1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/buf.h> 76 #include <sys/vnode.h> 77 #include <sys/malloc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/sysctl.h> 80 #include <sys/blist.h> 81 #include <sys/lock.h> 82 83 #ifndef MAX_PAGEOUT_CLUSTER 84 #define MAX_PAGEOUT_CLUSTER 16 85 #endif 86 87 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 88 89 #include "opt_swap.h" 90 #include <vm/vm.h> 91 #include <vm/vm_prot.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_pageout.h> 96 #include <vm/swap_pager.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vm_zone.h> 99 100 #define SWM_FREE 0x02 /* free, period */ 101 #define SWM_POP 0x04 /* pop out */ 102 103 /* 104 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 105 * in the old system. 106 */ 107 108 extern int vm_swap_size; /* number of free swap blocks, in pages */ 109 110 int swap_pager_full; /* swap space exhaustion (task killing) */ 111 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 112 static int nsw_rcount; /* free read buffers */ 113 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 114 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 115 static int nsw_wcount_async_max;/* assigned maximum */ 116 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 117 static int sw_alloc_interlock; /* swap pager allocation interlock */ 118 119 struct blist *swapblist; 120 static struct swblock **swhash; 121 static int swhash_mask; 122 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 123 124 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 125 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 126 127 /* 128 * "named" and "unnamed" anon region objects. Try to reduce the overhead 129 * of searching a named list by hashing it just a little. 130 */ 131 132 #define NOBJLISTS 8 133 134 #define NOBJLIST(handle) \ 135 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 136 137 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 138 struct pagerlst swap_pager_un_object_list; 139 vm_zone_t swap_zone; 140 141 /* 142 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 143 * calls hooked from other parts of the VM system and do not appear here. 144 * (see vm/swap_pager.h). 145 */ 146 147 static vm_object_t 148 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 149 vm_prot_t prot, vm_ooffset_t offset)); 150 static void swap_pager_dealloc __P((vm_object_t object)); 151 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 152 static void swap_pager_init __P((void)); 153 static void swap_pager_unswapped __P((vm_page_t)); 154 static void swap_pager_strategy __P((vm_object_t, struct buf *)); 155 156 struct pagerops swappagerops = { 157 swap_pager_init, /* early system initialization of pager */ 158 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 159 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 160 swap_pager_getpages, /* pagein */ 161 swap_pager_putpages, /* pageout */ 162 swap_pager_haspage, /* get backing store status for page */ 163 swap_pager_unswapped, /* remove swap related to page */ 164 swap_pager_strategy /* pager strategy call */ 165 }; 166 167 /* 168 * dmmax is in page-sized chunks with the new swap system. It was 169 * dev-bsized chunks in the old. 170 * 171 * swap_*() routines are externally accessible. swp_*() routines are 172 * internal. 173 */ 174 175 int dmmax; 176 static int dmmax_mask; 177 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 178 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 179 180 static __inline void swp_sizecheck __P((void)); 181 static void swp_pager_sync_iodone __P((struct buf *bp)); 182 static void swp_pager_async_iodone __P((struct buf *bp)); 183 184 /* 185 * Swap bitmap functions 186 */ 187 188 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 189 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 190 191 /* 192 * Metadata functions 193 */ 194 195 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 196 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 197 static void swp_pager_meta_free_all __P((vm_object_t)); 198 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 199 200 /* 201 * SWP_SIZECHECK() - update swap_pager_full indication 202 * 203 * update the swap_pager_almost_full indication and warn when we are 204 * about to run out of swap space, using lowat/hiwat hysteresis. 205 * 206 * Clear swap_pager_full ( task killing ) indication when lowat is met. 207 * 208 * No restrictions on call 209 * This routine may not block. 210 * This routine must be called at splvm() 211 */ 212 213 static __inline void 214 swp_sizecheck() 215 { 216 if (vm_swap_size < nswap_lowat) { 217 if (swap_pager_almost_full == 0) { 218 printf("swap_pager: out of swap space\n"); 219 swap_pager_almost_full = 1; 220 } 221 } else { 222 swap_pager_full = 0; 223 if (vm_swap_size > nswap_hiwat) 224 swap_pager_almost_full = 0; 225 } 226 } 227 228 /* 229 * SWAP_PAGER_INIT() - initialize the swap pager! 230 * 231 * Expected to be started from system init. NOTE: This code is run 232 * before much else so be careful what you depend on. Most of the VM 233 * system has yet to be initialized at this point. 234 */ 235 236 static void 237 swap_pager_init() 238 { 239 /* 240 * Initialize object lists 241 */ 242 int i; 243 244 for (i = 0; i < NOBJLISTS; ++i) 245 TAILQ_INIT(&swap_pager_object_list[i]); 246 TAILQ_INIT(&swap_pager_un_object_list); 247 248 /* 249 * Device Stripe, in PAGE_SIZE'd blocks 250 */ 251 252 dmmax = SWB_NPAGES * 2; 253 dmmax_mask = ~(dmmax - 1); 254 } 255 256 /* 257 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 258 * 259 * Expected to be started from pageout process once, prior to entering 260 * its main loop. 261 */ 262 263 void 264 swap_pager_swap_init() 265 { 266 int n; 267 268 /* 269 * Number of in-transit swap bp operations. Don't 270 * exhaust the pbufs completely. Make sure we 271 * initialize workable values (0 will work for hysteresis 272 * but it isn't very efficient). 273 * 274 * The nsw_cluster_max is constrained by the bp->b_pages[] 275 * array (MAXPHYS/PAGE_SIZE) and our locally defined 276 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 277 * constrained by the swap device interleave stripe size. 278 * 279 * Currently we hardwire nsw_wcount_async to 4. This limit is 280 * designed to prevent other I/O from having high latencies due to 281 * our pageout I/O. The value 4 works well for one or two active swap 282 * devices but is probably a little low if you have more. Even so, 283 * a higher value would probably generate only a limited improvement 284 * with three or four active swap devices since the system does not 285 * typically have to pageout at extreme bandwidths. We will want 286 * at least 2 per swap devices, and 4 is a pretty good value if you 287 * have one NFS swap device due to the command/ack latency over NFS. 288 * So it all works out pretty well. 289 */ 290 291 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 292 293 nsw_rcount = (nswbuf + 1) / 2; 294 nsw_wcount_sync = (nswbuf + 3) / 4; 295 nsw_wcount_async = 4; 296 nsw_wcount_async_max = nsw_wcount_async; 297 298 /* 299 * Initialize our zone. Right now I'm just guessing on the number 300 * we need based on the number of pages in the system. Each swblock 301 * can hold 16 pages, so this is probably overkill. 302 */ 303 304 n = cnt.v_page_count * 2; 305 306 swap_zone = zinit( 307 "SWAPMETA", 308 sizeof(struct swblock), 309 n, 310 ZONE_INTERRUPT, 311 1 312 ); 313 314 /* 315 * Initialize our meta-data hash table. The swapper does not need to 316 * be quite as efficient as the VM system, so we do not use an 317 * oversized hash table. 318 * 319 * n: size of hash table, must be power of 2 320 * swhash_mask: hash table index mask 321 */ 322 323 for (n = 1; n < cnt.v_page_count / 4; n <<= 1) 324 ; 325 326 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK); 327 bzero(swhash, sizeof(struct swblock *) * n); 328 329 swhash_mask = n - 1; 330 } 331 332 /* 333 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 334 * its metadata structures. 335 * 336 * This routine is called from the mmap and fork code to create a new 337 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 338 * and then converting it with swp_pager_meta_build(). 339 * 340 * This routine may block in vm_object_allocate() and create a named 341 * object lookup race, so we must interlock. We must also run at 342 * splvm() for the object lookup to handle races with interrupts, but 343 * we do not have to maintain splvm() in between the lookup and the 344 * add because (I believe) it is not possible to attempt to create 345 * a new swap object w/handle when a default object with that handle 346 * already exists. 347 */ 348 349 static vm_object_t 350 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 351 vm_ooffset_t offset) 352 { 353 vm_object_t object; 354 355 if (handle) { 356 /* 357 * Reference existing named region or allocate new one. There 358 * should not be a race here against swp_pager_meta_build() 359 * as called from vm_page_remove() in regards to the lookup 360 * of the handle. 361 */ 362 363 while (sw_alloc_interlock) { 364 sw_alloc_interlock = -1; 365 tsleep(&sw_alloc_interlock, PVM, "swpalc", 0); 366 } 367 sw_alloc_interlock = 1; 368 369 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 370 371 if (object != NULL) { 372 vm_object_reference(object); 373 } else { 374 object = vm_object_allocate(OBJT_DEFAULT, 375 OFF_TO_IDX(offset + PAGE_MASK + size)); 376 object->handle = handle; 377 378 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 379 } 380 381 if (sw_alloc_interlock < 0) 382 wakeup(&sw_alloc_interlock); 383 384 sw_alloc_interlock = 0; 385 } else { 386 object = vm_object_allocate(OBJT_DEFAULT, 387 OFF_TO_IDX(offset + PAGE_MASK + size)); 388 389 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 390 } 391 392 return (object); 393 } 394 395 /* 396 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 397 * 398 * The swap backing for the object is destroyed. The code is 399 * designed such that we can reinstantiate it later, but this 400 * routine is typically called only when the entire object is 401 * about to be destroyed. 402 * 403 * This routine may block, but no longer does. 404 * 405 * The object must be locked or unreferenceable. 406 */ 407 408 static void 409 swap_pager_dealloc(object) 410 vm_object_t object; 411 { 412 int s; 413 414 /* 415 * Remove from list right away so lookups will fail if we block for 416 * pageout completion. 417 */ 418 419 if (object->handle == NULL) { 420 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 421 } else { 422 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 423 } 424 425 vm_object_pip_wait(object, "swpdea"); 426 427 /* 428 * Free all remaining metadata. We only bother to free it from 429 * the swap meta data. We do not attempt to free swapblk's still 430 * associated with vm_page_t's for this object. We do not care 431 * if paging is still in progress on some objects. 432 */ 433 s = splvm(); 434 swp_pager_meta_free_all(object); 435 splx(s); 436 } 437 438 /************************************************************************ 439 * SWAP PAGER BITMAP ROUTINES * 440 ************************************************************************/ 441 442 /* 443 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 444 * 445 * Allocate swap for the requested number of pages. The starting 446 * swap block number (a page index) is returned or SWAPBLK_NONE 447 * if the allocation failed. 448 * 449 * Also has the side effect of advising that somebody made a mistake 450 * when they configured swap and didn't configure enough. 451 * 452 * Must be called at splvm() to avoid races with bitmap frees from 453 * vm_page_remove() aka swap_pager_page_removed(). 454 * 455 * This routine may not block 456 * This routine must be called at splvm(). 457 */ 458 459 static __inline daddr_t 460 swp_pager_getswapspace(npages) 461 int npages; 462 { 463 daddr_t blk; 464 465 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 466 if (swap_pager_full != 2) { 467 printf("swap_pager_getswapspace: failed\n"); 468 swap_pager_full = 2; 469 swap_pager_almost_full = 1; 470 } 471 } else { 472 vm_swap_size -= npages; 473 swp_sizecheck(); 474 } 475 return(blk); 476 } 477 478 /* 479 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 480 * 481 * This routine returns the specified swap blocks back to the bitmap. 482 * 483 * Note: This routine may not block (it could in the old swap code), 484 * and through the use of the new blist routines it does not block. 485 * 486 * We must be called at splvm() to avoid races with bitmap frees from 487 * vm_page_remove() aka swap_pager_page_removed(). 488 * 489 * This routine may not block 490 * This routine must be called at splvm(). 491 */ 492 493 static __inline void 494 swp_pager_freeswapspace(blk, npages) 495 daddr_t blk; 496 int npages; 497 { 498 blist_free(swapblist, blk, npages); 499 vm_swap_size += npages; 500 swp_sizecheck(); 501 } 502 503 /* 504 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 505 * range within an object. 506 * 507 * This is a globally accessible routine. 508 * 509 * This routine removes swapblk assignments from swap metadata. 510 * 511 * The external callers of this routine typically have already destroyed 512 * or renamed vm_page_t's associated with this range in the object so 513 * we should be ok. 514 * 515 * This routine may be called at any spl. We up our spl to splvm temporarily 516 * in order to perform the metadata removal. 517 */ 518 519 void 520 swap_pager_freespace(object, start, size) 521 vm_object_t object; 522 vm_pindex_t start; 523 vm_size_t size; 524 { 525 int s = splvm(); 526 swp_pager_meta_free(object, start, size); 527 splx(s); 528 } 529 530 /* 531 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 532 * 533 * Assigns swap blocks to the specified range within the object. The 534 * swap blocks are not zerod. Any previous swap assignment is destroyed. 535 * 536 * Returns 0 on success, -1 on failure. 537 */ 538 539 int 540 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 541 { 542 int s; 543 int n = 0; 544 daddr_t blk = SWAPBLK_NONE; 545 vm_pindex_t beg = start; /* save start index */ 546 547 s = splvm(); 548 while (size) { 549 if (n == 0) { 550 n = BLIST_MAX_ALLOC; 551 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 552 n >>= 1; 553 if (n == 0) { 554 swp_pager_meta_free(object, beg, start - beg); 555 splx(s); 556 return(-1); 557 } 558 } 559 } 560 swp_pager_meta_build(object, start, blk); 561 --size; 562 ++start; 563 ++blk; 564 --n; 565 } 566 swp_pager_meta_free(object, start, n); 567 splx(s); 568 return(0); 569 } 570 571 /* 572 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 573 * and destroy the source. 574 * 575 * Copy any valid swapblks from the source to the destination. In 576 * cases where both the source and destination have a valid swapblk, 577 * we keep the destination's. 578 * 579 * This routine is allowed to block. It may block allocating metadata 580 * indirectly through swp_pager_meta_build() or if paging is still in 581 * progress on the source. 582 * 583 * This routine can be called at any spl 584 * 585 * XXX vm_page_collapse() kinda expects us not to block because we 586 * supposedly do not need to allocate memory, but for the moment we 587 * *may* have to get a little memory from the zone allocator, but 588 * it is taken from the interrupt memory. We should be ok. 589 * 590 * The source object contains no vm_page_t's (which is just as well) 591 * 592 * The source object is of type OBJT_SWAP. 593 * 594 * The source and destination objects must be locked or 595 * inaccessible (XXX are they ?) 596 */ 597 598 void 599 swap_pager_copy(srcobject, dstobject, offset, destroysource) 600 vm_object_t srcobject; 601 vm_object_t dstobject; 602 vm_pindex_t offset; 603 int destroysource; 604 { 605 vm_pindex_t i; 606 int s; 607 608 s = splvm(); 609 610 /* 611 * If destroysource is set, we remove the source object from the 612 * swap_pager internal queue now. 613 */ 614 615 if (destroysource) { 616 if (srcobject->handle == NULL) { 617 TAILQ_REMOVE( 618 &swap_pager_un_object_list, 619 srcobject, 620 pager_object_list 621 ); 622 } else { 623 TAILQ_REMOVE( 624 NOBJLIST(srcobject->handle), 625 srcobject, 626 pager_object_list 627 ); 628 } 629 } 630 631 /* 632 * transfer source to destination. 633 */ 634 635 for (i = 0; i < dstobject->size; ++i) { 636 daddr_t dstaddr; 637 638 /* 639 * Locate (without changing) the swapblk on the destination, 640 * unless it is invalid in which case free it silently, or 641 * if the destination is a resident page, in which case the 642 * source is thrown away. 643 */ 644 645 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 646 647 if (dstaddr == SWAPBLK_NONE) { 648 /* 649 * Destination has no swapblk and is not resident, 650 * copy source. 651 */ 652 daddr_t srcaddr; 653 654 srcaddr = swp_pager_meta_ctl( 655 srcobject, 656 i + offset, 657 SWM_POP 658 ); 659 660 if (srcaddr != SWAPBLK_NONE) 661 swp_pager_meta_build(dstobject, i, srcaddr); 662 } else { 663 /* 664 * Destination has valid swapblk or it is represented 665 * by a resident page. We destroy the sourceblock. 666 */ 667 668 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 669 } 670 } 671 672 /* 673 * Free left over swap blocks in source. 674 * 675 * We have to revert the type to OBJT_DEFAULT so we do not accidently 676 * double-remove the object from the swap queues. 677 */ 678 679 if (destroysource) { 680 swp_pager_meta_free_all(srcobject); 681 /* 682 * Reverting the type is not necessary, the caller is going 683 * to destroy srcobject directly, but I'm doing it here 684 * for consistancy since we've removed the object from its 685 * queues. 686 */ 687 srcobject->type = OBJT_DEFAULT; 688 } 689 splx(s); 690 } 691 692 /* 693 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 694 * the requested page. 695 * 696 * We determine whether good backing store exists for the requested 697 * page and return TRUE if it does, FALSE if it doesn't. 698 * 699 * If TRUE, we also try to determine how much valid, contiguous backing 700 * store exists before and after the requested page within a reasonable 701 * distance. We do not try to restrict it to the swap device stripe 702 * (that is handled in getpages/putpages). It probably isn't worth 703 * doing here. 704 * 705 * This routine must be called at splvm(). 706 */ 707 708 boolean_t 709 swap_pager_haspage(object, pindex, before, after) 710 vm_object_t object; 711 vm_pindex_t pindex; 712 int *before; 713 int *after; 714 { 715 daddr_t blk0; 716 717 /* 718 * do we have good backing store at the requested index ? 719 */ 720 721 blk0 = swp_pager_meta_ctl(object, pindex, 0); 722 723 if (blk0 == SWAPBLK_NONE) { 724 if (before) 725 *before = 0; 726 if (after) 727 *after = 0; 728 return (FALSE); 729 } 730 731 /* 732 * find backwards-looking contiguous good backing store 733 */ 734 735 if (before != NULL) { 736 int i; 737 738 for (i = 1; i < (SWB_NPAGES/2); ++i) { 739 daddr_t blk; 740 741 if (i > pindex) 742 break; 743 blk = swp_pager_meta_ctl(object, pindex - i, 0); 744 if (blk != blk0 - i) 745 break; 746 } 747 *before = (i - 1); 748 } 749 750 /* 751 * find forward-looking contiguous good backing store 752 */ 753 754 if (after != NULL) { 755 int i; 756 757 for (i = 1; i < (SWB_NPAGES/2); ++i) { 758 daddr_t blk; 759 760 blk = swp_pager_meta_ctl(object, pindex + i, 0); 761 if (blk != blk0 + i) 762 break; 763 } 764 *after = (i - 1); 765 } 766 767 return (TRUE); 768 } 769 770 /* 771 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 772 * 773 * This removes any associated swap backing store, whether valid or 774 * not, from the page. 775 * 776 * This routine is typically called when a page is made dirty, at 777 * which point any associated swap can be freed. MADV_FREE also 778 * calls us in a special-case situation 779 * 780 * NOTE!!! If the page is clean and the swap was valid, the caller 781 * should make the page dirty before calling this routine. This routine 782 * does NOT change the m->dirty status of the page. Also: MADV_FREE 783 * depends on it. 784 * 785 * This routine may not block 786 * This routine must be called at splvm() 787 */ 788 789 static void 790 swap_pager_unswapped(m) 791 vm_page_t m; 792 { 793 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 794 } 795 796 /* 797 * SWAP_PAGER_STRATEGY() - read, write, free blocks 798 * 799 * This implements the vm_pager_strategy() interface to swap and allows 800 * other parts of the system to directly access swap as backing store 801 * through vm_objects of type OBJT_SWAP. This is intended to be a 802 * cacheless interface ( i.e. caching occurs at higher levels ). 803 * Therefore we do not maintain any resident pages. All I/O goes 804 * directly to and from the swap device. 805 * 806 * Note that b_blkno is scaled for PAGE_SIZE 807 * 808 * We currently attempt to run I/O synchronously or asynchronously as 809 * the caller requests. This isn't perfect because we loose error 810 * sequencing when we run multiple ops in parallel to satisfy a request. 811 * But this is swap, so we let it all hang out. 812 */ 813 814 static void 815 swap_pager_strategy(vm_object_t object, struct buf *bp) 816 { 817 vm_pindex_t start; 818 int count; 819 int s; 820 char *data; 821 struct buf *nbp = NULL; 822 823 if (bp->b_bcount & PAGE_MASK) { 824 bp->b_error = EINVAL; 825 bp->b_flags |= B_ERROR | B_INVAL; 826 biodone(bp); 827 printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount); 828 return; 829 } 830 831 /* 832 * Clear error indication, initialize page index, count, data pointer. 833 */ 834 835 bp->b_error = 0; 836 bp->b_flags &= ~B_ERROR; 837 bp->b_resid = bp->b_bcount; 838 839 start = bp->b_pblkno; 840 count = howmany(bp->b_bcount, PAGE_SIZE); 841 data = bp->b_data; 842 843 s = splvm(); 844 845 /* 846 * Deal with B_FREEBUF 847 */ 848 849 if (bp->b_flags & B_FREEBUF) { 850 /* 851 * FREE PAGE(s) - destroy underlying swap that is no longer 852 * needed. 853 */ 854 swp_pager_meta_free(object, start, count); 855 splx(s); 856 bp->b_resid = 0; 857 biodone(bp); 858 return; 859 } 860 861 /* 862 * Execute read or write 863 */ 864 865 while (count > 0) { 866 daddr_t blk; 867 868 /* 869 * Obtain block. If block not found and writing, allocate a 870 * new block and build it into the object. 871 */ 872 873 blk = swp_pager_meta_ctl(object, start, 0); 874 if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) { 875 blk = swp_pager_getswapspace(1); 876 if (blk == SWAPBLK_NONE) { 877 bp->b_error = ENOMEM; 878 bp->b_flags |= B_ERROR; 879 break; 880 } 881 swp_pager_meta_build(object, start, blk); 882 } 883 884 /* 885 * Do we have to flush our current collection? Yes if: 886 * 887 * - no swap block at this index 888 * - swap block is not contiguous 889 * - we cross a physical disk boundry in the 890 * stripe. 891 */ 892 893 if ( 894 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 895 ((nbp->b_blkno ^ blk) & dmmax_mask) 896 ) 897 ) { 898 splx(s); 899 if (bp->b_flags & B_READ) { 900 ++cnt.v_swapin; 901 cnt.v_swappgsin += btoc(nbp->b_bcount); 902 } else { 903 ++cnt.v_swapout; 904 cnt.v_swappgsout += btoc(nbp->b_bcount); 905 nbp->b_dirtyend = nbp->b_bcount; 906 } 907 flushchainbuf(nbp); 908 s = splvm(); 909 nbp = NULL; 910 } 911 912 /* 913 * Add new swapblk to nbp, instantiating nbp if necessary. 914 * Zero-fill reads are able to take a shortcut. 915 */ 916 917 if (blk == SWAPBLK_NONE) { 918 /* 919 * We can only get here if we are reading. Since 920 * we are at splvm() we can safely modify b_resid, 921 * even if chain ops are in progress. 922 */ 923 bzero(data, PAGE_SIZE); 924 bp->b_resid -= PAGE_SIZE; 925 } else { 926 if (nbp == NULL) { 927 nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC); 928 nbp->b_blkno = blk; 929 nbp->b_bcount = 0; 930 nbp->b_data = data; 931 } 932 nbp->b_bcount += PAGE_SIZE; 933 } 934 --count; 935 ++start; 936 data += PAGE_SIZE; 937 } 938 939 /* 940 * Flush out last buffer 941 */ 942 943 splx(s); 944 945 if (nbp) { 946 if ((bp->b_flags & B_ASYNC) == 0) 947 nbp->b_flags &= ~B_ASYNC; 948 if (nbp->b_flags & B_READ) { 949 ++cnt.v_swapin; 950 cnt.v_swappgsin += btoc(nbp->b_bcount); 951 } else { 952 ++cnt.v_swapout; 953 cnt.v_swappgsout += btoc(nbp->b_bcount); 954 nbp->b_dirtyend = nbp->b_bcount; 955 } 956 flushchainbuf(nbp); 957 /* nbp = NULL; */ 958 } 959 960 /* 961 * Wait for completion. 962 */ 963 964 if (bp->b_flags & B_ASYNC) { 965 autochaindone(bp); 966 } else { 967 waitchainbuf(bp, 0, 1); 968 } 969 } 970 971 /* 972 * SWAP_PAGER_GETPAGES() - bring pages in from swap 973 * 974 * Attempt to retrieve (m, count) pages from backing store, but make 975 * sure we retrieve at least m[reqpage]. We try to load in as large 976 * a chunk surrounding m[reqpage] as is contiguous in swap and which 977 * belongs to the same object. 978 * 979 * The code is designed for asynchronous operation and 980 * immediate-notification of 'reqpage' but tends not to be 981 * used that way. Please do not optimize-out this algorithmic 982 * feature, I intend to improve on it in the future. 983 * 984 * The parent has a single vm_object_pip_add() reference prior to 985 * calling us and we should return with the same. 986 * 987 * The parent has BUSY'd the pages. We should return with 'm' 988 * left busy, but the others adjusted. 989 */ 990 991 static int 992 swap_pager_getpages(object, m, count, reqpage) 993 vm_object_t object; 994 vm_page_t *m; 995 int count, reqpage; 996 { 997 struct buf *bp; 998 vm_page_t mreq; 999 int s; 1000 int i; 1001 int j; 1002 daddr_t blk; 1003 vm_offset_t kva; 1004 vm_pindex_t lastpindex; 1005 1006 mreq = m[reqpage]; 1007 1008 #if !defined(MAX_PERF) 1009 if (mreq->object != object) { 1010 panic("swap_pager_getpages: object mismatch %p/%p", 1011 object, 1012 mreq->object 1013 ); 1014 } 1015 #endif 1016 /* 1017 * Calculate range to retrieve. The pages have already been assigned 1018 * their swapblks. We require a *contiguous* range that falls entirely 1019 * within a single device stripe. If we do not supply it, bad things 1020 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1021 * loops are set up such that the case(s) are handled implicitly. 1022 * 1023 * The swp_*() calls must be made at splvm(). vm_page_free() does 1024 * not need to be, but it will go a little faster if it is. 1025 */ 1026 1027 s = splvm(); 1028 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1029 1030 for (i = reqpage - 1; i >= 0; --i) { 1031 daddr_t iblk; 1032 1033 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1034 if (blk != iblk + (reqpage - i)) 1035 break; 1036 if ((blk ^ iblk) & dmmax_mask) 1037 break; 1038 } 1039 ++i; 1040 1041 for (j = reqpage + 1; j < count; ++j) { 1042 daddr_t jblk; 1043 1044 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1045 if (blk != jblk - (j - reqpage)) 1046 break; 1047 if ((blk ^ jblk) & dmmax_mask) 1048 break; 1049 } 1050 1051 /* 1052 * free pages outside our collection range. Note: we never free 1053 * mreq, it must remain busy throughout. 1054 */ 1055 1056 { 1057 int k; 1058 1059 for (k = 0; k < i; ++k) 1060 vm_page_free(m[k]); 1061 for (k = j; k < count; ++k) 1062 vm_page_free(m[k]); 1063 } 1064 splx(s); 1065 1066 1067 /* 1068 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1069 * still busy, but the others unbusied. 1070 */ 1071 1072 if (blk == SWAPBLK_NONE) 1073 return(VM_PAGER_FAIL); 1074 1075 /* 1076 * Get a swap buffer header to perform the IO 1077 */ 1078 1079 bp = getpbuf(&nsw_rcount); 1080 kva = (vm_offset_t) bp->b_data; 1081 1082 /* 1083 * map our page(s) into kva for input 1084 * 1085 * NOTE: B_PAGING is set by pbgetvp() 1086 */ 1087 1088 pmap_qenter(kva, m + i, j - i); 1089 1090 bp->b_flags = B_READ | B_CALL; 1091 bp->b_iodone = swp_pager_async_iodone; 1092 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1093 bp->b_data = (caddr_t) kva; 1094 crhold(bp->b_rcred); 1095 crhold(bp->b_wcred); 1096 bp->b_blkno = blk - (reqpage - i); 1097 bp->b_bcount = PAGE_SIZE * (j - i); 1098 bp->b_bufsize = PAGE_SIZE * (j - i); 1099 bp->b_pager.pg_reqpage = reqpage - i; 1100 1101 { 1102 int k; 1103 1104 for (k = i; k < j; ++k) { 1105 bp->b_pages[k - i] = m[k]; 1106 vm_page_flag_set(m[k], PG_SWAPINPROG); 1107 } 1108 } 1109 bp->b_npages = j - i; 1110 1111 pbgetvp(swapdev_vp, bp); 1112 1113 cnt.v_swapin++; 1114 cnt.v_swappgsin += bp->b_npages; 1115 1116 /* 1117 * We still hold the lock on mreq, and our automatic completion routine 1118 * does not remove it. 1119 */ 1120 1121 vm_object_pip_add(mreq->object, bp->b_npages); 1122 lastpindex = m[j-1]->pindex; 1123 1124 /* 1125 * perform the I/O. NOTE!!! bp cannot be considered valid after 1126 * this point because we automatically release it on completion. 1127 * Instead, we look at the one page we are interested in which we 1128 * still hold a lock on even through the I/O completion. 1129 * 1130 * The other pages in our m[] array are also released on completion, 1131 * so we cannot assume they are valid anymore either. 1132 * 1133 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1134 */ 1135 1136 BUF_KERNPROC(bp); 1137 VOP_STRATEGY(bp->b_vp, bp); 1138 1139 /* 1140 * wait for the page we want to complete. PG_SWAPINPROG is always 1141 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1142 * is set in the meta-data. 1143 */ 1144 1145 s = splvm(); 1146 1147 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1148 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1149 cnt.v_intrans++; 1150 if (tsleep(mreq, PSWP, "swread", hz*20)) { 1151 printf( 1152 "swap_pager: indefinite wait buffer: device:" 1153 " %s, blkno: %ld, size: %ld\n", 1154 devtoname(bp->b_dev), (long)bp->b_blkno, 1155 bp->b_bcount 1156 ); 1157 } 1158 } 1159 1160 splx(s); 1161 1162 /* 1163 * mreq is left bussied after completion, but all the other pages 1164 * are freed. If we had an unrecoverable read error the page will 1165 * not be valid. 1166 */ 1167 1168 if (mreq->valid != VM_PAGE_BITS_ALL) { 1169 return(VM_PAGER_ERROR); 1170 } else { 1171 return(VM_PAGER_OK); 1172 } 1173 1174 /* 1175 * A final note: in a low swap situation, we cannot deallocate swap 1176 * and mark a page dirty here because the caller is likely to mark 1177 * the page clean when we return, causing the page to possibly revert 1178 * to all-zero's later. 1179 */ 1180 } 1181 1182 /* 1183 * swap_pager_putpages: 1184 * 1185 * Assign swap (if necessary) and initiate I/O on the specified pages. 1186 * 1187 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1188 * are automatically converted to SWAP objects. 1189 * 1190 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1191 * vm_page reservation system coupled with properly written VFS devices 1192 * should ensure that no low-memory deadlock occurs. This is an area 1193 * which needs work. 1194 * 1195 * The parent has N vm_object_pip_add() references prior to 1196 * calling us and will remove references for rtvals[] that are 1197 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1198 * completion. 1199 * 1200 * The parent has soft-busy'd the pages it passes us and will unbusy 1201 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1202 * We need to unbusy the rest on I/O completion. 1203 */ 1204 1205 void 1206 swap_pager_putpages(object, m, count, sync, rtvals) 1207 vm_object_t object; 1208 vm_page_t *m; 1209 int count; 1210 boolean_t sync; 1211 int *rtvals; 1212 { 1213 int i; 1214 int n = 0; 1215 1216 #if !defined(MAX_PERF) 1217 if (count && m[0]->object != object) { 1218 panic("swap_pager_getpages: object mismatch %p/%p", 1219 object, 1220 m[0]->object 1221 ); 1222 } 1223 #endif 1224 /* 1225 * Step 1 1226 * 1227 * Turn object into OBJT_SWAP 1228 * check for bogus sysops 1229 * force sync if not pageout process 1230 */ 1231 1232 if (object->type != OBJT_SWAP) 1233 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1234 1235 if (curproc != pageproc) 1236 sync = TRUE; 1237 1238 /* 1239 * Step 2 1240 * 1241 * Update nsw parameters from swap_async_max sysctl values. 1242 * Do not let the sysop crash the machine with bogus numbers. 1243 */ 1244 1245 if (swap_async_max != nsw_wcount_async_max) { 1246 int n; 1247 int s; 1248 1249 /* 1250 * limit range 1251 */ 1252 if ((n = swap_async_max) > nswbuf / 2) 1253 n = nswbuf / 2; 1254 if (n < 1) 1255 n = 1; 1256 swap_async_max = n; 1257 1258 /* 1259 * Adjust difference ( if possible ). If the current async 1260 * count is too low, we may not be able to make the adjustment 1261 * at this time. 1262 */ 1263 s = splvm(); 1264 n -= nsw_wcount_async_max; 1265 if (nsw_wcount_async + n >= 0) { 1266 nsw_wcount_async += n; 1267 nsw_wcount_async_max += n; 1268 wakeup(&nsw_wcount_async); 1269 } 1270 splx(s); 1271 } 1272 1273 /* 1274 * Step 3 1275 * 1276 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1277 * The page is left dirty until the pageout operation completes 1278 * successfully. 1279 */ 1280 1281 for (i = 0; i < count; i += n) { 1282 int s; 1283 int j; 1284 struct buf *bp; 1285 daddr_t blk; 1286 1287 /* 1288 * Maximum I/O size is limited by a number of factors. 1289 */ 1290 1291 n = min(BLIST_MAX_ALLOC, count - i); 1292 n = min(n, nsw_cluster_max); 1293 1294 s = splvm(); 1295 1296 /* 1297 * Get biggest block of swap we can. If we fail, fall 1298 * back and try to allocate a smaller block. Don't go 1299 * overboard trying to allocate space if it would overly 1300 * fragment swap. 1301 */ 1302 while ( 1303 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1304 n > 4 1305 ) { 1306 n >>= 1; 1307 } 1308 if (blk == SWAPBLK_NONE) { 1309 for (j = 0; j < n; ++j) 1310 rtvals[i+j] = VM_PAGER_FAIL; 1311 splx(s); 1312 continue; 1313 } 1314 1315 /* 1316 * The I/O we are constructing cannot cross a physical 1317 * disk boundry in the swap stripe. Note: we are still 1318 * at splvm(). 1319 */ 1320 if ((blk ^ (blk + n)) & dmmax_mask) { 1321 j = ((blk + dmmax) & dmmax_mask) - blk; 1322 swp_pager_freeswapspace(blk + j, n - j); 1323 n = j; 1324 } 1325 1326 /* 1327 * All I/O parameters have been satisfied, build the I/O 1328 * request and assign the swap space. 1329 * 1330 * NOTE: B_PAGING is set by pbgetvp() 1331 */ 1332 1333 if (sync == TRUE) { 1334 bp = getpbuf(&nsw_wcount_sync); 1335 bp->b_flags = B_CALL; 1336 } else { 1337 bp = getpbuf(&nsw_wcount_async); 1338 bp->b_flags = B_CALL | B_ASYNC; 1339 } 1340 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1341 1342 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1343 1344 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1345 bp->b_bcount = PAGE_SIZE * n; 1346 bp->b_bufsize = PAGE_SIZE * n; 1347 bp->b_blkno = blk; 1348 1349 crhold(bp->b_rcred); 1350 crhold(bp->b_wcred); 1351 1352 pbgetvp(swapdev_vp, bp); 1353 1354 for (j = 0; j < n; ++j) { 1355 vm_page_t mreq = m[i+j]; 1356 1357 swp_pager_meta_build( 1358 mreq->object, 1359 mreq->pindex, 1360 blk + j 1361 ); 1362 vm_page_dirty(mreq); 1363 rtvals[i+j] = VM_PAGER_OK; 1364 1365 vm_page_flag_set(mreq, PG_SWAPINPROG); 1366 bp->b_pages[j] = mreq; 1367 } 1368 bp->b_npages = n; 1369 /* 1370 * Must set dirty range for NFS to work. 1371 */ 1372 bp->b_dirtyoff = 0; 1373 bp->b_dirtyend = bp->b_bcount; 1374 1375 cnt.v_swapout++; 1376 cnt.v_swappgsout += bp->b_npages; 1377 swapdev_vp->v_numoutput++; 1378 1379 splx(s); 1380 1381 /* 1382 * asynchronous 1383 * 1384 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1385 */ 1386 1387 if (sync == FALSE) { 1388 bp->b_iodone = swp_pager_async_iodone; 1389 BUF_KERNPROC(bp); 1390 VOP_STRATEGY(bp->b_vp, bp); 1391 1392 for (j = 0; j < n; ++j) 1393 rtvals[i+j] = VM_PAGER_PEND; 1394 continue; 1395 } 1396 1397 /* 1398 * synchronous 1399 * 1400 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1401 */ 1402 1403 bp->b_iodone = swp_pager_sync_iodone; 1404 VOP_STRATEGY(bp->b_vp, bp); 1405 1406 /* 1407 * Wait for the sync I/O to complete, then update rtvals. 1408 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1409 * our async completion routine at the end, thus avoiding a 1410 * double-free. 1411 */ 1412 s = splbio(); 1413 1414 while ((bp->b_flags & B_DONE) == 0) { 1415 tsleep(bp, PVM, "swwrt", 0); 1416 } 1417 1418 for (j = 0; j < n; ++j) 1419 rtvals[i+j] = VM_PAGER_PEND; 1420 1421 /* 1422 * Now that we are through with the bp, we can call the 1423 * normal async completion, which frees everything up. 1424 */ 1425 1426 swp_pager_async_iodone(bp); 1427 1428 splx(s); 1429 } 1430 } 1431 1432 /* 1433 * swap_pager_sync_iodone: 1434 * 1435 * Completion routine for synchronous reads and writes from/to swap. 1436 * We just mark the bp is complete and wake up anyone waiting on it. 1437 * 1438 * This routine may not block. This routine is called at splbio() or better. 1439 */ 1440 1441 static void 1442 swp_pager_sync_iodone(bp) 1443 struct buf *bp; 1444 { 1445 bp->b_flags |= B_DONE; 1446 bp->b_flags &= ~B_ASYNC; 1447 wakeup(bp); 1448 } 1449 1450 /* 1451 * swp_pager_async_iodone: 1452 * 1453 * Completion routine for asynchronous reads and writes from/to swap. 1454 * Also called manually by synchronous code to finish up a bp. 1455 * 1456 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1457 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1458 * unbusy all pages except the 'main' request page. For WRITE 1459 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1460 * because we marked them all VM_PAGER_PEND on return from putpages ). 1461 * 1462 * This routine may not block. 1463 * This routine is called at splbio() or better 1464 * 1465 * We up ourselves to splvm() as required for various vm_page related 1466 * calls. 1467 */ 1468 1469 static void 1470 swp_pager_async_iodone(bp) 1471 register struct buf *bp; 1472 { 1473 int s; 1474 int i; 1475 vm_object_t object = NULL; 1476 1477 bp->b_flags |= B_DONE; 1478 1479 /* 1480 * report error 1481 */ 1482 1483 if (bp->b_flags & B_ERROR) { 1484 printf( 1485 "swap_pager: I/O error - %s failed; blkno %ld," 1486 "size %ld, error %d\n", 1487 ((bp->b_flags & B_READ) ? "pagein" : "pageout"), 1488 (long)bp->b_blkno, 1489 (long)bp->b_bcount, 1490 bp->b_error 1491 ); 1492 } 1493 1494 /* 1495 * set object, raise to splvm(). 1496 */ 1497 1498 if (bp->b_npages) 1499 object = bp->b_pages[0]->object; 1500 s = splvm(); 1501 1502 /* 1503 * remove the mapping for kernel virtual 1504 */ 1505 1506 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1507 1508 /* 1509 * cleanup pages. If an error occurs writing to swap, we are in 1510 * very serious trouble. If it happens to be a disk error, though, 1511 * we may be able to recover by reassigning the swap later on. So 1512 * in this case we remove the m->swapblk assignment for the page 1513 * but do not free it in the rlist. The errornous block(s) are thus 1514 * never reallocated as swap. Redirty the page and continue. 1515 */ 1516 1517 for (i = 0; i < bp->b_npages; ++i) { 1518 vm_page_t m = bp->b_pages[i]; 1519 1520 vm_page_flag_clear(m, PG_SWAPINPROG); 1521 1522 if (bp->b_flags & B_ERROR) { 1523 /* 1524 * If an error occurs I'd love to throw the swapblk 1525 * away without freeing it back to swapspace, so it 1526 * can never be used again. But I can't from an 1527 * interrupt. 1528 */ 1529 1530 if (bp->b_flags & B_READ) { 1531 /* 1532 * When reading, reqpage needs to stay 1533 * locked for the parent, but all other 1534 * pages can be freed. We still want to 1535 * wakeup the parent waiting on the page, 1536 * though. ( also: pg_reqpage can be -1 and 1537 * not match anything ). 1538 * 1539 * We have to wake specifically requested pages 1540 * up too because we cleared PG_SWAPINPROG and 1541 * someone may be waiting for that. 1542 * 1543 * NOTE: for reads, m->dirty will probably 1544 * be overriden by the original caller of 1545 * getpages so don't play cute tricks here. 1546 * 1547 * XXX it may not be legal to free the page 1548 * here as this messes with the object->memq's. 1549 */ 1550 1551 m->valid = 0; 1552 vm_page_flag_clear(m, PG_ZERO); 1553 1554 if (i != bp->b_pager.pg_reqpage) 1555 vm_page_free(m); 1556 else 1557 vm_page_flash(m); 1558 /* 1559 * If i == bp->b_pager.pg_reqpage, do not wake 1560 * the page up. The caller needs to. 1561 */ 1562 } else { 1563 /* 1564 * If a write error occurs, reactivate page 1565 * so it doesn't clog the inactive list, 1566 * then finish the I/O. 1567 */ 1568 vm_page_dirty(m); 1569 vm_page_activate(m); 1570 vm_page_io_finish(m); 1571 } 1572 } else if (bp->b_flags & B_READ) { 1573 /* 1574 * For read success, clear dirty bits. Nobody should 1575 * have this page mapped but don't take any chances, 1576 * make sure the pmap modify bits are also cleared. 1577 * 1578 * NOTE: for reads, m->dirty will probably be 1579 * overriden by the original caller of getpages so 1580 * we cannot set them in order to free the underlying 1581 * swap in a low-swap situation. I don't think we'd 1582 * want to do that anyway, but it was an optimization 1583 * that existed in the old swapper for a time before 1584 * it got ripped out due to precisely this problem. 1585 * 1586 * clear PG_ZERO in page. 1587 * 1588 * If not the requested page then deactivate it. 1589 * 1590 * Note that the requested page, reqpage, is left 1591 * busied, but we still have to wake it up. The 1592 * other pages are released (unbusied) by 1593 * vm_page_wakeup(). We do not set reqpage's 1594 * valid bits here, it is up to the caller. 1595 */ 1596 1597 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1598 m->valid = VM_PAGE_BITS_ALL; 1599 vm_page_undirty(m); 1600 vm_page_flag_clear(m, PG_ZERO); 1601 1602 /* 1603 * We have to wake specifically requested pages 1604 * up too because we cleared PG_SWAPINPROG and 1605 * could be waiting for it in getpages. However, 1606 * be sure to not unbusy getpages specifically 1607 * requested page - getpages expects it to be 1608 * left busy. 1609 */ 1610 if (i != bp->b_pager.pg_reqpage) { 1611 vm_page_deactivate(m); 1612 vm_page_wakeup(m); 1613 } else { 1614 vm_page_flash(m); 1615 } 1616 } else { 1617 /* 1618 * For write success, clear the modify and dirty 1619 * status, then finish the I/O ( which decrements the 1620 * busy count and possibly wakes waiter's up ). 1621 */ 1622 vm_page_protect(m, VM_PROT_READ); 1623 pmap_clear_modify(VM_PAGE_TO_PHYS(m)); 1624 vm_page_undirty(m); 1625 vm_page_io_finish(m); 1626 } 1627 } 1628 1629 /* 1630 * adjust pip. NOTE: the original parent may still have its own 1631 * pip refs on the object. 1632 */ 1633 1634 if (object) 1635 vm_object_pip_wakeupn(object, bp->b_npages); 1636 1637 /* 1638 * release the physical I/O buffer 1639 */ 1640 1641 relpbuf( 1642 bp, 1643 ((bp->b_flags & B_READ) ? &nsw_rcount : 1644 ((bp->b_flags & B_ASYNC) ? 1645 &nsw_wcount_async : 1646 &nsw_wcount_sync 1647 ) 1648 ) 1649 ); 1650 splx(s); 1651 } 1652 1653 /************************************************************************ 1654 * SWAP META DATA * 1655 ************************************************************************ 1656 * 1657 * These routines manipulate the swap metadata stored in the 1658 * OBJT_SWAP object. All swp_*() routines must be called at 1659 * splvm() because swap can be freed up by the low level vm_page 1660 * code which might be called from interrupts beyond what splbio() covers. 1661 * 1662 * Swap metadata is implemented with a global hash and not directly 1663 * linked into the object. Instead the object simply contains 1664 * appropriate tracking counters. 1665 */ 1666 1667 /* 1668 * SWP_PAGER_HASH() - hash swap meta data 1669 * 1670 * This is an inline helper function which hashes the swapblk given 1671 * the object and page index. It returns a pointer to a pointer 1672 * to the object, or a pointer to a NULL pointer if it could not 1673 * find a swapblk. 1674 * 1675 * This routine must be called at splvm(). 1676 */ 1677 1678 static __inline struct swblock ** 1679 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1680 { 1681 struct swblock **pswap; 1682 struct swblock *swap; 1683 1684 index &= ~SWAP_META_MASK; 1685 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1686 1687 while ((swap = *pswap) != NULL) { 1688 if (swap->swb_object == object && 1689 swap->swb_index == index 1690 ) { 1691 break; 1692 } 1693 pswap = &swap->swb_hnext; 1694 } 1695 return(pswap); 1696 } 1697 1698 /* 1699 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1700 * 1701 * We first convert the object to a swap object if it is a default 1702 * object. 1703 * 1704 * The specified swapblk is added to the object's swap metadata. If 1705 * the swapblk is not valid, it is freed instead. Any previously 1706 * assigned swapblk is freed. 1707 * 1708 * This routine must be called at splvm(), except when used to convert 1709 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1710 1711 */ 1712 1713 static void 1714 swp_pager_meta_build( 1715 vm_object_t object, 1716 vm_pindex_t index, 1717 daddr_t swapblk 1718 ) { 1719 struct swblock *swap; 1720 struct swblock **pswap; 1721 1722 /* 1723 * Convert default object to swap object if necessary 1724 */ 1725 1726 if (object->type != OBJT_SWAP) { 1727 object->type = OBJT_SWAP; 1728 object->un_pager.swp.swp_bcount = 0; 1729 1730 if (object->handle != NULL) { 1731 TAILQ_INSERT_TAIL( 1732 NOBJLIST(object->handle), 1733 object, 1734 pager_object_list 1735 ); 1736 } else { 1737 TAILQ_INSERT_TAIL( 1738 &swap_pager_un_object_list, 1739 object, 1740 pager_object_list 1741 ); 1742 } 1743 } 1744 1745 /* 1746 * Locate hash entry. If not found create, but if we aren't adding 1747 * anything just return. If we run out of space in the map we wait 1748 * and, since the hash table may have changed, retry. 1749 */ 1750 1751 retry: 1752 pswap = swp_pager_hash(object, index); 1753 1754 if ((swap = *pswap) == NULL) { 1755 int i; 1756 1757 if (swapblk == SWAPBLK_NONE) 1758 return; 1759 1760 swap = *pswap = zalloc(swap_zone); 1761 if (swap == NULL) { 1762 VM_WAIT; 1763 goto retry; 1764 } 1765 swap->swb_hnext = NULL; 1766 swap->swb_object = object; 1767 swap->swb_index = index & ~SWAP_META_MASK; 1768 swap->swb_count = 0; 1769 1770 ++object->un_pager.swp.swp_bcount; 1771 1772 for (i = 0; i < SWAP_META_PAGES; ++i) 1773 swap->swb_pages[i] = SWAPBLK_NONE; 1774 } 1775 1776 /* 1777 * Delete prior contents of metadata 1778 */ 1779 1780 index &= SWAP_META_MASK; 1781 1782 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1783 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1784 --swap->swb_count; 1785 } 1786 1787 /* 1788 * Enter block into metadata 1789 */ 1790 1791 swap->swb_pages[index] = swapblk; 1792 if (swapblk != SWAPBLK_NONE) 1793 ++swap->swb_count; 1794 } 1795 1796 /* 1797 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1798 * 1799 * The requested range of blocks is freed, with any associated swap 1800 * returned to the swap bitmap. 1801 * 1802 * This routine will free swap metadata structures as they are cleaned 1803 * out. This routine does *NOT* operate on swap metadata associated 1804 * with resident pages. 1805 * 1806 * This routine must be called at splvm() 1807 */ 1808 1809 static void 1810 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1811 { 1812 if (object->type != OBJT_SWAP) 1813 return; 1814 1815 while (count > 0) { 1816 struct swblock **pswap; 1817 struct swblock *swap; 1818 1819 pswap = swp_pager_hash(object, index); 1820 1821 if ((swap = *pswap) != NULL) { 1822 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1823 1824 if (v != SWAPBLK_NONE) { 1825 swp_pager_freeswapspace(v, 1); 1826 swap->swb_pages[index & SWAP_META_MASK] = 1827 SWAPBLK_NONE; 1828 if (--swap->swb_count == 0) { 1829 *pswap = swap->swb_hnext; 1830 zfree(swap_zone, swap); 1831 --object->un_pager.swp.swp_bcount; 1832 } 1833 } 1834 --count; 1835 ++index; 1836 } else { 1837 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1838 count -= n; 1839 index += n; 1840 } 1841 } 1842 } 1843 1844 /* 1845 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1846 * 1847 * This routine locates and destroys all swap metadata associated with 1848 * an object. 1849 * 1850 * This routine must be called at splvm() 1851 */ 1852 1853 static void 1854 swp_pager_meta_free_all(vm_object_t object) 1855 { 1856 daddr_t index = 0; 1857 1858 if (object->type != OBJT_SWAP) 1859 return; 1860 1861 while (object->un_pager.swp.swp_bcount) { 1862 struct swblock **pswap; 1863 struct swblock *swap; 1864 1865 pswap = swp_pager_hash(object, index); 1866 if ((swap = *pswap) != NULL) { 1867 int i; 1868 1869 for (i = 0; i < SWAP_META_PAGES; ++i) { 1870 daddr_t v = swap->swb_pages[i]; 1871 if (v != SWAPBLK_NONE) { 1872 #if !defined(MAX_PERF) 1873 --swap->swb_count; 1874 #endif 1875 swp_pager_freeswapspace(v, 1); 1876 } 1877 } 1878 #if !defined(MAX_PERF) 1879 if (swap->swb_count != 0) 1880 panic("swap_pager_meta_free_all: swb_count != 0"); 1881 #endif 1882 *pswap = swap->swb_hnext; 1883 zfree(swap_zone, swap); 1884 --object->un_pager.swp.swp_bcount; 1885 } 1886 index += SWAP_META_PAGES; 1887 #if !defined(MAX_PERF) 1888 if (index > 0x20000000) 1889 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1890 #endif 1891 } 1892 } 1893 1894 /* 1895 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1896 * 1897 * This routine is capable of looking up, popping, or freeing 1898 * swapblk assignments in the swap meta data or in the vm_page_t. 1899 * The routine typically returns the swapblk being looked-up, or popped, 1900 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1901 * was invalid. This routine will automatically free any invalid 1902 * meta-data swapblks. 1903 * 1904 * It is not possible to store invalid swapblks in the swap meta data 1905 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1906 * 1907 * When acting on a busy resident page and paging is in progress, we 1908 * have to wait until paging is complete but otherwise can act on the 1909 * busy page. 1910 * 1911 * This routine must be called at splvm(). 1912 * 1913 * SWM_FREE remove and free swap block from metadata 1914 * SWM_POP remove from meta data but do not free.. pop it out 1915 */ 1916 1917 static daddr_t 1918 swp_pager_meta_ctl( 1919 vm_object_t object, 1920 vm_pindex_t index, 1921 int flags 1922 ) { 1923 struct swblock **pswap; 1924 struct swblock *swap; 1925 daddr_t r1; 1926 1927 /* 1928 * The meta data only exists of the object is OBJT_SWAP 1929 * and even then might not be allocated yet. 1930 */ 1931 1932 if (object->type != OBJT_SWAP) 1933 return(SWAPBLK_NONE); 1934 1935 r1 = SWAPBLK_NONE; 1936 pswap = swp_pager_hash(object, index); 1937 1938 if ((swap = *pswap) != NULL) { 1939 index &= SWAP_META_MASK; 1940 r1 = swap->swb_pages[index]; 1941 1942 if (r1 != SWAPBLK_NONE) { 1943 if (flags & SWM_FREE) { 1944 swp_pager_freeswapspace(r1, 1); 1945 r1 = SWAPBLK_NONE; 1946 } 1947 if (flags & (SWM_FREE|SWM_POP)) { 1948 swap->swb_pages[index] = SWAPBLK_NONE; 1949 if (--swap->swb_count == 0) { 1950 *pswap = swap->swb_hnext; 1951 zfree(swap_zone, swap); 1952 --object->un_pager.swp.swp_bcount; 1953 } 1954 } 1955 } 1956 } 1957 return(r1); 1958 } 1959 1960