1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysproto.h> 93 #include <sys/blist.h> 94 #include <sys/lock.h> 95 #include <sys/sx.h> 96 #include <sys/vmmeter.h> 97 98 #include <security/mac/mac_framework.h> 99 100 #include <vm/vm.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_pageout.h> 108 #include <vm/vm_param.h> 109 #include <vm/swap_pager.h> 110 #include <vm/vm_extern.h> 111 #include <vm/uma.h> 112 113 #include <geom/geom.h> 114 115 /* 116 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 117 * pages per allocation. We recommend you stick with the default of 8. 118 * The 16-page limit is due to the radix code (kern/subr_blist.c). 119 */ 120 #ifndef MAX_PAGEOUT_CLUSTER 121 #define MAX_PAGEOUT_CLUSTER 16 122 #endif 123 124 #if !defined(SWB_NPAGES) 125 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 126 #endif 127 128 /* 129 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 130 * 131 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 132 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 133 * 32K worth of data, two levels represent 256K, three levels represent 134 * 2 MBytes. This is acceptable. 135 * 136 * Overall memory utilization is about the same as the old swap structure. 137 */ 138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 139 #define SWAP_META_PAGES (SWB_NPAGES * 2) 140 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 141 142 struct swblock { 143 struct swblock *swb_hnext; 144 vm_object_t swb_object; 145 vm_pindex_t swb_index; 146 int swb_count; 147 daddr_t swb_pages[SWAP_META_PAGES]; 148 }; 149 150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 151 static struct mtx sw_dev_mtx; 152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 153 static struct swdevt *swdevhd; /* Allocate from here next */ 154 static int nswapdev; /* Number of swap devices */ 155 int swap_pager_avail; 156 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 157 158 static vm_ooffset_t swap_total; 159 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 160 "Total amount of available swap storage."); 161 static vm_ooffset_t swap_reserved; 162 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 163 "Amount of swap storage needed to back all allocated anonymous memory."); 164 static int overcommit = 0; 165 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 166 "Configure virtual memory overcommit behavior. See tuning(7) " 167 "for details."); 168 169 /* bits from overcommit */ 170 #define SWAP_RESERVE_FORCE_ON (1 << 0) 171 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 172 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 173 174 int 175 swap_reserve(vm_ooffset_t incr) 176 { 177 178 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 179 } 180 181 int 182 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 183 { 184 vm_ooffset_t r, s; 185 int res, error; 186 static int curfail; 187 static struct timeval lastfail; 188 struct uidinfo *uip; 189 190 uip = cred->cr_ruidinfo; 191 192 if (incr & PAGE_MASK) 193 panic("swap_reserve: & PAGE_MASK"); 194 195 res = 0; 196 mtx_lock(&sw_dev_mtx); 197 r = swap_reserved + incr; 198 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 199 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 200 s *= PAGE_SIZE; 201 } else 202 s = 0; 203 s += swap_total; 204 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 205 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 206 res = 1; 207 swap_reserved = r; 208 } 209 mtx_unlock(&sw_dev_mtx); 210 211 if (res) { 212 PROC_LOCK(curproc); 213 UIDINFO_VMSIZE_LOCK(uip); 214 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 215 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 216 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 217 res = 0; 218 else 219 uip->ui_vmsize += incr; 220 UIDINFO_VMSIZE_UNLOCK(uip); 221 PROC_UNLOCK(curproc); 222 if (!res) { 223 mtx_lock(&sw_dev_mtx); 224 swap_reserved -= incr; 225 mtx_unlock(&sw_dev_mtx); 226 } 227 } 228 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 229 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 230 curproc->p_pid, uip->ui_uid, incr); 231 } 232 233 return (res); 234 } 235 236 void 237 swap_reserve_force(vm_ooffset_t incr) 238 { 239 struct uidinfo *uip; 240 241 mtx_lock(&sw_dev_mtx); 242 swap_reserved += incr; 243 mtx_unlock(&sw_dev_mtx); 244 245 uip = curthread->td_ucred->cr_ruidinfo; 246 PROC_LOCK(curproc); 247 UIDINFO_VMSIZE_LOCK(uip); 248 uip->ui_vmsize += incr; 249 UIDINFO_VMSIZE_UNLOCK(uip); 250 PROC_UNLOCK(curproc); 251 } 252 253 void 254 swap_release(vm_ooffset_t decr) 255 { 256 struct ucred *cred; 257 258 PROC_LOCK(curproc); 259 cred = curthread->td_ucred; 260 swap_release_by_cred(decr, cred); 261 PROC_UNLOCK(curproc); 262 } 263 264 void 265 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 266 { 267 struct uidinfo *uip; 268 269 uip = cred->cr_ruidinfo; 270 271 if (decr & PAGE_MASK) 272 panic("swap_release: & PAGE_MASK"); 273 274 mtx_lock(&sw_dev_mtx); 275 if (swap_reserved < decr) 276 panic("swap_reserved < decr"); 277 swap_reserved -= decr; 278 mtx_unlock(&sw_dev_mtx); 279 280 UIDINFO_VMSIZE_LOCK(uip); 281 if (uip->ui_vmsize < decr) 282 printf("negative vmsize for uid = %d\n", uip->ui_uid); 283 uip->ui_vmsize -= decr; 284 UIDINFO_VMSIZE_UNLOCK(uip); 285 } 286 287 static void swapdev_strategy(struct buf *, struct swdevt *sw); 288 289 #define SWM_FREE 0x02 /* free, period */ 290 #define SWM_POP 0x04 /* pop out */ 291 292 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 293 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 294 static int nsw_rcount; /* free read buffers */ 295 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 296 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 297 static int nsw_wcount_async_max;/* assigned maximum */ 298 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 299 300 static struct swblock **swhash; 301 static int swhash_mask; 302 static struct mtx swhash_mtx; 303 304 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 305 static struct sx sw_alloc_sx; 306 307 308 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 309 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 310 311 /* 312 * "named" and "unnamed" anon region objects. Try to reduce the overhead 313 * of searching a named list by hashing it just a little. 314 */ 315 316 #define NOBJLISTS 8 317 318 #define NOBJLIST(handle) \ 319 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 320 321 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 322 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 323 static uma_zone_t swap_zone; 324 static struct vm_object swap_zone_obj; 325 326 /* 327 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 328 * calls hooked from other parts of the VM system and do not appear here. 329 * (see vm/swap_pager.h). 330 */ 331 static vm_object_t 332 swap_pager_alloc(void *handle, vm_ooffset_t size, 333 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 334 static void swap_pager_dealloc(vm_object_t object); 335 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 336 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 337 static boolean_t 338 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 339 static void swap_pager_init(void); 340 static void swap_pager_unswapped(vm_page_t); 341 static void swap_pager_swapoff(struct swdevt *sp); 342 343 struct pagerops swappagerops = { 344 .pgo_init = swap_pager_init, /* early system initialization of pager */ 345 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 346 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 347 .pgo_getpages = swap_pager_getpages, /* pagein */ 348 .pgo_putpages = swap_pager_putpages, /* pageout */ 349 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 350 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 351 }; 352 353 /* 354 * dmmax is in page-sized chunks with the new swap system. It was 355 * dev-bsized chunks in the old. dmmax is always a power of 2. 356 * 357 * swap_*() routines are externally accessible. swp_*() routines are 358 * internal. 359 */ 360 static int dmmax; 361 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 362 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 363 364 SYSCTL_INT(_vm, OID_AUTO, dmmax, 365 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 366 367 static void swp_sizecheck(void); 368 static void swp_pager_async_iodone(struct buf *bp); 369 static int swapongeom(struct thread *, struct vnode *); 370 static int swaponvp(struct thread *, struct vnode *, u_long); 371 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 372 373 /* 374 * Swap bitmap functions 375 */ 376 static void swp_pager_freeswapspace(daddr_t blk, int npages); 377 static daddr_t swp_pager_getswapspace(int npages); 378 379 /* 380 * Metadata functions 381 */ 382 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 383 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 384 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 385 static void swp_pager_meta_free_all(vm_object_t); 386 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 387 388 static void 389 swp_pager_free_nrpage(vm_page_t m) 390 { 391 392 vm_page_lock(m); 393 if (m->wire_count == 0) 394 vm_page_free(m); 395 vm_page_unlock(m); 396 } 397 398 /* 399 * SWP_SIZECHECK() - update swap_pager_full indication 400 * 401 * update the swap_pager_almost_full indication and warn when we are 402 * about to run out of swap space, using lowat/hiwat hysteresis. 403 * 404 * Clear swap_pager_full ( task killing ) indication when lowat is met. 405 * 406 * No restrictions on call 407 * This routine may not block. 408 * This routine must be called at splvm() 409 */ 410 static void 411 swp_sizecheck(void) 412 { 413 414 if (swap_pager_avail < nswap_lowat) { 415 if (swap_pager_almost_full == 0) { 416 printf("swap_pager: out of swap space\n"); 417 swap_pager_almost_full = 1; 418 } 419 } else { 420 swap_pager_full = 0; 421 if (swap_pager_avail > nswap_hiwat) 422 swap_pager_almost_full = 0; 423 } 424 } 425 426 /* 427 * SWP_PAGER_HASH() - hash swap meta data 428 * 429 * This is an helper function which hashes the swapblk given 430 * the object and page index. It returns a pointer to a pointer 431 * to the object, or a pointer to a NULL pointer if it could not 432 * find a swapblk. 433 * 434 * This routine must be called at splvm(). 435 */ 436 static struct swblock ** 437 swp_pager_hash(vm_object_t object, vm_pindex_t index) 438 { 439 struct swblock **pswap; 440 struct swblock *swap; 441 442 index &= ~(vm_pindex_t)SWAP_META_MASK; 443 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 444 while ((swap = *pswap) != NULL) { 445 if (swap->swb_object == object && 446 swap->swb_index == index 447 ) { 448 break; 449 } 450 pswap = &swap->swb_hnext; 451 } 452 return (pswap); 453 } 454 455 /* 456 * SWAP_PAGER_INIT() - initialize the swap pager! 457 * 458 * Expected to be started from system init. NOTE: This code is run 459 * before much else so be careful what you depend on. Most of the VM 460 * system has yet to be initialized at this point. 461 */ 462 static void 463 swap_pager_init(void) 464 { 465 /* 466 * Initialize object lists 467 */ 468 int i; 469 470 for (i = 0; i < NOBJLISTS; ++i) 471 TAILQ_INIT(&swap_pager_object_list[i]); 472 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 473 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 474 475 /* 476 * Device Stripe, in PAGE_SIZE'd blocks 477 */ 478 dmmax = SWB_NPAGES * 2; 479 } 480 481 /* 482 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 483 * 484 * Expected to be started from pageout process once, prior to entering 485 * its main loop. 486 */ 487 void 488 swap_pager_swap_init(void) 489 { 490 int n, n2; 491 492 /* 493 * Number of in-transit swap bp operations. Don't 494 * exhaust the pbufs completely. Make sure we 495 * initialize workable values (0 will work for hysteresis 496 * but it isn't very efficient). 497 * 498 * The nsw_cluster_max is constrained by the bp->b_pages[] 499 * array (MAXPHYS/PAGE_SIZE) and our locally defined 500 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 501 * constrained by the swap device interleave stripe size. 502 * 503 * Currently we hardwire nsw_wcount_async to 4. This limit is 504 * designed to prevent other I/O from having high latencies due to 505 * our pageout I/O. The value 4 works well for one or two active swap 506 * devices but is probably a little low if you have more. Even so, 507 * a higher value would probably generate only a limited improvement 508 * with three or four active swap devices since the system does not 509 * typically have to pageout at extreme bandwidths. We will want 510 * at least 2 per swap devices, and 4 is a pretty good value if you 511 * have one NFS swap device due to the command/ack latency over NFS. 512 * So it all works out pretty well. 513 */ 514 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 515 516 mtx_lock(&pbuf_mtx); 517 nsw_rcount = (nswbuf + 1) / 2; 518 nsw_wcount_sync = (nswbuf + 3) / 4; 519 nsw_wcount_async = 4; 520 nsw_wcount_async_max = nsw_wcount_async; 521 mtx_unlock(&pbuf_mtx); 522 523 /* 524 * Initialize our zone. Right now I'm just guessing on the number 525 * we need based on the number of pages in the system. Each swblock 526 * can hold 16 pages, so this is probably overkill. This reservation 527 * is typically limited to around 32MB by default. 528 */ 529 n = cnt.v_page_count / 2; 530 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 531 n = maxswzone / sizeof(struct swblock); 532 n2 = n; 533 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 534 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 535 if (swap_zone == NULL) 536 panic("failed to create swap_zone."); 537 do { 538 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 539 break; 540 /* 541 * if the allocation failed, try a zone two thirds the 542 * size of the previous attempt. 543 */ 544 n -= ((n + 2) / 3); 545 } while (n > 0); 546 if (n2 != n) 547 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 548 n2 = n; 549 550 /* 551 * Initialize our meta-data hash table. The swapper does not need to 552 * be quite as efficient as the VM system, so we do not use an 553 * oversized hash table. 554 * 555 * n: size of hash table, must be power of 2 556 * swhash_mask: hash table index mask 557 */ 558 for (n = 1; n < n2 / 8; n *= 2) 559 ; 560 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 561 swhash_mask = n - 1; 562 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 563 } 564 565 /* 566 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 567 * its metadata structures. 568 * 569 * This routine is called from the mmap and fork code to create a new 570 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 571 * and then converting it with swp_pager_meta_build(). 572 * 573 * This routine may block in vm_object_allocate() and create a named 574 * object lookup race, so we must interlock. We must also run at 575 * splvm() for the object lookup to handle races with interrupts, but 576 * we do not have to maintain splvm() in between the lookup and the 577 * add because (I believe) it is not possible to attempt to create 578 * a new swap object w/handle when a default object with that handle 579 * already exists. 580 * 581 * MPSAFE 582 */ 583 static vm_object_t 584 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 585 vm_ooffset_t offset, struct ucred *cred) 586 { 587 vm_object_t object; 588 vm_pindex_t pindex; 589 590 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 591 if (handle) { 592 mtx_lock(&Giant); 593 /* 594 * Reference existing named region or allocate new one. There 595 * should not be a race here against swp_pager_meta_build() 596 * as called from vm_page_remove() in regards to the lookup 597 * of the handle. 598 */ 599 sx_xlock(&sw_alloc_sx); 600 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 601 if (object == NULL) { 602 if (cred != NULL) { 603 if (!swap_reserve_by_cred(size, cred)) { 604 sx_xunlock(&sw_alloc_sx); 605 mtx_unlock(&Giant); 606 return (NULL); 607 } 608 crhold(cred); 609 } 610 object = vm_object_allocate(OBJT_DEFAULT, pindex); 611 VM_OBJECT_LOCK(object); 612 object->handle = handle; 613 if (cred != NULL) { 614 object->cred = cred; 615 object->charge = size; 616 } 617 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 618 VM_OBJECT_UNLOCK(object); 619 } 620 sx_xunlock(&sw_alloc_sx); 621 mtx_unlock(&Giant); 622 } else { 623 if (cred != NULL) { 624 if (!swap_reserve_by_cred(size, cred)) 625 return (NULL); 626 crhold(cred); 627 } 628 object = vm_object_allocate(OBJT_DEFAULT, pindex); 629 VM_OBJECT_LOCK(object); 630 if (cred != NULL) { 631 object->cred = cred; 632 object->charge = size; 633 } 634 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 635 VM_OBJECT_UNLOCK(object); 636 } 637 return (object); 638 } 639 640 /* 641 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 642 * 643 * The swap backing for the object is destroyed. The code is 644 * designed such that we can reinstantiate it later, but this 645 * routine is typically called only when the entire object is 646 * about to be destroyed. 647 * 648 * This routine may block, but no longer does. 649 * 650 * The object must be locked or unreferenceable. 651 */ 652 static void 653 swap_pager_dealloc(vm_object_t object) 654 { 655 656 /* 657 * Remove from list right away so lookups will fail if we block for 658 * pageout completion. 659 */ 660 if (object->handle != NULL) { 661 mtx_lock(&sw_alloc_mtx); 662 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 663 mtx_unlock(&sw_alloc_mtx); 664 } 665 666 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 667 vm_object_pip_wait(object, "swpdea"); 668 669 /* 670 * Free all remaining metadata. We only bother to free it from 671 * the swap meta data. We do not attempt to free swapblk's still 672 * associated with vm_page_t's for this object. We do not care 673 * if paging is still in progress on some objects. 674 */ 675 swp_pager_meta_free_all(object); 676 } 677 678 /************************************************************************ 679 * SWAP PAGER BITMAP ROUTINES * 680 ************************************************************************/ 681 682 /* 683 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 684 * 685 * Allocate swap for the requested number of pages. The starting 686 * swap block number (a page index) is returned or SWAPBLK_NONE 687 * if the allocation failed. 688 * 689 * Also has the side effect of advising that somebody made a mistake 690 * when they configured swap and didn't configure enough. 691 * 692 * Must be called at splvm() to avoid races with bitmap frees from 693 * vm_page_remove() aka swap_pager_page_removed(). 694 * 695 * This routine may not block 696 * This routine must be called at splvm(). 697 * 698 * We allocate in round-robin fashion from the configured devices. 699 */ 700 static daddr_t 701 swp_pager_getswapspace(int npages) 702 { 703 daddr_t blk; 704 struct swdevt *sp; 705 int i; 706 707 blk = SWAPBLK_NONE; 708 mtx_lock(&sw_dev_mtx); 709 sp = swdevhd; 710 for (i = 0; i < nswapdev; i++) { 711 if (sp == NULL) 712 sp = TAILQ_FIRST(&swtailq); 713 if (!(sp->sw_flags & SW_CLOSING)) { 714 blk = blist_alloc(sp->sw_blist, npages); 715 if (blk != SWAPBLK_NONE) { 716 blk += sp->sw_first; 717 sp->sw_used += npages; 718 swap_pager_avail -= npages; 719 swp_sizecheck(); 720 swdevhd = TAILQ_NEXT(sp, sw_list); 721 goto done; 722 } 723 } 724 sp = TAILQ_NEXT(sp, sw_list); 725 } 726 if (swap_pager_full != 2) { 727 printf("swap_pager_getswapspace(%d): failed\n", npages); 728 swap_pager_full = 2; 729 swap_pager_almost_full = 1; 730 } 731 swdevhd = NULL; 732 done: 733 mtx_unlock(&sw_dev_mtx); 734 return (blk); 735 } 736 737 static int 738 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 739 { 740 741 return (blk >= sp->sw_first && blk < sp->sw_end); 742 } 743 744 static void 745 swp_pager_strategy(struct buf *bp) 746 { 747 struct swdevt *sp; 748 749 mtx_lock(&sw_dev_mtx); 750 TAILQ_FOREACH(sp, &swtailq, sw_list) { 751 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 752 mtx_unlock(&sw_dev_mtx); 753 sp->sw_strategy(bp, sp); 754 return; 755 } 756 } 757 panic("Swapdev not found"); 758 } 759 760 761 /* 762 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 763 * 764 * This routine returns the specified swap blocks back to the bitmap. 765 * 766 * Note: This routine may not block (it could in the old swap code), 767 * and through the use of the new blist routines it does not block. 768 * 769 * We must be called at splvm() to avoid races with bitmap frees from 770 * vm_page_remove() aka swap_pager_page_removed(). 771 * 772 * This routine may not block 773 * This routine must be called at splvm(). 774 */ 775 static void 776 swp_pager_freeswapspace(daddr_t blk, int npages) 777 { 778 struct swdevt *sp; 779 780 mtx_lock(&sw_dev_mtx); 781 TAILQ_FOREACH(sp, &swtailq, sw_list) { 782 if (blk >= sp->sw_first && blk < sp->sw_end) { 783 sp->sw_used -= npages; 784 /* 785 * If we are attempting to stop swapping on 786 * this device, we don't want to mark any 787 * blocks free lest they be reused. 788 */ 789 if ((sp->sw_flags & SW_CLOSING) == 0) { 790 blist_free(sp->sw_blist, blk - sp->sw_first, 791 npages); 792 swap_pager_avail += npages; 793 swp_sizecheck(); 794 } 795 mtx_unlock(&sw_dev_mtx); 796 return; 797 } 798 } 799 panic("Swapdev not found"); 800 } 801 802 /* 803 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 804 * range within an object. 805 * 806 * This is a globally accessible routine. 807 * 808 * This routine removes swapblk assignments from swap metadata. 809 * 810 * The external callers of this routine typically have already destroyed 811 * or renamed vm_page_t's associated with this range in the object so 812 * we should be ok. 813 * 814 * This routine may be called at any spl. We up our spl to splvm temporarily 815 * in order to perform the metadata removal. 816 */ 817 void 818 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 819 { 820 821 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 822 swp_pager_meta_free(object, start, size); 823 } 824 825 /* 826 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 827 * 828 * Assigns swap blocks to the specified range within the object. The 829 * swap blocks are not zerod. Any previous swap assignment is destroyed. 830 * 831 * Returns 0 on success, -1 on failure. 832 */ 833 int 834 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 835 { 836 int n = 0; 837 daddr_t blk = SWAPBLK_NONE; 838 vm_pindex_t beg = start; /* save start index */ 839 840 VM_OBJECT_LOCK(object); 841 while (size) { 842 if (n == 0) { 843 n = BLIST_MAX_ALLOC; 844 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 845 n >>= 1; 846 if (n == 0) { 847 swp_pager_meta_free(object, beg, start - beg); 848 VM_OBJECT_UNLOCK(object); 849 return (-1); 850 } 851 } 852 } 853 swp_pager_meta_build(object, start, blk); 854 --size; 855 ++start; 856 ++blk; 857 --n; 858 } 859 swp_pager_meta_free(object, start, n); 860 VM_OBJECT_UNLOCK(object); 861 return (0); 862 } 863 864 /* 865 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 866 * and destroy the source. 867 * 868 * Copy any valid swapblks from the source to the destination. In 869 * cases where both the source and destination have a valid swapblk, 870 * we keep the destination's. 871 * 872 * This routine is allowed to block. It may block allocating metadata 873 * indirectly through swp_pager_meta_build() or if paging is still in 874 * progress on the source. 875 * 876 * This routine can be called at any spl 877 * 878 * XXX vm_page_collapse() kinda expects us not to block because we 879 * supposedly do not need to allocate memory, but for the moment we 880 * *may* have to get a little memory from the zone allocator, but 881 * it is taken from the interrupt memory. We should be ok. 882 * 883 * The source object contains no vm_page_t's (which is just as well) 884 * 885 * The source object is of type OBJT_SWAP. 886 * 887 * The source and destination objects must be locked or 888 * inaccessible (XXX are they ?) 889 */ 890 void 891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 892 vm_pindex_t offset, int destroysource) 893 { 894 vm_pindex_t i; 895 896 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 897 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 898 899 /* 900 * If destroysource is set, we remove the source object from the 901 * swap_pager internal queue now. 902 */ 903 if (destroysource) { 904 if (srcobject->handle != NULL) { 905 mtx_lock(&sw_alloc_mtx); 906 TAILQ_REMOVE( 907 NOBJLIST(srcobject->handle), 908 srcobject, 909 pager_object_list 910 ); 911 mtx_unlock(&sw_alloc_mtx); 912 } 913 } 914 915 /* 916 * transfer source to destination. 917 */ 918 for (i = 0; i < dstobject->size; ++i) { 919 daddr_t dstaddr; 920 921 /* 922 * Locate (without changing) the swapblk on the destination, 923 * unless it is invalid in which case free it silently, or 924 * if the destination is a resident page, in which case the 925 * source is thrown away. 926 */ 927 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 928 929 if (dstaddr == SWAPBLK_NONE) { 930 /* 931 * Destination has no swapblk and is not resident, 932 * copy source. 933 */ 934 daddr_t srcaddr; 935 936 srcaddr = swp_pager_meta_ctl( 937 srcobject, 938 i + offset, 939 SWM_POP 940 ); 941 942 if (srcaddr != SWAPBLK_NONE) { 943 /* 944 * swp_pager_meta_build() can sleep. 945 */ 946 vm_object_pip_add(srcobject, 1); 947 VM_OBJECT_UNLOCK(srcobject); 948 vm_object_pip_add(dstobject, 1); 949 swp_pager_meta_build(dstobject, i, srcaddr); 950 vm_object_pip_wakeup(dstobject); 951 VM_OBJECT_LOCK(srcobject); 952 vm_object_pip_wakeup(srcobject); 953 } 954 } else { 955 /* 956 * Destination has valid swapblk or it is represented 957 * by a resident page. We destroy the sourceblock. 958 */ 959 960 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 961 } 962 } 963 964 /* 965 * Free left over swap blocks in source. 966 * 967 * We have to revert the type to OBJT_DEFAULT so we do not accidently 968 * double-remove the object from the swap queues. 969 */ 970 if (destroysource) { 971 swp_pager_meta_free_all(srcobject); 972 /* 973 * Reverting the type is not necessary, the caller is going 974 * to destroy srcobject directly, but I'm doing it here 975 * for consistency since we've removed the object from its 976 * queues. 977 */ 978 srcobject->type = OBJT_DEFAULT; 979 } 980 } 981 982 /* 983 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 984 * the requested page. 985 * 986 * We determine whether good backing store exists for the requested 987 * page and return TRUE if it does, FALSE if it doesn't. 988 * 989 * If TRUE, we also try to determine how much valid, contiguous backing 990 * store exists before and after the requested page within a reasonable 991 * distance. We do not try to restrict it to the swap device stripe 992 * (that is handled in getpages/putpages). It probably isn't worth 993 * doing here. 994 */ 995 static boolean_t 996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 997 { 998 daddr_t blk0; 999 1000 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1001 /* 1002 * do we have good backing store at the requested index ? 1003 */ 1004 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1005 1006 if (blk0 == SWAPBLK_NONE) { 1007 if (before) 1008 *before = 0; 1009 if (after) 1010 *after = 0; 1011 return (FALSE); 1012 } 1013 1014 /* 1015 * find backwards-looking contiguous good backing store 1016 */ 1017 if (before != NULL) { 1018 int i; 1019 1020 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1021 daddr_t blk; 1022 1023 if (i > pindex) 1024 break; 1025 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1026 if (blk != blk0 - i) 1027 break; 1028 } 1029 *before = (i - 1); 1030 } 1031 1032 /* 1033 * find forward-looking contiguous good backing store 1034 */ 1035 if (after != NULL) { 1036 int i; 1037 1038 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1039 daddr_t blk; 1040 1041 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1042 if (blk != blk0 + i) 1043 break; 1044 } 1045 *after = (i - 1); 1046 } 1047 return (TRUE); 1048 } 1049 1050 /* 1051 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1052 * 1053 * This removes any associated swap backing store, whether valid or 1054 * not, from the page. 1055 * 1056 * This routine is typically called when a page is made dirty, at 1057 * which point any associated swap can be freed. MADV_FREE also 1058 * calls us in a special-case situation 1059 * 1060 * NOTE!!! If the page is clean and the swap was valid, the caller 1061 * should make the page dirty before calling this routine. This routine 1062 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1063 * depends on it. 1064 * 1065 * This routine may not block 1066 * This routine must be called at splvm() 1067 */ 1068 static void 1069 swap_pager_unswapped(vm_page_t m) 1070 { 1071 1072 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1073 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1074 } 1075 1076 /* 1077 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1078 * 1079 * Attempt to retrieve (m, count) pages from backing store, but make 1080 * sure we retrieve at least m[reqpage]. We try to load in as large 1081 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1082 * belongs to the same object. 1083 * 1084 * The code is designed for asynchronous operation and 1085 * immediate-notification of 'reqpage' but tends not to be 1086 * used that way. Please do not optimize-out this algorithmic 1087 * feature, I intend to improve on it in the future. 1088 * 1089 * The parent has a single vm_object_pip_add() reference prior to 1090 * calling us and we should return with the same. 1091 * 1092 * The parent has BUSY'd the pages. We should return with 'm' 1093 * left busy, but the others adjusted. 1094 */ 1095 static int 1096 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1097 { 1098 struct buf *bp; 1099 vm_page_t mreq; 1100 int i; 1101 int j; 1102 daddr_t blk; 1103 1104 mreq = m[reqpage]; 1105 1106 KASSERT(mreq->object == object, 1107 ("swap_pager_getpages: object mismatch %p/%p", 1108 object, mreq->object)); 1109 1110 /* 1111 * Calculate range to retrieve. The pages have already been assigned 1112 * their swapblks. We require a *contiguous* range but we know it to 1113 * not span devices. If we do not supply it, bad things 1114 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1115 * loops are set up such that the case(s) are handled implicitly. 1116 * 1117 * The swp_*() calls must be made with the object locked. 1118 */ 1119 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1120 1121 for (i = reqpage - 1; i >= 0; --i) { 1122 daddr_t iblk; 1123 1124 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1125 if (blk != iblk + (reqpage - i)) 1126 break; 1127 } 1128 ++i; 1129 1130 for (j = reqpage + 1; j < count; ++j) { 1131 daddr_t jblk; 1132 1133 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1134 if (blk != jblk - (j - reqpage)) 1135 break; 1136 } 1137 1138 /* 1139 * free pages outside our collection range. Note: we never free 1140 * mreq, it must remain busy throughout. 1141 */ 1142 if (0 < i || j < count) { 1143 int k; 1144 1145 for (k = 0; k < i; ++k) 1146 swp_pager_free_nrpage(m[k]); 1147 for (k = j; k < count; ++k) 1148 swp_pager_free_nrpage(m[k]); 1149 } 1150 1151 /* 1152 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1153 * still busy, but the others unbusied. 1154 */ 1155 if (blk == SWAPBLK_NONE) 1156 return (VM_PAGER_FAIL); 1157 1158 /* 1159 * Getpbuf() can sleep. 1160 */ 1161 VM_OBJECT_UNLOCK(object); 1162 /* 1163 * Get a swap buffer header to perform the IO 1164 */ 1165 bp = getpbuf(&nsw_rcount); 1166 bp->b_flags |= B_PAGING; 1167 1168 /* 1169 * map our page(s) into kva for input 1170 */ 1171 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1172 1173 bp->b_iocmd = BIO_READ; 1174 bp->b_iodone = swp_pager_async_iodone; 1175 bp->b_rcred = crhold(thread0.td_ucred); 1176 bp->b_wcred = crhold(thread0.td_ucred); 1177 bp->b_blkno = blk - (reqpage - i); 1178 bp->b_bcount = PAGE_SIZE * (j - i); 1179 bp->b_bufsize = PAGE_SIZE * (j - i); 1180 bp->b_pager.pg_reqpage = reqpage - i; 1181 1182 VM_OBJECT_LOCK(object); 1183 { 1184 int k; 1185 1186 for (k = i; k < j; ++k) { 1187 bp->b_pages[k - i] = m[k]; 1188 m[k]->oflags |= VPO_SWAPINPROG; 1189 } 1190 } 1191 bp->b_npages = j - i; 1192 1193 PCPU_INC(cnt.v_swapin); 1194 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1195 1196 /* 1197 * We still hold the lock on mreq, and our automatic completion routine 1198 * does not remove it. 1199 */ 1200 vm_object_pip_add(object, bp->b_npages); 1201 VM_OBJECT_UNLOCK(object); 1202 1203 /* 1204 * perform the I/O. NOTE!!! bp cannot be considered valid after 1205 * this point because we automatically release it on completion. 1206 * Instead, we look at the one page we are interested in which we 1207 * still hold a lock on even through the I/O completion. 1208 * 1209 * The other pages in our m[] array are also released on completion, 1210 * so we cannot assume they are valid anymore either. 1211 * 1212 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1213 */ 1214 BUF_KERNPROC(bp); 1215 swp_pager_strategy(bp); 1216 1217 /* 1218 * wait for the page we want to complete. VPO_SWAPINPROG is always 1219 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1220 * is set in the meta-data. 1221 */ 1222 VM_OBJECT_LOCK(object); 1223 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1224 mreq->oflags |= VPO_WANTED; 1225 PCPU_INC(cnt.v_intrans); 1226 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1227 printf( 1228 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1229 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1230 } 1231 } 1232 1233 /* 1234 * mreq is left busied after completion, but all the other pages 1235 * are freed. If we had an unrecoverable read error the page will 1236 * not be valid. 1237 */ 1238 if (mreq->valid != VM_PAGE_BITS_ALL) { 1239 return (VM_PAGER_ERROR); 1240 } else { 1241 return (VM_PAGER_OK); 1242 } 1243 1244 /* 1245 * A final note: in a low swap situation, we cannot deallocate swap 1246 * and mark a page dirty here because the caller is likely to mark 1247 * the page clean when we return, causing the page to possibly revert 1248 * to all-zero's later. 1249 */ 1250 } 1251 1252 /* 1253 * swap_pager_putpages: 1254 * 1255 * Assign swap (if necessary) and initiate I/O on the specified pages. 1256 * 1257 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1258 * are automatically converted to SWAP objects. 1259 * 1260 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1261 * vm_page reservation system coupled with properly written VFS devices 1262 * should ensure that no low-memory deadlock occurs. This is an area 1263 * which needs work. 1264 * 1265 * The parent has N vm_object_pip_add() references prior to 1266 * calling us and will remove references for rtvals[] that are 1267 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1268 * completion. 1269 * 1270 * The parent has soft-busy'd the pages it passes us and will unbusy 1271 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1272 * We need to unbusy the rest on I/O completion. 1273 */ 1274 void 1275 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1276 boolean_t sync, int *rtvals) 1277 { 1278 int i; 1279 int n = 0; 1280 1281 if (count && m[0]->object != object) { 1282 panic("swap_pager_putpages: object mismatch %p/%p", 1283 object, 1284 m[0]->object 1285 ); 1286 } 1287 1288 /* 1289 * Step 1 1290 * 1291 * Turn object into OBJT_SWAP 1292 * check for bogus sysops 1293 * force sync if not pageout process 1294 */ 1295 if (object->type != OBJT_SWAP) 1296 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1297 VM_OBJECT_UNLOCK(object); 1298 1299 if (curproc != pageproc) 1300 sync = TRUE; 1301 1302 /* 1303 * Step 2 1304 * 1305 * Update nsw parameters from swap_async_max sysctl values. 1306 * Do not let the sysop crash the machine with bogus numbers. 1307 */ 1308 mtx_lock(&pbuf_mtx); 1309 if (swap_async_max != nsw_wcount_async_max) { 1310 int n; 1311 1312 /* 1313 * limit range 1314 */ 1315 if ((n = swap_async_max) > nswbuf / 2) 1316 n = nswbuf / 2; 1317 if (n < 1) 1318 n = 1; 1319 swap_async_max = n; 1320 1321 /* 1322 * Adjust difference ( if possible ). If the current async 1323 * count is too low, we may not be able to make the adjustment 1324 * at this time. 1325 */ 1326 n -= nsw_wcount_async_max; 1327 if (nsw_wcount_async + n >= 0) { 1328 nsw_wcount_async += n; 1329 nsw_wcount_async_max += n; 1330 wakeup(&nsw_wcount_async); 1331 } 1332 } 1333 mtx_unlock(&pbuf_mtx); 1334 1335 /* 1336 * Step 3 1337 * 1338 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1339 * The page is left dirty until the pageout operation completes 1340 * successfully. 1341 */ 1342 for (i = 0; i < count; i += n) { 1343 int j; 1344 struct buf *bp; 1345 daddr_t blk; 1346 1347 /* 1348 * Maximum I/O size is limited by a number of factors. 1349 */ 1350 n = min(BLIST_MAX_ALLOC, count - i); 1351 n = min(n, nsw_cluster_max); 1352 1353 /* 1354 * Get biggest block of swap we can. If we fail, fall 1355 * back and try to allocate a smaller block. Don't go 1356 * overboard trying to allocate space if it would overly 1357 * fragment swap. 1358 */ 1359 while ( 1360 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1361 n > 4 1362 ) { 1363 n >>= 1; 1364 } 1365 if (blk == SWAPBLK_NONE) { 1366 for (j = 0; j < n; ++j) 1367 rtvals[i+j] = VM_PAGER_FAIL; 1368 continue; 1369 } 1370 1371 /* 1372 * All I/O parameters have been satisfied, build the I/O 1373 * request and assign the swap space. 1374 */ 1375 if (sync == TRUE) { 1376 bp = getpbuf(&nsw_wcount_sync); 1377 } else { 1378 bp = getpbuf(&nsw_wcount_async); 1379 bp->b_flags = B_ASYNC; 1380 } 1381 bp->b_flags |= B_PAGING; 1382 bp->b_iocmd = BIO_WRITE; 1383 1384 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1385 1386 bp->b_rcred = crhold(thread0.td_ucred); 1387 bp->b_wcred = crhold(thread0.td_ucred); 1388 bp->b_bcount = PAGE_SIZE * n; 1389 bp->b_bufsize = PAGE_SIZE * n; 1390 bp->b_blkno = blk; 1391 1392 VM_OBJECT_LOCK(object); 1393 for (j = 0; j < n; ++j) { 1394 vm_page_t mreq = m[i+j]; 1395 1396 swp_pager_meta_build( 1397 mreq->object, 1398 mreq->pindex, 1399 blk + j 1400 ); 1401 vm_page_dirty(mreq); 1402 rtvals[i+j] = VM_PAGER_OK; 1403 1404 mreq->oflags |= VPO_SWAPINPROG; 1405 bp->b_pages[j] = mreq; 1406 } 1407 VM_OBJECT_UNLOCK(object); 1408 bp->b_npages = n; 1409 /* 1410 * Must set dirty range for NFS to work. 1411 */ 1412 bp->b_dirtyoff = 0; 1413 bp->b_dirtyend = bp->b_bcount; 1414 1415 PCPU_INC(cnt.v_swapout); 1416 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1417 1418 /* 1419 * asynchronous 1420 * 1421 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1422 */ 1423 if (sync == FALSE) { 1424 bp->b_iodone = swp_pager_async_iodone; 1425 BUF_KERNPROC(bp); 1426 swp_pager_strategy(bp); 1427 1428 for (j = 0; j < n; ++j) 1429 rtvals[i+j] = VM_PAGER_PEND; 1430 /* restart outter loop */ 1431 continue; 1432 } 1433 1434 /* 1435 * synchronous 1436 * 1437 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1438 */ 1439 bp->b_iodone = bdone; 1440 swp_pager_strategy(bp); 1441 1442 /* 1443 * Wait for the sync I/O to complete, then update rtvals. 1444 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1445 * our async completion routine at the end, thus avoiding a 1446 * double-free. 1447 */ 1448 bwait(bp, PVM, "swwrt"); 1449 for (j = 0; j < n; ++j) 1450 rtvals[i+j] = VM_PAGER_PEND; 1451 /* 1452 * Now that we are through with the bp, we can call the 1453 * normal async completion, which frees everything up. 1454 */ 1455 swp_pager_async_iodone(bp); 1456 } 1457 VM_OBJECT_LOCK(object); 1458 } 1459 1460 /* 1461 * swp_pager_async_iodone: 1462 * 1463 * Completion routine for asynchronous reads and writes from/to swap. 1464 * Also called manually by synchronous code to finish up a bp. 1465 * 1466 * For READ operations, the pages are VPO_BUSY'd. For WRITE operations, 1467 * the pages are vm_page_t->busy'd. For READ operations, we VPO_BUSY 1468 * unbusy all pages except the 'main' request page. For WRITE 1469 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1470 * because we marked them all VM_PAGER_PEND on return from putpages ). 1471 * 1472 * This routine may not block. 1473 */ 1474 static void 1475 swp_pager_async_iodone(struct buf *bp) 1476 { 1477 int i; 1478 vm_object_t object = NULL; 1479 1480 /* 1481 * report error 1482 */ 1483 if (bp->b_ioflags & BIO_ERROR) { 1484 printf( 1485 "swap_pager: I/O error - %s failed; blkno %ld," 1486 "size %ld, error %d\n", 1487 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1488 (long)bp->b_blkno, 1489 (long)bp->b_bcount, 1490 bp->b_error 1491 ); 1492 } 1493 1494 /* 1495 * remove the mapping for kernel virtual 1496 */ 1497 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1498 1499 if (bp->b_npages) { 1500 object = bp->b_pages[0]->object; 1501 VM_OBJECT_LOCK(object); 1502 } 1503 1504 /* 1505 * cleanup pages. If an error occurs writing to swap, we are in 1506 * very serious trouble. If it happens to be a disk error, though, 1507 * we may be able to recover by reassigning the swap later on. So 1508 * in this case we remove the m->swapblk assignment for the page 1509 * but do not free it in the rlist. The errornous block(s) are thus 1510 * never reallocated as swap. Redirty the page and continue. 1511 */ 1512 for (i = 0; i < bp->b_npages; ++i) { 1513 vm_page_t m = bp->b_pages[i]; 1514 1515 m->oflags &= ~VPO_SWAPINPROG; 1516 1517 if (bp->b_ioflags & BIO_ERROR) { 1518 /* 1519 * If an error occurs I'd love to throw the swapblk 1520 * away without freeing it back to swapspace, so it 1521 * can never be used again. But I can't from an 1522 * interrupt. 1523 */ 1524 if (bp->b_iocmd == BIO_READ) { 1525 /* 1526 * When reading, reqpage needs to stay 1527 * locked for the parent, but all other 1528 * pages can be freed. We still want to 1529 * wakeup the parent waiting on the page, 1530 * though. ( also: pg_reqpage can be -1 and 1531 * not match anything ). 1532 * 1533 * We have to wake specifically requested pages 1534 * up too because we cleared VPO_SWAPINPROG and 1535 * someone may be waiting for that. 1536 * 1537 * NOTE: for reads, m->dirty will probably 1538 * be overridden by the original caller of 1539 * getpages so don't play cute tricks here. 1540 */ 1541 m->valid = 0; 1542 if (i != bp->b_pager.pg_reqpage) 1543 swp_pager_free_nrpage(m); 1544 else 1545 vm_page_flash(m); 1546 /* 1547 * If i == bp->b_pager.pg_reqpage, do not wake 1548 * the page up. The caller needs to. 1549 */ 1550 } else { 1551 /* 1552 * If a write error occurs, reactivate page 1553 * so it doesn't clog the inactive list, 1554 * then finish the I/O. 1555 */ 1556 vm_page_dirty(m); 1557 vm_page_lock(m); 1558 vm_page_activate(m); 1559 vm_page_unlock(m); 1560 vm_page_io_finish(m); 1561 } 1562 } else if (bp->b_iocmd == BIO_READ) { 1563 /* 1564 * NOTE: for reads, m->dirty will probably be 1565 * overridden by the original caller of getpages so 1566 * we cannot set them in order to free the underlying 1567 * swap in a low-swap situation. I don't think we'd 1568 * want to do that anyway, but it was an optimization 1569 * that existed in the old swapper for a time before 1570 * it got ripped out due to precisely this problem. 1571 * 1572 * If not the requested page then deactivate it. 1573 * 1574 * Note that the requested page, reqpage, is left 1575 * busied, but we still have to wake it up. The 1576 * other pages are released (unbusied) by 1577 * vm_page_wakeup(). 1578 */ 1579 KASSERT(!pmap_page_is_mapped(m), 1580 ("swp_pager_async_iodone: page %p is mapped", m)); 1581 m->valid = VM_PAGE_BITS_ALL; 1582 KASSERT(m->dirty == 0, 1583 ("swp_pager_async_iodone: page %p is dirty", m)); 1584 1585 /* 1586 * We have to wake specifically requested pages 1587 * up too because we cleared VPO_SWAPINPROG and 1588 * could be waiting for it in getpages. However, 1589 * be sure to not unbusy getpages specifically 1590 * requested page - getpages expects it to be 1591 * left busy. 1592 */ 1593 if (i != bp->b_pager.pg_reqpage) { 1594 vm_page_lock(m); 1595 vm_page_deactivate(m); 1596 vm_page_unlock(m); 1597 vm_page_wakeup(m); 1598 } else 1599 vm_page_flash(m); 1600 } else { 1601 /* 1602 * For write success, clear the dirty 1603 * status, then finish the I/O ( which decrements the 1604 * busy count and possibly wakes waiter's up ). 1605 */ 1606 KASSERT((m->flags & PG_WRITEABLE) == 0, 1607 ("swp_pager_async_iodone: page %p is not write" 1608 " protected", m)); 1609 vm_page_undirty(m); 1610 vm_page_io_finish(m); 1611 if (vm_page_count_severe()) { 1612 vm_page_lock(m); 1613 vm_page_try_to_cache(m); 1614 vm_page_unlock(m); 1615 } 1616 } 1617 } 1618 1619 /* 1620 * adjust pip. NOTE: the original parent may still have its own 1621 * pip refs on the object. 1622 */ 1623 if (object != NULL) { 1624 vm_object_pip_wakeupn(object, bp->b_npages); 1625 VM_OBJECT_UNLOCK(object); 1626 } 1627 1628 /* 1629 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1630 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1631 * trigger a KASSERT in relpbuf(). 1632 */ 1633 if (bp->b_vp) { 1634 bp->b_vp = NULL; 1635 bp->b_bufobj = NULL; 1636 } 1637 /* 1638 * release the physical I/O buffer 1639 */ 1640 relpbuf( 1641 bp, 1642 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1643 ((bp->b_flags & B_ASYNC) ? 1644 &nsw_wcount_async : 1645 &nsw_wcount_sync 1646 ) 1647 ) 1648 ); 1649 } 1650 1651 /* 1652 * swap_pager_isswapped: 1653 * 1654 * Return 1 if at least one page in the given object is paged 1655 * out to the given swap device. 1656 * 1657 * This routine may not block. 1658 */ 1659 int 1660 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1661 { 1662 daddr_t index = 0; 1663 int bcount; 1664 int i; 1665 1666 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1667 if (object->type != OBJT_SWAP) 1668 return (0); 1669 1670 mtx_lock(&swhash_mtx); 1671 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1672 struct swblock *swap; 1673 1674 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1675 for (i = 0; i < SWAP_META_PAGES; ++i) { 1676 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1677 mtx_unlock(&swhash_mtx); 1678 return (1); 1679 } 1680 } 1681 } 1682 index += SWAP_META_PAGES; 1683 } 1684 mtx_unlock(&swhash_mtx); 1685 return (0); 1686 } 1687 1688 /* 1689 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1690 * 1691 * This routine dissociates the page at the given index within a 1692 * swap block from its backing store, paging it in if necessary. 1693 * If the page is paged in, it is placed in the inactive queue, 1694 * since it had its backing store ripped out from under it. 1695 * We also attempt to swap in all other pages in the swap block, 1696 * we only guarantee that the one at the specified index is 1697 * paged in. 1698 * 1699 * XXX - The code to page the whole block in doesn't work, so we 1700 * revert to the one-by-one behavior for now. Sigh. 1701 */ 1702 static inline void 1703 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1704 { 1705 vm_page_t m; 1706 1707 vm_object_pip_add(object, 1); 1708 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1709 if (m->valid == VM_PAGE_BITS_ALL) { 1710 vm_object_pip_subtract(object, 1); 1711 vm_page_dirty(m); 1712 vm_page_lock(m); 1713 vm_page_activate(m); 1714 vm_page_unlock(m); 1715 vm_page_wakeup(m); 1716 vm_pager_page_unswapped(m); 1717 return; 1718 } 1719 1720 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1721 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1722 vm_object_pip_subtract(object, 1); 1723 vm_page_dirty(m); 1724 vm_page_lock(m); 1725 vm_page_deactivate(m); 1726 vm_page_unlock(m); 1727 vm_page_wakeup(m); 1728 vm_pager_page_unswapped(m); 1729 } 1730 1731 /* 1732 * swap_pager_swapoff: 1733 * 1734 * Page in all of the pages that have been paged out to the 1735 * given device. The corresponding blocks in the bitmap must be 1736 * marked as allocated and the device must be flagged SW_CLOSING. 1737 * There may be no processes swapped out to the device. 1738 * 1739 * This routine may block. 1740 */ 1741 static void 1742 swap_pager_swapoff(struct swdevt *sp) 1743 { 1744 struct swblock *swap; 1745 int i, j, retries; 1746 1747 GIANT_REQUIRED; 1748 1749 retries = 0; 1750 full_rescan: 1751 mtx_lock(&swhash_mtx); 1752 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1753 restart: 1754 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1755 vm_object_t object = swap->swb_object; 1756 vm_pindex_t pindex = swap->swb_index; 1757 for (j = 0; j < SWAP_META_PAGES; ++j) { 1758 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1759 /* avoid deadlock */ 1760 if (!VM_OBJECT_TRYLOCK(object)) { 1761 break; 1762 } else { 1763 mtx_unlock(&swhash_mtx); 1764 swp_pager_force_pagein(object, 1765 pindex + j); 1766 VM_OBJECT_UNLOCK(object); 1767 mtx_lock(&swhash_mtx); 1768 goto restart; 1769 } 1770 } 1771 } 1772 } 1773 } 1774 mtx_unlock(&swhash_mtx); 1775 if (sp->sw_used) { 1776 /* 1777 * Objects may be locked or paging to the device being 1778 * removed, so we will miss their pages and need to 1779 * make another pass. We have marked this device as 1780 * SW_CLOSING, so the activity should finish soon. 1781 */ 1782 retries++; 1783 if (retries > 100) { 1784 panic("swapoff: failed to locate %d swap blocks", 1785 sp->sw_used); 1786 } 1787 pause("swpoff", hz / 20); 1788 goto full_rescan; 1789 } 1790 } 1791 1792 /************************************************************************ 1793 * SWAP META DATA * 1794 ************************************************************************ 1795 * 1796 * These routines manipulate the swap metadata stored in the 1797 * OBJT_SWAP object. All swp_*() routines must be called at 1798 * splvm() because swap can be freed up by the low level vm_page 1799 * code which might be called from interrupts beyond what splbio() covers. 1800 * 1801 * Swap metadata is implemented with a global hash and not directly 1802 * linked into the object. Instead the object simply contains 1803 * appropriate tracking counters. 1804 */ 1805 1806 /* 1807 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1808 * 1809 * We first convert the object to a swap object if it is a default 1810 * object. 1811 * 1812 * The specified swapblk is added to the object's swap metadata. If 1813 * the swapblk is not valid, it is freed instead. Any previously 1814 * assigned swapblk is freed. 1815 * 1816 * This routine must be called at splvm(), except when used to convert 1817 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1818 */ 1819 static void 1820 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1821 { 1822 struct swblock *swap; 1823 struct swblock **pswap; 1824 int idx; 1825 1826 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1827 /* 1828 * Convert default object to swap object if necessary 1829 */ 1830 if (object->type != OBJT_SWAP) { 1831 object->type = OBJT_SWAP; 1832 object->un_pager.swp.swp_bcount = 0; 1833 1834 if (object->handle != NULL) { 1835 mtx_lock(&sw_alloc_mtx); 1836 TAILQ_INSERT_TAIL( 1837 NOBJLIST(object->handle), 1838 object, 1839 pager_object_list 1840 ); 1841 mtx_unlock(&sw_alloc_mtx); 1842 } 1843 } 1844 1845 /* 1846 * Locate hash entry. If not found create, but if we aren't adding 1847 * anything just return. If we run out of space in the map we wait 1848 * and, since the hash table may have changed, retry. 1849 */ 1850 retry: 1851 mtx_lock(&swhash_mtx); 1852 pswap = swp_pager_hash(object, pindex); 1853 1854 if ((swap = *pswap) == NULL) { 1855 int i; 1856 1857 if (swapblk == SWAPBLK_NONE) 1858 goto done; 1859 1860 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1861 if (swap == NULL) { 1862 mtx_unlock(&swhash_mtx); 1863 VM_OBJECT_UNLOCK(object); 1864 if (uma_zone_exhausted(swap_zone)) { 1865 printf("swap zone exhausted, increase kern.maxswzone\n"); 1866 vm_pageout_oom(VM_OOM_SWAPZ); 1867 pause("swzonex", 10); 1868 } else 1869 VM_WAIT; 1870 VM_OBJECT_LOCK(object); 1871 goto retry; 1872 } 1873 1874 swap->swb_hnext = NULL; 1875 swap->swb_object = object; 1876 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1877 swap->swb_count = 0; 1878 1879 ++object->un_pager.swp.swp_bcount; 1880 1881 for (i = 0; i < SWAP_META_PAGES; ++i) 1882 swap->swb_pages[i] = SWAPBLK_NONE; 1883 } 1884 1885 /* 1886 * Delete prior contents of metadata 1887 */ 1888 idx = pindex & SWAP_META_MASK; 1889 1890 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1891 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1892 --swap->swb_count; 1893 } 1894 1895 /* 1896 * Enter block into metadata 1897 */ 1898 swap->swb_pages[idx] = swapblk; 1899 if (swapblk != SWAPBLK_NONE) 1900 ++swap->swb_count; 1901 done: 1902 mtx_unlock(&swhash_mtx); 1903 } 1904 1905 /* 1906 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1907 * 1908 * The requested range of blocks is freed, with any associated swap 1909 * returned to the swap bitmap. 1910 * 1911 * This routine will free swap metadata structures as they are cleaned 1912 * out. This routine does *NOT* operate on swap metadata associated 1913 * with resident pages. 1914 * 1915 * This routine must be called at splvm() 1916 */ 1917 static void 1918 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1919 { 1920 1921 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1922 if (object->type != OBJT_SWAP) 1923 return; 1924 1925 while (count > 0) { 1926 struct swblock **pswap; 1927 struct swblock *swap; 1928 1929 mtx_lock(&swhash_mtx); 1930 pswap = swp_pager_hash(object, index); 1931 1932 if ((swap = *pswap) != NULL) { 1933 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1934 1935 if (v != SWAPBLK_NONE) { 1936 swp_pager_freeswapspace(v, 1); 1937 swap->swb_pages[index & SWAP_META_MASK] = 1938 SWAPBLK_NONE; 1939 if (--swap->swb_count == 0) { 1940 *pswap = swap->swb_hnext; 1941 uma_zfree(swap_zone, swap); 1942 --object->un_pager.swp.swp_bcount; 1943 } 1944 } 1945 --count; 1946 ++index; 1947 } else { 1948 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1949 count -= n; 1950 index += n; 1951 } 1952 mtx_unlock(&swhash_mtx); 1953 } 1954 } 1955 1956 /* 1957 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1958 * 1959 * This routine locates and destroys all swap metadata associated with 1960 * an object. 1961 * 1962 * This routine must be called at splvm() 1963 */ 1964 static void 1965 swp_pager_meta_free_all(vm_object_t object) 1966 { 1967 daddr_t index = 0; 1968 1969 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1970 if (object->type != OBJT_SWAP) 1971 return; 1972 1973 while (object->un_pager.swp.swp_bcount) { 1974 struct swblock **pswap; 1975 struct swblock *swap; 1976 1977 mtx_lock(&swhash_mtx); 1978 pswap = swp_pager_hash(object, index); 1979 if ((swap = *pswap) != NULL) { 1980 int i; 1981 1982 for (i = 0; i < SWAP_META_PAGES; ++i) { 1983 daddr_t v = swap->swb_pages[i]; 1984 if (v != SWAPBLK_NONE) { 1985 --swap->swb_count; 1986 swp_pager_freeswapspace(v, 1); 1987 } 1988 } 1989 if (swap->swb_count != 0) 1990 panic("swap_pager_meta_free_all: swb_count != 0"); 1991 *pswap = swap->swb_hnext; 1992 uma_zfree(swap_zone, swap); 1993 --object->un_pager.swp.swp_bcount; 1994 } 1995 mtx_unlock(&swhash_mtx); 1996 index += SWAP_META_PAGES; 1997 } 1998 } 1999 2000 /* 2001 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2002 * 2003 * This routine is capable of looking up, popping, or freeing 2004 * swapblk assignments in the swap meta data or in the vm_page_t. 2005 * The routine typically returns the swapblk being looked-up, or popped, 2006 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2007 * was invalid. This routine will automatically free any invalid 2008 * meta-data swapblks. 2009 * 2010 * It is not possible to store invalid swapblks in the swap meta data 2011 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2012 * 2013 * When acting on a busy resident page and paging is in progress, we 2014 * have to wait until paging is complete but otherwise can act on the 2015 * busy page. 2016 * 2017 * This routine must be called at splvm(). 2018 * 2019 * SWM_FREE remove and free swap block from metadata 2020 * SWM_POP remove from meta data but do not free.. pop it out 2021 */ 2022 static daddr_t 2023 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2024 { 2025 struct swblock **pswap; 2026 struct swblock *swap; 2027 daddr_t r1; 2028 int idx; 2029 2030 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2031 /* 2032 * The meta data only exists of the object is OBJT_SWAP 2033 * and even then might not be allocated yet. 2034 */ 2035 if (object->type != OBJT_SWAP) 2036 return (SWAPBLK_NONE); 2037 2038 r1 = SWAPBLK_NONE; 2039 mtx_lock(&swhash_mtx); 2040 pswap = swp_pager_hash(object, pindex); 2041 2042 if ((swap = *pswap) != NULL) { 2043 idx = pindex & SWAP_META_MASK; 2044 r1 = swap->swb_pages[idx]; 2045 2046 if (r1 != SWAPBLK_NONE) { 2047 if (flags & SWM_FREE) { 2048 swp_pager_freeswapspace(r1, 1); 2049 r1 = SWAPBLK_NONE; 2050 } 2051 if (flags & (SWM_FREE|SWM_POP)) { 2052 swap->swb_pages[idx] = SWAPBLK_NONE; 2053 if (--swap->swb_count == 0) { 2054 *pswap = swap->swb_hnext; 2055 uma_zfree(swap_zone, swap); 2056 --object->un_pager.swp.swp_bcount; 2057 } 2058 } 2059 } 2060 } 2061 mtx_unlock(&swhash_mtx); 2062 return (r1); 2063 } 2064 2065 /* 2066 * System call swapon(name) enables swapping on device name, 2067 * which must be in the swdevsw. Return EBUSY 2068 * if already swapping on this device. 2069 */ 2070 #ifndef _SYS_SYSPROTO_H_ 2071 struct swapon_args { 2072 char *name; 2073 }; 2074 #endif 2075 2076 /* 2077 * MPSAFE 2078 */ 2079 /* ARGSUSED */ 2080 int 2081 swapon(struct thread *td, struct swapon_args *uap) 2082 { 2083 struct vattr attr; 2084 struct vnode *vp; 2085 struct nameidata nd; 2086 int error; 2087 2088 error = priv_check(td, PRIV_SWAPON); 2089 if (error) 2090 return (error); 2091 2092 mtx_lock(&Giant); 2093 while (swdev_syscall_active) 2094 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2095 swdev_syscall_active = 1; 2096 2097 /* 2098 * Swap metadata may not fit in the KVM if we have physical 2099 * memory of >1GB. 2100 */ 2101 if (swap_zone == NULL) { 2102 error = ENOMEM; 2103 goto done; 2104 } 2105 2106 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2107 uap->name, td); 2108 error = namei(&nd); 2109 if (error) 2110 goto done; 2111 2112 NDFREE(&nd, NDF_ONLY_PNBUF); 2113 vp = nd.ni_vp; 2114 2115 if (vn_isdisk(vp, &error)) { 2116 error = swapongeom(td, vp); 2117 } else if (vp->v_type == VREG && 2118 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2119 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2120 /* 2121 * Allow direct swapping to NFS regular files in the same 2122 * way that nfs_mountroot() sets up diskless swapping. 2123 */ 2124 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2125 } 2126 2127 if (error) 2128 vrele(vp); 2129 done: 2130 swdev_syscall_active = 0; 2131 wakeup_one(&swdev_syscall_active); 2132 mtx_unlock(&Giant); 2133 return (error); 2134 } 2135 2136 static void 2137 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2138 { 2139 struct swdevt *sp, *tsp; 2140 swblk_t dvbase; 2141 u_long mblocks; 2142 2143 /* 2144 * If we go beyond this, we get overflows in the radix 2145 * tree bitmap code. 2146 */ 2147 mblocks = 0x40000000 / BLIST_META_RADIX; 2148 if (nblks > mblocks) { 2149 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2150 mblocks); 2151 nblks = mblocks; 2152 } 2153 /* 2154 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2155 * First chop nblks off to page-align it, then convert. 2156 * 2157 * sw->sw_nblks is in page-sized chunks now too. 2158 */ 2159 nblks &= ~(ctodb(1) - 1); 2160 nblks = dbtoc(nblks); 2161 2162 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2163 sp->sw_vp = vp; 2164 sp->sw_id = id; 2165 sp->sw_dev = dev; 2166 sp->sw_flags = 0; 2167 sp->sw_nblks = nblks; 2168 sp->sw_used = 0; 2169 sp->sw_strategy = strategy; 2170 sp->sw_close = close; 2171 2172 sp->sw_blist = blist_create(nblks, M_WAITOK); 2173 /* 2174 * Do not free the first two block in order to avoid overwriting 2175 * any bsd label at the front of the partition 2176 */ 2177 blist_free(sp->sw_blist, 2, nblks - 2); 2178 2179 dvbase = 0; 2180 mtx_lock(&sw_dev_mtx); 2181 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2182 if (tsp->sw_end >= dvbase) { 2183 /* 2184 * We put one uncovered page between the devices 2185 * in order to definitively prevent any cross-device 2186 * I/O requests 2187 */ 2188 dvbase = tsp->sw_end + 1; 2189 } 2190 } 2191 sp->sw_first = dvbase; 2192 sp->sw_end = dvbase + nblks; 2193 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2194 nswapdev++; 2195 swap_pager_avail += nblks; 2196 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2197 swp_sizecheck(); 2198 mtx_unlock(&sw_dev_mtx); 2199 } 2200 2201 /* 2202 * SYSCALL: swapoff(devname) 2203 * 2204 * Disable swapping on the given device. 2205 * 2206 * XXX: Badly designed system call: it should use a device index 2207 * rather than filename as specification. We keep sw_vp around 2208 * only to make this work. 2209 */ 2210 #ifndef _SYS_SYSPROTO_H_ 2211 struct swapoff_args { 2212 char *name; 2213 }; 2214 #endif 2215 2216 /* 2217 * MPSAFE 2218 */ 2219 /* ARGSUSED */ 2220 int 2221 swapoff(struct thread *td, struct swapoff_args *uap) 2222 { 2223 struct vnode *vp; 2224 struct nameidata nd; 2225 struct swdevt *sp; 2226 int error; 2227 2228 error = priv_check(td, PRIV_SWAPOFF); 2229 if (error) 2230 return (error); 2231 2232 mtx_lock(&Giant); 2233 while (swdev_syscall_active) 2234 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2235 swdev_syscall_active = 1; 2236 2237 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2238 td); 2239 error = namei(&nd); 2240 if (error) 2241 goto done; 2242 NDFREE(&nd, NDF_ONLY_PNBUF); 2243 vp = nd.ni_vp; 2244 2245 mtx_lock(&sw_dev_mtx); 2246 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2247 if (sp->sw_vp == vp) 2248 break; 2249 } 2250 mtx_unlock(&sw_dev_mtx); 2251 if (sp == NULL) { 2252 error = EINVAL; 2253 goto done; 2254 } 2255 error = swapoff_one(sp, td->td_ucred); 2256 done: 2257 swdev_syscall_active = 0; 2258 wakeup_one(&swdev_syscall_active); 2259 mtx_unlock(&Giant); 2260 return (error); 2261 } 2262 2263 static int 2264 swapoff_one(struct swdevt *sp, struct ucred *cred) 2265 { 2266 u_long nblks, dvbase; 2267 #ifdef MAC 2268 int error; 2269 #endif 2270 2271 mtx_assert(&Giant, MA_OWNED); 2272 #ifdef MAC 2273 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2274 error = mac_system_check_swapoff(cred, sp->sw_vp); 2275 (void) VOP_UNLOCK(sp->sw_vp, 0); 2276 if (error != 0) 2277 return (error); 2278 #endif 2279 nblks = sp->sw_nblks; 2280 2281 /* 2282 * We can turn off this swap device safely only if the 2283 * available virtual memory in the system will fit the amount 2284 * of data we will have to page back in, plus an epsilon so 2285 * the system doesn't become critically low on swap space. 2286 */ 2287 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2288 nblks + nswap_lowat) { 2289 return (ENOMEM); 2290 } 2291 2292 /* 2293 * Prevent further allocations on this device. 2294 */ 2295 mtx_lock(&sw_dev_mtx); 2296 sp->sw_flags |= SW_CLOSING; 2297 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2298 swap_pager_avail -= blist_fill(sp->sw_blist, 2299 dvbase, dmmax); 2300 } 2301 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2302 mtx_unlock(&sw_dev_mtx); 2303 2304 /* 2305 * Page in the contents of the device and close it. 2306 */ 2307 swap_pager_swapoff(sp); 2308 2309 sp->sw_close(curthread, sp); 2310 sp->sw_id = NULL; 2311 mtx_lock(&sw_dev_mtx); 2312 TAILQ_REMOVE(&swtailq, sp, sw_list); 2313 nswapdev--; 2314 if (nswapdev == 0) { 2315 swap_pager_full = 2; 2316 swap_pager_almost_full = 1; 2317 } 2318 if (swdevhd == sp) 2319 swdevhd = NULL; 2320 mtx_unlock(&sw_dev_mtx); 2321 blist_destroy(sp->sw_blist); 2322 free(sp, M_VMPGDATA); 2323 return (0); 2324 } 2325 2326 void 2327 swapoff_all(void) 2328 { 2329 struct swdevt *sp, *spt; 2330 const char *devname; 2331 int error; 2332 2333 mtx_lock(&Giant); 2334 while (swdev_syscall_active) 2335 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2336 swdev_syscall_active = 1; 2337 2338 mtx_lock(&sw_dev_mtx); 2339 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2340 mtx_unlock(&sw_dev_mtx); 2341 if (vn_isdisk(sp->sw_vp, NULL)) 2342 devname = sp->sw_vp->v_rdev->si_name; 2343 else 2344 devname = "[file]"; 2345 error = swapoff_one(sp, thread0.td_ucred); 2346 if (error != 0) { 2347 printf("Cannot remove swap device %s (error=%d), " 2348 "skipping.\n", devname, error); 2349 } else if (bootverbose) { 2350 printf("Swap device %s removed.\n", devname); 2351 } 2352 mtx_lock(&sw_dev_mtx); 2353 } 2354 mtx_unlock(&sw_dev_mtx); 2355 2356 swdev_syscall_active = 0; 2357 wakeup_one(&swdev_syscall_active); 2358 mtx_unlock(&Giant); 2359 } 2360 2361 void 2362 swap_pager_status(int *total, int *used) 2363 { 2364 struct swdevt *sp; 2365 2366 *total = 0; 2367 *used = 0; 2368 mtx_lock(&sw_dev_mtx); 2369 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2370 *total += sp->sw_nblks; 2371 *used += sp->sw_used; 2372 } 2373 mtx_unlock(&sw_dev_mtx); 2374 } 2375 2376 static int 2377 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2378 { 2379 int *name = (int *)arg1; 2380 int error, n; 2381 struct xswdev xs; 2382 struct swdevt *sp; 2383 2384 if (arg2 != 1) /* name length */ 2385 return (EINVAL); 2386 2387 n = 0; 2388 mtx_lock(&sw_dev_mtx); 2389 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2390 if (n == *name) { 2391 mtx_unlock(&sw_dev_mtx); 2392 xs.xsw_version = XSWDEV_VERSION; 2393 xs.xsw_dev = sp->sw_dev; 2394 xs.xsw_flags = sp->sw_flags; 2395 xs.xsw_nblks = sp->sw_nblks; 2396 xs.xsw_used = sp->sw_used; 2397 2398 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2399 return (error); 2400 } 2401 n++; 2402 } 2403 mtx_unlock(&sw_dev_mtx); 2404 return (ENOENT); 2405 } 2406 2407 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2408 "Number of swap devices"); 2409 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2410 "Swap statistics by device"); 2411 2412 /* 2413 * vmspace_swap_count() - count the approximate swap usage in pages for a 2414 * vmspace. 2415 * 2416 * The map must be locked. 2417 * 2418 * Swap usage is determined by taking the proportional swap used by 2419 * VM objects backing the VM map. To make up for fractional losses, 2420 * if the VM object has any swap use at all the associated map entries 2421 * count for at least 1 swap page. 2422 */ 2423 long 2424 vmspace_swap_count(struct vmspace *vmspace) 2425 { 2426 vm_map_t map; 2427 vm_map_entry_t cur; 2428 vm_object_t object; 2429 long count, n; 2430 2431 map = &vmspace->vm_map; 2432 count = 0; 2433 2434 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2435 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2436 (object = cur->object.vm_object) != NULL) { 2437 VM_OBJECT_LOCK(object); 2438 if (object->type == OBJT_SWAP && 2439 object->un_pager.swp.swp_bcount != 0) { 2440 n = (cur->end - cur->start) / PAGE_SIZE; 2441 count += object->un_pager.swp.swp_bcount * 2442 SWAP_META_PAGES * n / object->size + 1; 2443 } 2444 VM_OBJECT_UNLOCK(object); 2445 } 2446 } 2447 return (count); 2448 } 2449 2450 /* 2451 * GEOM backend 2452 * 2453 * Swapping onto disk devices. 2454 * 2455 */ 2456 2457 static g_orphan_t swapgeom_orphan; 2458 2459 static struct g_class g_swap_class = { 2460 .name = "SWAP", 2461 .version = G_VERSION, 2462 .orphan = swapgeom_orphan, 2463 }; 2464 2465 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2466 2467 2468 static void 2469 swapgeom_done(struct bio *bp2) 2470 { 2471 struct buf *bp; 2472 2473 bp = bp2->bio_caller2; 2474 bp->b_ioflags = bp2->bio_flags; 2475 if (bp2->bio_error) 2476 bp->b_ioflags |= BIO_ERROR; 2477 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2478 bp->b_error = bp2->bio_error; 2479 bufdone(bp); 2480 g_destroy_bio(bp2); 2481 } 2482 2483 static void 2484 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2485 { 2486 struct bio *bio; 2487 struct g_consumer *cp; 2488 2489 cp = sp->sw_id; 2490 if (cp == NULL) { 2491 bp->b_error = ENXIO; 2492 bp->b_ioflags |= BIO_ERROR; 2493 bufdone(bp); 2494 return; 2495 } 2496 if (bp->b_iocmd == BIO_WRITE) 2497 bio = g_new_bio(); 2498 else 2499 bio = g_alloc_bio(); 2500 if (bio == NULL) { 2501 bp->b_error = ENOMEM; 2502 bp->b_ioflags |= BIO_ERROR; 2503 bufdone(bp); 2504 return; 2505 } 2506 2507 bio->bio_caller2 = bp; 2508 bio->bio_cmd = bp->b_iocmd; 2509 bio->bio_data = bp->b_data; 2510 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2511 bio->bio_length = bp->b_bcount; 2512 bio->bio_done = swapgeom_done; 2513 g_io_request(bio, cp); 2514 return; 2515 } 2516 2517 static void 2518 swapgeom_orphan(struct g_consumer *cp) 2519 { 2520 struct swdevt *sp; 2521 2522 mtx_lock(&sw_dev_mtx); 2523 TAILQ_FOREACH(sp, &swtailq, sw_list) 2524 if (sp->sw_id == cp) 2525 sp->sw_id = NULL; 2526 mtx_unlock(&sw_dev_mtx); 2527 } 2528 2529 static void 2530 swapgeom_close_ev(void *arg, int flags) 2531 { 2532 struct g_consumer *cp; 2533 2534 cp = arg; 2535 g_access(cp, -1, -1, 0); 2536 g_detach(cp); 2537 g_destroy_consumer(cp); 2538 } 2539 2540 static void 2541 swapgeom_close(struct thread *td, struct swdevt *sw) 2542 { 2543 2544 /* XXX: direct call when Giant untangled */ 2545 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2546 } 2547 2548 2549 struct swh0h0 { 2550 struct cdev *dev; 2551 struct vnode *vp; 2552 int error; 2553 }; 2554 2555 static void 2556 swapongeom_ev(void *arg, int flags) 2557 { 2558 struct swh0h0 *swh; 2559 struct g_provider *pp; 2560 struct g_consumer *cp; 2561 static struct g_geom *gp; 2562 struct swdevt *sp; 2563 u_long nblks; 2564 int error; 2565 2566 swh = arg; 2567 swh->error = 0; 2568 pp = g_dev_getprovider(swh->dev); 2569 if (pp == NULL) { 2570 swh->error = ENODEV; 2571 return; 2572 } 2573 mtx_lock(&sw_dev_mtx); 2574 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2575 cp = sp->sw_id; 2576 if (cp != NULL && cp->provider == pp) { 2577 mtx_unlock(&sw_dev_mtx); 2578 swh->error = EBUSY; 2579 return; 2580 } 2581 } 2582 mtx_unlock(&sw_dev_mtx); 2583 if (gp == NULL) 2584 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2585 cp = g_new_consumer(gp); 2586 g_attach(cp, pp); 2587 /* 2588 * XXX: Everytime you think you can improve the margin for 2589 * footshooting, somebody depends on the ability to do so: 2590 * savecore(8) wants to write to our swapdev so we cannot 2591 * set an exclusive count :-( 2592 */ 2593 error = g_access(cp, 1, 1, 0); 2594 if (error) { 2595 g_detach(cp); 2596 g_destroy_consumer(cp); 2597 swh->error = error; 2598 return; 2599 } 2600 nblks = pp->mediasize / DEV_BSIZE; 2601 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2602 swapgeom_close, dev2udev(swh->dev)); 2603 swh->error = 0; 2604 return; 2605 } 2606 2607 static int 2608 swapongeom(struct thread *td, struct vnode *vp) 2609 { 2610 int error; 2611 struct swh0h0 swh; 2612 2613 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2614 2615 swh.dev = vp->v_rdev; 2616 swh.vp = vp; 2617 swh.error = 0; 2618 /* XXX: direct call when Giant untangled */ 2619 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2620 if (!error) 2621 error = swh.error; 2622 VOP_UNLOCK(vp, 0); 2623 return (error); 2624 } 2625 2626 /* 2627 * VNODE backend 2628 * 2629 * This is used mainly for network filesystem (read: probably only tested 2630 * with NFS) swapfiles. 2631 * 2632 */ 2633 2634 static void 2635 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2636 { 2637 struct vnode *vp2; 2638 2639 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2640 2641 vp2 = sp->sw_id; 2642 vhold(vp2); 2643 if (bp->b_iocmd == BIO_WRITE) { 2644 if (bp->b_bufobj) 2645 bufobj_wdrop(bp->b_bufobj); 2646 bufobj_wref(&vp2->v_bufobj); 2647 } 2648 if (bp->b_bufobj != &vp2->v_bufobj) 2649 bp->b_bufobj = &vp2->v_bufobj; 2650 bp->b_vp = vp2; 2651 bp->b_iooffset = dbtob(bp->b_blkno); 2652 bstrategy(bp); 2653 return; 2654 } 2655 2656 static void 2657 swapdev_close(struct thread *td, struct swdevt *sp) 2658 { 2659 2660 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2661 vrele(sp->sw_vp); 2662 } 2663 2664 2665 static int 2666 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2667 { 2668 struct swdevt *sp; 2669 int error; 2670 2671 if (nblks == 0) 2672 return (ENXIO); 2673 mtx_lock(&sw_dev_mtx); 2674 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2675 if (sp->sw_id == vp) { 2676 mtx_unlock(&sw_dev_mtx); 2677 return (EBUSY); 2678 } 2679 } 2680 mtx_unlock(&sw_dev_mtx); 2681 2682 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2683 #ifdef MAC 2684 error = mac_system_check_swapon(td->td_ucred, vp); 2685 if (error == 0) 2686 #endif 2687 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2688 (void) VOP_UNLOCK(vp, 0); 2689 if (error) 2690 return (error); 2691 2692 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2693 NODEV); 2694 return (0); 2695 } 2696