1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/sysctl.h> 93 #include <sys/sysproto.h> 94 #include <sys/blist.h> 95 #include <sys/lock.h> 96 #include <sys/sx.h> 97 #include <sys/vmmeter.h> 98 99 #include <security/mac/mac_framework.h> 100 101 #include <vm/vm.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_object.h> 106 #include <vm/vm_page.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_pageout.h> 109 #include <vm/vm_param.h> 110 #include <vm/swap_pager.h> 111 #include <vm/vm_extern.h> 112 #include <vm/uma.h> 113 114 #include <geom/geom.h> 115 116 /* 117 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 118 * pages per allocation. We recommend you stick with the default of 8. 119 * The 16-page limit is due to the radix code (kern/subr_blist.c). 120 */ 121 #ifndef MAX_PAGEOUT_CLUSTER 122 #define MAX_PAGEOUT_CLUSTER 16 123 #endif 124 125 #if !defined(SWB_NPAGES) 126 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 127 #endif 128 129 /* 130 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 131 * 132 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 133 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 134 * 32K worth of data, two levels represent 256K, three levels represent 135 * 2 MBytes. This is acceptable. 136 * 137 * Overall memory utilization is about the same as the old swap structure. 138 */ 139 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 140 #define SWAP_META_PAGES (SWB_NPAGES * 2) 141 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 142 143 struct swblock { 144 struct swblock *swb_hnext; 145 vm_object_t swb_object; 146 vm_pindex_t swb_index; 147 int swb_count; 148 daddr_t swb_pages[SWAP_META_PAGES]; 149 }; 150 151 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 152 static struct mtx sw_dev_mtx; 153 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 154 static struct swdevt *swdevhd; /* Allocate from here next */ 155 static int nswapdev; /* Number of swap devices */ 156 int swap_pager_avail; 157 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 158 159 static vm_ooffset_t swap_total; 160 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 161 "Total amount of available swap storage."); 162 static vm_ooffset_t swap_reserved; 163 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 164 "Amount of swap storage needed to back all allocated anonymous memory."); 165 static int overcommit = 0; 166 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 167 "Configure virtual memory overcommit behavior. See tuning(7) " 168 "for details."); 169 170 /* bits from overcommit */ 171 #define SWAP_RESERVE_FORCE_ON (1 << 0) 172 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 173 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 174 175 int 176 swap_reserve(vm_ooffset_t incr) 177 { 178 179 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 180 } 181 182 int 183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 184 { 185 vm_ooffset_t r, s; 186 int res, error; 187 static int curfail; 188 static struct timeval lastfail; 189 struct uidinfo *uip; 190 191 uip = cred->cr_ruidinfo; 192 193 if (incr & PAGE_MASK) 194 panic("swap_reserve: & PAGE_MASK"); 195 196 PROC_LOCK(curproc); 197 error = racct_add(curproc, RACCT_SWAP, incr); 198 PROC_UNLOCK(curproc); 199 if (error != 0) 200 return (0); 201 202 res = 0; 203 mtx_lock(&sw_dev_mtx); 204 r = swap_reserved + incr; 205 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 206 s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count; 207 s *= PAGE_SIZE; 208 } else 209 s = 0; 210 s += swap_total; 211 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 212 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 213 res = 1; 214 swap_reserved = r; 215 } 216 mtx_unlock(&sw_dev_mtx); 217 218 if (res) { 219 PROC_LOCK(curproc); 220 UIDINFO_VMSIZE_LOCK(uip); 221 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 222 uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) && 223 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 224 res = 0; 225 else 226 uip->ui_vmsize += incr; 227 UIDINFO_VMSIZE_UNLOCK(uip); 228 PROC_UNLOCK(curproc); 229 if (!res) { 230 mtx_lock(&sw_dev_mtx); 231 swap_reserved -= incr; 232 mtx_unlock(&sw_dev_mtx); 233 } 234 } 235 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 236 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 237 curproc->p_pid, uip->ui_uid, incr); 238 } 239 240 if (!res) { 241 PROC_LOCK(curproc); 242 racct_sub(curproc, RACCT_SWAP, incr); 243 PROC_UNLOCK(curproc); 244 } 245 246 return (res); 247 } 248 249 void 250 swap_reserve_force(vm_ooffset_t incr) 251 { 252 struct uidinfo *uip; 253 254 mtx_lock(&sw_dev_mtx); 255 swap_reserved += incr; 256 mtx_unlock(&sw_dev_mtx); 257 258 PROC_LOCK(curproc); 259 racct_add_force(curproc, RACCT_SWAP, incr); 260 PROC_UNLOCK(curproc); 261 262 uip = curthread->td_ucred->cr_ruidinfo; 263 PROC_LOCK(curproc); 264 UIDINFO_VMSIZE_LOCK(uip); 265 uip->ui_vmsize += incr; 266 UIDINFO_VMSIZE_UNLOCK(uip); 267 PROC_UNLOCK(curproc); 268 } 269 270 void 271 swap_release(vm_ooffset_t decr) 272 { 273 struct ucred *cred; 274 275 PROC_LOCK(curproc); 276 cred = curthread->td_ucred; 277 swap_release_by_cred(decr, cred); 278 PROC_UNLOCK(curproc); 279 } 280 281 void 282 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 283 { 284 struct uidinfo *uip; 285 286 uip = cred->cr_ruidinfo; 287 288 if (decr & PAGE_MASK) 289 panic("swap_release: & PAGE_MASK"); 290 291 mtx_lock(&sw_dev_mtx); 292 if (swap_reserved < decr) 293 panic("swap_reserved < decr"); 294 swap_reserved -= decr; 295 mtx_unlock(&sw_dev_mtx); 296 297 UIDINFO_VMSIZE_LOCK(uip); 298 if (uip->ui_vmsize < decr) 299 printf("negative vmsize for uid = %d\n", uip->ui_uid); 300 uip->ui_vmsize -= decr; 301 UIDINFO_VMSIZE_UNLOCK(uip); 302 303 racct_sub_cred(cred, RACCT_SWAP, decr); 304 } 305 306 static void swapdev_strategy(struct buf *, struct swdevt *sw); 307 308 #define SWM_FREE 0x02 /* free, period */ 309 #define SWM_POP 0x04 /* pop out */ 310 311 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 312 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 313 static int nsw_rcount; /* free read buffers */ 314 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 315 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 316 static int nsw_wcount_async_max;/* assigned maximum */ 317 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 318 319 static struct swblock **swhash; 320 static int swhash_mask; 321 static struct mtx swhash_mtx; 322 323 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 324 static struct sx sw_alloc_sx; 325 326 327 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 328 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 329 330 /* 331 * "named" and "unnamed" anon region objects. Try to reduce the overhead 332 * of searching a named list by hashing it just a little. 333 */ 334 335 #define NOBJLISTS 8 336 337 #define NOBJLIST(handle) \ 338 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 339 340 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 341 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 342 static uma_zone_t swap_zone; 343 static struct vm_object swap_zone_obj; 344 345 /* 346 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 347 * calls hooked from other parts of the VM system and do not appear here. 348 * (see vm/swap_pager.h). 349 */ 350 static vm_object_t 351 swap_pager_alloc(void *handle, vm_ooffset_t size, 352 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 353 static void swap_pager_dealloc(vm_object_t object); 354 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 355 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 356 static boolean_t 357 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 358 static void swap_pager_init(void); 359 static void swap_pager_unswapped(vm_page_t); 360 static void swap_pager_swapoff(struct swdevt *sp); 361 362 struct pagerops swappagerops = { 363 .pgo_init = swap_pager_init, /* early system initialization of pager */ 364 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 365 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 366 .pgo_getpages = swap_pager_getpages, /* pagein */ 367 .pgo_putpages = swap_pager_putpages, /* pageout */ 368 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 369 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 370 }; 371 372 /* 373 * dmmax is in page-sized chunks with the new swap system. It was 374 * dev-bsized chunks in the old. dmmax is always a power of 2. 375 * 376 * swap_*() routines are externally accessible. swp_*() routines are 377 * internal. 378 */ 379 static int dmmax; 380 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 381 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 382 383 SYSCTL_INT(_vm, OID_AUTO, dmmax, 384 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 385 386 static void swp_sizecheck(void); 387 static void swp_pager_async_iodone(struct buf *bp); 388 static int swapongeom(struct thread *, struct vnode *); 389 static int swaponvp(struct thread *, struct vnode *, u_long); 390 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 391 392 /* 393 * Swap bitmap functions 394 */ 395 static void swp_pager_freeswapspace(daddr_t blk, int npages); 396 static daddr_t swp_pager_getswapspace(int npages); 397 398 /* 399 * Metadata functions 400 */ 401 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 402 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 403 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 404 static void swp_pager_meta_free_all(vm_object_t); 405 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 406 407 static void 408 swp_pager_free_nrpage(vm_page_t m) 409 { 410 411 vm_page_lock(m); 412 if (m->wire_count == 0) 413 vm_page_free(m); 414 vm_page_unlock(m); 415 } 416 417 /* 418 * SWP_SIZECHECK() - update swap_pager_full indication 419 * 420 * update the swap_pager_almost_full indication and warn when we are 421 * about to run out of swap space, using lowat/hiwat hysteresis. 422 * 423 * Clear swap_pager_full ( task killing ) indication when lowat is met. 424 * 425 * No restrictions on call 426 * This routine may not block. 427 */ 428 static void 429 swp_sizecheck(void) 430 { 431 432 if (swap_pager_avail < nswap_lowat) { 433 if (swap_pager_almost_full == 0) { 434 printf("swap_pager: out of swap space\n"); 435 swap_pager_almost_full = 1; 436 } 437 } else { 438 swap_pager_full = 0; 439 if (swap_pager_avail > nswap_hiwat) 440 swap_pager_almost_full = 0; 441 } 442 } 443 444 /* 445 * SWP_PAGER_HASH() - hash swap meta data 446 * 447 * This is an helper function which hashes the swapblk given 448 * the object and page index. It returns a pointer to a pointer 449 * to the object, or a pointer to a NULL pointer if it could not 450 * find a swapblk. 451 */ 452 static struct swblock ** 453 swp_pager_hash(vm_object_t object, vm_pindex_t index) 454 { 455 struct swblock **pswap; 456 struct swblock *swap; 457 458 index &= ~(vm_pindex_t)SWAP_META_MASK; 459 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 460 while ((swap = *pswap) != NULL) { 461 if (swap->swb_object == object && 462 swap->swb_index == index 463 ) { 464 break; 465 } 466 pswap = &swap->swb_hnext; 467 } 468 return (pswap); 469 } 470 471 /* 472 * SWAP_PAGER_INIT() - initialize the swap pager! 473 * 474 * Expected to be started from system init. NOTE: This code is run 475 * before much else so be careful what you depend on. Most of the VM 476 * system has yet to be initialized at this point. 477 */ 478 static void 479 swap_pager_init(void) 480 { 481 /* 482 * Initialize object lists 483 */ 484 int i; 485 486 for (i = 0; i < NOBJLISTS; ++i) 487 TAILQ_INIT(&swap_pager_object_list[i]); 488 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 489 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 490 491 /* 492 * Device Stripe, in PAGE_SIZE'd blocks 493 */ 494 dmmax = SWB_NPAGES * 2; 495 } 496 497 /* 498 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 499 * 500 * Expected to be started from pageout process once, prior to entering 501 * its main loop. 502 */ 503 void 504 swap_pager_swap_init(void) 505 { 506 int n, n2; 507 508 /* 509 * Number of in-transit swap bp operations. Don't 510 * exhaust the pbufs completely. Make sure we 511 * initialize workable values (0 will work for hysteresis 512 * but it isn't very efficient). 513 * 514 * The nsw_cluster_max is constrained by the bp->b_pages[] 515 * array (MAXPHYS/PAGE_SIZE) and our locally defined 516 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 517 * constrained by the swap device interleave stripe size. 518 * 519 * Currently we hardwire nsw_wcount_async to 4. This limit is 520 * designed to prevent other I/O from having high latencies due to 521 * our pageout I/O. The value 4 works well for one or two active swap 522 * devices but is probably a little low if you have more. Even so, 523 * a higher value would probably generate only a limited improvement 524 * with three or four active swap devices since the system does not 525 * typically have to pageout at extreme bandwidths. We will want 526 * at least 2 per swap devices, and 4 is a pretty good value if you 527 * have one NFS swap device due to the command/ack latency over NFS. 528 * So it all works out pretty well. 529 */ 530 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 531 532 mtx_lock(&pbuf_mtx); 533 nsw_rcount = (nswbuf + 1) / 2; 534 nsw_wcount_sync = (nswbuf + 3) / 4; 535 nsw_wcount_async = 4; 536 nsw_wcount_async_max = nsw_wcount_async; 537 mtx_unlock(&pbuf_mtx); 538 539 /* 540 * Initialize our zone. Right now I'm just guessing on the number 541 * we need based on the number of pages in the system. Each swblock 542 * can hold 16 pages, so this is probably overkill. This reservation 543 * is typically limited to around 32MB by default. 544 */ 545 n = cnt.v_page_count / 2; 546 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 547 n = maxswzone / sizeof(struct swblock); 548 n2 = n; 549 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 550 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 551 if (swap_zone == NULL) 552 panic("failed to create swap_zone."); 553 do { 554 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 555 break; 556 /* 557 * if the allocation failed, try a zone two thirds the 558 * size of the previous attempt. 559 */ 560 n -= ((n + 2) / 3); 561 } while (n > 0); 562 if (n2 != n) 563 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 564 n2 = n; 565 566 /* 567 * Initialize our meta-data hash table. The swapper does not need to 568 * be quite as efficient as the VM system, so we do not use an 569 * oversized hash table. 570 * 571 * n: size of hash table, must be power of 2 572 * swhash_mask: hash table index mask 573 */ 574 for (n = 1; n < n2 / 8; n *= 2) 575 ; 576 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 577 swhash_mask = n - 1; 578 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 579 } 580 581 /* 582 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 583 * its metadata structures. 584 * 585 * This routine is called from the mmap and fork code to create a new 586 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 587 * and then converting it with swp_pager_meta_build(). 588 * 589 * This routine may block in vm_object_allocate() and create a named 590 * object lookup race, so we must interlock. 591 * 592 * MPSAFE 593 */ 594 static vm_object_t 595 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 596 vm_ooffset_t offset, struct ucred *cred) 597 { 598 vm_object_t object; 599 vm_pindex_t pindex; 600 601 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 602 if (handle) { 603 mtx_lock(&Giant); 604 /* 605 * Reference existing named region or allocate new one. There 606 * should not be a race here against swp_pager_meta_build() 607 * as called from vm_page_remove() in regards to the lookup 608 * of the handle. 609 */ 610 sx_xlock(&sw_alloc_sx); 611 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 612 if (object == NULL) { 613 if (cred != NULL) { 614 if (!swap_reserve_by_cred(size, cred)) { 615 sx_xunlock(&sw_alloc_sx); 616 mtx_unlock(&Giant); 617 return (NULL); 618 } 619 crhold(cred); 620 } 621 object = vm_object_allocate(OBJT_DEFAULT, pindex); 622 VM_OBJECT_LOCK(object); 623 object->handle = handle; 624 if (cred != NULL) { 625 object->cred = cred; 626 object->charge = size; 627 } 628 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 629 VM_OBJECT_UNLOCK(object); 630 } 631 sx_xunlock(&sw_alloc_sx); 632 mtx_unlock(&Giant); 633 } else { 634 if (cred != NULL) { 635 if (!swap_reserve_by_cred(size, cred)) 636 return (NULL); 637 crhold(cred); 638 } 639 object = vm_object_allocate(OBJT_DEFAULT, pindex); 640 VM_OBJECT_LOCK(object); 641 if (cred != NULL) { 642 object->cred = cred; 643 object->charge = size; 644 } 645 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 646 VM_OBJECT_UNLOCK(object); 647 } 648 return (object); 649 } 650 651 /* 652 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 653 * 654 * The swap backing for the object is destroyed. The code is 655 * designed such that we can reinstantiate it later, but this 656 * routine is typically called only when the entire object is 657 * about to be destroyed. 658 * 659 * This routine may block, but no longer does. 660 * 661 * The object must be locked or unreferenceable. 662 */ 663 static void 664 swap_pager_dealloc(vm_object_t object) 665 { 666 667 /* 668 * Remove from list right away so lookups will fail if we block for 669 * pageout completion. 670 */ 671 if (object->handle != NULL) { 672 mtx_lock(&sw_alloc_mtx); 673 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 674 mtx_unlock(&sw_alloc_mtx); 675 } 676 677 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 678 vm_object_pip_wait(object, "swpdea"); 679 680 /* 681 * Free all remaining metadata. We only bother to free it from 682 * the swap meta data. We do not attempt to free swapblk's still 683 * associated with vm_page_t's for this object. We do not care 684 * if paging is still in progress on some objects. 685 */ 686 swp_pager_meta_free_all(object); 687 } 688 689 /************************************************************************ 690 * SWAP PAGER BITMAP ROUTINES * 691 ************************************************************************/ 692 693 /* 694 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 695 * 696 * Allocate swap for the requested number of pages. The starting 697 * swap block number (a page index) is returned or SWAPBLK_NONE 698 * if the allocation failed. 699 * 700 * Also has the side effect of advising that somebody made a mistake 701 * when they configured swap and didn't configure enough. 702 * 703 * This routine may not block 704 * 705 * We allocate in round-robin fashion from the configured devices. 706 */ 707 static daddr_t 708 swp_pager_getswapspace(int npages) 709 { 710 daddr_t blk; 711 struct swdevt *sp; 712 int i; 713 714 blk = SWAPBLK_NONE; 715 mtx_lock(&sw_dev_mtx); 716 sp = swdevhd; 717 for (i = 0; i < nswapdev; i++) { 718 if (sp == NULL) 719 sp = TAILQ_FIRST(&swtailq); 720 if (!(sp->sw_flags & SW_CLOSING)) { 721 blk = blist_alloc(sp->sw_blist, npages); 722 if (blk != SWAPBLK_NONE) { 723 blk += sp->sw_first; 724 sp->sw_used += npages; 725 swap_pager_avail -= npages; 726 swp_sizecheck(); 727 swdevhd = TAILQ_NEXT(sp, sw_list); 728 goto done; 729 } 730 } 731 sp = TAILQ_NEXT(sp, sw_list); 732 } 733 if (swap_pager_full != 2) { 734 printf("swap_pager_getswapspace(%d): failed\n", npages); 735 swap_pager_full = 2; 736 swap_pager_almost_full = 1; 737 } 738 swdevhd = NULL; 739 done: 740 mtx_unlock(&sw_dev_mtx); 741 return (blk); 742 } 743 744 static int 745 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 746 { 747 748 return (blk >= sp->sw_first && blk < sp->sw_end); 749 } 750 751 static void 752 swp_pager_strategy(struct buf *bp) 753 { 754 struct swdevt *sp; 755 756 mtx_lock(&sw_dev_mtx); 757 TAILQ_FOREACH(sp, &swtailq, sw_list) { 758 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 759 mtx_unlock(&sw_dev_mtx); 760 sp->sw_strategy(bp, sp); 761 return; 762 } 763 } 764 panic("Swapdev not found"); 765 } 766 767 768 /* 769 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 770 * 771 * This routine returns the specified swap blocks back to the bitmap. 772 * 773 * Note: This routine may not block (it could in the old swap code), 774 * and through the use of the new blist routines it does not block. 775 * 776 * This routine may not block 777 */ 778 static void 779 swp_pager_freeswapspace(daddr_t blk, int npages) 780 { 781 struct swdevt *sp; 782 783 mtx_lock(&sw_dev_mtx); 784 TAILQ_FOREACH(sp, &swtailq, sw_list) { 785 if (blk >= sp->sw_first && blk < sp->sw_end) { 786 sp->sw_used -= npages; 787 /* 788 * If we are attempting to stop swapping on 789 * this device, we don't want to mark any 790 * blocks free lest they be reused. 791 */ 792 if ((sp->sw_flags & SW_CLOSING) == 0) { 793 blist_free(sp->sw_blist, blk - sp->sw_first, 794 npages); 795 swap_pager_avail += npages; 796 swp_sizecheck(); 797 } 798 mtx_unlock(&sw_dev_mtx); 799 return; 800 } 801 } 802 panic("Swapdev not found"); 803 } 804 805 /* 806 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 807 * range within an object. 808 * 809 * This is a globally accessible routine. 810 * 811 * This routine removes swapblk assignments from swap metadata. 812 * 813 * The external callers of this routine typically have already destroyed 814 * or renamed vm_page_t's associated with this range in the object so 815 * we should be ok. 816 */ 817 void 818 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 819 { 820 821 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 822 swp_pager_meta_free(object, start, size); 823 } 824 825 /* 826 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 827 * 828 * Assigns swap blocks to the specified range within the object. The 829 * swap blocks are not zerod. Any previous swap assignment is destroyed. 830 * 831 * Returns 0 on success, -1 on failure. 832 */ 833 int 834 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 835 { 836 int n = 0; 837 daddr_t blk = SWAPBLK_NONE; 838 vm_pindex_t beg = start; /* save start index */ 839 840 VM_OBJECT_LOCK(object); 841 while (size) { 842 if (n == 0) { 843 n = BLIST_MAX_ALLOC; 844 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 845 n >>= 1; 846 if (n == 0) { 847 swp_pager_meta_free(object, beg, start - beg); 848 VM_OBJECT_UNLOCK(object); 849 return (-1); 850 } 851 } 852 } 853 swp_pager_meta_build(object, start, blk); 854 --size; 855 ++start; 856 ++blk; 857 --n; 858 } 859 swp_pager_meta_free(object, start, n); 860 VM_OBJECT_UNLOCK(object); 861 return (0); 862 } 863 864 /* 865 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 866 * and destroy the source. 867 * 868 * Copy any valid swapblks from the source to the destination. In 869 * cases where both the source and destination have a valid swapblk, 870 * we keep the destination's. 871 * 872 * This routine is allowed to block. It may block allocating metadata 873 * indirectly through swp_pager_meta_build() or if paging is still in 874 * progress on the source. 875 * 876 * XXX vm_page_collapse() kinda expects us not to block because we 877 * supposedly do not need to allocate memory, but for the moment we 878 * *may* have to get a little memory from the zone allocator, but 879 * it is taken from the interrupt memory. We should be ok. 880 * 881 * The source object contains no vm_page_t's (which is just as well) 882 * 883 * The source object is of type OBJT_SWAP. 884 * 885 * The source and destination objects must be locked or 886 * inaccessible (XXX are they ?) 887 */ 888 void 889 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 890 vm_pindex_t offset, int destroysource) 891 { 892 vm_pindex_t i; 893 894 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 895 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 896 897 /* 898 * If destroysource is set, we remove the source object from the 899 * swap_pager internal queue now. 900 */ 901 if (destroysource) { 902 if (srcobject->handle != NULL) { 903 mtx_lock(&sw_alloc_mtx); 904 TAILQ_REMOVE( 905 NOBJLIST(srcobject->handle), 906 srcobject, 907 pager_object_list 908 ); 909 mtx_unlock(&sw_alloc_mtx); 910 } 911 } 912 913 /* 914 * transfer source to destination. 915 */ 916 for (i = 0; i < dstobject->size; ++i) { 917 daddr_t dstaddr; 918 919 /* 920 * Locate (without changing) the swapblk on the destination, 921 * unless it is invalid in which case free it silently, or 922 * if the destination is a resident page, in which case the 923 * source is thrown away. 924 */ 925 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 926 927 if (dstaddr == SWAPBLK_NONE) { 928 /* 929 * Destination has no swapblk and is not resident, 930 * copy source. 931 */ 932 daddr_t srcaddr; 933 934 srcaddr = swp_pager_meta_ctl( 935 srcobject, 936 i + offset, 937 SWM_POP 938 ); 939 940 if (srcaddr != SWAPBLK_NONE) { 941 /* 942 * swp_pager_meta_build() can sleep. 943 */ 944 vm_object_pip_add(srcobject, 1); 945 VM_OBJECT_UNLOCK(srcobject); 946 vm_object_pip_add(dstobject, 1); 947 swp_pager_meta_build(dstobject, i, srcaddr); 948 vm_object_pip_wakeup(dstobject); 949 VM_OBJECT_LOCK(srcobject); 950 vm_object_pip_wakeup(srcobject); 951 } 952 } else { 953 /* 954 * Destination has valid swapblk or it is represented 955 * by a resident page. We destroy the sourceblock. 956 */ 957 958 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 959 } 960 } 961 962 /* 963 * Free left over swap blocks in source. 964 * 965 * We have to revert the type to OBJT_DEFAULT so we do not accidently 966 * double-remove the object from the swap queues. 967 */ 968 if (destroysource) { 969 swp_pager_meta_free_all(srcobject); 970 /* 971 * Reverting the type is not necessary, the caller is going 972 * to destroy srcobject directly, but I'm doing it here 973 * for consistency since we've removed the object from its 974 * queues. 975 */ 976 srcobject->type = OBJT_DEFAULT; 977 } 978 } 979 980 /* 981 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 982 * the requested page. 983 * 984 * We determine whether good backing store exists for the requested 985 * page and return TRUE if it does, FALSE if it doesn't. 986 * 987 * If TRUE, we also try to determine how much valid, contiguous backing 988 * store exists before and after the requested page within a reasonable 989 * distance. We do not try to restrict it to the swap device stripe 990 * (that is handled in getpages/putpages). It probably isn't worth 991 * doing here. 992 */ 993 static boolean_t 994 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 995 { 996 daddr_t blk0; 997 998 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 999 /* 1000 * do we have good backing store at the requested index ? 1001 */ 1002 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1003 1004 if (blk0 == SWAPBLK_NONE) { 1005 if (before) 1006 *before = 0; 1007 if (after) 1008 *after = 0; 1009 return (FALSE); 1010 } 1011 1012 /* 1013 * find backwards-looking contiguous good backing store 1014 */ 1015 if (before != NULL) { 1016 int i; 1017 1018 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1019 daddr_t blk; 1020 1021 if (i > pindex) 1022 break; 1023 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1024 if (blk != blk0 - i) 1025 break; 1026 } 1027 *before = (i - 1); 1028 } 1029 1030 /* 1031 * find forward-looking contiguous good backing store 1032 */ 1033 if (after != NULL) { 1034 int i; 1035 1036 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1037 daddr_t blk; 1038 1039 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1040 if (blk != blk0 + i) 1041 break; 1042 } 1043 *after = (i - 1); 1044 } 1045 return (TRUE); 1046 } 1047 1048 /* 1049 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1050 * 1051 * This removes any associated swap backing store, whether valid or 1052 * not, from the page. 1053 * 1054 * This routine is typically called when a page is made dirty, at 1055 * which point any associated swap can be freed. MADV_FREE also 1056 * calls us in a special-case situation 1057 * 1058 * NOTE!!! If the page is clean and the swap was valid, the caller 1059 * should make the page dirty before calling this routine. This routine 1060 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1061 * depends on it. 1062 * 1063 * This routine may not block 1064 */ 1065 static void 1066 swap_pager_unswapped(vm_page_t m) 1067 { 1068 1069 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1070 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1071 } 1072 1073 /* 1074 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1075 * 1076 * Attempt to retrieve (m, count) pages from backing store, but make 1077 * sure we retrieve at least m[reqpage]. We try to load in as large 1078 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1079 * belongs to the same object. 1080 * 1081 * The code is designed for asynchronous operation and 1082 * immediate-notification of 'reqpage' but tends not to be 1083 * used that way. Please do not optimize-out this algorithmic 1084 * feature, I intend to improve on it in the future. 1085 * 1086 * The parent has a single vm_object_pip_add() reference prior to 1087 * calling us and we should return with the same. 1088 * 1089 * The parent has BUSY'd the pages. We should return with 'm' 1090 * left busy, but the others adjusted. 1091 */ 1092 static int 1093 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1094 { 1095 struct buf *bp; 1096 vm_page_t mreq; 1097 int i; 1098 int j; 1099 daddr_t blk; 1100 1101 mreq = m[reqpage]; 1102 1103 KASSERT(mreq->object == object, 1104 ("swap_pager_getpages: object mismatch %p/%p", 1105 object, mreq->object)); 1106 1107 /* 1108 * Calculate range to retrieve. The pages have already been assigned 1109 * their swapblks. We require a *contiguous* range but we know it to 1110 * not span devices. If we do not supply it, bad things 1111 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1112 * loops are set up such that the case(s) are handled implicitly. 1113 * 1114 * The swp_*() calls must be made with the object locked. 1115 */ 1116 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1117 1118 for (i = reqpage - 1; i >= 0; --i) { 1119 daddr_t iblk; 1120 1121 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1122 if (blk != iblk + (reqpage - i)) 1123 break; 1124 } 1125 ++i; 1126 1127 for (j = reqpage + 1; j < count; ++j) { 1128 daddr_t jblk; 1129 1130 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1131 if (blk != jblk - (j - reqpage)) 1132 break; 1133 } 1134 1135 /* 1136 * free pages outside our collection range. Note: we never free 1137 * mreq, it must remain busy throughout. 1138 */ 1139 if (0 < i || j < count) { 1140 int k; 1141 1142 for (k = 0; k < i; ++k) 1143 swp_pager_free_nrpage(m[k]); 1144 for (k = j; k < count; ++k) 1145 swp_pager_free_nrpage(m[k]); 1146 } 1147 1148 /* 1149 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1150 * still busy, but the others unbusied. 1151 */ 1152 if (blk == SWAPBLK_NONE) 1153 return (VM_PAGER_FAIL); 1154 1155 /* 1156 * Getpbuf() can sleep. 1157 */ 1158 VM_OBJECT_UNLOCK(object); 1159 /* 1160 * Get a swap buffer header to perform the IO 1161 */ 1162 bp = getpbuf(&nsw_rcount); 1163 bp->b_flags |= B_PAGING; 1164 1165 /* 1166 * map our page(s) into kva for input 1167 */ 1168 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1169 1170 bp->b_iocmd = BIO_READ; 1171 bp->b_iodone = swp_pager_async_iodone; 1172 bp->b_rcred = crhold(thread0.td_ucred); 1173 bp->b_wcred = crhold(thread0.td_ucred); 1174 bp->b_blkno = blk - (reqpage - i); 1175 bp->b_bcount = PAGE_SIZE * (j - i); 1176 bp->b_bufsize = PAGE_SIZE * (j - i); 1177 bp->b_pager.pg_reqpage = reqpage - i; 1178 1179 VM_OBJECT_LOCK(object); 1180 { 1181 int k; 1182 1183 for (k = i; k < j; ++k) { 1184 bp->b_pages[k - i] = m[k]; 1185 m[k]->oflags |= VPO_SWAPINPROG; 1186 } 1187 } 1188 bp->b_npages = j - i; 1189 1190 PCPU_INC(cnt.v_swapin); 1191 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1192 1193 /* 1194 * We still hold the lock on mreq, and our automatic completion routine 1195 * does not remove it. 1196 */ 1197 vm_object_pip_add(object, bp->b_npages); 1198 VM_OBJECT_UNLOCK(object); 1199 1200 /* 1201 * perform the I/O. NOTE!!! bp cannot be considered valid after 1202 * this point because we automatically release it on completion. 1203 * Instead, we look at the one page we are interested in which we 1204 * still hold a lock on even through the I/O completion. 1205 * 1206 * The other pages in our m[] array are also released on completion, 1207 * so we cannot assume they are valid anymore either. 1208 * 1209 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1210 */ 1211 BUF_KERNPROC(bp); 1212 swp_pager_strategy(bp); 1213 1214 /* 1215 * wait for the page we want to complete. VPO_SWAPINPROG is always 1216 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1217 * is set in the meta-data. 1218 */ 1219 VM_OBJECT_LOCK(object); 1220 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1221 mreq->oflags |= VPO_WANTED; 1222 PCPU_INC(cnt.v_intrans); 1223 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1224 printf( 1225 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1226 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1227 } 1228 } 1229 1230 /* 1231 * mreq is left busied after completion, but all the other pages 1232 * are freed. If we had an unrecoverable read error the page will 1233 * not be valid. 1234 */ 1235 if (mreq->valid != VM_PAGE_BITS_ALL) { 1236 return (VM_PAGER_ERROR); 1237 } else { 1238 return (VM_PAGER_OK); 1239 } 1240 1241 /* 1242 * A final note: in a low swap situation, we cannot deallocate swap 1243 * and mark a page dirty here because the caller is likely to mark 1244 * the page clean when we return, causing the page to possibly revert 1245 * to all-zero's later. 1246 */ 1247 } 1248 1249 /* 1250 * swap_pager_putpages: 1251 * 1252 * Assign swap (if necessary) and initiate I/O on the specified pages. 1253 * 1254 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1255 * are automatically converted to SWAP objects. 1256 * 1257 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1258 * vm_page reservation system coupled with properly written VFS devices 1259 * should ensure that no low-memory deadlock occurs. This is an area 1260 * which needs work. 1261 * 1262 * The parent has N vm_object_pip_add() references prior to 1263 * calling us and will remove references for rtvals[] that are 1264 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1265 * completion. 1266 * 1267 * The parent has soft-busy'd the pages it passes us and will unbusy 1268 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1269 * We need to unbusy the rest on I/O completion. 1270 */ 1271 void 1272 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1273 boolean_t sync, int *rtvals) 1274 { 1275 int i; 1276 int n = 0; 1277 1278 if (count && m[0]->object != object) { 1279 panic("swap_pager_putpages: object mismatch %p/%p", 1280 object, 1281 m[0]->object 1282 ); 1283 } 1284 1285 /* 1286 * Step 1 1287 * 1288 * Turn object into OBJT_SWAP 1289 * check for bogus sysops 1290 * force sync if not pageout process 1291 */ 1292 if (object->type != OBJT_SWAP) 1293 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1294 VM_OBJECT_UNLOCK(object); 1295 1296 if (curproc != pageproc) 1297 sync = TRUE; 1298 1299 /* 1300 * Step 2 1301 * 1302 * Update nsw parameters from swap_async_max sysctl values. 1303 * Do not let the sysop crash the machine with bogus numbers. 1304 */ 1305 mtx_lock(&pbuf_mtx); 1306 if (swap_async_max != nsw_wcount_async_max) { 1307 int n; 1308 1309 /* 1310 * limit range 1311 */ 1312 if ((n = swap_async_max) > nswbuf / 2) 1313 n = nswbuf / 2; 1314 if (n < 1) 1315 n = 1; 1316 swap_async_max = n; 1317 1318 /* 1319 * Adjust difference ( if possible ). If the current async 1320 * count is too low, we may not be able to make the adjustment 1321 * at this time. 1322 */ 1323 n -= nsw_wcount_async_max; 1324 if (nsw_wcount_async + n >= 0) { 1325 nsw_wcount_async += n; 1326 nsw_wcount_async_max += n; 1327 wakeup(&nsw_wcount_async); 1328 } 1329 } 1330 mtx_unlock(&pbuf_mtx); 1331 1332 /* 1333 * Step 3 1334 * 1335 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1336 * The page is left dirty until the pageout operation completes 1337 * successfully. 1338 */ 1339 for (i = 0; i < count; i += n) { 1340 int j; 1341 struct buf *bp; 1342 daddr_t blk; 1343 1344 /* 1345 * Maximum I/O size is limited by a number of factors. 1346 */ 1347 n = min(BLIST_MAX_ALLOC, count - i); 1348 n = min(n, nsw_cluster_max); 1349 1350 /* 1351 * Get biggest block of swap we can. If we fail, fall 1352 * back and try to allocate a smaller block. Don't go 1353 * overboard trying to allocate space if it would overly 1354 * fragment swap. 1355 */ 1356 while ( 1357 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1358 n > 4 1359 ) { 1360 n >>= 1; 1361 } 1362 if (blk == SWAPBLK_NONE) { 1363 for (j = 0; j < n; ++j) 1364 rtvals[i+j] = VM_PAGER_FAIL; 1365 continue; 1366 } 1367 1368 /* 1369 * All I/O parameters have been satisfied, build the I/O 1370 * request and assign the swap space. 1371 */ 1372 if (sync == TRUE) { 1373 bp = getpbuf(&nsw_wcount_sync); 1374 } else { 1375 bp = getpbuf(&nsw_wcount_async); 1376 bp->b_flags = B_ASYNC; 1377 } 1378 bp->b_flags |= B_PAGING; 1379 bp->b_iocmd = BIO_WRITE; 1380 1381 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1382 1383 bp->b_rcred = crhold(thread0.td_ucred); 1384 bp->b_wcred = crhold(thread0.td_ucred); 1385 bp->b_bcount = PAGE_SIZE * n; 1386 bp->b_bufsize = PAGE_SIZE * n; 1387 bp->b_blkno = blk; 1388 1389 VM_OBJECT_LOCK(object); 1390 for (j = 0; j < n; ++j) { 1391 vm_page_t mreq = m[i+j]; 1392 1393 swp_pager_meta_build( 1394 mreq->object, 1395 mreq->pindex, 1396 blk + j 1397 ); 1398 vm_page_dirty(mreq); 1399 rtvals[i+j] = VM_PAGER_OK; 1400 1401 mreq->oflags |= VPO_SWAPINPROG; 1402 bp->b_pages[j] = mreq; 1403 } 1404 VM_OBJECT_UNLOCK(object); 1405 bp->b_npages = n; 1406 /* 1407 * Must set dirty range for NFS to work. 1408 */ 1409 bp->b_dirtyoff = 0; 1410 bp->b_dirtyend = bp->b_bcount; 1411 1412 PCPU_INC(cnt.v_swapout); 1413 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1414 1415 /* 1416 * asynchronous 1417 * 1418 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1419 */ 1420 if (sync == FALSE) { 1421 bp->b_iodone = swp_pager_async_iodone; 1422 BUF_KERNPROC(bp); 1423 swp_pager_strategy(bp); 1424 1425 for (j = 0; j < n; ++j) 1426 rtvals[i+j] = VM_PAGER_PEND; 1427 /* restart outter loop */ 1428 continue; 1429 } 1430 1431 /* 1432 * synchronous 1433 * 1434 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1435 */ 1436 bp->b_iodone = bdone; 1437 swp_pager_strategy(bp); 1438 1439 /* 1440 * Wait for the sync I/O to complete, then update rtvals. 1441 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1442 * our async completion routine at the end, thus avoiding a 1443 * double-free. 1444 */ 1445 bwait(bp, PVM, "swwrt"); 1446 for (j = 0; j < n; ++j) 1447 rtvals[i+j] = VM_PAGER_PEND; 1448 /* 1449 * Now that we are through with the bp, we can call the 1450 * normal async completion, which frees everything up. 1451 */ 1452 swp_pager_async_iodone(bp); 1453 } 1454 VM_OBJECT_LOCK(object); 1455 } 1456 1457 /* 1458 * swp_pager_async_iodone: 1459 * 1460 * Completion routine for asynchronous reads and writes from/to swap. 1461 * Also called manually by synchronous code to finish up a bp. 1462 * 1463 * For READ operations, the pages are VPO_BUSY'd. For WRITE operations, 1464 * the pages are vm_page_t->busy'd. For READ operations, we VPO_BUSY 1465 * unbusy all pages except the 'main' request page. For WRITE 1466 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1467 * because we marked them all VM_PAGER_PEND on return from putpages ). 1468 * 1469 * This routine may not block. 1470 */ 1471 static void 1472 swp_pager_async_iodone(struct buf *bp) 1473 { 1474 int i; 1475 vm_object_t object = NULL; 1476 1477 /* 1478 * report error 1479 */ 1480 if (bp->b_ioflags & BIO_ERROR) { 1481 printf( 1482 "swap_pager: I/O error - %s failed; blkno %ld," 1483 "size %ld, error %d\n", 1484 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1485 (long)bp->b_blkno, 1486 (long)bp->b_bcount, 1487 bp->b_error 1488 ); 1489 } 1490 1491 /* 1492 * remove the mapping for kernel virtual 1493 */ 1494 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1495 1496 if (bp->b_npages) { 1497 object = bp->b_pages[0]->object; 1498 VM_OBJECT_LOCK(object); 1499 } 1500 1501 /* 1502 * cleanup pages. If an error occurs writing to swap, we are in 1503 * very serious trouble. If it happens to be a disk error, though, 1504 * we may be able to recover by reassigning the swap later on. So 1505 * in this case we remove the m->swapblk assignment for the page 1506 * but do not free it in the rlist. The errornous block(s) are thus 1507 * never reallocated as swap. Redirty the page and continue. 1508 */ 1509 for (i = 0; i < bp->b_npages; ++i) { 1510 vm_page_t m = bp->b_pages[i]; 1511 1512 m->oflags &= ~VPO_SWAPINPROG; 1513 1514 if (bp->b_ioflags & BIO_ERROR) { 1515 /* 1516 * If an error occurs I'd love to throw the swapblk 1517 * away without freeing it back to swapspace, so it 1518 * can never be used again. But I can't from an 1519 * interrupt. 1520 */ 1521 if (bp->b_iocmd == BIO_READ) { 1522 /* 1523 * When reading, reqpage needs to stay 1524 * locked for the parent, but all other 1525 * pages can be freed. We still want to 1526 * wakeup the parent waiting on the page, 1527 * though. ( also: pg_reqpage can be -1 and 1528 * not match anything ). 1529 * 1530 * We have to wake specifically requested pages 1531 * up too because we cleared VPO_SWAPINPROG and 1532 * someone may be waiting for that. 1533 * 1534 * NOTE: for reads, m->dirty will probably 1535 * be overridden by the original caller of 1536 * getpages so don't play cute tricks here. 1537 */ 1538 m->valid = 0; 1539 if (i != bp->b_pager.pg_reqpage) 1540 swp_pager_free_nrpage(m); 1541 else 1542 vm_page_flash(m); 1543 /* 1544 * If i == bp->b_pager.pg_reqpage, do not wake 1545 * the page up. The caller needs to. 1546 */ 1547 } else { 1548 /* 1549 * If a write error occurs, reactivate page 1550 * so it doesn't clog the inactive list, 1551 * then finish the I/O. 1552 */ 1553 vm_page_dirty(m); 1554 vm_page_lock(m); 1555 vm_page_activate(m); 1556 vm_page_unlock(m); 1557 vm_page_io_finish(m); 1558 } 1559 } else if (bp->b_iocmd == BIO_READ) { 1560 /* 1561 * NOTE: for reads, m->dirty will probably be 1562 * overridden by the original caller of getpages so 1563 * we cannot set them in order to free the underlying 1564 * swap in a low-swap situation. I don't think we'd 1565 * want to do that anyway, but it was an optimization 1566 * that existed in the old swapper for a time before 1567 * it got ripped out due to precisely this problem. 1568 * 1569 * If not the requested page then deactivate it. 1570 * 1571 * Note that the requested page, reqpage, is left 1572 * busied, but we still have to wake it up. The 1573 * other pages are released (unbusied) by 1574 * vm_page_wakeup(). 1575 */ 1576 KASSERT(!pmap_page_is_mapped(m), 1577 ("swp_pager_async_iodone: page %p is mapped", m)); 1578 m->valid = VM_PAGE_BITS_ALL; 1579 KASSERT(m->dirty == 0, 1580 ("swp_pager_async_iodone: page %p is dirty", m)); 1581 1582 /* 1583 * We have to wake specifically requested pages 1584 * up too because we cleared VPO_SWAPINPROG and 1585 * could be waiting for it in getpages. However, 1586 * be sure to not unbusy getpages specifically 1587 * requested page - getpages expects it to be 1588 * left busy. 1589 */ 1590 if (i != bp->b_pager.pg_reqpage) { 1591 vm_page_lock(m); 1592 vm_page_deactivate(m); 1593 vm_page_unlock(m); 1594 vm_page_wakeup(m); 1595 } else 1596 vm_page_flash(m); 1597 } else { 1598 /* 1599 * For write success, clear the dirty 1600 * status, then finish the I/O ( which decrements the 1601 * busy count and possibly wakes waiter's up ). 1602 */ 1603 KASSERT((m->flags & PG_WRITEABLE) == 0, 1604 ("swp_pager_async_iodone: page %p is not write" 1605 " protected", m)); 1606 vm_page_undirty(m); 1607 vm_page_io_finish(m); 1608 if (vm_page_count_severe()) { 1609 vm_page_lock(m); 1610 vm_page_try_to_cache(m); 1611 vm_page_unlock(m); 1612 } 1613 } 1614 } 1615 1616 /* 1617 * adjust pip. NOTE: the original parent may still have its own 1618 * pip refs on the object. 1619 */ 1620 if (object != NULL) { 1621 vm_object_pip_wakeupn(object, bp->b_npages); 1622 VM_OBJECT_UNLOCK(object); 1623 } 1624 1625 /* 1626 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1627 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1628 * trigger a KASSERT in relpbuf(). 1629 */ 1630 if (bp->b_vp) { 1631 bp->b_vp = NULL; 1632 bp->b_bufobj = NULL; 1633 } 1634 /* 1635 * release the physical I/O buffer 1636 */ 1637 relpbuf( 1638 bp, 1639 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1640 ((bp->b_flags & B_ASYNC) ? 1641 &nsw_wcount_async : 1642 &nsw_wcount_sync 1643 ) 1644 ) 1645 ); 1646 } 1647 1648 /* 1649 * swap_pager_isswapped: 1650 * 1651 * Return 1 if at least one page in the given object is paged 1652 * out to the given swap device. 1653 * 1654 * This routine may not block. 1655 */ 1656 int 1657 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1658 { 1659 daddr_t index = 0; 1660 int bcount; 1661 int i; 1662 1663 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1664 if (object->type != OBJT_SWAP) 1665 return (0); 1666 1667 mtx_lock(&swhash_mtx); 1668 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1669 struct swblock *swap; 1670 1671 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1672 for (i = 0; i < SWAP_META_PAGES; ++i) { 1673 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1674 mtx_unlock(&swhash_mtx); 1675 return (1); 1676 } 1677 } 1678 } 1679 index += SWAP_META_PAGES; 1680 } 1681 mtx_unlock(&swhash_mtx); 1682 return (0); 1683 } 1684 1685 /* 1686 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1687 * 1688 * This routine dissociates the page at the given index within a 1689 * swap block from its backing store, paging it in if necessary. 1690 * If the page is paged in, it is placed in the inactive queue, 1691 * since it had its backing store ripped out from under it. 1692 * We also attempt to swap in all other pages in the swap block, 1693 * we only guarantee that the one at the specified index is 1694 * paged in. 1695 * 1696 * XXX - The code to page the whole block in doesn't work, so we 1697 * revert to the one-by-one behavior for now. Sigh. 1698 */ 1699 static inline void 1700 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1701 { 1702 vm_page_t m; 1703 1704 vm_object_pip_add(object, 1); 1705 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1706 if (m->valid == VM_PAGE_BITS_ALL) { 1707 vm_object_pip_subtract(object, 1); 1708 vm_page_dirty(m); 1709 vm_page_lock(m); 1710 vm_page_activate(m); 1711 vm_page_unlock(m); 1712 vm_page_wakeup(m); 1713 vm_pager_page_unswapped(m); 1714 return; 1715 } 1716 1717 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1718 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1719 vm_object_pip_subtract(object, 1); 1720 vm_page_dirty(m); 1721 vm_page_lock(m); 1722 vm_page_deactivate(m); 1723 vm_page_unlock(m); 1724 vm_page_wakeup(m); 1725 vm_pager_page_unswapped(m); 1726 } 1727 1728 /* 1729 * swap_pager_swapoff: 1730 * 1731 * Page in all of the pages that have been paged out to the 1732 * given device. The corresponding blocks in the bitmap must be 1733 * marked as allocated and the device must be flagged SW_CLOSING. 1734 * There may be no processes swapped out to the device. 1735 * 1736 * This routine may block. 1737 */ 1738 static void 1739 swap_pager_swapoff(struct swdevt *sp) 1740 { 1741 struct swblock *swap; 1742 int i, j, retries; 1743 1744 GIANT_REQUIRED; 1745 1746 retries = 0; 1747 full_rescan: 1748 mtx_lock(&swhash_mtx); 1749 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1750 restart: 1751 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1752 vm_object_t object = swap->swb_object; 1753 vm_pindex_t pindex = swap->swb_index; 1754 for (j = 0; j < SWAP_META_PAGES; ++j) { 1755 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1756 /* avoid deadlock */ 1757 if (!VM_OBJECT_TRYLOCK(object)) { 1758 break; 1759 } else { 1760 mtx_unlock(&swhash_mtx); 1761 swp_pager_force_pagein(object, 1762 pindex + j); 1763 VM_OBJECT_UNLOCK(object); 1764 mtx_lock(&swhash_mtx); 1765 goto restart; 1766 } 1767 } 1768 } 1769 } 1770 } 1771 mtx_unlock(&swhash_mtx); 1772 if (sp->sw_used) { 1773 /* 1774 * Objects may be locked or paging to the device being 1775 * removed, so we will miss their pages and need to 1776 * make another pass. We have marked this device as 1777 * SW_CLOSING, so the activity should finish soon. 1778 */ 1779 retries++; 1780 if (retries > 100) { 1781 panic("swapoff: failed to locate %d swap blocks", 1782 sp->sw_used); 1783 } 1784 pause("swpoff", hz / 20); 1785 goto full_rescan; 1786 } 1787 } 1788 1789 /************************************************************************ 1790 * SWAP META DATA * 1791 ************************************************************************ 1792 * 1793 * These routines manipulate the swap metadata stored in the 1794 * OBJT_SWAP object. 1795 * 1796 * Swap metadata is implemented with a global hash and not directly 1797 * linked into the object. Instead the object simply contains 1798 * appropriate tracking counters. 1799 */ 1800 1801 /* 1802 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1803 * 1804 * We first convert the object to a swap object if it is a default 1805 * object. 1806 * 1807 * The specified swapblk is added to the object's swap metadata. If 1808 * the swapblk is not valid, it is freed instead. Any previously 1809 * assigned swapblk is freed. 1810 */ 1811 static void 1812 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1813 { 1814 struct swblock *swap; 1815 struct swblock **pswap; 1816 int idx; 1817 1818 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1819 /* 1820 * Convert default object to swap object if necessary 1821 */ 1822 if (object->type != OBJT_SWAP) { 1823 object->type = OBJT_SWAP; 1824 object->un_pager.swp.swp_bcount = 0; 1825 1826 if (object->handle != NULL) { 1827 mtx_lock(&sw_alloc_mtx); 1828 TAILQ_INSERT_TAIL( 1829 NOBJLIST(object->handle), 1830 object, 1831 pager_object_list 1832 ); 1833 mtx_unlock(&sw_alloc_mtx); 1834 } 1835 } 1836 1837 /* 1838 * Locate hash entry. If not found create, but if we aren't adding 1839 * anything just return. If we run out of space in the map we wait 1840 * and, since the hash table may have changed, retry. 1841 */ 1842 retry: 1843 mtx_lock(&swhash_mtx); 1844 pswap = swp_pager_hash(object, pindex); 1845 1846 if ((swap = *pswap) == NULL) { 1847 int i; 1848 1849 if (swapblk == SWAPBLK_NONE) 1850 goto done; 1851 1852 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1853 if (swap == NULL) { 1854 mtx_unlock(&swhash_mtx); 1855 VM_OBJECT_UNLOCK(object); 1856 if (uma_zone_exhausted(swap_zone)) { 1857 printf("swap zone exhausted, increase kern.maxswzone\n"); 1858 vm_pageout_oom(VM_OOM_SWAPZ); 1859 pause("swzonex", 10); 1860 } else 1861 VM_WAIT; 1862 VM_OBJECT_LOCK(object); 1863 goto retry; 1864 } 1865 1866 swap->swb_hnext = NULL; 1867 swap->swb_object = object; 1868 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1869 swap->swb_count = 0; 1870 1871 ++object->un_pager.swp.swp_bcount; 1872 1873 for (i = 0; i < SWAP_META_PAGES; ++i) 1874 swap->swb_pages[i] = SWAPBLK_NONE; 1875 } 1876 1877 /* 1878 * Delete prior contents of metadata 1879 */ 1880 idx = pindex & SWAP_META_MASK; 1881 1882 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1883 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1884 --swap->swb_count; 1885 } 1886 1887 /* 1888 * Enter block into metadata 1889 */ 1890 swap->swb_pages[idx] = swapblk; 1891 if (swapblk != SWAPBLK_NONE) 1892 ++swap->swb_count; 1893 done: 1894 mtx_unlock(&swhash_mtx); 1895 } 1896 1897 /* 1898 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1899 * 1900 * The requested range of blocks is freed, with any associated swap 1901 * returned to the swap bitmap. 1902 * 1903 * This routine will free swap metadata structures as they are cleaned 1904 * out. This routine does *NOT* operate on swap metadata associated 1905 * with resident pages. 1906 */ 1907 static void 1908 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1909 { 1910 1911 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1912 if (object->type != OBJT_SWAP) 1913 return; 1914 1915 while (count > 0) { 1916 struct swblock **pswap; 1917 struct swblock *swap; 1918 1919 mtx_lock(&swhash_mtx); 1920 pswap = swp_pager_hash(object, index); 1921 1922 if ((swap = *pswap) != NULL) { 1923 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1924 1925 if (v != SWAPBLK_NONE) { 1926 swp_pager_freeswapspace(v, 1); 1927 swap->swb_pages[index & SWAP_META_MASK] = 1928 SWAPBLK_NONE; 1929 if (--swap->swb_count == 0) { 1930 *pswap = swap->swb_hnext; 1931 uma_zfree(swap_zone, swap); 1932 --object->un_pager.swp.swp_bcount; 1933 } 1934 } 1935 --count; 1936 ++index; 1937 } else { 1938 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1939 count -= n; 1940 index += n; 1941 } 1942 mtx_unlock(&swhash_mtx); 1943 } 1944 } 1945 1946 /* 1947 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1948 * 1949 * This routine locates and destroys all swap metadata associated with 1950 * an object. 1951 */ 1952 static void 1953 swp_pager_meta_free_all(vm_object_t object) 1954 { 1955 daddr_t index = 0; 1956 1957 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1958 if (object->type != OBJT_SWAP) 1959 return; 1960 1961 while (object->un_pager.swp.swp_bcount) { 1962 struct swblock **pswap; 1963 struct swblock *swap; 1964 1965 mtx_lock(&swhash_mtx); 1966 pswap = swp_pager_hash(object, index); 1967 if ((swap = *pswap) != NULL) { 1968 int i; 1969 1970 for (i = 0; i < SWAP_META_PAGES; ++i) { 1971 daddr_t v = swap->swb_pages[i]; 1972 if (v != SWAPBLK_NONE) { 1973 --swap->swb_count; 1974 swp_pager_freeswapspace(v, 1); 1975 } 1976 } 1977 if (swap->swb_count != 0) 1978 panic("swap_pager_meta_free_all: swb_count != 0"); 1979 *pswap = swap->swb_hnext; 1980 uma_zfree(swap_zone, swap); 1981 --object->un_pager.swp.swp_bcount; 1982 } 1983 mtx_unlock(&swhash_mtx); 1984 index += SWAP_META_PAGES; 1985 } 1986 } 1987 1988 /* 1989 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1990 * 1991 * This routine is capable of looking up, popping, or freeing 1992 * swapblk assignments in the swap meta data or in the vm_page_t. 1993 * The routine typically returns the swapblk being looked-up, or popped, 1994 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1995 * was invalid. This routine will automatically free any invalid 1996 * meta-data swapblks. 1997 * 1998 * It is not possible to store invalid swapblks in the swap meta data 1999 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2000 * 2001 * When acting on a busy resident page and paging is in progress, we 2002 * have to wait until paging is complete but otherwise can act on the 2003 * busy page. 2004 * 2005 * SWM_FREE remove and free swap block from metadata 2006 * SWM_POP remove from meta data but do not free.. pop it out 2007 */ 2008 static daddr_t 2009 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2010 { 2011 struct swblock **pswap; 2012 struct swblock *swap; 2013 daddr_t r1; 2014 int idx; 2015 2016 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 2017 /* 2018 * The meta data only exists of the object is OBJT_SWAP 2019 * and even then might not be allocated yet. 2020 */ 2021 if (object->type != OBJT_SWAP) 2022 return (SWAPBLK_NONE); 2023 2024 r1 = SWAPBLK_NONE; 2025 mtx_lock(&swhash_mtx); 2026 pswap = swp_pager_hash(object, pindex); 2027 2028 if ((swap = *pswap) != NULL) { 2029 idx = pindex & SWAP_META_MASK; 2030 r1 = swap->swb_pages[idx]; 2031 2032 if (r1 != SWAPBLK_NONE) { 2033 if (flags & SWM_FREE) { 2034 swp_pager_freeswapspace(r1, 1); 2035 r1 = SWAPBLK_NONE; 2036 } 2037 if (flags & (SWM_FREE|SWM_POP)) { 2038 swap->swb_pages[idx] = SWAPBLK_NONE; 2039 if (--swap->swb_count == 0) { 2040 *pswap = swap->swb_hnext; 2041 uma_zfree(swap_zone, swap); 2042 --object->un_pager.swp.swp_bcount; 2043 } 2044 } 2045 } 2046 } 2047 mtx_unlock(&swhash_mtx); 2048 return (r1); 2049 } 2050 2051 /* 2052 * System call swapon(name) enables swapping on device name, 2053 * which must be in the swdevsw. Return EBUSY 2054 * if already swapping on this device. 2055 */ 2056 #ifndef _SYS_SYSPROTO_H_ 2057 struct swapon_args { 2058 char *name; 2059 }; 2060 #endif 2061 2062 /* 2063 * MPSAFE 2064 */ 2065 /* ARGSUSED */ 2066 int 2067 swapon(struct thread *td, struct swapon_args *uap) 2068 { 2069 struct vattr attr; 2070 struct vnode *vp; 2071 struct nameidata nd; 2072 int error; 2073 2074 error = priv_check(td, PRIV_SWAPON); 2075 if (error) 2076 return (error); 2077 2078 mtx_lock(&Giant); 2079 while (swdev_syscall_active) 2080 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2081 swdev_syscall_active = 1; 2082 2083 /* 2084 * Swap metadata may not fit in the KVM if we have physical 2085 * memory of >1GB. 2086 */ 2087 if (swap_zone == NULL) { 2088 error = ENOMEM; 2089 goto done; 2090 } 2091 2092 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2093 uap->name, td); 2094 error = namei(&nd); 2095 if (error) 2096 goto done; 2097 2098 NDFREE(&nd, NDF_ONLY_PNBUF); 2099 vp = nd.ni_vp; 2100 2101 if (vn_isdisk(vp, &error)) { 2102 error = swapongeom(td, vp); 2103 } else if (vp->v_type == VREG && 2104 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2105 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2106 /* 2107 * Allow direct swapping to NFS regular files in the same 2108 * way that nfs_mountroot() sets up diskless swapping. 2109 */ 2110 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2111 } 2112 2113 if (error) 2114 vrele(vp); 2115 done: 2116 swdev_syscall_active = 0; 2117 wakeup_one(&swdev_syscall_active); 2118 mtx_unlock(&Giant); 2119 return (error); 2120 } 2121 2122 static void 2123 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 2124 { 2125 struct swdevt *sp, *tsp; 2126 swblk_t dvbase; 2127 u_long mblocks; 2128 2129 /* 2130 * If we go beyond this, we get overflows in the radix 2131 * tree bitmap code. 2132 */ 2133 mblocks = 0x40000000 / BLIST_META_RADIX; 2134 if (nblks > mblocks) { 2135 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2136 mblocks); 2137 nblks = mblocks; 2138 } 2139 /* 2140 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2141 * First chop nblks off to page-align it, then convert. 2142 * 2143 * sw->sw_nblks is in page-sized chunks now too. 2144 */ 2145 nblks &= ~(ctodb(1) - 1); 2146 nblks = dbtoc(nblks); 2147 2148 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2149 sp->sw_vp = vp; 2150 sp->sw_id = id; 2151 sp->sw_dev = dev; 2152 sp->sw_flags = 0; 2153 sp->sw_nblks = nblks; 2154 sp->sw_used = 0; 2155 sp->sw_strategy = strategy; 2156 sp->sw_close = close; 2157 2158 sp->sw_blist = blist_create(nblks, M_WAITOK); 2159 /* 2160 * Do not free the first two block in order to avoid overwriting 2161 * any bsd label at the front of the partition 2162 */ 2163 blist_free(sp->sw_blist, 2, nblks - 2); 2164 2165 dvbase = 0; 2166 mtx_lock(&sw_dev_mtx); 2167 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2168 if (tsp->sw_end >= dvbase) { 2169 /* 2170 * We put one uncovered page between the devices 2171 * in order to definitively prevent any cross-device 2172 * I/O requests 2173 */ 2174 dvbase = tsp->sw_end + 1; 2175 } 2176 } 2177 sp->sw_first = dvbase; 2178 sp->sw_end = dvbase + nblks; 2179 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2180 nswapdev++; 2181 swap_pager_avail += nblks; 2182 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2183 swp_sizecheck(); 2184 mtx_unlock(&sw_dev_mtx); 2185 } 2186 2187 /* 2188 * SYSCALL: swapoff(devname) 2189 * 2190 * Disable swapping on the given device. 2191 * 2192 * XXX: Badly designed system call: it should use a device index 2193 * rather than filename as specification. We keep sw_vp around 2194 * only to make this work. 2195 */ 2196 #ifndef _SYS_SYSPROTO_H_ 2197 struct swapoff_args { 2198 char *name; 2199 }; 2200 #endif 2201 2202 /* 2203 * MPSAFE 2204 */ 2205 /* ARGSUSED */ 2206 int 2207 swapoff(struct thread *td, struct swapoff_args *uap) 2208 { 2209 struct vnode *vp; 2210 struct nameidata nd; 2211 struct swdevt *sp; 2212 int error; 2213 2214 error = priv_check(td, PRIV_SWAPOFF); 2215 if (error) 2216 return (error); 2217 2218 mtx_lock(&Giant); 2219 while (swdev_syscall_active) 2220 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2221 swdev_syscall_active = 1; 2222 2223 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2224 td); 2225 error = namei(&nd); 2226 if (error) 2227 goto done; 2228 NDFREE(&nd, NDF_ONLY_PNBUF); 2229 vp = nd.ni_vp; 2230 2231 mtx_lock(&sw_dev_mtx); 2232 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2233 if (sp->sw_vp == vp) 2234 break; 2235 } 2236 mtx_unlock(&sw_dev_mtx); 2237 if (sp == NULL) { 2238 error = EINVAL; 2239 goto done; 2240 } 2241 error = swapoff_one(sp, td->td_ucred); 2242 done: 2243 swdev_syscall_active = 0; 2244 wakeup_one(&swdev_syscall_active); 2245 mtx_unlock(&Giant); 2246 return (error); 2247 } 2248 2249 static int 2250 swapoff_one(struct swdevt *sp, struct ucred *cred) 2251 { 2252 u_long nblks, dvbase; 2253 #ifdef MAC 2254 int error; 2255 #endif 2256 2257 mtx_assert(&Giant, MA_OWNED); 2258 #ifdef MAC 2259 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2260 error = mac_system_check_swapoff(cred, sp->sw_vp); 2261 (void) VOP_UNLOCK(sp->sw_vp, 0); 2262 if (error != 0) 2263 return (error); 2264 #endif 2265 nblks = sp->sw_nblks; 2266 2267 /* 2268 * We can turn off this swap device safely only if the 2269 * available virtual memory in the system will fit the amount 2270 * of data we will have to page back in, plus an epsilon so 2271 * the system doesn't become critically low on swap space. 2272 */ 2273 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2274 nblks + nswap_lowat) { 2275 return (ENOMEM); 2276 } 2277 2278 /* 2279 * Prevent further allocations on this device. 2280 */ 2281 mtx_lock(&sw_dev_mtx); 2282 sp->sw_flags |= SW_CLOSING; 2283 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2284 swap_pager_avail -= blist_fill(sp->sw_blist, 2285 dvbase, dmmax); 2286 } 2287 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2288 mtx_unlock(&sw_dev_mtx); 2289 2290 /* 2291 * Page in the contents of the device and close it. 2292 */ 2293 swap_pager_swapoff(sp); 2294 2295 sp->sw_close(curthread, sp); 2296 sp->sw_id = NULL; 2297 mtx_lock(&sw_dev_mtx); 2298 TAILQ_REMOVE(&swtailq, sp, sw_list); 2299 nswapdev--; 2300 if (nswapdev == 0) { 2301 swap_pager_full = 2; 2302 swap_pager_almost_full = 1; 2303 } 2304 if (swdevhd == sp) 2305 swdevhd = NULL; 2306 mtx_unlock(&sw_dev_mtx); 2307 blist_destroy(sp->sw_blist); 2308 free(sp, M_VMPGDATA); 2309 return (0); 2310 } 2311 2312 void 2313 swapoff_all(void) 2314 { 2315 struct swdevt *sp, *spt; 2316 const char *devname; 2317 int error; 2318 2319 mtx_lock(&Giant); 2320 while (swdev_syscall_active) 2321 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2322 swdev_syscall_active = 1; 2323 2324 mtx_lock(&sw_dev_mtx); 2325 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2326 mtx_unlock(&sw_dev_mtx); 2327 if (vn_isdisk(sp->sw_vp, NULL)) 2328 devname = sp->sw_vp->v_rdev->si_name; 2329 else 2330 devname = "[file]"; 2331 error = swapoff_one(sp, thread0.td_ucred); 2332 if (error != 0) { 2333 printf("Cannot remove swap device %s (error=%d), " 2334 "skipping.\n", devname, error); 2335 } else if (bootverbose) { 2336 printf("Swap device %s removed.\n", devname); 2337 } 2338 mtx_lock(&sw_dev_mtx); 2339 } 2340 mtx_unlock(&sw_dev_mtx); 2341 2342 swdev_syscall_active = 0; 2343 wakeup_one(&swdev_syscall_active); 2344 mtx_unlock(&Giant); 2345 } 2346 2347 void 2348 swap_pager_status(int *total, int *used) 2349 { 2350 struct swdevt *sp; 2351 2352 *total = 0; 2353 *used = 0; 2354 mtx_lock(&sw_dev_mtx); 2355 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2356 *total += sp->sw_nblks; 2357 *used += sp->sw_used; 2358 } 2359 mtx_unlock(&sw_dev_mtx); 2360 } 2361 2362 static int 2363 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2364 { 2365 int *name = (int *)arg1; 2366 int error, n; 2367 struct xswdev xs; 2368 struct swdevt *sp; 2369 2370 if (arg2 != 1) /* name length */ 2371 return (EINVAL); 2372 2373 n = 0; 2374 mtx_lock(&sw_dev_mtx); 2375 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2376 if (n == *name) { 2377 mtx_unlock(&sw_dev_mtx); 2378 xs.xsw_version = XSWDEV_VERSION; 2379 xs.xsw_dev = sp->sw_dev; 2380 xs.xsw_flags = sp->sw_flags; 2381 xs.xsw_nblks = sp->sw_nblks; 2382 xs.xsw_used = sp->sw_used; 2383 2384 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2385 return (error); 2386 } 2387 n++; 2388 } 2389 mtx_unlock(&sw_dev_mtx); 2390 return (ENOENT); 2391 } 2392 2393 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2394 "Number of swap devices"); 2395 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2396 "Swap statistics by device"); 2397 2398 /* 2399 * vmspace_swap_count() - count the approximate swap usage in pages for a 2400 * vmspace. 2401 * 2402 * The map must be locked. 2403 * 2404 * Swap usage is determined by taking the proportional swap used by 2405 * VM objects backing the VM map. To make up for fractional losses, 2406 * if the VM object has any swap use at all the associated map entries 2407 * count for at least 1 swap page. 2408 */ 2409 long 2410 vmspace_swap_count(struct vmspace *vmspace) 2411 { 2412 vm_map_t map; 2413 vm_map_entry_t cur; 2414 vm_object_t object; 2415 long count, n; 2416 2417 map = &vmspace->vm_map; 2418 count = 0; 2419 2420 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2421 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2422 (object = cur->object.vm_object) != NULL) { 2423 VM_OBJECT_LOCK(object); 2424 if (object->type == OBJT_SWAP && 2425 object->un_pager.swp.swp_bcount != 0) { 2426 n = (cur->end - cur->start) / PAGE_SIZE; 2427 count += object->un_pager.swp.swp_bcount * 2428 SWAP_META_PAGES * n / object->size + 1; 2429 } 2430 VM_OBJECT_UNLOCK(object); 2431 } 2432 } 2433 return (count); 2434 } 2435 2436 /* 2437 * GEOM backend 2438 * 2439 * Swapping onto disk devices. 2440 * 2441 */ 2442 2443 static g_orphan_t swapgeom_orphan; 2444 2445 static struct g_class g_swap_class = { 2446 .name = "SWAP", 2447 .version = G_VERSION, 2448 .orphan = swapgeom_orphan, 2449 }; 2450 2451 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2452 2453 2454 static void 2455 swapgeom_done(struct bio *bp2) 2456 { 2457 struct buf *bp; 2458 2459 bp = bp2->bio_caller2; 2460 bp->b_ioflags = bp2->bio_flags; 2461 if (bp2->bio_error) 2462 bp->b_ioflags |= BIO_ERROR; 2463 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2464 bp->b_error = bp2->bio_error; 2465 bufdone(bp); 2466 g_destroy_bio(bp2); 2467 } 2468 2469 static void 2470 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2471 { 2472 struct bio *bio; 2473 struct g_consumer *cp; 2474 2475 cp = sp->sw_id; 2476 if (cp == NULL) { 2477 bp->b_error = ENXIO; 2478 bp->b_ioflags |= BIO_ERROR; 2479 bufdone(bp); 2480 return; 2481 } 2482 if (bp->b_iocmd == BIO_WRITE) 2483 bio = g_new_bio(); 2484 else 2485 bio = g_alloc_bio(); 2486 if (bio == NULL) { 2487 bp->b_error = ENOMEM; 2488 bp->b_ioflags |= BIO_ERROR; 2489 bufdone(bp); 2490 return; 2491 } 2492 2493 bio->bio_caller2 = bp; 2494 bio->bio_cmd = bp->b_iocmd; 2495 bio->bio_data = bp->b_data; 2496 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2497 bio->bio_length = bp->b_bcount; 2498 bio->bio_done = swapgeom_done; 2499 g_io_request(bio, cp); 2500 return; 2501 } 2502 2503 static void 2504 swapgeom_orphan(struct g_consumer *cp) 2505 { 2506 struct swdevt *sp; 2507 2508 mtx_lock(&sw_dev_mtx); 2509 TAILQ_FOREACH(sp, &swtailq, sw_list) 2510 if (sp->sw_id == cp) 2511 sp->sw_id = NULL; 2512 mtx_unlock(&sw_dev_mtx); 2513 } 2514 2515 static void 2516 swapgeom_close_ev(void *arg, int flags) 2517 { 2518 struct g_consumer *cp; 2519 2520 cp = arg; 2521 g_access(cp, -1, -1, 0); 2522 g_detach(cp); 2523 g_destroy_consumer(cp); 2524 } 2525 2526 static void 2527 swapgeom_close(struct thread *td, struct swdevt *sw) 2528 { 2529 2530 /* XXX: direct call when Giant untangled */ 2531 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2532 } 2533 2534 2535 struct swh0h0 { 2536 struct cdev *dev; 2537 struct vnode *vp; 2538 int error; 2539 }; 2540 2541 static void 2542 swapongeom_ev(void *arg, int flags) 2543 { 2544 struct swh0h0 *swh; 2545 struct g_provider *pp; 2546 struct g_consumer *cp; 2547 static struct g_geom *gp; 2548 struct swdevt *sp; 2549 u_long nblks; 2550 int error; 2551 2552 swh = arg; 2553 swh->error = 0; 2554 pp = g_dev_getprovider(swh->dev); 2555 if (pp == NULL) { 2556 swh->error = ENODEV; 2557 return; 2558 } 2559 mtx_lock(&sw_dev_mtx); 2560 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2561 cp = sp->sw_id; 2562 if (cp != NULL && cp->provider == pp) { 2563 mtx_unlock(&sw_dev_mtx); 2564 swh->error = EBUSY; 2565 return; 2566 } 2567 } 2568 mtx_unlock(&sw_dev_mtx); 2569 if (gp == NULL) 2570 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2571 cp = g_new_consumer(gp); 2572 g_attach(cp, pp); 2573 /* 2574 * XXX: Everytime you think you can improve the margin for 2575 * footshooting, somebody depends on the ability to do so: 2576 * savecore(8) wants to write to our swapdev so we cannot 2577 * set an exclusive count :-( 2578 */ 2579 error = g_access(cp, 1, 1, 0); 2580 if (error) { 2581 g_detach(cp); 2582 g_destroy_consumer(cp); 2583 swh->error = error; 2584 return; 2585 } 2586 nblks = pp->mediasize / DEV_BSIZE; 2587 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2588 swapgeom_close, dev2udev(swh->dev)); 2589 swh->error = 0; 2590 return; 2591 } 2592 2593 static int 2594 swapongeom(struct thread *td, struct vnode *vp) 2595 { 2596 int error; 2597 struct swh0h0 swh; 2598 2599 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2600 2601 swh.dev = vp->v_rdev; 2602 swh.vp = vp; 2603 swh.error = 0; 2604 /* XXX: direct call when Giant untangled */ 2605 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2606 if (!error) 2607 error = swh.error; 2608 VOP_UNLOCK(vp, 0); 2609 return (error); 2610 } 2611 2612 /* 2613 * VNODE backend 2614 * 2615 * This is used mainly for network filesystem (read: probably only tested 2616 * with NFS) swapfiles. 2617 * 2618 */ 2619 2620 static void 2621 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2622 { 2623 struct vnode *vp2; 2624 2625 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2626 2627 vp2 = sp->sw_id; 2628 vhold(vp2); 2629 if (bp->b_iocmd == BIO_WRITE) { 2630 if (bp->b_bufobj) 2631 bufobj_wdrop(bp->b_bufobj); 2632 bufobj_wref(&vp2->v_bufobj); 2633 } 2634 if (bp->b_bufobj != &vp2->v_bufobj) 2635 bp->b_bufobj = &vp2->v_bufobj; 2636 bp->b_vp = vp2; 2637 bp->b_iooffset = dbtob(bp->b_blkno); 2638 bstrategy(bp); 2639 return; 2640 } 2641 2642 static void 2643 swapdev_close(struct thread *td, struct swdevt *sp) 2644 { 2645 2646 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2647 vrele(sp->sw_vp); 2648 } 2649 2650 2651 static int 2652 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2653 { 2654 struct swdevt *sp; 2655 int error; 2656 2657 if (nblks == 0) 2658 return (ENXIO); 2659 mtx_lock(&sw_dev_mtx); 2660 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2661 if (sp->sw_id == vp) { 2662 mtx_unlock(&sw_dev_mtx); 2663 return (EBUSY); 2664 } 2665 } 2666 mtx_unlock(&sw_dev_mtx); 2667 2668 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2669 #ifdef MAC 2670 error = mac_system_check_swapon(td->td_ucred, vp); 2671 if (error == 0) 2672 #endif 2673 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2674 (void) VOP_UNLOCK(vp, 0); 2675 if (error) 2676 return (error); 2677 2678 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2679 NODEV); 2680 return (0); 2681 } 2682