xref: /freebsd/sys/vm/swap_pager.c (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD, 0, "VM swap stats");
160 
161 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
162     &swap_reserved, 0, sysctl_page_shift, "A",
163     "Amount of swap storage needed to back all allocated anonymous memory.");
164 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_total, 0, sysctl_page_shift, "A",
166     "Total amount of available swap storage.");
167 
168 static int overcommit = 0;
169 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
170     "Configure virtual memory overcommit behavior. See tuning(7) "
171     "for details.");
172 static unsigned long swzone;
173 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
174     "Actual size of swap metadata zone");
175 static unsigned long swap_maxpages;
176 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
177     "Maximum amount of swap supported");
178 
179 static counter_u64_t swap_free_deferred;
180 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
181     CTLFLAG_RD, &swap_free_deferred,
182     "Number of pages that deferred freeing swap space");
183 
184 static counter_u64_t swap_free_completed;
185 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
186     CTLFLAG_RD, &swap_free_completed,
187     "Number of deferred frees completed");
188 
189 /* bits from overcommit */
190 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
191 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
192 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
193 
194 static int
195 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
196 {
197 	uint64_t newval;
198 	u_long value = *(u_long *)arg1;
199 
200 	newval = ((uint64_t)value) << PAGE_SHIFT;
201 	return (sysctl_handle_64(oidp, &newval, 0, req));
202 }
203 
204 int
205 swap_reserve(vm_ooffset_t incr)
206 {
207 
208 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
209 }
210 
211 int
212 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
213 {
214 	u_long r, s, prev, pincr;
215 	int res, error;
216 	static int curfail;
217 	static struct timeval lastfail;
218 	struct uidinfo *uip;
219 
220 	uip = cred->cr_ruidinfo;
221 
222 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
223 	    (uintmax_t)incr));
224 
225 #ifdef RACCT
226 	if (racct_enable) {
227 		PROC_LOCK(curproc);
228 		error = racct_add(curproc, RACCT_SWAP, incr);
229 		PROC_UNLOCK(curproc);
230 		if (error != 0)
231 			return (0);
232 	}
233 #endif
234 
235 	pincr = atop(incr);
236 	res = 0;
237 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
238 	r = prev + pincr;
239 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
240 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
241 		    vm_wire_count();
242 	} else
243 		s = 0;
244 	s += swap_total;
245 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
246 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
247 		res = 1;
248 	} else {
249 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
250 		if (prev < pincr)
251 			panic("swap_reserved < incr on overcommit fail");
252 	}
253 	if (res) {
254 		prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
255 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
256 		    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
257 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
258 			res = 0;
259 			prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
260 			if (prev < pincr)
261 				panic("uip->ui_vmsize < incr on overcommit fail");
262 		}
263 	}
264 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
265 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
266 		    uip->ui_uid, curproc->p_pid, incr);
267 	}
268 
269 #ifdef RACCT
270 	if (racct_enable && !res) {
271 		PROC_LOCK(curproc);
272 		racct_sub(curproc, RACCT_SWAP, incr);
273 		PROC_UNLOCK(curproc);
274 	}
275 #endif
276 
277 	return (res);
278 }
279 
280 void
281 swap_reserve_force(vm_ooffset_t incr)
282 {
283 	struct uidinfo *uip;
284 	u_long pincr;
285 
286 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
287 	    (uintmax_t)incr));
288 
289 	PROC_LOCK(curproc);
290 #ifdef RACCT
291 	if (racct_enable)
292 		racct_add_force(curproc, RACCT_SWAP, incr);
293 #endif
294 	pincr = atop(incr);
295 	atomic_add_long(&swap_reserved, pincr);
296 	uip = curproc->p_ucred->cr_ruidinfo;
297 	atomic_add_long(&uip->ui_vmsize, pincr);
298 	PROC_UNLOCK(curproc);
299 }
300 
301 void
302 swap_release(vm_ooffset_t decr)
303 {
304 	struct ucred *cred;
305 
306 	PROC_LOCK(curproc);
307 	cred = curproc->p_ucred;
308 	swap_release_by_cred(decr, cred);
309 	PROC_UNLOCK(curproc);
310 }
311 
312 void
313 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
314 {
315 	u_long prev, pdecr;
316  	struct uidinfo *uip;
317 
318 	uip = cred->cr_ruidinfo;
319 
320 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
321 	    (uintmax_t)decr));
322 
323 	pdecr = atop(decr);
324 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
325 	if (prev < pdecr)
326 		panic("swap_reserved < decr");
327 
328 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
329 	if (prev < pdecr)
330 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
331 #ifdef RACCT
332 	if (racct_enable)
333 		racct_sub_cred(cred, RACCT_SWAP, decr);
334 #endif
335 }
336 
337 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
338 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
339 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
340 static int nsw_wcount_async;	/* limit async write buffers */
341 static int nsw_wcount_async_max;/* assigned maximum			*/
342 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
343 
344 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
345 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
346     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
347     "Maximum running async swap ops");
348 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
349 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
350     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
351     "Swap Fragmentation Info");
352 
353 static struct sx sw_alloc_sx;
354 
355 /*
356  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
357  * of searching a named list by hashing it just a little.
358  */
359 
360 #define NOBJLISTS		8
361 
362 #define NOBJLIST(handle)	\
363 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
364 
365 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
366 static uma_zone_t swwbuf_zone;
367 static uma_zone_t swrbuf_zone;
368 static uma_zone_t swblk_zone;
369 static uma_zone_t swpctrie_zone;
370 
371 /*
372  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
373  * calls hooked from other parts of the VM system and do not appear here.
374  * (see vm/swap_pager.h).
375  */
376 static vm_object_t
377 		swap_pager_alloc(void *handle, vm_ooffset_t size,
378 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
379 static void	swap_pager_dealloc(vm_object_t object);
380 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
381     int *);
382 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
383     int *, pgo_getpages_iodone_t, void *);
384 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
385 static boolean_t
386 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
387 static void	swap_pager_init(void);
388 static void	swap_pager_unswapped(vm_page_t);
389 static void	swap_pager_swapoff(struct swdevt *sp);
390 static void	swap_pager_update_writecount(vm_object_t object,
391     vm_offset_t start, vm_offset_t end);
392 static void	swap_pager_release_writecount(vm_object_t object,
393     vm_offset_t start, vm_offset_t end);
394 
395 struct pagerops swappagerops = {
396 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
397 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
398 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
399 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
400 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
401 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
402 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
403 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
404 	.pgo_update_writecount = swap_pager_update_writecount,
405 	.pgo_release_writecount = swap_pager_release_writecount,
406 };
407 
408 /*
409  * swap_*() routines are externally accessible.  swp_*() routines are
410  * internal.
411  */
412 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
413 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
414 
415 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
416     "Maximum size of a swap block in pages");
417 
418 static void	swp_sizecheck(void);
419 static void	swp_pager_async_iodone(struct buf *bp);
420 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
421 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
422 static int	swapongeom(struct vnode *);
423 static int	swaponvp(struct thread *, struct vnode *, u_long);
424 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
425 
426 /*
427  * Swap bitmap functions
428  */
429 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
430 static daddr_t	swp_pager_getswapspace(int *npages, int limit);
431 
432 /*
433  * Metadata functions
434  */
435 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
436 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
437 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
438     vm_pindex_t pindex, vm_pindex_t count);
439 static void swp_pager_meta_free_all(vm_object_t);
440 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
441 
442 static void
443 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
444 {
445 
446 	*start = SWAPBLK_NONE;
447 	*num = 0;
448 }
449 
450 static void
451 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
452 {
453 
454 	if (*start + *num == addr) {
455 		(*num)++;
456 	} else {
457 		swp_pager_freeswapspace(*start, *num);
458 		*start = addr;
459 		*num = 1;
460 	}
461 }
462 
463 static void *
464 swblk_trie_alloc(struct pctrie *ptree)
465 {
466 
467 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
468 	    M_USE_RESERVE : 0)));
469 }
470 
471 static void
472 swblk_trie_free(struct pctrie *ptree, void *node)
473 {
474 
475 	uma_zfree(swpctrie_zone, node);
476 }
477 
478 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
479 
480 /*
481  * SWP_SIZECHECK() -	update swap_pager_full indication
482  *
483  *	update the swap_pager_almost_full indication and warn when we are
484  *	about to run out of swap space, using lowat/hiwat hysteresis.
485  *
486  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
487  *
488  *	No restrictions on call
489  *	This routine may not block.
490  */
491 static void
492 swp_sizecheck(void)
493 {
494 
495 	if (swap_pager_avail < nswap_lowat) {
496 		if (swap_pager_almost_full == 0) {
497 			printf("swap_pager: out of swap space\n");
498 			swap_pager_almost_full = 1;
499 		}
500 	} else {
501 		swap_pager_full = 0;
502 		if (swap_pager_avail > nswap_hiwat)
503 			swap_pager_almost_full = 0;
504 	}
505 }
506 
507 /*
508  * SWAP_PAGER_INIT() -	initialize the swap pager!
509  *
510  *	Expected to be started from system init.  NOTE:  This code is run
511  *	before much else so be careful what you depend on.  Most of the VM
512  *	system has yet to be initialized at this point.
513  */
514 static void
515 swap_pager_init(void)
516 {
517 	/*
518 	 * Initialize object lists
519 	 */
520 	int i;
521 
522 	for (i = 0; i < NOBJLISTS; ++i)
523 		TAILQ_INIT(&swap_pager_object_list[i]);
524 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
525 	sx_init(&sw_alloc_sx, "swspsx");
526 	sx_init(&swdev_syscall_lock, "swsysc");
527 }
528 
529 static void
530 swap_pager_counters(void)
531 {
532 
533 	swap_free_deferred = counter_u64_alloc(M_WAITOK);
534 	swap_free_completed = counter_u64_alloc(M_WAITOK);
535 }
536 SYSINIT(swap_counters, SI_SUB_CPU, SI_ORDER_ANY, swap_pager_counters, NULL);
537 
538 /*
539  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
540  *
541  *	Expected to be started from pageout process once, prior to entering
542  *	its main loop.
543  */
544 void
545 swap_pager_swap_init(void)
546 {
547 	unsigned long n, n2;
548 
549 	/*
550 	 * Number of in-transit swap bp operations.  Don't
551 	 * exhaust the pbufs completely.  Make sure we
552 	 * initialize workable values (0 will work for hysteresis
553 	 * but it isn't very efficient).
554 	 *
555 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
556 	 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
557 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
558 	 * constrained by the swap device interleave stripe size.
559 	 *
560 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
561 	 * designed to prevent other I/O from having high latencies due to
562 	 * our pageout I/O.  The value 4 works well for one or two active swap
563 	 * devices but is probably a little low if you have more.  Even so,
564 	 * a higher value would probably generate only a limited improvement
565 	 * with three or four active swap devices since the system does not
566 	 * typically have to pageout at extreme bandwidths.   We will want
567 	 * at least 2 per swap devices, and 4 is a pretty good value if you
568 	 * have one NFS swap device due to the command/ack latency over NFS.
569 	 * So it all works out pretty well.
570 	 */
571 	nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
572 
573 	nsw_wcount_async = 4;
574 	nsw_wcount_async_max = nsw_wcount_async;
575 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
576 
577 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
578 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
579 
580 	/*
581 	 * Initialize our zone, taking the user's requested size or
582 	 * estimating the number we need based on the number of pages
583 	 * in the system.
584 	 */
585 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
586 	    vm_cnt.v_page_count / 2;
587 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
588 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
589 	if (swpctrie_zone == NULL)
590 		panic("failed to create swap pctrie zone.");
591 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
592 	    NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
593 	if (swblk_zone == NULL)
594 		panic("failed to create swap blk zone.");
595 	n2 = n;
596 	do {
597 		if (uma_zone_reserve_kva(swblk_zone, n))
598 			break;
599 		/*
600 		 * if the allocation failed, try a zone two thirds the
601 		 * size of the previous attempt.
602 		 */
603 		n -= ((n + 2) / 3);
604 	} while (n > 0);
605 
606 	/*
607 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
608 	 * requested size.  Account for the difference when
609 	 * calculating swap_maxpages.
610 	 */
611 	n = uma_zone_get_max(swblk_zone);
612 
613 	if (n < n2)
614 		printf("Swap blk zone entries changed from %lu to %lu.\n",
615 		    n2, n);
616 	/* absolute maximum we can handle assuming 100% efficiency */
617 	swap_maxpages = n * SWAP_META_PAGES;
618 	swzone = n * sizeof(struct swblk);
619 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
620 		printf("Cannot reserve swap pctrie zone, "
621 		    "reduce kern.maxswzone.\n");
622 }
623 
624 static vm_object_t
625 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
626     vm_ooffset_t offset)
627 {
628 	vm_object_t object;
629 
630 	if (cred != NULL) {
631 		if (!swap_reserve_by_cred(size, cred))
632 			return (NULL);
633 		crhold(cred);
634 	}
635 
636 	/*
637 	 * The un_pager.swp.swp_blks trie is initialized by
638 	 * vm_object_allocate() to ensure the correct order of
639 	 * visibility to other threads.
640 	 */
641 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
642 	    PAGE_MASK + size));
643 
644 	object->un_pager.swp.writemappings = 0;
645 	object->handle = handle;
646 	if (cred != NULL) {
647 		object->cred = cred;
648 		object->charge = size;
649 	}
650 	return (object);
651 }
652 
653 /*
654  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
655  *			its metadata structures.
656  *
657  *	This routine is called from the mmap and fork code to create a new
658  *	OBJT_SWAP object.
659  *
660  *	This routine must ensure that no live duplicate is created for
661  *	the named object request, which is protected against by
662  *	holding the sw_alloc_sx lock in case handle != NULL.
663  */
664 static vm_object_t
665 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
666     vm_ooffset_t offset, struct ucred *cred)
667 {
668 	vm_object_t object;
669 
670 	if (handle != NULL) {
671 		/*
672 		 * Reference existing named region or allocate new one.  There
673 		 * should not be a race here against swp_pager_meta_build()
674 		 * as called from vm_page_remove() in regards to the lookup
675 		 * of the handle.
676 		 */
677 		sx_xlock(&sw_alloc_sx);
678 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
679 		if (object == NULL) {
680 			object = swap_pager_alloc_init(handle, cred, size,
681 			    offset);
682 			if (object != NULL) {
683 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
684 				    object, pager_object_list);
685 			}
686 		}
687 		sx_xunlock(&sw_alloc_sx);
688 	} else {
689 		object = swap_pager_alloc_init(handle, cred, size, offset);
690 	}
691 	return (object);
692 }
693 
694 /*
695  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
696  *
697  *	The swap backing for the object is destroyed.  The code is
698  *	designed such that we can reinstantiate it later, but this
699  *	routine is typically called only when the entire object is
700  *	about to be destroyed.
701  *
702  *	The object must be locked.
703  */
704 static void
705 swap_pager_dealloc(vm_object_t object)
706 {
707 
708 	VM_OBJECT_ASSERT_WLOCKED(object);
709 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
710 
711 	/*
712 	 * Remove from list right away so lookups will fail if we block for
713 	 * pageout completion.
714 	 */
715 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
716 		VM_OBJECT_WUNLOCK(object);
717 		sx_xlock(&sw_alloc_sx);
718 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
719 		    pager_object_list);
720 		sx_xunlock(&sw_alloc_sx);
721 		VM_OBJECT_WLOCK(object);
722 	}
723 
724 	vm_object_pip_wait(object, "swpdea");
725 
726 	/*
727 	 * Free all remaining metadata.  We only bother to free it from
728 	 * the swap meta data.  We do not attempt to free swapblk's still
729 	 * associated with vm_page_t's for this object.  We do not care
730 	 * if paging is still in progress on some objects.
731 	 */
732 	swp_pager_meta_free_all(object);
733 	object->handle = NULL;
734 	object->type = OBJT_DEAD;
735 }
736 
737 /************************************************************************
738  *			SWAP PAGER BITMAP ROUTINES			*
739  ************************************************************************/
740 
741 /*
742  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
743  *
744  *	Allocate swap for up to the requested number of pages, and at
745  *	least a minimum number of pages.  The starting swap block number
746  *	(a page index) is returned or SWAPBLK_NONE if the allocation
747  *	failed.
748  *
749  *	Also has the side effect of advising that somebody made a mistake
750  *	when they configured swap and didn't configure enough.
751  *
752  *	This routine may not sleep.
753  *
754  *	We allocate in round-robin fashion from the configured devices.
755  */
756 static daddr_t
757 swp_pager_getswapspace(int *io_npages, int limit)
758 {
759 	daddr_t blk;
760 	struct swdevt *sp;
761 	int mpages, npages;
762 
763 	blk = SWAPBLK_NONE;
764 	mpages = *io_npages;
765 	npages = imin(BLIST_MAX_ALLOC, mpages);
766 	mtx_lock(&sw_dev_mtx);
767 	sp = swdevhd;
768 	while (!TAILQ_EMPTY(&swtailq)) {
769 		if (sp == NULL)
770 			sp = TAILQ_FIRST(&swtailq);
771 		if ((sp->sw_flags & SW_CLOSING) == 0)
772 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
773 		if (blk != SWAPBLK_NONE)
774 			break;
775 		sp = TAILQ_NEXT(sp, sw_list);
776 		if (swdevhd == sp) {
777 			if (npages <= limit)
778 				break;
779 			mpages = npages - 1;
780 			npages >>= 1;
781 		}
782 	}
783 	if (blk != SWAPBLK_NONE) {
784 		*io_npages = npages;
785 		blk += sp->sw_first;
786 		sp->sw_used += npages;
787 		swap_pager_avail -= npages;
788 		swp_sizecheck();
789 		swdevhd = TAILQ_NEXT(sp, sw_list);
790 	} else {
791 		if (swap_pager_full != 2) {
792 			printf("swp_pager_getswapspace(%d): failed\n",
793 			    *io_npages);
794 			swap_pager_full = 2;
795 			swap_pager_almost_full = 1;
796 		}
797 		swdevhd = NULL;
798 	}
799 	mtx_unlock(&sw_dev_mtx);
800 	return (blk);
801 }
802 
803 static bool
804 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
805 {
806 
807 	return (blk >= sp->sw_first && blk < sp->sw_end);
808 }
809 
810 static void
811 swp_pager_strategy(struct buf *bp)
812 {
813 	struct swdevt *sp;
814 
815 	mtx_lock(&sw_dev_mtx);
816 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
817 		if (swp_pager_isondev(bp->b_blkno, sp)) {
818 			mtx_unlock(&sw_dev_mtx);
819 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
820 			    unmapped_buf_allowed) {
821 				bp->b_data = unmapped_buf;
822 				bp->b_offset = 0;
823 			} else {
824 				pmap_qenter((vm_offset_t)bp->b_data,
825 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
826 			}
827 			sp->sw_strategy(bp, sp);
828 			return;
829 		}
830 	}
831 	panic("Swapdev not found");
832 }
833 
834 
835 /*
836  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
837  *
838  *	This routine returns the specified swap blocks back to the bitmap.
839  *
840  *	This routine may not sleep.
841  */
842 static void
843 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
844 {
845 	struct swdevt *sp;
846 
847 	if (npages == 0)
848 		return;
849 	mtx_lock(&sw_dev_mtx);
850 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
851 		if (swp_pager_isondev(blk, sp)) {
852 			sp->sw_used -= npages;
853 			/*
854 			 * If we are attempting to stop swapping on
855 			 * this device, we don't want to mark any
856 			 * blocks free lest they be reused.
857 			 */
858 			if ((sp->sw_flags & SW_CLOSING) == 0) {
859 				blist_free(sp->sw_blist, blk - sp->sw_first,
860 				    npages);
861 				swap_pager_avail += npages;
862 				swp_sizecheck();
863 			}
864 			mtx_unlock(&sw_dev_mtx);
865 			return;
866 		}
867 	}
868 	panic("Swapdev not found");
869 }
870 
871 /*
872  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
873  */
874 static int
875 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
876 {
877 	struct sbuf sbuf;
878 	struct swdevt *sp;
879 	const char *devname;
880 	int error;
881 
882 	error = sysctl_wire_old_buffer(req, 0);
883 	if (error != 0)
884 		return (error);
885 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
886 	mtx_lock(&sw_dev_mtx);
887 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
888 		if (vn_isdisk(sp->sw_vp, NULL))
889 			devname = devtoname(sp->sw_vp->v_rdev);
890 		else
891 			devname = "[file]";
892 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
893 		blist_stats(sp->sw_blist, &sbuf);
894 	}
895 	mtx_unlock(&sw_dev_mtx);
896 	error = sbuf_finish(&sbuf);
897 	sbuf_delete(&sbuf);
898 	return (error);
899 }
900 
901 /*
902  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
903  *				range within an object.
904  *
905  *	This is a globally accessible routine.
906  *
907  *	This routine removes swapblk assignments from swap metadata.
908  *
909  *	The external callers of this routine typically have already destroyed
910  *	or renamed vm_page_t's associated with this range in the object so
911  *	we should be ok.
912  *
913  *	The object must be locked.
914  */
915 void
916 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
917 {
918 
919 	swp_pager_meta_free(object, start, size);
920 }
921 
922 /*
923  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
924  *
925  *	Assigns swap blocks to the specified range within the object.  The
926  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
927  *
928  *	Returns 0 on success, -1 on failure.
929  */
930 int
931 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
932 {
933 	daddr_t addr, blk, n_free, s_free;
934 	int i, j, n;
935 
936 	swp_pager_init_freerange(&s_free, &n_free);
937 	VM_OBJECT_WLOCK(object);
938 	for (i = 0; i < size; i += n) {
939 		n = size - i;
940 		blk = swp_pager_getswapspace(&n, 1);
941 		if (blk == SWAPBLK_NONE) {
942 			swp_pager_meta_free(object, start, i);
943 			VM_OBJECT_WUNLOCK(object);
944 			return (-1);
945 		}
946 		for (j = 0; j < n; ++j) {
947 			addr = swp_pager_meta_build(object,
948 			    start + i + j, blk + j);
949 			if (addr != SWAPBLK_NONE)
950 				swp_pager_update_freerange(&s_free, &n_free,
951 				    addr);
952 		}
953 	}
954 	swp_pager_freeswapspace(s_free, n_free);
955 	VM_OBJECT_WUNLOCK(object);
956 	return (0);
957 }
958 
959 static bool
960 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
961     vm_pindex_t pindex, daddr_t addr)
962 {
963 	daddr_t dstaddr;
964 
965 	KASSERT(srcobject->type == OBJT_SWAP,
966 	    ("%s: Srcobject not swappable", __func__));
967 	if (dstobject->type == OBJT_SWAP &&
968 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
969 		/* Caller should destroy the source block. */
970 		return (false);
971 	}
972 
973 	/*
974 	 * Destination has no swapblk and is not resident, transfer source.
975 	 * swp_pager_meta_build() can sleep.
976 	 */
977 	vm_object_pip_add(srcobject, 1);
978 	VM_OBJECT_WUNLOCK(srcobject);
979 	vm_object_pip_add(dstobject, 1);
980 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
981 	KASSERT(dstaddr == SWAPBLK_NONE,
982 	    ("Unexpected destination swapblk"));
983 	vm_object_pip_wakeup(dstobject);
984 	VM_OBJECT_WLOCK(srcobject);
985 	vm_object_pip_wakeup(srcobject);
986 	return (true);
987 }
988 
989 /*
990  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
991  *			and destroy the source.
992  *
993  *	Copy any valid swapblks from the source to the destination.  In
994  *	cases where both the source and destination have a valid swapblk,
995  *	we keep the destination's.
996  *
997  *	This routine is allowed to sleep.  It may sleep allocating metadata
998  *	indirectly through swp_pager_meta_build() or if paging is still in
999  *	progress on the source.
1000  *
1001  *	The source object contains no vm_page_t's (which is just as well)
1002  *
1003  *	The source object is of type OBJT_SWAP.
1004  *
1005  *	The source and destination objects must be locked.
1006  *	Both object locks may temporarily be released.
1007  */
1008 void
1009 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1010     vm_pindex_t offset, int destroysource)
1011 {
1012 
1013 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1014 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1015 
1016 	/*
1017 	 * If destroysource is set, we remove the source object from the
1018 	 * swap_pager internal queue now.
1019 	 */
1020 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1021 	    srcobject->handle != NULL) {
1022 		vm_object_pip_add(srcobject, 1);
1023 		VM_OBJECT_WUNLOCK(srcobject);
1024 		vm_object_pip_add(dstobject, 1);
1025 		VM_OBJECT_WUNLOCK(dstobject);
1026 		sx_xlock(&sw_alloc_sx);
1027 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1028 		    pager_object_list);
1029 		sx_xunlock(&sw_alloc_sx);
1030 		VM_OBJECT_WLOCK(dstobject);
1031 		vm_object_pip_wakeup(dstobject);
1032 		VM_OBJECT_WLOCK(srcobject);
1033 		vm_object_pip_wakeup(srcobject);
1034 	}
1035 
1036 	/*
1037 	 * Transfer source to destination.
1038 	 */
1039 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1040 
1041 	/*
1042 	 * Free left over swap blocks in source.
1043 	 *
1044 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1045 	 * double-remove the object from the swap queues.
1046 	 */
1047 	if (destroysource) {
1048 		swp_pager_meta_free_all(srcobject);
1049 		/*
1050 		 * Reverting the type is not necessary, the caller is going
1051 		 * to destroy srcobject directly, but I'm doing it here
1052 		 * for consistency since we've removed the object from its
1053 		 * queues.
1054 		 */
1055 		srcobject->type = OBJT_DEFAULT;
1056 	}
1057 }
1058 
1059 /*
1060  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1061  *				the requested page.
1062  *
1063  *	We determine whether good backing store exists for the requested
1064  *	page and return TRUE if it does, FALSE if it doesn't.
1065  *
1066  *	If TRUE, we also try to determine how much valid, contiguous backing
1067  *	store exists before and after the requested page.
1068  */
1069 static boolean_t
1070 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1071     int *after)
1072 {
1073 	daddr_t blk, blk0;
1074 	int i;
1075 
1076 	VM_OBJECT_ASSERT_LOCKED(object);
1077 	KASSERT(object->type == OBJT_SWAP,
1078 	    ("%s: object not swappable", __func__));
1079 
1080 	/*
1081 	 * do we have good backing store at the requested index ?
1082 	 */
1083 	blk0 = swp_pager_meta_lookup(object, pindex);
1084 	if (blk0 == SWAPBLK_NONE) {
1085 		if (before)
1086 			*before = 0;
1087 		if (after)
1088 			*after = 0;
1089 		return (FALSE);
1090 	}
1091 
1092 	/*
1093 	 * find backwards-looking contiguous good backing store
1094 	 */
1095 	if (before != NULL) {
1096 		for (i = 1; i < SWB_NPAGES; i++) {
1097 			if (i > pindex)
1098 				break;
1099 			blk = swp_pager_meta_lookup(object, pindex - i);
1100 			if (blk != blk0 - i)
1101 				break;
1102 		}
1103 		*before = i - 1;
1104 	}
1105 
1106 	/*
1107 	 * find forward-looking contiguous good backing store
1108 	 */
1109 	if (after != NULL) {
1110 		for (i = 1; i < SWB_NPAGES; i++) {
1111 			blk = swp_pager_meta_lookup(object, pindex + i);
1112 			if (blk != blk0 + i)
1113 				break;
1114 		}
1115 		*after = i - 1;
1116 	}
1117 	return (TRUE);
1118 }
1119 
1120 /*
1121  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1122  *
1123  *	This removes any associated swap backing store, whether valid or
1124  *	not, from the page.
1125  *
1126  *	This routine is typically called when a page is made dirty, at
1127  *	which point any associated swap can be freed.  MADV_FREE also
1128  *	calls us in a special-case situation
1129  *
1130  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1131  *	should make the page dirty before calling this routine.  This routine
1132  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1133  *	depends on it.
1134  *
1135  *	This routine may not sleep.
1136  *
1137  *	The object containing the page may be locked.
1138  */
1139 static void
1140 swap_pager_unswapped(vm_page_t m)
1141 {
1142 	struct swblk *sb;
1143 	vm_object_t obj;
1144 
1145 	/*
1146 	 * Handle enqueing deferred frees first.  If we do not have the
1147 	 * object lock we wait for the page daemon to clear the space.
1148 	 */
1149 	obj = m->object;
1150 	if (!VM_OBJECT_WOWNED(obj)) {
1151 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1152 		/*
1153 		 * The caller is responsible for synchronization but we
1154 		 * will harmlessly handle races.  This is typically provided
1155 		 * by only calling unswapped() when a page transitions from
1156 		 * clean to dirty.
1157 		 */
1158 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1159 		    PGA_SWAP_SPACE) {
1160 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1161 			counter_u64_add(swap_free_deferred, 1);
1162 		}
1163 		return;
1164 	}
1165 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1166 		counter_u64_add(swap_free_completed, 1);
1167 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1168 
1169 	/*
1170 	 * The meta data only exists if the object is OBJT_SWAP
1171 	 * and even then might not be allocated yet.
1172 	 */
1173 	KASSERT(m->object->type == OBJT_SWAP,
1174 	    ("Free object not swappable"));
1175 
1176 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1177 	    rounddown(m->pindex, SWAP_META_PAGES));
1178 	if (sb == NULL)
1179 		return;
1180 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1181 		return;
1182 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1183 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1184 	swp_pager_free_empty_swblk(m->object, sb);
1185 }
1186 
1187 /*
1188  * swap_pager_getpages() - bring pages in from swap
1189  *
1190  *	Attempt to page in the pages in array "ma" of length "count".  The
1191  *	caller may optionally specify that additional pages preceding and
1192  *	succeeding the specified range be paged in.  The number of such pages
1193  *	is returned in the "rbehind" and "rahead" parameters, and they will
1194  *	be in the inactive queue upon return.
1195  *
1196  *	The pages in "ma" must be busied and will remain busied upon return.
1197  */
1198 static int
1199 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1200     int *rahead)
1201 {
1202 	struct buf *bp;
1203 	vm_page_t bm, mpred, msucc, p;
1204 	vm_pindex_t pindex;
1205 	daddr_t blk;
1206 	int i, maxahead, maxbehind, reqcount;
1207 
1208 	reqcount = count;
1209 
1210 	/*
1211 	 * Determine the final number of read-behind pages and
1212 	 * allocate them BEFORE releasing the object lock.  Otherwise,
1213 	 * there can be a problematic race with vm_object_split().
1214 	 * Specifically, vm_object_split() might first transfer pages
1215 	 * that precede ma[0] in the current object to a new object,
1216 	 * and then this function incorrectly recreates those pages as
1217 	 * read-behind pages in the current object.
1218 	 */
1219 	KASSERT(object->type == OBJT_SWAP,
1220 	    ("%s: object not swappable", __func__));
1221 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1222 		return (VM_PAGER_FAIL);
1223 
1224 	/*
1225 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1226 	 */
1227 	if (rahead != NULL) {
1228 		KASSERT(reqcount - 1 <= maxahead,
1229 		    ("page count %d extends beyond swap block", reqcount));
1230 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1231 		pindex = ma[reqcount - 1]->pindex;
1232 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1233 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1234 			*rahead = msucc->pindex - pindex - 1;
1235 	}
1236 	if (rbehind != NULL) {
1237 		*rbehind = imin(*rbehind, maxbehind);
1238 		pindex = ma[0]->pindex;
1239 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1240 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1241 			*rbehind = pindex - mpred->pindex - 1;
1242 	}
1243 
1244 	bm = ma[0];
1245 	for (i = 0; i < count; i++)
1246 		ma[i]->oflags |= VPO_SWAPINPROG;
1247 
1248 	/*
1249 	 * Allocate readahead and readbehind pages.
1250 	 */
1251 	if (rbehind != NULL) {
1252 		for (i = 1; i <= *rbehind; i++) {
1253 			p = vm_page_alloc(object, ma[0]->pindex - i,
1254 			    VM_ALLOC_NORMAL);
1255 			if (p == NULL)
1256 				break;
1257 			p->oflags |= VPO_SWAPINPROG;
1258 			bm = p;
1259 		}
1260 		*rbehind = i - 1;
1261 	}
1262 	if (rahead != NULL) {
1263 		for (i = 0; i < *rahead; i++) {
1264 			p = vm_page_alloc(object,
1265 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1266 			if (p == NULL)
1267 				break;
1268 			p->oflags |= VPO_SWAPINPROG;
1269 		}
1270 		*rahead = i;
1271 	}
1272 	if (rbehind != NULL)
1273 		count += *rbehind;
1274 	if (rahead != NULL)
1275 		count += *rahead;
1276 
1277 	vm_object_pip_add(object, count);
1278 
1279 	pindex = bm->pindex;
1280 	blk = swp_pager_meta_lookup(object, pindex);
1281 	KASSERT(blk != SWAPBLK_NONE,
1282 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1283 
1284 	VM_OBJECT_WUNLOCK(object);
1285 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1286 	/* Pages cannot leave the object while busy. */
1287 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1288 		MPASS(p->pindex == bm->pindex + i);
1289 		bp->b_pages[i] = p;
1290 	}
1291 
1292 	bp->b_flags |= B_PAGING;
1293 	bp->b_iocmd = BIO_READ;
1294 	bp->b_iodone = swp_pager_async_iodone;
1295 	bp->b_rcred = crhold(thread0.td_ucred);
1296 	bp->b_wcred = crhold(thread0.td_ucred);
1297 	bp->b_blkno = blk;
1298 	bp->b_bcount = PAGE_SIZE * count;
1299 	bp->b_bufsize = PAGE_SIZE * count;
1300 	bp->b_npages = count;
1301 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1302 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1303 
1304 	VM_CNT_INC(v_swapin);
1305 	VM_CNT_ADD(v_swappgsin, count);
1306 
1307 	/*
1308 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1309 	 * this point because we automatically release it on completion.
1310 	 * Instead, we look at the one page we are interested in which we
1311 	 * still hold a lock on even through the I/O completion.
1312 	 *
1313 	 * The other pages in our ma[] array are also released on completion,
1314 	 * so we cannot assume they are valid anymore either.
1315 	 *
1316 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1317 	 */
1318 	BUF_KERNPROC(bp);
1319 	swp_pager_strategy(bp);
1320 
1321 	/*
1322 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1323 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1324 	 * is set in the metadata for each page in the request.
1325 	 */
1326 	VM_OBJECT_WLOCK(object);
1327 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1328 		ma[0]->oflags |= VPO_SWAPSLEEP;
1329 		VM_CNT_INC(v_intrans);
1330 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1331 		    "swread", hz * 20)) {
1332 			printf(
1333 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1334 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1335 		}
1336 	}
1337 
1338 	/*
1339 	 * If we had an unrecoverable read error pages will not be valid.
1340 	 */
1341 	for (i = 0; i < reqcount; i++)
1342 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1343 			return (VM_PAGER_ERROR);
1344 
1345 	return (VM_PAGER_OK);
1346 
1347 	/*
1348 	 * A final note: in a low swap situation, we cannot deallocate swap
1349 	 * and mark a page dirty here because the caller is likely to mark
1350 	 * the page clean when we return, causing the page to possibly revert
1351 	 * to all-zero's later.
1352 	 */
1353 }
1354 
1355 /*
1356  * 	swap_pager_getpages_async():
1357  *
1358  *	Right now this is emulation of asynchronous operation on top of
1359  *	swap_pager_getpages().
1360  */
1361 static int
1362 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1363     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1364 {
1365 	int r, error;
1366 
1367 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1368 	VM_OBJECT_WUNLOCK(object);
1369 	switch (r) {
1370 	case VM_PAGER_OK:
1371 		error = 0;
1372 		break;
1373 	case VM_PAGER_ERROR:
1374 		error = EIO;
1375 		break;
1376 	case VM_PAGER_FAIL:
1377 		error = EINVAL;
1378 		break;
1379 	default:
1380 		panic("unhandled swap_pager_getpages() error %d", r);
1381 	}
1382 	(iodone)(arg, ma, count, error);
1383 	VM_OBJECT_WLOCK(object);
1384 
1385 	return (r);
1386 }
1387 
1388 /*
1389  *	swap_pager_putpages:
1390  *
1391  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1392  *
1393  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1394  *	are automatically converted to SWAP objects.
1395  *
1396  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1397  *	vm_page reservation system coupled with properly written VFS devices
1398  *	should ensure that no low-memory deadlock occurs.  This is an area
1399  *	which needs work.
1400  *
1401  *	The parent has N vm_object_pip_add() references prior to
1402  *	calling us and will remove references for rtvals[] that are
1403  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1404  *	completion.
1405  *
1406  *	The parent has soft-busy'd the pages it passes us and will unbusy
1407  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1408  *	We need to unbusy the rest on I/O completion.
1409  */
1410 static void
1411 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1412     int flags, int *rtvals)
1413 {
1414 	struct buf *bp;
1415 	daddr_t addr, blk, n_free, s_free;
1416 	vm_page_t mreq;
1417 	int i, j, n;
1418 	bool async;
1419 
1420 	KASSERT(count == 0 || ma[0]->object == object,
1421 	    ("%s: object mismatch %p/%p",
1422 	    __func__, object, ma[0]->object));
1423 
1424 	/*
1425 	 * Step 1
1426 	 *
1427 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1428 	 */
1429 	if (object->type != OBJT_SWAP) {
1430 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1431 		KASSERT(addr == SWAPBLK_NONE,
1432 		    ("unexpected object swap block"));
1433 	}
1434 	VM_OBJECT_WUNLOCK(object);
1435 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1436 	swp_pager_init_freerange(&s_free, &n_free);
1437 
1438 	/*
1439 	 * Step 2
1440 	 *
1441 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1442 	 * The page is left dirty until the pageout operation completes
1443 	 * successfully.
1444 	 */
1445 	for (i = 0; i < count; i += n) {
1446 		/* Maximum I/O size is limited by maximum swap block size. */
1447 		n = min(count - i, nsw_cluster_max);
1448 
1449 		/* Get a block of swap of size up to size n. */
1450 		blk = swp_pager_getswapspace(&n, 4);
1451 		if (blk == SWAPBLK_NONE) {
1452 			for (j = 0; j < n; ++j)
1453 				rtvals[i + j] = VM_PAGER_FAIL;
1454 			continue;
1455 		}
1456 
1457 		/*
1458 		 * All I/O parameters have been satisfied.  Build the I/O
1459 		 * request and assign the swap space.
1460 		 */
1461 		if (async) {
1462 			mtx_lock(&swbuf_mtx);
1463 			while (nsw_wcount_async == 0)
1464 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1465 				    "swbufa", 0);
1466 			nsw_wcount_async--;
1467 			mtx_unlock(&swbuf_mtx);
1468 		}
1469 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1470 		if (async)
1471 			bp->b_flags = B_ASYNC;
1472 		bp->b_flags |= B_PAGING;
1473 		bp->b_iocmd = BIO_WRITE;
1474 
1475 		bp->b_rcred = crhold(thread0.td_ucred);
1476 		bp->b_wcred = crhold(thread0.td_ucred);
1477 		bp->b_bcount = PAGE_SIZE * n;
1478 		bp->b_bufsize = PAGE_SIZE * n;
1479 		bp->b_blkno = blk;
1480 
1481 		VM_OBJECT_WLOCK(object);
1482 		for (j = 0; j < n; ++j) {
1483 			mreq = ma[i + j];
1484 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1485 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1486 			    blk + j);
1487 			if (addr != SWAPBLK_NONE)
1488 				swp_pager_update_freerange(&s_free, &n_free,
1489 				    addr);
1490 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1491 			mreq->oflags |= VPO_SWAPINPROG;
1492 			bp->b_pages[j] = mreq;
1493 		}
1494 		VM_OBJECT_WUNLOCK(object);
1495 		bp->b_npages = n;
1496 		/*
1497 		 * Must set dirty range for NFS to work.
1498 		 */
1499 		bp->b_dirtyoff = 0;
1500 		bp->b_dirtyend = bp->b_bcount;
1501 
1502 		VM_CNT_INC(v_swapout);
1503 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1504 
1505 		/*
1506 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1507 		 * can call the async completion routine at the end of a
1508 		 * synchronous I/O operation.  Otherwise, our caller would
1509 		 * perform duplicate unbusy and wakeup operations on the page
1510 		 * and object, respectively.
1511 		 */
1512 		for (j = 0; j < n; j++)
1513 			rtvals[i + j] = VM_PAGER_PEND;
1514 
1515 		/*
1516 		 * asynchronous
1517 		 *
1518 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1519 		 */
1520 		if (async) {
1521 			bp->b_iodone = swp_pager_async_iodone;
1522 			BUF_KERNPROC(bp);
1523 			swp_pager_strategy(bp);
1524 			continue;
1525 		}
1526 
1527 		/*
1528 		 * synchronous
1529 		 *
1530 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1531 		 */
1532 		bp->b_iodone = bdone;
1533 		swp_pager_strategy(bp);
1534 
1535 		/*
1536 		 * Wait for the sync I/O to complete.
1537 		 */
1538 		bwait(bp, PVM, "swwrt");
1539 
1540 		/*
1541 		 * Now that we are through with the bp, we can call the
1542 		 * normal async completion, which frees everything up.
1543 		 */
1544 		swp_pager_async_iodone(bp);
1545 	}
1546 	swp_pager_freeswapspace(s_free, n_free);
1547 	VM_OBJECT_WLOCK(object);
1548 }
1549 
1550 /*
1551  *	swp_pager_async_iodone:
1552  *
1553  *	Completion routine for asynchronous reads and writes from/to swap.
1554  *	Also called manually by synchronous code to finish up a bp.
1555  *
1556  *	This routine may not sleep.
1557  */
1558 static void
1559 swp_pager_async_iodone(struct buf *bp)
1560 {
1561 	int i;
1562 	vm_object_t object = NULL;
1563 
1564 	/*
1565 	 * Report error - unless we ran out of memory, in which case
1566 	 * we've already logged it in swapgeom_strategy().
1567 	 */
1568 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1569 		printf(
1570 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1571 			"size %ld, error %d\n",
1572 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1573 		    (long)bp->b_blkno,
1574 		    (long)bp->b_bcount,
1575 		    bp->b_error
1576 		);
1577 	}
1578 
1579 	/*
1580 	 * remove the mapping for kernel virtual
1581 	 */
1582 	if (buf_mapped(bp))
1583 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1584 	else
1585 		bp->b_data = bp->b_kvabase;
1586 
1587 	if (bp->b_npages) {
1588 		object = bp->b_pages[0]->object;
1589 		VM_OBJECT_WLOCK(object);
1590 	}
1591 
1592 	/*
1593 	 * cleanup pages.  If an error occurs writing to swap, we are in
1594 	 * very serious trouble.  If it happens to be a disk error, though,
1595 	 * we may be able to recover by reassigning the swap later on.  So
1596 	 * in this case we remove the m->swapblk assignment for the page
1597 	 * but do not free it in the rlist.  The errornous block(s) are thus
1598 	 * never reallocated as swap.  Redirty the page and continue.
1599 	 */
1600 	for (i = 0; i < bp->b_npages; ++i) {
1601 		vm_page_t m = bp->b_pages[i];
1602 
1603 		m->oflags &= ~VPO_SWAPINPROG;
1604 		if (m->oflags & VPO_SWAPSLEEP) {
1605 			m->oflags &= ~VPO_SWAPSLEEP;
1606 			wakeup(&object->handle);
1607 		}
1608 
1609 		/* We always have space after I/O, successful or not. */
1610 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1611 
1612 		if (bp->b_ioflags & BIO_ERROR) {
1613 			/*
1614 			 * If an error occurs I'd love to throw the swapblk
1615 			 * away without freeing it back to swapspace, so it
1616 			 * can never be used again.  But I can't from an
1617 			 * interrupt.
1618 			 */
1619 			if (bp->b_iocmd == BIO_READ) {
1620 				/*
1621 				 * NOTE: for reads, m->dirty will probably
1622 				 * be overridden by the original caller of
1623 				 * getpages so don't play cute tricks here.
1624 				 */
1625 				vm_page_invalid(m);
1626 			} else {
1627 				/*
1628 				 * If a write error occurs, reactivate page
1629 				 * so it doesn't clog the inactive list,
1630 				 * then finish the I/O.
1631 				 */
1632 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1633 
1634 				/* PQ_UNSWAPPABLE? */
1635 				vm_page_activate(m);
1636 				vm_page_sunbusy(m);
1637 			}
1638 		} else if (bp->b_iocmd == BIO_READ) {
1639 			/*
1640 			 * NOTE: for reads, m->dirty will probably be
1641 			 * overridden by the original caller of getpages so
1642 			 * we cannot set them in order to free the underlying
1643 			 * swap in a low-swap situation.  I don't think we'd
1644 			 * want to do that anyway, but it was an optimization
1645 			 * that existed in the old swapper for a time before
1646 			 * it got ripped out due to precisely this problem.
1647 			 */
1648 			KASSERT(!pmap_page_is_mapped(m),
1649 			    ("swp_pager_async_iodone: page %p is mapped", m));
1650 			KASSERT(m->dirty == 0,
1651 			    ("swp_pager_async_iodone: page %p is dirty", m));
1652 
1653 			vm_page_valid(m);
1654 			if (i < bp->b_pgbefore ||
1655 			    i >= bp->b_npages - bp->b_pgafter)
1656 				vm_page_readahead_finish(m);
1657 		} else {
1658 			/*
1659 			 * For write success, clear the dirty
1660 			 * status, then finish the I/O ( which decrements the
1661 			 * busy count and possibly wakes waiter's up ).
1662 			 * A page is only written to swap after a period of
1663 			 * inactivity.  Therefore, we do not expect it to be
1664 			 * reused.
1665 			 */
1666 			KASSERT(!pmap_page_is_write_mapped(m),
1667 			    ("swp_pager_async_iodone: page %p is not write"
1668 			    " protected", m));
1669 			vm_page_undirty(m);
1670 			vm_page_deactivate_noreuse(m);
1671 			vm_page_sunbusy(m);
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * adjust pip.  NOTE: the original parent may still have its own
1677 	 * pip refs on the object.
1678 	 */
1679 	if (object != NULL) {
1680 		vm_object_pip_wakeupn(object, bp->b_npages);
1681 		VM_OBJECT_WUNLOCK(object);
1682 	}
1683 
1684 	/*
1685 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1686 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1687 	 * trigger a KASSERT in relpbuf().
1688 	 */
1689 	if (bp->b_vp) {
1690 		    bp->b_vp = NULL;
1691 		    bp->b_bufobj = NULL;
1692 	}
1693 	/*
1694 	 * release the physical I/O buffer
1695 	 */
1696 	if (bp->b_flags & B_ASYNC) {
1697 		mtx_lock(&swbuf_mtx);
1698 		if (++nsw_wcount_async == 1)
1699 			wakeup(&nsw_wcount_async);
1700 		mtx_unlock(&swbuf_mtx);
1701 	}
1702 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1703 }
1704 
1705 int
1706 swap_pager_nswapdev(void)
1707 {
1708 
1709 	return (nswapdev);
1710 }
1711 
1712 static void
1713 swp_pager_force_dirty(vm_page_t m)
1714 {
1715 
1716 	vm_page_dirty(m);
1717 #ifdef INVARIANTS
1718 	if (!vm_page_wired(m) && m->a.queue == PQ_NONE)
1719 		panic("page %p is neither wired nor queued", m);
1720 #endif
1721 	vm_page_xunbusy(m);
1722 	swap_pager_unswapped(m);
1723 }
1724 
1725 static void
1726 swp_pager_force_launder(vm_page_t m)
1727 {
1728 
1729 	vm_page_dirty(m);
1730 	vm_page_launder(m);
1731 	vm_page_xunbusy(m);
1732 	swap_pager_unswapped(m);
1733 }
1734 
1735 /*
1736  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1737  *
1738  *	This routine dissociates pages starting at the given index within an
1739  *	object from their backing store, paging them in if they do not reside
1740  *	in memory.  Pages that are paged in are marked dirty and placed in the
1741  *	laundry queue.  Pages are marked dirty because they no longer have
1742  *	backing store.  They are placed in the laundry queue because they have
1743  *	not been accessed recently.  Otherwise, they would already reside in
1744  *	memory.
1745  */
1746 static void
1747 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1748 {
1749 	vm_page_t ma[npages];
1750 	int i, j;
1751 
1752 	KASSERT(npages > 0, ("%s: No pages", __func__));
1753 	KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1754 	    ("%s: Too many pages: %d", __func__, npages));
1755 	KASSERT(object->type == OBJT_SWAP,
1756 	    ("%s: Object not swappable", __func__));
1757 	vm_object_pip_add(object, npages);
1758 	vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1759 	for (i = j = 0;; i++) {
1760 		/* Count nonresident pages, to page-in all at once. */
1761 		if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1762 			continue;
1763 		if (j < i) {
1764 			/* Page-in nonresident pages. Mark for laundering. */
1765 			if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1766 			    NULL) != VM_PAGER_OK)
1767 				panic("%s: read from swap failed", __func__);
1768 			do {
1769 				swp_pager_force_launder(ma[j]);
1770 			} while (++j < i);
1771 		}
1772 		if (i == npages)
1773 			break;
1774 		/* Mark dirty a resident page. */
1775 		swp_pager_force_dirty(ma[j++]);
1776 	}
1777 	vm_object_pip_wakeupn(object, npages);
1778 }
1779 
1780 /*
1781  *	swap_pager_swapoff_object:
1782  *
1783  *	Page in all of the pages that have been paged out for an object
1784  *	to a swap device.
1785  */
1786 static void
1787 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1788 {
1789 	struct swblk *sb;
1790 	vm_pindex_t pi, s_pindex;
1791 	daddr_t blk, n_blks, s_blk;
1792 	int i;
1793 
1794 	KASSERT(object->type == OBJT_SWAP,
1795 	    ("%s: Object not swappable", __func__));
1796 	n_blks = 0;
1797 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1798 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1799 		for (i = 0; i < SWAP_META_PAGES; i++) {
1800 			blk = sb->d[i];
1801 			if (!swp_pager_isondev(blk, sp))
1802 				blk = SWAPBLK_NONE;
1803 
1804 			/*
1805 			 * If there are no blocks/pages accumulated, start a new
1806 			 * accumulation here.
1807 			 */
1808 			if (n_blks == 0) {
1809 				if (blk != SWAPBLK_NONE) {
1810 					s_blk = blk;
1811 					s_pindex = sb->p + i;
1812 					n_blks = 1;
1813 				}
1814 				continue;
1815 			}
1816 
1817 			/*
1818 			 * If the accumulation can be extended without breaking
1819 			 * the sequence of consecutive blocks and pages that
1820 			 * swp_pager_force_pagein() depends on, do so.
1821 			 */
1822 			if (n_blks < MAXPHYS / PAGE_SIZE &&
1823 			    s_blk + n_blks == blk &&
1824 			    s_pindex + n_blks == sb->p + i) {
1825 				++n_blks;
1826 				continue;
1827 			}
1828 
1829 			/*
1830 			 * The sequence of consecutive blocks and pages cannot
1831 			 * be extended, so page them all in here.  Then,
1832 			 * because doing so involves releasing and reacquiring
1833 			 * a lock that protects the swap block pctrie, do not
1834 			 * rely on the current swap block.  Break this loop and
1835 			 * re-fetch the same pindex from the pctrie again.
1836 			 */
1837 			swp_pager_force_pagein(object, s_pindex, n_blks);
1838 			n_blks = 0;
1839 			break;
1840 		}
1841 		if (i == SWAP_META_PAGES)
1842 			pi = sb->p + SWAP_META_PAGES;
1843 	}
1844 	if (n_blks > 0)
1845 		swp_pager_force_pagein(object, s_pindex, n_blks);
1846 }
1847 
1848 /*
1849  *	swap_pager_swapoff:
1850  *
1851  *	Page in all of the pages that have been paged out to the
1852  *	given device.  The corresponding blocks in the bitmap must be
1853  *	marked as allocated and the device must be flagged SW_CLOSING.
1854  *	There may be no processes swapped out to the device.
1855  *
1856  *	This routine may block.
1857  */
1858 static void
1859 swap_pager_swapoff(struct swdevt *sp)
1860 {
1861 	vm_object_t object;
1862 	int retries;
1863 
1864 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1865 
1866 	retries = 0;
1867 full_rescan:
1868 	mtx_lock(&vm_object_list_mtx);
1869 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1870 		if (object->type != OBJT_SWAP)
1871 			continue;
1872 		mtx_unlock(&vm_object_list_mtx);
1873 		/* Depends on type-stability. */
1874 		VM_OBJECT_WLOCK(object);
1875 
1876 		/*
1877 		 * Dead objects are eventually terminated on their own.
1878 		 */
1879 		if ((object->flags & OBJ_DEAD) != 0)
1880 			goto next_obj;
1881 
1882 		/*
1883 		 * Sync with fences placed after pctrie
1884 		 * initialization.  We must not access pctrie below
1885 		 * unless we checked that our object is swap and not
1886 		 * dead.
1887 		 */
1888 		atomic_thread_fence_acq();
1889 		if (object->type != OBJT_SWAP)
1890 			goto next_obj;
1891 
1892 		swap_pager_swapoff_object(sp, object);
1893 next_obj:
1894 		VM_OBJECT_WUNLOCK(object);
1895 		mtx_lock(&vm_object_list_mtx);
1896 	}
1897 	mtx_unlock(&vm_object_list_mtx);
1898 
1899 	if (sp->sw_used) {
1900 		/*
1901 		 * Objects may be locked or paging to the device being
1902 		 * removed, so we will miss their pages and need to
1903 		 * make another pass.  We have marked this device as
1904 		 * SW_CLOSING, so the activity should finish soon.
1905 		 */
1906 		retries++;
1907 		if (retries > 100) {
1908 			panic("swapoff: failed to locate %d swap blocks",
1909 			    sp->sw_used);
1910 		}
1911 		pause("swpoff", hz / 20);
1912 		goto full_rescan;
1913 	}
1914 	EVENTHANDLER_INVOKE(swapoff, sp);
1915 }
1916 
1917 /************************************************************************
1918  *				SWAP META DATA 				*
1919  ************************************************************************
1920  *
1921  *	These routines manipulate the swap metadata stored in the
1922  *	OBJT_SWAP object.
1923  *
1924  *	Swap metadata is implemented with a global hash and not directly
1925  *	linked into the object.  Instead the object simply contains
1926  *	appropriate tracking counters.
1927  */
1928 
1929 /*
1930  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1931  */
1932 static bool
1933 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1934 {
1935 	int i;
1936 
1937 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1938 	for (i = start; i < limit; i++) {
1939 		if (sb->d[i] != SWAPBLK_NONE)
1940 			return (false);
1941 	}
1942 	return (true);
1943 }
1944 
1945 /*
1946  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1947  *
1948  *  Nothing is done if the block is still in use.
1949  */
1950 static void
1951 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
1952 {
1953 
1954 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1955 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
1956 		uma_zfree(swblk_zone, sb);
1957 	}
1958 }
1959 
1960 /*
1961  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1962  *
1963  *	We first convert the object to a swap object if it is a default
1964  *	object.
1965  *
1966  *	The specified swapblk is added to the object's swap metadata.  If
1967  *	the swapblk is not valid, it is freed instead.  Any previously
1968  *	assigned swapblk is returned.
1969  */
1970 static daddr_t
1971 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1972 {
1973 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1974 	struct swblk *sb, *sb1;
1975 	vm_pindex_t modpi, rdpi;
1976 	daddr_t prev_swapblk;
1977 	int error, i;
1978 
1979 	VM_OBJECT_ASSERT_WLOCKED(object);
1980 
1981 	/*
1982 	 * Convert default object to swap object if necessary
1983 	 */
1984 	if (object->type != OBJT_SWAP) {
1985 		pctrie_init(&object->un_pager.swp.swp_blks);
1986 
1987 		/*
1988 		 * Ensure that swap_pager_swapoff()'s iteration over
1989 		 * object_list does not see a garbage pctrie.
1990 		 */
1991 		atomic_thread_fence_rel();
1992 
1993 		object->type = OBJT_SWAP;
1994 		object->un_pager.swp.writemappings = 0;
1995 		KASSERT((object->flags & OBJ_ANON) != 0 ||
1996 		    object->handle == NULL,
1997 		    ("default pager %p with handle %p",
1998 		    object, object->handle));
1999 	}
2000 
2001 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2002 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2003 	if (sb == NULL) {
2004 		if (swapblk == SWAPBLK_NONE)
2005 			return (SWAPBLK_NONE);
2006 		for (;;) {
2007 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2008 			    pageproc ? M_USE_RESERVE : 0));
2009 			if (sb != NULL) {
2010 				sb->p = rdpi;
2011 				for (i = 0; i < SWAP_META_PAGES; i++)
2012 					sb->d[i] = SWAPBLK_NONE;
2013 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2014 				    1, 0))
2015 					printf("swblk zone ok\n");
2016 				break;
2017 			}
2018 			VM_OBJECT_WUNLOCK(object);
2019 			if (uma_zone_exhausted(swblk_zone)) {
2020 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2021 				    0, 1))
2022 					printf("swap blk zone exhausted, "
2023 					    "increase kern.maxswzone\n");
2024 				vm_pageout_oom(VM_OOM_SWAPZ);
2025 				pause("swzonxb", 10);
2026 			} else
2027 				uma_zwait(swblk_zone);
2028 			VM_OBJECT_WLOCK(object);
2029 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2030 			    rdpi);
2031 			if (sb != NULL)
2032 				/*
2033 				 * Somebody swapped out a nearby page,
2034 				 * allocating swblk at the rdpi index,
2035 				 * while we dropped the object lock.
2036 				 */
2037 				goto allocated;
2038 		}
2039 		for (;;) {
2040 			error = SWAP_PCTRIE_INSERT(
2041 			    &object->un_pager.swp.swp_blks, sb);
2042 			if (error == 0) {
2043 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2044 				    1, 0))
2045 					printf("swpctrie zone ok\n");
2046 				break;
2047 			}
2048 			VM_OBJECT_WUNLOCK(object);
2049 			if (uma_zone_exhausted(swpctrie_zone)) {
2050 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2051 				    0, 1))
2052 					printf("swap pctrie zone exhausted, "
2053 					    "increase kern.maxswzone\n");
2054 				vm_pageout_oom(VM_OOM_SWAPZ);
2055 				pause("swzonxp", 10);
2056 			} else
2057 				uma_zwait(swpctrie_zone);
2058 			VM_OBJECT_WLOCK(object);
2059 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2060 			    rdpi);
2061 			if (sb1 != NULL) {
2062 				uma_zfree(swblk_zone, sb);
2063 				sb = sb1;
2064 				goto allocated;
2065 			}
2066 		}
2067 	}
2068 allocated:
2069 	MPASS(sb->p == rdpi);
2070 
2071 	modpi = pindex % SWAP_META_PAGES;
2072 	/* Return prior contents of metadata. */
2073 	prev_swapblk = sb->d[modpi];
2074 	/* Enter block into metadata. */
2075 	sb->d[modpi] = swapblk;
2076 
2077 	/*
2078 	 * Free the swblk if we end up with the empty page run.
2079 	 */
2080 	if (swapblk == SWAPBLK_NONE)
2081 	    swp_pager_free_empty_swblk(object, sb);
2082 	return (prev_swapblk);
2083 }
2084 
2085 /*
2086  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2087  * metadata, or transfer it into dstobject.
2088  *
2089  *	This routine will free swap metadata structures as they are cleaned
2090  *	out.
2091  */
2092 static void
2093 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2094     vm_pindex_t pindex, vm_pindex_t count)
2095 {
2096 	struct swblk *sb;
2097 	daddr_t n_free, s_free;
2098 	vm_pindex_t offset, last;
2099 	int i, limit, start;
2100 
2101 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2102 	if (srcobject->type != OBJT_SWAP || count == 0)
2103 		return;
2104 
2105 	swp_pager_init_freerange(&s_free, &n_free);
2106 	offset = pindex;
2107 	last = pindex + count;
2108 	for (;;) {
2109 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2110 		    rounddown(pindex, SWAP_META_PAGES));
2111 		if (sb == NULL || sb->p >= last)
2112 			break;
2113 		start = pindex > sb->p ? pindex - sb->p : 0;
2114 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2115 		    SWAP_META_PAGES;
2116 		for (i = start; i < limit; i++) {
2117 			if (sb->d[i] == SWAPBLK_NONE)
2118 				continue;
2119 			if (dstobject == NULL ||
2120 			    !swp_pager_xfer_source(srcobject, dstobject,
2121 			    sb->p + i - offset, sb->d[i])) {
2122 				swp_pager_update_freerange(&s_free, &n_free,
2123 				    sb->d[i]);
2124 			}
2125 			sb->d[i] = SWAPBLK_NONE;
2126 		}
2127 		pindex = sb->p + SWAP_META_PAGES;
2128 		if (swp_pager_swblk_empty(sb, 0, start) &&
2129 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2130 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2131 			    sb->p);
2132 			uma_zfree(swblk_zone, sb);
2133 		}
2134 	}
2135 	swp_pager_freeswapspace(s_free, n_free);
2136 }
2137 
2138 /*
2139  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2140  *
2141  *	The requested range of blocks is freed, with any associated swap
2142  *	returned to the swap bitmap.
2143  *
2144  *	This routine will free swap metadata structures as they are cleaned
2145  *	out.  This routine does *NOT* operate on swap metadata associated
2146  *	with resident pages.
2147  */
2148 static void
2149 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2150 {
2151 	swp_pager_meta_transfer(object, NULL, pindex, count);
2152 }
2153 
2154 /*
2155  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2156  *
2157  *	This routine locates and destroys all swap metadata associated with
2158  *	an object.
2159  */
2160 static void
2161 swp_pager_meta_free_all(vm_object_t object)
2162 {
2163 	struct swblk *sb;
2164 	daddr_t n_free, s_free;
2165 	vm_pindex_t pindex;
2166 	int i;
2167 
2168 	VM_OBJECT_ASSERT_WLOCKED(object);
2169 	if (object->type != OBJT_SWAP)
2170 		return;
2171 
2172 	swp_pager_init_freerange(&s_free, &n_free);
2173 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2174 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2175 		pindex = sb->p + SWAP_META_PAGES;
2176 		for (i = 0; i < SWAP_META_PAGES; i++) {
2177 			if (sb->d[i] == SWAPBLK_NONE)
2178 				continue;
2179 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2180 		}
2181 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2182 		uma_zfree(swblk_zone, sb);
2183 	}
2184 	swp_pager_freeswapspace(s_free, n_free);
2185 }
2186 
2187 /*
2188  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2189  *
2190  *	This routine is capable of looking up, or removing swapblk
2191  *	assignments in the swap meta data.  It returns the swapblk being
2192  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2193  *
2194  *	When acting on a busy resident page and paging is in progress, we
2195  *	have to wait until paging is complete but otherwise can act on the
2196  *	busy page.
2197  */
2198 static daddr_t
2199 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2200 {
2201 	struct swblk *sb;
2202 
2203 	VM_OBJECT_ASSERT_LOCKED(object);
2204 
2205 	/*
2206 	 * The meta data only exists if the object is OBJT_SWAP
2207 	 * and even then might not be allocated yet.
2208 	 */
2209 	KASSERT(object->type == OBJT_SWAP,
2210 	    ("Lookup object not swappable"));
2211 
2212 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2213 	    rounddown(pindex, SWAP_META_PAGES));
2214 	if (sb == NULL)
2215 		return (SWAPBLK_NONE);
2216 	return (sb->d[pindex % SWAP_META_PAGES]);
2217 }
2218 
2219 /*
2220  * Returns the least page index which is greater than or equal to the
2221  * parameter pindex and for which there is a swap block allocated.
2222  * Returns object's size if the object's type is not swap or if there
2223  * are no allocated swap blocks for the object after the requested
2224  * pindex.
2225  */
2226 vm_pindex_t
2227 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2228 {
2229 	struct swblk *sb;
2230 	int i;
2231 
2232 	VM_OBJECT_ASSERT_LOCKED(object);
2233 	if (object->type != OBJT_SWAP)
2234 		return (object->size);
2235 
2236 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2237 	    rounddown(pindex, SWAP_META_PAGES));
2238 	if (sb == NULL)
2239 		return (object->size);
2240 	if (sb->p < pindex) {
2241 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2242 			if (sb->d[i] != SWAPBLK_NONE)
2243 				return (sb->p + i);
2244 		}
2245 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2246 		    roundup(pindex, SWAP_META_PAGES));
2247 		if (sb == NULL)
2248 			return (object->size);
2249 	}
2250 	for (i = 0; i < SWAP_META_PAGES; i++) {
2251 		if (sb->d[i] != SWAPBLK_NONE)
2252 			return (sb->p + i);
2253 	}
2254 
2255 	/*
2256 	 * We get here if a swblk is present in the trie but it
2257 	 * doesn't map any blocks.
2258 	 */
2259 	MPASS(0);
2260 	return (object->size);
2261 }
2262 
2263 /*
2264  * System call swapon(name) enables swapping on device name,
2265  * which must be in the swdevsw.  Return EBUSY
2266  * if already swapping on this device.
2267  */
2268 #ifndef _SYS_SYSPROTO_H_
2269 struct swapon_args {
2270 	char *name;
2271 };
2272 #endif
2273 
2274 /*
2275  * MPSAFE
2276  */
2277 /* ARGSUSED */
2278 int
2279 sys_swapon(struct thread *td, struct swapon_args *uap)
2280 {
2281 	struct vattr attr;
2282 	struct vnode *vp;
2283 	struct nameidata nd;
2284 	int error;
2285 
2286 	error = priv_check(td, PRIV_SWAPON);
2287 	if (error)
2288 		return (error);
2289 
2290 	sx_xlock(&swdev_syscall_lock);
2291 
2292 	/*
2293 	 * Swap metadata may not fit in the KVM if we have physical
2294 	 * memory of >1GB.
2295 	 */
2296 	if (swblk_zone == NULL) {
2297 		error = ENOMEM;
2298 		goto done;
2299 	}
2300 
2301 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2302 	    uap->name, td);
2303 	error = namei(&nd);
2304 	if (error)
2305 		goto done;
2306 
2307 	NDFREE(&nd, NDF_ONLY_PNBUF);
2308 	vp = nd.ni_vp;
2309 
2310 	if (vn_isdisk(vp, &error)) {
2311 		error = swapongeom(vp);
2312 	} else if (vp->v_type == VREG &&
2313 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2314 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2315 		/*
2316 		 * Allow direct swapping to NFS regular files in the same
2317 		 * way that nfs_mountroot() sets up diskless swapping.
2318 		 */
2319 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2320 	}
2321 
2322 	if (error)
2323 		vrele(vp);
2324 done:
2325 	sx_xunlock(&swdev_syscall_lock);
2326 	return (error);
2327 }
2328 
2329 /*
2330  * Check that the total amount of swap currently configured does not
2331  * exceed half the theoretical maximum.  If it does, print a warning
2332  * message.
2333  */
2334 static void
2335 swapon_check_swzone(void)
2336 {
2337 
2338 	/* recommend using no more than half that amount */
2339 	if (swap_total > swap_maxpages / 2) {
2340 		printf("warning: total configured swap (%lu pages) "
2341 		    "exceeds maximum recommended amount (%lu pages).\n",
2342 		    swap_total, swap_maxpages / 2);
2343 		printf("warning: increase kern.maxswzone "
2344 		    "or reduce amount of swap.\n");
2345 	}
2346 }
2347 
2348 static void
2349 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2350     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2351 {
2352 	struct swdevt *sp, *tsp;
2353 	swblk_t dvbase;
2354 	u_long mblocks;
2355 
2356 	/*
2357 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2358 	 * First chop nblks off to page-align it, then convert.
2359 	 *
2360 	 * sw->sw_nblks is in page-sized chunks now too.
2361 	 */
2362 	nblks &= ~(ctodb(1) - 1);
2363 	nblks = dbtoc(nblks);
2364 
2365 	/*
2366 	 * If we go beyond this, we get overflows in the radix
2367 	 * tree bitmap code.
2368 	 */
2369 	mblocks = 0x40000000 / BLIST_META_RADIX;
2370 	if (nblks > mblocks) {
2371 		printf(
2372     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2373 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2374 		nblks = mblocks;
2375 	}
2376 
2377 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2378 	sp->sw_vp = vp;
2379 	sp->sw_id = id;
2380 	sp->sw_dev = dev;
2381 	sp->sw_nblks = nblks;
2382 	sp->sw_used = 0;
2383 	sp->sw_strategy = strategy;
2384 	sp->sw_close = close;
2385 	sp->sw_flags = flags;
2386 
2387 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2388 	/*
2389 	 * Do not free the first blocks in order to avoid overwriting
2390 	 * any bsd label at the front of the partition
2391 	 */
2392 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2393 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2394 
2395 	dvbase = 0;
2396 	mtx_lock(&sw_dev_mtx);
2397 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2398 		if (tsp->sw_end >= dvbase) {
2399 			/*
2400 			 * We put one uncovered page between the devices
2401 			 * in order to definitively prevent any cross-device
2402 			 * I/O requests
2403 			 */
2404 			dvbase = tsp->sw_end + 1;
2405 		}
2406 	}
2407 	sp->sw_first = dvbase;
2408 	sp->sw_end = dvbase + nblks;
2409 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2410 	nswapdev++;
2411 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2412 	swap_total += nblks;
2413 	swapon_check_swzone();
2414 	swp_sizecheck();
2415 	mtx_unlock(&sw_dev_mtx);
2416 	EVENTHANDLER_INVOKE(swapon, sp);
2417 }
2418 
2419 /*
2420  * SYSCALL: swapoff(devname)
2421  *
2422  * Disable swapping on the given device.
2423  *
2424  * XXX: Badly designed system call: it should use a device index
2425  * rather than filename as specification.  We keep sw_vp around
2426  * only to make this work.
2427  */
2428 #ifndef _SYS_SYSPROTO_H_
2429 struct swapoff_args {
2430 	char *name;
2431 };
2432 #endif
2433 
2434 /*
2435  * MPSAFE
2436  */
2437 /* ARGSUSED */
2438 int
2439 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2440 {
2441 	struct vnode *vp;
2442 	struct nameidata nd;
2443 	struct swdevt *sp;
2444 	int error;
2445 
2446 	error = priv_check(td, PRIV_SWAPOFF);
2447 	if (error)
2448 		return (error);
2449 
2450 	sx_xlock(&swdev_syscall_lock);
2451 
2452 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2453 	    td);
2454 	error = namei(&nd);
2455 	if (error)
2456 		goto done;
2457 	NDFREE(&nd, NDF_ONLY_PNBUF);
2458 	vp = nd.ni_vp;
2459 
2460 	mtx_lock(&sw_dev_mtx);
2461 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2462 		if (sp->sw_vp == vp)
2463 			break;
2464 	}
2465 	mtx_unlock(&sw_dev_mtx);
2466 	if (sp == NULL) {
2467 		error = EINVAL;
2468 		goto done;
2469 	}
2470 	error = swapoff_one(sp, td->td_ucred);
2471 done:
2472 	sx_xunlock(&swdev_syscall_lock);
2473 	return (error);
2474 }
2475 
2476 static int
2477 swapoff_one(struct swdevt *sp, struct ucred *cred)
2478 {
2479 	u_long nblks;
2480 #ifdef MAC
2481 	int error;
2482 #endif
2483 
2484 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2485 #ifdef MAC
2486 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2487 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2488 	(void) VOP_UNLOCK(sp->sw_vp);
2489 	if (error != 0)
2490 		return (error);
2491 #endif
2492 	nblks = sp->sw_nblks;
2493 
2494 	/*
2495 	 * We can turn off this swap device safely only if the
2496 	 * available virtual memory in the system will fit the amount
2497 	 * of data we will have to page back in, plus an epsilon so
2498 	 * the system doesn't become critically low on swap space.
2499 	 */
2500 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2501 		return (ENOMEM);
2502 
2503 	/*
2504 	 * Prevent further allocations on this device.
2505 	 */
2506 	mtx_lock(&sw_dev_mtx);
2507 	sp->sw_flags |= SW_CLOSING;
2508 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2509 	swap_total -= nblks;
2510 	mtx_unlock(&sw_dev_mtx);
2511 
2512 	/*
2513 	 * Page in the contents of the device and close it.
2514 	 */
2515 	swap_pager_swapoff(sp);
2516 
2517 	sp->sw_close(curthread, sp);
2518 	mtx_lock(&sw_dev_mtx);
2519 	sp->sw_id = NULL;
2520 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2521 	nswapdev--;
2522 	if (nswapdev == 0) {
2523 		swap_pager_full = 2;
2524 		swap_pager_almost_full = 1;
2525 	}
2526 	if (swdevhd == sp)
2527 		swdevhd = NULL;
2528 	mtx_unlock(&sw_dev_mtx);
2529 	blist_destroy(sp->sw_blist);
2530 	free(sp, M_VMPGDATA);
2531 	return (0);
2532 }
2533 
2534 void
2535 swapoff_all(void)
2536 {
2537 	struct swdevt *sp, *spt;
2538 	const char *devname;
2539 	int error;
2540 
2541 	sx_xlock(&swdev_syscall_lock);
2542 
2543 	mtx_lock(&sw_dev_mtx);
2544 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2545 		mtx_unlock(&sw_dev_mtx);
2546 		if (vn_isdisk(sp->sw_vp, NULL))
2547 			devname = devtoname(sp->sw_vp->v_rdev);
2548 		else
2549 			devname = "[file]";
2550 		error = swapoff_one(sp, thread0.td_ucred);
2551 		if (error != 0) {
2552 			printf("Cannot remove swap device %s (error=%d), "
2553 			    "skipping.\n", devname, error);
2554 		} else if (bootverbose) {
2555 			printf("Swap device %s removed.\n", devname);
2556 		}
2557 		mtx_lock(&sw_dev_mtx);
2558 	}
2559 	mtx_unlock(&sw_dev_mtx);
2560 
2561 	sx_xunlock(&swdev_syscall_lock);
2562 }
2563 
2564 void
2565 swap_pager_status(int *total, int *used)
2566 {
2567 	struct swdevt *sp;
2568 
2569 	*total = 0;
2570 	*used = 0;
2571 	mtx_lock(&sw_dev_mtx);
2572 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2573 		*total += sp->sw_nblks;
2574 		*used += sp->sw_used;
2575 	}
2576 	mtx_unlock(&sw_dev_mtx);
2577 }
2578 
2579 int
2580 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2581 {
2582 	struct swdevt *sp;
2583 	const char *tmp_devname;
2584 	int error, n;
2585 
2586 	n = 0;
2587 	error = ENOENT;
2588 	mtx_lock(&sw_dev_mtx);
2589 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2590 		if (n != name) {
2591 			n++;
2592 			continue;
2593 		}
2594 		xs->xsw_version = XSWDEV_VERSION;
2595 		xs->xsw_dev = sp->sw_dev;
2596 		xs->xsw_flags = sp->sw_flags;
2597 		xs->xsw_nblks = sp->sw_nblks;
2598 		xs->xsw_used = sp->sw_used;
2599 		if (devname != NULL) {
2600 			if (vn_isdisk(sp->sw_vp, NULL))
2601 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2602 			else
2603 				tmp_devname = "[file]";
2604 			strncpy(devname, tmp_devname, len);
2605 		}
2606 		error = 0;
2607 		break;
2608 	}
2609 	mtx_unlock(&sw_dev_mtx);
2610 	return (error);
2611 }
2612 
2613 #if defined(COMPAT_FREEBSD11)
2614 #define XSWDEV_VERSION_11	1
2615 struct xswdev11 {
2616 	u_int	xsw_version;
2617 	uint32_t xsw_dev;
2618 	int	xsw_flags;
2619 	int	xsw_nblks;
2620 	int     xsw_used;
2621 };
2622 #endif
2623 
2624 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2625 struct xswdev32 {
2626 	u_int	xsw_version;
2627 	u_int	xsw_dev1, xsw_dev2;
2628 	int	xsw_flags;
2629 	int	xsw_nblks;
2630 	int     xsw_used;
2631 };
2632 #endif
2633 
2634 static int
2635 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2636 {
2637 	struct xswdev xs;
2638 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2639 	struct xswdev32 xs32;
2640 #endif
2641 #if defined(COMPAT_FREEBSD11)
2642 	struct xswdev11 xs11;
2643 #endif
2644 	int error;
2645 
2646 	if (arg2 != 1)			/* name length */
2647 		return (EINVAL);
2648 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2649 	if (error != 0)
2650 		return (error);
2651 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2652 	if (req->oldlen == sizeof(xs32)) {
2653 		xs32.xsw_version = XSWDEV_VERSION;
2654 		xs32.xsw_dev1 = xs.xsw_dev;
2655 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2656 		xs32.xsw_flags = xs.xsw_flags;
2657 		xs32.xsw_nblks = xs.xsw_nblks;
2658 		xs32.xsw_used = xs.xsw_used;
2659 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2660 		return (error);
2661 	}
2662 #endif
2663 #if defined(COMPAT_FREEBSD11)
2664 	if (req->oldlen == sizeof(xs11)) {
2665 		xs11.xsw_version = XSWDEV_VERSION_11;
2666 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2667 		xs11.xsw_flags = xs.xsw_flags;
2668 		xs11.xsw_nblks = xs.xsw_nblks;
2669 		xs11.xsw_used = xs.xsw_used;
2670 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2671 		return (error);
2672 	}
2673 #endif
2674 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2675 	return (error);
2676 }
2677 
2678 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2679     "Number of swap devices");
2680 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2681     sysctl_vm_swap_info,
2682     "Swap statistics by device");
2683 
2684 /*
2685  * Count the approximate swap usage in pages for a vmspace.  The
2686  * shadowed or not yet copied on write swap blocks are not accounted.
2687  * The map must be locked.
2688  */
2689 long
2690 vmspace_swap_count(struct vmspace *vmspace)
2691 {
2692 	vm_map_t map;
2693 	vm_map_entry_t cur;
2694 	vm_object_t object;
2695 	struct swblk *sb;
2696 	vm_pindex_t e, pi;
2697 	long count;
2698 	int i;
2699 
2700 	map = &vmspace->vm_map;
2701 	count = 0;
2702 
2703 	VM_MAP_ENTRY_FOREACH(cur, map) {
2704 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2705 			continue;
2706 		object = cur->object.vm_object;
2707 		if (object == NULL || object->type != OBJT_SWAP)
2708 			continue;
2709 		VM_OBJECT_RLOCK(object);
2710 		if (object->type != OBJT_SWAP)
2711 			goto unlock;
2712 		pi = OFF_TO_IDX(cur->offset);
2713 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2714 		for (;; pi = sb->p + SWAP_META_PAGES) {
2715 			sb = SWAP_PCTRIE_LOOKUP_GE(
2716 			    &object->un_pager.swp.swp_blks, pi);
2717 			if (sb == NULL || sb->p >= e)
2718 				break;
2719 			for (i = 0; i < SWAP_META_PAGES; i++) {
2720 				if (sb->p + i < e &&
2721 				    sb->d[i] != SWAPBLK_NONE)
2722 					count++;
2723 			}
2724 		}
2725 unlock:
2726 		VM_OBJECT_RUNLOCK(object);
2727 	}
2728 	return (count);
2729 }
2730 
2731 /*
2732  * GEOM backend
2733  *
2734  * Swapping onto disk devices.
2735  *
2736  */
2737 
2738 static g_orphan_t swapgeom_orphan;
2739 
2740 static struct g_class g_swap_class = {
2741 	.name = "SWAP",
2742 	.version = G_VERSION,
2743 	.orphan = swapgeom_orphan,
2744 };
2745 
2746 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2747 
2748 
2749 static void
2750 swapgeom_close_ev(void *arg, int flags)
2751 {
2752 	struct g_consumer *cp;
2753 
2754 	cp = arg;
2755 	g_access(cp, -1, -1, 0);
2756 	g_detach(cp);
2757 	g_destroy_consumer(cp);
2758 }
2759 
2760 /*
2761  * Add a reference to the g_consumer for an inflight transaction.
2762  */
2763 static void
2764 swapgeom_acquire(struct g_consumer *cp)
2765 {
2766 
2767 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2768 	cp->index++;
2769 }
2770 
2771 /*
2772  * Remove a reference from the g_consumer.  Post a close event if all
2773  * references go away, since the function might be called from the
2774  * biodone context.
2775  */
2776 static void
2777 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2778 {
2779 
2780 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2781 	cp->index--;
2782 	if (cp->index == 0) {
2783 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2784 			sp->sw_id = NULL;
2785 	}
2786 }
2787 
2788 static void
2789 swapgeom_done(struct bio *bp2)
2790 {
2791 	struct swdevt *sp;
2792 	struct buf *bp;
2793 	struct g_consumer *cp;
2794 
2795 	bp = bp2->bio_caller2;
2796 	cp = bp2->bio_from;
2797 	bp->b_ioflags = bp2->bio_flags;
2798 	if (bp2->bio_error)
2799 		bp->b_ioflags |= BIO_ERROR;
2800 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2801 	bp->b_error = bp2->bio_error;
2802 	bp->b_caller1 = NULL;
2803 	bufdone(bp);
2804 	sp = bp2->bio_caller1;
2805 	mtx_lock(&sw_dev_mtx);
2806 	swapgeom_release(cp, sp);
2807 	mtx_unlock(&sw_dev_mtx);
2808 	g_destroy_bio(bp2);
2809 }
2810 
2811 static void
2812 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2813 {
2814 	struct bio *bio;
2815 	struct g_consumer *cp;
2816 
2817 	mtx_lock(&sw_dev_mtx);
2818 	cp = sp->sw_id;
2819 	if (cp == NULL) {
2820 		mtx_unlock(&sw_dev_mtx);
2821 		bp->b_error = ENXIO;
2822 		bp->b_ioflags |= BIO_ERROR;
2823 		bufdone(bp);
2824 		return;
2825 	}
2826 	swapgeom_acquire(cp);
2827 	mtx_unlock(&sw_dev_mtx);
2828 	if (bp->b_iocmd == BIO_WRITE)
2829 		bio = g_new_bio();
2830 	else
2831 		bio = g_alloc_bio();
2832 	if (bio == NULL) {
2833 		mtx_lock(&sw_dev_mtx);
2834 		swapgeom_release(cp, sp);
2835 		mtx_unlock(&sw_dev_mtx);
2836 		bp->b_error = ENOMEM;
2837 		bp->b_ioflags |= BIO_ERROR;
2838 		printf("swap_pager: cannot allocate bio\n");
2839 		bufdone(bp);
2840 		return;
2841 	}
2842 
2843 	bp->b_caller1 = bio;
2844 	bio->bio_caller1 = sp;
2845 	bio->bio_caller2 = bp;
2846 	bio->bio_cmd = bp->b_iocmd;
2847 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2848 	bio->bio_length = bp->b_bcount;
2849 	bio->bio_done = swapgeom_done;
2850 	if (!buf_mapped(bp)) {
2851 		bio->bio_ma = bp->b_pages;
2852 		bio->bio_data = unmapped_buf;
2853 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2854 		bio->bio_ma_n = bp->b_npages;
2855 		bio->bio_flags |= BIO_UNMAPPED;
2856 	} else {
2857 		bio->bio_data = bp->b_data;
2858 		bio->bio_ma = NULL;
2859 	}
2860 	g_io_request(bio, cp);
2861 	return;
2862 }
2863 
2864 static void
2865 swapgeom_orphan(struct g_consumer *cp)
2866 {
2867 	struct swdevt *sp;
2868 	int destroy;
2869 
2870 	mtx_lock(&sw_dev_mtx);
2871 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2872 		if (sp->sw_id == cp) {
2873 			sp->sw_flags |= SW_CLOSING;
2874 			break;
2875 		}
2876 	}
2877 	/*
2878 	 * Drop reference we were created with. Do directly since we're in a
2879 	 * special context where we don't have to queue the call to
2880 	 * swapgeom_close_ev().
2881 	 */
2882 	cp->index--;
2883 	destroy = ((sp != NULL) && (cp->index == 0));
2884 	if (destroy)
2885 		sp->sw_id = NULL;
2886 	mtx_unlock(&sw_dev_mtx);
2887 	if (destroy)
2888 		swapgeom_close_ev(cp, 0);
2889 }
2890 
2891 static void
2892 swapgeom_close(struct thread *td, struct swdevt *sw)
2893 {
2894 	struct g_consumer *cp;
2895 
2896 	mtx_lock(&sw_dev_mtx);
2897 	cp = sw->sw_id;
2898 	sw->sw_id = NULL;
2899 	mtx_unlock(&sw_dev_mtx);
2900 
2901 	/*
2902 	 * swapgeom_close() may be called from the biodone context,
2903 	 * where we cannot perform topology changes.  Delegate the
2904 	 * work to the events thread.
2905 	 */
2906 	if (cp != NULL)
2907 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2908 }
2909 
2910 static int
2911 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2912 {
2913 	struct g_provider *pp;
2914 	struct g_consumer *cp;
2915 	static struct g_geom *gp;
2916 	struct swdevt *sp;
2917 	u_long nblks;
2918 	int error;
2919 
2920 	pp = g_dev_getprovider(dev);
2921 	if (pp == NULL)
2922 		return (ENODEV);
2923 	mtx_lock(&sw_dev_mtx);
2924 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2925 		cp = sp->sw_id;
2926 		if (cp != NULL && cp->provider == pp) {
2927 			mtx_unlock(&sw_dev_mtx);
2928 			return (EBUSY);
2929 		}
2930 	}
2931 	mtx_unlock(&sw_dev_mtx);
2932 	if (gp == NULL)
2933 		gp = g_new_geomf(&g_swap_class, "swap");
2934 	cp = g_new_consumer(gp);
2935 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2936 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2937 	g_attach(cp, pp);
2938 	/*
2939 	 * XXX: Every time you think you can improve the margin for
2940 	 * footshooting, somebody depends on the ability to do so:
2941 	 * savecore(8) wants to write to our swapdev so we cannot
2942 	 * set an exclusive count :-(
2943 	 */
2944 	error = g_access(cp, 1, 1, 0);
2945 	if (error != 0) {
2946 		g_detach(cp);
2947 		g_destroy_consumer(cp);
2948 		return (error);
2949 	}
2950 	nblks = pp->mediasize / DEV_BSIZE;
2951 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2952 	    swapgeom_close, dev2udev(dev),
2953 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2954 	return (0);
2955 }
2956 
2957 static int
2958 swapongeom(struct vnode *vp)
2959 {
2960 	int error;
2961 
2962 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2963 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2964 		error = ENOENT;
2965 	} else {
2966 		g_topology_lock();
2967 		error = swapongeom_locked(vp->v_rdev, vp);
2968 		g_topology_unlock();
2969 	}
2970 	VOP_UNLOCK(vp);
2971 	return (error);
2972 }
2973 
2974 /*
2975  * VNODE backend
2976  *
2977  * This is used mainly for network filesystem (read: probably only tested
2978  * with NFS) swapfiles.
2979  *
2980  */
2981 
2982 static void
2983 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2984 {
2985 	struct vnode *vp2;
2986 
2987 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2988 
2989 	vp2 = sp->sw_id;
2990 	vhold(vp2);
2991 	if (bp->b_iocmd == BIO_WRITE) {
2992 		if (bp->b_bufobj)
2993 			bufobj_wdrop(bp->b_bufobj);
2994 		bufobj_wref(&vp2->v_bufobj);
2995 	}
2996 	if (bp->b_bufobj != &vp2->v_bufobj)
2997 		bp->b_bufobj = &vp2->v_bufobj;
2998 	bp->b_vp = vp2;
2999 	bp->b_iooffset = dbtob(bp->b_blkno);
3000 	bstrategy(bp);
3001 	return;
3002 }
3003 
3004 static void
3005 swapdev_close(struct thread *td, struct swdevt *sp)
3006 {
3007 
3008 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3009 	vrele(sp->sw_vp);
3010 }
3011 
3012 
3013 static int
3014 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3015 {
3016 	struct swdevt *sp;
3017 	int error;
3018 
3019 	if (nblks == 0)
3020 		return (ENXIO);
3021 	mtx_lock(&sw_dev_mtx);
3022 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3023 		if (sp->sw_id == vp) {
3024 			mtx_unlock(&sw_dev_mtx);
3025 			return (EBUSY);
3026 		}
3027 	}
3028 	mtx_unlock(&sw_dev_mtx);
3029 
3030 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3031 #ifdef MAC
3032 	error = mac_system_check_swapon(td->td_ucred, vp);
3033 	if (error == 0)
3034 #endif
3035 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3036 	(void) VOP_UNLOCK(vp);
3037 	if (error)
3038 		return (error);
3039 
3040 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3041 	    NODEV, 0);
3042 	return (0);
3043 }
3044 
3045 static int
3046 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3047 {
3048 	int error, new, n;
3049 
3050 	new = nsw_wcount_async_max;
3051 	error = sysctl_handle_int(oidp, &new, 0, req);
3052 	if (error != 0 || req->newptr == NULL)
3053 		return (error);
3054 
3055 	if (new > nswbuf / 2 || new < 1)
3056 		return (EINVAL);
3057 
3058 	mtx_lock(&swbuf_mtx);
3059 	while (nsw_wcount_async_max != new) {
3060 		/*
3061 		 * Adjust difference.  If the current async count is too low,
3062 		 * we will need to sqeeze our update slowly in.  Sleep with a
3063 		 * higher priority than getpbuf() to finish faster.
3064 		 */
3065 		n = new - nsw_wcount_async_max;
3066 		if (nsw_wcount_async + n >= 0) {
3067 			nsw_wcount_async += n;
3068 			nsw_wcount_async_max += n;
3069 			wakeup(&nsw_wcount_async);
3070 		} else {
3071 			nsw_wcount_async_max -= nsw_wcount_async;
3072 			nsw_wcount_async = 0;
3073 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3074 			    "swpsysctl", 0);
3075 		}
3076 	}
3077 	mtx_unlock(&swbuf_mtx);
3078 
3079 	return (0);
3080 }
3081 
3082 static void
3083 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3084     vm_offset_t end)
3085 {
3086 
3087 	VM_OBJECT_WLOCK(object);
3088 	KASSERT((object->flags & OBJ_ANON) == 0,
3089 	    ("Splittable object with writecount"));
3090 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3091 	VM_OBJECT_WUNLOCK(object);
3092 }
3093 
3094 static void
3095 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3096     vm_offset_t end)
3097 {
3098 
3099 	VM_OBJECT_WLOCK(object);
3100 	KASSERT((object->flags & OBJ_ANON) == 0,
3101 	    ("Splittable object with writecount"));
3102 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3103 	VM_OBJECT_WUNLOCK(object);
3104 }
3105