1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1998 Matthew Dillon, 5 * Copyright (c) 1994 John S. Dyson 6 * Copyright (c) 1990 University of Utah. 7 * Copyright (c) 1982, 1986, 1989, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * New Swap System 43 * Matthew Dillon 44 * 45 * Radix Bitmap 'blists'. 46 * 47 * - The new swapper uses the new radix bitmap code. This should scale 48 * to arbitrarily small or arbitrarily large swap spaces and an almost 49 * arbitrary degree of fragmentation. 50 * 51 * Features: 52 * 53 * - on the fly reallocation of swap during putpages. The new system 54 * does not try to keep previously allocated swap blocks for dirty 55 * pages. 56 * 57 * - on the fly deallocation of swap 58 * 59 * - No more garbage collection required. Unnecessarily allocated swap 60 * blocks only exist for dirty vm_page_t's now and these are already 61 * cycled (in a high-load system) by the pager. We also do on-the-fly 62 * removal of invalidated swap blocks when a page is destroyed 63 * or renamed. 64 * 65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 66 * 67 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 68 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_compat.h" 75 #include "opt_swap.h" 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/conf.h> 81 #include <sys/kernel.h> 82 #include <sys/priv.h> 83 #include <sys/proc.h> 84 #include <sys/bio.h> 85 #include <sys/buf.h> 86 #include <sys/disk.h> 87 #include <sys/fcntl.h> 88 #include <sys/mount.h> 89 #include <sys/namei.h> 90 #include <sys/vnode.h> 91 #include <sys/malloc.h> 92 #include <sys/pctrie.h> 93 #include <sys/racct.h> 94 #include <sys/resource.h> 95 #include <sys/resourcevar.h> 96 #include <sys/rwlock.h> 97 #include <sys/sbuf.h> 98 #include <sys/sysctl.h> 99 #include <sys/sysproto.h> 100 #include <sys/blist.h> 101 #include <sys/lock.h> 102 #include <sys/sx.h> 103 #include <sys/vmmeter.h> 104 105 #include <security/mac/mac_framework.h> 106 107 #include <vm/vm.h> 108 #include <vm/pmap.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_object.h> 112 #include <vm/vm_page.h> 113 #include <vm/vm_pager.h> 114 #include <vm/vm_pageout.h> 115 #include <vm/vm_param.h> 116 #include <vm/swap_pager.h> 117 #include <vm/vm_extern.h> 118 #include <vm/uma.h> 119 120 #include <geom/geom.h> 121 122 /* 123 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 124 * The 64-page limit is due to the radix code (kern/subr_blist.c). 125 */ 126 #ifndef MAX_PAGEOUT_CLUSTER 127 #define MAX_PAGEOUT_CLUSTER 32 128 #endif 129 130 #if !defined(SWB_NPAGES) 131 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 132 #endif 133 134 #define SWAP_META_PAGES PCTRIE_COUNT 135 136 /* 137 * A swblk structure maps each page index within a 138 * SWAP_META_PAGES-aligned and sized range to the address of an 139 * on-disk swap block (or SWAPBLK_NONE). The collection of these 140 * mappings for an entire vm object is implemented as a pc-trie. 141 */ 142 struct swblk { 143 vm_pindex_t p; 144 daddr_t d[SWAP_META_PAGES]; 145 }; 146 147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 148 static struct mtx sw_dev_mtx; 149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 150 static struct swdevt *swdevhd; /* Allocate from here next */ 151 static int nswapdev; /* Number of swap devices */ 152 int swap_pager_avail; 153 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 154 155 static vm_ooffset_t swap_total; 156 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 157 "Total amount of available swap storage."); 158 static vm_ooffset_t swap_reserved; 159 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 160 "Amount of swap storage needed to back all allocated anonymous memory."); 161 static int overcommit = 0; 162 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0, 163 "Configure virtual memory overcommit behavior. See tuning(7) " 164 "for details."); 165 static unsigned long swzone; 166 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 167 "Actual size of swap metadata zone"); 168 static unsigned long swap_maxpages; 169 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 170 "Maximum amount of swap supported"); 171 172 /* bits from overcommit */ 173 #define SWAP_RESERVE_FORCE_ON (1 << 0) 174 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 175 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 176 177 int 178 swap_reserve(vm_ooffset_t incr) 179 { 180 181 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 182 } 183 184 int 185 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 186 { 187 vm_ooffset_t r, s; 188 int res, error; 189 static int curfail; 190 static struct timeval lastfail; 191 struct uidinfo *uip; 192 193 uip = cred->cr_ruidinfo; 194 195 if (incr & PAGE_MASK) 196 panic("swap_reserve: & PAGE_MASK"); 197 198 #ifdef RACCT 199 if (racct_enable) { 200 PROC_LOCK(curproc); 201 error = racct_add(curproc, RACCT_SWAP, incr); 202 PROC_UNLOCK(curproc); 203 if (error != 0) 204 return (0); 205 } 206 #endif 207 208 res = 0; 209 mtx_lock(&sw_dev_mtx); 210 r = swap_reserved + incr; 211 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 212 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - 213 vm_wire_count(); 214 s *= PAGE_SIZE; 215 } else 216 s = 0; 217 s += swap_total; 218 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 219 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 220 res = 1; 221 swap_reserved = r; 222 } 223 mtx_unlock(&sw_dev_mtx); 224 225 if (res) { 226 UIDINFO_VMSIZE_LOCK(uip); 227 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 228 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 229 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 230 res = 0; 231 else 232 uip->ui_vmsize += incr; 233 UIDINFO_VMSIZE_UNLOCK(uip); 234 if (!res) { 235 mtx_lock(&sw_dev_mtx); 236 swap_reserved -= incr; 237 mtx_unlock(&sw_dev_mtx); 238 } 239 } 240 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 241 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 242 uip->ui_uid, curproc->p_pid, incr); 243 } 244 245 #ifdef RACCT 246 if (!res) { 247 PROC_LOCK(curproc); 248 racct_sub(curproc, RACCT_SWAP, incr); 249 PROC_UNLOCK(curproc); 250 } 251 #endif 252 253 return (res); 254 } 255 256 void 257 swap_reserve_force(vm_ooffset_t incr) 258 { 259 struct uidinfo *uip; 260 261 mtx_lock(&sw_dev_mtx); 262 swap_reserved += incr; 263 mtx_unlock(&sw_dev_mtx); 264 265 #ifdef RACCT 266 PROC_LOCK(curproc); 267 racct_add_force(curproc, RACCT_SWAP, incr); 268 PROC_UNLOCK(curproc); 269 #endif 270 271 uip = curthread->td_ucred->cr_ruidinfo; 272 PROC_LOCK(curproc); 273 UIDINFO_VMSIZE_LOCK(uip); 274 uip->ui_vmsize += incr; 275 UIDINFO_VMSIZE_UNLOCK(uip); 276 PROC_UNLOCK(curproc); 277 } 278 279 void 280 swap_release(vm_ooffset_t decr) 281 { 282 struct ucred *cred; 283 284 PROC_LOCK(curproc); 285 cred = curthread->td_ucred; 286 swap_release_by_cred(decr, cred); 287 PROC_UNLOCK(curproc); 288 } 289 290 void 291 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 292 { 293 struct uidinfo *uip; 294 295 uip = cred->cr_ruidinfo; 296 297 if (decr & PAGE_MASK) 298 panic("swap_release: & PAGE_MASK"); 299 300 mtx_lock(&sw_dev_mtx); 301 if (swap_reserved < decr) 302 panic("swap_reserved < decr"); 303 swap_reserved -= decr; 304 mtx_unlock(&sw_dev_mtx); 305 306 UIDINFO_VMSIZE_LOCK(uip); 307 if (uip->ui_vmsize < decr) 308 printf("negative vmsize for uid = %d\n", uip->ui_uid); 309 uip->ui_vmsize -= decr; 310 UIDINFO_VMSIZE_UNLOCK(uip); 311 312 racct_sub_cred(cred, RACCT_SWAP, decr); 313 } 314 315 #define SWM_POP 0x01 /* pop out */ 316 317 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 318 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 319 static int nsw_rcount; /* free read buffers */ 320 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 321 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 322 static int nsw_wcount_async_max;/* assigned maximum */ 323 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 324 325 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 326 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 327 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 328 "Maximum running async swap ops"); 329 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS); 330 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD | 331 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A", 332 "Swap Fragmentation Info"); 333 334 static struct sx sw_alloc_sx; 335 336 /* 337 * "named" and "unnamed" anon region objects. Try to reduce the overhead 338 * of searching a named list by hashing it just a little. 339 */ 340 341 #define NOBJLISTS 8 342 343 #define NOBJLIST(handle) \ 344 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 345 346 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 347 static uma_zone_t swblk_zone; 348 static uma_zone_t swpctrie_zone; 349 350 /* 351 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 352 * calls hooked from other parts of the VM system and do not appear here. 353 * (see vm/swap_pager.h). 354 */ 355 static vm_object_t 356 swap_pager_alloc(void *handle, vm_ooffset_t size, 357 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 358 static void swap_pager_dealloc(vm_object_t object); 359 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 360 int *); 361 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 362 int *, pgo_getpages_iodone_t, void *); 363 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 364 static boolean_t 365 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 366 static void swap_pager_init(void); 367 static void swap_pager_unswapped(vm_page_t); 368 static void swap_pager_swapoff(struct swdevt *sp); 369 370 struct pagerops swappagerops = { 371 .pgo_init = swap_pager_init, /* early system initialization of pager */ 372 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 373 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 374 .pgo_getpages = swap_pager_getpages, /* pagein */ 375 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 376 .pgo_putpages = swap_pager_putpages, /* pageout */ 377 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 378 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 379 }; 380 381 /* 382 * swap_*() routines are externally accessible. swp_*() routines are 383 * internal. 384 */ 385 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 386 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 387 388 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 389 "Maximum size of a swap block in pages"); 390 391 static void swp_sizecheck(void); 392 static void swp_pager_async_iodone(struct buf *bp); 393 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit); 394 static int swapongeom(struct vnode *); 395 static int swaponvp(struct thread *, struct vnode *, u_long); 396 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 397 398 /* 399 * Swap bitmap functions 400 */ 401 static void swp_pager_freeswapspace(daddr_t blk, daddr_t npages); 402 static daddr_t swp_pager_getswapspace(int npages); 403 404 /* 405 * Metadata functions 406 */ 407 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 408 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 409 static void swp_pager_meta_free_all(vm_object_t); 410 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 411 412 static void * 413 swblk_trie_alloc(struct pctrie *ptree) 414 { 415 416 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ? 417 M_USE_RESERVE : 0))); 418 } 419 420 static void 421 swblk_trie_free(struct pctrie *ptree, void *node) 422 { 423 424 uma_zfree(swpctrie_zone, node); 425 } 426 427 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free); 428 429 /* 430 * SWP_SIZECHECK() - update swap_pager_full indication 431 * 432 * update the swap_pager_almost_full indication and warn when we are 433 * about to run out of swap space, using lowat/hiwat hysteresis. 434 * 435 * Clear swap_pager_full ( task killing ) indication when lowat is met. 436 * 437 * No restrictions on call 438 * This routine may not block. 439 */ 440 static void 441 swp_sizecheck(void) 442 { 443 444 if (swap_pager_avail < nswap_lowat) { 445 if (swap_pager_almost_full == 0) { 446 printf("swap_pager: out of swap space\n"); 447 swap_pager_almost_full = 1; 448 } 449 } else { 450 swap_pager_full = 0; 451 if (swap_pager_avail > nswap_hiwat) 452 swap_pager_almost_full = 0; 453 } 454 } 455 456 /* 457 * SWAP_PAGER_INIT() - initialize the swap pager! 458 * 459 * Expected to be started from system init. NOTE: This code is run 460 * before much else so be careful what you depend on. Most of the VM 461 * system has yet to be initialized at this point. 462 */ 463 static void 464 swap_pager_init(void) 465 { 466 /* 467 * Initialize object lists 468 */ 469 int i; 470 471 for (i = 0; i < NOBJLISTS; ++i) 472 TAILQ_INIT(&swap_pager_object_list[i]); 473 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 474 sx_init(&sw_alloc_sx, "swspsx"); 475 sx_init(&swdev_syscall_lock, "swsysc"); 476 } 477 478 /* 479 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 480 * 481 * Expected to be started from pageout process once, prior to entering 482 * its main loop. 483 */ 484 void 485 swap_pager_swap_init(void) 486 { 487 unsigned long n, n2; 488 489 /* 490 * Number of in-transit swap bp operations. Don't 491 * exhaust the pbufs completely. Make sure we 492 * initialize workable values (0 will work for hysteresis 493 * but it isn't very efficient). 494 * 495 * The nsw_cluster_max is constrained by the bp->b_pages[] 496 * array (MAXPHYS/PAGE_SIZE) and our locally defined 497 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 498 * constrained by the swap device interleave stripe size. 499 * 500 * Currently we hardwire nsw_wcount_async to 4. This limit is 501 * designed to prevent other I/O from having high latencies due to 502 * our pageout I/O. The value 4 works well for one or two active swap 503 * devices but is probably a little low if you have more. Even so, 504 * a higher value would probably generate only a limited improvement 505 * with three or four active swap devices since the system does not 506 * typically have to pageout at extreme bandwidths. We will want 507 * at least 2 per swap devices, and 4 is a pretty good value if you 508 * have one NFS swap device due to the command/ack latency over NFS. 509 * So it all works out pretty well. 510 */ 511 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 512 513 mtx_lock(&pbuf_mtx); 514 nsw_rcount = (nswbuf + 1) / 2; 515 nsw_wcount_sync = (nswbuf + 3) / 4; 516 nsw_wcount_async = 4; 517 nsw_wcount_async_max = nsw_wcount_async; 518 mtx_unlock(&pbuf_mtx); 519 520 /* 521 * Initialize our zone, guessing on the number we need based 522 * on the number of pages in the system. 523 */ 524 n = vm_cnt.v_page_count / 2; 525 if (maxswzone && n > maxswzone / sizeof(struct swblk)) 526 n = maxswzone / sizeof(struct swblk); 527 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL, 528 pctrie_zone_init, NULL, UMA_ALIGN_PTR, 529 UMA_ZONE_NOFREE | UMA_ZONE_VM); 530 if (swpctrie_zone == NULL) 531 panic("failed to create swap pctrie zone."); 532 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL, 533 NULL, NULL, _Alignof(struct swblk) - 1, 534 UMA_ZONE_NOFREE | UMA_ZONE_VM); 535 if (swblk_zone == NULL) 536 panic("failed to create swap blk zone."); 537 n2 = n; 538 do { 539 if (uma_zone_reserve_kva(swblk_zone, n)) 540 break; 541 /* 542 * if the allocation failed, try a zone two thirds the 543 * size of the previous attempt. 544 */ 545 n -= ((n + 2) / 3); 546 } while (n > 0); 547 548 /* 549 * Often uma_zone_reserve_kva() cannot reserve exactly the 550 * requested size. Account for the difference when 551 * calculating swap_maxpages. 552 */ 553 n = uma_zone_get_max(swblk_zone); 554 555 if (n < n2) 556 printf("Swap blk zone entries reduced from %lu to %lu.\n", 557 n2, n); 558 swap_maxpages = n * SWAP_META_PAGES; 559 swzone = n * sizeof(struct swblk); 560 if (!uma_zone_reserve_kva(swpctrie_zone, n)) 561 printf("Cannot reserve swap pctrie zone, " 562 "reduce kern.maxswzone.\n"); 563 } 564 565 static vm_object_t 566 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 567 vm_ooffset_t offset) 568 { 569 vm_object_t object; 570 571 if (cred != NULL) { 572 if (!swap_reserve_by_cred(size, cred)) 573 return (NULL); 574 crhold(cred); 575 } 576 577 /* 578 * The un_pager.swp.swp_blks trie is initialized by 579 * vm_object_allocate() to ensure the correct order of 580 * visibility to other threads. 581 */ 582 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 583 PAGE_MASK + size)); 584 585 object->handle = handle; 586 if (cred != NULL) { 587 object->cred = cred; 588 object->charge = size; 589 } 590 return (object); 591 } 592 593 /* 594 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 595 * its metadata structures. 596 * 597 * This routine is called from the mmap and fork code to create a new 598 * OBJT_SWAP object. 599 * 600 * This routine must ensure that no live duplicate is created for 601 * the named object request, which is protected against by 602 * holding the sw_alloc_sx lock in case handle != NULL. 603 */ 604 static vm_object_t 605 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 606 vm_ooffset_t offset, struct ucred *cred) 607 { 608 vm_object_t object; 609 610 if (handle != NULL) { 611 /* 612 * Reference existing named region or allocate new one. There 613 * should not be a race here against swp_pager_meta_build() 614 * as called from vm_page_remove() in regards to the lookup 615 * of the handle. 616 */ 617 sx_xlock(&sw_alloc_sx); 618 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 619 if (object == NULL) { 620 object = swap_pager_alloc_init(handle, cred, size, 621 offset); 622 if (object != NULL) { 623 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 624 object, pager_object_list); 625 } 626 } 627 sx_xunlock(&sw_alloc_sx); 628 } else { 629 object = swap_pager_alloc_init(handle, cred, size, offset); 630 } 631 return (object); 632 } 633 634 /* 635 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 636 * 637 * The swap backing for the object is destroyed. The code is 638 * designed such that we can reinstantiate it later, but this 639 * routine is typically called only when the entire object is 640 * about to be destroyed. 641 * 642 * The object must be locked. 643 */ 644 static void 645 swap_pager_dealloc(vm_object_t object) 646 { 647 648 VM_OBJECT_ASSERT_WLOCKED(object); 649 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 650 651 /* 652 * Remove from list right away so lookups will fail if we block for 653 * pageout completion. 654 */ 655 if (object->handle != NULL) { 656 VM_OBJECT_WUNLOCK(object); 657 sx_xlock(&sw_alloc_sx); 658 TAILQ_REMOVE(NOBJLIST(object->handle), object, 659 pager_object_list); 660 sx_xunlock(&sw_alloc_sx); 661 VM_OBJECT_WLOCK(object); 662 } 663 664 vm_object_pip_wait(object, "swpdea"); 665 666 /* 667 * Free all remaining metadata. We only bother to free it from 668 * the swap meta data. We do not attempt to free swapblk's still 669 * associated with vm_page_t's for this object. We do not care 670 * if paging is still in progress on some objects. 671 */ 672 swp_pager_meta_free_all(object); 673 object->handle = NULL; 674 object->type = OBJT_DEAD; 675 } 676 677 /************************************************************************ 678 * SWAP PAGER BITMAP ROUTINES * 679 ************************************************************************/ 680 681 /* 682 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 683 * 684 * Allocate swap for the requested number of pages. The starting 685 * swap block number (a page index) is returned or SWAPBLK_NONE 686 * if the allocation failed. 687 * 688 * Also has the side effect of advising that somebody made a mistake 689 * when they configured swap and didn't configure enough. 690 * 691 * This routine may not sleep. 692 * 693 * We allocate in round-robin fashion from the configured devices. 694 */ 695 static daddr_t 696 swp_pager_getswapspace(int npages) 697 { 698 daddr_t blk; 699 struct swdevt *sp; 700 int i; 701 702 blk = SWAPBLK_NONE; 703 mtx_lock(&sw_dev_mtx); 704 sp = swdevhd; 705 for (i = 0; i < nswapdev; i++) { 706 if (sp == NULL) 707 sp = TAILQ_FIRST(&swtailq); 708 if (!(sp->sw_flags & SW_CLOSING)) { 709 blk = blist_alloc(sp->sw_blist, npages); 710 if (blk != SWAPBLK_NONE) { 711 blk += sp->sw_first; 712 sp->sw_used += npages; 713 swap_pager_avail -= npages; 714 swp_sizecheck(); 715 swdevhd = TAILQ_NEXT(sp, sw_list); 716 goto done; 717 } 718 } 719 sp = TAILQ_NEXT(sp, sw_list); 720 } 721 if (swap_pager_full != 2) { 722 printf("swap_pager_getswapspace(%d): failed\n", npages); 723 swap_pager_full = 2; 724 swap_pager_almost_full = 1; 725 } 726 swdevhd = NULL; 727 done: 728 mtx_unlock(&sw_dev_mtx); 729 return (blk); 730 } 731 732 static int 733 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 734 { 735 736 return (blk >= sp->sw_first && blk < sp->sw_end); 737 } 738 739 static void 740 swp_pager_strategy(struct buf *bp) 741 { 742 struct swdevt *sp; 743 744 mtx_lock(&sw_dev_mtx); 745 TAILQ_FOREACH(sp, &swtailq, sw_list) { 746 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 747 mtx_unlock(&sw_dev_mtx); 748 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 749 unmapped_buf_allowed) { 750 bp->b_data = unmapped_buf; 751 bp->b_offset = 0; 752 } else { 753 pmap_qenter((vm_offset_t)bp->b_data, 754 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 755 } 756 sp->sw_strategy(bp, sp); 757 return; 758 } 759 } 760 panic("Swapdev not found"); 761 } 762 763 764 /* 765 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 766 * 767 * This routine returns the specified swap blocks back to the bitmap. 768 * 769 * This routine may not sleep. 770 */ 771 static void 772 swp_pager_freeswapspace(daddr_t blk, daddr_t npages) 773 { 774 struct swdevt *sp; 775 776 if (npages == 0) 777 return; 778 mtx_lock(&sw_dev_mtx); 779 TAILQ_FOREACH(sp, &swtailq, sw_list) { 780 if (blk >= sp->sw_first && blk < sp->sw_end) { 781 sp->sw_used -= npages; 782 /* 783 * If we are attempting to stop swapping on 784 * this device, we don't want to mark any 785 * blocks free lest they be reused. 786 */ 787 if ((sp->sw_flags & SW_CLOSING) == 0) { 788 blist_free(sp->sw_blist, blk - sp->sw_first, 789 npages); 790 swap_pager_avail += npages; 791 swp_sizecheck(); 792 } 793 mtx_unlock(&sw_dev_mtx); 794 return; 795 } 796 } 797 panic("Swapdev not found"); 798 } 799 800 /* 801 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats 802 */ 803 static int 804 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS) 805 { 806 struct sbuf sbuf; 807 struct swdevt *sp; 808 const char *devname; 809 int error; 810 811 error = sysctl_wire_old_buffer(req, 0); 812 if (error != 0) 813 return (error); 814 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 815 mtx_lock(&sw_dev_mtx); 816 TAILQ_FOREACH(sp, &swtailq, sw_list) { 817 if (vn_isdisk(sp->sw_vp, NULL)) 818 devname = devtoname(sp->sw_vp->v_rdev); 819 else 820 devname = "[file]"; 821 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname); 822 blist_stats(sp->sw_blist, &sbuf); 823 } 824 mtx_unlock(&sw_dev_mtx); 825 error = sbuf_finish(&sbuf); 826 sbuf_delete(&sbuf); 827 return (error); 828 } 829 830 /* 831 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 832 * range within an object. 833 * 834 * This is a globally accessible routine. 835 * 836 * This routine removes swapblk assignments from swap metadata. 837 * 838 * The external callers of this routine typically have already destroyed 839 * or renamed vm_page_t's associated with this range in the object so 840 * we should be ok. 841 * 842 * The object must be locked. 843 */ 844 void 845 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 846 { 847 848 swp_pager_meta_free(object, start, size); 849 } 850 851 /* 852 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 853 * 854 * Assigns swap blocks to the specified range within the object. The 855 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 856 * 857 * Returns 0 on success, -1 on failure. 858 */ 859 int 860 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 861 { 862 int n = 0; 863 daddr_t blk = SWAPBLK_NONE; 864 vm_pindex_t beg = start; /* save start index */ 865 866 VM_OBJECT_WLOCK(object); 867 while (size) { 868 if (n == 0) { 869 n = BLIST_MAX_ALLOC; 870 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 871 n >>= 1; 872 if (n == 0) { 873 swp_pager_meta_free(object, beg, start - beg); 874 VM_OBJECT_WUNLOCK(object); 875 return (-1); 876 } 877 } 878 } 879 swp_pager_meta_build(object, start, blk); 880 --size; 881 ++start; 882 ++blk; 883 --n; 884 } 885 swp_pager_meta_free(object, start, n); 886 VM_OBJECT_WUNLOCK(object); 887 return (0); 888 } 889 890 /* 891 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 892 * and destroy the source. 893 * 894 * Copy any valid swapblks from the source to the destination. In 895 * cases where both the source and destination have a valid swapblk, 896 * we keep the destination's. 897 * 898 * This routine is allowed to sleep. It may sleep allocating metadata 899 * indirectly through swp_pager_meta_build() or if paging is still in 900 * progress on the source. 901 * 902 * The source object contains no vm_page_t's (which is just as well) 903 * 904 * The source object is of type OBJT_SWAP. 905 * 906 * The source and destination objects must be locked. 907 * Both object locks may temporarily be released. 908 */ 909 void 910 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 911 vm_pindex_t offset, int destroysource) 912 { 913 vm_pindex_t i; 914 daddr_t dstaddr, first_free, num_free, srcaddr; 915 916 VM_OBJECT_ASSERT_WLOCKED(srcobject); 917 VM_OBJECT_ASSERT_WLOCKED(dstobject); 918 919 /* 920 * If destroysource is set, we remove the source object from the 921 * swap_pager internal queue now. 922 */ 923 if (destroysource && srcobject->handle != NULL) { 924 vm_object_pip_add(srcobject, 1); 925 VM_OBJECT_WUNLOCK(srcobject); 926 vm_object_pip_add(dstobject, 1); 927 VM_OBJECT_WUNLOCK(dstobject); 928 sx_xlock(&sw_alloc_sx); 929 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 930 pager_object_list); 931 sx_xunlock(&sw_alloc_sx); 932 VM_OBJECT_WLOCK(dstobject); 933 vm_object_pip_wakeup(dstobject); 934 VM_OBJECT_WLOCK(srcobject); 935 vm_object_pip_wakeup(srcobject); 936 } 937 938 /* 939 * Transfer source to destination. 940 */ 941 first_free = SWAPBLK_NONE; 942 num_free = 0; 943 for (i = 0; i < dstobject->size; ++i) { 944 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP); 945 if (srcaddr == SWAPBLK_NONE) 946 continue; 947 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 948 if (dstaddr == SWAPBLK_NONE) { 949 /* 950 * Destination has no swapblk and is not resident, 951 * copy source. 952 * 953 * swp_pager_meta_build() can sleep. 954 */ 955 vm_object_pip_add(srcobject, 1); 956 VM_OBJECT_WUNLOCK(srcobject); 957 vm_object_pip_add(dstobject, 1); 958 swp_pager_meta_build(dstobject, i, srcaddr); 959 vm_object_pip_wakeup(dstobject); 960 VM_OBJECT_WLOCK(srcobject); 961 vm_object_pip_wakeup(srcobject); 962 } else { 963 /* 964 * Destination has valid swapblk or it is represented 965 * by a resident page. We destroy the sourceblock. 966 */ 967 if (first_free + num_free == srcaddr) 968 num_free++; 969 else { 970 swp_pager_freeswapspace(first_free, num_free); 971 first_free = srcaddr; 972 num_free = 1; 973 } 974 } 975 } 976 swp_pager_freeswapspace(first_free, num_free); 977 978 /* 979 * Free left over swap blocks in source. 980 * 981 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 982 * double-remove the object from the swap queues. 983 */ 984 if (destroysource) { 985 swp_pager_meta_free_all(srcobject); 986 /* 987 * Reverting the type is not necessary, the caller is going 988 * to destroy srcobject directly, but I'm doing it here 989 * for consistency since we've removed the object from its 990 * queues. 991 */ 992 srcobject->type = OBJT_DEFAULT; 993 } 994 } 995 996 /* 997 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 998 * the requested page. 999 * 1000 * We determine whether good backing store exists for the requested 1001 * page and return TRUE if it does, FALSE if it doesn't. 1002 * 1003 * If TRUE, we also try to determine how much valid, contiguous backing 1004 * store exists before and after the requested page. 1005 */ 1006 static boolean_t 1007 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 1008 int *after) 1009 { 1010 daddr_t blk, blk0; 1011 int i; 1012 1013 VM_OBJECT_ASSERT_LOCKED(object); 1014 1015 /* 1016 * do we have good backing store at the requested index ? 1017 */ 1018 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1019 if (blk0 == SWAPBLK_NONE) { 1020 if (before) 1021 *before = 0; 1022 if (after) 1023 *after = 0; 1024 return (FALSE); 1025 } 1026 1027 /* 1028 * find backwards-looking contiguous good backing store 1029 */ 1030 if (before != NULL) { 1031 for (i = 1; i < SWB_NPAGES; i++) { 1032 if (i > pindex) 1033 break; 1034 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1035 if (blk != blk0 - i) 1036 break; 1037 } 1038 *before = i - 1; 1039 } 1040 1041 /* 1042 * find forward-looking contiguous good backing store 1043 */ 1044 if (after != NULL) { 1045 for (i = 1; i < SWB_NPAGES; i++) { 1046 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1047 if (blk != blk0 + i) 1048 break; 1049 } 1050 *after = i - 1; 1051 } 1052 return (TRUE); 1053 } 1054 1055 /* 1056 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1057 * 1058 * This removes any associated swap backing store, whether valid or 1059 * not, from the page. 1060 * 1061 * This routine is typically called when a page is made dirty, at 1062 * which point any associated swap can be freed. MADV_FREE also 1063 * calls us in a special-case situation 1064 * 1065 * NOTE!!! If the page is clean and the swap was valid, the caller 1066 * should make the page dirty before calling this routine. This routine 1067 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1068 * depends on it. 1069 * 1070 * This routine may not sleep. 1071 * 1072 * The object containing the page must be locked. 1073 */ 1074 static void 1075 swap_pager_unswapped(vm_page_t m) 1076 { 1077 daddr_t srcaddr; 1078 1079 srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP); 1080 if (srcaddr != SWAPBLK_NONE) 1081 swp_pager_freeswapspace(srcaddr, 1); 1082 } 1083 1084 /* 1085 * swap_pager_getpages() - bring pages in from swap 1086 * 1087 * Attempt to page in the pages in array "ma" of length "count". The 1088 * caller may optionally specify that additional pages preceding and 1089 * succeeding the specified range be paged in. The number of such pages 1090 * is returned in the "rbehind" and "rahead" parameters, and they will 1091 * be in the inactive queue upon return. 1092 * 1093 * The pages in "ma" must be busied and will remain busied upon return. 1094 */ 1095 static int 1096 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind, 1097 int *rahead) 1098 { 1099 struct buf *bp; 1100 vm_page_t mpred, msucc, p; 1101 vm_pindex_t pindex; 1102 daddr_t blk; 1103 int i, j, maxahead, maxbehind, reqcount, shift; 1104 1105 reqcount = count; 1106 1107 VM_OBJECT_WUNLOCK(object); 1108 bp = getpbuf(&nsw_rcount); 1109 VM_OBJECT_WLOCK(object); 1110 1111 if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) { 1112 relpbuf(bp, &nsw_rcount); 1113 return (VM_PAGER_FAIL); 1114 } 1115 1116 /* 1117 * Clip the readahead and readbehind ranges to exclude resident pages. 1118 */ 1119 if (rahead != NULL) { 1120 KASSERT(reqcount - 1 <= maxahead, 1121 ("page count %d extends beyond swap block", reqcount)); 1122 *rahead = imin(*rahead, maxahead - (reqcount - 1)); 1123 pindex = ma[reqcount - 1]->pindex; 1124 msucc = TAILQ_NEXT(ma[reqcount - 1], listq); 1125 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1126 *rahead = msucc->pindex - pindex - 1; 1127 } 1128 if (rbehind != NULL) { 1129 *rbehind = imin(*rbehind, maxbehind); 1130 pindex = ma[0]->pindex; 1131 mpred = TAILQ_PREV(ma[0], pglist, listq); 1132 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1133 *rbehind = pindex - mpred->pindex - 1; 1134 } 1135 1136 /* 1137 * Allocate readahead and readbehind pages. 1138 */ 1139 shift = rbehind != NULL ? *rbehind : 0; 1140 if (shift != 0) { 1141 for (i = 1; i <= shift; i++) { 1142 p = vm_page_alloc(object, ma[0]->pindex - i, 1143 VM_ALLOC_NORMAL); 1144 if (p == NULL) { 1145 /* Shift allocated pages to the left. */ 1146 for (j = 0; j < i - 1; j++) 1147 bp->b_pages[j] = 1148 bp->b_pages[j + shift - i + 1]; 1149 break; 1150 } 1151 bp->b_pages[shift - i] = p; 1152 } 1153 shift = i - 1; 1154 *rbehind = shift; 1155 } 1156 for (i = 0; i < reqcount; i++) 1157 bp->b_pages[i + shift] = ma[i]; 1158 if (rahead != NULL) { 1159 for (i = 0; i < *rahead; i++) { 1160 p = vm_page_alloc(object, 1161 ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); 1162 if (p == NULL) 1163 break; 1164 bp->b_pages[shift + reqcount + i] = p; 1165 } 1166 *rahead = i; 1167 } 1168 if (rbehind != NULL) 1169 count += *rbehind; 1170 if (rahead != NULL) 1171 count += *rahead; 1172 1173 vm_object_pip_add(object, count); 1174 1175 for (i = 0; i < count; i++) 1176 bp->b_pages[i]->oflags |= VPO_SWAPINPROG; 1177 1178 pindex = bp->b_pages[0]->pindex; 1179 blk = swp_pager_meta_ctl(object, pindex, 0); 1180 KASSERT(blk != SWAPBLK_NONE, 1181 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1182 1183 VM_OBJECT_WUNLOCK(object); 1184 1185 bp->b_flags |= B_PAGING; 1186 bp->b_iocmd = BIO_READ; 1187 bp->b_iodone = swp_pager_async_iodone; 1188 bp->b_rcred = crhold(thread0.td_ucred); 1189 bp->b_wcred = crhold(thread0.td_ucred); 1190 bp->b_blkno = blk; 1191 bp->b_bcount = PAGE_SIZE * count; 1192 bp->b_bufsize = PAGE_SIZE * count; 1193 bp->b_npages = count; 1194 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1195 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1196 1197 VM_CNT_INC(v_swapin); 1198 VM_CNT_ADD(v_swappgsin, count); 1199 1200 /* 1201 * perform the I/O. NOTE!!! bp cannot be considered valid after 1202 * this point because we automatically release it on completion. 1203 * Instead, we look at the one page we are interested in which we 1204 * still hold a lock on even through the I/O completion. 1205 * 1206 * The other pages in our ma[] array are also released on completion, 1207 * so we cannot assume they are valid anymore either. 1208 * 1209 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1210 */ 1211 BUF_KERNPROC(bp); 1212 swp_pager_strategy(bp); 1213 1214 /* 1215 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1216 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1217 * is set in the metadata for each page in the request. 1218 */ 1219 VM_OBJECT_WLOCK(object); 1220 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) { 1221 ma[0]->oflags |= VPO_SWAPSLEEP; 1222 VM_CNT_INC(v_intrans); 1223 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1224 "swread", hz * 20)) { 1225 printf( 1226 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1227 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1228 } 1229 } 1230 1231 /* 1232 * If we had an unrecoverable read error pages will not be valid. 1233 */ 1234 for (i = 0; i < reqcount; i++) 1235 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1236 return (VM_PAGER_ERROR); 1237 1238 return (VM_PAGER_OK); 1239 1240 /* 1241 * A final note: in a low swap situation, we cannot deallocate swap 1242 * and mark a page dirty here because the caller is likely to mark 1243 * the page clean when we return, causing the page to possibly revert 1244 * to all-zero's later. 1245 */ 1246 } 1247 1248 /* 1249 * swap_pager_getpages_async(): 1250 * 1251 * Right now this is emulation of asynchronous operation on top of 1252 * swap_pager_getpages(). 1253 */ 1254 static int 1255 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count, 1256 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1257 { 1258 int r, error; 1259 1260 r = swap_pager_getpages(object, ma, count, rbehind, rahead); 1261 VM_OBJECT_WUNLOCK(object); 1262 switch (r) { 1263 case VM_PAGER_OK: 1264 error = 0; 1265 break; 1266 case VM_PAGER_ERROR: 1267 error = EIO; 1268 break; 1269 case VM_PAGER_FAIL: 1270 error = EINVAL; 1271 break; 1272 default: 1273 panic("unhandled swap_pager_getpages() error %d", r); 1274 } 1275 (iodone)(arg, ma, count, error); 1276 VM_OBJECT_WLOCK(object); 1277 1278 return (r); 1279 } 1280 1281 /* 1282 * swap_pager_putpages: 1283 * 1284 * Assign swap (if necessary) and initiate I/O on the specified pages. 1285 * 1286 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1287 * are automatically converted to SWAP objects. 1288 * 1289 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1290 * vm_page reservation system coupled with properly written VFS devices 1291 * should ensure that no low-memory deadlock occurs. This is an area 1292 * which needs work. 1293 * 1294 * The parent has N vm_object_pip_add() references prior to 1295 * calling us and will remove references for rtvals[] that are 1296 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1297 * completion. 1298 * 1299 * The parent has soft-busy'd the pages it passes us and will unbusy 1300 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1301 * We need to unbusy the rest on I/O completion. 1302 */ 1303 static void 1304 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count, 1305 int flags, int *rtvals) 1306 { 1307 int i, n; 1308 boolean_t sync; 1309 1310 if (count && ma[0]->object != object) { 1311 panic("swap_pager_putpages: object mismatch %p/%p", 1312 object, 1313 ma[0]->object 1314 ); 1315 } 1316 1317 /* 1318 * Step 1 1319 * 1320 * Turn object into OBJT_SWAP 1321 * check for bogus sysops 1322 * force sync if not pageout process 1323 */ 1324 if (object->type != OBJT_SWAP) 1325 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1326 VM_OBJECT_WUNLOCK(object); 1327 1328 n = 0; 1329 if (curproc != pageproc) 1330 sync = TRUE; 1331 else 1332 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1333 1334 /* 1335 * Step 2 1336 * 1337 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1338 * The page is left dirty until the pageout operation completes 1339 * successfully. 1340 */ 1341 for (i = 0; i < count; i += n) { 1342 int j; 1343 struct buf *bp; 1344 daddr_t blk; 1345 1346 /* 1347 * Maximum I/O size is limited by a number of factors. 1348 */ 1349 n = min(BLIST_MAX_ALLOC, count - i); 1350 n = min(n, nsw_cluster_max); 1351 1352 /* 1353 * Get biggest block of swap we can. If we fail, fall 1354 * back and try to allocate a smaller block. Don't go 1355 * overboard trying to allocate space if it would overly 1356 * fragment swap. 1357 */ 1358 while ( 1359 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1360 n > 4 1361 ) { 1362 n >>= 1; 1363 } 1364 if (blk == SWAPBLK_NONE) { 1365 for (j = 0; j < n; ++j) 1366 rtvals[i+j] = VM_PAGER_FAIL; 1367 continue; 1368 } 1369 1370 /* 1371 * All I/O parameters have been satisfied, build the I/O 1372 * request and assign the swap space. 1373 */ 1374 if (sync == TRUE) { 1375 bp = getpbuf(&nsw_wcount_sync); 1376 } else { 1377 bp = getpbuf(&nsw_wcount_async); 1378 bp->b_flags = B_ASYNC; 1379 } 1380 bp->b_flags |= B_PAGING; 1381 bp->b_iocmd = BIO_WRITE; 1382 1383 bp->b_rcred = crhold(thread0.td_ucred); 1384 bp->b_wcred = crhold(thread0.td_ucred); 1385 bp->b_bcount = PAGE_SIZE * n; 1386 bp->b_bufsize = PAGE_SIZE * n; 1387 bp->b_blkno = blk; 1388 1389 VM_OBJECT_WLOCK(object); 1390 for (j = 0; j < n; ++j) { 1391 vm_page_t mreq = ma[i+j]; 1392 1393 swp_pager_meta_build( 1394 mreq->object, 1395 mreq->pindex, 1396 blk + j 1397 ); 1398 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1399 mreq->oflags |= VPO_SWAPINPROG; 1400 bp->b_pages[j] = mreq; 1401 } 1402 VM_OBJECT_WUNLOCK(object); 1403 bp->b_npages = n; 1404 /* 1405 * Must set dirty range for NFS to work. 1406 */ 1407 bp->b_dirtyoff = 0; 1408 bp->b_dirtyend = bp->b_bcount; 1409 1410 VM_CNT_INC(v_swapout); 1411 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1412 1413 /* 1414 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1415 * can call the async completion routine at the end of a 1416 * synchronous I/O operation. Otherwise, our caller would 1417 * perform duplicate unbusy and wakeup operations on the page 1418 * and object, respectively. 1419 */ 1420 for (j = 0; j < n; j++) 1421 rtvals[i + j] = VM_PAGER_PEND; 1422 1423 /* 1424 * asynchronous 1425 * 1426 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1427 */ 1428 if (sync == FALSE) { 1429 bp->b_iodone = swp_pager_async_iodone; 1430 BUF_KERNPROC(bp); 1431 swp_pager_strategy(bp); 1432 continue; 1433 } 1434 1435 /* 1436 * synchronous 1437 * 1438 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1439 */ 1440 bp->b_iodone = bdone; 1441 swp_pager_strategy(bp); 1442 1443 /* 1444 * Wait for the sync I/O to complete. 1445 */ 1446 bwait(bp, PVM, "swwrt"); 1447 1448 /* 1449 * Now that we are through with the bp, we can call the 1450 * normal async completion, which frees everything up. 1451 */ 1452 swp_pager_async_iodone(bp); 1453 } 1454 VM_OBJECT_WLOCK(object); 1455 } 1456 1457 /* 1458 * swp_pager_async_iodone: 1459 * 1460 * Completion routine for asynchronous reads and writes from/to swap. 1461 * Also called manually by synchronous code to finish up a bp. 1462 * 1463 * This routine may not sleep. 1464 */ 1465 static void 1466 swp_pager_async_iodone(struct buf *bp) 1467 { 1468 int i; 1469 vm_object_t object = NULL; 1470 1471 /* 1472 * report error 1473 */ 1474 if (bp->b_ioflags & BIO_ERROR) { 1475 printf( 1476 "swap_pager: I/O error - %s failed; blkno %ld," 1477 "size %ld, error %d\n", 1478 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1479 (long)bp->b_blkno, 1480 (long)bp->b_bcount, 1481 bp->b_error 1482 ); 1483 } 1484 1485 /* 1486 * remove the mapping for kernel virtual 1487 */ 1488 if (buf_mapped(bp)) 1489 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1490 else 1491 bp->b_data = bp->b_kvabase; 1492 1493 if (bp->b_npages) { 1494 object = bp->b_pages[0]->object; 1495 VM_OBJECT_WLOCK(object); 1496 } 1497 1498 /* 1499 * cleanup pages. If an error occurs writing to swap, we are in 1500 * very serious trouble. If it happens to be a disk error, though, 1501 * we may be able to recover by reassigning the swap later on. So 1502 * in this case we remove the m->swapblk assignment for the page 1503 * but do not free it in the rlist. The errornous block(s) are thus 1504 * never reallocated as swap. Redirty the page and continue. 1505 */ 1506 for (i = 0; i < bp->b_npages; ++i) { 1507 vm_page_t m = bp->b_pages[i]; 1508 1509 m->oflags &= ~VPO_SWAPINPROG; 1510 if (m->oflags & VPO_SWAPSLEEP) { 1511 m->oflags &= ~VPO_SWAPSLEEP; 1512 wakeup(&object->paging_in_progress); 1513 } 1514 1515 if (bp->b_ioflags & BIO_ERROR) { 1516 /* 1517 * If an error occurs I'd love to throw the swapblk 1518 * away without freeing it back to swapspace, so it 1519 * can never be used again. But I can't from an 1520 * interrupt. 1521 */ 1522 if (bp->b_iocmd == BIO_READ) { 1523 /* 1524 * NOTE: for reads, m->dirty will probably 1525 * be overridden by the original caller of 1526 * getpages so don't play cute tricks here. 1527 */ 1528 m->valid = 0; 1529 } else { 1530 /* 1531 * If a write error occurs, reactivate page 1532 * so it doesn't clog the inactive list, 1533 * then finish the I/O. 1534 */ 1535 MPASS(m->dirty == VM_PAGE_BITS_ALL); 1536 vm_page_lock(m); 1537 vm_page_activate(m); 1538 vm_page_unlock(m); 1539 vm_page_sunbusy(m); 1540 } 1541 } else if (bp->b_iocmd == BIO_READ) { 1542 /* 1543 * NOTE: for reads, m->dirty will probably be 1544 * overridden by the original caller of getpages so 1545 * we cannot set them in order to free the underlying 1546 * swap in a low-swap situation. I don't think we'd 1547 * want to do that anyway, but it was an optimization 1548 * that existed in the old swapper for a time before 1549 * it got ripped out due to precisely this problem. 1550 */ 1551 KASSERT(!pmap_page_is_mapped(m), 1552 ("swp_pager_async_iodone: page %p is mapped", m)); 1553 KASSERT(m->dirty == 0, 1554 ("swp_pager_async_iodone: page %p is dirty", m)); 1555 1556 m->valid = VM_PAGE_BITS_ALL; 1557 if (i < bp->b_pgbefore || 1558 i >= bp->b_npages - bp->b_pgafter) 1559 vm_page_readahead_finish(m); 1560 } else { 1561 /* 1562 * For write success, clear the dirty 1563 * status, then finish the I/O ( which decrements the 1564 * busy count and possibly wakes waiter's up ). 1565 * A page is only written to swap after a period of 1566 * inactivity. Therefore, we do not expect it to be 1567 * reused. 1568 */ 1569 KASSERT(!pmap_page_is_write_mapped(m), 1570 ("swp_pager_async_iodone: page %p is not write" 1571 " protected", m)); 1572 vm_page_undirty(m); 1573 vm_page_lock(m); 1574 vm_page_deactivate_noreuse(m); 1575 vm_page_unlock(m); 1576 vm_page_sunbusy(m); 1577 } 1578 } 1579 1580 /* 1581 * adjust pip. NOTE: the original parent may still have its own 1582 * pip refs on the object. 1583 */ 1584 if (object != NULL) { 1585 vm_object_pip_wakeupn(object, bp->b_npages); 1586 VM_OBJECT_WUNLOCK(object); 1587 } 1588 1589 /* 1590 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1591 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1592 * trigger a KASSERT in relpbuf(). 1593 */ 1594 if (bp->b_vp) { 1595 bp->b_vp = NULL; 1596 bp->b_bufobj = NULL; 1597 } 1598 /* 1599 * release the physical I/O buffer 1600 */ 1601 relpbuf( 1602 bp, 1603 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1604 ((bp->b_flags & B_ASYNC) ? 1605 &nsw_wcount_async : 1606 &nsw_wcount_sync 1607 ) 1608 ) 1609 ); 1610 } 1611 1612 int 1613 swap_pager_nswapdev(void) 1614 { 1615 1616 return (nswapdev); 1617 } 1618 1619 /* 1620 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1621 * 1622 * This routine dissociates the page at the given index within an object 1623 * from its backing store, paging it in if it does not reside in memory. 1624 * If the page is paged in, it is marked dirty and placed in the laundry 1625 * queue. The page is marked dirty because it no longer has backing 1626 * store. It is placed in the laundry queue because it has not been 1627 * accessed recently. Otherwise, it would already reside in memory. 1628 * 1629 * We also attempt to swap in all other pages in the swap block. 1630 * However, we only guarantee that the one at the specified index is 1631 * paged in. 1632 * 1633 * XXX - The code to page the whole block in doesn't work, so we 1634 * revert to the one-by-one behavior for now. Sigh. 1635 */ 1636 static inline void 1637 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1638 { 1639 vm_page_t m; 1640 1641 vm_object_pip_add(object, 1); 1642 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1643 if (m->valid == VM_PAGE_BITS_ALL) { 1644 vm_object_pip_wakeup(object); 1645 vm_page_dirty(m); 1646 #ifdef INVARIANTS 1647 vm_page_lock(m); 1648 if (m->wire_count == 0 && m->queue == PQ_NONE) 1649 panic("page %p is neither wired nor queued", m); 1650 vm_page_unlock(m); 1651 #endif 1652 vm_page_xunbusy(m); 1653 vm_pager_page_unswapped(m); 1654 return; 1655 } 1656 1657 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1658 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1659 vm_object_pip_wakeup(object); 1660 vm_page_dirty(m); 1661 vm_page_lock(m); 1662 vm_page_launder(m); 1663 vm_page_unlock(m); 1664 vm_page_xunbusy(m); 1665 vm_pager_page_unswapped(m); 1666 } 1667 1668 /* 1669 * swap_pager_swapoff: 1670 * 1671 * Page in all of the pages that have been paged out to the 1672 * given device. The corresponding blocks in the bitmap must be 1673 * marked as allocated and the device must be flagged SW_CLOSING. 1674 * There may be no processes swapped out to the device. 1675 * 1676 * This routine may block. 1677 */ 1678 static void 1679 swap_pager_swapoff(struct swdevt *sp) 1680 { 1681 struct swblk *sb; 1682 vm_object_t object; 1683 vm_pindex_t pi; 1684 int i, retries; 1685 1686 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1687 1688 retries = 0; 1689 full_rescan: 1690 mtx_lock(&vm_object_list_mtx); 1691 TAILQ_FOREACH(object, &vm_object_list, object_list) { 1692 if (object->type != OBJT_SWAP) 1693 continue; 1694 mtx_unlock(&vm_object_list_mtx); 1695 /* Depends on type-stability. */ 1696 VM_OBJECT_WLOCK(object); 1697 1698 /* 1699 * Dead objects are eventually terminated on their own. 1700 */ 1701 if ((object->flags & OBJ_DEAD) != 0) 1702 goto next_obj; 1703 1704 /* 1705 * Sync with fences placed after pctrie 1706 * initialization. We must not access pctrie below 1707 * unless we checked that our object is swap and not 1708 * dead. 1709 */ 1710 atomic_thread_fence_acq(); 1711 if (object->type != OBJT_SWAP) 1712 goto next_obj; 1713 1714 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 1715 &object->un_pager.swp.swp_blks, pi)) != NULL; ) { 1716 pi = sb->p + SWAP_META_PAGES; 1717 for (i = 0; i < SWAP_META_PAGES; i++) { 1718 if (sb->d[i] == SWAPBLK_NONE) 1719 continue; 1720 if (swp_pager_isondev(sb->d[i], sp)) 1721 swp_pager_force_pagein(object, 1722 sb->p + i); 1723 } 1724 } 1725 next_obj: 1726 VM_OBJECT_WUNLOCK(object); 1727 mtx_lock(&vm_object_list_mtx); 1728 } 1729 mtx_unlock(&vm_object_list_mtx); 1730 1731 if (sp->sw_used) { 1732 /* 1733 * Objects may be locked or paging to the device being 1734 * removed, so we will miss their pages and need to 1735 * make another pass. We have marked this device as 1736 * SW_CLOSING, so the activity should finish soon. 1737 */ 1738 retries++; 1739 if (retries > 100) { 1740 panic("swapoff: failed to locate %d swap blocks", 1741 sp->sw_used); 1742 } 1743 pause("swpoff", hz / 20); 1744 goto full_rescan; 1745 } 1746 EVENTHANDLER_INVOKE(swapoff, sp); 1747 } 1748 1749 /************************************************************************ 1750 * SWAP META DATA * 1751 ************************************************************************ 1752 * 1753 * These routines manipulate the swap metadata stored in the 1754 * OBJT_SWAP object. 1755 * 1756 * Swap metadata is implemented with a global hash and not directly 1757 * linked into the object. Instead the object simply contains 1758 * appropriate tracking counters. 1759 */ 1760 1761 /* 1762 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free? 1763 */ 1764 static bool 1765 swp_pager_swblk_empty(struct swblk *sb, int start, int limit) 1766 { 1767 int i; 1768 1769 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES); 1770 for (i = start; i < limit; i++) { 1771 if (sb->d[i] != SWAPBLK_NONE) 1772 return (false); 1773 } 1774 return (true); 1775 } 1776 1777 /* 1778 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1779 * 1780 * We first convert the object to a swap object if it is a default 1781 * object. 1782 * 1783 * The specified swapblk is added to the object's swap metadata. If 1784 * the swapblk is not valid, it is freed instead. Any previously 1785 * assigned swapblk is freed. 1786 */ 1787 static void 1788 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1789 { 1790 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted; 1791 struct swblk *sb, *sb1; 1792 vm_pindex_t modpi, rdpi; 1793 int error, i; 1794 1795 VM_OBJECT_ASSERT_WLOCKED(object); 1796 1797 /* 1798 * Convert default object to swap object if necessary 1799 */ 1800 if (object->type != OBJT_SWAP) { 1801 pctrie_init(&object->un_pager.swp.swp_blks); 1802 1803 /* 1804 * Ensure that swap_pager_swapoff()'s iteration over 1805 * object_list does not see a garbage pctrie. 1806 */ 1807 atomic_thread_fence_rel(); 1808 1809 object->type = OBJT_SWAP; 1810 KASSERT(object->handle == NULL, ("default pager with handle")); 1811 } 1812 1813 rdpi = rounddown(pindex, SWAP_META_PAGES); 1814 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi); 1815 if (sb == NULL) { 1816 if (swapblk == SWAPBLK_NONE) 1817 return; 1818 for (;;) { 1819 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc == 1820 pageproc ? M_USE_RESERVE : 0)); 1821 if (sb != NULL) { 1822 sb->p = rdpi; 1823 for (i = 0; i < SWAP_META_PAGES; i++) 1824 sb->d[i] = SWAPBLK_NONE; 1825 if (atomic_cmpset_int(&swblk_zone_exhausted, 1826 1, 0)) 1827 printf("swblk zone ok\n"); 1828 break; 1829 } 1830 VM_OBJECT_WUNLOCK(object); 1831 if (uma_zone_exhausted(swblk_zone)) { 1832 if (atomic_cmpset_int(&swblk_zone_exhausted, 1833 0, 1)) 1834 printf("swap blk zone exhausted, " 1835 "increase kern.maxswzone\n"); 1836 vm_pageout_oom(VM_OOM_SWAPZ); 1837 pause("swzonxb", 10); 1838 } else 1839 uma_zwait(swblk_zone); 1840 VM_OBJECT_WLOCK(object); 1841 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 1842 rdpi); 1843 if (sb != NULL) 1844 /* 1845 * Somebody swapped out a nearby page, 1846 * allocating swblk at the rdpi index, 1847 * while we dropped the object lock. 1848 */ 1849 goto allocated; 1850 } 1851 for (;;) { 1852 error = SWAP_PCTRIE_INSERT( 1853 &object->un_pager.swp.swp_blks, sb); 1854 if (error == 0) { 1855 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 1856 1, 0)) 1857 printf("swpctrie zone ok\n"); 1858 break; 1859 } 1860 VM_OBJECT_WUNLOCK(object); 1861 if (uma_zone_exhausted(swpctrie_zone)) { 1862 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 1863 0, 1)) 1864 printf("swap pctrie zone exhausted, " 1865 "increase kern.maxswzone\n"); 1866 vm_pageout_oom(VM_OOM_SWAPZ); 1867 pause("swzonxp", 10); 1868 } else 1869 uma_zwait(swpctrie_zone); 1870 VM_OBJECT_WLOCK(object); 1871 sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 1872 rdpi); 1873 if (sb1 != NULL) { 1874 uma_zfree(swblk_zone, sb); 1875 sb = sb1; 1876 goto allocated; 1877 } 1878 } 1879 } 1880 allocated: 1881 MPASS(sb->p == rdpi); 1882 1883 modpi = pindex % SWAP_META_PAGES; 1884 /* Delete prior contents of metadata. */ 1885 if (sb->d[modpi] != SWAPBLK_NONE) 1886 swp_pager_freeswapspace(sb->d[modpi], 1); 1887 /* Enter block into metadata. */ 1888 sb->d[modpi] = swapblk; 1889 1890 /* 1891 * Free the swblk if we end up with the empty page run. 1892 */ 1893 if (swapblk == SWAPBLK_NONE && 1894 swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 1895 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi); 1896 uma_zfree(swblk_zone, sb); 1897 } 1898 } 1899 1900 /* 1901 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1902 * 1903 * The requested range of blocks is freed, with any associated swap 1904 * returned to the swap bitmap. 1905 * 1906 * This routine will free swap metadata structures as they are cleaned 1907 * out. This routine does *NOT* operate on swap metadata associated 1908 * with resident pages. 1909 */ 1910 static void 1911 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count) 1912 { 1913 struct swblk *sb; 1914 daddr_t first_free, num_free; 1915 vm_pindex_t last; 1916 int i, limit, start; 1917 1918 VM_OBJECT_ASSERT_WLOCKED(object); 1919 if (object->type != OBJT_SWAP || count == 0) 1920 return; 1921 1922 first_free = SWAPBLK_NONE; 1923 num_free = 0; 1924 last = pindex + count; 1925 for (;;) { 1926 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 1927 rounddown(pindex, SWAP_META_PAGES)); 1928 if (sb == NULL || sb->p >= last) 1929 break; 1930 start = pindex > sb->p ? pindex - sb->p : 0; 1931 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p : 1932 SWAP_META_PAGES; 1933 for (i = start; i < limit; i++) { 1934 if (sb->d[i] == SWAPBLK_NONE) 1935 continue; 1936 if (first_free + num_free == sb->d[i]) 1937 num_free++; 1938 else { 1939 swp_pager_freeswapspace(first_free, num_free); 1940 first_free = sb->d[i]; 1941 num_free = 1; 1942 } 1943 sb->d[i] = SWAPBLK_NONE; 1944 } 1945 if (swp_pager_swblk_empty(sb, 0, start) && 1946 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 1947 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, 1948 sb->p); 1949 uma_zfree(swblk_zone, sb); 1950 } 1951 pindex = sb->p + SWAP_META_PAGES; 1952 } 1953 swp_pager_freeswapspace(first_free, num_free); 1954 } 1955 1956 /* 1957 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1958 * 1959 * This routine locates and destroys all swap metadata associated with 1960 * an object. 1961 */ 1962 static void 1963 swp_pager_meta_free_all(vm_object_t object) 1964 { 1965 struct swblk *sb; 1966 daddr_t first_free, num_free; 1967 vm_pindex_t pindex; 1968 int i; 1969 1970 VM_OBJECT_ASSERT_WLOCKED(object); 1971 if (object->type != OBJT_SWAP) 1972 return; 1973 1974 first_free = SWAPBLK_NONE; 1975 num_free = 0; 1976 for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 1977 &object->un_pager.swp.swp_blks, pindex)) != NULL;) { 1978 pindex = sb->p + SWAP_META_PAGES; 1979 for (i = 0; i < SWAP_META_PAGES; i++) { 1980 if (sb->d[i] == SWAPBLK_NONE) 1981 continue; 1982 if (first_free + num_free == sb->d[i]) 1983 num_free++; 1984 else { 1985 swp_pager_freeswapspace(first_free, num_free); 1986 first_free = sb->d[i]; 1987 num_free = 1; 1988 } 1989 } 1990 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 1991 uma_zfree(swblk_zone, sb); 1992 } 1993 swp_pager_freeswapspace(first_free, num_free); 1994 } 1995 1996 /* 1997 * SWP_PAGER_METACTL() - misc control of swap meta data. 1998 * 1999 * This routine is capable of looking up, or removing swapblk 2000 * assignments in the swap meta data. It returns the swapblk being 2001 * looked-up, popped, or SWAPBLK_NONE if the block was invalid. 2002 * 2003 * When acting on a busy resident page and paging is in progress, we 2004 * have to wait until paging is complete but otherwise can act on the 2005 * busy page. 2006 * 2007 * SWM_POP remove from meta data but do not free it 2008 */ 2009 static daddr_t 2010 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2011 { 2012 struct swblk *sb; 2013 daddr_t r1; 2014 2015 if ((flags & SWM_POP) != 0) 2016 VM_OBJECT_ASSERT_WLOCKED(object); 2017 else 2018 VM_OBJECT_ASSERT_LOCKED(object); 2019 2020 /* 2021 * The meta data only exists if the object is OBJT_SWAP 2022 * and even then might not be allocated yet. 2023 */ 2024 if (object->type != OBJT_SWAP) 2025 return (SWAPBLK_NONE); 2026 2027 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 2028 rounddown(pindex, SWAP_META_PAGES)); 2029 if (sb == NULL) 2030 return (SWAPBLK_NONE); 2031 r1 = sb->d[pindex % SWAP_META_PAGES]; 2032 if (r1 == SWAPBLK_NONE) 2033 return (SWAPBLK_NONE); 2034 if ((flags & SWM_POP) != 0) { 2035 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE; 2036 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2037 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, 2038 rounddown(pindex, SWAP_META_PAGES)); 2039 uma_zfree(swblk_zone, sb); 2040 } 2041 } 2042 return (r1); 2043 } 2044 2045 /* 2046 * Returns the least page index which is greater than or equal to the 2047 * parameter pindex and for which there is a swap block allocated. 2048 * Returns object's size if the object's type is not swap or if there 2049 * are no allocated swap blocks for the object after the requested 2050 * pindex. 2051 */ 2052 vm_pindex_t 2053 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex) 2054 { 2055 struct swblk *sb; 2056 int i; 2057 2058 VM_OBJECT_ASSERT_LOCKED(object); 2059 if (object->type != OBJT_SWAP) 2060 return (object->size); 2061 2062 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2063 rounddown(pindex, SWAP_META_PAGES)); 2064 if (sb == NULL) 2065 return (object->size); 2066 if (sb->p < pindex) { 2067 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) { 2068 if (sb->d[i] != SWAPBLK_NONE) 2069 return (sb->p + i); 2070 } 2071 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2072 roundup(pindex, SWAP_META_PAGES)); 2073 if (sb == NULL) 2074 return (object->size); 2075 } 2076 for (i = 0; i < SWAP_META_PAGES; i++) { 2077 if (sb->d[i] != SWAPBLK_NONE) 2078 return (sb->p + i); 2079 } 2080 2081 /* 2082 * We get here if a swblk is present in the trie but it 2083 * doesn't map any blocks. 2084 */ 2085 MPASS(0); 2086 return (object->size); 2087 } 2088 2089 /* 2090 * System call swapon(name) enables swapping on device name, 2091 * which must be in the swdevsw. Return EBUSY 2092 * if already swapping on this device. 2093 */ 2094 #ifndef _SYS_SYSPROTO_H_ 2095 struct swapon_args { 2096 char *name; 2097 }; 2098 #endif 2099 2100 /* 2101 * MPSAFE 2102 */ 2103 /* ARGSUSED */ 2104 int 2105 sys_swapon(struct thread *td, struct swapon_args *uap) 2106 { 2107 struct vattr attr; 2108 struct vnode *vp; 2109 struct nameidata nd; 2110 int error; 2111 2112 error = priv_check(td, PRIV_SWAPON); 2113 if (error) 2114 return (error); 2115 2116 sx_xlock(&swdev_syscall_lock); 2117 2118 /* 2119 * Swap metadata may not fit in the KVM if we have physical 2120 * memory of >1GB. 2121 */ 2122 if (swblk_zone == NULL) { 2123 error = ENOMEM; 2124 goto done; 2125 } 2126 2127 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2128 uap->name, td); 2129 error = namei(&nd); 2130 if (error) 2131 goto done; 2132 2133 NDFREE(&nd, NDF_ONLY_PNBUF); 2134 vp = nd.ni_vp; 2135 2136 if (vn_isdisk(vp, &error)) { 2137 error = swapongeom(vp); 2138 } else if (vp->v_type == VREG && 2139 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2140 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2141 /* 2142 * Allow direct swapping to NFS regular files in the same 2143 * way that nfs_mountroot() sets up diskless swapping. 2144 */ 2145 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2146 } 2147 2148 if (error) 2149 vrele(vp); 2150 done: 2151 sx_xunlock(&swdev_syscall_lock); 2152 return (error); 2153 } 2154 2155 /* 2156 * Check that the total amount of swap currently configured does not 2157 * exceed half the theoretical maximum. If it does, print a warning 2158 * message. 2159 */ 2160 static void 2161 swapon_check_swzone(void) 2162 { 2163 unsigned long maxpages, npages; 2164 2165 npages = swap_total / PAGE_SIZE; 2166 /* absolute maximum we can handle assuming 100% efficiency */ 2167 maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES; 2168 2169 /* recommend using no more than half that amount */ 2170 if (npages > maxpages / 2) { 2171 printf("warning: total configured swap (%lu pages) " 2172 "exceeds maximum recommended amount (%lu pages).\n", 2173 npages, maxpages / 2); 2174 printf("warning: increase kern.maxswzone " 2175 "or reduce amount of swap.\n"); 2176 } 2177 } 2178 2179 static void 2180 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2181 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2182 { 2183 struct swdevt *sp, *tsp; 2184 swblk_t dvbase; 2185 u_long mblocks; 2186 2187 /* 2188 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2189 * First chop nblks off to page-align it, then convert. 2190 * 2191 * sw->sw_nblks is in page-sized chunks now too. 2192 */ 2193 nblks &= ~(ctodb(1) - 1); 2194 nblks = dbtoc(nblks); 2195 2196 /* 2197 * If we go beyond this, we get overflows in the radix 2198 * tree bitmap code. 2199 */ 2200 mblocks = 0x40000000 / BLIST_META_RADIX; 2201 if (nblks > mblocks) { 2202 printf( 2203 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2204 mblocks / 1024 / 1024 * PAGE_SIZE); 2205 nblks = mblocks; 2206 } 2207 2208 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2209 sp->sw_vp = vp; 2210 sp->sw_id = id; 2211 sp->sw_dev = dev; 2212 sp->sw_flags = 0; 2213 sp->sw_nblks = nblks; 2214 sp->sw_used = 0; 2215 sp->sw_strategy = strategy; 2216 sp->sw_close = close; 2217 sp->sw_flags = flags; 2218 2219 sp->sw_blist = blist_create(nblks, M_WAITOK); 2220 /* 2221 * Do not free the first two block in order to avoid overwriting 2222 * any bsd label at the front of the partition 2223 */ 2224 blist_free(sp->sw_blist, 2, nblks - 2); 2225 2226 dvbase = 0; 2227 mtx_lock(&sw_dev_mtx); 2228 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2229 if (tsp->sw_end >= dvbase) { 2230 /* 2231 * We put one uncovered page between the devices 2232 * in order to definitively prevent any cross-device 2233 * I/O requests 2234 */ 2235 dvbase = tsp->sw_end + 1; 2236 } 2237 } 2238 sp->sw_first = dvbase; 2239 sp->sw_end = dvbase + nblks; 2240 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2241 nswapdev++; 2242 swap_pager_avail += nblks - 2; 2243 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2244 swapon_check_swzone(); 2245 swp_sizecheck(); 2246 mtx_unlock(&sw_dev_mtx); 2247 EVENTHANDLER_INVOKE(swapon, sp); 2248 } 2249 2250 /* 2251 * SYSCALL: swapoff(devname) 2252 * 2253 * Disable swapping on the given device. 2254 * 2255 * XXX: Badly designed system call: it should use a device index 2256 * rather than filename as specification. We keep sw_vp around 2257 * only to make this work. 2258 */ 2259 #ifndef _SYS_SYSPROTO_H_ 2260 struct swapoff_args { 2261 char *name; 2262 }; 2263 #endif 2264 2265 /* 2266 * MPSAFE 2267 */ 2268 /* ARGSUSED */ 2269 int 2270 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2271 { 2272 struct vnode *vp; 2273 struct nameidata nd; 2274 struct swdevt *sp; 2275 int error; 2276 2277 error = priv_check(td, PRIV_SWAPOFF); 2278 if (error) 2279 return (error); 2280 2281 sx_xlock(&swdev_syscall_lock); 2282 2283 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2284 td); 2285 error = namei(&nd); 2286 if (error) 2287 goto done; 2288 NDFREE(&nd, NDF_ONLY_PNBUF); 2289 vp = nd.ni_vp; 2290 2291 mtx_lock(&sw_dev_mtx); 2292 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2293 if (sp->sw_vp == vp) 2294 break; 2295 } 2296 mtx_unlock(&sw_dev_mtx); 2297 if (sp == NULL) { 2298 error = EINVAL; 2299 goto done; 2300 } 2301 error = swapoff_one(sp, td->td_ucred); 2302 done: 2303 sx_xunlock(&swdev_syscall_lock); 2304 return (error); 2305 } 2306 2307 static int 2308 swapoff_one(struct swdevt *sp, struct ucred *cred) 2309 { 2310 u_long nblks; 2311 #ifdef MAC 2312 int error; 2313 #endif 2314 2315 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2316 #ifdef MAC 2317 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2318 error = mac_system_check_swapoff(cred, sp->sw_vp); 2319 (void) VOP_UNLOCK(sp->sw_vp, 0); 2320 if (error != 0) 2321 return (error); 2322 #endif 2323 nblks = sp->sw_nblks; 2324 2325 /* 2326 * We can turn off this swap device safely only if the 2327 * available virtual memory in the system will fit the amount 2328 * of data we will have to page back in, plus an epsilon so 2329 * the system doesn't become critically low on swap space. 2330 */ 2331 if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat) 2332 return (ENOMEM); 2333 2334 /* 2335 * Prevent further allocations on this device. 2336 */ 2337 mtx_lock(&sw_dev_mtx); 2338 sp->sw_flags |= SW_CLOSING; 2339 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2340 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2341 mtx_unlock(&sw_dev_mtx); 2342 2343 /* 2344 * Page in the contents of the device and close it. 2345 */ 2346 swap_pager_swapoff(sp); 2347 2348 sp->sw_close(curthread, sp); 2349 mtx_lock(&sw_dev_mtx); 2350 sp->sw_id = NULL; 2351 TAILQ_REMOVE(&swtailq, sp, sw_list); 2352 nswapdev--; 2353 if (nswapdev == 0) { 2354 swap_pager_full = 2; 2355 swap_pager_almost_full = 1; 2356 } 2357 if (swdevhd == sp) 2358 swdevhd = NULL; 2359 mtx_unlock(&sw_dev_mtx); 2360 blist_destroy(sp->sw_blist); 2361 free(sp, M_VMPGDATA); 2362 return (0); 2363 } 2364 2365 void 2366 swapoff_all(void) 2367 { 2368 struct swdevt *sp, *spt; 2369 const char *devname; 2370 int error; 2371 2372 sx_xlock(&swdev_syscall_lock); 2373 2374 mtx_lock(&sw_dev_mtx); 2375 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2376 mtx_unlock(&sw_dev_mtx); 2377 if (vn_isdisk(sp->sw_vp, NULL)) 2378 devname = devtoname(sp->sw_vp->v_rdev); 2379 else 2380 devname = "[file]"; 2381 error = swapoff_one(sp, thread0.td_ucred); 2382 if (error != 0) { 2383 printf("Cannot remove swap device %s (error=%d), " 2384 "skipping.\n", devname, error); 2385 } else if (bootverbose) { 2386 printf("Swap device %s removed.\n", devname); 2387 } 2388 mtx_lock(&sw_dev_mtx); 2389 } 2390 mtx_unlock(&sw_dev_mtx); 2391 2392 sx_xunlock(&swdev_syscall_lock); 2393 } 2394 2395 void 2396 swap_pager_status(int *total, int *used) 2397 { 2398 struct swdevt *sp; 2399 2400 *total = 0; 2401 *used = 0; 2402 mtx_lock(&sw_dev_mtx); 2403 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2404 *total += sp->sw_nblks; 2405 *used += sp->sw_used; 2406 } 2407 mtx_unlock(&sw_dev_mtx); 2408 } 2409 2410 int 2411 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2412 { 2413 struct swdevt *sp; 2414 const char *tmp_devname; 2415 int error, n; 2416 2417 n = 0; 2418 error = ENOENT; 2419 mtx_lock(&sw_dev_mtx); 2420 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2421 if (n != name) { 2422 n++; 2423 continue; 2424 } 2425 xs->xsw_version = XSWDEV_VERSION; 2426 xs->xsw_dev = sp->sw_dev; 2427 xs->xsw_flags = sp->sw_flags; 2428 xs->xsw_nblks = sp->sw_nblks; 2429 xs->xsw_used = sp->sw_used; 2430 if (devname != NULL) { 2431 if (vn_isdisk(sp->sw_vp, NULL)) 2432 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2433 else 2434 tmp_devname = "[file]"; 2435 strncpy(devname, tmp_devname, len); 2436 } 2437 error = 0; 2438 break; 2439 } 2440 mtx_unlock(&sw_dev_mtx); 2441 return (error); 2442 } 2443 2444 #if defined(COMPAT_FREEBSD11) 2445 #define XSWDEV_VERSION_11 1 2446 struct xswdev11 { 2447 u_int xsw_version; 2448 uint32_t xsw_dev; 2449 int xsw_flags; 2450 int xsw_nblks; 2451 int xsw_used; 2452 }; 2453 #endif 2454 2455 static int 2456 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2457 { 2458 struct xswdev xs; 2459 #if defined(COMPAT_FREEBSD11) 2460 struct xswdev11 xs11; 2461 #endif 2462 int error; 2463 2464 if (arg2 != 1) /* name length */ 2465 return (EINVAL); 2466 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2467 if (error != 0) 2468 return (error); 2469 #if defined(COMPAT_FREEBSD11) 2470 if (req->oldlen == sizeof(xs11)) { 2471 xs11.xsw_version = XSWDEV_VERSION_11; 2472 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 2473 xs11.xsw_flags = xs.xsw_flags; 2474 xs11.xsw_nblks = xs.xsw_nblks; 2475 xs11.xsw_used = xs.xsw_used; 2476 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 2477 } else 2478 #endif 2479 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2480 return (error); 2481 } 2482 2483 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2484 "Number of swap devices"); 2485 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2486 sysctl_vm_swap_info, 2487 "Swap statistics by device"); 2488 2489 /* 2490 * Count the approximate swap usage in pages for a vmspace. The 2491 * shadowed or not yet copied on write swap blocks are not accounted. 2492 * The map must be locked. 2493 */ 2494 long 2495 vmspace_swap_count(struct vmspace *vmspace) 2496 { 2497 vm_map_t map; 2498 vm_map_entry_t cur; 2499 vm_object_t object; 2500 struct swblk *sb; 2501 vm_pindex_t e, pi; 2502 long count; 2503 int i; 2504 2505 map = &vmspace->vm_map; 2506 count = 0; 2507 2508 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2509 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2510 continue; 2511 object = cur->object.vm_object; 2512 if (object == NULL || object->type != OBJT_SWAP) 2513 continue; 2514 VM_OBJECT_RLOCK(object); 2515 if (object->type != OBJT_SWAP) 2516 goto unlock; 2517 pi = OFF_TO_IDX(cur->offset); 2518 e = pi + OFF_TO_IDX(cur->end - cur->start); 2519 for (;; pi = sb->p + SWAP_META_PAGES) { 2520 sb = SWAP_PCTRIE_LOOKUP_GE( 2521 &object->un_pager.swp.swp_blks, pi); 2522 if (sb == NULL || sb->p >= e) 2523 break; 2524 for (i = 0; i < SWAP_META_PAGES; i++) { 2525 if (sb->p + i < e && 2526 sb->d[i] != SWAPBLK_NONE) 2527 count++; 2528 } 2529 } 2530 unlock: 2531 VM_OBJECT_RUNLOCK(object); 2532 } 2533 return (count); 2534 } 2535 2536 /* 2537 * GEOM backend 2538 * 2539 * Swapping onto disk devices. 2540 * 2541 */ 2542 2543 static g_orphan_t swapgeom_orphan; 2544 2545 static struct g_class g_swap_class = { 2546 .name = "SWAP", 2547 .version = G_VERSION, 2548 .orphan = swapgeom_orphan, 2549 }; 2550 2551 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2552 2553 2554 static void 2555 swapgeom_close_ev(void *arg, int flags) 2556 { 2557 struct g_consumer *cp; 2558 2559 cp = arg; 2560 g_access(cp, -1, -1, 0); 2561 g_detach(cp); 2562 g_destroy_consumer(cp); 2563 } 2564 2565 /* 2566 * Add a reference to the g_consumer for an inflight transaction. 2567 */ 2568 static void 2569 swapgeom_acquire(struct g_consumer *cp) 2570 { 2571 2572 mtx_assert(&sw_dev_mtx, MA_OWNED); 2573 cp->index++; 2574 } 2575 2576 /* 2577 * Remove a reference from the g_consumer. Post a close event if all 2578 * references go away, since the function might be called from the 2579 * biodone context. 2580 */ 2581 static void 2582 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2583 { 2584 2585 mtx_assert(&sw_dev_mtx, MA_OWNED); 2586 cp->index--; 2587 if (cp->index == 0) { 2588 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2589 sp->sw_id = NULL; 2590 } 2591 } 2592 2593 static void 2594 swapgeom_done(struct bio *bp2) 2595 { 2596 struct swdevt *sp; 2597 struct buf *bp; 2598 struct g_consumer *cp; 2599 2600 bp = bp2->bio_caller2; 2601 cp = bp2->bio_from; 2602 bp->b_ioflags = bp2->bio_flags; 2603 if (bp2->bio_error) 2604 bp->b_ioflags |= BIO_ERROR; 2605 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2606 bp->b_error = bp2->bio_error; 2607 bufdone(bp); 2608 sp = bp2->bio_caller1; 2609 mtx_lock(&sw_dev_mtx); 2610 swapgeom_release(cp, sp); 2611 mtx_unlock(&sw_dev_mtx); 2612 g_destroy_bio(bp2); 2613 } 2614 2615 static void 2616 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2617 { 2618 struct bio *bio; 2619 struct g_consumer *cp; 2620 2621 mtx_lock(&sw_dev_mtx); 2622 cp = sp->sw_id; 2623 if (cp == NULL) { 2624 mtx_unlock(&sw_dev_mtx); 2625 bp->b_error = ENXIO; 2626 bp->b_ioflags |= BIO_ERROR; 2627 bufdone(bp); 2628 return; 2629 } 2630 swapgeom_acquire(cp); 2631 mtx_unlock(&sw_dev_mtx); 2632 if (bp->b_iocmd == BIO_WRITE) 2633 bio = g_new_bio(); 2634 else 2635 bio = g_alloc_bio(); 2636 if (bio == NULL) { 2637 mtx_lock(&sw_dev_mtx); 2638 swapgeom_release(cp, sp); 2639 mtx_unlock(&sw_dev_mtx); 2640 bp->b_error = ENOMEM; 2641 bp->b_ioflags |= BIO_ERROR; 2642 bufdone(bp); 2643 return; 2644 } 2645 2646 bio->bio_caller1 = sp; 2647 bio->bio_caller2 = bp; 2648 bio->bio_cmd = bp->b_iocmd; 2649 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2650 bio->bio_length = bp->b_bcount; 2651 bio->bio_done = swapgeom_done; 2652 if (!buf_mapped(bp)) { 2653 bio->bio_ma = bp->b_pages; 2654 bio->bio_data = unmapped_buf; 2655 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2656 bio->bio_ma_n = bp->b_npages; 2657 bio->bio_flags |= BIO_UNMAPPED; 2658 } else { 2659 bio->bio_data = bp->b_data; 2660 bio->bio_ma = NULL; 2661 } 2662 g_io_request(bio, cp); 2663 return; 2664 } 2665 2666 static void 2667 swapgeom_orphan(struct g_consumer *cp) 2668 { 2669 struct swdevt *sp; 2670 int destroy; 2671 2672 mtx_lock(&sw_dev_mtx); 2673 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2674 if (sp->sw_id == cp) { 2675 sp->sw_flags |= SW_CLOSING; 2676 break; 2677 } 2678 } 2679 /* 2680 * Drop reference we were created with. Do directly since we're in a 2681 * special context where we don't have to queue the call to 2682 * swapgeom_close_ev(). 2683 */ 2684 cp->index--; 2685 destroy = ((sp != NULL) && (cp->index == 0)); 2686 if (destroy) 2687 sp->sw_id = NULL; 2688 mtx_unlock(&sw_dev_mtx); 2689 if (destroy) 2690 swapgeom_close_ev(cp, 0); 2691 } 2692 2693 static void 2694 swapgeom_close(struct thread *td, struct swdevt *sw) 2695 { 2696 struct g_consumer *cp; 2697 2698 mtx_lock(&sw_dev_mtx); 2699 cp = sw->sw_id; 2700 sw->sw_id = NULL; 2701 mtx_unlock(&sw_dev_mtx); 2702 2703 /* 2704 * swapgeom_close() may be called from the biodone context, 2705 * where we cannot perform topology changes. Delegate the 2706 * work to the events thread. 2707 */ 2708 if (cp != NULL) 2709 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2710 } 2711 2712 static int 2713 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2714 { 2715 struct g_provider *pp; 2716 struct g_consumer *cp; 2717 static struct g_geom *gp; 2718 struct swdevt *sp; 2719 u_long nblks; 2720 int error; 2721 2722 pp = g_dev_getprovider(dev); 2723 if (pp == NULL) 2724 return (ENODEV); 2725 mtx_lock(&sw_dev_mtx); 2726 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2727 cp = sp->sw_id; 2728 if (cp != NULL && cp->provider == pp) { 2729 mtx_unlock(&sw_dev_mtx); 2730 return (EBUSY); 2731 } 2732 } 2733 mtx_unlock(&sw_dev_mtx); 2734 if (gp == NULL) 2735 gp = g_new_geomf(&g_swap_class, "swap"); 2736 cp = g_new_consumer(gp); 2737 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2738 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2739 g_attach(cp, pp); 2740 /* 2741 * XXX: Every time you think you can improve the margin for 2742 * footshooting, somebody depends on the ability to do so: 2743 * savecore(8) wants to write to our swapdev so we cannot 2744 * set an exclusive count :-( 2745 */ 2746 error = g_access(cp, 1, 1, 0); 2747 if (error != 0) { 2748 g_detach(cp); 2749 g_destroy_consumer(cp); 2750 return (error); 2751 } 2752 nblks = pp->mediasize / DEV_BSIZE; 2753 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2754 swapgeom_close, dev2udev(dev), 2755 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2756 return (0); 2757 } 2758 2759 static int 2760 swapongeom(struct vnode *vp) 2761 { 2762 int error; 2763 2764 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2765 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2766 error = ENOENT; 2767 } else { 2768 g_topology_lock(); 2769 error = swapongeom_locked(vp->v_rdev, vp); 2770 g_topology_unlock(); 2771 } 2772 VOP_UNLOCK(vp, 0); 2773 return (error); 2774 } 2775 2776 /* 2777 * VNODE backend 2778 * 2779 * This is used mainly for network filesystem (read: probably only tested 2780 * with NFS) swapfiles. 2781 * 2782 */ 2783 2784 static void 2785 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2786 { 2787 struct vnode *vp2; 2788 2789 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2790 2791 vp2 = sp->sw_id; 2792 vhold(vp2); 2793 if (bp->b_iocmd == BIO_WRITE) { 2794 if (bp->b_bufobj) 2795 bufobj_wdrop(bp->b_bufobj); 2796 bufobj_wref(&vp2->v_bufobj); 2797 } 2798 if (bp->b_bufobj != &vp2->v_bufobj) 2799 bp->b_bufobj = &vp2->v_bufobj; 2800 bp->b_vp = vp2; 2801 bp->b_iooffset = dbtob(bp->b_blkno); 2802 bstrategy(bp); 2803 return; 2804 } 2805 2806 static void 2807 swapdev_close(struct thread *td, struct swdevt *sp) 2808 { 2809 2810 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2811 vrele(sp->sw_vp); 2812 } 2813 2814 2815 static int 2816 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2817 { 2818 struct swdevt *sp; 2819 int error; 2820 2821 if (nblks == 0) 2822 return (ENXIO); 2823 mtx_lock(&sw_dev_mtx); 2824 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2825 if (sp->sw_id == vp) { 2826 mtx_unlock(&sw_dev_mtx); 2827 return (EBUSY); 2828 } 2829 } 2830 mtx_unlock(&sw_dev_mtx); 2831 2832 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2833 #ifdef MAC 2834 error = mac_system_check_swapon(td->td_ucred, vp); 2835 if (error == 0) 2836 #endif 2837 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2838 (void) VOP_UNLOCK(vp, 0); 2839 if (error) 2840 return (error); 2841 2842 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2843 NODEV, 0); 2844 return (0); 2845 } 2846 2847 static int 2848 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2849 { 2850 int error, new, n; 2851 2852 new = nsw_wcount_async_max; 2853 error = sysctl_handle_int(oidp, &new, 0, req); 2854 if (error != 0 || req->newptr == NULL) 2855 return (error); 2856 2857 if (new > nswbuf / 2 || new < 1) 2858 return (EINVAL); 2859 2860 mtx_lock(&pbuf_mtx); 2861 while (nsw_wcount_async_max != new) { 2862 /* 2863 * Adjust difference. If the current async count is too low, 2864 * we will need to sqeeze our update slowly in. Sleep with a 2865 * higher priority than getpbuf() to finish faster. 2866 */ 2867 n = new - nsw_wcount_async_max; 2868 if (nsw_wcount_async + n >= 0) { 2869 nsw_wcount_async += n; 2870 nsw_wcount_async_max += n; 2871 wakeup(&nsw_wcount_async); 2872 } else { 2873 nsw_wcount_async_max -= nsw_wcount_async; 2874 nsw_wcount_async = 0; 2875 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2876 "swpsysctl", 0); 2877 } 2878 } 2879 mtx_unlock(&pbuf_mtx); 2880 2881 return (0); 2882 } 2883