xref: /freebsd/sys/vm/swap_pager.c (revision 4ed925457ab06e83238a5db33e89ccc94b99a713)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/resource.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysproto.h>
93 #include <sys/blist.h>
94 #include <sys/lock.h>
95 #include <sys/sx.h>
96 #include <sys/vmmeter.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/vm.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_param.h>
109 #include <vm/swap_pager.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 
113 #include <geom/geom.h>
114 
115 /*
116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
117  * pages per allocation.  We recommend you stick with the default of 8.
118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
119  */
120 #ifndef MAX_PAGEOUT_CLUSTER
121 #define MAX_PAGEOUT_CLUSTER 16
122 #endif
123 
124 #if !defined(SWB_NPAGES)
125 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
126 #endif
127 
128 /*
129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
130  *
131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
133  * 32K worth of data, two levels represent 256K, three levels represent
134  * 2 MBytes.   This is acceptable.
135  *
136  * Overall memory utilization is about the same as the old swap structure.
137  */
138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
139 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
140 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
141 
142 struct swblock {
143 	struct swblock	*swb_hnext;
144 	vm_object_t	swb_object;
145 	vm_pindex_t	swb_index;
146 	int		swb_count;
147 	daddr_t		swb_pages[SWAP_META_PAGES];
148 };
149 
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 
168 /* bits from overcommit */
169 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
170 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
171 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
172 
173 int
174 swap_reserve(vm_ooffset_t incr)
175 {
176 
177 	return (swap_reserve_by_uid(incr, curthread->td_ucred->cr_ruidinfo));
178 }
179 
180 int
181 swap_reserve_by_uid(vm_ooffset_t incr, struct uidinfo *uip)
182 {
183 	vm_ooffset_t r, s;
184 	int res, error;
185 	static int curfail;
186 	static struct timeval lastfail;
187 
188 	if (incr & PAGE_MASK)
189 		panic("swap_reserve: & PAGE_MASK");
190 
191 	res = 0;
192 	mtx_lock(&sw_dev_mtx);
193 	r = swap_reserved + incr;
194 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
195 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
196 		s *= PAGE_SIZE;
197 	} else
198 		s = 0;
199 	s += swap_total;
200 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
201 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
202 		res = 1;
203 		swap_reserved = r;
204 	}
205 	mtx_unlock(&sw_dev_mtx);
206 
207 	if (res) {
208 		PROC_LOCK(curproc);
209 		UIDINFO_VMSIZE_LOCK(uip);
210 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
211 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
212 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
213 			res = 0;
214 		else
215 			uip->ui_vmsize += incr;
216 		UIDINFO_VMSIZE_UNLOCK(uip);
217 		PROC_UNLOCK(curproc);
218 		if (!res) {
219 			mtx_lock(&sw_dev_mtx);
220 			swap_reserved -= incr;
221 			mtx_unlock(&sw_dev_mtx);
222 		}
223 	}
224 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
225 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
226 		    curproc->p_pid, uip->ui_uid, incr);
227 	}
228 
229 	return (res);
230 }
231 
232 void
233 swap_reserve_force(vm_ooffset_t incr)
234 {
235 	struct uidinfo *uip;
236 
237 	mtx_lock(&sw_dev_mtx);
238 	swap_reserved += incr;
239 	mtx_unlock(&sw_dev_mtx);
240 
241 	uip = curthread->td_ucred->cr_ruidinfo;
242 	PROC_LOCK(curproc);
243 	UIDINFO_VMSIZE_LOCK(uip);
244 	uip->ui_vmsize += incr;
245 	UIDINFO_VMSIZE_UNLOCK(uip);
246 	PROC_UNLOCK(curproc);
247 }
248 
249 void
250 swap_release(vm_ooffset_t decr)
251 {
252 	struct uidinfo *uip;
253 
254 	PROC_LOCK(curproc);
255 	uip = curthread->td_ucred->cr_ruidinfo;
256 	swap_release_by_uid(decr, uip);
257 	PROC_UNLOCK(curproc);
258 }
259 
260 void
261 swap_release_by_uid(vm_ooffset_t decr, struct uidinfo *uip)
262 {
263 
264 	if (decr & PAGE_MASK)
265 		panic("swap_release: & PAGE_MASK");
266 
267 	mtx_lock(&sw_dev_mtx);
268 	if (swap_reserved < decr)
269 		panic("swap_reserved < decr");
270 	swap_reserved -= decr;
271 	mtx_unlock(&sw_dev_mtx);
272 
273 	UIDINFO_VMSIZE_LOCK(uip);
274 	if (uip->ui_vmsize < decr)
275 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
276 	uip->ui_vmsize -= decr;
277 	UIDINFO_VMSIZE_UNLOCK(uip);
278 }
279 
280 static void swapdev_strategy(struct buf *, struct swdevt *sw);
281 
282 #define SWM_FREE	0x02	/* free, period			*/
283 #define SWM_POP		0x04	/* pop out			*/
284 
285 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
286 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
287 static int nsw_rcount;		/* free read buffers			*/
288 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
289 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
290 static int nsw_wcount_async_max;/* assigned maximum			*/
291 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
292 
293 static struct swblock **swhash;
294 static int swhash_mask;
295 static struct mtx swhash_mtx;
296 
297 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
298 static struct sx sw_alloc_sx;
299 
300 
301 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
302         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
303 
304 /*
305  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
306  * of searching a named list by hashing it just a little.
307  */
308 
309 #define NOBJLISTS		8
310 
311 #define NOBJLIST(handle)	\
312 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
313 
314 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
315 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
316 static uma_zone_t	swap_zone;
317 static struct vm_object	swap_zone_obj;
318 
319 /*
320  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
321  * calls hooked from other parts of the VM system and do not appear here.
322  * (see vm/swap_pager.h).
323  */
324 static vm_object_t
325 		swap_pager_alloc(void *handle, vm_ooffset_t size,
326 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
327 static void	swap_pager_dealloc(vm_object_t object);
328 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
329 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
330 static boolean_t
331 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
332 static void	swap_pager_init(void);
333 static void	swap_pager_unswapped(vm_page_t);
334 static void	swap_pager_swapoff(struct swdevt *sp);
335 
336 struct pagerops swappagerops = {
337 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
338 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
339 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
340 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
341 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
342 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
343 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
344 };
345 
346 /*
347  * dmmax is in page-sized chunks with the new swap system.  It was
348  * dev-bsized chunks in the old.  dmmax is always a power of 2.
349  *
350  * swap_*() routines are externally accessible.  swp_*() routines are
351  * internal.
352  */
353 static int dmmax;
354 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
355 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
356 
357 SYSCTL_INT(_vm, OID_AUTO, dmmax,
358 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
359 
360 static void	swp_sizecheck(void);
361 static void	swp_pager_async_iodone(struct buf *bp);
362 static int	swapongeom(struct thread *, struct vnode *);
363 static int	swaponvp(struct thread *, struct vnode *, u_long);
364 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
365 
366 /*
367  * Swap bitmap functions
368  */
369 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
370 static daddr_t	swp_pager_getswapspace(int npages);
371 
372 /*
373  * Metadata functions
374  */
375 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
376 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
377 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
378 static void swp_pager_meta_free_all(vm_object_t);
379 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
380 
381 /*
382  * SWP_SIZECHECK() -	update swap_pager_full indication
383  *
384  *	update the swap_pager_almost_full indication and warn when we are
385  *	about to run out of swap space, using lowat/hiwat hysteresis.
386  *
387  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
388  *
389  *	No restrictions on call
390  *	This routine may not block.
391  *	This routine must be called at splvm()
392  */
393 static void
394 swp_sizecheck(void)
395 {
396 
397 	if (swap_pager_avail < nswap_lowat) {
398 		if (swap_pager_almost_full == 0) {
399 			printf("swap_pager: out of swap space\n");
400 			swap_pager_almost_full = 1;
401 		}
402 	} else {
403 		swap_pager_full = 0;
404 		if (swap_pager_avail > nswap_hiwat)
405 			swap_pager_almost_full = 0;
406 	}
407 }
408 
409 /*
410  * SWP_PAGER_HASH() -	hash swap meta data
411  *
412  *	This is an helper function which hashes the swapblk given
413  *	the object and page index.  It returns a pointer to a pointer
414  *	to the object, or a pointer to a NULL pointer if it could not
415  *	find a swapblk.
416  *
417  *	This routine must be called at splvm().
418  */
419 static struct swblock **
420 swp_pager_hash(vm_object_t object, vm_pindex_t index)
421 {
422 	struct swblock **pswap;
423 	struct swblock *swap;
424 
425 	index &= ~(vm_pindex_t)SWAP_META_MASK;
426 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
427 	while ((swap = *pswap) != NULL) {
428 		if (swap->swb_object == object &&
429 		    swap->swb_index == index
430 		) {
431 			break;
432 		}
433 		pswap = &swap->swb_hnext;
434 	}
435 	return (pswap);
436 }
437 
438 /*
439  * SWAP_PAGER_INIT() -	initialize the swap pager!
440  *
441  *	Expected to be started from system init.  NOTE:  This code is run
442  *	before much else so be careful what you depend on.  Most of the VM
443  *	system has yet to be initialized at this point.
444  */
445 static void
446 swap_pager_init(void)
447 {
448 	/*
449 	 * Initialize object lists
450 	 */
451 	int i;
452 
453 	for (i = 0; i < NOBJLISTS; ++i)
454 		TAILQ_INIT(&swap_pager_object_list[i]);
455 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
456 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
457 
458 	/*
459 	 * Device Stripe, in PAGE_SIZE'd blocks
460 	 */
461 	dmmax = SWB_NPAGES * 2;
462 }
463 
464 /*
465  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
466  *
467  *	Expected to be started from pageout process once, prior to entering
468  *	its main loop.
469  */
470 void
471 swap_pager_swap_init(void)
472 {
473 	int n, n2;
474 
475 	/*
476 	 * Number of in-transit swap bp operations.  Don't
477 	 * exhaust the pbufs completely.  Make sure we
478 	 * initialize workable values (0 will work for hysteresis
479 	 * but it isn't very efficient).
480 	 *
481 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
482 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
483 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
484 	 * constrained by the swap device interleave stripe size.
485 	 *
486 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
487 	 * designed to prevent other I/O from having high latencies due to
488 	 * our pageout I/O.  The value 4 works well for one or two active swap
489 	 * devices but is probably a little low if you have more.  Even so,
490 	 * a higher value would probably generate only a limited improvement
491 	 * with three or four active swap devices since the system does not
492 	 * typically have to pageout at extreme bandwidths.   We will want
493 	 * at least 2 per swap devices, and 4 is a pretty good value if you
494 	 * have one NFS swap device due to the command/ack latency over NFS.
495 	 * So it all works out pretty well.
496 	 */
497 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
498 
499 	mtx_lock(&pbuf_mtx);
500 	nsw_rcount = (nswbuf + 1) / 2;
501 	nsw_wcount_sync = (nswbuf + 3) / 4;
502 	nsw_wcount_async = 4;
503 	nsw_wcount_async_max = nsw_wcount_async;
504 	mtx_unlock(&pbuf_mtx);
505 
506 	/*
507 	 * Initialize our zone.  Right now I'm just guessing on the number
508 	 * we need based on the number of pages in the system.  Each swblock
509 	 * can hold 16 pages, so this is probably overkill.  This reservation
510 	 * is typically limited to around 32MB by default.
511 	 */
512 	n = cnt.v_page_count / 2;
513 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
514 		n = maxswzone / sizeof(struct swblock);
515 	n2 = n;
516 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
517 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
518 	if (swap_zone == NULL)
519 		panic("failed to create swap_zone.");
520 	do {
521 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
522 			break;
523 		/*
524 		 * if the allocation failed, try a zone two thirds the
525 		 * size of the previous attempt.
526 		 */
527 		n -= ((n + 2) / 3);
528 	} while (n > 0);
529 	if (n2 != n)
530 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
531 	n2 = n;
532 
533 	/*
534 	 * Initialize our meta-data hash table.  The swapper does not need to
535 	 * be quite as efficient as the VM system, so we do not use an
536 	 * oversized hash table.
537 	 *
538 	 * 	n: 		size of hash table, must be power of 2
539 	 *	swhash_mask:	hash table index mask
540 	 */
541 	for (n = 1; n < n2 / 8; n *= 2)
542 		;
543 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
544 	swhash_mask = n - 1;
545 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
546 }
547 
548 /*
549  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
550  *			its metadata structures.
551  *
552  *	This routine is called from the mmap and fork code to create a new
553  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
554  *	and then converting it with swp_pager_meta_build().
555  *
556  *	This routine may block in vm_object_allocate() and create a named
557  *	object lookup race, so we must interlock.   We must also run at
558  *	splvm() for the object lookup to handle races with interrupts, but
559  *	we do not have to maintain splvm() in between the lookup and the
560  *	add because (I believe) it is not possible to attempt to create
561  *	a new swap object w/handle when a default object with that handle
562  *	already exists.
563  *
564  * MPSAFE
565  */
566 static vm_object_t
567 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
568     vm_ooffset_t offset, struct ucred *cred)
569 {
570 	vm_object_t object;
571 	vm_pindex_t pindex;
572 	struct uidinfo *uip;
573 
574 	uip = NULL;
575 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
576 	if (handle) {
577 		mtx_lock(&Giant);
578 		/*
579 		 * Reference existing named region or allocate new one.  There
580 		 * should not be a race here against swp_pager_meta_build()
581 		 * as called from vm_page_remove() in regards to the lookup
582 		 * of the handle.
583 		 */
584 		sx_xlock(&sw_alloc_sx);
585 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
586 		if (object == NULL) {
587 			if (cred != NULL) {
588 				uip = cred->cr_ruidinfo;
589 				if (!swap_reserve_by_uid(size, uip)) {
590 					sx_xunlock(&sw_alloc_sx);
591 					mtx_unlock(&Giant);
592 					return (NULL);
593 				}
594 				uihold(uip);
595 			}
596 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
597 			VM_OBJECT_LOCK(object);
598 			object->handle = handle;
599 			if (cred != NULL) {
600 				object->uip = uip;
601 				object->charge = size;
602 			}
603 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
604 			VM_OBJECT_UNLOCK(object);
605 		}
606 		sx_xunlock(&sw_alloc_sx);
607 		mtx_unlock(&Giant);
608 	} else {
609 		if (cred != NULL) {
610 			uip = cred->cr_ruidinfo;
611 			if (!swap_reserve_by_uid(size, uip))
612 				return (NULL);
613 			uihold(uip);
614 		}
615 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
616 		VM_OBJECT_LOCK(object);
617 		if (cred != NULL) {
618 			object->uip = uip;
619 			object->charge = size;
620 		}
621 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
622 		VM_OBJECT_UNLOCK(object);
623 	}
624 	return (object);
625 }
626 
627 /*
628  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
629  *
630  *	The swap backing for the object is destroyed.  The code is
631  *	designed such that we can reinstantiate it later, but this
632  *	routine is typically called only when the entire object is
633  *	about to be destroyed.
634  *
635  *	This routine may block, but no longer does.
636  *
637  *	The object must be locked or unreferenceable.
638  */
639 static void
640 swap_pager_dealloc(vm_object_t object)
641 {
642 
643 	/*
644 	 * Remove from list right away so lookups will fail if we block for
645 	 * pageout completion.
646 	 */
647 	if (object->handle != NULL) {
648 		mtx_lock(&sw_alloc_mtx);
649 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
650 		mtx_unlock(&sw_alloc_mtx);
651 	}
652 
653 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
654 	vm_object_pip_wait(object, "swpdea");
655 
656 	/*
657 	 * Free all remaining metadata.  We only bother to free it from
658 	 * the swap meta data.  We do not attempt to free swapblk's still
659 	 * associated with vm_page_t's for this object.  We do not care
660 	 * if paging is still in progress on some objects.
661 	 */
662 	swp_pager_meta_free_all(object);
663 }
664 
665 /************************************************************************
666  *			SWAP PAGER BITMAP ROUTINES			*
667  ************************************************************************/
668 
669 /*
670  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
671  *
672  *	Allocate swap for the requested number of pages.  The starting
673  *	swap block number (a page index) is returned or SWAPBLK_NONE
674  *	if the allocation failed.
675  *
676  *	Also has the side effect of advising that somebody made a mistake
677  *	when they configured swap and didn't configure enough.
678  *
679  *	Must be called at splvm() to avoid races with bitmap frees from
680  *	vm_page_remove() aka swap_pager_page_removed().
681  *
682  *	This routine may not block
683  *	This routine must be called at splvm().
684  *
685  *	We allocate in round-robin fashion from the configured devices.
686  */
687 static daddr_t
688 swp_pager_getswapspace(int npages)
689 {
690 	daddr_t blk;
691 	struct swdevt *sp;
692 	int i;
693 
694 	blk = SWAPBLK_NONE;
695 	mtx_lock(&sw_dev_mtx);
696 	sp = swdevhd;
697 	for (i = 0; i < nswapdev; i++) {
698 		if (sp == NULL)
699 			sp = TAILQ_FIRST(&swtailq);
700 		if (!(sp->sw_flags & SW_CLOSING)) {
701 			blk = blist_alloc(sp->sw_blist, npages);
702 			if (blk != SWAPBLK_NONE) {
703 				blk += sp->sw_first;
704 				sp->sw_used += npages;
705 				swap_pager_avail -= npages;
706 				swp_sizecheck();
707 				swdevhd = TAILQ_NEXT(sp, sw_list);
708 				goto done;
709 			}
710 		}
711 		sp = TAILQ_NEXT(sp, sw_list);
712 	}
713 	if (swap_pager_full != 2) {
714 		printf("swap_pager_getswapspace(%d): failed\n", npages);
715 		swap_pager_full = 2;
716 		swap_pager_almost_full = 1;
717 	}
718 	swdevhd = NULL;
719 done:
720 	mtx_unlock(&sw_dev_mtx);
721 	return (blk);
722 }
723 
724 static int
725 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
726 {
727 
728 	return (blk >= sp->sw_first && blk < sp->sw_end);
729 }
730 
731 static void
732 swp_pager_strategy(struct buf *bp)
733 {
734 	struct swdevt *sp;
735 
736 	mtx_lock(&sw_dev_mtx);
737 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
738 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
739 			mtx_unlock(&sw_dev_mtx);
740 			sp->sw_strategy(bp, sp);
741 			return;
742 		}
743 	}
744 	panic("Swapdev not found");
745 }
746 
747 
748 /*
749  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
750  *
751  *	This routine returns the specified swap blocks back to the bitmap.
752  *
753  *	Note:  This routine may not block (it could in the old swap code),
754  *	and through the use of the new blist routines it does not block.
755  *
756  *	We must be called at splvm() to avoid races with bitmap frees from
757  *	vm_page_remove() aka swap_pager_page_removed().
758  *
759  *	This routine may not block
760  *	This routine must be called at splvm().
761  */
762 static void
763 swp_pager_freeswapspace(daddr_t blk, int npages)
764 {
765 	struct swdevt *sp;
766 
767 	mtx_lock(&sw_dev_mtx);
768 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
769 		if (blk >= sp->sw_first && blk < sp->sw_end) {
770 			sp->sw_used -= npages;
771 			/*
772 			 * If we are attempting to stop swapping on
773 			 * this device, we don't want to mark any
774 			 * blocks free lest they be reused.
775 			 */
776 			if ((sp->sw_flags & SW_CLOSING) == 0) {
777 				blist_free(sp->sw_blist, blk - sp->sw_first,
778 				    npages);
779 				swap_pager_avail += npages;
780 				swp_sizecheck();
781 			}
782 			mtx_unlock(&sw_dev_mtx);
783 			return;
784 		}
785 	}
786 	panic("Swapdev not found");
787 }
788 
789 /*
790  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
791  *				range within an object.
792  *
793  *	This is a globally accessible routine.
794  *
795  *	This routine removes swapblk assignments from swap metadata.
796  *
797  *	The external callers of this routine typically have already destroyed
798  *	or renamed vm_page_t's associated with this range in the object so
799  *	we should be ok.
800  *
801  *	This routine may be called at any spl.  We up our spl to splvm temporarily
802  *	in order to perform the metadata removal.
803  */
804 void
805 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
806 {
807 
808 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
809 	swp_pager_meta_free(object, start, size);
810 }
811 
812 /*
813  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
814  *
815  *	Assigns swap blocks to the specified range within the object.  The
816  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
817  *
818  *	Returns 0 on success, -1 on failure.
819  */
820 int
821 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
822 {
823 	int n = 0;
824 	daddr_t blk = SWAPBLK_NONE;
825 	vm_pindex_t beg = start;	/* save start index */
826 
827 	VM_OBJECT_LOCK(object);
828 	while (size) {
829 		if (n == 0) {
830 			n = BLIST_MAX_ALLOC;
831 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
832 				n >>= 1;
833 				if (n == 0) {
834 					swp_pager_meta_free(object, beg, start - beg);
835 					VM_OBJECT_UNLOCK(object);
836 					return (-1);
837 				}
838 			}
839 		}
840 		swp_pager_meta_build(object, start, blk);
841 		--size;
842 		++start;
843 		++blk;
844 		--n;
845 	}
846 	swp_pager_meta_free(object, start, n);
847 	VM_OBJECT_UNLOCK(object);
848 	return (0);
849 }
850 
851 /*
852  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
853  *			and destroy the source.
854  *
855  *	Copy any valid swapblks from the source to the destination.  In
856  *	cases where both the source and destination have a valid swapblk,
857  *	we keep the destination's.
858  *
859  *	This routine is allowed to block.  It may block allocating metadata
860  *	indirectly through swp_pager_meta_build() or if paging is still in
861  *	progress on the source.
862  *
863  *	This routine can be called at any spl
864  *
865  *	XXX vm_page_collapse() kinda expects us not to block because we
866  *	supposedly do not need to allocate memory, but for the moment we
867  *	*may* have to get a little memory from the zone allocator, but
868  *	it is taken from the interrupt memory.  We should be ok.
869  *
870  *	The source object contains no vm_page_t's (which is just as well)
871  *
872  *	The source object is of type OBJT_SWAP.
873  *
874  *	The source and destination objects must be locked or
875  *	inaccessible (XXX are they ?)
876  */
877 void
878 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
879     vm_pindex_t offset, int destroysource)
880 {
881 	vm_pindex_t i;
882 
883 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
884 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
885 
886 	/*
887 	 * If destroysource is set, we remove the source object from the
888 	 * swap_pager internal queue now.
889 	 */
890 	if (destroysource) {
891 		if (srcobject->handle != NULL) {
892 			mtx_lock(&sw_alloc_mtx);
893 			TAILQ_REMOVE(
894 			    NOBJLIST(srcobject->handle),
895 			    srcobject,
896 			    pager_object_list
897 			);
898 			mtx_unlock(&sw_alloc_mtx);
899 		}
900 	}
901 
902 	/*
903 	 * transfer source to destination.
904 	 */
905 	for (i = 0; i < dstobject->size; ++i) {
906 		daddr_t dstaddr;
907 
908 		/*
909 		 * Locate (without changing) the swapblk on the destination,
910 		 * unless it is invalid in which case free it silently, or
911 		 * if the destination is a resident page, in which case the
912 		 * source is thrown away.
913 		 */
914 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
915 
916 		if (dstaddr == SWAPBLK_NONE) {
917 			/*
918 			 * Destination has no swapblk and is not resident,
919 			 * copy source.
920 			 */
921 			daddr_t srcaddr;
922 
923 			srcaddr = swp_pager_meta_ctl(
924 			    srcobject,
925 			    i + offset,
926 			    SWM_POP
927 			);
928 
929 			if (srcaddr != SWAPBLK_NONE) {
930 				/*
931 				 * swp_pager_meta_build() can sleep.
932 				 */
933 				vm_object_pip_add(srcobject, 1);
934 				VM_OBJECT_UNLOCK(srcobject);
935 				vm_object_pip_add(dstobject, 1);
936 				swp_pager_meta_build(dstobject, i, srcaddr);
937 				vm_object_pip_wakeup(dstobject);
938 				VM_OBJECT_LOCK(srcobject);
939 				vm_object_pip_wakeup(srcobject);
940 			}
941 		} else {
942 			/*
943 			 * Destination has valid swapblk or it is represented
944 			 * by a resident page.  We destroy the sourceblock.
945 			 */
946 
947 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
948 		}
949 	}
950 
951 	/*
952 	 * Free left over swap blocks in source.
953 	 *
954 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
955 	 * double-remove the object from the swap queues.
956 	 */
957 	if (destroysource) {
958 		swp_pager_meta_free_all(srcobject);
959 		/*
960 		 * Reverting the type is not necessary, the caller is going
961 		 * to destroy srcobject directly, but I'm doing it here
962 		 * for consistency since we've removed the object from its
963 		 * queues.
964 		 */
965 		srcobject->type = OBJT_DEFAULT;
966 	}
967 }
968 
969 /*
970  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
971  *				the requested page.
972  *
973  *	We determine whether good backing store exists for the requested
974  *	page and return TRUE if it does, FALSE if it doesn't.
975  *
976  *	If TRUE, we also try to determine how much valid, contiguous backing
977  *	store exists before and after the requested page within a reasonable
978  *	distance.  We do not try to restrict it to the swap device stripe
979  *	(that is handled in getpages/putpages).  It probably isn't worth
980  *	doing here.
981  */
982 static boolean_t
983 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
984 {
985 	daddr_t blk0;
986 
987 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
988 	/*
989 	 * do we have good backing store at the requested index ?
990 	 */
991 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
992 
993 	if (blk0 == SWAPBLK_NONE) {
994 		if (before)
995 			*before = 0;
996 		if (after)
997 			*after = 0;
998 		return (FALSE);
999 	}
1000 
1001 	/*
1002 	 * find backwards-looking contiguous good backing store
1003 	 */
1004 	if (before != NULL) {
1005 		int i;
1006 
1007 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1008 			daddr_t blk;
1009 
1010 			if (i > pindex)
1011 				break;
1012 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1013 			if (blk != blk0 - i)
1014 				break;
1015 		}
1016 		*before = (i - 1);
1017 	}
1018 
1019 	/*
1020 	 * find forward-looking contiguous good backing store
1021 	 */
1022 	if (after != NULL) {
1023 		int i;
1024 
1025 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1026 			daddr_t blk;
1027 
1028 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1029 			if (blk != blk0 + i)
1030 				break;
1031 		}
1032 		*after = (i - 1);
1033 	}
1034 	return (TRUE);
1035 }
1036 
1037 /*
1038  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1039  *
1040  *	This removes any associated swap backing store, whether valid or
1041  *	not, from the page.
1042  *
1043  *	This routine is typically called when a page is made dirty, at
1044  *	which point any associated swap can be freed.  MADV_FREE also
1045  *	calls us in a special-case situation
1046  *
1047  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1048  *	should make the page dirty before calling this routine.  This routine
1049  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1050  *	depends on it.
1051  *
1052  *	This routine may not block
1053  *	This routine must be called at splvm()
1054  */
1055 static void
1056 swap_pager_unswapped(vm_page_t m)
1057 {
1058 
1059 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1060 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1061 }
1062 
1063 /*
1064  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1065  *
1066  *	Attempt to retrieve (m, count) pages from backing store, but make
1067  *	sure we retrieve at least m[reqpage].  We try to load in as large
1068  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1069  *	belongs to the same object.
1070  *
1071  *	The code is designed for asynchronous operation and
1072  *	immediate-notification of 'reqpage' but tends not to be
1073  *	used that way.  Please do not optimize-out this algorithmic
1074  *	feature, I intend to improve on it in the future.
1075  *
1076  *	The parent has a single vm_object_pip_add() reference prior to
1077  *	calling us and we should return with the same.
1078  *
1079  *	The parent has BUSY'd the pages.  We should return with 'm'
1080  *	left busy, but the others adjusted.
1081  */
1082 static int
1083 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1084 {
1085 	struct buf *bp;
1086 	vm_page_t mreq;
1087 	int i;
1088 	int j;
1089 	daddr_t blk;
1090 
1091 	mreq = m[reqpage];
1092 
1093 	KASSERT(mreq->object == object,
1094 	    ("swap_pager_getpages: object mismatch %p/%p",
1095 	    object, mreq->object));
1096 
1097 	/*
1098 	 * Calculate range to retrieve.  The pages have already been assigned
1099 	 * their swapblks.  We require a *contiguous* range but we know it to
1100 	 * not span devices.   If we do not supply it, bad things
1101 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1102 	 * loops are set up such that the case(s) are handled implicitly.
1103 	 *
1104 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1105 	 * not need to be, but it will go a little faster if it is.
1106 	 */
1107 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1108 
1109 	for (i = reqpage - 1; i >= 0; --i) {
1110 		daddr_t iblk;
1111 
1112 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1113 		if (blk != iblk + (reqpage - i))
1114 			break;
1115 	}
1116 	++i;
1117 
1118 	for (j = reqpage + 1; j < count; ++j) {
1119 		daddr_t jblk;
1120 
1121 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1122 		if (blk != jblk - (j - reqpage))
1123 			break;
1124 	}
1125 
1126 	/*
1127 	 * free pages outside our collection range.   Note: we never free
1128 	 * mreq, it must remain busy throughout.
1129 	 */
1130 	if (0 < i || j < count) {
1131 		int k;
1132 
1133 		vm_page_lock_queues();
1134 		for (k = 0; k < i; ++k)
1135 			vm_page_free(m[k]);
1136 		for (k = j; k < count; ++k)
1137 			vm_page_free(m[k]);
1138 		vm_page_unlock_queues();
1139 	}
1140 
1141 	/*
1142 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1143 	 * still busy, but the others unbusied.
1144 	 */
1145 	if (blk == SWAPBLK_NONE)
1146 		return (VM_PAGER_FAIL);
1147 
1148 	/*
1149 	 * Getpbuf() can sleep.
1150 	 */
1151 	VM_OBJECT_UNLOCK(object);
1152 	/*
1153 	 * Get a swap buffer header to perform the IO
1154 	 */
1155 	bp = getpbuf(&nsw_rcount);
1156 	bp->b_flags |= B_PAGING;
1157 
1158 	/*
1159 	 * map our page(s) into kva for input
1160 	 */
1161 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1162 
1163 	bp->b_iocmd = BIO_READ;
1164 	bp->b_iodone = swp_pager_async_iodone;
1165 	bp->b_rcred = crhold(thread0.td_ucred);
1166 	bp->b_wcred = crhold(thread0.td_ucred);
1167 	bp->b_blkno = blk - (reqpage - i);
1168 	bp->b_bcount = PAGE_SIZE * (j - i);
1169 	bp->b_bufsize = PAGE_SIZE * (j - i);
1170 	bp->b_pager.pg_reqpage = reqpage - i;
1171 
1172 	VM_OBJECT_LOCK(object);
1173 	{
1174 		int k;
1175 
1176 		for (k = i; k < j; ++k) {
1177 			bp->b_pages[k - i] = m[k];
1178 			m[k]->oflags |= VPO_SWAPINPROG;
1179 		}
1180 	}
1181 	bp->b_npages = j - i;
1182 
1183 	PCPU_INC(cnt.v_swapin);
1184 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1185 
1186 	/*
1187 	 * We still hold the lock on mreq, and our automatic completion routine
1188 	 * does not remove it.
1189 	 */
1190 	vm_object_pip_add(object, bp->b_npages);
1191 	VM_OBJECT_UNLOCK(object);
1192 
1193 	/*
1194 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1195 	 * this point because we automatically release it on completion.
1196 	 * Instead, we look at the one page we are interested in which we
1197 	 * still hold a lock on even through the I/O completion.
1198 	 *
1199 	 * The other pages in our m[] array are also released on completion,
1200 	 * so we cannot assume they are valid anymore either.
1201 	 *
1202 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1203 	 */
1204 	BUF_KERNPROC(bp);
1205 	swp_pager_strategy(bp);
1206 
1207 	/*
1208 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1209 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1210 	 * is set in the meta-data.
1211 	 */
1212 	VM_OBJECT_LOCK(object);
1213 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1214 		mreq->oflags |= VPO_WANTED;
1215 		vm_page_lock_queues();
1216 		vm_page_flag_set(mreq, PG_REFERENCED);
1217 		vm_page_unlock_queues();
1218 		PCPU_INC(cnt.v_intrans);
1219 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1220 			printf(
1221 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1222 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * mreq is left busied after completion, but all the other pages
1228 	 * are freed.  If we had an unrecoverable read error the page will
1229 	 * not be valid.
1230 	 */
1231 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1232 		return (VM_PAGER_ERROR);
1233 	} else {
1234 		return (VM_PAGER_OK);
1235 	}
1236 
1237 	/*
1238 	 * A final note: in a low swap situation, we cannot deallocate swap
1239 	 * and mark a page dirty here because the caller is likely to mark
1240 	 * the page clean when we return, causing the page to possibly revert
1241 	 * to all-zero's later.
1242 	 */
1243 }
1244 
1245 /*
1246  *	swap_pager_putpages:
1247  *
1248  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1249  *
1250  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1251  *	are automatically converted to SWAP objects.
1252  *
1253  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1254  *	vm_page reservation system coupled with properly written VFS devices
1255  *	should ensure that no low-memory deadlock occurs.  This is an area
1256  *	which needs work.
1257  *
1258  *	The parent has N vm_object_pip_add() references prior to
1259  *	calling us and will remove references for rtvals[] that are
1260  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1261  *	completion.
1262  *
1263  *	The parent has soft-busy'd the pages it passes us and will unbusy
1264  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1265  *	We need to unbusy the rest on I/O completion.
1266  */
1267 void
1268 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1269     boolean_t sync, int *rtvals)
1270 {
1271 	int i;
1272 	int n = 0;
1273 
1274 	if (count && m[0]->object != object) {
1275 		panic("swap_pager_putpages: object mismatch %p/%p",
1276 		    object,
1277 		    m[0]->object
1278 		);
1279 	}
1280 
1281 	/*
1282 	 * Step 1
1283 	 *
1284 	 * Turn object into OBJT_SWAP
1285 	 * check for bogus sysops
1286 	 * force sync if not pageout process
1287 	 */
1288 	if (object->type != OBJT_SWAP)
1289 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1290 	VM_OBJECT_UNLOCK(object);
1291 
1292 	if (curproc != pageproc)
1293 		sync = TRUE;
1294 
1295 	/*
1296 	 * Step 2
1297 	 *
1298 	 * Update nsw parameters from swap_async_max sysctl values.
1299 	 * Do not let the sysop crash the machine with bogus numbers.
1300 	 */
1301 	mtx_lock(&pbuf_mtx);
1302 	if (swap_async_max != nsw_wcount_async_max) {
1303 		int n;
1304 
1305 		/*
1306 		 * limit range
1307 		 */
1308 		if ((n = swap_async_max) > nswbuf / 2)
1309 			n = nswbuf / 2;
1310 		if (n < 1)
1311 			n = 1;
1312 		swap_async_max = n;
1313 
1314 		/*
1315 		 * Adjust difference ( if possible ).  If the current async
1316 		 * count is too low, we may not be able to make the adjustment
1317 		 * at this time.
1318 		 */
1319 		n -= nsw_wcount_async_max;
1320 		if (nsw_wcount_async + n >= 0) {
1321 			nsw_wcount_async += n;
1322 			nsw_wcount_async_max += n;
1323 			wakeup(&nsw_wcount_async);
1324 		}
1325 	}
1326 	mtx_unlock(&pbuf_mtx);
1327 
1328 	/*
1329 	 * Step 3
1330 	 *
1331 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1332 	 * The page is left dirty until the pageout operation completes
1333 	 * successfully.
1334 	 */
1335 	for (i = 0; i < count; i += n) {
1336 		int j;
1337 		struct buf *bp;
1338 		daddr_t blk;
1339 
1340 		/*
1341 		 * Maximum I/O size is limited by a number of factors.
1342 		 */
1343 		n = min(BLIST_MAX_ALLOC, count - i);
1344 		n = min(n, nsw_cluster_max);
1345 
1346 		/*
1347 		 * Get biggest block of swap we can.  If we fail, fall
1348 		 * back and try to allocate a smaller block.  Don't go
1349 		 * overboard trying to allocate space if it would overly
1350 		 * fragment swap.
1351 		 */
1352 		while (
1353 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1354 		    n > 4
1355 		) {
1356 			n >>= 1;
1357 		}
1358 		if (blk == SWAPBLK_NONE) {
1359 			for (j = 0; j < n; ++j)
1360 				rtvals[i+j] = VM_PAGER_FAIL;
1361 			continue;
1362 		}
1363 
1364 		/*
1365 		 * All I/O parameters have been satisfied, build the I/O
1366 		 * request and assign the swap space.
1367 		 */
1368 		if (sync == TRUE) {
1369 			bp = getpbuf(&nsw_wcount_sync);
1370 		} else {
1371 			bp = getpbuf(&nsw_wcount_async);
1372 			bp->b_flags = B_ASYNC;
1373 		}
1374 		bp->b_flags |= B_PAGING;
1375 		bp->b_iocmd = BIO_WRITE;
1376 
1377 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1378 
1379 		bp->b_rcred = crhold(thread0.td_ucred);
1380 		bp->b_wcred = crhold(thread0.td_ucred);
1381 		bp->b_bcount = PAGE_SIZE * n;
1382 		bp->b_bufsize = PAGE_SIZE * n;
1383 		bp->b_blkno = blk;
1384 
1385 		VM_OBJECT_LOCK(object);
1386 		for (j = 0; j < n; ++j) {
1387 			vm_page_t mreq = m[i+j];
1388 
1389 			swp_pager_meta_build(
1390 			    mreq->object,
1391 			    mreq->pindex,
1392 			    blk + j
1393 			);
1394 			vm_page_dirty(mreq);
1395 			rtvals[i+j] = VM_PAGER_OK;
1396 
1397 			mreq->oflags |= VPO_SWAPINPROG;
1398 			bp->b_pages[j] = mreq;
1399 		}
1400 		VM_OBJECT_UNLOCK(object);
1401 		bp->b_npages = n;
1402 		/*
1403 		 * Must set dirty range for NFS to work.
1404 		 */
1405 		bp->b_dirtyoff = 0;
1406 		bp->b_dirtyend = bp->b_bcount;
1407 
1408 		PCPU_INC(cnt.v_swapout);
1409 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1410 
1411 		/*
1412 		 * asynchronous
1413 		 *
1414 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1415 		 */
1416 		if (sync == FALSE) {
1417 			bp->b_iodone = swp_pager_async_iodone;
1418 			BUF_KERNPROC(bp);
1419 			swp_pager_strategy(bp);
1420 
1421 			for (j = 0; j < n; ++j)
1422 				rtvals[i+j] = VM_PAGER_PEND;
1423 			/* restart outter loop */
1424 			continue;
1425 		}
1426 
1427 		/*
1428 		 * synchronous
1429 		 *
1430 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1431 		 */
1432 		bp->b_iodone = bdone;
1433 		swp_pager_strategy(bp);
1434 
1435 		/*
1436 		 * Wait for the sync I/O to complete, then update rtvals.
1437 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1438 		 * our async completion routine at the end, thus avoiding a
1439 		 * double-free.
1440 		 */
1441 		bwait(bp, PVM, "swwrt");
1442 		for (j = 0; j < n; ++j)
1443 			rtvals[i+j] = VM_PAGER_PEND;
1444 		/*
1445 		 * Now that we are through with the bp, we can call the
1446 		 * normal async completion, which frees everything up.
1447 		 */
1448 		swp_pager_async_iodone(bp);
1449 	}
1450 	VM_OBJECT_LOCK(object);
1451 }
1452 
1453 /*
1454  *	swp_pager_async_iodone:
1455  *
1456  *	Completion routine for asynchronous reads and writes from/to swap.
1457  *	Also called manually by synchronous code to finish up a bp.
1458  *
1459  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1460  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1461  *	unbusy all pages except the 'main' request page.  For WRITE
1462  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1463  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1464  *
1465  *	This routine may not block.
1466  */
1467 static void
1468 swp_pager_async_iodone(struct buf *bp)
1469 {
1470 	int i;
1471 	vm_object_t object = NULL;
1472 
1473 	/*
1474 	 * report error
1475 	 */
1476 	if (bp->b_ioflags & BIO_ERROR) {
1477 		printf(
1478 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1479 			"size %ld, error %d\n",
1480 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1481 		    (long)bp->b_blkno,
1482 		    (long)bp->b_bcount,
1483 		    bp->b_error
1484 		);
1485 	}
1486 
1487 	/*
1488 	 * remove the mapping for kernel virtual
1489 	 */
1490 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1491 
1492 	if (bp->b_npages) {
1493 		object = bp->b_pages[0]->object;
1494 		VM_OBJECT_LOCK(object);
1495 	}
1496 	vm_page_lock_queues();
1497 	/*
1498 	 * cleanup pages.  If an error occurs writing to swap, we are in
1499 	 * very serious trouble.  If it happens to be a disk error, though,
1500 	 * we may be able to recover by reassigning the swap later on.  So
1501 	 * in this case we remove the m->swapblk assignment for the page
1502 	 * but do not free it in the rlist.  The errornous block(s) are thus
1503 	 * never reallocated as swap.  Redirty the page and continue.
1504 	 */
1505 	for (i = 0; i < bp->b_npages; ++i) {
1506 		vm_page_t m = bp->b_pages[i];
1507 
1508 		m->oflags &= ~VPO_SWAPINPROG;
1509 
1510 		if (bp->b_ioflags & BIO_ERROR) {
1511 			/*
1512 			 * If an error occurs I'd love to throw the swapblk
1513 			 * away without freeing it back to swapspace, so it
1514 			 * can never be used again.  But I can't from an
1515 			 * interrupt.
1516 			 */
1517 			if (bp->b_iocmd == BIO_READ) {
1518 				/*
1519 				 * When reading, reqpage needs to stay
1520 				 * locked for the parent, but all other
1521 				 * pages can be freed.  We still want to
1522 				 * wakeup the parent waiting on the page,
1523 				 * though.  ( also: pg_reqpage can be -1 and
1524 				 * not match anything ).
1525 				 *
1526 				 * We have to wake specifically requested pages
1527 				 * up too because we cleared VPO_SWAPINPROG and
1528 				 * someone may be waiting for that.
1529 				 *
1530 				 * NOTE: for reads, m->dirty will probably
1531 				 * be overridden by the original caller of
1532 				 * getpages so don't play cute tricks here.
1533 				 */
1534 				m->valid = 0;
1535 				if (i != bp->b_pager.pg_reqpage)
1536 					vm_page_free(m);
1537 				else
1538 					vm_page_flash(m);
1539 				/*
1540 				 * If i == bp->b_pager.pg_reqpage, do not wake
1541 				 * the page up.  The caller needs to.
1542 				 */
1543 			} else {
1544 				/*
1545 				 * If a write error occurs, reactivate page
1546 				 * so it doesn't clog the inactive list,
1547 				 * then finish the I/O.
1548 				 */
1549 				vm_page_dirty(m);
1550 				vm_page_activate(m);
1551 				vm_page_io_finish(m);
1552 			}
1553 		} else if (bp->b_iocmd == BIO_READ) {
1554 			/*
1555 			 * NOTE: for reads, m->dirty will probably be
1556 			 * overridden by the original caller of getpages so
1557 			 * we cannot set them in order to free the underlying
1558 			 * swap in a low-swap situation.  I don't think we'd
1559 			 * want to do that anyway, but it was an optimization
1560 			 * that existed in the old swapper for a time before
1561 			 * it got ripped out due to precisely this problem.
1562 			 *
1563 			 * If not the requested page then deactivate it.
1564 			 *
1565 			 * Note that the requested page, reqpage, is left
1566 			 * busied, but we still have to wake it up.  The
1567 			 * other pages are released (unbusied) by
1568 			 * vm_page_wakeup().
1569 			 */
1570 			KASSERT(!pmap_page_is_mapped(m),
1571 			    ("swp_pager_async_iodone: page %p is mapped", m));
1572 			m->valid = VM_PAGE_BITS_ALL;
1573 			KASSERT(m->dirty == 0,
1574 			    ("swp_pager_async_iodone: page %p is dirty", m));
1575 
1576 			/*
1577 			 * We have to wake specifically requested pages
1578 			 * up too because we cleared VPO_SWAPINPROG and
1579 			 * could be waiting for it in getpages.  However,
1580 			 * be sure to not unbusy getpages specifically
1581 			 * requested page - getpages expects it to be
1582 			 * left busy.
1583 			 */
1584 			if (i != bp->b_pager.pg_reqpage) {
1585 				vm_page_deactivate(m);
1586 				vm_page_wakeup(m);
1587 			} else {
1588 				vm_page_flash(m);
1589 			}
1590 		} else {
1591 			/*
1592 			 * For write success, clear the dirty
1593 			 * status, then finish the I/O ( which decrements the
1594 			 * busy count and possibly wakes waiter's up ).
1595 			 */
1596 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1597 			    ("swp_pager_async_iodone: page %p is not write"
1598 			    " protected", m));
1599 			vm_page_undirty(m);
1600 			vm_page_io_finish(m);
1601 			if (vm_page_count_severe())
1602 				vm_page_try_to_cache(m);
1603 		}
1604 	}
1605 	vm_page_unlock_queues();
1606 
1607 	/*
1608 	 * adjust pip.  NOTE: the original parent may still have its own
1609 	 * pip refs on the object.
1610 	 */
1611 	if (object != NULL) {
1612 		vm_object_pip_wakeupn(object, bp->b_npages);
1613 		VM_OBJECT_UNLOCK(object);
1614 	}
1615 
1616 	/*
1617 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1618 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1619 	 * trigger a KASSERT in relpbuf().
1620 	 */
1621 	if (bp->b_vp) {
1622 		    bp->b_vp = NULL;
1623 		    bp->b_bufobj = NULL;
1624 	}
1625 	/*
1626 	 * release the physical I/O buffer
1627 	 */
1628 	relpbuf(
1629 	    bp,
1630 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1631 		((bp->b_flags & B_ASYNC) ?
1632 		    &nsw_wcount_async :
1633 		    &nsw_wcount_sync
1634 		)
1635 	    )
1636 	);
1637 }
1638 
1639 /*
1640  *	swap_pager_isswapped:
1641  *
1642  *	Return 1 if at least one page in the given object is paged
1643  *	out to the given swap device.
1644  *
1645  *	This routine may not block.
1646  */
1647 int
1648 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1649 {
1650 	daddr_t index = 0;
1651 	int bcount;
1652 	int i;
1653 
1654 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1655 	if (object->type != OBJT_SWAP)
1656 		return (0);
1657 
1658 	mtx_lock(&swhash_mtx);
1659 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1660 		struct swblock *swap;
1661 
1662 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1663 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1664 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1665 					mtx_unlock(&swhash_mtx);
1666 					return (1);
1667 				}
1668 			}
1669 		}
1670 		index += SWAP_META_PAGES;
1671 		if (index > 0x20000000)
1672 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1673 	}
1674 	mtx_unlock(&swhash_mtx);
1675 	return (0);
1676 }
1677 
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1680  *
1681  *	This routine dissociates the page at the given index within a
1682  *	swap block from its backing store, paging it in if necessary.
1683  *	If the page is paged in, it is placed in the inactive queue,
1684  *	since it had its backing store ripped out from under it.
1685  *	We also attempt to swap in all other pages in the swap block,
1686  *	we only guarantee that the one at the specified index is
1687  *	paged in.
1688  *
1689  *	XXX - The code to page the whole block in doesn't work, so we
1690  *	      revert to the one-by-one behavior for now.  Sigh.
1691  */
1692 static inline void
1693 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1694 {
1695 	vm_page_t m;
1696 
1697 	vm_object_pip_add(object, 1);
1698 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1699 	if (m->valid == VM_PAGE_BITS_ALL) {
1700 		vm_object_pip_subtract(object, 1);
1701 		vm_page_lock_queues();
1702 		vm_page_activate(m);
1703 		vm_page_dirty(m);
1704 		vm_page_unlock_queues();
1705 		vm_page_wakeup(m);
1706 		vm_pager_page_unswapped(m);
1707 		return;
1708 	}
1709 
1710 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1711 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1712 	vm_object_pip_subtract(object, 1);
1713 	vm_page_lock_queues();
1714 	vm_page_dirty(m);
1715 	vm_page_dontneed(m);
1716 	vm_page_unlock_queues();
1717 	vm_page_wakeup(m);
1718 	vm_pager_page_unswapped(m);
1719 }
1720 
1721 /*
1722  *	swap_pager_swapoff:
1723  *
1724  *	Page in all of the pages that have been paged out to the
1725  *	given device.  The corresponding blocks in the bitmap must be
1726  *	marked as allocated and the device must be flagged SW_CLOSING.
1727  *	There may be no processes swapped out to the device.
1728  *
1729  *	This routine may block.
1730  */
1731 static void
1732 swap_pager_swapoff(struct swdevt *sp)
1733 {
1734 	struct swblock *swap;
1735 	int i, j, retries;
1736 
1737 	GIANT_REQUIRED;
1738 
1739 	retries = 0;
1740 full_rescan:
1741 	mtx_lock(&swhash_mtx);
1742 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1743 restart:
1744 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1745 			vm_object_t object = swap->swb_object;
1746 			vm_pindex_t pindex = swap->swb_index;
1747                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1748                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1749 					/* avoid deadlock */
1750 					if (!VM_OBJECT_TRYLOCK(object)) {
1751 						break;
1752 					} else {
1753 						mtx_unlock(&swhash_mtx);
1754 						swp_pager_force_pagein(object,
1755 						    pindex + j);
1756 						VM_OBJECT_UNLOCK(object);
1757 						mtx_lock(&swhash_mtx);
1758 						goto restart;
1759 					}
1760 				}
1761                         }
1762 		}
1763 	}
1764 	mtx_unlock(&swhash_mtx);
1765 	if (sp->sw_used) {
1766 		/*
1767 		 * Objects may be locked or paging to the device being
1768 		 * removed, so we will miss their pages and need to
1769 		 * make another pass.  We have marked this device as
1770 		 * SW_CLOSING, so the activity should finish soon.
1771 		 */
1772 		retries++;
1773 		if (retries > 100) {
1774 			panic("swapoff: failed to locate %d swap blocks",
1775 			    sp->sw_used);
1776 		}
1777 		pause("swpoff", hz / 20);
1778 		goto full_rescan;
1779 	}
1780 }
1781 
1782 /************************************************************************
1783  *				SWAP META DATA 				*
1784  ************************************************************************
1785  *
1786  *	These routines manipulate the swap metadata stored in the
1787  *	OBJT_SWAP object.  All swp_*() routines must be called at
1788  *	splvm() because swap can be freed up by the low level vm_page
1789  *	code which might be called from interrupts beyond what splbio() covers.
1790  *
1791  *	Swap metadata is implemented with a global hash and not directly
1792  *	linked into the object.  Instead the object simply contains
1793  *	appropriate tracking counters.
1794  */
1795 
1796 /*
1797  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1798  *
1799  *	We first convert the object to a swap object if it is a default
1800  *	object.
1801  *
1802  *	The specified swapblk is added to the object's swap metadata.  If
1803  *	the swapblk is not valid, it is freed instead.  Any previously
1804  *	assigned swapblk is freed.
1805  *
1806  *	This routine must be called at splvm(), except when used to convert
1807  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1808  */
1809 static void
1810 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1811 {
1812 	struct swblock *swap;
1813 	struct swblock **pswap;
1814 	int idx;
1815 
1816 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1817 	/*
1818 	 * Convert default object to swap object if necessary
1819 	 */
1820 	if (object->type != OBJT_SWAP) {
1821 		object->type = OBJT_SWAP;
1822 		object->un_pager.swp.swp_bcount = 0;
1823 
1824 		if (object->handle != NULL) {
1825 			mtx_lock(&sw_alloc_mtx);
1826 			TAILQ_INSERT_TAIL(
1827 			    NOBJLIST(object->handle),
1828 			    object,
1829 			    pager_object_list
1830 			);
1831 			mtx_unlock(&sw_alloc_mtx);
1832 		}
1833 	}
1834 
1835 	/*
1836 	 * Locate hash entry.  If not found create, but if we aren't adding
1837 	 * anything just return.  If we run out of space in the map we wait
1838 	 * and, since the hash table may have changed, retry.
1839 	 */
1840 retry:
1841 	mtx_lock(&swhash_mtx);
1842 	pswap = swp_pager_hash(object, pindex);
1843 
1844 	if ((swap = *pswap) == NULL) {
1845 		int i;
1846 
1847 		if (swapblk == SWAPBLK_NONE)
1848 			goto done;
1849 
1850 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1851 		if (swap == NULL) {
1852 			mtx_unlock(&swhash_mtx);
1853 			VM_OBJECT_UNLOCK(object);
1854 			if (uma_zone_exhausted(swap_zone)) {
1855 				printf("swap zone exhausted, increase kern.maxswzone\n");
1856 				vm_pageout_oom(VM_OOM_SWAPZ);
1857 				pause("swzonex", 10);
1858 			} else
1859 				VM_WAIT;
1860 			VM_OBJECT_LOCK(object);
1861 			goto retry;
1862 		}
1863 
1864 		swap->swb_hnext = NULL;
1865 		swap->swb_object = object;
1866 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1867 		swap->swb_count = 0;
1868 
1869 		++object->un_pager.swp.swp_bcount;
1870 
1871 		for (i = 0; i < SWAP_META_PAGES; ++i)
1872 			swap->swb_pages[i] = SWAPBLK_NONE;
1873 	}
1874 
1875 	/*
1876 	 * Delete prior contents of metadata
1877 	 */
1878 	idx = pindex & SWAP_META_MASK;
1879 
1880 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1881 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1882 		--swap->swb_count;
1883 	}
1884 
1885 	/*
1886 	 * Enter block into metadata
1887 	 */
1888 	swap->swb_pages[idx] = swapblk;
1889 	if (swapblk != SWAPBLK_NONE)
1890 		++swap->swb_count;
1891 done:
1892 	mtx_unlock(&swhash_mtx);
1893 }
1894 
1895 /*
1896  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1897  *
1898  *	The requested range of blocks is freed, with any associated swap
1899  *	returned to the swap bitmap.
1900  *
1901  *	This routine will free swap metadata structures as they are cleaned
1902  *	out.  This routine does *NOT* operate on swap metadata associated
1903  *	with resident pages.
1904  *
1905  *	This routine must be called at splvm()
1906  */
1907 static void
1908 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1909 {
1910 
1911 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1912 	if (object->type != OBJT_SWAP)
1913 		return;
1914 
1915 	while (count > 0) {
1916 		struct swblock **pswap;
1917 		struct swblock *swap;
1918 
1919 		mtx_lock(&swhash_mtx);
1920 		pswap = swp_pager_hash(object, index);
1921 
1922 		if ((swap = *pswap) != NULL) {
1923 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1924 
1925 			if (v != SWAPBLK_NONE) {
1926 				swp_pager_freeswapspace(v, 1);
1927 				swap->swb_pages[index & SWAP_META_MASK] =
1928 					SWAPBLK_NONE;
1929 				if (--swap->swb_count == 0) {
1930 					*pswap = swap->swb_hnext;
1931 					uma_zfree(swap_zone, swap);
1932 					--object->un_pager.swp.swp_bcount;
1933 				}
1934 			}
1935 			--count;
1936 			++index;
1937 		} else {
1938 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1939 			count -= n;
1940 			index += n;
1941 		}
1942 		mtx_unlock(&swhash_mtx);
1943 	}
1944 }
1945 
1946 /*
1947  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1948  *
1949  *	This routine locates and destroys all swap metadata associated with
1950  *	an object.
1951  *
1952  *	This routine must be called at splvm()
1953  */
1954 static void
1955 swp_pager_meta_free_all(vm_object_t object)
1956 {
1957 	daddr_t index = 0;
1958 
1959 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1960 	if (object->type != OBJT_SWAP)
1961 		return;
1962 
1963 	while (object->un_pager.swp.swp_bcount) {
1964 		struct swblock **pswap;
1965 		struct swblock *swap;
1966 
1967 		mtx_lock(&swhash_mtx);
1968 		pswap = swp_pager_hash(object, index);
1969 		if ((swap = *pswap) != NULL) {
1970 			int i;
1971 
1972 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1973 				daddr_t v = swap->swb_pages[i];
1974 				if (v != SWAPBLK_NONE) {
1975 					--swap->swb_count;
1976 					swp_pager_freeswapspace(v, 1);
1977 				}
1978 			}
1979 			if (swap->swb_count != 0)
1980 				panic("swap_pager_meta_free_all: swb_count != 0");
1981 			*pswap = swap->swb_hnext;
1982 			uma_zfree(swap_zone, swap);
1983 			--object->un_pager.swp.swp_bcount;
1984 		}
1985 		mtx_unlock(&swhash_mtx);
1986 		index += SWAP_META_PAGES;
1987 		if (index > 0x20000000)
1988 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1989 	}
1990 }
1991 
1992 /*
1993  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1994  *
1995  *	This routine is capable of looking up, popping, or freeing
1996  *	swapblk assignments in the swap meta data or in the vm_page_t.
1997  *	The routine typically returns the swapblk being looked-up, or popped,
1998  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1999  *	was invalid.  This routine will automatically free any invalid
2000  *	meta-data swapblks.
2001  *
2002  *	It is not possible to store invalid swapblks in the swap meta data
2003  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2004  *
2005  *	When acting on a busy resident page and paging is in progress, we
2006  *	have to wait until paging is complete but otherwise can act on the
2007  *	busy page.
2008  *
2009  *	This routine must be called at splvm().
2010  *
2011  *	SWM_FREE	remove and free swap block from metadata
2012  *	SWM_POP		remove from meta data but do not free.. pop it out
2013  */
2014 static daddr_t
2015 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2016 {
2017 	struct swblock **pswap;
2018 	struct swblock *swap;
2019 	daddr_t r1;
2020 	int idx;
2021 
2022 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2023 	/*
2024 	 * The meta data only exists of the object is OBJT_SWAP
2025 	 * and even then might not be allocated yet.
2026 	 */
2027 	if (object->type != OBJT_SWAP)
2028 		return (SWAPBLK_NONE);
2029 
2030 	r1 = SWAPBLK_NONE;
2031 	mtx_lock(&swhash_mtx);
2032 	pswap = swp_pager_hash(object, pindex);
2033 
2034 	if ((swap = *pswap) != NULL) {
2035 		idx = pindex & SWAP_META_MASK;
2036 		r1 = swap->swb_pages[idx];
2037 
2038 		if (r1 != SWAPBLK_NONE) {
2039 			if (flags & SWM_FREE) {
2040 				swp_pager_freeswapspace(r1, 1);
2041 				r1 = SWAPBLK_NONE;
2042 			}
2043 			if (flags & (SWM_FREE|SWM_POP)) {
2044 				swap->swb_pages[idx] = SWAPBLK_NONE;
2045 				if (--swap->swb_count == 0) {
2046 					*pswap = swap->swb_hnext;
2047 					uma_zfree(swap_zone, swap);
2048 					--object->un_pager.swp.swp_bcount;
2049 				}
2050 			}
2051 		}
2052 	}
2053 	mtx_unlock(&swhash_mtx);
2054 	return (r1);
2055 }
2056 
2057 /*
2058  * System call swapon(name) enables swapping on device name,
2059  * which must be in the swdevsw.  Return EBUSY
2060  * if already swapping on this device.
2061  */
2062 #ifndef _SYS_SYSPROTO_H_
2063 struct swapon_args {
2064 	char *name;
2065 };
2066 #endif
2067 
2068 /*
2069  * MPSAFE
2070  */
2071 /* ARGSUSED */
2072 int
2073 swapon(struct thread *td, struct swapon_args *uap)
2074 {
2075 	struct vattr attr;
2076 	struct vnode *vp;
2077 	struct nameidata nd;
2078 	int error;
2079 
2080 	error = priv_check(td, PRIV_SWAPON);
2081 	if (error)
2082 		return (error);
2083 
2084 	mtx_lock(&Giant);
2085 	while (swdev_syscall_active)
2086 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2087 	swdev_syscall_active = 1;
2088 
2089 	/*
2090 	 * Swap metadata may not fit in the KVM if we have physical
2091 	 * memory of >1GB.
2092 	 */
2093 	if (swap_zone == NULL) {
2094 		error = ENOMEM;
2095 		goto done;
2096 	}
2097 
2098 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2099 	    uap->name, td);
2100 	error = namei(&nd);
2101 	if (error)
2102 		goto done;
2103 
2104 	NDFREE(&nd, NDF_ONLY_PNBUF);
2105 	vp = nd.ni_vp;
2106 
2107 	if (vn_isdisk(vp, &error)) {
2108 		error = swapongeom(td, vp);
2109 	} else if (vp->v_type == VREG &&
2110 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2111 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2112 		/*
2113 		 * Allow direct swapping to NFS regular files in the same
2114 		 * way that nfs_mountroot() sets up diskless swapping.
2115 		 */
2116 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2117 	}
2118 
2119 	if (error)
2120 		vrele(vp);
2121 done:
2122 	swdev_syscall_active = 0;
2123 	wakeup_one(&swdev_syscall_active);
2124 	mtx_unlock(&Giant);
2125 	return (error);
2126 }
2127 
2128 static void
2129 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2130 {
2131 	struct swdevt *sp, *tsp;
2132 	swblk_t dvbase;
2133 	u_long mblocks;
2134 
2135 	/*
2136 	 * If we go beyond this, we get overflows in the radix
2137 	 * tree bitmap code.
2138 	 */
2139 	mblocks = 0x40000000 / BLIST_META_RADIX;
2140 	if (nblks > mblocks) {
2141 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2142 			mblocks);
2143 		nblks = mblocks;
2144 	}
2145 	/*
2146 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2147 	 * First chop nblks off to page-align it, then convert.
2148 	 *
2149 	 * sw->sw_nblks is in page-sized chunks now too.
2150 	 */
2151 	nblks &= ~(ctodb(1) - 1);
2152 	nblks = dbtoc(nblks);
2153 
2154 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2155 	sp->sw_vp = vp;
2156 	sp->sw_id = id;
2157 	sp->sw_dev = dev;
2158 	sp->sw_flags = 0;
2159 	sp->sw_nblks = nblks;
2160 	sp->sw_used = 0;
2161 	sp->sw_strategy = strategy;
2162 	sp->sw_close = close;
2163 
2164 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2165 	/*
2166 	 * Do not free the first two block in order to avoid overwriting
2167 	 * any bsd label at the front of the partition
2168 	 */
2169 	blist_free(sp->sw_blist, 2, nblks - 2);
2170 
2171 	dvbase = 0;
2172 	mtx_lock(&sw_dev_mtx);
2173 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2174 		if (tsp->sw_end >= dvbase) {
2175 			/*
2176 			 * We put one uncovered page between the devices
2177 			 * in order to definitively prevent any cross-device
2178 			 * I/O requests
2179 			 */
2180 			dvbase = tsp->sw_end + 1;
2181 		}
2182 	}
2183 	sp->sw_first = dvbase;
2184 	sp->sw_end = dvbase + nblks;
2185 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2186 	nswapdev++;
2187 	swap_pager_avail += nblks;
2188 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2189 	swp_sizecheck();
2190 	mtx_unlock(&sw_dev_mtx);
2191 }
2192 
2193 /*
2194  * SYSCALL: swapoff(devname)
2195  *
2196  * Disable swapping on the given device.
2197  *
2198  * XXX: Badly designed system call: it should use a device index
2199  * rather than filename as specification.  We keep sw_vp around
2200  * only to make this work.
2201  */
2202 #ifndef _SYS_SYSPROTO_H_
2203 struct swapoff_args {
2204 	char *name;
2205 };
2206 #endif
2207 
2208 /*
2209  * MPSAFE
2210  */
2211 /* ARGSUSED */
2212 int
2213 swapoff(struct thread *td, struct swapoff_args *uap)
2214 {
2215 	struct vnode *vp;
2216 	struct nameidata nd;
2217 	struct swdevt *sp;
2218 	int error;
2219 
2220 	error = priv_check(td, PRIV_SWAPOFF);
2221 	if (error)
2222 		return (error);
2223 
2224 	mtx_lock(&Giant);
2225 	while (swdev_syscall_active)
2226 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2227 	swdev_syscall_active = 1;
2228 
2229 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2230 	    td);
2231 	error = namei(&nd);
2232 	if (error)
2233 		goto done;
2234 	NDFREE(&nd, NDF_ONLY_PNBUF);
2235 	vp = nd.ni_vp;
2236 
2237 	mtx_lock(&sw_dev_mtx);
2238 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2239 		if (sp->sw_vp == vp)
2240 			break;
2241 	}
2242 	mtx_unlock(&sw_dev_mtx);
2243 	if (sp == NULL) {
2244 		error = EINVAL;
2245 		goto done;
2246 	}
2247 	error = swapoff_one(sp, td->td_ucred);
2248 done:
2249 	swdev_syscall_active = 0;
2250 	wakeup_one(&swdev_syscall_active);
2251 	mtx_unlock(&Giant);
2252 	return (error);
2253 }
2254 
2255 static int
2256 swapoff_one(struct swdevt *sp, struct ucred *cred)
2257 {
2258 	u_long nblks, dvbase;
2259 #ifdef MAC
2260 	int error;
2261 #endif
2262 
2263 	mtx_assert(&Giant, MA_OWNED);
2264 #ifdef MAC
2265 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2266 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2267 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2268 	if (error != 0)
2269 		return (error);
2270 #endif
2271 	nblks = sp->sw_nblks;
2272 
2273 	/*
2274 	 * We can turn off this swap device safely only if the
2275 	 * available virtual memory in the system will fit the amount
2276 	 * of data we will have to page back in, plus an epsilon so
2277 	 * the system doesn't become critically low on swap space.
2278 	 */
2279 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2280 	    nblks + nswap_lowat) {
2281 		return (ENOMEM);
2282 	}
2283 
2284 	/*
2285 	 * Prevent further allocations on this device.
2286 	 */
2287 	mtx_lock(&sw_dev_mtx);
2288 	sp->sw_flags |= SW_CLOSING;
2289 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2290 		swap_pager_avail -= blist_fill(sp->sw_blist,
2291 		     dvbase, dmmax);
2292 	}
2293 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2294 	mtx_unlock(&sw_dev_mtx);
2295 
2296 	/*
2297 	 * Page in the contents of the device and close it.
2298 	 */
2299 	swap_pager_swapoff(sp);
2300 
2301 	sp->sw_close(curthread, sp);
2302 	sp->sw_id = NULL;
2303 	mtx_lock(&sw_dev_mtx);
2304 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2305 	nswapdev--;
2306 	if (nswapdev == 0) {
2307 		swap_pager_full = 2;
2308 		swap_pager_almost_full = 1;
2309 	}
2310 	if (swdevhd == sp)
2311 		swdevhd = NULL;
2312 	mtx_unlock(&sw_dev_mtx);
2313 	blist_destroy(sp->sw_blist);
2314 	free(sp, M_VMPGDATA);
2315 	return (0);
2316 }
2317 
2318 void
2319 swapoff_all(void)
2320 {
2321 	struct swdevt *sp, *spt;
2322 	const char *devname;
2323 	int error;
2324 
2325 	mtx_lock(&Giant);
2326 	while (swdev_syscall_active)
2327 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2328 	swdev_syscall_active = 1;
2329 
2330 	mtx_lock(&sw_dev_mtx);
2331 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2332 		mtx_unlock(&sw_dev_mtx);
2333 		if (vn_isdisk(sp->sw_vp, NULL))
2334 			devname = sp->sw_vp->v_rdev->si_name;
2335 		else
2336 			devname = "[file]";
2337 		error = swapoff_one(sp, thread0.td_ucred);
2338 		if (error != 0) {
2339 			printf("Cannot remove swap device %s (error=%d), "
2340 			    "skipping.\n", devname, error);
2341 		} else if (bootverbose) {
2342 			printf("Swap device %s removed.\n", devname);
2343 		}
2344 		mtx_lock(&sw_dev_mtx);
2345 	}
2346 	mtx_unlock(&sw_dev_mtx);
2347 
2348 	swdev_syscall_active = 0;
2349 	wakeup_one(&swdev_syscall_active);
2350 	mtx_unlock(&Giant);
2351 }
2352 
2353 void
2354 swap_pager_status(int *total, int *used)
2355 {
2356 	struct swdevt *sp;
2357 
2358 	*total = 0;
2359 	*used = 0;
2360 	mtx_lock(&sw_dev_mtx);
2361 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2362 		*total += sp->sw_nblks;
2363 		*used += sp->sw_used;
2364 	}
2365 	mtx_unlock(&sw_dev_mtx);
2366 }
2367 
2368 static int
2369 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2370 {
2371 	int	*name = (int *)arg1;
2372 	int	error, n;
2373 	struct xswdev xs;
2374 	struct swdevt *sp;
2375 
2376 	if (arg2 != 1) /* name length */
2377 		return (EINVAL);
2378 
2379 	n = 0;
2380 	mtx_lock(&sw_dev_mtx);
2381 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2382 		if (n == *name) {
2383 			mtx_unlock(&sw_dev_mtx);
2384 			xs.xsw_version = XSWDEV_VERSION;
2385 			xs.xsw_dev = sp->sw_dev;
2386 			xs.xsw_flags = sp->sw_flags;
2387 			xs.xsw_nblks = sp->sw_nblks;
2388 			xs.xsw_used = sp->sw_used;
2389 
2390 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2391 			return (error);
2392 		}
2393 		n++;
2394 	}
2395 	mtx_unlock(&sw_dev_mtx);
2396 	return (ENOENT);
2397 }
2398 
2399 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2400     "Number of swap devices");
2401 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2402     "Swap statistics by device");
2403 
2404 /*
2405  * vmspace_swap_count() - count the approximate swap usage in pages for a
2406  *			  vmspace.
2407  *
2408  *	The map must be locked.
2409  *
2410  *	Swap usage is determined by taking the proportional swap used by
2411  *	VM objects backing the VM map.  To make up for fractional losses,
2412  *	if the VM object has any swap use at all the associated map entries
2413  *	count for at least 1 swap page.
2414  */
2415 int
2416 vmspace_swap_count(struct vmspace *vmspace)
2417 {
2418 	vm_map_t map = &vmspace->vm_map;
2419 	vm_map_entry_t cur;
2420 	int count = 0;
2421 
2422 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2423 		vm_object_t object;
2424 
2425 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2426 		    (object = cur->object.vm_object) != NULL) {
2427 			VM_OBJECT_LOCK(object);
2428 			if (object->type == OBJT_SWAP &&
2429 			    object->un_pager.swp.swp_bcount != 0) {
2430 				int n = (cur->end - cur->start) / PAGE_SIZE;
2431 
2432 				count += object->un_pager.swp.swp_bcount *
2433 				    SWAP_META_PAGES * n / object->size + 1;
2434 			}
2435 			VM_OBJECT_UNLOCK(object);
2436 		}
2437 	}
2438 	return (count);
2439 }
2440 
2441 /*
2442  * GEOM backend
2443  *
2444  * Swapping onto disk devices.
2445  *
2446  */
2447 
2448 static g_orphan_t swapgeom_orphan;
2449 
2450 static struct g_class g_swap_class = {
2451 	.name = "SWAP",
2452 	.version = G_VERSION,
2453 	.orphan = swapgeom_orphan,
2454 };
2455 
2456 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2457 
2458 
2459 static void
2460 swapgeom_done(struct bio *bp2)
2461 {
2462 	struct buf *bp;
2463 
2464 	bp = bp2->bio_caller2;
2465 	bp->b_ioflags = bp2->bio_flags;
2466 	if (bp2->bio_error)
2467 		bp->b_ioflags |= BIO_ERROR;
2468 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2469 	bp->b_error = bp2->bio_error;
2470 	bufdone(bp);
2471 	g_destroy_bio(bp2);
2472 }
2473 
2474 static void
2475 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2476 {
2477 	struct bio *bio;
2478 	struct g_consumer *cp;
2479 
2480 	cp = sp->sw_id;
2481 	if (cp == NULL) {
2482 		bp->b_error = ENXIO;
2483 		bp->b_ioflags |= BIO_ERROR;
2484 		bufdone(bp);
2485 		return;
2486 	}
2487 	if (bp->b_iocmd == BIO_WRITE)
2488 		bio = g_new_bio();
2489 	else
2490 		bio = g_alloc_bio();
2491 	if (bio == NULL) {
2492 		bp->b_error = ENOMEM;
2493 		bp->b_ioflags |= BIO_ERROR;
2494 		bufdone(bp);
2495 		return;
2496 	}
2497 
2498 	bio->bio_caller2 = bp;
2499 	bio->bio_cmd = bp->b_iocmd;
2500 	bio->bio_data = bp->b_data;
2501 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2502 	bio->bio_length = bp->b_bcount;
2503 	bio->bio_done = swapgeom_done;
2504 	g_io_request(bio, cp);
2505 	return;
2506 }
2507 
2508 static void
2509 swapgeom_orphan(struct g_consumer *cp)
2510 {
2511 	struct swdevt *sp;
2512 
2513 	mtx_lock(&sw_dev_mtx);
2514 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2515 		if (sp->sw_id == cp)
2516 			sp->sw_id = NULL;
2517 	mtx_unlock(&sw_dev_mtx);
2518 }
2519 
2520 static void
2521 swapgeom_close_ev(void *arg, int flags)
2522 {
2523 	struct g_consumer *cp;
2524 
2525 	cp = arg;
2526 	g_access(cp, -1, -1, 0);
2527 	g_detach(cp);
2528 	g_destroy_consumer(cp);
2529 }
2530 
2531 static void
2532 swapgeom_close(struct thread *td, struct swdevt *sw)
2533 {
2534 
2535 	/* XXX: direct call when Giant untangled */
2536 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2537 }
2538 
2539 
2540 struct swh0h0 {
2541 	struct cdev *dev;
2542 	struct vnode *vp;
2543 	int	error;
2544 };
2545 
2546 static void
2547 swapongeom_ev(void *arg, int flags)
2548 {
2549 	struct swh0h0 *swh;
2550 	struct g_provider *pp;
2551 	struct g_consumer *cp;
2552 	static struct g_geom *gp;
2553 	struct swdevt *sp;
2554 	u_long nblks;
2555 	int error;
2556 
2557 	swh = arg;
2558 	swh->error = 0;
2559 	pp = g_dev_getprovider(swh->dev);
2560 	if (pp == NULL) {
2561 		swh->error = ENODEV;
2562 		return;
2563 	}
2564 	mtx_lock(&sw_dev_mtx);
2565 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2566 		cp = sp->sw_id;
2567 		if (cp != NULL && cp->provider == pp) {
2568 			mtx_unlock(&sw_dev_mtx);
2569 			swh->error = EBUSY;
2570 			return;
2571 		}
2572 	}
2573 	mtx_unlock(&sw_dev_mtx);
2574 	if (gp == NULL)
2575 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2576 	cp = g_new_consumer(gp);
2577 	g_attach(cp, pp);
2578 	/*
2579 	 * XXX: Everytime you think you can improve the margin for
2580 	 * footshooting, somebody depends on the ability to do so:
2581 	 * savecore(8) wants to write to our swapdev so we cannot
2582 	 * set an exclusive count :-(
2583 	 */
2584 	error = g_access(cp, 1, 1, 0);
2585 	if (error) {
2586 		g_detach(cp);
2587 		g_destroy_consumer(cp);
2588 		swh->error = error;
2589 		return;
2590 	}
2591 	nblks = pp->mediasize / DEV_BSIZE;
2592 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2593 	    swapgeom_close, dev2udev(swh->dev));
2594 	swh->error = 0;
2595 	return;
2596 }
2597 
2598 static int
2599 swapongeom(struct thread *td, struct vnode *vp)
2600 {
2601 	int error;
2602 	struct swh0h0 swh;
2603 
2604 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2605 
2606 	swh.dev = vp->v_rdev;
2607 	swh.vp = vp;
2608 	swh.error = 0;
2609 	/* XXX: direct call when Giant untangled */
2610 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2611 	if (!error)
2612 		error = swh.error;
2613 	VOP_UNLOCK(vp, 0);
2614 	return (error);
2615 }
2616 
2617 /*
2618  * VNODE backend
2619  *
2620  * This is used mainly for network filesystem (read: probably only tested
2621  * with NFS) swapfiles.
2622  *
2623  */
2624 
2625 static void
2626 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2627 {
2628 	struct vnode *vp2;
2629 
2630 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2631 
2632 	vp2 = sp->sw_id;
2633 	vhold(vp2);
2634 	if (bp->b_iocmd == BIO_WRITE) {
2635 		if (bp->b_bufobj)
2636 			bufobj_wdrop(bp->b_bufobj);
2637 		bufobj_wref(&vp2->v_bufobj);
2638 	}
2639 	if (bp->b_bufobj != &vp2->v_bufobj)
2640 		bp->b_bufobj = &vp2->v_bufobj;
2641 	bp->b_vp = vp2;
2642 	bp->b_iooffset = dbtob(bp->b_blkno);
2643 	bstrategy(bp);
2644 	return;
2645 }
2646 
2647 static void
2648 swapdev_close(struct thread *td, struct swdevt *sp)
2649 {
2650 
2651 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2652 	vrele(sp->sw_vp);
2653 }
2654 
2655 
2656 static int
2657 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2658 {
2659 	struct swdevt *sp;
2660 	int error;
2661 
2662 	if (nblks == 0)
2663 		return (ENXIO);
2664 	mtx_lock(&sw_dev_mtx);
2665 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2666 		if (sp->sw_id == vp) {
2667 			mtx_unlock(&sw_dev_mtx);
2668 			return (EBUSY);
2669 		}
2670 	}
2671 	mtx_unlock(&sw_dev_mtx);
2672 
2673 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2674 #ifdef MAC
2675 	error = mac_system_check_swapon(td->td_ucred, vp);
2676 	if (error == 0)
2677 #endif
2678 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2679 	(void) VOP_UNLOCK(vp, 0);
2680 	if (error)
2681 		return (error);
2682 
2683 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2684 	    NODEV);
2685 	return (0);
2686 }
2687