw_cluster_max is initialized in swap_pager_init().
617 	 */
618 
619 	nsw_wcount_async = 4;
620 	nsw_wcount_async_max = nsw_wcount_async;
621 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
622 
623 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
624 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
625 
626 	/*
627 	 * Initialize our zone, taking the user's requested size or
628 	 * estimating the number we need based on the number of pages
629 	 * in the system.
630 	 */
631 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
632 	    vm_cnt.v_page_count / 2;
633 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
634 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
635 	if (swpctrie_zone == NULL)
636 		panic("failed to create swap pctrie zone.");
637 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
638 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
639 	if (swblk_zone == NULL)
640 		panic("failed to create swap blk zone.");
641 	n2 = n;
642 	do {
643 		if (uma_zone_reserve_kva(swblk_zone, n))
644 			break;
645 		/*
646 		 * if the allocation failed, try a zone two thirds the
647 		 * size of the previous attempt.
648 		 */
649 		n -= ((n + 2) / 3);
650 	} while (n > 0);
651 
652 	/*
653 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
654 	 * requested size.  Account for the difference when
655 	 * calculating swap_maxpages.
656 	 */
657 	n = uma_zone_get_max(swblk_zone);
658 
659 	if (n < n2)
660 		printf("Swap blk zone entries changed from %lu to %lu.\n",
661 		    n2, n);
662 	/* absolute maximum we can handle assuming 100% efficiency */
663 	swap_maxpages = n * SWAP_META_PAGES;
664 	swzone = n * sizeof(struct swblk);
665 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
666 		printf("Cannot reserve swap pctrie zone, "
667 		    "reduce kern.maxswzone.\n");
668 }
669 
670 bool
671 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
672     vm_ooffset_t size, vm_ooffset_t offset)
673 {
674 	if (cred != NULL) {
675 		if (!swap_reserve_by_cred(size, cred))
676 			return (false);
677 		crhold(cred);
678 	}
679 
680 	object->un_pager.swp.writemappings = 0;
681 	object->handle = handle;
682 	if (cred != NULL) {
683 		object->cred = cred;
684 		object->charge = size;
685 	}
686 	return (true);
687 }
688 
689 static vm_object_t
690 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
691     vm_ooffset_t size, vm_ooffset_t offset)
692 {
693 	vm_object_t object;
694 
695 	/*
696 	 * The un_pager.swp.swp_blks trie is initialized by
697 	 * vm_object_allocate() to ensure the correct order of
698 	 * visibility to other threads.
699 	 */
700 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
701 	    PAGE_MASK + size));
702 
703 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
704 		vm_object_deallocate(object);
705 		return (NULL);
706 	}
707 	return (object);
708 }
709 
710 /*
711  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
712  *			its metadata structures.
713  *
714  *	This routine is called from the mmap and fork code to create a new
715  *	OBJT_SWAP object.
716  *
717  *	This routine must ensure that no live duplicate is created for
718  *	the named object request, which is protected against by
719  *	holding the sw_alloc_sx lock in case handle != NULL.
720  */
721 static vm_object_t
722 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
723     vm_ooffset_t offset, struct ucred *cred)
724 {
725 	vm_object_t object;
726 
727 	if (handle != NULL) {
728 		/*
729 		 * Reference existing named region or allocate new one.  There
730 		 * should not be a race here against swp_pager_meta_build()
731 		 * as called from vm_page_remove() in regards to the lookup
732 		 * of the handle.
733 		 */
734 		sx_xlock(&sw_alloc_sx);
735 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
736 		if (object == NULL) {
737 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
738 			    size, offset);
739 			if (object != NULL) {
740 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
741 				    object, pager_object_list);
742 			}
743 		}
744 		sx_xunlock(&sw_alloc_sx);
745 	} else {
746 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
747 		    size, offset);
748 	}
749 	return (object);
750 }
751 
752 /*
753  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
754  *
755  *	The swap backing for the object is destroyed.  The code is
756  *	designed such that we can reinstantiate it later, but this
757  *	routine is typically called only when the entire object is
758  *	about to be destroyed.
759  *
760  *	The object must be locked.
761  */
762 static void
763 swap_pager_dealloc(vm_object_t object)
764 {
765 
766 	VM_OBJECT_ASSERT_WLOCKED(object);
767 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
768 
769 	/*
770 	 * Remove from list right away so lookups will fail if we block for
771 	 * pageout completion.
772 	 */
773 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
774 		VM_OBJECT_WUNLOCK(object);
775 		sx_xlock(&sw_alloc_sx);
776 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
777 		    pager_object_list);
778 		sx_xunlock(&sw_alloc_sx);
779 		VM_OBJECT_WLOCK(object);
780 	}
781 
782 	vm_object_pip_wait(object, "swpdea");
783 
784 	/*
785 	 * Free all remaining metadata.  We only bother to free it from
786 	 * the swap meta data.  We do not attempt to free swapblk's still
787 	 * associated with vm_page_t's for this object.  We do not care
788 	 * if paging is still in progress on some objects.
789 	 */
790 	swp_pager_meta_free_all(object);
791 	object->handle = NULL;
792 	object->type = OBJT_DEAD;
793 	vm_object_clear_flag(object, OBJ_SWAP);
794 }
795 
796 /************************************************************************
797  *			SWAP PAGER BITMAP ROUTINES			*
798  ************************************************************************/
799 
800 /*
801  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
802  *
803  *	Allocate swap for up to the requested number of pages.  The
804  *	starting swap block number (a page index) is returned or
805  *	SWAPBLK_NONE if the allocation failed.
806  *
807  *	Also has the side effect of advising that somebody made a mistake
808  *	when they configured swap and didn't configure enough.
809  *
810  *	This routine may not sleep.
811  *
812  *	We allocate in round-robin fashion from the configured devices.
813  */
814 static daddr_t
815 swp_pager_getswapspace(int *io_npages)
816 {
817 	daddr_t blk;
818 	struct swdevt *sp;
819 	int mpages, npages;
820 
821 	KASSERT(*io_npages >= 1,
822 	    ("%s: npages not positive", __func__));
823 	blk = SWAPBLK_NONE;
824 	mpages = *io_npages;
825 	npages = imin(BLIST_MAX_ALLOC, mpages);
826 	mtx_lock(&sw_dev_mtx);
827 	sp = swdevhd;
828 	while (!TAILQ_EMPTY(&swtailq)) {
829 		if (sp == NULL)
830 			sp = TAILQ_FIRST(&swtailq);
831 		if ((sp->sw_flags & SW_CLOSING) == 0)
832 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
833 		if (blk != SWAPBLK_NONE)
834 			break;
835 		sp = TAILQ_NEXT(sp, sw_list);
836 		if (swdevhd == sp) {
837 			if (npages == 1)
838 				break;
839 			mpages = npages - 1;
840 			npages >>= 1;
841 		}
842 	}
843 	if (blk != SWAPBLK_NONE) {
844 		*io_npages = npages;
845 		blk += sp->sw_first;
846 		sp->sw_used += npages;
847 		swap_pager_avail -= npages;
848 		swp_sizecheck();
849 		swdevhd = TAILQ_NEXT(sp, sw_list);
850 	} else {
851 		if (swap_pager_full != 2) {
852 			printf("swp_pager_getswapspace(%d): failed\n",
853 			    *io_npages);
854 			swap_pager_full = 2;
855 			swap_pager_almost_full = 1;
856 		}
857 		swdevhd = NULL;
858 	}
859 	mtx_unlock(&sw_dev_mtx);
860 	return (blk);
861 }
862 
863 static bool
864 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
865 {
866 
867 	return (blk >= sp->sw_first && blk < sp->sw_end);
868 }
869 
870 static void
871 swp_pager_strategy(struct buf *bp)
872 {
873 	struct swdevt *sp;
874 
875 	mtx_lock(&sw_dev_mtx);
876 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
877 		if (swp_pager_isondev(bp->b_blkno, sp)) {
878 			mtx_unlock(&sw_dev_mtx);
879 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
880 			    unmapped_buf_allowed) {
881 				bp->b_data = unmapped_buf;
882 				bp->b_offset = 0;
883 			} else {
884 				pmap_qenter((vm_offset_t)bp->b_data,
885 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
886 			}
887 			sp->sw_strategy(bp, sp);
888 			return;
889 		}
890 	}
891 	panic("Swapdev not found");
892 }
893 
894 /*
895  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
896  *
897  *	This routine returns the specified swap blocks back to the bitmap.
898  *
899  *	This routine may not sleep.
900  */
901 static void
902 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
903 {
904 	struct swdevt *sp;
905 
906 	if (npages == 0)
907 		return;
908 	mtx_lock(&sw_dev_mtx);
909 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
910 		if (swp_pager_isondev(blk, sp)) {
911 			sp->sw_used -= npages;
912 			/*
913 			 * If we are attempting to stop swapping on
914 			 * this device, we don't want to mark any
915 			 * blocks free lest they be reused.
916 			 */
917 			if ((sp->sw_flags & SW_CLOSING) == 0) {
918 				blist_free(sp->sw_blist, blk - sp->sw_first,
919 				    npages);
920 				swap_pager_avail += npages;
921 				swp_sizecheck();
922 			}
923 			mtx_unlock(&sw_dev_mtx);
924 			return;
925 		}
926 	}
927 	panic("Swapdev not found");
928 }
929 
930 /*
931  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
932  */
933 static int
934 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
935 {
936 	struct sbuf sbuf;
937 	struct swdevt *sp;
938 	const char *devname;
939 	int error;
940 
941 	error = sysctl_wire_old_buffer(req, 0);
942 	if (error != 0)
943 		return (error);
944 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
945 	mtx_lock(&sw_dev_mtx);
946 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
947 		if (vn_isdisk(sp->sw_vp))
948 			devname = devtoname(sp->sw_vp->v_rdev);
949 		else
950 			devname = "[file]";
951 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
952 		blist_stats(sp->sw_blist, &sbuf);
953 	}
954 	mtx_unlock(&sw_dev_mtx);
955 	error = sbuf_finish(&sbuf);
956 	sbuf_delete(&sbuf);
957 	return (error);
958 }
959 
960 /*
961  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
962  *				range within an object.
963  *
964  *	This routine removes swapblk assignments from swap metadata.
965  *
966  *	The external callers of this routine typically have already destroyed
967  *	or renamed vm_page_t's associated with this range in the object so
968  *	we should be ok.
969  *
970  *	The object must be locked.
971  */
972 static void
973 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
974 {
975 
976 	swp_pager_meta_free(object, start, size);
977 }
978 
979 /*
980  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
981  *
982  *	Assigns swap blocks to the specified range within the object.  The
983  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
984  *
985  *	Returns 0 on success, -1 on failure.
986  */
987 int
988 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
989 {
990 	daddr_t addr, blk, n_free, s_free;
991 	vm_pindex_t i, j;
992 	int n;
993 
994 	swp_pager_init_freerange(&s_free, &n_free);
995 	VM_OBJECT_WLOCK(object);
996 	for (i = 0; i < size; i += n) {
997 		n = MIN(size - i, INT_MAX);
998 		blk = swp_pager_getswapspace(&n);
999 		if (blk == SWAPBLK_NONE) {
1000 			swp_pager_meta_free(object, start, i);
1001 			VM_OBJECT_WUNLOCK(object);
1002 			return (-1);
1003 		}
1004 		for (j = 0; j < n; ++j) {
1005 			addr = swp_pager_meta_build(object,
1006 			    start + i + j, blk + j);
1007 			if (addr != SWAPBLK_NONE)
1008 				swp_pager_update_freerange(&s_free, &n_free,
1009 				    addr);
1010 		}
1011 	}
1012 	swp_pager_freeswapspace(s_free, n_free);
1013 	VM_OBJECT_WUNLOCK(object);
1014 	return (0);
1015 }
1016 
1017 static bool
1018 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1019     vm_pindex_t pindex, daddr_t addr)
1020 {
1021 	daddr_t dstaddr;
1022 
1023 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1024 	    ("%s: Srcobject not swappable", __func__));
1025 	if ((dstobject->flags & OBJ_SWAP) != 0 &&
1026 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1027 		/* Caller should destroy the source block. */
1028 		return (false);
1029 	}
1030 
1031 	/*
1032 	 * Destination has no swapblk and is not resident, transfer source.
1033 	 * swp_pager_meta_build() can sleep.
1034 	 */
1035 	VM_OBJECT_WUNLOCK(srcobject);
1036 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1037 	KASSERT(dstaddr == SWAPBLK_NONE,
1038 	    ("Unexpected destination swapblk"));
1039 	VM_OBJECT_WLOCK(srcobject);
1040 
1041 	return (true);
1042 }
1043 
1044 /*
1045  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1046  *			and destroy the source.
1047  *
1048  *	Copy any valid swapblks from the source to the destination.  In
1049  *	cases where both the source and destination have a valid swapblk,
1050  *	we keep the destination's.
1051  *
1052  *	This routine is allowed to sleep.  It may sleep allocating metadata
1053  *	indirectly through swp_pager_meta_build().
1054  *
1055  *	The source object contains no vm_page_t's (which is just as well)
1056  *
1057  *	The source object is of type OBJT_SWAP.
1058  *
1059  *	The source and destination objects must be locked.
1060  *	Both object locks may temporarily be released.
1061  */
1062 void
1063 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1064     vm_pindex_t offset, int destroysource)
1065 {
1066 
1067 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1068 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1069 
1070 	/*
1071 	 * If destroysource is set, we remove the source object from the
1072 	 * swap_pager internal queue now.
1073 	 */
1074 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1075 	    srcobject->handle != NULL) {
1076 		VM_OBJECT_WUNLOCK(srcobject);
1077 		VM_OBJECT_WUNLOCK(dstobject);
1078 		sx_xlock(&sw_alloc_sx);
1079 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1080 		    pager_object_list);
1081 		sx_xunlock(&sw_alloc_sx);
1082 		VM_OBJECT_WLOCK(dstobject);
1083 		VM_OBJECT_WLOCK(srcobject);
1084 	}
1085 
1086 	/*
1087 	 * Transfer source to destination.
1088 	 */
1089 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1090 
1091 	/*
1092 	 * Free left over swap blocks in source.
1093 	 *
1094 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1095 	 * double-remove the object from the swap queues.
1096 	 */
1097 	if (destroysource) {
1098 		swp_pager_meta_free_all(srcobject);
1099 		/*
1100 		 * Reverting the type is not necessary, the caller is going
1101 		 * to destroy srcobject directly, but I'm doing it here
1102 		 * for consistency since we've removed the object from its
1103 		 * queues.
1104 		 */
1105 		srcobject->type = OBJT_DEFAULT;
1106 		vm_object_clear_flag(srcobject, OBJ_SWAP);
1107 	}
1108 }
1109 
1110 /*
1111  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1112  *				the requested page.
1113  *
1114  *	We determine whether good backing store exists for the requested
1115  *	page and return TRUE if it does, FALSE if it doesn't.
1116  *
1117  *	If TRUE, we also try to determine how much valid, contiguous backing
1118  *	store exists before and after the requested page.
1119  */
1120 static boolean_t
1121 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1122     int *after)
1123 {
1124 	daddr_t blk, blk0;
1125 	int i;
1126 
1127 	VM_OBJECT_ASSERT_LOCKED(object);
1128 	KASSERT((object->flags & OBJ_SWAP) != 0,
1129 	    ("%s: object not swappable", __func__));
1130 
1131 	/*
1132 	 * do we have good backing store at the requested index ?
1133 	 */
1134 	blk0 = swp_pager_meta_lookup(object, pindex);
1135 	if (blk0 == SWAPBLK_NONE) {
1136 		if (before)
1137 			*before = 0;
1138 		if (after)
1139 			*after = 0;
1140 		return (FALSE);
1141 	}
1142 
1143 	/*
1144 	 * find backwards-looking contiguous good backing store
1145 	 */
1146 	if (before != NULL) {
1147 		for (i = 1; i < SWB_NPAGES; i++) {
1148 			if (i > pindex)
1149 				break;
1150 			blk = swp_pager_meta_lookup(object, pindex - i);
1151 			if (blk != blk0 - i)
1152 				break;
1153 		}
1154 		*before = i - 1;
1155 	}
1156 
1157 	/*
1158 	 * find forward-looking contiguous good backing store
1159 	 */
1160 	if (after != NULL) {
1161 		for (i = 1; i < SWB_NPAGES; i++) {
1162 			blk = swp_pager_meta_lookup(object, pindex + i);
1163 			if (blk != blk0 + i)
1164 				break;
1165 		}
1166 		*after = i - 1;
1167 	}
1168 	return (TRUE);
1169 }
1170 
1171 /*
1172  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1173  *
1174  *	This removes any associated swap backing store, whether valid or
1175  *	not, from the page.
1176  *
1177  *	This routine is typically called when a page is made dirty, at
1178  *	which point any associated swap can be freed.  MADV_FREE also
1179  *	calls us in a special-case situation
1180  *
1181  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1182  *	should make the page dirty before calling this routine.  This routine
1183  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1184  *	depends on it.
1185  *
1186  *	This routine may not sleep.
1187  *
1188  *	The object containing the page may be locked.
1189  */
1190 static void
1191 swap_pager_unswapped(vm_page_t m)
1192 {
1193 	struct swblk *sb;
1194 	vm_object_t obj;
1195 
1196 	/*
1197 	 * Handle enqueing deferred frees first.  If we do not have the
1198 	 * object lock we wait for the page daemon to clear the space.
1199 	 */
1200 	obj = m->object;
1201 	if (!VM_OBJECT_WOWNED(obj)) {
1202 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1203 		/*
1204 		 * The caller is responsible for synchronization but we
1205 		 * will harmlessly handle races.  This is typically provided
1206 		 * by only calling unswapped() when a page transitions from
1207 		 * clean to dirty.
1208 		 */
1209 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1210 		    PGA_SWAP_SPACE) {
1211 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1212 			counter_u64_add(swap_free_deferred, 1);
1213 		}
1214 		return;
1215 	}
1216 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1217 		counter_u64_add(swap_free_completed, 1);
1218 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1219 
1220 	/*
1221 	 * The meta data only exists if the object is OBJT_SWAP
1222 	 * and even then might not be allocated yet.
1223 	 */
1224 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1225 	    ("Free object not swappable"));
1226 
1227 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1228 	    rounddown(m->pindex, SWAP_META_PAGES));
1229 	if (sb == NULL)
1230 		return;
1231 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1232 		return;
1233 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1234 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1235 	swp_pager_free_empty_swblk(m->object, sb);
1236 }
1237 
1238 /*
1239  * swap_pager_getpages() - bring pages in from swap
1240  *
1241  *	Attempt to page in the pages in array "ma" of length "count".  The
1242  *	caller may optionally specify that additional pages preceding and
1243  *	succeeding the specified range be paged in.  The number of such pages
1244  *	is returned in the "rbehind" and "rahead" parameters, and they will
1245  *	be in the inactive queue upon return.
1246  *
1247  *	The pages in "ma" must be busied and will remain busied upon return.
1248  */
1249 static int
1250 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1251     int *rbehind, int *rahead)
1252 {
1253 	struct buf *bp;
1254 	vm_page_t bm, mpred, msucc, p;
1255 	vm_pindex_t pindex;
1256 	daddr_t blk;
1257 	int i, maxahead, maxbehind, reqcount;
1258 
1259 	VM_OBJECT_ASSERT_WLOCKED(object);
1260 	reqcount = count;
1261 
1262 	KASSERT((object->flags & OBJ_SWAP) != 0,
1263 	    ("%s: object not swappable", __func__));
1264 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1265 		VM_OBJECT_WUNLOCK(object);
1266 		return (VM_PAGER_FAIL);
1267 	}
1268 
1269 	KASSERT(reqcount - 1 <= maxahead,
1270 	    ("page count %d extends beyond swap block", reqcount));
1271 
1272 	/*
1273 	 * Do not transfer any pages other than those that are xbusied
1274 	 * when running during a split or collapse operation.  This
1275 	 * prevents clustering from re-creating pages which are being
1276 	 * moved into another object.
1277 	 */
1278 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1279 		maxahead = reqcount - 1;
1280 		maxbehind = 0;
1281 	}
1282 
1283 	/*
1284 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1285 	 */
1286 	if (rahead != NULL) {
1287 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1288 		pindex = ma[reqcount - 1]->pindex;
1289 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1290 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1291 			*rahead = msucc->pindex - pindex - 1;
1292 	}
1293 	if (rbehind != NULL) {
1294 		*rbehind = imin(*rbehind, maxbehind);
1295 		pindex = ma[0]->pindex;
1296 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1297 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1298 			*rbehind = pindex - mpred->pindex - 1;
1299 	}
1300 
1301 	bm = ma[0];
1302 	for (i = 0; i < count; i++)
1303 		ma[i]->oflags |= VPO_SWAPINPROG;
1304 
1305 	/*
1306 	 * Allocate readahead and readbehind pages.
1307 	 */
1308 	if (rbehind != NULL) {
1309 		for (i = 1; i <= *rbehind; i++) {
1310 			p = vm_page_alloc(object, ma[0]->pindex - i,
1311 			    VM_ALLOC_NORMAL);
1312 			if (p == NULL)
1313 				break;
1314 			p->oflags |= VPO_SWAPINPROG;
1315 			bm = p;
1316 		}
1317 		*rbehind = i - 1;
1318 	}
1319 	if (rahead != NULL) {
1320 		for (i = 0; i < *rahead; i++) {
1321 			p = vm_page_alloc(object,
1322 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1323 			if (p == NULL)
1324 				break;
1325 			p->oflags |= VPO_SWAPINPROG;
1326 		}
1327 		*rahead = i;
1328 	}
1329 	if (rbehind != NULL)
1330 		count += *rbehind;
1331 	if (rahead != NULL)
1332 		count += *rahead;
1333 
1334 	vm_object_pip_add(object, count);
1335 
1336 	pindex = bm->pindex;
1337 	blk = swp_pager_meta_lookup(object, pindex);
1338 	KASSERT(blk != SWAPBLK_NONE,
1339 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1340 
1341 	VM_OBJECT_WUNLOCK(object);
1342 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1343 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1344 	/* Pages cannot leave the object while busy. */
1345 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1346 		MPASS(p->pindex == bm->pindex + i);
1347 		bp->b_pages[i] = p;
1348 	}
1349 
1350 	bp->b_flags |= B_PAGING;
1351 	bp->b_iocmd = BIO_READ;
1352 	bp->b_iodone = swp_pager_async_iodone;
1353 	bp->b_rcred = crhold(thread0.td_ucred);
1354 	bp->b_wcred = crhold(thread0.td_ucred);
1355 	bp->b_blkno = blk;
1356 	bp->b_bcount = PAGE_SIZE * count;
1357 	bp->b_bufsize = PAGE_SIZE * count;
1358 	bp->b_npages = count;
1359 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1360 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1361 
1362 	VM_CNT_INC(v_swapin);
1363 	VM_CNT_ADD(v_swappgsin, count);
1364 
1365 	/*
1366 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1367 	 * this point because we automatically release it on completion.
1368 	 * Instead, we look at the one page we are interested in which we
1369 	 * still hold a lock on even through the I/O completion.
1370 	 *
1371 	 * The other pages in our ma[] array are also released on completion,
1372 	 * so we cannot assume they are valid anymore either.
1373 	 *
1374 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1375 	 */
1376 	BUF_KERNPROC(bp);
1377 	swp_pager_strategy(bp);
1378 
1379 	/*
1380 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1381 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1382 	 * is set in the metadata for each page in the request.
1383 	 */
1384 	VM_OBJECT_WLOCK(object);
1385 	/* This could be implemented more efficiently with aflags */
1386 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1387 		ma[0]->oflags |= VPO_SWAPSLEEP;
1388 		VM_CNT_INC(v_intrans);
1389 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1390 		    "swread", hz * 20)) {
1391 			printf(
1392 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1393 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1394 		}
1395 	}
1396 	VM_OBJECT_WUNLOCK(object);
1397 
1398 	/*
1399 	 * If we had an unrecoverable read error pages will not be valid.
1400 	 */
1401 	for (i = 0; i < reqcount; i++)
1402 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1403 			return (VM_PAGER_ERROR);
1404 
1405 	return (VM_PAGER_OK);
1406 
1407 	/*
1408 	 * A final note: in a low swap situation, we cannot deallocate swap
1409 	 * and mark a page dirty here because the caller is likely to mark
1410 	 * the page clean when we return, causing the page to possibly revert
1411 	 * to all-zero's later.
1412 	 */
1413 }
1414 
1415 static int
1416 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1417     int *rbehind, int *rahead)
1418 {
1419 
1420 	VM_OBJECT_WLOCK(object);
1421 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1422 }
1423 
1424 /*
1425  * 	swap_pager_getpages_async():
1426  *
1427  *	Right now this is emulation of asynchronous operation on top of
1428  *	swap_pager_getpages().
1429  */
1430 static int
1431 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1432     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1433 {
1434 	int r, error;
1435 
1436 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1437 	switch (r) {
1438 	case VM_PAGER_OK:
1439 		error = 0;
1440 		break;
1441 	case VM_PAGER_ERROR:
1442 		error = EIO;
1443 		break;
1444 	case VM_PAGER_FAIL:
1445 		error = EINVAL;
1446 		break;
1447 	default:
1448 		panic("unhandled swap_pager_getpages() error %d", r);
1449 	}
1450 	(iodone)(arg, ma, count, error);
1451 
1452 	return (r);
1453 }
1454 
1455 /*
1456  *	swap_pager_putpages:
1457  *
1458  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1459  *
1460  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1461  *	are automatically converted to SWAP objects.
1462  *
1463  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1464  *	vm_page reservation system coupled with properly written VFS devices
1465  *	should ensure that no low-memory deadlock occurs.  This is an area
1466  *	which needs work.
1467  *
1468  *	The parent has N vm_object_pip_add() references prior to
1469  *	calling us and will remove references for rtvals[] that are
1470  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1471  *	completion.
1472  *
1473  *	The parent has soft-busy'd the pages it passes us and will unbusy
1474  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1475  *	We need to unbusy the rest on I/O completion.
1476  */
1477 static void
1478 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1479     int flags, int *rtvals)
1480 {
1481 	struct buf *bp;
1482 	daddr_t addr, blk, n_free, s_free;
1483 	vm_page_t mreq;
1484 	int i, j, n;
1485 	bool async;
1486 
1487 	KASSERT(count == 0 || ma[0]->object == object,
1488 	    ("%s: object mismatch %p/%p",
1489 	    __func__, object, ma[0]->object));
1490 
1491 	/*
1492 	 * Step 1
1493 	 *
1494 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1495 	 */
1496 	if ((object->flags & OBJ_SWAP) == 0) {
1497 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1498 		KASSERT(addr == SWAPBLK_NONE,
1499 		    ("unexpected object swap block"));
1500 	}
1501 	VM_OBJECT_WUNLOCK(object);
1502 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1503 	swp_pager_init_freerange(&s_free, &n_free);
1504 
1505 	/*
1506 	 * Step 2
1507 	 *
1508 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1509 	 * The page is left dirty until the pageout operation completes
1510 	 * successfully.
1511 	 */
1512 	for (i = 0; i < count; i += n) {
1513 		/* Maximum I/O size is limited by maximum swap block size. */
1514 		n = min(count - i, nsw_cluster_max);
1515 
1516 		if (async) {
1517 			mtx_lock(&swbuf_mtx);
1518 			while (nsw_wcount_async == 0)
1519 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1520 				    "swbufa", 0);
1521 			nsw_wcount_async--;
1522 			mtx_unlock(&swbuf_mtx);
1523 		}
1524 
1525 		/* Get a block of swap of size up to size n. */
1526 		VM_OBJECT_WLOCK(object);
1527 		blk = swp_pager_getswapspace(&n);
1528 		if (blk == SWAPBLK_NONE) {
1529 			VM_OBJECT_WUNLOCK(object);
1530 			mtx_lock(&swbuf_mtx);
1531 			if (++nsw_wcount_async == 1)
1532 				wakeup(&nsw_wcount_async);
1533 			mtx_unlock(&swbuf_mtx);
1534 			for (j = 0; j < n; ++j)
1535 				rtvals[i + j] = VM_PAGER_FAIL;
1536 			continue;
1537 		}
1538 		for (j = 0; j < n; ++j) {
1539 			mreq = ma[i + j];
1540 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1541 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1542 			    blk + j);
1543 			if (addr != SWAPBLK_NONE)
1544 				swp_pager_update_freerange(&s_free, &n_free,
1545 				    addr);
1546 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1547 			mreq->oflags |= VPO_SWAPINPROG;
1548 		}
1549 		VM_OBJECT_WUNLOCK(object);
1550 
1551 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1552 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1553 		if (async)
1554 			bp->b_flags |= B_ASYNC;
1555 		bp->b_flags |= B_PAGING;
1556 		bp->b_iocmd = BIO_WRITE;
1557 
1558 		bp->b_rcred = crhold(thread0.td_ucred);
1559 		bp->b_wcred = crhold(thread0.td_ucred);
1560 		bp->b_bcount = PAGE_SIZE * n;
1561 		bp->b_bufsize = PAGE_SIZE * n;
1562 		bp->b_blkno = blk;
1563 		for (j = 0; j < n; j++)
1564 			bp->b_pages[j] = ma[i + j];
1565 		bp->b_npages = n;
1566 
1567 		/*
1568 		 * Must set dirty range for NFS to work.
1569 		 */
1570 		bp->b_dirtyoff = 0;
1571 		bp->b_dirtyend = bp->b_bcount;
1572 
1573 		VM_CNT_INC(v_swapout);
1574 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1575 
1576 		/*
1577 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1578 		 * can call the async completion routine at the end of a
1579 		 * synchronous I/O operation.  Otherwise, our caller would
1580 		 * perform duplicate unbusy and wakeup operations on the page
1581 		 * and object, respectively.
1582 		 */
1583 		for (j = 0; j < n; j++)
1584 			rtvals[i + j] = VM_PAGER_PEND;
1585 
1586 		/*
1587 		 * asynchronous
1588 		 *
1589 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1590 		 */
1591 		if (async) {
1592 			bp->b_iodone = swp_pager_async_iodone;
1593 			BUF_KERNPROC(bp);
1594 			swp_pager_strategy(bp);
1595 			continue;
1596 		}
1597 
1598 		/*
1599 		 * synchronous
1600 		 *
1601 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1602 		 */
1603 		bp->b_iodone = bdone;
1604 		swp_pager_strategy(bp);
1605 
1606 		/*
1607 		 * Wait for the sync I/O to complete.
1608 		 */
1609 		bwait(bp, PVM, "swwrt");
1610 
1611 		/*
1612 		 * Now that we are through with the bp, we can call the
1613 		 * normal async completion, which frees everything up.
1614 		 */
1615 		swp_pager_async_iodone(bp);
1616 	}
1617 	swp_pager_freeswapspace(s_free, n_free);
1618 	VM_OBJECT_WLOCK(object);
1619 }
1620 
1621 /*
1622  *	swp_pager_async_iodone:
1623  *
1624  *	Completion routine for asynchronous reads and writes from/to swap.
1625  *	Also called manually by synchronous code to finish up a bp.
1626  *
1627  *	This routine may not sleep.
1628  */
1629 static void
1630 swp_pager_async_iodone(struct buf *bp)
1631 {
1632 	int i;
1633 	vm_object_t object = NULL;
1634 
1635 	/*
1636 	 * Report error - unless we ran out of memory, in which case
1637 	 * we've already logged it in swapgeom_strategy().
1638 	 */
1639 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1640 		printf(
1641 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1642 			"size %ld, error %d\n",
1643 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1644 		    (long)bp->b_blkno,
1645 		    (long)bp->b_bcount,
1646 		    bp->b_error
1647 		);
1648 	}
1649 
1650 	/*
1651 	 * remove the mapping for kernel virtual
1652 	 */
1653 	if (buf_mapped(bp))
1654 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1655 	else
1656 		bp->b_data = bp->b_kvabase;
1657 
1658 	if (bp->b_npages) {
1659 		object = bp->b_pages[0]->object;
1660 		VM_OBJECT_WLOCK(object);
1661 	}
1662 
1663 	/*
1664 	 * cleanup pages.  If an error occurs writing to swap, we are in
1665 	 * very serious trouble.  If it happens to be a disk error, though,
1666 	 * we may be able to recover by reassigning the swap later on.  So
1667 	 * in this case we remove the m->swapblk assignment for the page
1668 	 * but do not free it in the rlist.  The errornous block(s) are thus
1669 	 * never reallocated as swap.  Redirty the page and continue.
1670 	 */
1671 	for (i = 0; i < bp->b_npages; ++i) {
1672 		vm_page_t m = bp->b_pages[i];
1673 
1674 		m->oflags &= ~VPO_SWAPINPROG;
1675 		if (m->oflags & VPO_SWAPSLEEP) {
1676 			m->oflags &= ~VPO_SWAPSLEEP;
1677 			wakeup(&object->handle);
1678 		}
1679 
1680 		/* We always have space after I/O, successful or not. */
1681 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1682 
1683 		if (bp->b_ioflags & BIO_ERROR) {
1684 			/*
1685 			 * If an error occurs I'd love to throw the swapblk
1686 			 * away without freeing it back to swapspace, so it
1687 			 * can never be used again.  But I can't from an
1688 			 * interrupt.
1689 			 */
1690 			if (bp->b_iocmd == BIO_READ) {
1691 				/*
1692 				 * NOTE: for reads, m->dirty will probably
1693 				 * be overridden by the original caller of
1694 				 * getpages so don't play cute tricks here.
1695 				 */
1696 				vm_page_invalid(m);
1697 			} else {
1698 				/*
1699 				 * If a write error occurs, reactivate page
1700 				 * so it doesn't clog the inactive list,
1701 				 * then finish the I/O.
1702 				 */
1703 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1704 
1705 				/* PQ_UNSWAPPABLE? */
1706 				vm_page_activate(m);
1707 				vm_page_sunbusy(m);
1708 			}
1709 		} else if (bp->b_iocmd == BIO_READ) {
1710 			/*
1711 			 * NOTE: for reads, m->dirty will probably be
1712 			 * overridden by the original caller of getpages so
1713 			 * we cannot set them in order to free the underlying
1714 			 * swap in a low-swap situation.  I don't think we'd
1715 			 * want to do that anyway, but it was an optimization
1716 			 * that existed in the old swapper for a time before
1717 			 * it got ripped out due to precisely this problem.
1718 			 */
1719 			KASSERT(!pmap_page_is_mapped(m),
1720 			    ("swp_pager_async_iodone: page %p is mapped", m));
1721 			KASSERT(m->dirty == 0,
1722 			    ("swp_pager_async_iodone: page %p is dirty", m));
1723 
1724 			vm_page_valid(m);
1725 			if (i < bp->b_pgbefore ||
1726 			    i >= bp->b_npages - bp->b_pgafter)
1727 				vm_page_readahead_finish(m);
1728 		} else {
1729 			/*
1730 			 * For write success, clear the dirty
1731 			 * status, then finish the I/O ( which decrements the
1732 			 * busy count and possibly wakes waiter's up ).
1733 			 * A page is only written to swap after a period of
1734 			 * inactivity.  Therefore, we do not expect it to be
1735 			 * reused.
1736 			 */
1737 			KASSERT(!pmap_page_is_write_mapped(m),
1738 			    ("swp_pager_async_iodone: page %p is not write"
1739 			    " protected", m));
1740 			vm_page_undirty(m);
1741 			vm_page_deactivate_noreuse(m);
1742 			vm_page_sunbusy(m);
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * adjust pip.  NOTE: the original parent may still have its own
1748 	 * pip refs on the object.
1749 	 */
1750 	if (object != NULL) {
1751 		vm_object_pip_wakeupn(object, bp->b_npages);
1752 		VM_OBJECT_WUNLOCK(object);
1753 	}
1754 
1755 	/*
1756 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1757 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1758 	 * trigger a KASSERT in relpbuf().
1759 	 */
1760 	if (bp->b_vp) {
1761 		    bp->b_vp = NULL;
1762 		    bp->b_bufobj = NULL;
1763 	}
1764 	/*
1765 	 * release the physical I/O buffer
1766 	 */
1767 	if (bp->b_flags & B_ASYNC) {
1768 		mtx_lock(&swbuf_mtx);
1769 		if (++nsw_wcount_async == 1)
1770 			wakeup(&nsw_wcount_async);
1771 		mtx_unlock(&swbuf_mtx);
1772 	}
1773 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1774 }
1775 
1776 int
1777 swap_pager_nswapdev(void)
1778 {
1779 
1780 	return (nswapdev);
1781 }
1782 
1783 static void
1784 swp_pager_force_dirty(vm_page_t m)
1785 {
1786 
1787 	vm_page_dirty(m);
1788 	swap_pager_unswapped(m);
1789 	vm_page_launder(m);
1790 }
1791 
1792 u_long
1793 swap_pager_swapped_pages(vm_object_t object)
1794 {
1795 	struct swblk *sb;
1796 	vm_pindex_t pi;
1797 	u_long res;
1798 	int i;
1799 
1800 	VM_OBJECT_ASSERT_LOCKED(object);
1801 	if ((object->flags & OBJ_SWAP) == 0)
1802 		return (0);
1803 
1804 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1805 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1806 	    pi = sb->p + SWAP_META_PAGES) {
1807 		for (i = 0; i < SWAP_META_PAGES; i++) {
1808 			if (sb->d[i] != SWAPBLK_NONE)
1809 				res++;
1810 		}
1811 	}
1812 	return (res);
1813 }
1814 
1815 /*
1816  *	swap_pager_swapoff_object:
1817  *
1818  *	Page in all of the pages that have been paged out for an object
1819  *	to a swap device.
1820  */
1821 static void
1822 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1823 {
1824 	struct swblk *sb;
1825 	vm_page_t m;
1826 	vm_pindex_t pi;
1827 	daddr_t blk;
1828 	int i, nv, rahead, rv;
1829 
1830 	KASSERT((object->flags & OBJ_SWAP) != 0,
1831 	    ("%s: Object not swappable", __func__));
1832 
1833 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1834 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1835 		if ((object->flags & OBJ_DEAD) != 0) {
1836 			/*
1837 			 * Make sure that pending writes finish before
1838 			 * returning.
1839 			 */
1840 			vm_object_pip_wait(object, "swpoff");
1841 			swp_pager_meta_free_all(object);
1842 			break;
1843 		}
1844 		for (i = 0; i < SWAP_META_PAGES; i++) {
1845 			/*
1846 			 * Count the number of contiguous valid blocks.
1847 			 */
1848 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1849 				blk = sb->d[i + nv];
1850 				if (!swp_pager_isondev(blk, sp) ||
1851 				    blk == SWAPBLK_NONE)
1852 					break;
1853 			}
1854 			if (nv == 0)
1855 				continue;
1856 
1857 			/*
1858 			 * Look for a page corresponding to the first
1859 			 * valid block and ensure that any pending paging
1860 			 * operations on it are complete.  If the page is valid,
1861 			 * mark it dirty and free the swap block.  Try to batch
1862 			 * this operation since it may cause sp to be freed,
1863 			 * meaning that we must restart the scan.  Avoid busying
1864 			 * valid pages since we may block forever on kernel
1865 			 * stack pages.
1866 			 */
1867 			m = vm_page_lookup(object, sb->p + i);
1868 			if (m == NULL) {
1869 				m = vm_page_alloc(object, sb->p + i,
1870 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1871 				if (m == NULL)
1872 					break;
1873 			} else {
1874 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1875 					m->oflags |= VPO_SWAPSLEEP;
1876 					VM_OBJECT_SLEEP(object, &object->handle,
1877 					    PSWP, "swpoff", 0);
1878 					break;
1879 				}
1880 				if (vm_page_all_valid(m)) {
1881 					do {
1882 						swp_pager_force_dirty(m);
1883 					} while (--nv > 0 &&
1884 					    (m = vm_page_next(m)) != NULL &&
1885 					    vm_page_all_valid(m) &&
1886 					    (m->oflags & VPO_SWAPINPROG) == 0);
1887 					break;
1888 				}
1889 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1890 					break;
1891 			}
1892 
1893 			vm_object_pip_add(object, 1);
1894 			rahead = SWAP_META_PAGES;
1895 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1896 			    &rahead);
1897 			if (rv != VM_PAGER_OK)
1898 				panic("%s: read from swap failed: %d",
1899 				    __func__, rv);
1900 			vm_object_pip_wakeupn(object, 1);
1901 			VM_OBJECT_WLOCK(object);
1902 			vm_page_xunbusy(m);
1903 
1904 			/*
1905 			 * The object lock was dropped so we must restart the
1906 			 * scan of this swap block.  Pages paged in during this
1907 			 * iteration will be marked dirty in a future iteration.
1908 			 */
1909 			break;
1910 		}
1911 		if (i == SWAP_META_PAGES)
1912 			pi = sb->p + SWAP_META_PAGES;
1913 	}
1914 }
1915 
1916 /*
1917  *	swap_pager_swapoff:
1918  *
1919  *	Page in all of the pages that have been paged out to the
1920  *	given device.  The corresponding blocks in the bitmap must be
1921  *	marked as allocated and the device must be flagged SW_CLOSING.
1922  *	There may be no processes swapped out to the device.
1923  *
1924  *	This routine may block.
1925  */
1926 static void
1927 swap_pager_swapoff(struct swdevt *sp)
1928 {
1929 	vm_object_t object;
1930 	int retries;
1931 
1932 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1933 
1934 	retries = 0;
1935 full_rescan:
1936 	mtx_lock(&vm_object_list_mtx);
1937 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1938 		if ((object->flags & OBJ_SWAP) == 0)
1939 			continue;
1940 		mtx_unlock(&vm_object_list_mtx);
1941 		/* Depends on type-stability. */
1942 		VM_OBJECT_WLOCK(object);
1943 
1944 		/*
1945 		 * Dead objects are eventually terminated on their own.
1946 		 */
1947 		if ((object->flags & OBJ_DEAD) != 0)
1948 			goto next_obj;
1949 
1950 		/*
1951 		 * Sync with fences placed after pctrie
1952 		 * initialization.  We must not access pctrie below
1953 		 * unless we checked that our object is swap and not
1954 		 * dead.
1955 		 */
1956 		atomic_thread_fence_acq();
1957 		if ((object->flags & OBJ_SWAP) == 0)
1958 			goto next_obj;
1959 
1960 		swap_pager_swapoff_object(sp, object);
1961 next_obj:
1962 		VM_OBJECT_WUNLOCK(object);
1963 		mtx_lock(&vm_object_list_mtx);
1964 	}
1965 	mtx_unlock(&vm_object_list_mtx);
1966 
1967 	if (sp->sw_used) {
1968 		/*
1969 		 * Objects may be locked or paging to the device being
1970 		 * removed, so we will miss their pages and need to
1971 		 * make another pass.  We have marked this device as
1972 		 * SW_CLOSING, so the activity should finish soon.
1973 		 */
1974 		retries++;
1975 		if (retries > 100) {
1976 			panic("swapoff: failed to locate %d swap blocks",
1977 			    sp->sw_used);
1978 		}
1979 		pause("swpoff", hz / 20);
1980 		goto full_rescan;
1981 	}
1982 	EVENTHANDLER_INVOKE(swapoff, sp);
1983 }
1984 
1985 /************************************************************************
1986  *				SWAP META DATA 				*
1987  ************************************************************************
1988  *
1989  *	These routines manipulate the swap metadata stored in the
1990  *	OBJT_SWAP object.
1991  *
1992  *	Swap metadata is implemented with a global hash and not directly
1993  *	linked into the object.  Instead the object simply contains
1994  *	appropriate tracking counters.
1995  */
1996 
1997 /*
1998  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1999  */
2000 static bool
2001 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
2002 {
2003 	int i;
2004 
2005 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2006 	for (i = start; i < limit; i++) {
2007 		if (sb->d[i] != SWAPBLK_NONE)
2008 			return (false);
2009 	}
2010 	return (true);
2011 }
2012 
2013 /*
2014  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2015  *
2016  *  Nothing is done if the block is still in use.
2017  */
2018 static void
2019 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2020 {
2021 
2022 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2023 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2024 		uma_zfree(swblk_zone, sb);
2025 	}
2026 }
2027 
2028 /*
2029  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2030  *
2031  *	We first convert the object to a swap object if it is a default
2032  *	object.
2033  *
2034  *	The specified swapblk is added to the object's swap metadata.  If
2035  *	the swapblk is not valid, it is freed instead.  Any previously
2036  *	assigned swapblk is returned.
2037  */
2038 static daddr_t
2039 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2040 {
2041 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2042 	struct swblk *sb, *sb1;
2043 	vm_pindex_t modpi, rdpi;
2044 	daddr_t prev_swapblk;
2045 	int error, i;
2046 
2047 	VM_OBJECT_ASSERT_WLOCKED(object);
2048 
2049 	/*
2050 	 * Convert default object to swap object if necessary
2051 	 */
2052 	if ((object->flags & OBJ_SWAP) == 0) {
2053 		pctrie_init(&object->un_pager.swp.swp_blks);
2054 
2055 		/*
2056 		 * Ensure that swap_pager_swapoff()'s iteration over
2057 		 * object_list does not see a garbage pctrie.
2058 		 */
2059 		atomic_thread_fence_rel();
2060 
2061 		object->type = OBJT_SWAP;
2062 		vm_object_set_flag(object, OBJ_SWAP);
2063 		object->un_pager.swp.writemappings = 0;
2064 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2065 		    object->handle == NULL,
2066 		    ("default pager %p with handle %p",
2067 		    object, object->handle));
2068 	}
2069 
2070 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2071 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2072 	if (sb == NULL) {
2073 		if (swapblk == SWAPBLK_NONE)
2074 			return (SWAPBLK_NONE);
2075 		for (;;) {
2076 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2077 			    pageproc ? M_USE_RESERVE : 0));
2078 			if (sb != NULL) {
2079 				sb->p = rdpi;
2080 				for (i = 0; i < SWAP_META_PAGES; i++)
2081 					sb->d[i] = SWAPBLK_NONE;
2082 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2083 				    1, 0))
2084 					printf("swblk zone ok\n");
2085 				break;
2086 			}
2087 			VM_OBJECT_WUNLOCK(object);
2088 			if (uma_zone_exhausted(swblk_zone)) {
2089 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2090 				    0, 1))
2091 					printf("swap blk zone exhausted, "
2092 					    "increase kern.maxswzone\n");
2093 				vm_pageout_oom(VM_OOM_SWAPZ);
2094 				pause("swzonxb", 10);
2095 			} else
2096 				uma_zwait(swblk_zone);
2097 			VM_OBJECT_WLOCK(object);
2098 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2099 			    rdpi);
2100 			if (sb != NULL)
2101 				/*
2102 				 * Somebody swapped out a nearby page,
2103 				 * allocating swblk at the rdpi index,
2104 				 * while we dropped the object lock.
2105 				 */
2106 				goto allocated;
2107 		}
2108 		for (;;) {
2109 			error = SWAP_PCTRIE_INSERT(
2110 			    &object->un_pager.swp.swp_blks, sb);
2111 			if (error == 0) {
2112 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2113 				    1, 0))
2114 					printf("swpctrie zone ok\n");
2115 				break;
2116 			}
2117 			VM_OBJECT_WUNLOCK(object);
2118 			if (uma_zone_exhausted(swpctrie_zone)) {
2119 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2120 				    0, 1))
2121 					printf("swap pctrie zone exhausted, "
2122 					    "increase kern.maxswzone\n");
2123 				vm_pageout_oom(VM_OOM_SWAPZ);
2124 				pause("swzonxp", 10);
2125 			} else
2126 				uma_zwait(swpctrie_zone);
2127 			VM_OBJECT_WLOCK(object);
2128 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2129 			    rdpi);
2130 			if (sb1 != NULL) {
2131 				uma_zfree(swblk_zone, sb);
2132 				sb = sb1;
2133 				goto allocated;
2134 			}
2135 		}
2136 	}
2137 allocated:
2138 	MPASS(sb->p == rdpi);
2139 
2140 	modpi = pindex % SWAP_META_PAGES;
2141 	/* Return prior contents of metadata. */
2142 	prev_swapblk = sb->d[modpi];
2143 	/* Enter block into metadata. */
2144 	sb->d[modpi] = swapblk;
2145 
2146 	/*
2147 	 * Free the swblk if we end up with the empty page run.
2148 	 */
2149 	if (swapblk == SWAPBLK_NONE)
2150 		swp_pager_free_empty_swblk(object, sb);
2151 	return (prev_swapblk);
2152 }
2153 
2154 /*
2155  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2156  * metadata, or transfer it into dstobject.
2157  *
2158  *	This routine will free swap metadata structures as they are cleaned
2159  *	out.
2160  */
2161 static void
2162 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2163     vm_pindex_t pindex, vm_pindex_t count)
2164 {
2165 	struct swblk *sb;
2166 	daddr_t n_free, s_free;
2167 	vm_pindex_t offset, last;
2168 	int i, limit, start;
2169 
2170 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2171 	if ((srcobject->flags & OBJ_SWAP) == 0 || count == 0)
2172 		return;
2173 
2174 	swp_pager_init_freerange(&s_free, &n_free);
2175 	offset = pindex;
2176 	last = pindex + count;
2177 	for (;;) {
2178 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2179 		    rounddown(pindex, SWAP_META_PAGES));
2180 		if (sb == NULL || sb->p >= last)
2181 			break;
2182 		start = pindex > sb->p ? pindex - sb->p : 0;
2183 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2184 		    SWAP_META_PAGES;
2185 		for (i = start; i < limit; i++) {
2186 			if (sb->d[i] == SWAPBLK_NONE)
2187 				continue;
2188 			if (dstobject == NULL ||
2189 			    !swp_pager_xfer_source(srcobject, dstobject,
2190 			    sb->p + i - offset, sb->d[i])) {
2191 				swp_pager_update_freerange(&s_free, &n_free,
2192 				    sb->d[i]);
2193 			}
2194 			sb->d[i] = SWAPBLK_NONE;
2195 		}
2196 		pindex = sb->p + SWAP_META_PAGES;
2197 		if (swp_pager_swblk_empty(sb, 0, start) &&
2198 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2199 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2200 			    sb->p);
2201 			uma_zfree(swblk_zone, sb);
2202 		}
2203 	}
2204 	swp_pager_freeswapspace(s_free, n_free);
2205 }
2206 
2207 /*
2208  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2209  *
2210  *	The requested range of blocks is freed, with any associated swap
2211  *	returned to the swap bitmap.
2212  *
2213  *	This routine will free swap metadata structures as they are cleaned
2214  *	out.  This routine does *NOT* operate on swap metadata associated
2215  *	with resident pages.
2216  */
2217 static void
2218 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2219 {
2220 	swp_pager_meta_transfer(object, NULL, pindex, count);
2221 }
2222 
2223 /*
2224  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2225  *
2226  *	This routine locates and destroys all swap metadata associated with
2227  *	an object.
2228  */
2229 static void
2230 swp_pager_meta_free_all(vm_object_t object)
2231 {
2232 	struct swblk *sb;
2233 	daddr_t n_free, s_free;
2234 	vm_pindex_t pindex;
2235 	int i;
2236 
2237 	VM_OBJECT_ASSERT_WLOCKED(object);
2238 	if ((object->flags & OBJ_SWAP) == 0)
2239 		return;
2240 
2241 	swp_pager_init_freerange(&s_free, &n_free);
2242 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2243 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2244 		pindex = sb->p + SWAP_META_PAGES;
2245 		for (i = 0; i < SWAP_META_PAGES; i++) {
2246 			if (sb->d[i] == SWAPBLK_NONE)
2247 				continue;
2248 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2249 		}
2250 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2251 		uma_zfree(swblk_zone, sb);
2252 	}
2253 	swp_pager_freeswapspace(s_free, n_free);
2254 }
2255 
2256 /*
2257  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2258  *
2259  *	This routine is capable of looking up, or removing swapblk
2260  *	assignments in the swap meta data.  It returns the swapblk being
2261  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2262  *
2263  *	When acting on a busy resident page and paging is in progress, we
2264  *	have to wait until paging is complete but otherwise can act on the
2265  *	busy page.
2266  */
2267 static daddr_t
2268 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2269 {
2270 	struct swblk *sb;
2271 
2272 	VM_OBJECT_ASSERT_LOCKED(object);
2273 
2274 	/*
2275 	 * The meta data only exists if the object is OBJT_SWAP
2276 	 * and even then might not be allocated yet.
2277 	 */
2278 	KASSERT((object->flags & OBJ_SWAP) != 0,
2279 	    ("Lookup object not swappable"));
2280 
2281 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2282 	    rounddown(pindex, SWAP_META_PAGES));
2283 	if (sb == NULL)
2284 		return (SWAPBLK_NONE);
2285 	return (sb->d[pindex % SWAP_META_PAGES]);
2286 }
2287 
2288 /*
2289  * Returns the least page index which is greater than or equal to the
2290  * parameter pindex and for which there is a swap block allocated.
2291  * Returns object's size if the object's type is not swap or if there
2292  * are no allocated swap blocks for the object after the requested
2293  * pindex.
2294  */
2295 vm_pindex_t
2296 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2297 {
2298 	struct swblk *sb;
2299 	int i;
2300 
2301 	VM_OBJECT_ASSERT_LOCKED(object);
2302 	if ((object->flags & OBJ_SWAP) == 0)
2303 		return (object->size);
2304 
2305 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2306 	    rounddown(pindex, SWAP_META_PAGES));
2307 	if (sb == NULL)
2308 		return (object->size);
2309 	if (sb->p < pindex) {
2310 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2311 			if (sb->d[i] != SWAPBLK_NONE)
2312 				return (sb->p + i);
2313 		}
2314 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2315 		    roundup(pindex, SWAP_META_PAGES));
2316 		if (sb == NULL)
2317 			return (object->size);
2318 	}
2319 	for (i = 0; i < SWAP_META_PAGES; i++) {
2320 		if (sb->d[i] != SWAPBLK_NONE)
2321 			return (sb->p + i);
2322 	}
2323 
2324 	/*
2325 	 * We get here if a swblk is present in the trie but it
2326 	 * doesn't map any blocks.
2327 	 */
2328 	MPASS(0);
2329 	return (object->size);
2330 }
2331 
2332 /*
2333  * System call swapon(name) enables swapping on device name,
2334  * which must be in the swdevsw.  Return EBUSY
2335  * if already swapping on this device.
2336  */
2337 #ifndef _SYS_SYSPROTO_H_
2338 struct swapon_args {
2339 	char *name;
2340 };
2341 #endif
2342 
2343 /*
2344  * MPSAFE
2345  */
2346 /* ARGSUSED */
2347 int
2348 sys_swapon(struct thread *td, struct swapon_args *uap)
2349 {
2350 	struct vattr attr;
2351 	struct vnode *vp;
2352 	struct nameidata nd;
2353 	int error;
2354 
2355 	error = priv_check(td, PRIV_SWAPON);
2356 	if (error)
2357 		return (error);
2358 
2359 	sx_xlock(&swdev_syscall_lock);
2360 
2361 	/*
2362 	 * Swap metadata may not fit in the KVM if we have physical
2363 	 * memory of >1GB.
2364 	 */
2365 	if (swblk_zone == NULL) {
2366 		error = ENOMEM;
2367 		goto done;
2368 	}
2369 
2370 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2371 	    UIO_USERSPACE, uap->name);
2372 	error = namei(&nd);
2373 	if (error)
2374 		goto done;
2375 
2376 	NDFREE(&nd, NDF_ONLY_PNBUF);
2377 	vp = nd.ni_vp;
2378 
2379 	if (vn_isdisk_error(vp, &error)) {
2380 		error = swapongeom(vp);
2381 	} else if (vp->v_type == VREG &&
2382 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2383 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2384 		/*
2385 		 * Allow direct swapping to NFS regular files in the same
2386 		 * way that nfs_mountroot() sets up diskless swapping.
2387 		 */
2388 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2389 	}
2390 
2391 	if (error != 0)
2392 		vput(vp);
2393 	else
2394 		VOP_UNLOCK(vp);
2395 done:
2396 	sx_xunlock(&swdev_syscall_lock);
2397 	return (error);
2398 }
2399 
2400 /*
2401  * Check that the total amount of swap currently configured does not
2402  * exceed half the theoretical maximum.  If it does, print a warning
2403  * message.
2404  */
2405 static void
2406 swapon_check_swzone(void)
2407 {
2408 
2409 	/* recommend using no more than half that amount */
2410 	if (swap_total > swap_maxpages / 2) {
2411 		printf("warning: total configured swap (%lu pages) "
2412 		    "exceeds maximum recommended amount (%lu pages).\n",
2413 		    swap_total, swap_maxpages / 2);
2414 		printf("warning: increase kern.maxswzone "
2415 		    "or reduce amount of swap.\n");
2416 	}
2417 }
2418 
2419 static void
2420 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2421     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2422 {
2423 	struct swdevt *sp, *tsp;
2424 	daddr_t dvbase;
2425 
2426 	/*
2427 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2428 	 * First chop nblks off to page-align it, then convert.
2429 	 *
2430 	 * sw->sw_nblks is in page-sized chunks now too.
2431 	 */
2432 	nblks &= ~(ctodb(1) - 1);
2433 	nblks = dbtoc(nblks);
2434 
2435 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2436 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2437 	sp->sw_vp = vp;
2438 	sp->sw_id = id;
2439 	sp->sw_dev = dev;
2440 	sp->sw_nblks = nblks;
2441 	sp->sw_used = 0;
2442 	sp->sw_strategy = strategy;
2443 	sp->sw_close = close;
2444 	sp->sw_flags = flags;
2445 
2446 	/*
2447 	 * Do not free the first blocks in order to avoid overwriting
2448 	 * any bsd label at the front of the partition
2449 	 */
2450 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2451 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2452 
2453 	dvbase = 0;
2454 	mtx_lock(&sw_dev_mtx);
2455 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2456 		if (tsp->sw_end >= dvbase) {
2457 			/*
2458 			 * We put one uncovered page between the devices
2459 			 * in order to definitively prevent any cross-device
2460 			 * I/O requests
2461 			 */
2462 			dvbase = tsp->sw_end + 1;
2463 		}
2464 	}
2465 	sp->sw_first = dvbase;
2466 	sp->sw_end = dvbase + nblks;
2467 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2468 	nswapdev++;
2469 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2470 	swap_total += nblks;
2471 	swapon_check_swzone();
2472 	swp_sizecheck();
2473 	mtx_unlock(&sw_dev_mtx);
2474 	EVENTHANDLER_INVOKE(swapon, sp);
2475 }
2476 
2477 /*
2478  * SYSCALL: swapoff(devname)
2479  *
2480  * Disable swapping on the given device.
2481  *
2482  * XXX: Badly designed system call: it should use a device index
2483  * rather than filename as specification.  We keep sw_vp around
2484  * only to make this work.
2485  */
2486 #ifndef _SYS_SYSPROTO_H_
2487 struct swapoff_args {
2488 	char *name;
2489 };
2490 #endif
2491 
2492 /*
2493  * MPSAFE
2494  */
2495 /* ARGSUSED */
2496 int
2497 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2498 {
2499 	struct vnode *vp;
2500 	struct nameidata nd;
2501 	struct swdevt *sp;
2502 	int error;
2503 
2504 	error = priv_check(td, PRIV_SWAPOFF);
2505 	if (error)
2506 		return (error);
2507 
2508 	sx_xlock(&swdev_syscall_lock);
2509 
2510 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name);
2511 	error = namei(&nd);
2512 	if (error)
2513 		goto done;
2514 	NDFREE(&nd, NDF_ONLY_PNBUF);
2515 	vp = nd.ni_vp;
2516 
2517 	mtx_lock(&sw_dev_mtx);
2518 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2519 		if (sp->sw_vp == vp)
2520 			break;
2521 	}
2522 	mtx_unlock(&sw_dev_mtx);
2523 	if (sp == NULL) {
2524 		error = EINVAL;
2525 		goto done;
2526 	}
2527 	error = swapoff_one(sp, td->td_ucred, false);
2528 done:
2529 	sx_xunlock(&swdev_syscall_lock);
2530 	return (error);
2531 }
2532 
2533 static int
2534 swapoff_one(struct swdevt *sp, struct ucred *cred, bool ignore_check)
2535 {
2536 	u_long nblks;
2537 #ifdef MAC
2538 	int error;
2539 #endif
2540 
2541 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2542 #ifdef MAC
2543 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2544 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2545 	(void) VOP_UNLOCK(sp->sw_vp);
2546 	if (error != 0)
2547 		return (error);
2548 #endif
2549 	nblks = sp->sw_nblks;
2550 
2551 	/*
2552 	 * We can turn off this swap device safely only if the
2553 	 * available virtual memory in the system will fit the amount
2554 	 * of data we will have to page back in, plus an epsilon so
2555 	 * the system doesn't become critically low on swap space.
2556 	 * The vm_free_count() part does not account e.g. for clean
2557 	 * pages that can be immediately reclaimed without paging, so
2558 	 * this is a very rough estimation.
2559 	 *
2560 	 * On the other hand, not turning swap off on swapoff_all()
2561 	 * means that we can lose swap data when filesystems go away,
2562 	 * which is arguably worse.
2563 	 */
2564 	if (!ignore_check &&
2565 	    vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2566 		return (ENOMEM);
2567 
2568 	/*
2569 	 * Prevent further allocations on this device.
2570 	 */
2571 	mtx_lock(&sw_dev_mtx);
2572 	sp->sw_flags |= SW_CLOSING;
2573 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2574 	swap_total -= nblks;
2575 	mtx_unlock(&sw_dev_mtx);
2576 
2577 	/*
2578 	 * Page in the contents of the device and close it.
2579 	 */
2580 	swap_pager_swapoff(sp);
2581 
2582 	sp->sw_close(curthread, sp);
2583 	mtx_lock(&sw_dev_mtx);
2584 	sp->sw_id = NULL;
2585 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2586 	nswapdev--;
2587 	if (nswapdev == 0) {
2588 		swap_pager_full = 2;
2589 		swap_pager_almost_full = 1;
2590 	}
2591 	if (swdevhd == sp)
2592 		swdevhd = NULL;
2593 	mtx_unlock(&sw_dev_mtx);
2594 	blist_destroy(sp->sw_blist);
2595 	free(sp, M_VMPGDATA);
2596 	return (0);
2597 }
2598 
2599 void
2600 swapoff_all(void)
2601 {
2602 	struct swdevt *sp, *spt;
2603 	const char *devname;
2604 	int error;
2605 
2606 	sx_xlock(&swdev_syscall_lock);
2607 
2608 	mtx_lock(&sw_dev_mtx);
2609 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2610 		mtx_unlock(&sw_dev_mtx);
2611 		if (vn_isdisk(sp->sw_vp))
2612 			devname = devtoname(sp->sw_vp->v_rdev);
2613 		else
2614 			devname = "[file]";
2615 		error = swapoff_one(sp, thread0.td_ucred, true);
2616 		if (error != 0) {
2617 			printf("Cannot remove swap device %s (error=%d), "
2618 			    "skipping.\n", devname, error);
2619 		} else if (bootverbose) {
2620 			printf("Swap device %s removed.\n", devname);
2621 		}
2622 		mtx_lock(&sw_dev_mtx);
2623 	}
2624 	mtx_unlock(&sw_dev_mtx);
2625 
2626 	sx_xunlock(&swdev_syscall_lock);
2627 }
2628 
2629 void
2630 swap_pager_status(int *total, int *used)
2631 {
2632 
2633 	*total = swap_total;
2634 	*used = swap_total - swap_pager_avail -
2635 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2636 }
2637 
2638 int
2639 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2640 {
2641 	struct swdevt *sp;
2642 	const char *tmp_devname;
2643 	int error, n;
2644 
2645 	n = 0;
2646 	error = ENOENT;
2647 	mtx_lock(&sw_dev_mtx);
2648 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2649 		if (n != name) {
2650 			n++;
2651 			continue;
2652 		}
2653 		xs->xsw_version = XSWDEV_VERSION;
2654 		xs->xsw_dev = sp->sw_dev;
2655 		xs->xsw_flags = sp->sw_flags;
2656 		xs->xsw_nblks = sp->sw_nblks;
2657 		xs->xsw_used = sp->sw_used;
2658 		if (devname != NULL) {
2659 			if (vn_isdisk(sp->sw_vp))
2660 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2661 			else
2662 				tmp_devname = "[file]";
2663 			strncpy(devname, tmp_devname, len);
2664 		}
2665 		error = 0;
2666 		break;
2667 	}
2668 	mtx_unlock(&sw_dev_mtx);
2669 	return (error);
2670 }
2671 
2672 #if defined(COMPAT_FREEBSD11)
2673 #define XSWDEV_VERSION_11	1
2674 struct xswdev11 {
2675 	u_int	xsw_version;
2676 	uint32_t xsw_dev;
2677 	int	xsw_flags;
2678 	int	xsw_nblks;
2679 	int     xsw_used;
2680 };
2681 #endif
2682 
2683 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2684 struct xswdev32 {
2685 	u_int	xsw_version;
2686 	u_int	xsw_dev1, xsw_dev2;
2687 	int	xsw_flags;
2688 	int	xsw_nblks;
2689 	int     xsw_used;
2690 };
2691 #endif
2692 
2693 static int
2694 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2695 {
2696 	struct xswdev xs;
2697 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2698 	struct xswdev32 xs32;
2699 #endif
2700 #if defined(COMPAT_FREEBSD11)
2701 	struct xswdev11 xs11;
2702 #endif
2703 	int error;
2704 
2705 	if (arg2 != 1)			/* name length */
2706 		return (EINVAL);
2707 
2708 	memset(&xs, 0, sizeof(xs));
2709 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2710 	if (error != 0)
2711 		return (error);
2712 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2713 	if (req->oldlen == sizeof(xs32)) {
2714 		memset(&xs32, 0, sizeof(xs32));
2715 		xs32.xsw_version = XSWDEV_VERSION;
2716 		xs32.xsw_dev1 = xs.xsw_dev;
2717 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2718 		xs32.xsw_flags = xs.xsw_flags;
2719 		xs32.xsw_nblks = xs.xsw_nblks;
2720 		xs32.xsw_used = xs.xsw_used;
2721 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2722 		return (error);
2723 	}
2724 #endif
2725 #if defined(COMPAT_FREEBSD11)
2726 	if (req->oldlen == sizeof(xs11)) {
2727 		memset(&xs11, 0, sizeof(xs11));
2728 		xs11.xsw_version = XSWDEV_VERSION_11;
2729 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2730 		xs11.xsw_flags = xs.xsw_flags;
2731 		xs11.xsw_nblks = xs.xsw_nblks;
2732 		xs11.xsw_used = xs.xsw_used;
2733 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2734 		return (error);
2735 	}
2736 #endif
2737 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2738 	return (error);
2739 }
2740 
2741 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2742     "Number of swap devices");
2743 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2744     sysctl_vm_swap_info,
2745     "Swap statistics by device");
2746 
2747 /*
2748  * Count the approximate swap usage in pages for a vmspace.  The
2749  * shadowed or not yet copied on write swap blocks are not accounted.
2750  * The map must be locked.
2751  */
2752 long
2753 vmspace_swap_count(struct vmspace *vmspace)
2754 {
2755 	vm_map_t map;
2756 	vm_map_entry_t cur;
2757 	vm_object_t object;
2758 	struct swblk *sb;
2759 	vm_pindex_t e, pi;
2760 	long count;
2761 	int i;
2762 
2763 	map = &vmspace->vm_map;
2764 	count = 0;
2765 
2766 	VM_MAP_ENTRY_FOREACH(cur, map) {
2767 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2768 			continue;
2769 		object = cur->object.vm_object;
2770 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2771 			continue;
2772 		VM_OBJECT_RLOCK(object);
2773 		if ((object->flags & OBJ_SWAP) == 0)
2774 			goto unlock;
2775 		pi = OFF_TO_IDX(cur->offset);
2776 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2777 		for (;; pi = sb->p + SWAP_META_PAGES) {
2778 			sb = SWAP_PCTRIE_LOOKUP_GE(
2779 			    &object->un_pager.swp.swp_blks, pi);
2780 			if (sb == NULL || sb->p >= e)
2781 				break;
2782 			for (i = 0; i < SWAP_META_PAGES; i++) {
2783 				if (sb->p + i < e &&
2784 				    sb->d[i] != SWAPBLK_NONE)
2785 					count++;
2786 			}
2787 		}
2788 unlock:
2789 		VM_OBJECT_RUNLOCK(object);
2790 	}
2791 	return (count);
2792 }
2793 
2794 /*
2795  * GEOM backend
2796  *
2797  * Swapping onto disk devices.
2798  *
2799  */
2800 
2801 static g_orphan_t swapgeom_orphan;
2802 
2803 static struct g_class g_swap_class = {
2804 	.name = "SWAP",
2805 	.version = G_VERSION,
2806 	.orphan = swapgeom_orphan,
2807 };
2808 
2809 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2810 
2811 static void
2812 swapgeom_close_ev(void *arg, int flags)
2813 {
2814 	struct g_consumer *cp;
2815 
2816 	cp = arg;
2817 	g_access(cp, -1, -1, 0);
2818 	g_detach(cp);
2819 	g_destroy_consumer(cp);
2820 }
2821 
2822 /*
2823  * Add a reference to the g_consumer for an inflight transaction.
2824  */
2825 static void
2826 swapgeom_acquire(struct g_consumer *cp)
2827 {
2828 
2829 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2830 	cp->index++;
2831 }
2832 
2833 /*
2834  * Remove a reference from the g_consumer.  Post a close event if all
2835  * references go away, since the function might be called from the
2836  * biodone context.
2837  */
2838 static void
2839 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2840 {
2841 
2842 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2843 	cp->index--;
2844 	if (cp->index == 0) {
2845 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2846 			sp->sw_id = NULL;
2847 	}
2848 }
2849 
2850 static void
2851 swapgeom_done(struct bio *bp2)
2852 {
2853 	struct swdevt *sp;
2854 	struct buf *bp;
2855 	struct g_consumer *cp;
2856 
2857 	bp = bp2->bio_caller2;
2858 	cp = bp2->bio_from;
2859 	bp->b_ioflags = bp2->bio_flags;
2860 	if (bp2->bio_error)
2861 		bp->b_ioflags |= BIO_ERROR;
2862 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2863 	bp->b_error = bp2->bio_error;
2864 	bp->b_caller1 = NULL;
2865 	bufdone(bp);
2866 	sp = bp2->bio_caller1;
2867 	mtx_lock(&sw_dev_mtx);
2868 	swapgeom_release(cp, sp);
2869 	mtx_unlock(&sw_dev_mtx);
2870 	g_destroy_bio(bp2);
2871 }
2872 
2873 static void
2874 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2875 {
2876 	struct bio *bio;
2877 	struct g_consumer *cp;
2878 
2879 	mtx_lock(&sw_dev_mtx);
2880 	cp = sp->sw_id;
2881 	if (cp == NULL) {
2882 		mtx_unlock(&sw_dev_mtx);
2883 		bp->b_error = ENXIO;
2884 		bp->b_ioflags |= BIO_ERROR;
2885 		bufdone(bp);
2886 		return;
2887 	}
2888 	swapgeom_acquire(cp);
2889 	mtx_unlock(&sw_dev_mtx);
2890 	if (bp->b_iocmd == BIO_WRITE)
2891 		bio = g_new_bio();
2892 	else
2893 		bio = g_alloc_bio();
2894 	if (bio == NULL) {
2895 		mtx_lock(&sw_dev_mtx);
2896 		swapgeom_release(cp, sp);
2897 		mtx_unlock(&sw_dev_mtx);
2898 		bp->b_error = ENOMEM;
2899 		bp->b_ioflags |= BIO_ERROR;
2900 		printf("swap_pager: cannot allocate bio\n");
2901 		bufdone(bp);
2902 		return;
2903 	}
2904 
2905 	bp->b_caller1 = bio;
2906 	bio->bio_caller1 = sp;
2907 	bio->bio_caller2 = bp;
2908 	bio->bio_cmd = bp->b_iocmd;
2909 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2910 	bio->bio_length = bp->b_bcount;
2911 	bio->bio_done = swapgeom_done;
2912 	bio->bio_flags |= BIO_SWAP;
2913 	if (!buf_mapped(bp)) {
2914 		bio->bio_ma = bp->b_pages;
2915 		bio->bio_data = unmapped_buf;
2916 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2917 		bio->bio_ma_n = bp->b_npages;
2918 		bio->bio_flags |= BIO_UNMAPPED;
2919 	} else {
2920 		bio->bio_data = bp->b_data;
2921 		bio->bio_ma = NULL;
2922 	}
2923 	g_io_request(bio, cp);
2924 	return;
2925 }
2926 
2927 static void
2928 swapgeom_orphan(struct g_consumer *cp)
2929 {
2930 	struct swdevt *sp;
2931 	int destroy;
2932 
2933 	mtx_lock(&sw_dev_mtx);
2934 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2935 		if (sp->sw_id == cp) {
2936 			sp->sw_flags |= SW_CLOSING;
2937 			break;
2938 		}
2939 	}
2940 	/*
2941 	 * Drop reference we were created with. Do directly since we're in a
2942 	 * special context where we don't have to queue the call to
2943 	 * swapgeom_close_ev().
2944 	 */
2945 	cp->index--;
2946 	destroy = ((sp != NULL) && (cp->index == 0));
2947 	if (destroy)
2948 		sp->sw_id = NULL;
2949 	mtx_unlock(&sw_dev_mtx);
2950 	if (destroy)
2951 		swapgeom_close_ev(cp, 0);
2952 }
2953 
2954 static void
2955 swapgeom_close(struct thread *td, struct swdevt *sw)
2956 {
2957 	struct g_consumer *cp;
2958 
2959 	mtx_lock(&sw_dev_mtx);
2960 	cp = sw->sw_id;
2961 	sw->sw_id = NULL;
2962 	mtx_unlock(&sw_dev_mtx);
2963 
2964 	/*
2965 	 * swapgeom_close() may be called from the biodone context,
2966 	 * where we cannot perform topology changes.  Delegate the
2967 	 * work to the events thread.
2968 	 */
2969 	if (cp != NULL)
2970 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2971 }
2972 
2973 static int
2974 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2975 {
2976 	struct g_provider *pp;
2977 	struct g_consumer *cp;
2978 	static struct g_geom *gp;
2979 	struct swdevt *sp;
2980 	u_long nblks;
2981 	int error;
2982 
2983 	pp = g_dev_getprovider(dev);
2984 	if (pp == NULL)
2985 		return (ENODEV);
2986 	mtx_lock(&sw_dev_mtx);
2987 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2988 		cp = sp->sw_id;
2989 		if (cp != NULL && cp->provider == pp) {
2990 			mtx_unlock(&sw_dev_mtx);
2991 			return (EBUSY);
2992 		}
2993 	}
2994 	mtx_unlock(&sw_dev_mtx);
2995 	if (gp == NULL)
2996 		gp = g_new_geomf(&g_swap_class, "swap");
2997 	cp = g_new_consumer(gp);
2998 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2999 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
3000 	g_attach(cp, pp);
3001 	/*
3002 	 * XXX: Every time you think you can improve the margin for
3003 	 * footshooting, somebody depends on the ability to do so:
3004 	 * savecore(8) wants to write to our swapdev so we cannot
3005 	 * set an exclusive count :-(
3006 	 */
3007 	error = g_access(cp, 1, 1, 0);
3008 	if (error != 0) {
3009 		g_detach(cp);
3010 		g_destroy_consumer(cp);
3011 		return (error);
3012 	}
3013 	nblks = pp->mediasize / DEV_BSIZE;
3014 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
3015 	    swapgeom_close, dev2udev(dev),
3016 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3017 	return (0);
3018 }
3019 
3020 static int
3021 swapongeom(struct vnode *vp)
3022 {
3023 	int error;
3024 
3025 	ASSERT_VOP_ELOCKED(vp, "swapongeom");
3026 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3027 		error = ENOENT;
3028 	} else {
3029 		g_topology_lock();
3030 		error = swapongeom_locked(vp->v_rdev, vp);
3031 		g_topology_unlock();
3032 	}
3033 	return (error);
3034 }
3035 
3036 /*
3037  * VNODE backend
3038  *
3039  * This is used mainly for network filesystem (read: probably only tested
3040  * with NFS) swapfiles.
3041  *
3042  */
3043 
3044 static void
3045 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3046 {
3047 	struct vnode *vp2;
3048 
3049 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3050 
3051 	vp2 = sp->sw_id;
3052 	vhold(vp2);
3053 	if (bp->b_iocmd == BIO_WRITE) {
3054 		vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3055 		if (bp->b_bufobj)
3056 			bufobj_wdrop(bp->b_bufobj);
3057 		bufobj_wref(&vp2->v_bufobj);
3058 	} else {
3059 		vn_lock(vp2, LK_SHARED | LK_RETRY);
3060 	}
3061 	if (bp->b_bufobj != &vp2->v_bufobj)
3062 		bp->b_bufobj = &vp2->v_bufobj;
3063 	bp->b_vp = vp2;
3064 	bp->b_iooffset = dbtob(bp->b_blkno);
3065 	bstrategy(bp);
3066 	VOP_UNLOCK(vp2);
3067 }
3068 
3069 static void
3070 swapdev_close(struct thread *td, struct swdevt *sp)
3071 {
3072 	struct vnode *vp;
3073 
3074 	vp = sp->sw_vp;
3075 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3076 	VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3077 	vput(vp);
3078 }
3079 
3080 static int
3081 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3082 {
3083 	struct swdevt *sp;
3084 	int error;
3085 
3086 	ASSERT_VOP_ELOCKED(vp, "swaponvp");
3087 	if (nblks == 0)
3088 		return (ENXIO);
3089 	mtx_lock(&sw_dev_mtx);
3090 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3091 		if (sp->sw_id == vp) {
3092 			mtx_unlock(&sw_dev_mtx);
3093 			return (EBUSY);
3094 		}
3095 	}
3096 	mtx_unlock(&sw_dev_mtx);
3097 
3098 #ifdef MAC
3099 	error = mac_system_check_swapon(td->td_ucred, vp);
3100 	if (error == 0)
3101 #endif
3102 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3103 	if (error != 0)
3104 		return (error);
3105 
3106 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3107 	    NODEV, 0);
3108 	return (0);
3109 }
3110 
3111 static int
3112 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3113 {
3114 	int error, new, n;
3115 
3116 	new = nsw_wcount_async_max;
3117 	error = sysctl_handle_int(oidp, &new, 0, req);
3118 	if (error != 0 || req->newptr == NULL)
3119 		return (error);
3120 
3121 	if (new > nswbuf / 2 || new < 1)
3122 		return (EINVAL);
3123 
3124 	mtx_lock(&swbuf_mtx);
3125 	while (nsw_wcount_async_max != new) {
3126 		/*
3127 		 * Adjust difference.  If the current async count is too low,
3128 		 * we will need to sqeeze our update slowly in.  Sleep with a
3129 		 * higher priority than getpbuf() to finish faster.
3130 		 */
3131 		n = new - nsw_wcount_async_max;
3132 		if (nsw_wcount_async + n >= 0) {
3133 			nsw_wcount_async += n;
3134 			nsw_wcount_async_max += n;
3135 			wakeup(&nsw_wcount_async);
3136 		} else {
3137 			nsw_wcount_async_max -= nsw_wcount_async;
3138 			nsw_wcount_async = 0;
3139 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3140 			    "swpsysctl", 0);
3141 		}
3142 	}
3143 	mtx_unlock(&swbuf_mtx);
3144 
3145 	return (0);
3146 }
3147 
3148 static void
3149 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3150     vm_offset_t end)
3151 {
3152 
3153 	VM_OBJECT_WLOCK(object);
3154 	KASSERT((object->flags & OBJ_ANON) == 0,
3155 	    ("Splittable object with writecount"));
3156 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3157 	VM_OBJECT_WUNLOCK(object);
3158 }
3159 
3160 static void
3161 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3162     vm_offset_t end)
3163 {
3164 
3165 	VM_OBJECT_WLOCK(object);
3166 	KASSERT((object->flags & OBJ_ANON) == 0,
3167 	    ("Splittable object with writecount"));
3168 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3169 	VM_OBJECT_WUNLOCK(object);
3170 }
3171