xref: /freebsd/sys/vm/swap_pager.c (revision 5129159789cc9d7bc514e4546b88e3427695002d)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/vnode.h>
77 #include <sys/malloc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 
83 #ifndef MAX_PAGEOUT_CLUSTER
84 #define MAX_PAGEOUT_CLUSTER 16
85 #endif
86 
87 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
88 
89 #include "opt_swap.h"
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vm_zone.h>
98 
99 #define SWM_FREE	0x02	/* free, period			*/
100 #define SWM_POP		0x04	/* pop out			*/
101 
102 /*
103  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
104  * in the old system.
105  */
106 
107 extern int vm_swap_size;	/* number of free swap blocks, in pages */
108 
109 int swap_pager_full;		/* swap space exhaustion (task killing) */
110 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
111 static int nsw_rcount;		/* free read buffers			*/
112 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
113 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
114 static int nsw_wcount_async_max;/* assigned maximum			*/
115 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
116 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
117 
118 struct blist *swapblist;
119 static struct swblock **swhash;
120 static int swhash_mask;
121 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
122 
123 static struct vnode *swapdev_vp; /* XXX: This is not quite a real vnode */
124 
125 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
126         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
127 
128 /*
129  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
130  * of searching a named list by hashing it just a little.
131  */
132 
133 #define NOBJLISTS		8
134 
135 #define NOBJLIST(handle)	\
136 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
137 
138 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
139 struct pagerlst		swap_pager_un_object_list;
140 vm_zone_t		swap_zone;
141 
142 /*
143  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
144  * calls hooked from other parts of the VM system and do not appear here.
145  * (see vm/swap_pager.h).
146  */
147 
148 static vm_object_t
149 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
150 				      vm_prot_t prot, vm_ooffset_t offset));
151 static void	swap_pager_dealloc __P((vm_object_t object));
152 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
153 static void	swap_pager_init __P((void));
154 static void	swap_pager_unswapped __P((vm_page_t));
155 static void	swap_pager_strategy __P((vm_object_t, struct buf *));
156 
157 struct pagerops swappagerops = {
158 	swap_pager_init,	/* early system initialization of pager	*/
159 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
160 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
161 	swap_pager_getpages,	/* pagein				*/
162 	swap_pager_putpages,	/* pageout				*/
163 	swap_pager_haspage,	/* get backing store status for page	*/
164 	swap_pager_unswapped,	/* remove swap related to page		*/
165 	swap_pager_strategy	/* pager strategy call			*/
166 };
167 
168 /*
169  * dmmax is in page-sized chunks with the new swap system.  It was
170  * dev-bsized chunks in the old.
171  *
172  * swap_*() routines are externally accessible.  swp_*() routines are
173  * internal.
174  */
175 
176 int dmmax;
177 static int dmmax_mask;
178 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
179 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
180 
181 static __inline void	swp_sizecheck __P((void));
182 static void	swp_pager_sync_iodone __P((struct buf *bp));
183 static void	swp_pager_async_iodone __P((struct buf *bp));
184 
185 /*
186  * Swap bitmap functions
187  */
188 
189 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
190 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
191 
192 /*
193  * Metadata functions
194  */
195 
196 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
197 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
198 static void swp_pager_meta_free_all __P((vm_object_t));
199 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
200 
201 /*
202  * SWP_SIZECHECK() -	update swap_pager_full indication
203  *
204  *	update the swap_pager_almost_full indication and warn when we are
205  *	about to run out of swap space, using lowat/hiwat hysteresis.
206  *
207  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
208  *
209  *	No restrictions on call
210  *	This routine may not block.
211  *	This routine must be called at splvm()
212  */
213 
214 static __inline void
215 swp_sizecheck()
216 {
217 	if (vm_swap_size < nswap_lowat) {
218 		if (swap_pager_almost_full == 0) {
219 			printf("swap_pager: out of swap space\n");
220 			swap_pager_almost_full = 1;
221 		}
222 	} else {
223 		swap_pager_full = 0;
224 		if (vm_swap_size > nswap_hiwat)
225 			swap_pager_almost_full = 0;
226 	}
227 }
228 
229 /*
230  * SWAP_PAGER_INIT() -	initialize the swap pager!
231  *
232  *	Expected to be started from system init.  NOTE:  This code is run
233  *	before much else so be careful what you depend on.  Most of the VM
234  *	system has yet to be initialized at this point.
235  */
236 
237 static void
238 swap_pager_init()
239 {
240 	/*
241 	 * Initialize object lists
242 	 */
243 	int i;
244 
245 	for (i = 0; i < NOBJLISTS; ++i)
246 		TAILQ_INIT(&swap_pager_object_list[i]);
247 	TAILQ_INIT(&swap_pager_un_object_list);
248 
249 	/*
250 	 * Device Stripe, in PAGE_SIZE'd blocks
251 	 */
252 
253 	dmmax = SWB_NPAGES * 2;
254 	dmmax_mask = ~(dmmax - 1);
255 }
256 
257 /*
258  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
259  *
260  *	Expected to be started from pageout process once, prior to entering
261  *	its main loop.
262  */
263 
264 void
265 swap_pager_swap_init()
266 {
267 	int n;
268 
269 	/*
270 	 * Number of in-transit swap bp operations.  Don't
271 	 * exhaust the pbufs completely.  Make sure we
272 	 * initialize workable values (0 will work for hysteresis
273 	 * but it isn't very efficient).
274 	 *
275 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
276 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
277 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
278 	 * constrained by the swap device interleave stripe size.
279 	 *
280 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
281 	 * designed to prevent other I/O from having high latencies due to
282 	 * our pageout I/O.  The value 4 works well for one or two active swap
283 	 * devices but is probably a little low if you have more.  Even so,
284 	 * a higher value would probably generate only a limited improvement
285 	 * with three or four active swap devices since the system does not
286 	 * typically have to pageout at extreme bandwidths.   We will want
287 	 * at least 2 per swap devices, and 4 is a pretty good value if you
288 	 * have one NFS swap device due to the command/ack latency over NFS.
289 	 * So it all works out pretty well.
290 	 */
291 
292 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
293 
294 	nsw_rcount = (nswbuf + 1) / 2;
295 	nsw_wcount_sync = (nswbuf + 3) / 4;
296 	nsw_wcount_async = 4;
297 	nsw_wcount_async_max = nsw_wcount_async;
298 
299 	/*
300 	 * Initialize our zone.  Right now I'm just guessing on the number
301 	 * we need based on the number of pages in the system.  Each swblock
302 	 * can hold 16 pages, so this is probably overkill.
303 	 */
304 
305 	n = cnt.v_page_count * 2;
306 
307 	swap_zone = zinit(
308 	    "SWAPMETA",
309 	    sizeof(struct swblock),
310 	    n,
311 	    ZONE_INTERRUPT,
312 	    1
313 	);
314 
315 	/*
316 	 * Initialize our meta-data hash table.  The swapper does not need to
317 	 * be quite as efficient as the VM system, so we do not use an
318 	 * oversized hash table.
319 	 *
320 	 * 	n: 		size of hash table, must be power of 2
321 	 *	swhash_mask:	hash table index mask
322 	 */
323 
324 	for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
325 		;
326 
327 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
328 	bzero(swhash, sizeof(struct swblock *) * n);
329 
330 	swhash_mask = n - 1;
331 
332 	n = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &swapdev_vp);
333 	if (n)
334 		panic("Cannot get vnode for swapdev");
335 	swapdev_vp->v_type = VBLK;
336 }
337 
338 /*
339  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
340  *			its metadata structures.
341  *
342  *	This routine is called from the mmap and fork code to create a new
343  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
344  *	and then converting it with swp_pager_meta_build().
345  *
346  *	This routine may block in vm_object_allocate() and create a named
347  *	object lookup race, so we must interlock.   We must also run at
348  *	splvm() for the object lookup to handle races with interrupts, but
349  *	we do not have to maintain splvm() in between the lookup and the
350  *	add because (I believe) it is not possible to attempt to create
351  *	a new swap object w/handle when a default object with that handle
352  *	already exists.
353  */
354 
355 static vm_object_t
356 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
357 		 vm_ooffset_t offset)
358 {
359 	vm_object_t object;
360 
361 	if (handle) {
362 		/*
363 		 * Reference existing named region or allocate new one.  There
364 		 * should not be a race here against swp_pager_meta_build()
365 		 * as called from vm_page_remove() in regards to the lookup
366 		 * of the handle.
367 		 */
368 
369 		while (sw_alloc_interlock) {
370 			sw_alloc_interlock = -1;
371 			tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
372 		}
373 		sw_alloc_interlock = 1;
374 
375 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
376 
377 		if (object != NULL) {
378 			vm_object_reference(object);
379 		} else {
380 			object = vm_object_allocate(OBJT_DEFAULT,
381 				OFF_TO_IDX(offset + PAGE_MASK + size));
382 			object->handle = handle;
383 
384 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
385 		}
386 
387 		if (sw_alloc_interlock < 0)
388 			wakeup(&sw_alloc_interlock);
389 
390 		sw_alloc_interlock = 0;
391 	} else {
392 		object = vm_object_allocate(OBJT_DEFAULT,
393 			OFF_TO_IDX(offset + PAGE_MASK + size));
394 
395 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
396 	}
397 
398 	return (object);
399 }
400 
401 /*
402  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
403  *
404  *	The swap backing for the object is destroyed.  The code is
405  *	designed such that we can reinstantiate it later, but this
406  *	routine is typically called only when the entire object is
407  *	about to be destroyed.
408  *
409  *	This routine may block, but no longer does.
410  *
411  *	The object must be locked or unreferenceable.
412  */
413 
414 static void
415 swap_pager_dealloc(object)
416 	vm_object_t object;
417 {
418 	int s;
419 
420 	/*
421 	 * Remove from list right away so lookups will fail if we block for
422 	 * pageout completion.
423 	 */
424 
425 	if (object->handle == NULL) {
426 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
427 	} else {
428 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
429 	}
430 
431 	vm_object_pip_wait(object, "swpdea");
432 
433 	/*
434 	 * Free all remaining metadata.  We only bother to free it from
435 	 * the swap meta data.  We do not attempt to free swapblk's still
436 	 * associated with vm_page_t's for this object.  We do not care
437 	 * if paging is still in progress on some objects.
438 	 */
439 	s = splvm();
440 	swp_pager_meta_free_all(object);
441 	splx(s);
442 }
443 
444 /************************************************************************
445  *			SWAP PAGER BITMAP ROUTINES			*
446  ************************************************************************/
447 
448 /*
449  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
450  *
451  *	Allocate swap for the requested number of pages.  The starting
452  *	swap block number (a page index) is returned or SWAPBLK_NONE
453  *	if the allocation failed.
454  *
455  *	Also has the side effect of advising that somebody made a mistake
456  *	when they configured swap and didn't configure enough.
457  *
458  *	Must be called at splvm() to avoid races with bitmap frees from
459  *	vm_page_remove() aka swap_pager_page_removed().
460  *
461  *	This routine may not block
462  *	This routine must be called at splvm().
463  */
464 
465 static __inline daddr_t
466 swp_pager_getswapspace(npages)
467 	int npages;
468 {
469 	daddr_t blk;
470 
471 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
472 		if (swap_pager_full != 2) {
473 			printf("swap_pager_getswapspace: failed\n");
474 			swap_pager_full = 2;
475 			swap_pager_almost_full = 1;
476 		}
477 	} else {
478 		vm_swap_size -= npages;
479 		swp_sizecheck();
480 	}
481 	return(blk);
482 }
483 
484 /*
485  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
486  *
487  *	This routine returns the specified swap blocks back to the bitmap.
488  *
489  *	Note:  This routine may not block (it could in the old swap code),
490  *	and through the use of the new blist routines it does not block.
491  *
492  *	We must be called at splvm() to avoid races with bitmap frees from
493  *	vm_page_remove() aka swap_pager_page_removed().
494  *
495  *	This routine may not block
496  *	This routine must be called at splvm().
497  */
498 
499 static __inline void
500 swp_pager_freeswapspace(blk, npages)
501 	daddr_t blk;
502 	int npages;
503 {
504 	blist_free(swapblist, blk, npages);
505 	vm_swap_size += npages;
506 	swp_sizecheck();
507 }
508 
509 /*
510  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
511  *				range within an object.
512  *
513  *	This is a globally accessible routine.
514  *
515  *	This routine removes swapblk assignments from swap metadata.
516  *
517  *	The external callers of this routine typically have already destroyed
518  *	or renamed vm_page_t's associated with this range in the object so
519  *	we should be ok.
520  *
521  *	This routine may be called at any spl.  We up our spl to splvm temporarily
522  *	in order to perform the metadata removal.
523  */
524 
525 void
526 swap_pager_freespace(object, start, size)
527 	vm_object_t object;
528 	vm_pindex_t start;
529 	vm_size_t size;
530 {
531 	int s = splvm();
532 	swp_pager_meta_free(object, start, size);
533 	splx(s);
534 }
535 
536 /*
537  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
538  *
539  *	Assigns swap blocks to the specified range within the object.  The
540  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
541  *
542  *	Returns 0 on success, -1 on failure.
543  */
544 
545 int
546 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
547 {
548 	int s;
549 	int n = 0;
550 	daddr_t blk = SWAPBLK_NONE;
551 	vm_pindex_t beg = start;	/* save start index */
552 
553 	s = splvm();
554 	while (size) {
555 		if (n == 0) {
556 			n = BLIST_MAX_ALLOC;
557 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
558 				n >>= 1;
559 				if (n == 0) {
560 					swp_pager_meta_free(object, beg, start - beg);
561 					splx(s);
562 					return(-1);
563 				}
564 			}
565 		}
566 		swp_pager_meta_build(object, start, blk);
567 		--size;
568 		++start;
569 		++blk;
570 		--n;
571 	}
572 	swp_pager_meta_free(object, start, n);
573 	splx(s);
574 	return(0);
575 }
576 
577 /*
578  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
579  *			and destroy the source.
580  *
581  *	Copy any valid swapblks from the source to the destination.  In
582  *	cases where both the source and destination have a valid swapblk,
583  *	we keep the destination's.
584  *
585  *	This routine is allowed to block.  It may block allocating metadata
586  *	indirectly through swp_pager_meta_build() or if paging is still in
587  *	progress on the source.
588  *
589  *	This routine can be called at any spl
590  *
591  *	XXX vm_page_collapse() kinda expects us not to block because we
592  *	supposedly do not need to allocate memory, but for the moment we
593  *	*may* have to get a little memory from the zone allocator, but
594  *	it is taken from the interrupt memory.  We should be ok.
595  *
596  *	The source object contains no vm_page_t's (which is just as well)
597  *
598  *	The source object is of type OBJT_SWAP.
599  *
600  *	The source and destination objects must be locked or
601  *	inaccessible (XXX are they ?)
602  */
603 
604 void
605 swap_pager_copy(srcobject, dstobject, offset, destroysource)
606 	vm_object_t srcobject;
607 	vm_object_t dstobject;
608 	vm_pindex_t offset;
609 	int destroysource;
610 {
611 	vm_pindex_t i;
612 	int s;
613 
614 	s = splvm();
615 
616 	/*
617 	 * If destroysource is set, we remove the source object from the
618 	 * swap_pager internal queue now.
619 	 */
620 
621 	if (destroysource) {
622 		if (srcobject->handle == NULL) {
623 			TAILQ_REMOVE(
624 			    &swap_pager_un_object_list,
625 			    srcobject,
626 			    pager_object_list
627 			);
628 		} else {
629 			TAILQ_REMOVE(
630 			    NOBJLIST(srcobject->handle),
631 			    srcobject,
632 			    pager_object_list
633 			);
634 		}
635 	}
636 
637 	/*
638 	 * transfer source to destination.
639 	 */
640 
641 	for (i = 0; i < dstobject->size; ++i) {
642 		daddr_t dstaddr;
643 
644 		/*
645 		 * Locate (without changing) the swapblk on the destination,
646 		 * unless it is invalid in which case free it silently, or
647 		 * if the destination is a resident page, in which case the
648 		 * source is thrown away.
649 		 */
650 
651 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
652 
653 		if (dstaddr == SWAPBLK_NONE) {
654 			/*
655 			 * Destination has no swapblk and is not resident,
656 			 * copy source.
657 			 */
658 			daddr_t srcaddr;
659 
660 			srcaddr = swp_pager_meta_ctl(
661 			    srcobject,
662 			    i + offset,
663 			    SWM_POP
664 			);
665 
666 			if (srcaddr != SWAPBLK_NONE)
667 				swp_pager_meta_build(dstobject, i, srcaddr);
668 		} else {
669 			/*
670 			 * Destination has valid swapblk or it is represented
671 			 * by a resident page.  We destroy the sourceblock.
672 			 */
673 
674 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
675 		}
676 	}
677 
678 	/*
679 	 * Free left over swap blocks in source.
680 	 *
681 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
682 	 * double-remove the object from the swap queues.
683 	 */
684 
685 	if (destroysource) {
686 		swp_pager_meta_free_all(srcobject);
687 		/*
688 		 * Reverting the type is not necessary, the caller is going
689 		 * to destroy srcobject directly, but I'm doing it here
690 		 * for consistancy since we've removed the object from its
691 		 * queues.
692 		 */
693 		srcobject->type = OBJT_DEFAULT;
694 	}
695 	splx(s);
696 }
697 
698 /*
699  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
700  *				the requested page.
701  *
702  *	We determine whether good backing store exists for the requested
703  *	page and return TRUE if it does, FALSE if it doesn't.
704  *
705  *	If TRUE, we also try to determine how much valid, contiguous backing
706  *	store exists before and after the requested page within a reasonable
707  *	distance.  We do not try to restrict it to the swap device stripe
708  *	(that is handled in getpages/putpages).  It probably isn't worth
709  *	doing here.
710  *
711  *	This routine must be called at splvm().
712  */
713 
714 boolean_t
715 swap_pager_haspage(object, pindex, before, after)
716 	vm_object_t object;
717 	vm_pindex_t pindex;
718 	int *before;
719 	int *after;
720 {
721 	daddr_t blk0;
722 
723 	/*
724 	 * do we have good backing store at the requested index ?
725 	 */
726 
727 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
728 
729 	if (blk0 == SWAPBLK_NONE) {
730 		if (before)
731 			*before = 0;
732 		if (after)
733 			*after = 0;
734 		return (FALSE);
735 	}
736 
737 	/*
738 	 * find backwards-looking contiguous good backing store
739 	 */
740 
741 	if (before != NULL) {
742 		int i;
743 
744 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
745 			daddr_t blk;
746 
747 			if (i > pindex)
748 				break;
749 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
750 			if (blk != blk0 - i)
751 				break;
752 		}
753 		*before = (i - 1);
754 	}
755 
756 	/*
757 	 * find forward-looking contiguous good backing store
758 	 */
759 
760 	if (after != NULL) {
761 		int i;
762 
763 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
764 			daddr_t blk;
765 
766 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
767 			if (blk != blk0 + i)
768 				break;
769 		}
770 		*after = (i - 1);
771 	}
772 
773 	return (TRUE);
774 }
775 
776 /*
777  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
778  *
779  *	This removes any associated swap backing store, whether valid or
780  *	not, from the page.
781  *
782  *	This routine is typically called when a page is made dirty, at
783  *	which point any associated swap can be freed.  MADV_FREE also
784  *	calls us in a special-case situation
785  *
786  *	NOTE!!!  If the page is clean and the swap was valid, the caller
787  *	should make the page dirty before calling this routine.  This routine
788  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
789  *	depends on it.
790  *
791  *	This routine may not block
792  *	This routine must be called at splvm()
793  */
794 
795 static void
796 swap_pager_unswapped(m)
797 	vm_page_t m;
798 {
799 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
800 }
801 
802 /*
803  * SWAP_PAGER_STRATEGY() - read, write, free blocks
804  *
805  *	This implements the vm_pager_strategy() interface to swap and allows
806  *	other parts of the system to directly access swap as backing store
807  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
808  *	cacheless interface ( i.e. caching occurs at higher levels ).
809  *	Therefore we do not maintain any resident pages.  All I/O goes
810  *	directly to and from the swap device.
811  *
812  *	Note that b_blkno is scaled for PAGE_SIZE
813  *
814  *	We currently attempt to run I/O synchronously or asynchronously as
815  *	the caller requests.  This isn't perfect because we loose error
816  *	sequencing when we run multiple ops in parallel to satisfy a request.
817  *	But this is swap, so we let it all hang out.
818  */
819 
820 static void
821 swap_pager_strategy(vm_object_t object, struct buf *bp)
822 {
823 	vm_pindex_t start;
824 	int count;
825 	int s;
826 	char *data;
827 	struct buf *nbp = NULL;
828 
829 	if (bp->b_bcount & PAGE_MASK) {
830 		bp->b_error = EINVAL;
831 		bp->b_flags |= B_ERROR | B_INVAL;
832 		biodone(bp);
833 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
834 		return;
835 	}
836 
837 	/*
838 	 * Clear error indication, initialize page index, count, data pointer.
839 	 */
840 
841 	bp->b_error = 0;
842 	bp->b_flags &= ~B_ERROR;
843 	bp->b_resid = bp->b_bcount;
844 
845 	start = bp->b_pblkno;
846 	count = howmany(bp->b_bcount, PAGE_SIZE);
847 	data = bp->b_data;
848 
849 	s = splvm();
850 
851 	/*
852 	 * Deal with B_FREEBUF
853 	 */
854 
855 	if (bp->b_flags & B_FREEBUF) {
856 		/*
857 		 * FREE PAGE(s) - destroy underlying swap that is no longer
858 		 *		  needed.
859 		 */
860 		swp_pager_meta_free(object, start, count);
861 		splx(s);
862 		bp->b_resid = 0;
863 		biodone(bp);
864 		return;
865 	}
866 
867 	/*
868 	 * Execute read or write
869 	 */
870 
871 	while (count > 0) {
872 		daddr_t blk;
873 
874 		/*
875 		 * Obtain block.  If block not found and writing, allocate a
876 		 * new block and build it into the object.
877 		 */
878 
879 		blk = swp_pager_meta_ctl(object, start, 0);
880 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
881 			blk = swp_pager_getswapspace(1);
882 			if (blk == SWAPBLK_NONE) {
883 				bp->b_error = ENOMEM;
884 				bp->b_flags |= B_ERROR;
885 				break;
886 			}
887 			swp_pager_meta_build(object, start, blk);
888 		}
889 
890 		/*
891 		 * Do we have to flush our current collection?  Yes if:
892 		 *
893 		 *	- no swap block at this index
894 		 *	- swap block is not contiguous
895 		 *	- we cross a physical disk boundry in the
896 		 *	  stripe.
897 		 */
898 
899 		if (
900 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
901 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
902 		    )
903 		) {
904 			splx(s);
905 			if (bp->b_flags & B_READ) {
906 				++cnt.v_swapin;
907 				cnt.v_swappgsin += btoc(nbp->b_bcount);
908 			} else {
909 				++cnt.v_swapout;
910 				cnt.v_swappgsout += btoc(nbp->b_bcount);
911 				nbp->b_dirtyend = nbp->b_bcount;
912 			}
913 			flushchainbuf(nbp);
914 			s = splvm();
915 			nbp = NULL;
916 		}
917 
918 		/*
919 		 * Add new swapblk to nbp, instantiating nbp if necessary.
920 		 * Zero-fill reads are able to take a shortcut.
921 		 */
922 
923 		if (blk == SWAPBLK_NONE) {
924 			/*
925 			 * We can only get here if we are reading.  Since
926 			 * we are at splvm() we can safely modify b_resid,
927 			 * even if chain ops are in progress.
928 			 */
929 			bzero(data, PAGE_SIZE);
930 			bp->b_resid -= PAGE_SIZE;
931 		} else {
932 			if (nbp == NULL) {
933 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
934 				nbp->b_blkno = blk;
935 				nbp->b_bcount = 0;
936 				nbp->b_data = data;
937 			}
938 			nbp->b_bcount += PAGE_SIZE;
939 		}
940 		--count;
941 		++start;
942 		data += PAGE_SIZE;
943 	}
944 
945 	/*
946 	 *  Flush out last buffer
947 	 */
948 
949 	splx(s);
950 
951 	if (nbp) {
952 		if ((bp->b_flags & B_ASYNC) == 0)
953 			nbp->b_flags &= ~B_ASYNC;
954 		if (nbp->b_flags & B_READ) {
955 			++cnt.v_swapin;
956 			cnt.v_swappgsin += btoc(nbp->b_bcount);
957 		} else {
958 			++cnt.v_swapout;
959 			cnt.v_swappgsout += btoc(nbp->b_bcount);
960 			nbp->b_dirtyend = nbp->b_bcount;
961 		}
962 		flushchainbuf(nbp);
963 		/* nbp = NULL; */
964 	}
965 
966 	/*
967 	 * Wait for completion.
968 	 */
969 
970 	if (bp->b_flags & B_ASYNC) {
971 		autochaindone(bp);
972 	} else {
973 		waitchainbuf(bp, 0, 1);
974 	}
975 }
976 
977 /*
978  * SWAP_PAGER_GETPAGES() - bring pages in from swap
979  *
980  *	Attempt to retrieve (m, count) pages from backing store, but make
981  *	sure we retrieve at least m[reqpage].  We try to load in as large
982  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
983  *	belongs to the same object.
984  *
985  *	The code is designed for asynchronous operation and
986  *	immediate-notification of 'reqpage' but tends not to be
987  *	used that way.  Please do not optimize-out this algorithmic
988  *	feature, I intend to improve on it in the future.
989  *
990  *	The parent has a single vm_object_pip_add() reference prior to
991  *	calling us and we should return with the same.
992  *
993  *	The parent has BUSY'd the pages.  We should return with 'm'
994  *	left busy, but the others adjusted.
995  */
996 
997 static int
998 swap_pager_getpages(object, m, count, reqpage)
999 	vm_object_t object;
1000 	vm_page_t *m;
1001 	int count, reqpage;
1002 {
1003 	struct buf *bp;
1004 	vm_page_t mreq;
1005 	int s;
1006 	int i;
1007 	int j;
1008 	daddr_t blk;
1009 	vm_offset_t kva;
1010 	vm_pindex_t lastpindex;
1011 
1012 	mreq = m[reqpage];
1013 
1014 #if !defined(MAX_PERF)
1015 	if (mreq->object != object) {
1016 		panic("swap_pager_getpages: object mismatch %p/%p",
1017 		    object,
1018 		    mreq->object
1019 		);
1020 	}
1021 #endif
1022 	/*
1023 	 * Calculate range to retrieve.  The pages have already been assigned
1024 	 * their swapblks.  We require a *contiguous* range that falls entirely
1025 	 * within a single device stripe.   If we do not supply it, bad things
1026 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1027 	 * loops are set up such that the case(s) are handled implicitly.
1028 	 *
1029 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1030 	 * not need to be, but it will go a little faster if it is.
1031 	 */
1032 
1033 	s = splvm();
1034 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1035 
1036 	for (i = reqpage - 1; i >= 0; --i) {
1037 		daddr_t iblk;
1038 
1039 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1040 		if (blk != iblk + (reqpage - i))
1041 			break;
1042 		if ((blk ^ iblk) & dmmax_mask)
1043 			break;
1044 	}
1045 	++i;
1046 
1047 	for (j = reqpage + 1; j < count; ++j) {
1048 		daddr_t jblk;
1049 
1050 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1051 		if (blk != jblk - (j - reqpage))
1052 			break;
1053 		if ((blk ^ jblk) & dmmax_mask)
1054 			break;
1055 	}
1056 
1057 	/*
1058 	 * free pages outside our collection range.   Note: we never free
1059 	 * mreq, it must remain busy throughout.
1060 	 */
1061 
1062 	{
1063 		int k;
1064 
1065 		for (k = 0; k < i; ++k)
1066 			vm_page_free(m[k]);
1067 		for (k = j; k < count; ++k)
1068 			vm_page_free(m[k]);
1069 	}
1070 	splx(s);
1071 
1072 
1073 	/*
1074 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1075 	 * still busy, but the others unbusied.
1076 	 */
1077 
1078 	if (blk == SWAPBLK_NONE)
1079 		return(VM_PAGER_FAIL);
1080 
1081 	/*
1082 	 * Get a swap buffer header to perform the IO
1083 	 */
1084 
1085 	bp = getpbuf(&nsw_rcount);
1086 	kva = (vm_offset_t) bp->b_data;
1087 
1088 	/*
1089 	 * map our page(s) into kva for input
1090 	 *
1091 	 * NOTE: B_PAGING is set by pbgetvp()
1092 	 */
1093 
1094 	pmap_qenter(kva, m + i, j - i);
1095 
1096 	bp->b_flags = B_READ | B_CALL;
1097 	bp->b_iodone = swp_pager_async_iodone;
1098 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1099 	bp->b_data = (caddr_t) kva;
1100 	crhold(bp->b_rcred);
1101 	crhold(bp->b_wcred);
1102 	bp->b_blkno = blk - (reqpage - i);
1103 	bp->b_bcount = PAGE_SIZE * (j - i);
1104 	bp->b_bufsize = PAGE_SIZE * (j - i);
1105 	bp->b_pager.pg_reqpage = reqpage - i;
1106 
1107 	{
1108 		int k;
1109 
1110 		for (k = i; k < j; ++k) {
1111 			bp->b_pages[k - i] = m[k];
1112 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1113 		}
1114 	}
1115 	bp->b_npages = j - i;
1116 
1117 	pbgetvp(swapdev_vp, bp);
1118 
1119 	cnt.v_swapin++;
1120 	cnt.v_swappgsin += bp->b_npages;
1121 
1122 	/*
1123 	 * We still hold the lock on mreq, and our automatic completion routine
1124 	 * does not remove it.
1125 	 */
1126 
1127 	vm_object_pip_add(mreq->object, bp->b_npages);
1128 	lastpindex = m[j-1]->pindex;
1129 
1130 	/*
1131 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1132 	 * this point because we automatically release it on completion.
1133 	 * Instead, we look at the one page we are interested in which we
1134 	 * still hold a lock on even through the I/O completion.
1135 	 *
1136 	 * The other pages in our m[] array are also released on completion,
1137 	 * so we cannot assume they are valid anymore either.
1138 	 *
1139 	 * NOTE: b_blkno is destroyed by the call to swstrategy()
1140 	 */
1141 
1142 	BUF_KERNPROC(bp);
1143 	swstrategy(bp);
1144 
1145 	/*
1146 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1147 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1148 	 * is set in the meta-data.
1149 	 */
1150 
1151 	s = splvm();
1152 
1153 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1154 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1155 		cnt.v_intrans++;
1156 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1157 			printf(
1158 			    "swap_pager: indefinite wait buffer: device:"
1159 				" %s, blkno: %ld, size: %ld\n",
1160 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1161 			    bp->b_bcount
1162 			);
1163 		}
1164 	}
1165 
1166 	splx(s);
1167 
1168 	/*
1169 	 * mreq is left bussied after completion, but all the other pages
1170 	 * are freed.  If we had an unrecoverable read error the page will
1171 	 * not be valid.
1172 	 */
1173 
1174 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1175 		return(VM_PAGER_ERROR);
1176 	} else {
1177 		return(VM_PAGER_OK);
1178 	}
1179 
1180 	/*
1181 	 * A final note: in a low swap situation, we cannot deallocate swap
1182 	 * and mark a page dirty here because the caller is likely to mark
1183 	 * the page clean when we return, causing the page to possibly revert
1184 	 * to all-zero's later.
1185 	 */
1186 }
1187 
1188 /*
1189  *	swap_pager_putpages:
1190  *
1191  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1192  *
1193  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1194  *	are automatically converted to SWAP objects.
1195  *
1196  *	In a low memory situation we may block in swstrategy(), but the new
1197  *	vm_page reservation system coupled with properly written VFS devices
1198  *	should ensure that no low-memory deadlock occurs.  This is an area
1199  *	which needs work.
1200  *
1201  *	The parent has N vm_object_pip_add() references prior to
1202  *	calling us and will remove references for rtvals[] that are
1203  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1204  *	completion.
1205  *
1206  *	The parent has soft-busy'd the pages it passes us and will unbusy
1207  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1208  *	We need to unbusy the rest on I/O completion.
1209  */
1210 
1211 void
1212 swap_pager_putpages(object, m, count, sync, rtvals)
1213 	vm_object_t object;
1214 	vm_page_t *m;
1215 	int count;
1216 	boolean_t sync;
1217 	int *rtvals;
1218 {
1219 	int i;
1220 	int n = 0;
1221 
1222 #if !defined(MAX_PERF)
1223 	if (count && m[0]->object != object) {
1224 		panic("swap_pager_getpages: object mismatch %p/%p",
1225 		    object,
1226 		    m[0]->object
1227 		);
1228 	}
1229 #endif
1230 	/*
1231 	 * Step 1
1232 	 *
1233 	 * Turn object into OBJT_SWAP
1234 	 * check for bogus sysops
1235 	 * force sync if not pageout process
1236 	 */
1237 
1238 	if (object->type != OBJT_SWAP)
1239 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1240 
1241 	if (curproc != pageproc)
1242 		sync = TRUE;
1243 
1244 	/*
1245 	 * Step 2
1246 	 *
1247 	 * Update nsw parameters from swap_async_max sysctl values.
1248 	 * Do not let the sysop crash the machine with bogus numbers.
1249 	 */
1250 
1251 	if (swap_async_max != nsw_wcount_async_max) {
1252 		int n;
1253 		int s;
1254 
1255 		/*
1256 		 * limit range
1257 		 */
1258 		if ((n = swap_async_max) > nswbuf / 2)
1259 			n = nswbuf / 2;
1260 		if (n < 1)
1261 			n = 1;
1262 		swap_async_max = n;
1263 
1264 		/*
1265 		 * Adjust difference ( if possible ).  If the current async
1266 		 * count is too low, we may not be able to make the adjustment
1267 		 * at this time.
1268 		 */
1269 		s = splvm();
1270 		n -= nsw_wcount_async_max;
1271 		if (nsw_wcount_async + n >= 0) {
1272 			nsw_wcount_async += n;
1273 			nsw_wcount_async_max += n;
1274 			wakeup(&nsw_wcount_async);
1275 		}
1276 		splx(s);
1277 	}
1278 
1279 	/*
1280 	 * Step 3
1281 	 *
1282 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1283 	 * The page is left dirty until the pageout operation completes
1284 	 * successfully.
1285 	 */
1286 
1287 	for (i = 0; i < count; i += n) {
1288 		int s;
1289 		int j;
1290 		struct buf *bp;
1291 		daddr_t blk;
1292 
1293 		/*
1294 		 * Maximum I/O size is limited by a number of factors.
1295 		 */
1296 
1297 		n = min(BLIST_MAX_ALLOC, count - i);
1298 		n = min(n, nsw_cluster_max);
1299 
1300 		s = splvm();
1301 
1302 		/*
1303 		 * Get biggest block of swap we can.  If we fail, fall
1304 		 * back and try to allocate a smaller block.  Don't go
1305 		 * overboard trying to allocate space if it would overly
1306 		 * fragment swap.
1307 		 */
1308 		while (
1309 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1310 		    n > 4
1311 		) {
1312 			n >>= 1;
1313 		}
1314 		if (blk == SWAPBLK_NONE) {
1315 			for (j = 0; j < n; ++j)
1316 				rtvals[i+j] = VM_PAGER_FAIL;
1317 			splx(s);
1318 			continue;
1319 		}
1320 
1321 		/*
1322 		 * The I/O we are constructing cannot cross a physical
1323 		 * disk boundry in the swap stripe.  Note: we are still
1324 		 * at splvm().
1325 		 */
1326 		if ((blk ^ (blk + n)) & dmmax_mask) {
1327 			j = ((blk + dmmax) & dmmax_mask) - blk;
1328 			swp_pager_freeswapspace(blk + j, n - j);
1329 			n = j;
1330 		}
1331 
1332 		/*
1333 		 * All I/O parameters have been satisfied, build the I/O
1334 		 * request and assign the swap space.
1335 		 *
1336 		 * NOTE: B_PAGING is set by pbgetvp()
1337 		 */
1338 
1339 		if (sync == TRUE) {
1340 			bp = getpbuf(&nsw_wcount_sync);
1341 			bp->b_flags = B_CALL;
1342 		} else {
1343 			bp = getpbuf(&nsw_wcount_async);
1344 			bp->b_flags = B_CALL | B_ASYNC;
1345 		}
1346 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1347 
1348 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1349 
1350 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1351 		bp->b_bcount = PAGE_SIZE * n;
1352 		bp->b_bufsize = PAGE_SIZE * n;
1353 		bp->b_blkno = blk;
1354 
1355 		crhold(bp->b_rcred);
1356 		crhold(bp->b_wcred);
1357 
1358 		pbgetvp(swapdev_vp, bp);
1359 
1360 		for (j = 0; j < n; ++j) {
1361 			vm_page_t mreq = m[i+j];
1362 
1363 			swp_pager_meta_build(
1364 			    mreq->object,
1365 			    mreq->pindex,
1366 			    blk + j
1367 			);
1368 			vm_page_dirty(mreq);
1369 			rtvals[i+j] = VM_PAGER_OK;
1370 
1371 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1372 			bp->b_pages[j] = mreq;
1373 		}
1374 		bp->b_npages = n;
1375 		/*
1376 		 * Must set dirty range for NFS to work.
1377 		 */
1378 		bp->b_dirtyoff = 0;
1379 		bp->b_dirtyend = bp->b_bcount;
1380 
1381 		cnt.v_swapout++;
1382 		cnt.v_swappgsout += bp->b_npages;
1383 		swapdev_vp->v_numoutput++;
1384 
1385 		splx(s);
1386 
1387 		/*
1388 		 * asynchronous
1389 		 *
1390 		 * NOTE: b_blkno is destroyed by the call to swstrategy()
1391 		 */
1392 
1393 		if (sync == FALSE) {
1394 			bp->b_iodone = swp_pager_async_iodone;
1395 			BUF_KERNPROC(bp);
1396 			swstrategy(bp);
1397 
1398 			for (j = 0; j < n; ++j)
1399 				rtvals[i+j] = VM_PAGER_PEND;
1400 			continue;
1401 		}
1402 
1403 		/*
1404 		 * synchronous
1405 		 *
1406 		 * NOTE: b_blkno is destroyed by the call to swstrategy()
1407 		 */
1408 
1409 		bp->b_iodone = swp_pager_sync_iodone;
1410 		swstrategy(bp);
1411 
1412 		/*
1413 		 * Wait for the sync I/O to complete, then update rtvals.
1414 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1415 		 * our async completion routine at the end, thus avoiding a
1416 		 * double-free.
1417 		 */
1418 		s = splbio();
1419 
1420 		while ((bp->b_flags & B_DONE) == 0) {
1421 			tsleep(bp, PVM, "swwrt", 0);
1422 		}
1423 
1424 		for (j = 0; j < n; ++j)
1425 			rtvals[i+j] = VM_PAGER_PEND;
1426 
1427 		/*
1428 		 * Now that we are through with the bp, we can call the
1429 		 * normal async completion, which frees everything up.
1430 		 */
1431 
1432 		swp_pager_async_iodone(bp);
1433 
1434 		splx(s);
1435 	}
1436 }
1437 
1438 /*
1439  *	swap_pager_sync_iodone:
1440  *
1441  *	Completion routine for synchronous reads and writes from/to swap.
1442  *	We just mark the bp is complete and wake up anyone waiting on it.
1443  *
1444  *	This routine may not block.  This routine is called at splbio() or better.
1445  */
1446 
1447 static void
1448 swp_pager_sync_iodone(bp)
1449 	struct buf *bp;
1450 {
1451 	bp->b_flags |= B_DONE;
1452 	bp->b_flags &= ~B_ASYNC;
1453 	wakeup(bp);
1454 }
1455 
1456 /*
1457  *	swp_pager_async_iodone:
1458  *
1459  *	Completion routine for asynchronous reads and writes from/to swap.
1460  *	Also called manually by synchronous code to finish up a bp.
1461  *
1462  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1463  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1464  *	unbusy all pages except the 'main' request page.  For WRITE
1465  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1466  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1467  *
1468  *	This routine may not block.
1469  *	This routine is called at splbio() or better
1470  *
1471  *	We up ourselves to splvm() as required for various vm_page related
1472  *	calls.
1473  */
1474 
1475 static void
1476 swp_pager_async_iodone(bp)
1477 	register struct buf *bp;
1478 {
1479 	int s;
1480 	int i;
1481 	vm_object_t object = NULL;
1482 
1483 	bp->b_flags |= B_DONE;
1484 
1485 	/*
1486 	 * report error
1487 	 */
1488 
1489 	if (bp->b_flags & B_ERROR) {
1490 		printf(
1491 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1492 			"size %ld, error %d\n",
1493 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1494 		    (long)bp->b_blkno,
1495 		    (long)bp->b_bcount,
1496 		    bp->b_error
1497 		);
1498 	}
1499 
1500 	/*
1501 	 * set object, raise to splvm().
1502 	 */
1503 
1504 	if (bp->b_npages)
1505 		object = bp->b_pages[0]->object;
1506 	s = splvm();
1507 
1508 	/*
1509 	 * remove the mapping for kernel virtual
1510 	 */
1511 
1512 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1513 
1514 	/*
1515 	 * cleanup pages.  If an error occurs writing to swap, we are in
1516 	 * very serious trouble.  If it happens to be a disk error, though,
1517 	 * we may be able to recover by reassigning the swap later on.  So
1518 	 * in this case we remove the m->swapblk assignment for the page
1519 	 * but do not free it in the rlist.  The errornous block(s) are thus
1520 	 * never reallocated as swap.  Redirty the page and continue.
1521 	 */
1522 
1523 	for (i = 0; i < bp->b_npages; ++i) {
1524 		vm_page_t m = bp->b_pages[i];
1525 
1526 		vm_page_flag_clear(m, PG_SWAPINPROG);
1527 
1528 		if (bp->b_flags & B_ERROR) {
1529 			/*
1530 			 * If an error occurs I'd love to throw the swapblk
1531 			 * away without freeing it back to swapspace, so it
1532 			 * can never be used again.  But I can't from an
1533 			 * interrupt.
1534 			 */
1535 
1536 			if (bp->b_flags & B_READ) {
1537 				/*
1538 				 * When reading, reqpage needs to stay
1539 				 * locked for the parent, but all other
1540 				 * pages can be freed.  We still want to
1541 				 * wakeup the parent waiting on the page,
1542 				 * though.  ( also: pg_reqpage can be -1 and
1543 				 * not match anything ).
1544 				 *
1545 				 * We have to wake specifically requested pages
1546 				 * up too because we cleared PG_SWAPINPROG and
1547 				 * someone may be waiting for that.
1548 				 *
1549 				 * NOTE: for reads, m->dirty will probably
1550 				 * be overriden by the original caller of
1551 				 * getpages so don't play cute tricks here.
1552 				 *
1553 				 * XXX it may not be legal to free the page
1554 				 * here as this messes with the object->memq's.
1555 				 */
1556 
1557 				m->valid = 0;
1558 				vm_page_flag_clear(m, PG_ZERO);
1559 
1560 				if (i != bp->b_pager.pg_reqpage)
1561 					vm_page_free(m);
1562 				else
1563 					vm_page_flash(m);
1564 				/*
1565 				 * If i == bp->b_pager.pg_reqpage, do not wake
1566 				 * the page up.  The caller needs to.
1567 				 */
1568 			} else {
1569 				/*
1570 				 * If a write error occurs, reactivate page
1571 				 * so it doesn't clog the inactive list,
1572 				 * then finish the I/O.
1573 				 */
1574 				vm_page_dirty(m);
1575 				vm_page_activate(m);
1576 				vm_page_io_finish(m);
1577 			}
1578 		} else if (bp->b_flags & B_READ) {
1579 			/*
1580 			 * For read success, clear dirty bits.  Nobody should
1581 			 * have this page mapped but don't take any chances,
1582 			 * make sure the pmap modify bits are also cleared.
1583 			 *
1584 			 * NOTE: for reads, m->dirty will probably be
1585 			 * overriden by the original caller of getpages so
1586 			 * we cannot set them in order to free the underlying
1587 			 * swap in a low-swap situation.  I don't think we'd
1588 			 * want to do that anyway, but it was an optimization
1589 			 * that existed in the old swapper for a time before
1590 			 * it got ripped out due to precisely this problem.
1591 			 *
1592 			 * clear PG_ZERO in page.
1593 			 *
1594 			 * If not the requested page then deactivate it.
1595 			 *
1596 			 * Note that the requested page, reqpage, is left
1597 			 * busied, but we still have to wake it up.  The
1598 			 * other pages are released (unbusied) by
1599 			 * vm_page_wakeup().  We do not set reqpage's
1600 			 * valid bits here, it is up to the caller.
1601 			 */
1602 
1603 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1604 			m->valid = VM_PAGE_BITS_ALL;
1605 			vm_page_undirty(m);
1606 			vm_page_flag_clear(m, PG_ZERO);
1607 
1608 			/*
1609 			 * We have to wake specifically requested pages
1610 			 * up too because we cleared PG_SWAPINPROG and
1611 			 * could be waiting for it in getpages.  However,
1612 			 * be sure to not unbusy getpages specifically
1613 			 * requested page - getpages expects it to be
1614 			 * left busy.
1615 			 */
1616 			if (i != bp->b_pager.pg_reqpage) {
1617 				vm_page_deactivate(m);
1618 				vm_page_wakeup(m);
1619 			} else {
1620 				vm_page_flash(m);
1621 			}
1622 		} else {
1623 			/*
1624 			 * For write success, clear the modify and dirty
1625 			 * status, then finish the I/O ( which decrements the
1626 			 * busy count and possibly wakes waiter's up ).
1627 			 */
1628 			vm_page_protect(m, VM_PROT_READ);
1629 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1630 			vm_page_undirty(m);
1631 			vm_page_io_finish(m);
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * adjust pip.  NOTE: the original parent may still have its own
1637 	 * pip refs on the object.
1638 	 */
1639 
1640 	if (object)
1641 		vm_object_pip_wakeupn(object, bp->b_npages);
1642 
1643 	/*
1644 	 * release the physical I/O buffer
1645 	 */
1646 
1647 	relpbuf(
1648 	    bp,
1649 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1650 		((bp->b_flags & B_ASYNC) ?
1651 		    &nsw_wcount_async :
1652 		    &nsw_wcount_sync
1653 		)
1654 	    )
1655 	);
1656 	splx(s);
1657 }
1658 
1659 /************************************************************************
1660  *				SWAP META DATA 				*
1661  ************************************************************************
1662  *
1663  *	These routines manipulate the swap metadata stored in the
1664  *	OBJT_SWAP object.  All swp_*() routines must be called at
1665  *	splvm() because swap can be freed up by the low level vm_page
1666  *	code which might be called from interrupts beyond what splbio() covers.
1667  *
1668  *	Swap metadata is implemented with a global hash and not directly
1669  *	linked into the object.  Instead the object simply contains
1670  *	appropriate tracking counters.
1671  */
1672 
1673 /*
1674  * SWP_PAGER_HASH() -	hash swap meta data
1675  *
1676  *	This is an inline helper function which hashes the swapblk given
1677  *	the object and page index.  It returns a pointer to a pointer
1678  *	to the object, or a pointer to a NULL pointer if it could not
1679  *	find a swapblk.
1680  *
1681  *	This routine must be called at splvm().
1682  */
1683 
1684 static __inline struct swblock **
1685 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1686 {
1687 	struct swblock **pswap;
1688 	struct swblock *swap;
1689 
1690 	index &= ~SWAP_META_MASK;
1691 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1692 
1693 	while ((swap = *pswap) != NULL) {
1694 		if (swap->swb_object == object &&
1695 		    swap->swb_index == index
1696 		) {
1697 			break;
1698 		}
1699 		pswap = &swap->swb_hnext;
1700 	}
1701 	return(pswap);
1702 }
1703 
1704 /*
1705  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1706  *
1707  *	We first convert the object to a swap object if it is a default
1708  *	object.
1709  *
1710  *	The specified swapblk is added to the object's swap metadata.  If
1711  *	the swapblk is not valid, it is freed instead.  Any previously
1712  *	assigned swapblk is freed.
1713  *
1714  *	This routine must be called at splvm(), except when used to convert
1715  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1716 
1717  */
1718 
1719 static void
1720 swp_pager_meta_build(
1721 	vm_object_t object,
1722 	vm_pindex_t index,
1723 	daddr_t swapblk
1724 ) {
1725 	struct swblock *swap;
1726 	struct swblock **pswap;
1727 
1728 	/*
1729 	 * Convert default object to swap object if necessary
1730 	 */
1731 
1732 	if (object->type != OBJT_SWAP) {
1733 		object->type = OBJT_SWAP;
1734 		object->un_pager.swp.swp_bcount = 0;
1735 
1736 		if (object->handle != NULL) {
1737 			TAILQ_INSERT_TAIL(
1738 			    NOBJLIST(object->handle),
1739 			    object,
1740 			    pager_object_list
1741 			);
1742 		} else {
1743 			TAILQ_INSERT_TAIL(
1744 			    &swap_pager_un_object_list,
1745 			    object,
1746 			    pager_object_list
1747 			);
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * Locate hash entry.  If not found create, but if we aren't adding
1753 	 * anything just return.  If we run out of space in the map we wait
1754 	 * and, since the hash table may have changed, retry.
1755 	 */
1756 
1757 retry:
1758 	pswap = swp_pager_hash(object, index);
1759 
1760 	if ((swap = *pswap) == NULL) {
1761 		int i;
1762 
1763 		if (swapblk == SWAPBLK_NONE)
1764 			return;
1765 
1766 		swap = *pswap = zalloc(swap_zone);
1767 		if (swap == NULL) {
1768 			VM_WAIT;
1769 			goto retry;
1770 		}
1771 		swap->swb_hnext = NULL;
1772 		swap->swb_object = object;
1773 		swap->swb_index = index & ~SWAP_META_MASK;
1774 		swap->swb_count = 0;
1775 
1776 		++object->un_pager.swp.swp_bcount;
1777 
1778 		for (i = 0; i < SWAP_META_PAGES; ++i)
1779 			swap->swb_pages[i] = SWAPBLK_NONE;
1780 	}
1781 
1782 	/*
1783 	 * Delete prior contents of metadata
1784 	 */
1785 
1786 	index &= SWAP_META_MASK;
1787 
1788 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1789 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1790 		--swap->swb_count;
1791 	}
1792 
1793 	/*
1794 	 * Enter block into metadata
1795 	 */
1796 
1797 	swap->swb_pages[index] = swapblk;
1798 	if (swapblk != SWAPBLK_NONE)
1799 		++swap->swb_count;
1800 }
1801 
1802 /*
1803  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1804  *
1805  *	The requested range of blocks is freed, with any associated swap
1806  *	returned to the swap bitmap.
1807  *
1808  *	This routine will free swap metadata structures as they are cleaned
1809  *	out.  This routine does *NOT* operate on swap metadata associated
1810  *	with resident pages.
1811  *
1812  *	This routine must be called at splvm()
1813  */
1814 
1815 static void
1816 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1817 {
1818 	if (object->type != OBJT_SWAP)
1819 		return;
1820 
1821 	while (count > 0) {
1822 		struct swblock **pswap;
1823 		struct swblock *swap;
1824 
1825 		pswap = swp_pager_hash(object, index);
1826 
1827 		if ((swap = *pswap) != NULL) {
1828 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1829 
1830 			if (v != SWAPBLK_NONE) {
1831 				swp_pager_freeswapspace(v, 1);
1832 				swap->swb_pages[index & SWAP_META_MASK] =
1833 					SWAPBLK_NONE;
1834 				if (--swap->swb_count == 0) {
1835 					*pswap = swap->swb_hnext;
1836 					zfree(swap_zone, swap);
1837 					--object->un_pager.swp.swp_bcount;
1838 				}
1839 			}
1840 			--count;
1841 			++index;
1842 		} else {
1843 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1844 			count -= n;
1845 			index += n;
1846 		}
1847 	}
1848 }
1849 
1850 /*
1851  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1852  *
1853  *	This routine locates and destroys all swap metadata associated with
1854  *	an object.
1855  *
1856  *	This routine must be called at splvm()
1857  */
1858 
1859 static void
1860 swp_pager_meta_free_all(vm_object_t object)
1861 {
1862 	daddr_t index = 0;
1863 
1864 	if (object->type != OBJT_SWAP)
1865 		return;
1866 
1867 	while (object->un_pager.swp.swp_bcount) {
1868 		struct swblock **pswap;
1869 		struct swblock *swap;
1870 
1871 		pswap = swp_pager_hash(object, index);
1872 		if ((swap = *pswap) != NULL) {
1873 			int i;
1874 
1875 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1876 				daddr_t v = swap->swb_pages[i];
1877 				if (v != SWAPBLK_NONE) {
1878 #if !defined(MAX_PERF)
1879 					--swap->swb_count;
1880 #endif
1881 					swp_pager_freeswapspace(v, 1);
1882 				}
1883 			}
1884 #if !defined(MAX_PERF)
1885 			if (swap->swb_count != 0)
1886 				panic("swap_pager_meta_free_all: swb_count != 0");
1887 #endif
1888 			*pswap = swap->swb_hnext;
1889 			zfree(swap_zone, swap);
1890 			--object->un_pager.swp.swp_bcount;
1891 		}
1892 		index += SWAP_META_PAGES;
1893 #if !defined(MAX_PERF)
1894 		if (index > 0x20000000)
1895 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1896 #endif
1897 	}
1898 }
1899 
1900 /*
1901  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1902  *
1903  *	This routine is capable of looking up, popping, or freeing
1904  *	swapblk assignments in the swap meta data or in the vm_page_t.
1905  *	The routine typically returns the swapblk being looked-up, or popped,
1906  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1907  *	was invalid.  This routine will automatically free any invalid
1908  *	meta-data swapblks.
1909  *
1910  *	It is not possible to store invalid swapblks in the swap meta data
1911  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1912  *
1913  *	When acting on a busy resident page and paging is in progress, we
1914  *	have to wait until paging is complete but otherwise can act on the
1915  *	busy page.
1916  *
1917  *	This routine must be called at splvm().
1918  *
1919  *	SWM_FREE	remove and free swap block from metadata
1920  *	SWM_POP		remove from meta data but do not free.. pop it out
1921  */
1922 
1923 static daddr_t
1924 swp_pager_meta_ctl(
1925 	vm_object_t object,
1926 	vm_pindex_t index,
1927 	int flags
1928 ) {
1929 	struct swblock **pswap;
1930 	struct swblock *swap;
1931 	daddr_t r1;
1932 
1933 	/*
1934 	 * The meta data only exists of the object is OBJT_SWAP
1935 	 * and even then might not be allocated yet.
1936 	 */
1937 
1938 	if (object->type != OBJT_SWAP)
1939 		return(SWAPBLK_NONE);
1940 
1941 	r1 = SWAPBLK_NONE;
1942 	pswap = swp_pager_hash(object, index);
1943 
1944 	if ((swap = *pswap) != NULL) {
1945 		index &= SWAP_META_MASK;
1946 		r1 = swap->swb_pages[index];
1947 
1948 		if (r1 != SWAPBLK_NONE) {
1949 			if (flags & SWM_FREE) {
1950 				swp_pager_freeswapspace(r1, 1);
1951 				r1 = SWAPBLK_NONE;
1952 			}
1953 			if (flags & (SWM_FREE|SWM_POP)) {
1954 				swap->swb_pages[index] = SWAPBLK_NONE;
1955 				if (--swap->swb_count == 0) {
1956 					*pswap = swap->swb_hnext;
1957 					zfree(swap_zone, swap);
1958 					--object->un_pager.swp.swp_bcount;
1959 				}
1960 			}
1961 		}
1962 	}
1963 	return(r1);
1964 }
1965 
1966