xref: /freebsd/sys/vm/swap_pager.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *
67  * $FreeBSD$
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/conf.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/vnode.h>
77 #include <sys/malloc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/sysctl.h>
80 #include <sys/blist.h>
81 #include <sys/lock.h>
82 
83 #ifndef MAX_PAGEOUT_CLUSTER
84 #define MAX_PAGEOUT_CLUSTER 16
85 #endif
86 
87 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
88 
89 #include "opt_swap.h"
90 #include <vm/vm.h>
91 #include <vm/vm_prot.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_zone.h>
99 
100 #define SWM_FREE	0x02	/* free, period			*/
101 #define SWM_POP		0x04	/* pop out			*/
102 
103 /*
104  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
105  * in the old system.
106  */
107 
108 extern int vm_swap_size;	/* number of free swap blocks, in pages */
109 
110 int swap_pager_full;		/* swap space exhaustion (task killing) */
111 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
112 static int nsw_rcount;		/* free read buffers			*/
113 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
114 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
115 static int nsw_wcount_async_max;/* assigned maximum			*/
116 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
117 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
118 
119 struct blist *swapblist;
120 static struct swblock **swhash;
121 static int swhash_mask;
122 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
123 
124 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
125         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
126 
127 /*
128  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
129  * of searching a named list by hashing it just a little.
130  */
131 
132 #define NOBJLISTS		8
133 
134 #define NOBJLIST(handle)	\
135 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
136 
137 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
138 struct pagerlst		swap_pager_un_object_list;
139 vm_zone_t		swap_zone;
140 
141 /*
142  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
143  * calls hooked from other parts of the VM system and do not appear here.
144  * (see vm/swap_pager.h).
145  */
146 
147 static vm_object_t
148 		swap_pager_alloc __P((void *handle, vm_ooffset_t size,
149 				      vm_prot_t prot, vm_ooffset_t offset));
150 static void	swap_pager_dealloc __P((vm_object_t object));
151 static int	swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
152 static void	swap_pager_init __P((void));
153 static void	swap_pager_unswapped __P((vm_page_t));
154 static void	swap_pager_strategy __P((vm_object_t, struct buf *));
155 
156 struct pagerops swappagerops = {
157 	swap_pager_init,	/* early system initialization of pager	*/
158 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
159 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
160 	swap_pager_getpages,	/* pagein				*/
161 	swap_pager_putpages,	/* pageout				*/
162 	swap_pager_haspage,	/* get backing store status for page	*/
163 	swap_pager_unswapped,	/* remove swap related to page		*/
164 	swap_pager_strategy	/* pager strategy call			*/
165 };
166 
167 /*
168  * dmmax is in page-sized chunks with the new swap system.  It was
169  * dev-bsized chunks in the old.
170  *
171  * swap_*() routines are externally accessible.  swp_*() routines are
172  * internal.
173  */
174 
175 int dmmax;
176 static int dmmax_mask;
177 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
178 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
179 
180 static __inline void	swp_sizecheck __P((void));
181 static void	swp_pager_sync_iodone __P((struct buf *bp));
182 static void	swp_pager_async_iodone __P((struct buf *bp));
183 
184 /*
185  * Swap bitmap functions
186  */
187 
188 static __inline void	swp_pager_freeswapspace __P((daddr_t blk, int npages));
189 static __inline daddr_t	swp_pager_getswapspace __P((int npages));
190 
191 /*
192  * Metadata functions
193  */
194 
195 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t));
196 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t));
197 static void swp_pager_meta_free_all __P((vm_object_t));
198 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int));
199 
200 /*
201  * SWP_SIZECHECK() -	update swap_pager_full indication
202  *
203  *	update the swap_pager_almost_full indication and warn when we are
204  *	about to run out of swap space, using lowat/hiwat hysteresis.
205  *
206  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
207  *
208  *	No restrictions on call
209  *	This routine may not block.
210  *	This routine must be called at splvm()
211  */
212 
213 static __inline void
214 swp_sizecheck()
215 {
216 	if (vm_swap_size < nswap_lowat) {
217 		if (swap_pager_almost_full == 0) {
218 			printf("swap_pager: out of swap space\n");
219 			swap_pager_almost_full = 1;
220 		}
221 	} else {
222 		swap_pager_full = 0;
223 		if (vm_swap_size > nswap_hiwat)
224 			swap_pager_almost_full = 0;
225 	}
226 }
227 
228 /*
229  * SWAP_PAGER_INIT() -	initialize the swap pager!
230  *
231  *	Expected to be started from system init.  NOTE:  This code is run
232  *	before much else so be careful what you depend on.  Most of the VM
233  *	system has yet to be initialized at this point.
234  */
235 
236 static void
237 swap_pager_init()
238 {
239 	/*
240 	 * Initialize object lists
241 	 */
242 	int i;
243 
244 	for (i = 0; i < NOBJLISTS; ++i)
245 		TAILQ_INIT(&swap_pager_object_list[i]);
246 	TAILQ_INIT(&swap_pager_un_object_list);
247 
248 	/*
249 	 * Device Stripe, in PAGE_SIZE'd blocks
250 	 */
251 
252 	dmmax = SWB_NPAGES * 2;
253 	dmmax_mask = ~(dmmax - 1);
254 }
255 
256 /*
257  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
258  *
259  *	Expected to be started from pageout process once, prior to entering
260  *	its main loop.
261  */
262 
263 void
264 swap_pager_swap_init()
265 {
266 	int n;
267 
268 	/*
269 	 * Number of in-transit swap bp operations.  Don't
270 	 * exhaust the pbufs completely.  Make sure we
271 	 * initialize workable values (0 will work for hysteresis
272 	 * but it isn't very efficient).
273 	 *
274 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
275 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
276 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
277 	 * constrained by the swap device interleave stripe size.
278 	 *
279 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
280 	 * designed to prevent other I/O from having high latencies due to
281 	 * our pageout I/O.  The value 4 works well for one or two active swap
282 	 * devices but is probably a little low if you have more.  Even so,
283 	 * a higher value would probably generate only a limited improvement
284 	 * with three or four active swap devices since the system does not
285 	 * typically have to pageout at extreme bandwidths.   We will want
286 	 * at least 2 per swap devices, and 4 is a pretty good value if you
287 	 * have one NFS swap device due to the command/ack latency over NFS.
288 	 * So it all works out pretty well.
289 	 */
290 
291 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
292 
293 	nsw_rcount = (nswbuf + 1) / 2;
294 	nsw_wcount_sync = (nswbuf + 3) / 4;
295 	nsw_wcount_async = 4;
296 	nsw_wcount_async_max = nsw_wcount_async;
297 
298 	/*
299 	 * Initialize our zone.  Right now I'm just guessing on the number
300 	 * we need based on the number of pages in the system.  Each swblock
301 	 * can hold 16 pages, so this is probably overkill.
302 	 */
303 
304 	n = cnt.v_page_count * 2;
305 
306 	swap_zone = zinit(
307 	    "SWAPMETA",
308 	    sizeof(struct swblock),
309 	    n,
310 	    ZONE_INTERRUPT,
311 	    1
312 	);
313 
314 	/*
315 	 * Initialize our meta-data hash table.  The swapper does not need to
316 	 * be quite as efficient as the VM system, so we do not use an
317 	 * oversized hash table.
318 	 *
319 	 * 	n: 		size of hash table, must be power of 2
320 	 *	swhash_mask:	hash table index mask
321 	 */
322 
323 	for (n = 1; n < cnt.v_page_count / 4; n <<= 1)
324 		;
325 
326 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
327 	bzero(swhash, sizeof(struct swblock *) * n);
328 
329 	swhash_mask = n - 1;
330 }
331 
332 /*
333  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
334  *			its metadata structures.
335  *
336  *	This routine is called from the mmap and fork code to create a new
337  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
338  *	and then converting it with swp_pager_meta_build().
339  *
340  *	This routine may block in vm_object_allocate() and create a named
341  *	object lookup race, so we must interlock.   We must also run at
342  *	splvm() for the object lookup to handle races with interrupts, but
343  *	we do not have to maintain splvm() in between the lookup and the
344  *	add because (I believe) it is not possible to attempt to create
345  *	a new swap object w/handle when a default object with that handle
346  *	already exists.
347  */
348 
349 static vm_object_t
350 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
351 		 vm_ooffset_t offset)
352 {
353 	vm_object_t object;
354 
355 	if (handle) {
356 		/*
357 		 * Reference existing named region or allocate new one.  There
358 		 * should not be a race here against swp_pager_meta_build()
359 		 * as called from vm_page_remove() in regards to the lookup
360 		 * of the handle.
361 		 */
362 
363 		while (sw_alloc_interlock) {
364 			sw_alloc_interlock = -1;
365 			tsleep(&sw_alloc_interlock, PVM, "swpalc", 0);
366 		}
367 		sw_alloc_interlock = 1;
368 
369 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
370 
371 		if (object != NULL) {
372 			vm_object_reference(object);
373 		} else {
374 			object = vm_object_allocate(OBJT_DEFAULT,
375 				OFF_TO_IDX(offset + PAGE_MASK + size));
376 			object->handle = handle;
377 
378 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
379 		}
380 
381 		if (sw_alloc_interlock < 0)
382 			wakeup(&sw_alloc_interlock);
383 
384 		sw_alloc_interlock = 0;
385 	} else {
386 		object = vm_object_allocate(OBJT_DEFAULT,
387 			OFF_TO_IDX(offset + PAGE_MASK + size));
388 
389 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
390 	}
391 
392 	return (object);
393 }
394 
395 /*
396  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
397  *
398  *	The swap backing for the object is destroyed.  The code is
399  *	designed such that we can reinstantiate it later, but this
400  *	routine is typically called only when the entire object is
401  *	about to be destroyed.
402  *
403  *	This routine may block, but no longer does.
404  *
405  *	The object must be locked or unreferenceable.
406  */
407 
408 static void
409 swap_pager_dealloc(object)
410 	vm_object_t object;
411 {
412 	int s;
413 
414 	/*
415 	 * Remove from list right away so lookups will fail if we block for
416 	 * pageout completion.
417 	 */
418 
419 	if (object->handle == NULL) {
420 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
421 	} else {
422 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
423 	}
424 
425 	vm_object_pip_wait(object, "swpdea");
426 
427 	/*
428 	 * Free all remaining metadata.  We only bother to free it from
429 	 * the swap meta data.  We do not attempt to free swapblk's still
430 	 * associated with vm_page_t's for this object.  We do not care
431 	 * if paging is still in progress on some objects.
432 	 */
433 	s = splvm();
434 	swp_pager_meta_free_all(object);
435 	splx(s);
436 }
437 
438 /************************************************************************
439  *			SWAP PAGER BITMAP ROUTINES			*
440  ************************************************************************/
441 
442 /*
443  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
444  *
445  *	Allocate swap for the requested number of pages.  The starting
446  *	swap block number (a page index) is returned or SWAPBLK_NONE
447  *	if the allocation failed.
448  *
449  *	Also has the side effect of advising that somebody made a mistake
450  *	when they configured swap and didn't configure enough.
451  *
452  *	Must be called at splvm() to avoid races with bitmap frees from
453  *	vm_page_remove() aka swap_pager_page_removed().
454  *
455  *	This routine may not block
456  *	This routine must be called at splvm().
457  */
458 
459 static __inline daddr_t
460 swp_pager_getswapspace(npages)
461 	int npages;
462 {
463 	daddr_t blk;
464 
465 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
466 		if (swap_pager_full != 2) {
467 			printf("swap_pager_getswapspace: failed\n");
468 			swap_pager_full = 2;
469 			swap_pager_almost_full = 1;
470 		}
471 	} else {
472 		vm_swap_size -= npages;
473 		swp_sizecheck();
474 	}
475 	return(blk);
476 }
477 
478 /*
479  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
480  *
481  *	This routine returns the specified swap blocks back to the bitmap.
482  *
483  *	Note:  This routine may not block (it could in the old swap code),
484  *	and through the use of the new blist routines it does not block.
485  *
486  *	We must be called at splvm() to avoid races with bitmap frees from
487  *	vm_page_remove() aka swap_pager_page_removed().
488  *
489  *	This routine may not block
490  *	This routine must be called at splvm().
491  */
492 
493 static __inline void
494 swp_pager_freeswapspace(blk, npages)
495 	daddr_t blk;
496 	int npages;
497 {
498 	blist_free(swapblist, blk, npages);
499 	vm_swap_size += npages;
500 	swp_sizecheck();
501 }
502 
503 /*
504  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
505  *				range within an object.
506  *
507  *	This is a globally accessible routine.
508  *
509  *	This routine removes swapblk assignments from swap metadata.
510  *
511  *	The external callers of this routine typically have already destroyed
512  *	or renamed vm_page_t's associated with this range in the object so
513  *	we should be ok.
514  *
515  *	This routine may be called at any spl.  We up our spl to splvm temporarily
516  *	in order to perform the metadata removal.
517  */
518 
519 void
520 swap_pager_freespace(object, start, size)
521 	vm_object_t object;
522 	vm_pindex_t start;
523 	vm_size_t size;
524 {
525 	int s = splvm();
526 	swp_pager_meta_free(object, start, size);
527 	splx(s);
528 }
529 
530 /*
531  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
532  *
533  *	Assigns swap blocks to the specified range within the object.  The
534  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
535  *
536  *	Returns 0 on success, -1 on failure.
537  */
538 
539 int
540 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
541 {
542 	int s;
543 	int n = 0;
544 	daddr_t blk = SWAPBLK_NONE;
545 	vm_pindex_t beg = start;	/* save start index */
546 
547 	s = splvm();
548 	while (size) {
549 		if (n == 0) {
550 			n = BLIST_MAX_ALLOC;
551 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
552 				n >>= 1;
553 				if (n == 0) {
554 					swp_pager_meta_free(object, beg, start - beg);
555 					splx(s);
556 					return(-1);
557 				}
558 			}
559 		}
560 		swp_pager_meta_build(object, start, blk);
561 		--size;
562 		++start;
563 		++blk;
564 		--n;
565 	}
566 	swp_pager_meta_free(object, start, n);
567 	splx(s);
568 	return(0);
569 }
570 
571 /*
572  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
573  *			and destroy the source.
574  *
575  *	Copy any valid swapblks from the source to the destination.  In
576  *	cases where both the source and destination have a valid swapblk,
577  *	we keep the destination's.
578  *
579  *	This routine is allowed to block.  It may block allocating metadata
580  *	indirectly through swp_pager_meta_build() or if paging is still in
581  *	progress on the source.
582  *
583  *	This routine can be called at any spl
584  *
585  *	XXX vm_page_collapse() kinda expects us not to block because we
586  *	supposedly do not need to allocate memory, but for the moment we
587  *	*may* have to get a little memory from the zone allocator, but
588  *	it is taken from the interrupt memory.  We should be ok.
589  *
590  *	The source object contains no vm_page_t's (which is just as well)
591  *
592  *	The source object is of type OBJT_SWAP.
593  *
594  *	The source and destination objects must be locked or
595  *	inaccessible (XXX are they ?)
596  */
597 
598 void
599 swap_pager_copy(srcobject, dstobject, offset, destroysource)
600 	vm_object_t srcobject;
601 	vm_object_t dstobject;
602 	vm_pindex_t offset;
603 	int destroysource;
604 {
605 	vm_pindex_t i;
606 	int s;
607 
608 	s = splvm();
609 
610 	/*
611 	 * If destroysource is set, we remove the source object from the
612 	 * swap_pager internal queue now.
613 	 */
614 
615 	if (destroysource) {
616 		if (srcobject->handle == NULL) {
617 			TAILQ_REMOVE(
618 			    &swap_pager_un_object_list,
619 			    srcobject,
620 			    pager_object_list
621 			);
622 		} else {
623 			TAILQ_REMOVE(
624 			    NOBJLIST(srcobject->handle),
625 			    srcobject,
626 			    pager_object_list
627 			);
628 		}
629 	}
630 
631 	/*
632 	 * transfer source to destination.
633 	 */
634 
635 	for (i = 0; i < dstobject->size; ++i) {
636 		daddr_t dstaddr;
637 
638 		/*
639 		 * Locate (without changing) the swapblk on the destination,
640 		 * unless it is invalid in which case free it silently, or
641 		 * if the destination is a resident page, in which case the
642 		 * source is thrown away.
643 		 */
644 
645 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
646 
647 		if (dstaddr == SWAPBLK_NONE) {
648 			/*
649 			 * Destination has no swapblk and is not resident,
650 			 * copy source.
651 			 */
652 			daddr_t srcaddr;
653 
654 			srcaddr = swp_pager_meta_ctl(
655 			    srcobject,
656 			    i + offset,
657 			    SWM_POP
658 			);
659 
660 			if (srcaddr != SWAPBLK_NONE)
661 				swp_pager_meta_build(dstobject, i, srcaddr);
662 		} else {
663 			/*
664 			 * Destination has valid swapblk or it is represented
665 			 * by a resident page.  We destroy the sourceblock.
666 			 */
667 
668 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
669 		}
670 	}
671 
672 	/*
673 	 * Free left over swap blocks in source.
674 	 *
675 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
676 	 * double-remove the object from the swap queues.
677 	 */
678 
679 	if (destroysource) {
680 		swp_pager_meta_free_all(srcobject);
681 		/*
682 		 * Reverting the type is not necessary, the caller is going
683 		 * to destroy srcobject directly, but I'm doing it here
684 		 * for consistancy since we've removed the object from its
685 		 * queues.
686 		 */
687 		srcobject->type = OBJT_DEFAULT;
688 	}
689 	splx(s);
690 }
691 
692 /*
693  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
694  *				the requested page.
695  *
696  *	We determine whether good backing store exists for the requested
697  *	page and return TRUE if it does, FALSE if it doesn't.
698  *
699  *	If TRUE, we also try to determine how much valid, contiguous backing
700  *	store exists before and after the requested page within a reasonable
701  *	distance.  We do not try to restrict it to the swap device stripe
702  *	(that is handled in getpages/putpages).  It probably isn't worth
703  *	doing here.
704  *
705  *	This routine must be called at splvm().
706  */
707 
708 boolean_t
709 swap_pager_haspage(object, pindex, before, after)
710 	vm_object_t object;
711 	vm_pindex_t pindex;
712 	int *before;
713 	int *after;
714 {
715 	daddr_t blk0;
716 
717 	/*
718 	 * do we have good backing store at the requested index ?
719 	 */
720 
721 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
722 
723 	if (blk0 == SWAPBLK_NONE) {
724 		if (before)
725 			*before = 0;
726 		if (after)
727 			*after = 0;
728 		return (FALSE);
729 	}
730 
731 	/*
732 	 * find backwards-looking contiguous good backing store
733 	 */
734 
735 	if (before != NULL) {
736 		int i;
737 
738 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
739 			daddr_t blk;
740 
741 			if (i > pindex)
742 				break;
743 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
744 			if (blk != blk0 - i)
745 				break;
746 		}
747 		*before = (i - 1);
748 	}
749 
750 	/*
751 	 * find forward-looking contiguous good backing store
752 	 */
753 
754 	if (after != NULL) {
755 		int i;
756 
757 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
758 			daddr_t blk;
759 
760 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
761 			if (blk != blk0 + i)
762 				break;
763 		}
764 		*after = (i - 1);
765 	}
766 
767 	return (TRUE);
768 }
769 
770 /*
771  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
772  *
773  *	This removes any associated swap backing store, whether valid or
774  *	not, from the page.
775  *
776  *	This routine is typically called when a page is made dirty, at
777  *	which point any associated swap can be freed.  MADV_FREE also
778  *	calls us in a special-case situation
779  *
780  *	NOTE!!!  If the page is clean and the swap was valid, the caller
781  *	should make the page dirty before calling this routine.  This routine
782  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
783  *	depends on it.
784  *
785  *	This routine may not block
786  *	This routine must be called at splvm()
787  */
788 
789 static void
790 swap_pager_unswapped(m)
791 	vm_page_t m;
792 {
793 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
794 }
795 
796 /*
797  * SWAP_PAGER_STRATEGY() - read, write, free blocks
798  *
799  *	This implements the vm_pager_strategy() interface to swap and allows
800  *	other parts of the system to directly access swap as backing store
801  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
802  *	cacheless interface ( i.e. caching occurs at higher levels ).
803  *	Therefore we do not maintain any resident pages.  All I/O goes
804  *	directly to and from the swap device.
805  *
806  *	Note that b_blkno is scaled for PAGE_SIZE
807  *
808  *	We currently attempt to run I/O synchronously or asynchronously as
809  *	the caller requests.  This isn't perfect because we loose error
810  *	sequencing when we run multiple ops in parallel to satisfy a request.
811  *	But this is swap, so we let it all hang out.
812  */
813 
814 static void
815 swap_pager_strategy(vm_object_t object, struct buf *bp)
816 {
817 	vm_pindex_t start;
818 	int count;
819 	int s;
820 	char *data;
821 	struct buf *nbp = NULL;
822 
823 	if (bp->b_bcount & PAGE_MASK) {
824 		bp->b_error = EINVAL;
825 		bp->b_flags |= B_ERROR | B_INVAL;
826 		biodone(bp);
827 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
828 		return;
829 	}
830 
831 	/*
832 	 * Clear error indication, initialize page index, count, data pointer.
833 	 */
834 
835 	bp->b_error = 0;
836 	bp->b_flags &= ~B_ERROR;
837 	bp->b_resid = bp->b_bcount;
838 
839 	start = bp->b_pblkno;
840 	count = howmany(bp->b_bcount, PAGE_SIZE);
841 	data = bp->b_data;
842 
843 	s = splvm();
844 
845 	/*
846 	 * Deal with B_FREEBUF
847 	 */
848 
849 	if (bp->b_flags & B_FREEBUF) {
850 		/*
851 		 * FREE PAGE(s) - destroy underlying swap that is no longer
852 		 *		  needed.
853 		 */
854 		swp_pager_meta_free(object, start, count);
855 		splx(s);
856 		bp->b_resid = 0;
857 		biodone(bp);
858 		return;
859 	}
860 
861 	/*
862 	 * Execute read or write
863 	 */
864 
865 	while (count > 0) {
866 		daddr_t blk;
867 
868 		/*
869 		 * Obtain block.  If block not found and writing, allocate a
870 		 * new block and build it into the object.
871 		 */
872 
873 		blk = swp_pager_meta_ctl(object, start, 0);
874 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
875 			blk = swp_pager_getswapspace(1);
876 			if (blk == SWAPBLK_NONE) {
877 				bp->b_error = ENOMEM;
878 				bp->b_flags |= B_ERROR;
879 				break;
880 			}
881 			swp_pager_meta_build(object, start, blk);
882 		}
883 
884 		/*
885 		 * Do we have to flush our current collection?  Yes if:
886 		 *
887 		 *	- no swap block at this index
888 		 *	- swap block is not contiguous
889 		 *	- we cross a physical disk boundry in the
890 		 *	  stripe.
891 		 */
892 
893 		if (
894 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
895 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
896 		    )
897 		) {
898 			splx(s);
899 			if (bp->b_flags & B_READ) {
900 				++cnt.v_swapin;
901 				cnt.v_swappgsin += btoc(nbp->b_bcount);
902 			} else {
903 				++cnt.v_swapout;
904 				cnt.v_swappgsout += btoc(nbp->b_bcount);
905 				nbp->b_dirtyend = nbp->b_bcount;
906 			}
907 			flushchainbuf(nbp);
908 			s = splvm();
909 			nbp = NULL;
910 		}
911 
912 		/*
913 		 * Add new swapblk to nbp, instantiating nbp if necessary.
914 		 * Zero-fill reads are able to take a shortcut.
915 		 */
916 
917 		if (blk == SWAPBLK_NONE) {
918 			/*
919 			 * We can only get here if we are reading.  Since
920 			 * we are at splvm() we can safely modify b_resid,
921 			 * even if chain ops are in progress.
922 			 */
923 			bzero(data, PAGE_SIZE);
924 			bp->b_resid -= PAGE_SIZE;
925 		} else {
926 			if (nbp == NULL) {
927 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
928 				nbp->b_blkno = blk;
929 				nbp->b_bcount = 0;
930 				nbp->b_data = data;
931 			}
932 			nbp->b_bcount += PAGE_SIZE;
933 		}
934 		--count;
935 		++start;
936 		data += PAGE_SIZE;
937 	}
938 
939 	/*
940 	 *  Flush out last buffer
941 	 */
942 
943 	splx(s);
944 
945 	if (nbp) {
946 		if ((bp->b_flags & B_ASYNC) == 0)
947 			nbp->b_flags &= ~B_ASYNC;
948 		if (nbp->b_flags & B_READ) {
949 			++cnt.v_swapin;
950 			cnt.v_swappgsin += btoc(nbp->b_bcount);
951 		} else {
952 			++cnt.v_swapout;
953 			cnt.v_swappgsout += btoc(nbp->b_bcount);
954 			nbp->b_dirtyend = nbp->b_bcount;
955 		}
956 		flushchainbuf(nbp);
957 		/* nbp = NULL; */
958 	}
959 
960 	/*
961 	 * Wait for completion.
962 	 */
963 
964 	if (bp->b_flags & B_ASYNC) {
965 		autochaindone(bp);
966 	} else {
967 		waitchainbuf(bp, 0, 1);
968 	}
969 }
970 
971 /*
972  * SWAP_PAGER_GETPAGES() - bring pages in from swap
973  *
974  *	Attempt to retrieve (m, count) pages from backing store, but make
975  *	sure we retrieve at least m[reqpage].  We try to load in as large
976  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
977  *	belongs to the same object.
978  *
979  *	The code is designed for asynchronous operation and
980  *	immediate-notification of 'reqpage' but tends not to be
981  *	used that way.  Please do not optimize-out this algorithmic
982  *	feature, I intend to improve on it in the future.
983  *
984  *	The parent has a single vm_object_pip_add() reference prior to
985  *	calling us and we should return with the same.
986  *
987  *	The parent has BUSY'd the pages.  We should return with 'm'
988  *	left busy, but the others adjusted.
989  */
990 
991 static int
992 swap_pager_getpages(object, m, count, reqpage)
993 	vm_object_t object;
994 	vm_page_t *m;
995 	int count, reqpage;
996 {
997 	struct buf *bp;
998 	vm_page_t mreq;
999 	int s;
1000 	int i;
1001 	int j;
1002 	daddr_t blk;
1003 	vm_offset_t kva;
1004 	vm_pindex_t lastpindex;
1005 
1006 	mreq = m[reqpage];
1007 
1008 #if !defined(MAX_PERF)
1009 	if (mreq->object != object) {
1010 		panic("swap_pager_getpages: object mismatch %p/%p",
1011 		    object,
1012 		    mreq->object
1013 		);
1014 	}
1015 #endif
1016 	/*
1017 	 * Calculate range to retrieve.  The pages have already been assigned
1018 	 * their swapblks.  We require a *contiguous* range that falls entirely
1019 	 * within a single device stripe.   If we do not supply it, bad things
1020 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1021 	 * loops are set up such that the case(s) are handled implicitly.
1022 	 *
1023 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1024 	 * not need to be, but it will go a little faster if it is.
1025 	 */
1026 
1027 	s = splvm();
1028 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1029 
1030 	for (i = reqpage - 1; i >= 0; --i) {
1031 		daddr_t iblk;
1032 
1033 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1034 		if (blk != iblk + (reqpage - i))
1035 			break;
1036 		if ((blk ^ iblk) & dmmax_mask)
1037 			break;
1038 	}
1039 	++i;
1040 
1041 	for (j = reqpage + 1; j < count; ++j) {
1042 		daddr_t jblk;
1043 
1044 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1045 		if (blk != jblk - (j - reqpage))
1046 			break;
1047 		if ((blk ^ jblk) & dmmax_mask)
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * free pages outside our collection range.   Note: we never free
1053 	 * mreq, it must remain busy throughout.
1054 	 */
1055 
1056 	{
1057 		int k;
1058 
1059 		for (k = 0; k < i; ++k)
1060 			vm_page_free(m[k]);
1061 		for (k = j; k < count; ++k)
1062 			vm_page_free(m[k]);
1063 	}
1064 	splx(s);
1065 
1066 
1067 	/*
1068 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1069 	 * still busy, but the others unbusied.
1070 	 */
1071 
1072 	if (blk == SWAPBLK_NONE)
1073 		return(VM_PAGER_FAIL);
1074 
1075 	/*
1076 	 * Get a swap buffer header to perform the IO
1077 	 */
1078 
1079 	bp = getpbuf(&nsw_rcount);
1080 	kva = (vm_offset_t) bp->b_data;
1081 
1082 	/*
1083 	 * map our page(s) into kva for input
1084 	 *
1085 	 * NOTE: B_PAGING is set by pbgetvp()
1086 	 */
1087 
1088 	pmap_qenter(kva, m + i, j - i);
1089 
1090 	bp->b_flags = B_READ | B_CALL;
1091 	bp->b_iodone = swp_pager_async_iodone;
1092 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1093 	bp->b_data = (caddr_t) kva;
1094 	crhold(bp->b_rcred);
1095 	crhold(bp->b_wcred);
1096 	bp->b_blkno = blk - (reqpage - i);
1097 	bp->b_bcount = PAGE_SIZE * (j - i);
1098 	bp->b_bufsize = PAGE_SIZE * (j - i);
1099 	bp->b_pager.pg_reqpage = reqpage - i;
1100 
1101 	{
1102 		int k;
1103 
1104 		for (k = i; k < j; ++k) {
1105 			bp->b_pages[k - i] = m[k];
1106 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1107 		}
1108 	}
1109 	bp->b_npages = j - i;
1110 
1111 	pbgetvp(swapdev_vp, bp);
1112 
1113 	cnt.v_swapin++;
1114 	cnt.v_swappgsin += bp->b_npages;
1115 
1116 	/*
1117 	 * We still hold the lock on mreq, and our automatic completion routine
1118 	 * does not remove it.
1119 	 */
1120 
1121 	vm_object_pip_add(mreq->object, bp->b_npages);
1122 	lastpindex = m[j-1]->pindex;
1123 
1124 	/*
1125 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1126 	 * this point because we automatically release it on completion.
1127 	 * Instead, we look at the one page we are interested in which we
1128 	 * still hold a lock on even through the I/O completion.
1129 	 *
1130 	 * The other pages in our m[] array are also released on completion,
1131 	 * so we cannot assume they are valid anymore either.
1132 	 *
1133 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1134 	 */
1135 
1136 	BUF_KERNPROC(bp);
1137 	VOP_STRATEGY(bp->b_vp, bp);
1138 
1139 	/*
1140 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1141 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1142 	 * is set in the meta-data.
1143 	 */
1144 
1145 	s = splvm();
1146 
1147 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1148 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1149 		cnt.v_intrans++;
1150 		if (tsleep(mreq, PSWP, "swread", hz*20)) {
1151 			printf(
1152 			    "swap_pager: indefinite wait buffer: device:"
1153 				" %s, blkno: %ld, size: %ld\n",
1154 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1155 			    bp->b_bcount
1156 			);
1157 		}
1158 	}
1159 
1160 	splx(s);
1161 
1162 	/*
1163 	 * mreq is left bussied after completion, but all the other pages
1164 	 * are freed.  If we had an unrecoverable read error the page will
1165 	 * not be valid.
1166 	 */
1167 
1168 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1169 		return(VM_PAGER_ERROR);
1170 	} else {
1171 		return(VM_PAGER_OK);
1172 	}
1173 
1174 	/*
1175 	 * A final note: in a low swap situation, we cannot deallocate swap
1176 	 * and mark a page dirty here because the caller is likely to mark
1177 	 * the page clean when we return, causing the page to possibly revert
1178 	 * to all-zero's later.
1179 	 */
1180 }
1181 
1182 /*
1183  *	swap_pager_putpages:
1184  *
1185  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1186  *
1187  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1188  *	are automatically converted to SWAP objects.
1189  *
1190  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1191  *	vm_page reservation system coupled with properly written VFS devices
1192  *	should ensure that no low-memory deadlock occurs.  This is an area
1193  *	which needs work.
1194  *
1195  *	The parent has N vm_object_pip_add() references prior to
1196  *	calling us and will remove references for rtvals[] that are
1197  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1198  *	completion.
1199  *
1200  *	The parent has soft-busy'd the pages it passes us and will unbusy
1201  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1202  *	We need to unbusy the rest on I/O completion.
1203  */
1204 
1205 void
1206 swap_pager_putpages(object, m, count, sync, rtvals)
1207 	vm_object_t object;
1208 	vm_page_t *m;
1209 	int count;
1210 	boolean_t sync;
1211 	int *rtvals;
1212 {
1213 	int i;
1214 	int n = 0;
1215 
1216 #if !defined(MAX_PERF)
1217 	if (count && m[0]->object != object) {
1218 		panic("swap_pager_getpages: object mismatch %p/%p",
1219 		    object,
1220 		    m[0]->object
1221 		);
1222 	}
1223 #endif
1224 	/*
1225 	 * Step 1
1226 	 *
1227 	 * Turn object into OBJT_SWAP
1228 	 * check for bogus sysops
1229 	 * force sync if not pageout process
1230 	 */
1231 
1232 	if (object->type != OBJT_SWAP)
1233 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1234 
1235 	if (curproc != pageproc)
1236 		sync = TRUE;
1237 
1238 	/*
1239 	 * Step 2
1240 	 *
1241 	 * Update nsw parameters from swap_async_max sysctl values.
1242 	 * Do not let the sysop crash the machine with bogus numbers.
1243 	 */
1244 
1245 	if (swap_async_max != nsw_wcount_async_max) {
1246 		int n;
1247 		int s;
1248 
1249 		/*
1250 		 * limit range
1251 		 */
1252 		if ((n = swap_async_max) > nswbuf / 2)
1253 			n = nswbuf / 2;
1254 		if (n < 1)
1255 			n = 1;
1256 		swap_async_max = n;
1257 
1258 		/*
1259 		 * Adjust difference ( if possible ).  If the current async
1260 		 * count is too low, we may not be able to make the adjustment
1261 		 * at this time.
1262 		 */
1263 		s = splvm();
1264 		n -= nsw_wcount_async_max;
1265 		if (nsw_wcount_async + n >= 0) {
1266 			nsw_wcount_async += n;
1267 			nsw_wcount_async_max += n;
1268 			wakeup(&nsw_wcount_async);
1269 		}
1270 		splx(s);
1271 	}
1272 
1273 	/*
1274 	 * Step 3
1275 	 *
1276 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1277 	 * The page is left dirty until the pageout operation completes
1278 	 * successfully.
1279 	 */
1280 
1281 	for (i = 0; i < count; i += n) {
1282 		int s;
1283 		int j;
1284 		struct buf *bp;
1285 		daddr_t blk;
1286 
1287 		/*
1288 		 * Maximum I/O size is limited by a number of factors.
1289 		 */
1290 
1291 		n = min(BLIST_MAX_ALLOC, count - i);
1292 		n = min(n, nsw_cluster_max);
1293 
1294 		s = splvm();
1295 
1296 		/*
1297 		 * Get biggest block of swap we can.  If we fail, fall
1298 		 * back and try to allocate a smaller block.  Don't go
1299 		 * overboard trying to allocate space if it would overly
1300 		 * fragment swap.
1301 		 */
1302 		while (
1303 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1304 		    n > 4
1305 		) {
1306 			n >>= 1;
1307 		}
1308 		if (blk == SWAPBLK_NONE) {
1309 			for (j = 0; j < n; ++j)
1310 				rtvals[i+j] = VM_PAGER_FAIL;
1311 			splx(s);
1312 			continue;
1313 		}
1314 
1315 		/*
1316 		 * The I/O we are constructing cannot cross a physical
1317 		 * disk boundry in the swap stripe.  Note: we are still
1318 		 * at splvm().
1319 		 */
1320 		if ((blk ^ (blk + n)) & dmmax_mask) {
1321 			j = ((blk + dmmax) & dmmax_mask) - blk;
1322 			swp_pager_freeswapspace(blk + j, n - j);
1323 			n = j;
1324 		}
1325 
1326 		/*
1327 		 * All I/O parameters have been satisfied, build the I/O
1328 		 * request and assign the swap space.
1329 		 *
1330 		 * NOTE: B_PAGING is set by pbgetvp()
1331 		 */
1332 
1333 		if (sync == TRUE) {
1334 			bp = getpbuf(&nsw_wcount_sync);
1335 			bp->b_flags = B_CALL;
1336 		} else {
1337 			bp = getpbuf(&nsw_wcount_async);
1338 			bp->b_flags = B_CALL | B_ASYNC;
1339 		}
1340 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1341 
1342 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1343 
1344 		bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1345 		bp->b_bcount = PAGE_SIZE * n;
1346 		bp->b_bufsize = PAGE_SIZE * n;
1347 		bp->b_blkno = blk;
1348 
1349 		crhold(bp->b_rcred);
1350 		crhold(bp->b_wcred);
1351 
1352 		pbgetvp(swapdev_vp, bp);
1353 
1354 		for (j = 0; j < n; ++j) {
1355 			vm_page_t mreq = m[i+j];
1356 
1357 			swp_pager_meta_build(
1358 			    mreq->object,
1359 			    mreq->pindex,
1360 			    blk + j
1361 			);
1362 			vm_page_dirty(mreq);
1363 			rtvals[i+j] = VM_PAGER_OK;
1364 
1365 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1366 			bp->b_pages[j] = mreq;
1367 		}
1368 		bp->b_npages = n;
1369 		/*
1370 		 * Must set dirty range for NFS to work.
1371 		 */
1372 		bp->b_dirtyoff = 0;
1373 		bp->b_dirtyend = bp->b_bcount;
1374 
1375 		cnt.v_swapout++;
1376 		cnt.v_swappgsout += bp->b_npages;
1377 		swapdev_vp->v_numoutput++;
1378 
1379 		splx(s);
1380 
1381 		/*
1382 		 * asynchronous
1383 		 *
1384 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1385 		 */
1386 
1387 		if (sync == FALSE) {
1388 			bp->b_iodone = swp_pager_async_iodone;
1389 			BUF_KERNPROC(bp);
1390 			VOP_STRATEGY(bp->b_vp, bp);
1391 
1392 			for (j = 0; j < n; ++j)
1393 				rtvals[i+j] = VM_PAGER_PEND;
1394 			continue;
1395 		}
1396 
1397 		/*
1398 		 * synchronous
1399 		 *
1400 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1401 		 */
1402 
1403 		bp->b_iodone = swp_pager_sync_iodone;
1404 		VOP_STRATEGY(bp->b_vp, bp);
1405 
1406 		/*
1407 		 * Wait for the sync I/O to complete, then update rtvals.
1408 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1409 		 * our async completion routine at the end, thus avoiding a
1410 		 * double-free.
1411 		 */
1412 		s = splbio();
1413 
1414 		while ((bp->b_flags & B_DONE) == 0) {
1415 			tsleep(bp, PVM, "swwrt", 0);
1416 		}
1417 
1418 		for (j = 0; j < n; ++j)
1419 			rtvals[i+j] = VM_PAGER_PEND;
1420 
1421 		/*
1422 		 * Now that we are through with the bp, we can call the
1423 		 * normal async completion, which frees everything up.
1424 		 */
1425 
1426 		swp_pager_async_iodone(bp);
1427 
1428 		splx(s);
1429 	}
1430 }
1431 
1432 /*
1433  *	swap_pager_sync_iodone:
1434  *
1435  *	Completion routine for synchronous reads and writes from/to swap.
1436  *	We just mark the bp is complete and wake up anyone waiting on it.
1437  *
1438  *	This routine may not block.  This routine is called at splbio() or better.
1439  */
1440 
1441 static void
1442 swp_pager_sync_iodone(bp)
1443 	struct buf *bp;
1444 {
1445 	bp->b_flags |= B_DONE;
1446 	bp->b_flags &= ~B_ASYNC;
1447 	wakeup(bp);
1448 }
1449 
1450 /*
1451  *	swp_pager_async_iodone:
1452  *
1453  *	Completion routine for asynchronous reads and writes from/to swap.
1454  *	Also called manually by synchronous code to finish up a bp.
1455  *
1456  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1457  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1458  *	unbusy all pages except the 'main' request page.  For WRITE
1459  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1460  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1461  *
1462  *	This routine may not block.
1463  *	This routine is called at splbio() or better
1464  *
1465  *	We up ourselves to splvm() as required for various vm_page related
1466  *	calls.
1467  */
1468 
1469 static void
1470 swp_pager_async_iodone(bp)
1471 	register struct buf *bp;
1472 {
1473 	int s;
1474 	int i;
1475 	vm_object_t object = NULL;
1476 
1477 	bp->b_flags |= B_DONE;
1478 
1479 	/*
1480 	 * report error
1481 	 */
1482 
1483 	if (bp->b_flags & B_ERROR) {
1484 		printf(
1485 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1486 			"size %ld, error %d\n",
1487 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1488 		    (long)bp->b_blkno,
1489 		    (long)bp->b_bcount,
1490 		    bp->b_error
1491 		);
1492 	}
1493 
1494 	/*
1495 	 * set object, raise to splvm().
1496 	 */
1497 
1498 	if (bp->b_npages)
1499 		object = bp->b_pages[0]->object;
1500 	s = splvm();
1501 
1502 	/*
1503 	 * remove the mapping for kernel virtual
1504 	 */
1505 
1506 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1507 
1508 	/*
1509 	 * cleanup pages.  If an error occurs writing to swap, we are in
1510 	 * very serious trouble.  If it happens to be a disk error, though,
1511 	 * we may be able to recover by reassigning the swap later on.  So
1512 	 * in this case we remove the m->swapblk assignment for the page
1513 	 * but do not free it in the rlist.  The errornous block(s) are thus
1514 	 * never reallocated as swap.  Redirty the page and continue.
1515 	 */
1516 
1517 	for (i = 0; i < bp->b_npages; ++i) {
1518 		vm_page_t m = bp->b_pages[i];
1519 
1520 		vm_page_flag_clear(m, PG_SWAPINPROG);
1521 
1522 		if (bp->b_flags & B_ERROR) {
1523 			/*
1524 			 * If an error occurs I'd love to throw the swapblk
1525 			 * away without freeing it back to swapspace, so it
1526 			 * can never be used again.  But I can't from an
1527 			 * interrupt.
1528 			 */
1529 
1530 			if (bp->b_flags & B_READ) {
1531 				/*
1532 				 * When reading, reqpage needs to stay
1533 				 * locked for the parent, but all other
1534 				 * pages can be freed.  We still want to
1535 				 * wakeup the parent waiting on the page,
1536 				 * though.  ( also: pg_reqpage can be -1 and
1537 				 * not match anything ).
1538 				 *
1539 				 * We have to wake specifically requested pages
1540 				 * up too because we cleared PG_SWAPINPROG and
1541 				 * someone may be waiting for that.
1542 				 *
1543 				 * NOTE: for reads, m->dirty will probably
1544 				 * be overriden by the original caller of
1545 				 * getpages so don't play cute tricks here.
1546 				 *
1547 				 * XXX it may not be legal to free the page
1548 				 * here as this messes with the object->memq's.
1549 				 */
1550 
1551 				m->valid = 0;
1552 				vm_page_flag_clear(m, PG_ZERO);
1553 
1554 				if (i != bp->b_pager.pg_reqpage)
1555 					vm_page_free(m);
1556 				else
1557 					vm_page_flash(m);
1558 				/*
1559 				 * If i == bp->b_pager.pg_reqpage, do not wake
1560 				 * the page up.  The caller needs to.
1561 				 */
1562 			} else {
1563 				/*
1564 				 * If a write error occurs, reactivate page
1565 				 * so it doesn't clog the inactive list,
1566 				 * then finish the I/O.
1567 				 */
1568 				vm_page_dirty(m);
1569 				vm_page_activate(m);
1570 				vm_page_io_finish(m);
1571 			}
1572 		} else if (bp->b_flags & B_READ) {
1573 			/*
1574 			 * For read success, clear dirty bits.  Nobody should
1575 			 * have this page mapped but don't take any chances,
1576 			 * make sure the pmap modify bits are also cleared.
1577 			 *
1578 			 * NOTE: for reads, m->dirty will probably be
1579 			 * overriden by the original caller of getpages so
1580 			 * we cannot set them in order to free the underlying
1581 			 * swap in a low-swap situation.  I don't think we'd
1582 			 * want to do that anyway, but it was an optimization
1583 			 * that existed in the old swapper for a time before
1584 			 * it got ripped out due to precisely this problem.
1585 			 *
1586 			 * clear PG_ZERO in page.
1587 			 *
1588 			 * If not the requested page then deactivate it.
1589 			 *
1590 			 * Note that the requested page, reqpage, is left
1591 			 * busied, but we still have to wake it up.  The
1592 			 * other pages are released (unbusied) by
1593 			 * vm_page_wakeup().  We do not set reqpage's
1594 			 * valid bits here, it is up to the caller.
1595 			 */
1596 
1597 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1598 			m->valid = VM_PAGE_BITS_ALL;
1599 			vm_page_undirty(m);
1600 			vm_page_flag_clear(m, PG_ZERO);
1601 
1602 			/*
1603 			 * We have to wake specifically requested pages
1604 			 * up too because we cleared PG_SWAPINPROG and
1605 			 * could be waiting for it in getpages.  However,
1606 			 * be sure to not unbusy getpages specifically
1607 			 * requested page - getpages expects it to be
1608 			 * left busy.
1609 			 */
1610 			if (i != bp->b_pager.pg_reqpage) {
1611 				vm_page_deactivate(m);
1612 				vm_page_wakeup(m);
1613 			} else {
1614 				vm_page_flash(m);
1615 			}
1616 		} else {
1617 			/*
1618 			 * For write success, clear the modify and dirty
1619 			 * status, then finish the I/O ( which decrements the
1620 			 * busy count and possibly wakes waiter's up ).
1621 			 */
1622 			vm_page_protect(m, VM_PROT_READ);
1623 			pmap_clear_modify(VM_PAGE_TO_PHYS(m));
1624 			vm_page_undirty(m);
1625 			vm_page_io_finish(m);
1626 		}
1627 	}
1628 
1629 	/*
1630 	 * adjust pip.  NOTE: the original parent may still have its own
1631 	 * pip refs on the object.
1632 	 */
1633 
1634 	if (object)
1635 		vm_object_pip_wakeupn(object, bp->b_npages);
1636 
1637 	/*
1638 	 * release the physical I/O buffer
1639 	 */
1640 
1641 	relpbuf(
1642 	    bp,
1643 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1644 		((bp->b_flags & B_ASYNC) ?
1645 		    &nsw_wcount_async :
1646 		    &nsw_wcount_sync
1647 		)
1648 	    )
1649 	);
1650 	splx(s);
1651 }
1652 
1653 /************************************************************************
1654  *				SWAP META DATA 				*
1655  ************************************************************************
1656  *
1657  *	These routines manipulate the swap metadata stored in the
1658  *	OBJT_SWAP object.  All swp_*() routines must be called at
1659  *	splvm() because swap can be freed up by the low level vm_page
1660  *	code which might be called from interrupts beyond what splbio() covers.
1661  *
1662  *	Swap metadata is implemented with a global hash and not directly
1663  *	linked into the object.  Instead the object simply contains
1664  *	appropriate tracking counters.
1665  */
1666 
1667 /*
1668  * SWP_PAGER_HASH() -	hash swap meta data
1669  *
1670  *	This is an inline helper function which hashes the swapblk given
1671  *	the object and page index.  It returns a pointer to a pointer
1672  *	to the object, or a pointer to a NULL pointer if it could not
1673  *	find a swapblk.
1674  *
1675  *	This routine must be called at splvm().
1676  */
1677 
1678 static __inline struct swblock **
1679 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1680 {
1681 	struct swblock **pswap;
1682 	struct swblock *swap;
1683 
1684 	index &= ~SWAP_META_MASK;
1685 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1686 
1687 	while ((swap = *pswap) != NULL) {
1688 		if (swap->swb_object == object &&
1689 		    swap->swb_index == index
1690 		) {
1691 			break;
1692 		}
1693 		pswap = &swap->swb_hnext;
1694 	}
1695 	return(pswap);
1696 }
1697 
1698 /*
1699  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1700  *
1701  *	We first convert the object to a swap object if it is a default
1702  *	object.
1703  *
1704  *	The specified swapblk is added to the object's swap metadata.  If
1705  *	the swapblk is not valid, it is freed instead.  Any previously
1706  *	assigned swapblk is freed.
1707  *
1708  *	This routine must be called at splvm(), except when used to convert
1709  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1710 
1711  */
1712 
1713 static void
1714 swp_pager_meta_build(
1715 	vm_object_t object,
1716 	vm_pindex_t index,
1717 	daddr_t swapblk
1718 ) {
1719 	struct swblock *swap;
1720 	struct swblock **pswap;
1721 
1722 	/*
1723 	 * Convert default object to swap object if necessary
1724 	 */
1725 
1726 	if (object->type != OBJT_SWAP) {
1727 		object->type = OBJT_SWAP;
1728 		object->un_pager.swp.swp_bcount = 0;
1729 
1730 		if (object->handle != NULL) {
1731 			TAILQ_INSERT_TAIL(
1732 			    NOBJLIST(object->handle),
1733 			    object,
1734 			    pager_object_list
1735 			);
1736 		} else {
1737 			TAILQ_INSERT_TAIL(
1738 			    &swap_pager_un_object_list,
1739 			    object,
1740 			    pager_object_list
1741 			);
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * Locate hash entry.  If not found create, but if we aren't adding
1747 	 * anything just return.  If we run out of space in the map we wait
1748 	 * and, since the hash table may have changed, retry.
1749 	 */
1750 
1751 retry:
1752 	pswap = swp_pager_hash(object, index);
1753 
1754 	if ((swap = *pswap) == NULL) {
1755 		int i;
1756 
1757 		if (swapblk == SWAPBLK_NONE)
1758 			return;
1759 
1760 		swap = *pswap = zalloc(swap_zone);
1761 		if (swap == NULL) {
1762 			VM_WAIT;
1763 			goto retry;
1764 		}
1765 		swap->swb_hnext = NULL;
1766 		swap->swb_object = object;
1767 		swap->swb_index = index & ~SWAP_META_MASK;
1768 		swap->swb_count = 0;
1769 
1770 		++object->un_pager.swp.swp_bcount;
1771 
1772 		for (i = 0; i < SWAP_META_PAGES; ++i)
1773 			swap->swb_pages[i] = SWAPBLK_NONE;
1774 	}
1775 
1776 	/*
1777 	 * Delete prior contents of metadata
1778 	 */
1779 
1780 	index &= SWAP_META_MASK;
1781 
1782 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1783 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1784 		--swap->swb_count;
1785 	}
1786 
1787 	/*
1788 	 * Enter block into metadata
1789 	 */
1790 
1791 	swap->swb_pages[index] = swapblk;
1792 	if (swapblk != SWAPBLK_NONE)
1793 		++swap->swb_count;
1794 }
1795 
1796 /*
1797  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1798  *
1799  *	The requested range of blocks is freed, with any associated swap
1800  *	returned to the swap bitmap.
1801  *
1802  *	This routine will free swap metadata structures as they are cleaned
1803  *	out.  This routine does *NOT* operate on swap metadata associated
1804  *	with resident pages.
1805  *
1806  *	This routine must be called at splvm()
1807  */
1808 
1809 static void
1810 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1811 {
1812 	if (object->type != OBJT_SWAP)
1813 		return;
1814 
1815 	while (count > 0) {
1816 		struct swblock **pswap;
1817 		struct swblock *swap;
1818 
1819 		pswap = swp_pager_hash(object, index);
1820 
1821 		if ((swap = *pswap) != NULL) {
1822 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1823 
1824 			if (v != SWAPBLK_NONE) {
1825 				swp_pager_freeswapspace(v, 1);
1826 				swap->swb_pages[index & SWAP_META_MASK] =
1827 					SWAPBLK_NONE;
1828 				if (--swap->swb_count == 0) {
1829 					*pswap = swap->swb_hnext;
1830 					zfree(swap_zone, swap);
1831 					--object->un_pager.swp.swp_bcount;
1832 				}
1833 			}
1834 			--count;
1835 			++index;
1836 		} else {
1837 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1838 			count -= n;
1839 			index += n;
1840 		}
1841 	}
1842 }
1843 
1844 /*
1845  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1846  *
1847  *	This routine locates and destroys all swap metadata associated with
1848  *	an object.
1849  *
1850  *	This routine must be called at splvm()
1851  */
1852 
1853 static void
1854 swp_pager_meta_free_all(vm_object_t object)
1855 {
1856 	daddr_t index = 0;
1857 
1858 	if (object->type != OBJT_SWAP)
1859 		return;
1860 
1861 	while (object->un_pager.swp.swp_bcount) {
1862 		struct swblock **pswap;
1863 		struct swblock *swap;
1864 
1865 		pswap = swp_pager_hash(object, index);
1866 		if ((swap = *pswap) != NULL) {
1867 			int i;
1868 
1869 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1870 				daddr_t v = swap->swb_pages[i];
1871 				if (v != SWAPBLK_NONE) {
1872 #if !defined(MAX_PERF)
1873 					--swap->swb_count;
1874 #endif
1875 					swp_pager_freeswapspace(v, 1);
1876 				}
1877 			}
1878 #if !defined(MAX_PERF)
1879 			if (swap->swb_count != 0)
1880 				panic("swap_pager_meta_free_all: swb_count != 0");
1881 #endif
1882 			*pswap = swap->swb_hnext;
1883 			zfree(swap_zone, swap);
1884 			--object->un_pager.swp.swp_bcount;
1885 		}
1886 		index += SWAP_META_PAGES;
1887 #if !defined(MAX_PERF)
1888 		if (index > 0x20000000)
1889 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1890 #endif
1891 	}
1892 }
1893 
1894 /*
1895  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1896  *
1897  *	This routine is capable of looking up, popping, or freeing
1898  *	swapblk assignments in the swap meta data or in the vm_page_t.
1899  *	The routine typically returns the swapblk being looked-up, or popped,
1900  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1901  *	was invalid.  This routine will automatically free any invalid
1902  *	meta-data swapblks.
1903  *
1904  *	It is not possible to store invalid swapblks in the swap meta data
1905  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1906  *
1907  *	When acting on a busy resident page and paging is in progress, we
1908  *	have to wait until paging is complete but otherwise can act on the
1909  *	busy page.
1910  *
1911  *	This routine must be called at splvm().
1912  *
1913  *	SWM_FREE	remove and free swap block from metadata
1914  *	SWM_POP		remove from meta data but do not free.. pop it out
1915  */
1916 
1917 static daddr_t
1918 swp_pager_meta_ctl(
1919 	vm_object_t object,
1920 	vm_pindex_t index,
1921 	int flags
1922 ) {
1923 	struct swblock **pswap;
1924 	struct swblock *swap;
1925 	daddr_t r1;
1926 
1927 	/*
1928 	 * The meta data only exists of the object is OBJT_SWAP
1929 	 * and even then might not be allocated yet.
1930 	 */
1931 
1932 	if (object->type != OBJT_SWAP)
1933 		return(SWAPBLK_NONE);
1934 
1935 	r1 = SWAPBLK_NONE;
1936 	pswap = swp_pager_hash(object, index);
1937 
1938 	if ((swap = *pswap) != NULL) {
1939 		index &= SWAP_META_MASK;
1940 		r1 = swap->swb_pages[index];
1941 
1942 		if (r1 != SWAPBLK_NONE) {
1943 			if (flags & SWM_FREE) {
1944 				swp_pager_freeswapspace(r1, 1);
1945 				r1 = SWAPBLK_NONE;
1946 			}
1947 			if (flags & (SWM_FREE|SWM_POP)) {
1948 				swap->swb_pages[index] = SWAPBLK_NONE;
1949 				if (--swap->swb_count == 0) {
1950 					*pswap = swap->swb_hnext;
1951 					zfree(swap_zone, swap);
1952 					--object->un_pager.swp.swp_bcount;
1953 				}
1954 			}
1955 		}
1956 	}
1957 	return(r1);
1958 }
1959 
1960