xref: /freebsd/sys/vm/swap_pager.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_compat.h"
75 #include "opt_swap.h"
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/conf.h>
81 #include <sys/kernel.h>
82 #include <sys/priv.h>
83 #include <sys/proc.h>
84 #include <sys/bio.h>
85 #include <sys/buf.h>
86 #include <sys/disk.h>
87 #include <sys/fcntl.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/vnode.h>
91 #include <sys/malloc.h>
92 #include <sys/pctrie.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/blist.h>
101 #include <sys/lock.h>
102 #include <sys/sx.h>
103 #include <sys/vmmeter.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static vm_ooffset_t swap_total;
156 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
157     "Total amount of available swap storage.");
158 static vm_ooffset_t swap_reserved;
159 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
160     "Amount of swap storage needed to back all allocated anonymous memory.");
161 static int overcommit = 0;
162 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
163     "Configure virtual memory overcommit behavior. See tuning(7) "
164     "for details.");
165 static unsigned long swzone;
166 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
167     "Actual size of swap metadata zone");
168 static unsigned long swap_maxpages;
169 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
170     "Maximum amount of swap supported");
171 
172 /* bits from overcommit */
173 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
174 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
175 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
176 
177 int
178 swap_reserve(vm_ooffset_t incr)
179 {
180 
181 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
182 }
183 
184 int
185 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
186 {
187 	vm_ooffset_t r, s;
188 	int res, error;
189 	static int curfail;
190 	static struct timeval lastfail;
191 	struct uidinfo *uip;
192 
193 	uip = cred->cr_ruidinfo;
194 
195 	if (incr & PAGE_MASK)
196 		panic("swap_reserve: & PAGE_MASK");
197 
198 #ifdef RACCT
199 	if (racct_enable) {
200 		PROC_LOCK(curproc);
201 		error = racct_add(curproc, RACCT_SWAP, incr);
202 		PROC_UNLOCK(curproc);
203 		if (error != 0)
204 			return (0);
205 	}
206 #endif
207 
208 	res = 0;
209 	mtx_lock(&sw_dev_mtx);
210 	r = swap_reserved + incr;
211 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
213 		    vm_wire_count();
214 		s *= PAGE_SIZE;
215 	} else
216 		s = 0;
217 	s += swap_total;
218 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
219 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
220 		res = 1;
221 		swap_reserved = r;
222 	}
223 	mtx_unlock(&sw_dev_mtx);
224 
225 	if (res) {
226 		UIDINFO_VMSIZE_LOCK(uip);
227 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
228 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
229 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
230 			res = 0;
231 		else
232 			uip->ui_vmsize += incr;
233 		UIDINFO_VMSIZE_UNLOCK(uip);
234 		if (!res) {
235 			mtx_lock(&sw_dev_mtx);
236 			swap_reserved -= incr;
237 			mtx_unlock(&sw_dev_mtx);
238 		}
239 	}
240 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
241 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
242 		    uip->ui_uid, curproc->p_pid, incr);
243 	}
244 
245 #ifdef RACCT
246 	if (!res) {
247 		PROC_LOCK(curproc);
248 		racct_sub(curproc, RACCT_SWAP, incr);
249 		PROC_UNLOCK(curproc);
250 	}
251 #endif
252 
253 	return (res);
254 }
255 
256 void
257 swap_reserve_force(vm_ooffset_t incr)
258 {
259 	struct uidinfo *uip;
260 
261 	mtx_lock(&sw_dev_mtx);
262 	swap_reserved += incr;
263 	mtx_unlock(&sw_dev_mtx);
264 
265 #ifdef RACCT
266 	PROC_LOCK(curproc);
267 	racct_add_force(curproc, RACCT_SWAP, incr);
268 	PROC_UNLOCK(curproc);
269 #endif
270 
271 	uip = curthread->td_ucred->cr_ruidinfo;
272 	PROC_LOCK(curproc);
273 	UIDINFO_VMSIZE_LOCK(uip);
274 	uip->ui_vmsize += incr;
275 	UIDINFO_VMSIZE_UNLOCK(uip);
276 	PROC_UNLOCK(curproc);
277 }
278 
279 void
280 swap_release(vm_ooffset_t decr)
281 {
282 	struct ucred *cred;
283 
284 	PROC_LOCK(curproc);
285 	cred = curthread->td_ucred;
286 	swap_release_by_cred(decr, cred);
287 	PROC_UNLOCK(curproc);
288 }
289 
290 void
291 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
292 {
293  	struct uidinfo *uip;
294 
295 	uip = cred->cr_ruidinfo;
296 
297 	if (decr & PAGE_MASK)
298 		panic("swap_release: & PAGE_MASK");
299 
300 	mtx_lock(&sw_dev_mtx);
301 	if (swap_reserved < decr)
302 		panic("swap_reserved < decr");
303 	swap_reserved -= decr;
304 	mtx_unlock(&sw_dev_mtx);
305 
306 	UIDINFO_VMSIZE_LOCK(uip);
307 	if (uip->ui_vmsize < decr)
308 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
309 	uip->ui_vmsize -= decr;
310 	UIDINFO_VMSIZE_UNLOCK(uip);
311 
312 	racct_sub_cred(cred, RACCT_SWAP, decr);
313 }
314 
315 #define SWM_POP		0x01	/* pop out			*/
316 
317 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
318 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
319 static int nsw_rcount;		/* free read buffers			*/
320 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
321 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
322 static int nsw_wcount_async_max;/* assigned maximum			*/
323 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
324 
325 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
326 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
327     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
328     "Maximum running async swap ops");
329 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
330 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
331     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
332     "Swap Fragmentation Info");
333 
334 static struct sx sw_alloc_sx;
335 
336 /*
337  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
338  * of searching a named list by hashing it just a little.
339  */
340 
341 #define NOBJLISTS		8
342 
343 #define NOBJLIST(handle)	\
344 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
345 
346 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
347 static uma_zone_t swblk_zone;
348 static uma_zone_t swpctrie_zone;
349 
350 /*
351  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
352  * calls hooked from other parts of the VM system and do not appear here.
353  * (see vm/swap_pager.h).
354  */
355 static vm_object_t
356 		swap_pager_alloc(void *handle, vm_ooffset_t size,
357 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
358 static void	swap_pager_dealloc(vm_object_t object);
359 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
360     int *);
361 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
362     int *, pgo_getpages_iodone_t, void *);
363 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
364 static boolean_t
365 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
366 static void	swap_pager_init(void);
367 static void	swap_pager_unswapped(vm_page_t);
368 static void	swap_pager_swapoff(struct swdevt *sp);
369 
370 struct pagerops swappagerops = {
371 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
372 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
373 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
374 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
375 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
376 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
377 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
378 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
379 };
380 
381 /*
382  * swap_*() routines are externally accessible.  swp_*() routines are
383  * internal.
384  */
385 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
386 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
387 
388 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
389     "Maximum size of a swap block in pages");
390 
391 static void	swp_sizecheck(void);
392 static void	swp_pager_async_iodone(struct buf *bp);
393 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
394 static int	swapongeom(struct vnode *);
395 static int	swaponvp(struct thread *, struct vnode *, u_long);
396 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
397 
398 /*
399  * Swap bitmap functions
400  */
401 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
402 static daddr_t	swp_pager_getswapspace(int npages);
403 
404 /*
405  * Metadata functions
406  */
407 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
408 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
409 static void swp_pager_meta_free_all(vm_object_t);
410 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
411 
412 static void *
413 swblk_trie_alloc(struct pctrie *ptree)
414 {
415 
416 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
417 	    M_USE_RESERVE : 0)));
418 }
419 
420 static void
421 swblk_trie_free(struct pctrie *ptree, void *node)
422 {
423 
424 	uma_zfree(swpctrie_zone, node);
425 }
426 
427 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
428 
429 /*
430  * SWP_SIZECHECK() -	update swap_pager_full indication
431  *
432  *	update the swap_pager_almost_full indication and warn when we are
433  *	about to run out of swap space, using lowat/hiwat hysteresis.
434  *
435  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
436  *
437  *	No restrictions on call
438  *	This routine may not block.
439  */
440 static void
441 swp_sizecheck(void)
442 {
443 
444 	if (swap_pager_avail < nswap_lowat) {
445 		if (swap_pager_almost_full == 0) {
446 			printf("swap_pager: out of swap space\n");
447 			swap_pager_almost_full = 1;
448 		}
449 	} else {
450 		swap_pager_full = 0;
451 		if (swap_pager_avail > nswap_hiwat)
452 			swap_pager_almost_full = 0;
453 	}
454 }
455 
456 /*
457  * SWAP_PAGER_INIT() -	initialize the swap pager!
458  *
459  *	Expected to be started from system init.  NOTE:  This code is run
460  *	before much else so be careful what you depend on.  Most of the VM
461  *	system has yet to be initialized at this point.
462  */
463 static void
464 swap_pager_init(void)
465 {
466 	/*
467 	 * Initialize object lists
468 	 */
469 	int i;
470 
471 	for (i = 0; i < NOBJLISTS; ++i)
472 		TAILQ_INIT(&swap_pager_object_list[i]);
473 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
474 	sx_init(&sw_alloc_sx, "swspsx");
475 	sx_init(&swdev_syscall_lock, "swsysc");
476 }
477 
478 /*
479  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
480  *
481  *	Expected to be started from pageout process once, prior to entering
482  *	its main loop.
483  */
484 void
485 swap_pager_swap_init(void)
486 {
487 	unsigned long n, n2;
488 
489 	/*
490 	 * Number of in-transit swap bp operations.  Don't
491 	 * exhaust the pbufs completely.  Make sure we
492 	 * initialize workable values (0 will work for hysteresis
493 	 * but it isn't very efficient).
494 	 *
495 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
496 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
497 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
498 	 * constrained by the swap device interleave stripe size.
499 	 *
500 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
501 	 * designed to prevent other I/O from having high latencies due to
502 	 * our pageout I/O.  The value 4 works well for one or two active swap
503 	 * devices but is probably a little low if you have more.  Even so,
504 	 * a higher value would probably generate only a limited improvement
505 	 * with three or four active swap devices since the system does not
506 	 * typically have to pageout at extreme bandwidths.   We will want
507 	 * at least 2 per swap devices, and 4 is a pretty good value if you
508 	 * have one NFS swap device due to the command/ack latency over NFS.
509 	 * So it all works out pretty well.
510 	 */
511 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
512 
513 	mtx_lock(&pbuf_mtx);
514 	nsw_rcount = (nswbuf + 1) / 2;
515 	nsw_wcount_sync = (nswbuf + 3) / 4;
516 	nsw_wcount_async = 4;
517 	nsw_wcount_async_max = nsw_wcount_async;
518 	mtx_unlock(&pbuf_mtx);
519 
520 	/*
521 	 * Initialize our zone, guessing on the number we need based
522 	 * on the number of pages in the system.
523 	 */
524 	n = vm_cnt.v_page_count / 2;
525 	if (maxswzone && n > maxswzone / sizeof(struct swblk))
526 		n = maxswzone / sizeof(struct swblk);
527 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
528 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR,
529 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
530 	if (swpctrie_zone == NULL)
531 		panic("failed to create swap pctrie zone.");
532 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
533 	    NULL, NULL, _Alignof(struct swblk) - 1,
534 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
535 	if (swblk_zone == NULL)
536 		panic("failed to create swap blk zone.");
537 	n2 = n;
538 	do {
539 		if (uma_zone_reserve_kva(swblk_zone, n))
540 			break;
541 		/*
542 		 * if the allocation failed, try a zone two thirds the
543 		 * size of the previous attempt.
544 		 */
545 		n -= ((n + 2) / 3);
546 	} while (n > 0);
547 
548 	/*
549 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
550 	 * requested size.  Account for the difference when
551 	 * calculating swap_maxpages.
552 	 */
553 	n = uma_zone_get_max(swblk_zone);
554 
555 	if (n < n2)
556 		printf("Swap blk zone entries reduced from %lu to %lu.\n",
557 		    n2, n);
558 	swap_maxpages = n * SWAP_META_PAGES;
559 	swzone = n * sizeof(struct swblk);
560 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
561 		printf("Cannot reserve swap pctrie zone, "
562 		    "reduce kern.maxswzone.\n");
563 }
564 
565 static vm_object_t
566 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
567     vm_ooffset_t offset)
568 {
569 	vm_object_t object;
570 
571 	if (cred != NULL) {
572 		if (!swap_reserve_by_cred(size, cred))
573 			return (NULL);
574 		crhold(cred);
575 	}
576 
577 	/*
578 	 * The un_pager.swp.swp_blks trie is initialized by
579 	 * vm_object_allocate() to ensure the correct order of
580 	 * visibility to other threads.
581 	 */
582 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
583 	    PAGE_MASK + size));
584 
585 	object->handle = handle;
586 	if (cred != NULL) {
587 		object->cred = cred;
588 		object->charge = size;
589 	}
590 	return (object);
591 }
592 
593 /*
594  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
595  *			its metadata structures.
596  *
597  *	This routine is called from the mmap and fork code to create a new
598  *	OBJT_SWAP object.
599  *
600  *	This routine must ensure that no live duplicate is created for
601  *	the named object request, which is protected against by
602  *	holding the sw_alloc_sx lock in case handle != NULL.
603  */
604 static vm_object_t
605 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
606     vm_ooffset_t offset, struct ucred *cred)
607 {
608 	vm_object_t object;
609 
610 	if (handle != NULL) {
611 		/*
612 		 * Reference existing named region or allocate new one.  There
613 		 * should not be a race here against swp_pager_meta_build()
614 		 * as called from vm_page_remove() in regards to the lookup
615 		 * of the handle.
616 		 */
617 		sx_xlock(&sw_alloc_sx);
618 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
619 		if (object == NULL) {
620 			object = swap_pager_alloc_init(handle, cred, size,
621 			    offset);
622 			if (object != NULL) {
623 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
624 				    object, pager_object_list);
625 			}
626 		}
627 		sx_xunlock(&sw_alloc_sx);
628 	} else {
629 		object = swap_pager_alloc_init(handle, cred, size, offset);
630 	}
631 	return (object);
632 }
633 
634 /*
635  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
636  *
637  *	The swap backing for the object is destroyed.  The code is
638  *	designed such that we can reinstantiate it later, but this
639  *	routine is typically called only when the entire object is
640  *	about to be destroyed.
641  *
642  *	The object must be locked.
643  */
644 static void
645 swap_pager_dealloc(vm_object_t object)
646 {
647 
648 	VM_OBJECT_ASSERT_WLOCKED(object);
649 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
650 
651 	/*
652 	 * Remove from list right away so lookups will fail if we block for
653 	 * pageout completion.
654 	 */
655 	if (object->handle != NULL) {
656 		VM_OBJECT_WUNLOCK(object);
657 		sx_xlock(&sw_alloc_sx);
658 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
659 		    pager_object_list);
660 		sx_xunlock(&sw_alloc_sx);
661 		VM_OBJECT_WLOCK(object);
662 	}
663 
664 	vm_object_pip_wait(object, "swpdea");
665 
666 	/*
667 	 * Free all remaining metadata.  We only bother to free it from
668 	 * the swap meta data.  We do not attempt to free swapblk's still
669 	 * associated with vm_page_t's for this object.  We do not care
670 	 * if paging is still in progress on some objects.
671 	 */
672 	swp_pager_meta_free_all(object);
673 	object->handle = NULL;
674 	object->type = OBJT_DEAD;
675 }
676 
677 /************************************************************************
678  *			SWAP PAGER BITMAP ROUTINES			*
679  ************************************************************************/
680 
681 /*
682  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
683  *
684  *	Allocate swap for the requested number of pages.  The starting
685  *	swap block number (a page index) is returned or SWAPBLK_NONE
686  *	if the allocation failed.
687  *
688  *	Also has the side effect of advising that somebody made a mistake
689  *	when they configured swap and didn't configure enough.
690  *
691  *	This routine may not sleep.
692  *
693  *	We allocate in round-robin fashion from the configured devices.
694  */
695 static daddr_t
696 swp_pager_getswapspace(int npages)
697 {
698 	daddr_t blk;
699 	struct swdevt *sp;
700 	int i;
701 
702 	blk = SWAPBLK_NONE;
703 	mtx_lock(&sw_dev_mtx);
704 	sp = swdevhd;
705 	for (i = 0; i < nswapdev; i++) {
706 		if (sp == NULL)
707 			sp = TAILQ_FIRST(&swtailq);
708 		if (!(sp->sw_flags & SW_CLOSING)) {
709 			blk = blist_alloc(sp->sw_blist, npages);
710 			if (blk != SWAPBLK_NONE) {
711 				blk += sp->sw_first;
712 				sp->sw_used += npages;
713 				swap_pager_avail -= npages;
714 				swp_sizecheck();
715 				swdevhd = TAILQ_NEXT(sp, sw_list);
716 				goto done;
717 			}
718 		}
719 		sp = TAILQ_NEXT(sp, sw_list);
720 	}
721 	if (swap_pager_full != 2) {
722 		printf("swap_pager_getswapspace(%d): failed\n", npages);
723 		swap_pager_full = 2;
724 		swap_pager_almost_full = 1;
725 	}
726 	swdevhd = NULL;
727 done:
728 	mtx_unlock(&sw_dev_mtx);
729 	return (blk);
730 }
731 
732 static int
733 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
734 {
735 
736 	return (blk >= sp->sw_first && blk < sp->sw_end);
737 }
738 
739 static void
740 swp_pager_strategy(struct buf *bp)
741 {
742 	struct swdevt *sp;
743 
744 	mtx_lock(&sw_dev_mtx);
745 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
746 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
747 			mtx_unlock(&sw_dev_mtx);
748 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
749 			    unmapped_buf_allowed) {
750 				bp->b_data = unmapped_buf;
751 				bp->b_offset = 0;
752 			} else {
753 				pmap_qenter((vm_offset_t)bp->b_data,
754 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
755 			}
756 			sp->sw_strategy(bp, sp);
757 			return;
758 		}
759 	}
760 	panic("Swapdev not found");
761 }
762 
763 
764 /*
765  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
766  *
767  *	This routine returns the specified swap blocks back to the bitmap.
768  *
769  *	This routine may not sleep.
770  */
771 static void
772 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
773 {
774 	struct swdevt *sp;
775 
776 	if (npages == 0)
777 		return;
778 	mtx_lock(&sw_dev_mtx);
779 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
780 		if (blk >= sp->sw_first && blk < sp->sw_end) {
781 			sp->sw_used -= npages;
782 			/*
783 			 * If we are attempting to stop swapping on
784 			 * this device, we don't want to mark any
785 			 * blocks free lest they be reused.
786 			 */
787 			if ((sp->sw_flags & SW_CLOSING) == 0) {
788 				blist_free(sp->sw_blist, blk - sp->sw_first,
789 				    npages);
790 				swap_pager_avail += npages;
791 				swp_sizecheck();
792 			}
793 			mtx_unlock(&sw_dev_mtx);
794 			return;
795 		}
796 	}
797 	panic("Swapdev not found");
798 }
799 
800 /*
801  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
802  */
803 static int
804 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
805 {
806 	struct sbuf sbuf;
807 	struct swdevt *sp;
808 	const char *devname;
809 	int error;
810 
811 	error = sysctl_wire_old_buffer(req, 0);
812 	if (error != 0)
813 		return (error);
814 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
815 	mtx_lock(&sw_dev_mtx);
816 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
817 		if (vn_isdisk(sp->sw_vp, NULL))
818 			devname = devtoname(sp->sw_vp->v_rdev);
819 		else
820 			devname = "[file]";
821 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
822 		blist_stats(sp->sw_blist, &sbuf);
823 	}
824 	mtx_unlock(&sw_dev_mtx);
825 	error = sbuf_finish(&sbuf);
826 	sbuf_delete(&sbuf);
827 	return (error);
828 }
829 
830 /*
831  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
832  *				range within an object.
833  *
834  *	This is a globally accessible routine.
835  *
836  *	This routine removes swapblk assignments from swap metadata.
837  *
838  *	The external callers of this routine typically have already destroyed
839  *	or renamed vm_page_t's associated with this range in the object so
840  *	we should be ok.
841  *
842  *	The object must be locked.
843  */
844 void
845 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
846 {
847 
848 	swp_pager_meta_free(object, start, size);
849 }
850 
851 /*
852  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
853  *
854  *	Assigns swap blocks to the specified range within the object.  The
855  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
856  *
857  *	Returns 0 on success, -1 on failure.
858  */
859 int
860 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
861 {
862 	int n = 0;
863 	daddr_t blk = SWAPBLK_NONE;
864 	vm_pindex_t beg = start;	/* save start index */
865 
866 	VM_OBJECT_WLOCK(object);
867 	while (size) {
868 		if (n == 0) {
869 			n = BLIST_MAX_ALLOC;
870 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
871 				n >>= 1;
872 				if (n == 0) {
873 					swp_pager_meta_free(object, beg, start - beg);
874 					VM_OBJECT_WUNLOCK(object);
875 					return (-1);
876 				}
877 			}
878 		}
879 		swp_pager_meta_build(object, start, blk);
880 		--size;
881 		++start;
882 		++blk;
883 		--n;
884 	}
885 	swp_pager_meta_free(object, start, n);
886 	VM_OBJECT_WUNLOCK(object);
887 	return (0);
888 }
889 
890 /*
891  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
892  *			and destroy the source.
893  *
894  *	Copy any valid swapblks from the source to the destination.  In
895  *	cases where both the source and destination have a valid swapblk,
896  *	we keep the destination's.
897  *
898  *	This routine is allowed to sleep.  It may sleep allocating metadata
899  *	indirectly through swp_pager_meta_build() or if paging is still in
900  *	progress on the source.
901  *
902  *	The source object contains no vm_page_t's (which is just as well)
903  *
904  *	The source object is of type OBJT_SWAP.
905  *
906  *	The source and destination objects must be locked.
907  *	Both object locks may temporarily be released.
908  */
909 void
910 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
911     vm_pindex_t offset, int destroysource)
912 {
913 	vm_pindex_t i;
914 	daddr_t dstaddr, first_free, num_free, srcaddr;
915 
916 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
917 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
918 
919 	/*
920 	 * If destroysource is set, we remove the source object from the
921 	 * swap_pager internal queue now.
922 	 */
923 	if (destroysource && srcobject->handle != NULL) {
924 		vm_object_pip_add(srcobject, 1);
925 		VM_OBJECT_WUNLOCK(srcobject);
926 		vm_object_pip_add(dstobject, 1);
927 		VM_OBJECT_WUNLOCK(dstobject);
928 		sx_xlock(&sw_alloc_sx);
929 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
930 		    pager_object_list);
931 		sx_xunlock(&sw_alloc_sx);
932 		VM_OBJECT_WLOCK(dstobject);
933 		vm_object_pip_wakeup(dstobject);
934 		VM_OBJECT_WLOCK(srcobject);
935 		vm_object_pip_wakeup(srcobject);
936 	}
937 
938 	/*
939 	 * Transfer source to destination.
940 	 */
941 	first_free = SWAPBLK_NONE;
942 	num_free = 0;
943 	for (i = 0; i < dstobject->size; ++i) {
944 		srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
945 		if (srcaddr == SWAPBLK_NONE)
946 			continue;
947 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
948 		if (dstaddr == SWAPBLK_NONE) {
949 			/*
950 			 * Destination has no swapblk and is not resident,
951 			 * copy source.
952 			 *
953 			 * swp_pager_meta_build() can sleep.
954 			 */
955 			vm_object_pip_add(srcobject, 1);
956 			VM_OBJECT_WUNLOCK(srcobject);
957 			vm_object_pip_add(dstobject, 1);
958 			swp_pager_meta_build(dstobject, i, srcaddr);
959 			vm_object_pip_wakeup(dstobject);
960 			VM_OBJECT_WLOCK(srcobject);
961 			vm_object_pip_wakeup(srcobject);
962 		} else {
963 			/*
964 			 * Destination has valid swapblk or it is represented
965 			 * by a resident page.  We destroy the sourceblock.
966 			 */
967 			if (first_free + num_free == srcaddr)
968 				num_free++;
969 			else {
970 				swp_pager_freeswapspace(first_free, num_free);
971 				first_free = srcaddr;
972 				num_free = 1;
973 			}
974 		}
975 	}
976 	swp_pager_freeswapspace(first_free, num_free);
977 
978 	/*
979 	 * Free left over swap blocks in source.
980 	 *
981 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
982 	 * double-remove the object from the swap queues.
983 	 */
984 	if (destroysource) {
985 		swp_pager_meta_free_all(srcobject);
986 		/*
987 		 * Reverting the type is not necessary, the caller is going
988 		 * to destroy srcobject directly, but I'm doing it here
989 		 * for consistency since we've removed the object from its
990 		 * queues.
991 		 */
992 		srcobject->type = OBJT_DEFAULT;
993 	}
994 }
995 
996 /*
997  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
998  *				the requested page.
999  *
1000  *	We determine whether good backing store exists for the requested
1001  *	page and return TRUE if it does, FALSE if it doesn't.
1002  *
1003  *	If TRUE, we also try to determine how much valid, contiguous backing
1004  *	store exists before and after the requested page.
1005  */
1006 static boolean_t
1007 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1008     int *after)
1009 {
1010 	daddr_t blk, blk0;
1011 	int i;
1012 
1013 	VM_OBJECT_ASSERT_LOCKED(object);
1014 
1015 	/*
1016 	 * do we have good backing store at the requested index ?
1017 	 */
1018 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1019 	if (blk0 == SWAPBLK_NONE) {
1020 		if (before)
1021 			*before = 0;
1022 		if (after)
1023 			*after = 0;
1024 		return (FALSE);
1025 	}
1026 
1027 	/*
1028 	 * find backwards-looking contiguous good backing store
1029 	 */
1030 	if (before != NULL) {
1031 		for (i = 1; i < SWB_NPAGES; i++) {
1032 			if (i > pindex)
1033 				break;
1034 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1035 			if (blk != blk0 - i)
1036 				break;
1037 		}
1038 		*before = i - 1;
1039 	}
1040 
1041 	/*
1042 	 * find forward-looking contiguous good backing store
1043 	 */
1044 	if (after != NULL) {
1045 		for (i = 1; i < SWB_NPAGES; i++) {
1046 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1047 			if (blk != blk0 + i)
1048 				break;
1049 		}
1050 		*after = i - 1;
1051 	}
1052 	return (TRUE);
1053 }
1054 
1055 /*
1056  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1057  *
1058  *	This removes any associated swap backing store, whether valid or
1059  *	not, from the page.
1060  *
1061  *	This routine is typically called when a page is made dirty, at
1062  *	which point any associated swap can be freed.  MADV_FREE also
1063  *	calls us in a special-case situation
1064  *
1065  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1066  *	should make the page dirty before calling this routine.  This routine
1067  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1068  *	depends on it.
1069  *
1070  *	This routine may not sleep.
1071  *
1072  *	The object containing the page must be locked.
1073  */
1074 static void
1075 swap_pager_unswapped(vm_page_t m)
1076 {
1077 	daddr_t srcaddr;
1078 
1079 	srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1080 	if (srcaddr != SWAPBLK_NONE)
1081 		swp_pager_freeswapspace(srcaddr, 1);
1082 }
1083 
1084 /*
1085  * swap_pager_getpages() - bring pages in from swap
1086  *
1087  *	Attempt to page in the pages in array "ma" of length "count".  The
1088  *	caller may optionally specify that additional pages preceding and
1089  *	succeeding the specified range be paged in.  The number of such pages
1090  *	is returned in the "rbehind" and "rahead" parameters, and they will
1091  *	be in the inactive queue upon return.
1092  *
1093  *	The pages in "ma" must be busied and will remain busied upon return.
1094  */
1095 static int
1096 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1097     int *rahead)
1098 {
1099 	struct buf *bp;
1100 	vm_page_t mpred, msucc, p;
1101 	vm_pindex_t pindex;
1102 	daddr_t blk;
1103 	int i, j, maxahead, maxbehind, reqcount, shift;
1104 
1105 	reqcount = count;
1106 
1107 	VM_OBJECT_WUNLOCK(object);
1108 	bp = getpbuf(&nsw_rcount);
1109 	VM_OBJECT_WLOCK(object);
1110 
1111 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1112 		relpbuf(bp, &nsw_rcount);
1113 		return (VM_PAGER_FAIL);
1114 	}
1115 
1116 	/*
1117 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1118 	 */
1119 	if (rahead != NULL) {
1120 		KASSERT(reqcount - 1 <= maxahead,
1121 		    ("page count %d extends beyond swap block", reqcount));
1122 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1123 		pindex = ma[reqcount - 1]->pindex;
1124 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1125 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1126 			*rahead = msucc->pindex - pindex - 1;
1127 	}
1128 	if (rbehind != NULL) {
1129 		*rbehind = imin(*rbehind, maxbehind);
1130 		pindex = ma[0]->pindex;
1131 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1132 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1133 			*rbehind = pindex - mpred->pindex - 1;
1134 	}
1135 
1136 	/*
1137 	 * Allocate readahead and readbehind pages.
1138 	 */
1139 	shift = rbehind != NULL ? *rbehind : 0;
1140 	if (shift != 0) {
1141 		for (i = 1; i <= shift; i++) {
1142 			p = vm_page_alloc(object, ma[0]->pindex - i,
1143 			    VM_ALLOC_NORMAL);
1144 			if (p == NULL) {
1145 				/* Shift allocated pages to the left. */
1146 				for (j = 0; j < i - 1; j++)
1147 					bp->b_pages[j] =
1148 					    bp->b_pages[j + shift - i + 1];
1149 				break;
1150 			}
1151 			bp->b_pages[shift - i] = p;
1152 		}
1153 		shift = i - 1;
1154 		*rbehind = shift;
1155 	}
1156 	for (i = 0; i < reqcount; i++)
1157 		bp->b_pages[i + shift] = ma[i];
1158 	if (rahead != NULL) {
1159 		for (i = 0; i < *rahead; i++) {
1160 			p = vm_page_alloc(object,
1161 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1162 			if (p == NULL)
1163 				break;
1164 			bp->b_pages[shift + reqcount + i] = p;
1165 		}
1166 		*rahead = i;
1167 	}
1168 	if (rbehind != NULL)
1169 		count += *rbehind;
1170 	if (rahead != NULL)
1171 		count += *rahead;
1172 
1173 	vm_object_pip_add(object, count);
1174 
1175 	for (i = 0; i < count; i++)
1176 		bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1177 
1178 	pindex = bp->b_pages[0]->pindex;
1179 	blk = swp_pager_meta_ctl(object, pindex, 0);
1180 	KASSERT(blk != SWAPBLK_NONE,
1181 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1182 
1183 	VM_OBJECT_WUNLOCK(object);
1184 
1185 	bp->b_flags |= B_PAGING;
1186 	bp->b_iocmd = BIO_READ;
1187 	bp->b_iodone = swp_pager_async_iodone;
1188 	bp->b_rcred = crhold(thread0.td_ucred);
1189 	bp->b_wcred = crhold(thread0.td_ucred);
1190 	bp->b_blkno = blk;
1191 	bp->b_bcount = PAGE_SIZE * count;
1192 	bp->b_bufsize = PAGE_SIZE * count;
1193 	bp->b_npages = count;
1194 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1195 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1196 
1197 	VM_CNT_INC(v_swapin);
1198 	VM_CNT_ADD(v_swappgsin, count);
1199 
1200 	/*
1201 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1202 	 * this point because we automatically release it on completion.
1203 	 * Instead, we look at the one page we are interested in which we
1204 	 * still hold a lock on even through the I/O completion.
1205 	 *
1206 	 * The other pages in our ma[] array are also released on completion,
1207 	 * so we cannot assume they are valid anymore either.
1208 	 *
1209 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1210 	 */
1211 	BUF_KERNPROC(bp);
1212 	swp_pager_strategy(bp);
1213 
1214 	/*
1215 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1216 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1217 	 * is set in the metadata for each page in the request.
1218 	 */
1219 	VM_OBJECT_WLOCK(object);
1220 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1221 		ma[0]->oflags |= VPO_SWAPSLEEP;
1222 		VM_CNT_INC(v_intrans);
1223 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1224 		    "swread", hz * 20)) {
1225 			printf(
1226 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1227 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * If we had an unrecoverable read error pages will not be valid.
1233 	 */
1234 	for (i = 0; i < reqcount; i++)
1235 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1236 			return (VM_PAGER_ERROR);
1237 
1238 	return (VM_PAGER_OK);
1239 
1240 	/*
1241 	 * A final note: in a low swap situation, we cannot deallocate swap
1242 	 * and mark a page dirty here because the caller is likely to mark
1243 	 * the page clean when we return, causing the page to possibly revert
1244 	 * to all-zero's later.
1245 	 */
1246 }
1247 
1248 /*
1249  * 	swap_pager_getpages_async():
1250  *
1251  *	Right now this is emulation of asynchronous operation on top of
1252  *	swap_pager_getpages().
1253  */
1254 static int
1255 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1256     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1257 {
1258 	int r, error;
1259 
1260 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1261 	VM_OBJECT_WUNLOCK(object);
1262 	switch (r) {
1263 	case VM_PAGER_OK:
1264 		error = 0;
1265 		break;
1266 	case VM_PAGER_ERROR:
1267 		error = EIO;
1268 		break;
1269 	case VM_PAGER_FAIL:
1270 		error = EINVAL;
1271 		break;
1272 	default:
1273 		panic("unhandled swap_pager_getpages() error %d", r);
1274 	}
1275 	(iodone)(arg, ma, count, error);
1276 	VM_OBJECT_WLOCK(object);
1277 
1278 	return (r);
1279 }
1280 
1281 /*
1282  *	swap_pager_putpages:
1283  *
1284  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1285  *
1286  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1287  *	are automatically converted to SWAP objects.
1288  *
1289  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1290  *	vm_page reservation system coupled with properly written VFS devices
1291  *	should ensure that no low-memory deadlock occurs.  This is an area
1292  *	which needs work.
1293  *
1294  *	The parent has N vm_object_pip_add() references prior to
1295  *	calling us and will remove references for rtvals[] that are
1296  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1297  *	completion.
1298  *
1299  *	The parent has soft-busy'd the pages it passes us and will unbusy
1300  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1301  *	We need to unbusy the rest on I/O completion.
1302  */
1303 static void
1304 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1305     int flags, int *rtvals)
1306 {
1307 	int i, n;
1308 	boolean_t sync;
1309 
1310 	if (count && ma[0]->object != object) {
1311 		panic("swap_pager_putpages: object mismatch %p/%p",
1312 		    object,
1313 		    ma[0]->object
1314 		);
1315 	}
1316 
1317 	/*
1318 	 * Step 1
1319 	 *
1320 	 * Turn object into OBJT_SWAP
1321 	 * check for bogus sysops
1322 	 * force sync if not pageout process
1323 	 */
1324 	if (object->type != OBJT_SWAP)
1325 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1326 	VM_OBJECT_WUNLOCK(object);
1327 
1328 	n = 0;
1329 	if (curproc != pageproc)
1330 		sync = TRUE;
1331 	else
1332 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1333 
1334 	/*
1335 	 * Step 2
1336 	 *
1337 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1338 	 * The page is left dirty until the pageout operation completes
1339 	 * successfully.
1340 	 */
1341 	for (i = 0; i < count; i += n) {
1342 		int j;
1343 		struct buf *bp;
1344 		daddr_t blk;
1345 
1346 		/*
1347 		 * Maximum I/O size is limited by a number of factors.
1348 		 */
1349 		n = min(BLIST_MAX_ALLOC, count - i);
1350 		n = min(n, nsw_cluster_max);
1351 
1352 		/*
1353 		 * Get biggest block of swap we can.  If we fail, fall
1354 		 * back and try to allocate a smaller block.  Don't go
1355 		 * overboard trying to allocate space if it would overly
1356 		 * fragment swap.
1357 		 */
1358 		while (
1359 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1360 		    n > 4
1361 		) {
1362 			n >>= 1;
1363 		}
1364 		if (blk == SWAPBLK_NONE) {
1365 			for (j = 0; j < n; ++j)
1366 				rtvals[i+j] = VM_PAGER_FAIL;
1367 			continue;
1368 		}
1369 
1370 		/*
1371 		 * All I/O parameters have been satisfied, build the I/O
1372 		 * request and assign the swap space.
1373 		 */
1374 		if (sync == TRUE) {
1375 			bp = getpbuf(&nsw_wcount_sync);
1376 		} else {
1377 			bp = getpbuf(&nsw_wcount_async);
1378 			bp->b_flags = B_ASYNC;
1379 		}
1380 		bp->b_flags |= B_PAGING;
1381 		bp->b_iocmd = BIO_WRITE;
1382 
1383 		bp->b_rcred = crhold(thread0.td_ucred);
1384 		bp->b_wcred = crhold(thread0.td_ucred);
1385 		bp->b_bcount = PAGE_SIZE * n;
1386 		bp->b_bufsize = PAGE_SIZE * n;
1387 		bp->b_blkno = blk;
1388 
1389 		VM_OBJECT_WLOCK(object);
1390 		for (j = 0; j < n; ++j) {
1391 			vm_page_t mreq = ma[i+j];
1392 
1393 			swp_pager_meta_build(
1394 			    mreq->object,
1395 			    mreq->pindex,
1396 			    blk + j
1397 			);
1398 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1399 			mreq->oflags |= VPO_SWAPINPROG;
1400 			bp->b_pages[j] = mreq;
1401 		}
1402 		VM_OBJECT_WUNLOCK(object);
1403 		bp->b_npages = n;
1404 		/*
1405 		 * Must set dirty range for NFS to work.
1406 		 */
1407 		bp->b_dirtyoff = 0;
1408 		bp->b_dirtyend = bp->b_bcount;
1409 
1410 		VM_CNT_INC(v_swapout);
1411 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1412 
1413 		/*
1414 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1415 		 * can call the async completion routine at the end of a
1416 		 * synchronous I/O operation.  Otherwise, our caller would
1417 		 * perform duplicate unbusy and wakeup operations on the page
1418 		 * and object, respectively.
1419 		 */
1420 		for (j = 0; j < n; j++)
1421 			rtvals[i + j] = VM_PAGER_PEND;
1422 
1423 		/*
1424 		 * asynchronous
1425 		 *
1426 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427 		 */
1428 		if (sync == FALSE) {
1429 			bp->b_iodone = swp_pager_async_iodone;
1430 			BUF_KERNPROC(bp);
1431 			swp_pager_strategy(bp);
1432 			continue;
1433 		}
1434 
1435 		/*
1436 		 * synchronous
1437 		 *
1438 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1439 		 */
1440 		bp->b_iodone = bdone;
1441 		swp_pager_strategy(bp);
1442 
1443 		/*
1444 		 * Wait for the sync I/O to complete.
1445 		 */
1446 		bwait(bp, PVM, "swwrt");
1447 
1448 		/*
1449 		 * Now that we are through with the bp, we can call the
1450 		 * normal async completion, which frees everything up.
1451 		 */
1452 		swp_pager_async_iodone(bp);
1453 	}
1454 	VM_OBJECT_WLOCK(object);
1455 }
1456 
1457 /*
1458  *	swp_pager_async_iodone:
1459  *
1460  *	Completion routine for asynchronous reads and writes from/to swap.
1461  *	Also called manually by synchronous code to finish up a bp.
1462  *
1463  *	This routine may not sleep.
1464  */
1465 static void
1466 swp_pager_async_iodone(struct buf *bp)
1467 {
1468 	int i;
1469 	vm_object_t object = NULL;
1470 
1471 	/*
1472 	 * report error
1473 	 */
1474 	if (bp->b_ioflags & BIO_ERROR) {
1475 		printf(
1476 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1477 			"size %ld, error %d\n",
1478 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1479 		    (long)bp->b_blkno,
1480 		    (long)bp->b_bcount,
1481 		    bp->b_error
1482 		);
1483 	}
1484 
1485 	/*
1486 	 * remove the mapping for kernel virtual
1487 	 */
1488 	if (buf_mapped(bp))
1489 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1490 	else
1491 		bp->b_data = bp->b_kvabase;
1492 
1493 	if (bp->b_npages) {
1494 		object = bp->b_pages[0]->object;
1495 		VM_OBJECT_WLOCK(object);
1496 	}
1497 
1498 	/*
1499 	 * cleanup pages.  If an error occurs writing to swap, we are in
1500 	 * very serious trouble.  If it happens to be a disk error, though,
1501 	 * we may be able to recover by reassigning the swap later on.  So
1502 	 * in this case we remove the m->swapblk assignment for the page
1503 	 * but do not free it in the rlist.  The errornous block(s) are thus
1504 	 * never reallocated as swap.  Redirty the page and continue.
1505 	 */
1506 	for (i = 0; i < bp->b_npages; ++i) {
1507 		vm_page_t m = bp->b_pages[i];
1508 
1509 		m->oflags &= ~VPO_SWAPINPROG;
1510 		if (m->oflags & VPO_SWAPSLEEP) {
1511 			m->oflags &= ~VPO_SWAPSLEEP;
1512 			wakeup(&object->paging_in_progress);
1513 		}
1514 
1515 		if (bp->b_ioflags & BIO_ERROR) {
1516 			/*
1517 			 * If an error occurs I'd love to throw the swapblk
1518 			 * away without freeing it back to swapspace, so it
1519 			 * can never be used again.  But I can't from an
1520 			 * interrupt.
1521 			 */
1522 			if (bp->b_iocmd == BIO_READ) {
1523 				/*
1524 				 * NOTE: for reads, m->dirty will probably
1525 				 * be overridden by the original caller of
1526 				 * getpages so don't play cute tricks here.
1527 				 */
1528 				m->valid = 0;
1529 			} else {
1530 				/*
1531 				 * If a write error occurs, reactivate page
1532 				 * so it doesn't clog the inactive list,
1533 				 * then finish the I/O.
1534 				 */
1535 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1536 				vm_page_lock(m);
1537 				vm_page_activate(m);
1538 				vm_page_unlock(m);
1539 				vm_page_sunbusy(m);
1540 			}
1541 		} else if (bp->b_iocmd == BIO_READ) {
1542 			/*
1543 			 * NOTE: for reads, m->dirty will probably be
1544 			 * overridden by the original caller of getpages so
1545 			 * we cannot set them in order to free the underlying
1546 			 * swap in a low-swap situation.  I don't think we'd
1547 			 * want to do that anyway, but it was an optimization
1548 			 * that existed in the old swapper for a time before
1549 			 * it got ripped out due to precisely this problem.
1550 			 */
1551 			KASSERT(!pmap_page_is_mapped(m),
1552 			    ("swp_pager_async_iodone: page %p is mapped", m));
1553 			KASSERT(m->dirty == 0,
1554 			    ("swp_pager_async_iodone: page %p is dirty", m));
1555 
1556 			m->valid = VM_PAGE_BITS_ALL;
1557 			if (i < bp->b_pgbefore ||
1558 			    i >= bp->b_npages - bp->b_pgafter)
1559 				vm_page_readahead_finish(m);
1560 		} else {
1561 			/*
1562 			 * For write success, clear the dirty
1563 			 * status, then finish the I/O ( which decrements the
1564 			 * busy count and possibly wakes waiter's up ).
1565 			 * A page is only written to swap after a period of
1566 			 * inactivity.  Therefore, we do not expect it to be
1567 			 * reused.
1568 			 */
1569 			KASSERT(!pmap_page_is_write_mapped(m),
1570 			    ("swp_pager_async_iodone: page %p is not write"
1571 			    " protected", m));
1572 			vm_page_undirty(m);
1573 			vm_page_lock(m);
1574 			vm_page_deactivate_noreuse(m);
1575 			vm_page_unlock(m);
1576 			vm_page_sunbusy(m);
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * adjust pip.  NOTE: the original parent may still have its own
1582 	 * pip refs on the object.
1583 	 */
1584 	if (object != NULL) {
1585 		vm_object_pip_wakeupn(object, bp->b_npages);
1586 		VM_OBJECT_WUNLOCK(object);
1587 	}
1588 
1589 	/*
1590 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1591 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1592 	 * trigger a KASSERT in relpbuf().
1593 	 */
1594 	if (bp->b_vp) {
1595 		    bp->b_vp = NULL;
1596 		    bp->b_bufobj = NULL;
1597 	}
1598 	/*
1599 	 * release the physical I/O buffer
1600 	 */
1601 	relpbuf(
1602 	    bp,
1603 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1604 		((bp->b_flags & B_ASYNC) ?
1605 		    &nsw_wcount_async :
1606 		    &nsw_wcount_sync
1607 		)
1608 	    )
1609 	);
1610 }
1611 
1612 int
1613 swap_pager_nswapdev(void)
1614 {
1615 
1616 	return (nswapdev);
1617 }
1618 
1619 /*
1620  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1621  *
1622  *	This routine dissociates the page at the given index within an object
1623  *	from its backing store, paging it in if it does not reside in memory.
1624  *	If the page is paged in, it is marked dirty and placed in the laundry
1625  *	queue.  The page is marked dirty because it no longer has backing
1626  *	store.  It is placed in the laundry queue because it has not been
1627  *	accessed recently.  Otherwise, it would already reside in memory.
1628  *
1629  *	We also attempt to swap in all other pages in the swap block.
1630  *	However, we only guarantee that the one at the specified index is
1631  *	paged in.
1632  *
1633  *	XXX - The code to page the whole block in doesn't work, so we
1634  *	      revert to the one-by-one behavior for now.  Sigh.
1635  */
1636 static inline void
1637 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1638 {
1639 	vm_page_t m;
1640 
1641 	vm_object_pip_add(object, 1);
1642 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1643 	if (m->valid == VM_PAGE_BITS_ALL) {
1644 		vm_object_pip_wakeup(object);
1645 		vm_page_dirty(m);
1646 #ifdef INVARIANTS
1647 		vm_page_lock(m);
1648 		if (m->wire_count == 0 && m->queue == PQ_NONE)
1649 			panic("page %p is neither wired nor queued", m);
1650 		vm_page_unlock(m);
1651 #endif
1652 		vm_page_xunbusy(m);
1653 		vm_pager_page_unswapped(m);
1654 		return;
1655 	}
1656 
1657 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1658 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1659 	vm_object_pip_wakeup(object);
1660 	vm_page_dirty(m);
1661 	vm_page_lock(m);
1662 	vm_page_launder(m);
1663 	vm_page_unlock(m);
1664 	vm_page_xunbusy(m);
1665 	vm_pager_page_unswapped(m);
1666 }
1667 
1668 /*
1669  *	swap_pager_swapoff:
1670  *
1671  *	Page in all of the pages that have been paged out to the
1672  *	given device.  The corresponding blocks in the bitmap must be
1673  *	marked as allocated and the device must be flagged SW_CLOSING.
1674  *	There may be no processes swapped out to the device.
1675  *
1676  *	This routine may block.
1677  */
1678 static void
1679 swap_pager_swapoff(struct swdevt *sp)
1680 {
1681 	struct swblk *sb;
1682 	vm_object_t object;
1683 	vm_pindex_t pi;
1684 	int i, retries;
1685 
1686 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1687 
1688 	retries = 0;
1689 full_rescan:
1690 	mtx_lock(&vm_object_list_mtx);
1691 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1692 		if (object->type != OBJT_SWAP)
1693 			continue;
1694 		mtx_unlock(&vm_object_list_mtx);
1695 		/* Depends on type-stability. */
1696 		VM_OBJECT_WLOCK(object);
1697 
1698 		/*
1699 		 * Dead objects are eventually terminated on their own.
1700 		 */
1701 		if ((object->flags & OBJ_DEAD) != 0)
1702 			goto next_obj;
1703 
1704 		/*
1705 		 * Sync with fences placed after pctrie
1706 		 * initialization.  We must not access pctrie below
1707 		 * unless we checked that our object is swap and not
1708 		 * dead.
1709 		 */
1710 		atomic_thread_fence_acq();
1711 		if (object->type != OBJT_SWAP)
1712 			goto next_obj;
1713 
1714 		for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1715 		    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1716 			pi = sb->p + SWAP_META_PAGES;
1717 			for (i = 0; i < SWAP_META_PAGES; i++) {
1718 				if (sb->d[i] == SWAPBLK_NONE)
1719 					continue;
1720 				if (swp_pager_isondev(sb->d[i], sp))
1721 					swp_pager_force_pagein(object,
1722 					    sb->p + i);
1723 			}
1724 		}
1725 next_obj:
1726 		VM_OBJECT_WUNLOCK(object);
1727 		mtx_lock(&vm_object_list_mtx);
1728 	}
1729 	mtx_unlock(&vm_object_list_mtx);
1730 
1731 	if (sp->sw_used) {
1732 		/*
1733 		 * Objects may be locked or paging to the device being
1734 		 * removed, so we will miss their pages and need to
1735 		 * make another pass.  We have marked this device as
1736 		 * SW_CLOSING, so the activity should finish soon.
1737 		 */
1738 		retries++;
1739 		if (retries > 100) {
1740 			panic("swapoff: failed to locate %d swap blocks",
1741 			    sp->sw_used);
1742 		}
1743 		pause("swpoff", hz / 20);
1744 		goto full_rescan;
1745 	}
1746 	EVENTHANDLER_INVOKE(swapoff, sp);
1747 }
1748 
1749 /************************************************************************
1750  *				SWAP META DATA 				*
1751  ************************************************************************
1752  *
1753  *	These routines manipulate the swap metadata stored in the
1754  *	OBJT_SWAP object.
1755  *
1756  *	Swap metadata is implemented with a global hash and not directly
1757  *	linked into the object.  Instead the object simply contains
1758  *	appropriate tracking counters.
1759  */
1760 
1761 /*
1762  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1763  */
1764 static bool
1765 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1766 {
1767 	int i;
1768 
1769 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1770 	for (i = start; i < limit; i++) {
1771 		if (sb->d[i] != SWAPBLK_NONE)
1772 			return (false);
1773 	}
1774 	return (true);
1775 }
1776 
1777 /*
1778  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1779  *
1780  *	We first convert the object to a swap object if it is a default
1781  *	object.
1782  *
1783  *	The specified swapblk is added to the object's swap metadata.  If
1784  *	the swapblk is not valid, it is freed instead.  Any previously
1785  *	assigned swapblk is freed.
1786  */
1787 static void
1788 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1789 {
1790 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1791 	struct swblk *sb, *sb1;
1792 	vm_pindex_t modpi, rdpi;
1793 	int error, i;
1794 
1795 	VM_OBJECT_ASSERT_WLOCKED(object);
1796 
1797 	/*
1798 	 * Convert default object to swap object if necessary
1799 	 */
1800 	if (object->type != OBJT_SWAP) {
1801 		pctrie_init(&object->un_pager.swp.swp_blks);
1802 
1803 		/*
1804 		 * Ensure that swap_pager_swapoff()'s iteration over
1805 		 * object_list does not see a garbage pctrie.
1806 		 */
1807 		atomic_thread_fence_rel();
1808 
1809 		object->type = OBJT_SWAP;
1810 		KASSERT(object->handle == NULL, ("default pager with handle"));
1811 	}
1812 
1813 	rdpi = rounddown(pindex, SWAP_META_PAGES);
1814 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1815 	if (sb == NULL) {
1816 		if (swapblk == SWAPBLK_NONE)
1817 			return;
1818 		for (;;) {
1819 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1820 			    pageproc ? M_USE_RESERVE : 0));
1821 			if (sb != NULL) {
1822 				sb->p = rdpi;
1823 				for (i = 0; i < SWAP_META_PAGES; i++)
1824 					sb->d[i] = SWAPBLK_NONE;
1825 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1826 				    1, 0))
1827 					printf("swblk zone ok\n");
1828 				break;
1829 			}
1830 			VM_OBJECT_WUNLOCK(object);
1831 			if (uma_zone_exhausted(swblk_zone)) {
1832 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1833 				    0, 1))
1834 					printf("swap blk zone exhausted, "
1835 					    "increase kern.maxswzone\n");
1836 				vm_pageout_oom(VM_OOM_SWAPZ);
1837 				pause("swzonxb", 10);
1838 			} else
1839 				uma_zwait(swblk_zone);
1840 			VM_OBJECT_WLOCK(object);
1841 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1842 			    rdpi);
1843 			if (sb != NULL)
1844 				/*
1845 				 * Somebody swapped out a nearby page,
1846 				 * allocating swblk at the rdpi index,
1847 				 * while we dropped the object lock.
1848 				 */
1849 				goto allocated;
1850 		}
1851 		for (;;) {
1852 			error = SWAP_PCTRIE_INSERT(
1853 			    &object->un_pager.swp.swp_blks, sb);
1854 			if (error == 0) {
1855 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1856 				    1, 0))
1857 					printf("swpctrie zone ok\n");
1858 				break;
1859 			}
1860 			VM_OBJECT_WUNLOCK(object);
1861 			if (uma_zone_exhausted(swpctrie_zone)) {
1862 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1863 				    0, 1))
1864 					printf("swap pctrie zone exhausted, "
1865 					    "increase kern.maxswzone\n");
1866 				vm_pageout_oom(VM_OOM_SWAPZ);
1867 				pause("swzonxp", 10);
1868 			} else
1869 				uma_zwait(swpctrie_zone);
1870 			VM_OBJECT_WLOCK(object);
1871 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1872 			    rdpi);
1873 			if (sb1 != NULL) {
1874 				uma_zfree(swblk_zone, sb);
1875 				sb = sb1;
1876 				goto allocated;
1877 			}
1878 		}
1879 	}
1880 allocated:
1881 	MPASS(sb->p == rdpi);
1882 
1883 	modpi = pindex % SWAP_META_PAGES;
1884 	/* Delete prior contents of metadata. */
1885 	if (sb->d[modpi] != SWAPBLK_NONE)
1886 		swp_pager_freeswapspace(sb->d[modpi], 1);
1887 	/* Enter block into metadata. */
1888 	sb->d[modpi] = swapblk;
1889 
1890 	/*
1891 	 * Free the swblk if we end up with the empty page run.
1892 	 */
1893 	if (swapblk == SWAPBLK_NONE &&
1894 	    swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1895 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1896 		uma_zfree(swblk_zone, sb);
1897 	}
1898 }
1899 
1900 /*
1901  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1902  *
1903  *	The requested range of blocks is freed, with any associated swap
1904  *	returned to the swap bitmap.
1905  *
1906  *	This routine will free swap metadata structures as they are cleaned
1907  *	out.  This routine does *NOT* operate on swap metadata associated
1908  *	with resident pages.
1909  */
1910 static void
1911 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1912 {
1913 	struct swblk *sb;
1914 	daddr_t first_free, num_free;
1915 	vm_pindex_t last;
1916 	int i, limit, start;
1917 
1918 	VM_OBJECT_ASSERT_WLOCKED(object);
1919 	if (object->type != OBJT_SWAP || count == 0)
1920 		return;
1921 
1922 	first_free = SWAPBLK_NONE;
1923 	num_free = 0;
1924 	last = pindex + count;
1925 	for (;;) {
1926 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1927 		    rounddown(pindex, SWAP_META_PAGES));
1928 		if (sb == NULL || sb->p >= last)
1929 			break;
1930 		start = pindex > sb->p ? pindex - sb->p : 0;
1931 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1932 		    SWAP_META_PAGES;
1933 		for (i = start; i < limit; i++) {
1934 			if (sb->d[i] == SWAPBLK_NONE)
1935 				continue;
1936 			if (first_free + num_free == sb->d[i])
1937 				num_free++;
1938 			else {
1939 				swp_pager_freeswapspace(first_free, num_free);
1940 				first_free = sb->d[i];
1941 				num_free = 1;
1942 			}
1943 			sb->d[i] = SWAPBLK_NONE;
1944 		}
1945 		if (swp_pager_swblk_empty(sb, 0, start) &&
1946 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
1947 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
1948 			    sb->p);
1949 			uma_zfree(swblk_zone, sb);
1950 		}
1951 		pindex = sb->p + SWAP_META_PAGES;
1952 	}
1953 	swp_pager_freeswapspace(first_free, num_free);
1954 }
1955 
1956 /*
1957  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1958  *
1959  *	This routine locates and destroys all swap metadata associated with
1960  *	an object.
1961  */
1962 static void
1963 swp_pager_meta_free_all(vm_object_t object)
1964 {
1965 	struct swblk *sb;
1966 	daddr_t first_free, num_free;
1967 	vm_pindex_t pindex;
1968 	int i;
1969 
1970 	VM_OBJECT_ASSERT_WLOCKED(object);
1971 	if (object->type != OBJT_SWAP)
1972 		return;
1973 
1974 	first_free = SWAPBLK_NONE;
1975 	num_free = 0;
1976 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1977 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
1978 		pindex = sb->p + SWAP_META_PAGES;
1979 		for (i = 0; i < SWAP_META_PAGES; i++) {
1980 			if (sb->d[i] == SWAPBLK_NONE)
1981 				continue;
1982 			if (first_free + num_free == sb->d[i])
1983 				num_free++;
1984 			else {
1985 				swp_pager_freeswapspace(first_free, num_free);
1986 				first_free = sb->d[i];
1987 				num_free = 1;
1988 			}
1989 		}
1990 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1991 		uma_zfree(swblk_zone, sb);
1992 	}
1993 	swp_pager_freeswapspace(first_free, num_free);
1994 }
1995 
1996 /*
1997  * SWP_PAGER_METACTL() -  misc control of swap meta data.
1998  *
1999  *	This routine is capable of looking up, or removing swapblk
2000  *	assignments in the swap meta data.  It returns the swapblk being
2001  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2002  *
2003  *	When acting on a busy resident page and paging is in progress, we
2004  *	have to wait until paging is complete but otherwise can act on the
2005  *	busy page.
2006  *
2007  *	SWM_POP		remove from meta data but do not free it
2008  */
2009 static daddr_t
2010 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2011 {
2012 	struct swblk *sb;
2013 	daddr_t r1;
2014 
2015 	if ((flags & SWM_POP) != 0)
2016 		VM_OBJECT_ASSERT_WLOCKED(object);
2017 	else
2018 		VM_OBJECT_ASSERT_LOCKED(object);
2019 
2020 	/*
2021 	 * The meta data only exists if the object is OBJT_SWAP
2022 	 * and even then might not be allocated yet.
2023 	 */
2024 	if (object->type != OBJT_SWAP)
2025 		return (SWAPBLK_NONE);
2026 
2027 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2028 	    rounddown(pindex, SWAP_META_PAGES));
2029 	if (sb == NULL)
2030 		return (SWAPBLK_NONE);
2031 	r1 = sb->d[pindex % SWAP_META_PAGES];
2032 	if (r1 == SWAPBLK_NONE)
2033 		return (SWAPBLK_NONE);
2034 	if ((flags & SWM_POP) != 0) {
2035 		sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2036 		if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2037 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2038 			    rounddown(pindex, SWAP_META_PAGES));
2039 			uma_zfree(swblk_zone, sb);
2040 		}
2041 	}
2042 	return (r1);
2043 }
2044 
2045 /*
2046  * Returns the least page index which is greater than or equal to the
2047  * parameter pindex and for which there is a swap block allocated.
2048  * Returns object's size if the object's type is not swap or if there
2049  * are no allocated swap blocks for the object after the requested
2050  * pindex.
2051  */
2052 vm_pindex_t
2053 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2054 {
2055 	struct swblk *sb;
2056 	int i;
2057 
2058 	VM_OBJECT_ASSERT_LOCKED(object);
2059 	if (object->type != OBJT_SWAP)
2060 		return (object->size);
2061 
2062 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2063 	    rounddown(pindex, SWAP_META_PAGES));
2064 	if (sb == NULL)
2065 		return (object->size);
2066 	if (sb->p < pindex) {
2067 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2068 			if (sb->d[i] != SWAPBLK_NONE)
2069 				return (sb->p + i);
2070 		}
2071 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2072 		    roundup(pindex, SWAP_META_PAGES));
2073 		if (sb == NULL)
2074 			return (object->size);
2075 	}
2076 	for (i = 0; i < SWAP_META_PAGES; i++) {
2077 		if (sb->d[i] != SWAPBLK_NONE)
2078 			return (sb->p + i);
2079 	}
2080 
2081 	/*
2082 	 * We get here if a swblk is present in the trie but it
2083 	 * doesn't map any blocks.
2084 	 */
2085 	MPASS(0);
2086 	return (object->size);
2087 }
2088 
2089 /*
2090  * System call swapon(name) enables swapping on device name,
2091  * which must be in the swdevsw.  Return EBUSY
2092  * if already swapping on this device.
2093  */
2094 #ifndef _SYS_SYSPROTO_H_
2095 struct swapon_args {
2096 	char *name;
2097 };
2098 #endif
2099 
2100 /*
2101  * MPSAFE
2102  */
2103 /* ARGSUSED */
2104 int
2105 sys_swapon(struct thread *td, struct swapon_args *uap)
2106 {
2107 	struct vattr attr;
2108 	struct vnode *vp;
2109 	struct nameidata nd;
2110 	int error;
2111 
2112 	error = priv_check(td, PRIV_SWAPON);
2113 	if (error)
2114 		return (error);
2115 
2116 	sx_xlock(&swdev_syscall_lock);
2117 
2118 	/*
2119 	 * Swap metadata may not fit in the KVM if we have physical
2120 	 * memory of >1GB.
2121 	 */
2122 	if (swblk_zone == NULL) {
2123 		error = ENOMEM;
2124 		goto done;
2125 	}
2126 
2127 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2128 	    uap->name, td);
2129 	error = namei(&nd);
2130 	if (error)
2131 		goto done;
2132 
2133 	NDFREE(&nd, NDF_ONLY_PNBUF);
2134 	vp = nd.ni_vp;
2135 
2136 	if (vn_isdisk(vp, &error)) {
2137 		error = swapongeom(vp);
2138 	} else if (vp->v_type == VREG &&
2139 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2140 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2141 		/*
2142 		 * Allow direct swapping to NFS regular files in the same
2143 		 * way that nfs_mountroot() sets up diskless swapping.
2144 		 */
2145 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2146 	}
2147 
2148 	if (error)
2149 		vrele(vp);
2150 done:
2151 	sx_xunlock(&swdev_syscall_lock);
2152 	return (error);
2153 }
2154 
2155 /*
2156  * Check that the total amount of swap currently configured does not
2157  * exceed half the theoretical maximum.  If it does, print a warning
2158  * message.
2159  */
2160 static void
2161 swapon_check_swzone(void)
2162 {
2163 	unsigned long maxpages, npages;
2164 
2165 	npages = swap_total / PAGE_SIZE;
2166 	/* absolute maximum we can handle assuming 100% efficiency */
2167 	maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2168 
2169 	/* recommend using no more than half that amount */
2170 	if (npages > maxpages / 2) {
2171 		printf("warning: total configured swap (%lu pages) "
2172 		    "exceeds maximum recommended amount (%lu pages).\n",
2173 		    npages, maxpages / 2);
2174 		printf("warning: increase kern.maxswzone "
2175 		    "or reduce amount of swap.\n");
2176 	}
2177 }
2178 
2179 static void
2180 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2181     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2182 {
2183 	struct swdevt *sp, *tsp;
2184 	swblk_t dvbase;
2185 	u_long mblocks;
2186 
2187 	/*
2188 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2189 	 * First chop nblks off to page-align it, then convert.
2190 	 *
2191 	 * sw->sw_nblks is in page-sized chunks now too.
2192 	 */
2193 	nblks &= ~(ctodb(1) - 1);
2194 	nblks = dbtoc(nblks);
2195 
2196 	/*
2197 	 * If we go beyond this, we get overflows in the radix
2198 	 * tree bitmap code.
2199 	 */
2200 	mblocks = 0x40000000 / BLIST_META_RADIX;
2201 	if (nblks > mblocks) {
2202 		printf(
2203     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2204 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2205 		nblks = mblocks;
2206 	}
2207 
2208 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2209 	sp->sw_vp = vp;
2210 	sp->sw_id = id;
2211 	sp->sw_dev = dev;
2212 	sp->sw_flags = 0;
2213 	sp->sw_nblks = nblks;
2214 	sp->sw_used = 0;
2215 	sp->sw_strategy = strategy;
2216 	sp->sw_close = close;
2217 	sp->sw_flags = flags;
2218 
2219 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2220 	/*
2221 	 * Do not free the first two block in order to avoid overwriting
2222 	 * any bsd label at the front of the partition
2223 	 */
2224 	blist_free(sp->sw_blist, 2, nblks - 2);
2225 
2226 	dvbase = 0;
2227 	mtx_lock(&sw_dev_mtx);
2228 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2229 		if (tsp->sw_end >= dvbase) {
2230 			/*
2231 			 * We put one uncovered page between the devices
2232 			 * in order to definitively prevent any cross-device
2233 			 * I/O requests
2234 			 */
2235 			dvbase = tsp->sw_end + 1;
2236 		}
2237 	}
2238 	sp->sw_first = dvbase;
2239 	sp->sw_end = dvbase + nblks;
2240 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2241 	nswapdev++;
2242 	swap_pager_avail += nblks - 2;
2243 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2244 	swapon_check_swzone();
2245 	swp_sizecheck();
2246 	mtx_unlock(&sw_dev_mtx);
2247 	EVENTHANDLER_INVOKE(swapon, sp);
2248 }
2249 
2250 /*
2251  * SYSCALL: swapoff(devname)
2252  *
2253  * Disable swapping on the given device.
2254  *
2255  * XXX: Badly designed system call: it should use a device index
2256  * rather than filename as specification.  We keep sw_vp around
2257  * only to make this work.
2258  */
2259 #ifndef _SYS_SYSPROTO_H_
2260 struct swapoff_args {
2261 	char *name;
2262 };
2263 #endif
2264 
2265 /*
2266  * MPSAFE
2267  */
2268 /* ARGSUSED */
2269 int
2270 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2271 {
2272 	struct vnode *vp;
2273 	struct nameidata nd;
2274 	struct swdevt *sp;
2275 	int error;
2276 
2277 	error = priv_check(td, PRIV_SWAPOFF);
2278 	if (error)
2279 		return (error);
2280 
2281 	sx_xlock(&swdev_syscall_lock);
2282 
2283 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2284 	    td);
2285 	error = namei(&nd);
2286 	if (error)
2287 		goto done;
2288 	NDFREE(&nd, NDF_ONLY_PNBUF);
2289 	vp = nd.ni_vp;
2290 
2291 	mtx_lock(&sw_dev_mtx);
2292 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2293 		if (sp->sw_vp == vp)
2294 			break;
2295 	}
2296 	mtx_unlock(&sw_dev_mtx);
2297 	if (sp == NULL) {
2298 		error = EINVAL;
2299 		goto done;
2300 	}
2301 	error = swapoff_one(sp, td->td_ucred);
2302 done:
2303 	sx_xunlock(&swdev_syscall_lock);
2304 	return (error);
2305 }
2306 
2307 static int
2308 swapoff_one(struct swdevt *sp, struct ucred *cred)
2309 {
2310 	u_long nblks;
2311 #ifdef MAC
2312 	int error;
2313 #endif
2314 
2315 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2316 #ifdef MAC
2317 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2318 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2319 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2320 	if (error != 0)
2321 		return (error);
2322 #endif
2323 	nblks = sp->sw_nblks;
2324 
2325 	/*
2326 	 * We can turn off this swap device safely only if the
2327 	 * available virtual memory in the system will fit the amount
2328 	 * of data we will have to page back in, plus an epsilon so
2329 	 * the system doesn't become critically low on swap space.
2330 	 */
2331 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2332 		return (ENOMEM);
2333 
2334 	/*
2335 	 * Prevent further allocations on this device.
2336 	 */
2337 	mtx_lock(&sw_dev_mtx);
2338 	sp->sw_flags |= SW_CLOSING;
2339 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2340 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2341 	mtx_unlock(&sw_dev_mtx);
2342 
2343 	/*
2344 	 * Page in the contents of the device and close it.
2345 	 */
2346 	swap_pager_swapoff(sp);
2347 
2348 	sp->sw_close(curthread, sp);
2349 	mtx_lock(&sw_dev_mtx);
2350 	sp->sw_id = NULL;
2351 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2352 	nswapdev--;
2353 	if (nswapdev == 0) {
2354 		swap_pager_full = 2;
2355 		swap_pager_almost_full = 1;
2356 	}
2357 	if (swdevhd == sp)
2358 		swdevhd = NULL;
2359 	mtx_unlock(&sw_dev_mtx);
2360 	blist_destroy(sp->sw_blist);
2361 	free(sp, M_VMPGDATA);
2362 	return (0);
2363 }
2364 
2365 void
2366 swapoff_all(void)
2367 {
2368 	struct swdevt *sp, *spt;
2369 	const char *devname;
2370 	int error;
2371 
2372 	sx_xlock(&swdev_syscall_lock);
2373 
2374 	mtx_lock(&sw_dev_mtx);
2375 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2376 		mtx_unlock(&sw_dev_mtx);
2377 		if (vn_isdisk(sp->sw_vp, NULL))
2378 			devname = devtoname(sp->sw_vp->v_rdev);
2379 		else
2380 			devname = "[file]";
2381 		error = swapoff_one(sp, thread0.td_ucred);
2382 		if (error != 0) {
2383 			printf("Cannot remove swap device %s (error=%d), "
2384 			    "skipping.\n", devname, error);
2385 		} else if (bootverbose) {
2386 			printf("Swap device %s removed.\n", devname);
2387 		}
2388 		mtx_lock(&sw_dev_mtx);
2389 	}
2390 	mtx_unlock(&sw_dev_mtx);
2391 
2392 	sx_xunlock(&swdev_syscall_lock);
2393 }
2394 
2395 void
2396 swap_pager_status(int *total, int *used)
2397 {
2398 	struct swdevt *sp;
2399 
2400 	*total = 0;
2401 	*used = 0;
2402 	mtx_lock(&sw_dev_mtx);
2403 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2404 		*total += sp->sw_nblks;
2405 		*used += sp->sw_used;
2406 	}
2407 	mtx_unlock(&sw_dev_mtx);
2408 }
2409 
2410 int
2411 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2412 {
2413 	struct swdevt *sp;
2414 	const char *tmp_devname;
2415 	int error, n;
2416 
2417 	n = 0;
2418 	error = ENOENT;
2419 	mtx_lock(&sw_dev_mtx);
2420 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2421 		if (n != name) {
2422 			n++;
2423 			continue;
2424 		}
2425 		xs->xsw_version = XSWDEV_VERSION;
2426 		xs->xsw_dev = sp->sw_dev;
2427 		xs->xsw_flags = sp->sw_flags;
2428 		xs->xsw_nblks = sp->sw_nblks;
2429 		xs->xsw_used = sp->sw_used;
2430 		if (devname != NULL) {
2431 			if (vn_isdisk(sp->sw_vp, NULL))
2432 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2433 			else
2434 				tmp_devname = "[file]";
2435 			strncpy(devname, tmp_devname, len);
2436 		}
2437 		error = 0;
2438 		break;
2439 	}
2440 	mtx_unlock(&sw_dev_mtx);
2441 	return (error);
2442 }
2443 
2444 #if defined(COMPAT_FREEBSD11)
2445 #define XSWDEV_VERSION_11	1
2446 struct xswdev11 {
2447 	u_int	xsw_version;
2448 	uint32_t xsw_dev;
2449 	int	xsw_flags;
2450 	int	xsw_nblks;
2451 	int     xsw_used;
2452 };
2453 #endif
2454 
2455 static int
2456 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2457 {
2458 	struct xswdev xs;
2459 #if defined(COMPAT_FREEBSD11)
2460 	struct xswdev11 xs11;
2461 #endif
2462 	int error;
2463 
2464 	if (arg2 != 1)			/* name length */
2465 		return (EINVAL);
2466 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2467 	if (error != 0)
2468 		return (error);
2469 #if defined(COMPAT_FREEBSD11)
2470 	if (req->oldlen == sizeof(xs11)) {
2471 		xs11.xsw_version = XSWDEV_VERSION_11;
2472 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2473 		xs11.xsw_flags = xs.xsw_flags;
2474 		xs11.xsw_nblks = xs.xsw_nblks;
2475 		xs11.xsw_used = xs.xsw_used;
2476 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2477 	} else
2478 #endif
2479 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
2480 	return (error);
2481 }
2482 
2483 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2484     "Number of swap devices");
2485 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2486     sysctl_vm_swap_info,
2487     "Swap statistics by device");
2488 
2489 /*
2490  * Count the approximate swap usage in pages for a vmspace.  The
2491  * shadowed or not yet copied on write swap blocks are not accounted.
2492  * The map must be locked.
2493  */
2494 long
2495 vmspace_swap_count(struct vmspace *vmspace)
2496 {
2497 	vm_map_t map;
2498 	vm_map_entry_t cur;
2499 	vm_object_t object;
2500 	struct swblk *sb;
2501 	vm_pindex_t e, pi;
2502 	long count;
2503 	int i;
2504 
2505 	map = &vmspace->vm_map;
2506 	count = 0;
2507 
2508 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2509 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2510 			continue;
2511 		object = cur->object.vm_object;
2512 		if (object == NULL || object->type != OBJT_SWAP)
2513 			continue;
2514 		VM_OBJECT_RLOCK(object);
2515 		if (object->type != OBJT_SWAP)
2516 			goto unlock;
2517 		pi = OFF_TO_IDX(cur->offset);
2518 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2519 		for (;; pi = sb->p + SWAP_META_PAGES) {
2520 			sb = SWAP_PCTRIE_LOOKUP_GE(
2521 			    &object->un_pager.swp.swp_blks, pi);
2522 			if (sb == NULL || sb->p >= e)
2523 				break;
2524 			for (i = 0; i < SWAP_META_PAGES; i++) {
2525 				if (sb->p + i < e &&
2526 				    sb->d[i] != SWAPBLK_NONE)
2527 					count++;
2528 			}
2529 		}
2530 unlock:
2531 		VM_OBJECT_RUNLOCK(object);
2532 	}
2533 	return (count);
2534 }
2535 
2536 /*
2537  * GEOM backend
2538  *
2539  * Swapping onto disk devices.
2540  *
2541  */
2542 
2543 static g_orphan_t swapgeom_orphan;
2544 
2545 static struct g_class g_swap_class = {
2546 	.name = "SWAP",
2547 	.version = G_VERSION,
2548 	.orphan = swapgeom_orphan,
2549 };
2550 
2551 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2552 
2553 
2554 static void
2555 swapgeom_close_ev(void *arg, int flags)
2556 {
2557 	struct g_consumer *cp;
2558 
2559 	cp = arg;
2560 	g_access(cp, -1, -1, 0);
2561 	g_detach(cp);
2562 	g_destroy_consumer(cp);
2563 }
2564 
2565 /*
2566  * Add a reference to the g_consumer for an inflight transaction.
2567  */
2568 static void
2569 swapgeom_acquire(struct g_consumer *cp)
2570 {
2571 
2572 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2573 	cp->index++;
2574 }
2575 
2576 /*
2577  * Remove a reference from the g_consumer.  Post a close event if all
2578  * references go away, since the function might be called from the
2579  * biodone context.
2580  */
2581 static void
2582 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2583 {
2584 
2585 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2586 	cp->index--;
2587 	if (cp->index == 0) {
2588 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2589 			sp->sw_id = NULL;
2590 	}
2591 }
2592 
2593 static void
2594 swapgeom_done(struct bio *bp2)
2595 {
2596 	struct swdevt *sp;
2597 	struct buf *bp;
2598 	struct g_consumer *cp;
2599 
2600 	bp = bp2->bio_caller2;
2601 	cp = bp2->bio_from;
2602 	bp->b_ioflags = bp2->bio_flags;
2603 	if (bp2->bio_error)
2604 		bp->b_ioflags |= BIO_ERROR;
2605 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2606 	bp->b_error = bp2->bio_error;
2607 	bufdone(bp);
2608 	sp = bp2->bio_caller1;
2609 	mtx_lock(&sw_dev_mtx);
2610 	swapgeom_release(cp, sp);
2611 	mtx_unlock(&sw_dev_mtx);
2612 	g_destroy_bio(bp2);
2613 }
2614 
2615 static void
2616 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2617 {
2618 	struct bio *bio;
2619 	struct g_consumer *cp;
2620 
2621 	mtx_lock(&sw_dev_mtx);
2622 	cp = sp->sw_id;
2623 	if (cp == NULL) {
2624 		mtx_unlock(&sw_dev_mtx);
2625 		bp->b_error = ENXIO;
2626 		bp->b_ioflags |= BIO_ERROR;
2627 		bufdone(bp);
2628 		return;
2629 	}
2630 	swapgeom_acquire(cp);
2631 	mtx_unlock(&sw_dev_mtx);
2632 	if (bp->b_iocmd == BIO_WRITE)
2633 		bio = g_new_bio();
2634 	else
2635 		bio = g_alloc_bio();
2636 	if (bio == NULL) {
2637 		mtx_lock(&sw_dev_mtx);
2638 		swapgeom_release(cp, sp);
2639 		mtx_unlock(&sw_dev_mtx);
2640 		bp->b_error = ENOMEM;
2641 		bp->b_ioflags |= BIO_ERROR;
2642 		bufdone(bp);
2643 		return;
2644 	}
2645 
2646 	bio->bio_caller1 = sp;
2647 	bio->bio_caller2 = bp;
2648 	bio->bio_cmd = bp->b_iocmd;
2649 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2650 	bio->bio_length = bp->b_bcount;
2651 	bio->bio_done = swapgeom_done;
2652 	if (!buf_mapped(bp)) {
2653 		bio->bio_ma = bp->b_pages;
2654 		bio->bio_data = unmapped_buf;
2655 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2656 		bio->bio_ma_n = bp->b_npages;
2657 		bio->bio_flags |= BIO_UNMAPPED;
2658 	} else {
2659 		bio->bio_data = bp->b_data;
2660 		bio->bio_ma = NULL;
2661 	}
2662 	g_io_request(bio, cp);
2663 	return;
2664 }
2665 
2666 static void
2667 swapgeom_orphan(struct g_consumer *cp)
2668 {
2669 	struct swdevt *sp;
2670 	int destroy;
2671 
2672 	mtx_lock(&sw_dev_mtx);
2673 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2674 		if (sp->sw_id == cp) {
2675 			sp->sw_flags |= SW_CLOSING;
2676 			break;
2677 		}
2678 	}
2679 	/*
2680 	 * Drop reference we were created with. Do directly since we're in a
2681 	 * special context where we don't have to queue the call to
2682 	 * swapgeom_close_ev().
2683 	 */
2684 	cp->index--;
2685 	destroy = ((sp != NULL) && (cp->index == 0));
2686 	if (destroy)
2687 		sp->sw_id = NULL;
2688 	mtx_unlock(&sw_dev_mtx);
2689 	if (destroy)
2690 		swapgeom_close_ev(cp, 0);
2691 }
2692 
2693 static void
2694 swapgeom_close(struct thread *td, struct swdevt *sw)
2695 {
2696 	struct g_consumer *cp;
2697 
2698 	mtx_lock(&sw_dev_mtx);
2699 	cp = sw->sw_id;
2700 	sw->sw_id = NULL;
2701 	mtx_unlock(&sw_dev_mtx);
2702 
2703 	/*
2704 	 * swapgeom_close() may be called from the biodone context,
2705 	 * where we cannot perform topology changes.  Delegate the
2706 	 * work to the events thread.
2707 	 */
2708 	if (cp != NULL)
2709 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2710 }
2711 
2712 static int
2713 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2714 {
2715 	struct g_provider *pp;
2716 	struct g_consumer *cp;
2717 	static struct g_geom *gp;
2718 	struct swdevt *sp;
2719 	u_long nblks;
2720 	int error;
2721 
2722 	pp = g_dev_getprovider(dev);
2723 	if (pp == NULL)
2724 		return (ENODEV);
2725 	mtx_lock(&sw_dev_mtx);
2726 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2727 		cp = sp->sw_id;
2728 		if (cp != NULL && cp->provider == pp) {
2729 			mtx_unlock(&sw_dev_mtx);
2730 			return (EBUSY);
2731 		}
2732 	}
2733 	mtx_unlock(&sw_dev_mtx);
2734 	if (gp == NULL)
2735 		gp = g_new_geomf(&g_swap_class, "swap");
2736 	cp = g_new_consumer(gp);
2737 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2738 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2739 	g_attach(cp, pp);
2740 	/*
2741 	 * XXX: Every time you think you can improve the margin for
2742 	 * footshooting, somebody depends on the ability to do so:
2743 	 * savecore(8) wants to write to our swapdev so we cannot
2744 	 * set an exclusive count :-(
2745 	 */
2746 	error = g_access(cp, 1, 1, 0);
2747 	if (error != 0) {
2748 		g_detach(cp);
2749 		g_destroy_consumer(cp);
2750 		return (error);
2751 	}
2752 	nblks = pp->mediasize / DEV_BSIZE;
2753 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2754 	    swapgeom_close, dev2udev(dev),
2755 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2756 	return (0);
2757 }
2758 
2759 static int
2760 swapongeom(struct vnode *vp)
2761 {
2762 	int error;
2763 
2764 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2765 	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2766 		error = ENOENT;
2767 	} else {
2768 		g_topology_lock();
2769 		error = swapongeom_locked(vp->v_rdev, vp);
2770 		g_topology_unlock();
2771 	}
2772 	VOP_UNLOCK(vp, 0);
2773 	return (error);
2774 }
2775 
2776 /*
2777  * VNODE backend
2778  *
2779  * This is used mainly for network filesystem (read: probably only tested
2780  * with NFS) swapfiles.
2781  *
2782  */
2783 
2784 static void
2785 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2786 {
2787 	struct vnode *vp2;
2788 
2789 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2790 
2791 	vp2 = sp->sw_id;
2792 	vhold(vp2);
2793 	if (bp->b_iocmd == BIO_WRITE) {
2794 		if (bp->b_bufobj)
2795 			bufobj_wdrop(bp->b_bufobj);
2796 		bufobj_wref(&vp2->v_bufobj);
2797 	}
2798 	if (bp->b_bufobj != &vp2->v_bufobj)
2799 		bp->b_bufobj = &vp2->v_bufobj;
2800 	bp->b_vp = vp2;
2801 	bp->b_iooffset = dbtob(bp->b_blkno);
2802 	bstrategy(bp);
2803 	return;
2804 }
2805 
2806 static void
2807 swapdev_close(struct thread *td, struct swdevt *sp)
2808 {
2809 
2810 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2811 	vrele(sp->sw_vp);
2812 }
2813 
2814 
2815 static int
2816 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2817 {
2818 	struct swdevt *sp;
2819 	int error;
2820 
2821 	if (nblks == 0)
2822 		return (ENXIO);
2823 	mtx_lock(&sw_dev_mtx);
2824 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2825 		if (sp->sw_id == vp) {
2826 			mtx_unlock(&sw_dev_mtx);
2827 			return (EBUSY);
2828 		}
2829 	}
2830 	mtx_unlock(&sw_dev_mtx);
2831 
2832 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2833 #ifdef MAC
2834 	error = mac_system_check_swapon(td->td_ucred, vp);
2835 	if (error == 0)
2836 #endif
2837 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2838 	(void) VOP_UNLOCK(vp, 0);
2839 	if (error)
2840 		return (error);
2841 
2842 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2843 	    NODEV, 0);
2844 	return (0);
2845 }
2846 
2847 static int
2848 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2849 {
2850 	int error, new, n;
2851 
2852 	new = nsw_wcount_async_max;
2853 	error = sysctl_handle_int(oidp, &new, 0, req);
2854 	if (error != 0 || req->newptr == NULL)
2855 		return (error);
2856 
2857 	if (new > nswbuf / 2 || new < 1)
2858 		return (EINVAL);
2859 
2860 	mtx_lock(&pbuf_mtx);
2861 	while (nsw_wcount_async_max != new) {
2862 		/*
2863 		 * Adjust difference.  If the current async count is too low,
2864 		 * we will need to sqeeze our update slowly in.  Sleep with a
2865 		 * higher priority than getpbuf() to finish faster.
2866 		 */
2867 		n = new - nsw_wcount_async_max;
2868 		if (nsw_wcount_async + n >= 0) {
2869 			nsw_wcount_async += n;
2870 			nsw_wcount_async_max += n;
2871 			wakeup(&nsw_wcount_async);
2872 		} else {
2873 			nsw_wcount_async_max -= nsw_wcount_async;
2874 			nsw_wcount_async = 0;
2875 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2876 			    "swpsysctl", 0);
2877 		}
2878 	}
2879 	mtx_unlock(&pbuf_mtx);
2880 
2881 	return (0);
2882 }
2883