xref: /freebsd/sys/vm/swap_pager.c (revision 43764a7ffa9ad6eba3275410bc2397d3d398f75f)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sysctl.h>
93 #include <sys/sysproto.h>
94 #include <sys/blist.h>
95 #include <sys/lock.h>
96 #include <sys/sx.h>
97 #include <sys/vmmeter.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/vm.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_param.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 #include <geom/geom.h>
115 
116 /*
117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
118  * pages per allocation.  We recommend you stick with the default of 8.
119  * The 16-page limit is due to the radix code (kern/subr_blist.c).
120  */
121 #ifndef MAX_PAGEOUT_CLUSTER
122 #define MAX_PAGEOUT_CLUSTER 16
123 #endif
124 
125 #if !defined(SWB_NPAGES)
126 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127 #endif
128 
129 /*
130  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
131  *
132  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
133  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
134  * 32K worth of data, two levels represent 256K, three levels represent
135  * 2 MBytes.   This is acceptable.
136  *
137  * Overall memory utilization is about the same as the old swap structure.
138  */
139 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
140 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
141 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
142 
143 struct swblock {
144 	struct swblock	*swb_hnext;
145 	vm_object_t	swb_object;
146 	vm_pindex_t	swb_index;
147 	int		swb_count;
148 	daddr_t		swb_pages[SWAP_META_PAGES];
149 };
150 
151 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
152 static struct mtx sw_dev_mtx;
153 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
154 static struct swdevt *swdevhd;	/* Allocate from here next */
155 static int nswapdev;		/* Number of swap devices */
156 int swap_pager_avail;
157 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
158 
159 static vm_ooffset_t swap_total;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
161     "Total amount of available swap storage.");
162 static vm_ooffset_t swap_reserved;
163 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 static int overcommit = 0;
166 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
167     "Configure virtual memory overcommit behavior. See tuning(7) "
168     "for details.");
169 
170 /* bits from overcommit */
171 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
172 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
173 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
174 
175 int
176 swap_reserve(vm_ooffset_t incr)
177 {
178 
179 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
180 }
181 
182 int
183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
184 {
185 	vm_ooffset_t r, s;
186 	int res, error;
187 	static int curfail;
188 	static struct timeval lastfail;
189 	struct uidinfo *uip;
190 
191 	uip = cred->cr_ruidinfo;
192 
193 	if (incr & PAGE_MASK)
194 		panic("swap_reserve: & PAGE_MASK");
195 
196 	PROC_LOCK(curproc);
197 	error = racct_add(curproc, RACCT_SWAP, incr);
198 	PROC_UNLOCK(curproc);
199 	if (error != 0)
200 		return (0);
201 
202 	res = 0;
203 	mtx_lock(&sw_dev_mtx);
204 	r = swap_reserved + incr;
205 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
206 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
207 		s *= PAGE_SIZE;
208 	} else
209 		s = 0;
210 	s += swap_total;
211 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
212 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
213 		res = 1;
214 		swap_reserved = r;
215 	}
216 	mtx_unlock(&sw_dev_mtx);
217 
218 	if (res) {
219 		PROC_LOCK(curproc);
220 		UIDINFO_VMSIZE_LOCK(uip);
221 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
222 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
223 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
224 			res = 0;
225 		else
226 			uip->ui_vmsize += incr;
227 		UIDINFO_VMSIZE_UNLOCK(uip);
228 		PROC_UNLOCK(curproc);
229 		if (!res) {
230 			mtx_lock(&sw_dev_mtx);
231 			swap_reserved -= incr;
232 			mtx_unlock(&sw_dev_mtx);
233 		}
234 	}
235 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
236 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
237 		    curproc->p_pid, uip->ui_uid, incr);
238 	}
239 
240 	if (!res) {
241 		PROC_LOCK(curproc);
242 		racct_sub(curproc, RACCT_SWAP, incr);
243 		PROC_UNLOCK(curproc);
244 	}
245 
246 	return (res);
247 }
248 
249 void
250 swap_reserve_force(vm_ooffset_t incr)
251 {
252 	struct uidinfo *uip;
253 
254 	mtx_lock(&sw_dev_mtx);
255 	swap_reserved += incr;
256 	mtx_unlock(&sw_dev_mtx);
257 
258 	PROC_LOCK(curproc);
259 	racct_add_force(curproc, RACCT_SWAP, incr);
260 	PROC_UNLOCK(curproc);
261 
262 	uip = curthread->td_ucred->cr_ruidinfo;
263 	PROC_LOCK(curproc);
264 	UIDINFO_VMSIZE_LOCK(uip);
265 	uip->ui_vmsize += incr;
266 	UIDINFO_VMSIZE_UNLOCK(uip);
267 	PROC_UNLOCK(curproc);
268 }
269 
270 void
271 swap_release(vm_ooffset_t decr)
272 {
273 	struct ucred *cred;
274 
275 	PROC_LOCK(curproc);
276 	cred = curthread->td_ucred;
277 	swap_release_by_cred(decr, cred);
278 	PROC_UNLOCK(curproc);
279 }
280 
281 void
282 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
283 {
284  	struct uidinfo *uip;
285 
286 	uip = cred->cr_ruidinfo;
287 
288 	if (decr & PAGE_MASK)
289 		panic("swap_release: & PAGE_MASK");
290 
291 	mtx_lock(&sw_dev_mtx);
292 	if (swap_reserved < decr)
293 		panic("swap_reserved < decr");
294 	swap_reserved -= decr;
295 	mtx_unlock(&sw_dev_mtx);
296 
297 	UIDINFO_VMSIZE_LOCK(uip);
298 	if (uip->ui_vmsize < decr)
299 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
300 	uip->ui_vmsize -= decr;
301 	UIDINFO_VMSIZE_UNLOCK(uip);
302 
303 	racct_sub_cred(cred, RACCT_SWAP, decr);
304 }
305 
306 static void swapdev_strategy(struct buf *, struct swdevt *sw);
307 
308 #define SWM_FREE	0x02	/* free, period			*/
309 #define SWM_POP		0x04	/* pop out			*/
310 
311 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
312 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
313 static int nsw_rcount;		/* free read buffers			*/
314 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
315 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
316 static int nsw_wcount_async_max;/* assigned maximum			*/
317 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
318 
319 static struct swblock **swhash;
320 static int swhash_mask;
321 static struct mtx swhash_mtx;
322 
323 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
324 static struct sx sw_alloc_sx;
325 
326 
327 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
328         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
329 
330 /*
331  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
332  * of searching a named list by hashing it just a little.
333  */
334 
335 #define NOBJLISTS		8
336 
337 #define NOBJLIST(handle)	\
338 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
339 
340 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
341 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
342 static uma_zone_t	swap_zone;
343 static struct vm_object	swap_zone_obj;
344 
345 /*
346  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
347  * calls hooked from other parts of the VM system and do not appear here.
348  * (see vm/swap_pager.h).
349  */
350 static vm_object_t
351 		swap_pager_alloc(void *handle, vm_ooffset_t size,
352 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
353 static void	swap_pager_dealloc(vm_object_t object);
354 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
355 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
356 static boolean_t
357 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
358 static void	swap_pager_init(void);
359 static void	swap_pager_unswapped(vm_page_t);
360 static void	swap_pager_swapoff(struct swdevt *sp);
361 
362 struct pagerops swappagerops = {
363 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
364 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
365 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
366 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
367 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
368 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
369 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
370 };
371 
372 /*
373  * dmmax is in page-sized chunks with the new swap system.  It was
374  * dev-bsized chunks in the old.  dmmax is always a power of 2.
375  *
376  * swap_*() routines are externally accessible.  swp_*() routines are
377  * internal.
378  */
379 static int dmmax;
380 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
381 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
382 
383 SYSCTL_INT(_vm, OID_AUTO, dmmax,
384 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
385 
386 static void	swp_sizecheck(void);
387 static void	swp_pager_async_iodone(struct buf *bp);
388 static int	swapongeom(struct thread *, struct vnode *);
389 static int	swaponvp(struct thread *, struct vnode *, u_long);
390 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
391 
392 /*
393  * Swap bitmap functions
394  */
395 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
396 static daddr_t	swp_pager_getswapspace(int npages);
397 
398 /*
399  * Metadata functions
400  */
401 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
402 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
403 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
404 static void swp_pager_meta_free_all(vm_object_t);
405 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
406 
407 static void
408 swp_pager_free_nrpage(vm_page_t m)
409 {
410 
411 	vm_page_lock(m);
412 	if (m->wire_count == 0)
413 		vm_page_free(m);
414 	vm_page_unlock(m);
415 }
416 
417 /*
418  * SWP_SIZECHECK() -	update swap_pager_full indication
419  *
420  *	update the swap_pager_almost_full indication and warn when we are
421  *	about to run out of swap space, using lowat/hiwat hysteresis.
422  *
423  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424  *
425  *	No restrictions on call
426  *	This routine may not block.
427  */
428 static void
429 swp_sizecheck(void)
430 {
431 
432 	if (swap_pager_avail < nswap_lowat) {
433 		if (swap_pager_almost_full == 0) {
434 			printf("swap_pager: out of swap space\n");
435 			swap_pager_almost_full = 1;
436 		}
437 	} else {
438 		swap_pager_full = 0;
439 		if (swap_pager_avail > nswap_hiwat)
440 			swap_pager_almost_full = 0;
441 	}
442 }
443 
444 /*
445  * SWP_PAGER_HASH() -	hash swap meta data
446  *
447  *	This is an helper function which hashes the swapblk given
448  *	the object and page index.  It returns a pointer to a pointer
449  *	to the object, or a pointer to a NULL pointer if it could not
450  *	find a swapblk.
451  */
452 static struct swblock **
453 swp_pager_hash(vm_object_t object, vm_pindex_t index)
454 {
455 	struct swblock **pswap;
456 	struct swblock *swap;
457 
458 	index &= ~(vm_pindex_t)SWAP_META_MASK;
459 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
460 	while ((swap = *pswap) != NULL) {
461 		if (swap->swb_object == object &&
462 		    swap->swb_index == index
463 		) {
464 			break;
465 		}
466 		pswap = &swap->swb_hnext;
467 	}
468 	return (pswap);
469 }
470 
471 /*
472  * SWAP_PAGER_INIT() -	initialize the swap pager!
473  *
474  *	Expected to be started from system init.  NOTE:  This code is run
475  *	before much else so be careful what you depend on.  Most of the VM
476  *	system has yet to be initialized at this point.
477  */
478 static void
479 swap_pager_init(void)
480 {
481 	/*
482 	 * Initialize object lists
483 	 */
484 	int i;
485 
486 	for (i = 0; i < NOBJLISTS; ++i)
487 		TAILQ_INIT(&swap_pager_object_list[i]);
488 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
489 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
490 
491 	/*
492 	 * Device Stripe, in PAGE_SIZE'd blocks
493 	 */
494 	dmmax = SWB_NPAGES * 2;
495 }
496 
497 /*
498  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
499  *
500  *	Expected to be started from pageout process once, prior to entering
501  *	its main loop.
502  */
503 void
504 swap_pager_swap_init(void)
505 {
506 	int n, n2;
507 
508 	/*
509 	 * Number of in-transit swap bp operations.  Don't
510 	 * exhaust the pbufs completely.  Make sure we
511 	 * initialize workable values (0 will work for hysteresis
512 	 * but it isn't very efficient).
513 	 *
514 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
515 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
516 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
517 	 * constrained by the swap device interleave stripe size.
518 	 *
519 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
520 	 * designed to prevent other I/O from having high latencies due to
521 	 * our pageout I/O.  The value 4 works well for one or two active swap
522 	 * devices but is probably a little low if you have more.  Even so,
523 	 * a higher value would probably generate only a limited improvement
524 	 * with three or four active swap devices since the system does not
525 	 * typically have to pageout at extreme bandwidths.   We will want
526 	 * at least 2 per swap devices, and 4 is a pretty good value if you
527 	 * have one NFS swap device due to the command/ack latency over NFS.
528 	 * So it all works out pretty well.
529 	 */
530 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
531 
532 	mtx_lock(&pbuf_mtx);
533 	nsw_rcount = (nswbuf + 1) / 2;
534 	nsw_wcount_sync = (nswbuf + 3) / 4;
535 	nsw_wcount_async = 4;
536 	nsw_wcount_async_max = nsw_wcount_async;
537 	mtx_unlock(&pbuf_mtx);
538 
539 	/*
540 	 * Initialize our zone.  Right now I'm just guessing on the number
541 	 * we need based on the number of pages in the system.  Each swblock
542 	 * can hold 16 pages, so this is probably overkill.  This reservation
543 	 * is typically limited to around 32MB by default.
544 	 */
545 	n = cnt.v_page_count / 2;
546 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
547 		n = maxswzone / sizeof(struct swblock);
548 	n2 = n;
549 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
550 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
551 	if (swap_zone == NULL)
552 		panic("failed to create swap_zone.");
553 	do {
554 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
555 			break;
556 		/*
557 		 * if the allocation failed, try a zone two thirds the
558 		 * size of the previous attempt.
559 		 */
560 		n -= ((n + 2) / 3);
561 	} while (n > 0);
562 	if (n2 != n)
563 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
564 	n2 = n;
565 
566 	/*
567 	 * Initialize our meta-data hash table.  The swapper does not need to
568 	 * be quite as efficient as the VM system, so we do not use an
569 	 * oversized hash table.
570 	 *
571 	 * 	n: 		size of hash table, must be power of 2
572 	 *	swhash_mask:	hash table index mask
573 	 */
574 	for (n = 1; n < n2 / 8; n *= 2)
575 		;
576 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
577 	swhash_mask = n - 1;
578 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
579 }
580 
581 /*
582  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
583  *			its metadata structures.
584  *
585  *	This routine is called from the mmap and fork code to create a new
586  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
587  *	and then converting it with swp_pager_meta_build().
588  *
589  *	This routine may block in vm_object_allocate() and create a named
590  *	object lookup race, so we must interlock.
591  *
592  * MPSAFE
593  */
594 static vm_object_t
595 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
596     vm_ooffset_t offset, struct ucred *cred)
597 {
598 	vm_object_t object;
599 	vm_pindex_t pindex;
600 
601 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
602 	if (handle) {
603 		mtx_lock(&Giant);
604 		/*
605 		 * Reference existing named region or allocate new one.  There
606 		 * should not be a race here against swp_pager_meta_build()
607 		 * as called from vm_page_remove() in regards to the lookup
608 		 * of the handle.
609 		 */
610 		sx_xlock(&sw_alloc_sx);
611 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
612 		if (object == NULL) {
613 			if (cred != NULL) {
614 				if (!swap_reserve_by_cred(size, cred)) {
615 					sx_xunlock(&sw_alloc_sx);
616 					mtx_unlock(&Giant);
617 					return (NULL);
618 				}
619 				crhold(cred);
620 			}
621 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
622 			VM_OBJECT_LOCK(object);
623 			object->handle = handle;
624 			if (cred != NULL) {
625 				object->cred = cred;
626 				object->charge = size;
627 			}
628 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
629 			VM_OBJECT_UNLOCK(object);
630 		}
631 		sx_xunlock(&sw_alloc_sx);
632 		mtx_unlock(&Giant);
633 	} else {
634 		if (cred != NULL) {
635 			if (!swap_reserve_by_cred(size, cred))
636 				return (NULL);
637 			crhold(cred);
638 		}
639 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
640 		VM_OBJECT_LOCK(object);
641 		if (cred != NULL) {
642 			object->cred = cred;
643 			object->charge = size;
644 		}
645 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
646 		VM_OBJECT_UNLOCK(object);
647 	}
648 	return (object);
649 }
650 
651 /*
652  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
653  *
654  *	The swap backing for the object is destroyed.  The code is
655  *	designed such that we can reinstantiate it later, but this
656  *	routine is typically called only when the entire object is
657  *	about to be destroyed.
658  *
659  *	This routine may block, but no longer does.
660  *
661  *	The object must be locked or unreferenceable.
662  */
663 static void
664 swap_pager_dealloc(vm_object_t object)
665 {
666 
667 	/*
668 	 * Remove from list right away so lookups will fail if we block for
669 	 * pageout completion.
670 	 */
671 	if (object->handle != NULL) {
672 		mtx_lock(&sw_alloc_mtx);
673 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
674 		mtx_unlock(&sw_alloc_mtx);
675 	}
676 
677 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
678 	vm_object_pip_wait(object, "swpdea");
679 
680 	/*
681 	 * Free all remaining metadata.  We only bother to free it from
682 	 * the swap meta data.  We do not attempt to free swapblk's still
683 	 * associated with vm_page_t's for this object.  We do not care
684 	 * if paging is still in progress on some objects.
685 	 */
686 	swp_pager_meta_free_all(object);
687 }
688 
689 /************************************************************************
690  *			SWAP PAGER BITMAP ROUTINES			*
691  ************************************************************************/
692 
693 /*
694  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
695  *
696  *	Allocate swap for the requested number of pages.  The starting
697  *	swap block number (a page index) is returned or SWAPBLK_NONE
698  *	if the allocation failed.
699  *
700  *	Also has the side effect of advising that somebody made a mistake
701  *	when they configured swap and didn't configure enough.
702  *
703  *	This routine may not block
704  *
705  *	We allocate in round-robin fashion from the configured devices.
706  */
707 static daddr_t
708 swp_pager_getswapspace(int npages)
709 {
710 	daddr_t blk;
711 	struct swdevt *sp;
712 	int i;
713 
714 	blk = SWAPBLK_NONE;
715 	mtx_lock(&sw_dev_mtx);
716 	sp = swdevhd;
717 	for (i = 0; i < nswapdev; i++) {
718 		if (sp == NULL)
719 			sp = TAILQ_FIRST(&swtailq);
720 		if (!(sp->sw_flags & SW_CLOSING)) {
721 			blk = blist_alloc(sp->sw_blist, npages);
722 			if (blk != SWAPBLK_NONE) {
723 				blk += sp->sw_first;
724 				sp->sw_used += npages;
725 				swap_pager_avail -= npages;
726 				swp_sizecheck();
727 				swdevhd = TAILQ_NEXT(sp, sw_list);
728 				goto done;
729 			}
730 		}
731 		sp = TAILQ_NEXT(sp, sw_list);
732 	}
733 	if (swap_pager_full != 2) {
734 		printf("swap_pager_getswapspace(%d): failed\n", npages);
735 		swap_pager_full = 2;
736 		swap_pager_almost_full = 1;
737 	}
738 	swdevhd = NULL;
739 done:
740 	mtx_unlock(&sw_dev_mtx);
741 	return (blk);
742 }
743 
744 static int
745 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
746 {
747 
748 	return (blk >= sp->sw_first && blk < sp->sw_end);
749 }
750 
751 static void
752 swp_pager_strategy(struct buf *bp)
753 {
754 	struct swdevt *sp;
755 
756 	mtx_lock(&sw_dev_mtx);
757 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
758 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
759 			mtx_unlock(&sw_dev_mtx);
760 			sp->sw_strategy(bp, sp);
761 			return;
762 		}
763 	}
764 	panic("Swapdev not found");
765 }
766 
767 
768 /*
769  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
770  *
771  *	This routine returns the specified swap blocks back to the bitmap.
772  *
773  *	Note:  This routine may not block (it could in the old swap code),
774  *	and through the use of the new blist routines it does not block.
775  *
776  *	This routine may not block
777  */
778 static void
779 swp_pager_freeswapspace(daddr_t blk, int npages)
780 {
781 	struct swdevt *sp;
782 
783 	mtx_lock(&sw_dev_mtx);
784 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
785 		if (blk >= sp->sw_first && blk < sp->sw_end) {
786 			sp->sw_used -= npages;
787 			/*
788 			 * If we are attempting to stop swapping on
789 			 * this device, we don't want to mark any
790 			 * blocks free lest they be reused.
791 			 */
792 			if ((sp->sw_flags & SW_CLOSING) == 0) {
793 				blist_free(sp->sw_blist, blk - sp->sw_first,
794 				    npages);
795 				swap_pager_avail += npages;
796 				swp_sizecheck();
797 			}
798 			mtx_unlock(&sw_dev_mtx);
799 			return;
800 		}
801 	}
802 	panic("Swapdev not found");
803 }
804 
805 /*
806  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
807  *				range within an object.
808  *
809  *	This is a globally accessible routine.
810  *
811  *	This routine removes swapblk assignments from swap metadata.
812  *
813  *	The external callers of this routine typically have already destroyed
814  *	or renamed vm_page_t's associated with this range in the object so
815  *	we should be ok.
816  */
817 void
818 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
819 {
820 
821 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
822 	swp_pager_meta_free(object, start, size);
823 }
824 
825 /*
826  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
827  *
828  *	Assigns swap blocks to the specified range within the object.  The
829  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
830  *
831  *	Returns 0 on success, -1 on failure.
832  */
833 int
834 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
835 {
836 	int n = 0;
837 	daddr_t blk = SWAPBLK_NONE;
838 	vm_pindex_t beg = start;	/* save start index */
839 
840 	VM_OBJECT_LOCK(object);
841 	while (size) {
842 		if (n == 0) {
843 			n = BLIST_MAX_ALLOC;
844 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
845 				n >>= 1;
846 				if (n == 0) {
847 					swp_pager_meta_free(object, beg, start - beg);
848 					VM_OBJECT_UNLOCK(object);
849 					return (-1);
850 				}
851 			}
852 		}
853 		swp_pager_meta_build(object, start, blk);
854 		--size;
855 		++start;
856 		++blk;
857 		--n;
858 	}
859 	swp_pager_meta_free(object, start, n);
860 	VM_OBJECT_UNLOCK(object);
861 	return (0);
862 }
863 
864 /*
865  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
866  *			and destroy the source.
867  *
868  *	Copy any valid swapblks from the source to the destination.  In
869  *	cases where both the source and destination have a valid swapblk,
870  *	we keep the destination's.
871  *
872  *	This routine is allowed to block.  It may block allocating metadata
873  *	indirectly through swp_pager_meta_build() or if paging is still in
874  *	progress on the source.
875  *
876  *	XXX vm_page_collapse() kinda expects us not to block because we
877  *	supposedly do not need to allocate memory, but for the moment we
878  *	*may* have to get a little memory from the zone allocator, but
879  *	it is taken from the interrupt memory.  We should be ok.
880  *
881  *	The source object contains no vm_page_t's (which is just as well)
882  *
883  *	The source object is of type OBJT_SWAP.
884  *
885  *	The source and destination objects must be locked or
886  *	inaccessible (XXX are they ?)
887  */
888 void
889 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
890     vm_pindex_t offset, int destroysource)
891 {
892 	vm_pindex_t i;
893 
894 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
895 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
896 
897 	/*
898 	 * If destroysource is set, we remove the source object from the
899 	 * swap_pager internal queue now.
900 	 */
901 	if (destroysource) {
902 		if (srcobject->handle != NULL) {
903 			mtx_lock(&sw_alloc_mtx);
904 			TAILQ_REMOVE(
905 			    NOBJLIST(srcobject->handle),
906 			    srcobject,
907 			    pager_object_list
908 			);
909 			mtx_unlock(&sw_alloc_mtx);
910 		}
911 	}
912 
913 	/*
914 	 * transfer source to destination.
915 	 */
916 	for (i = 0; i < dstobject->size; ++i) {
917 		daddr_t dstaddr;
918 
919 		/*
920 		 * Locate (without changing) the swapblk on the destination,
921 		 * unless it is invalid in which case free it silently, or
922 		 * if the destination is a resident page, in which case the
923 		 * source is thrown away.
924 		 */
925 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
926 
927 		if (dstaddr == SWAPBLK_NONE) {
928 			/*
929 			 * Destination has no swapblk and is not resident,
930 			 * copy source.
931 			 */
932 			daddr_t srcaddr;
933 
934 			srcaddr = swp_pager_meta_ctl(
935 			    srcobject,
936 			    i + offset,
937 			    SWM_POP
938 			);
939 
940 			if (srcaddr != SWAPBLK_NONE) {
941 				/*
942 				 * swp_pager_meta_build() can sleep.
943 				 */
944 				vm_object_pip_add(srcobject, 1);
945 				VM_OBJECT_UNLOCK(srcobject);
946 				vm_object_pip_add(dstobject, 1);
947 				swp_pager_meta_build(dstobject, i, srcaddr);
948 				vm_object_pip_wakeup(dstobject);
949 				VM_OBJECT_LOCK(srcobject);
950 				vm_object_pip_wakeup(srcobject);
951 			}
952 		} else {
953 			/*
954 			 * Destination has valid swapblk or it is represented
955 			 * by a resident page.  We destroy the sourceblock.
956 			 */
957 
958 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
959 		}
960 	}
961 
962 	/*
963 	 * Free left over swap blocks in source.
964 	 *
965 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
966 	 * double-remove the object from the swap queues.
967 	 */
968 	if (destroysource) {
969 		swp_pager_meta_free_all(srcobject);
970 		/*
971 		 * Reverting the type is not necessary, the caller is going
972 		 * to destroy srcobject directly, but I'm doing it here
973 		 * for consistency since we've removed the object from its
974 		 * queues.
975 		 */
976 		srcobject->type = OBJT_DEFAULT;
977 	}
978 }
979 
980 /*
981  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
982  *				the requested page.
983  *
984  *	We determine whether good backing store exists for the requested
985  *	page and return TRUE if it does, FALSE if it doesn't.
986  *
987  *	If TRUE, we also try to determine how much valid, contiguous backing
988  *	store exists before and after the requested page within a reasonable
989  *	distance.  We do not try to restrict it to the swap device stripe
990  *	(that is handled in getpages/putpages).  It probably isn't worth
991  *	doing here.
992  */
993 static boolean_t
994 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
995 {
996 	daddr_t blk0;
997 
998 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
999 	/*
1000 	 * do we have good backing store at the requested index ?
1001 	 */
1002 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1003 
1004 	if (blk0 == SWAPBLK_NONE) {
1005 		if (before)
1006 			*before = 0;
1007 		if (after)
1008 			*after = 0;
1009 		return (FALSE);
1010 	}
1011 
1012 	/*
1013 	 * find backwards-looking contiguous good backing store
1014 	 */
1015 	if (before != NULL) {
1016 		int i;
1017 
1018 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1019 			daddr_t blk;
1020 
1021 			if (i > pindex)
1022 				break;
1023 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1024 			if (blk != blk0 - i)
1025 				break;
1026 		}
1027 		*before = (i - 1);
1028 	}
1029 
1030 	/*
1031 	 * find forward-looking contiguous good backing store
1032 	 */
1033 	if (after != NULL) {
1034 		int i;
1035 
1036 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1037 			daddr_t blk;
1038 
1039 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1040 			if (blk != blk0 + i)
1041 				break;
1042 		}
1043 		*after = (i - 1);
1044 	}
1045 	return (TRUE);
1046 }
1047 
1048 /*
1049  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1050  *
1051  *	This removes any associated swap backing store, whether valid or
1052  *	not, from the page.
1053  *
1054  *	This routine is typically called when a page is made dirty, at
1055  *	which point any associated swap can be freed.  MADV_FREE also
1056  *	calls us in a special-case situation
1057  *
1058  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1059  *	should make the page dirty before calling this routine.  This routine
1060  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1061  *	depends on it.
1062  *
1063  *	This routine may not block
1064  */
1065 static void
1066 swap_pager_unswapped(vm_page_t m)
1067 {
1068 
1069 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1070 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1071 }
1072 
1073 /*
1074  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1075  *
1076  *	Attempt to retrieve (m, count) pages from backing store, but make
1077  *	sure we retrieve at least m[reqpage].  We try to load in as large
1078  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1079  *	belongs to the same object.
1080  *
1081  *	The code is designed for asynchronous operation and
1082  *	immediate-notification of 'reqpage' but tends not to be
1083  *	used that way.  Please do not optimize-out this algorithmic
1084  *	feature, I intend to improve on it in the future.
1085  *
1086  *	The parent has a single vm_object_pip_add() reference prior to
1087  *	calling us and we should return with the same.
1088  *
1089  *	The parent has BUSY'd the pages.  We should return with 'm'
1090  *	left busy, but the others adjusted.
1091  */
1092 static int
1093 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1094 {
1095 	struct buf *bp;
1096 	vm_page_t mreq;
1097 	int i;
1098 	int j;
1099 	daddr_t blk;
1100 
1101 	mreq = m[reqpage];
1102 
1103 	KASSERT(mreq->object == object,
1104 	    ("swap_pager_getpages: object mismatch %p/%p",
1105 	    object, mreq->object));
1106 
1107 	/*
1108 	 * Calculate range to retrieve.  The pages have already been assigned
1109 	 * their swapblks.  We require a *contiguous* range but we know it to
1110 	 * not span devices.   If we do not supply it, bad things
1111 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1112 	 * loops are set up such that the case(s) are handled implicitly.
1113 	 *
1114 	 * The swp_*() calls must be made with the object locked.
1115 	 */
1116 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1117 
1118 	for (i = reqpage - 1; i >= 0; --i) {
1119 		daddr_t iblk;
1120 
1121 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1122 		if (blk != iblk + (reqpage - i))
1123 			break;
1124 	}
1125 	++i;
1126 
1127 	for (j = reqpage + 1; j < count; ++j) {
1128 		daddr_t jblk;
1129 
1130 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1131 		if (blk != jblk - (j - reqpage))
1132 			break;
1133 	}
1134 
1135 	/*
1136 	 * free pages outside our collection range.   Note: we never free
1137 	 * mreq, it must remain busy throughout.
1138 	 */
1139 	if (0 < i || j < count) {
1140 		int k;
1141 
1142 		for (k = 0; k < i; ++k)
1143 			swp_pager_free_nrpage(m[k]);
1144 		for (k = j; k < count; ++k)
1145 			swp_pager_free_nrpage(m[k]);
1146 	}
1147 
1148 	/*
1149 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1150 	 * still busy, but the others unbusied.
1151 	 */
1152 	if (blk == SWAPBLK_NONE)
1153 		return (VM_PAGER_FAIL);
1154 
1155 	/*
1156 	 * Getpbuf() can sleep.
1157 	 */
1158 	VM_OBJECT_UNLOCK(object);
1159 	/*
1160 	 * Get a swap buffer header to perform the IO
1161 	 */
1162 	bp = getpbuf(&nsw_rcount);
1163 	bp->b_flags |= B_PAGING;
1164 
1165 	/*
1166 	 * map our page(s) into kva for input
1167 	 */
1168 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1169 
1170 	bp->b_iocmd = BIO_READ;
1171 	bp->b_iodone = swp_pager_async_iodone;
1172 	bp->b_rcred = crhold(thread0.td_ucred);
1173 	bp->b_wcred = crhold(thread0.td_ucred);
1174 	bp->b_blkno = blk - (reqpage - i);
1175 	bp->b_bcount = PAGE_SIZE * (j - i);
1176 	bp->b_bufsize = PAGE_SIZE * (j - i);
1177 	bp->b_pager.pg_reqpage = reqpage - i;
1178 
1179 	VM_OBJECT_LOCK(object);
1180 	{
1181 		int k;
1182 
1183 		for (k = i; k < j; ++k) {
1184 			bp->b_pages[k - i] = m[k];
1185 			m[k]->oflags |= VPO_SWAPINPROG;
1186 		}
1187 	}
1188 	bp->b_npages = j - i;
1189 
1190 	PCPU_INC(cnt.v_swapin);
1191 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1192 
1193 	/*
1194 	 * We still hold the lock on mreq, and our automatic completion routine
1195 	 * does not remove it.
1196 	 */
1197 	vm_object_pip_add(object, bp->b_npages);
1198 	VM_OBJECT_UNLOCK(object);
1199 
1200 	/*
1201 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1202 	 * this point because we automatically release it on completion.
1203 	 * Instead, we look at the one page we are interested in which we
1204 	 * still hold a lock on even through the I/O completion.
1205 	 *
1206 	 * The other pages in our m[] array are also released on completion,
1207 	 * so we cannot assume they are valid anymore either.
1208 	 *
1209 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1210 	 */
1211 	BUF_KERNPROC(bp);
1212 	swp_pager_strategy(bp);
1213 
1214 	/*
1215 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1216 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1217 	 * is set in the meta-data.
1218 	 */
1219 	VM_OBJECT_LOCK(object);
1220 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1221 		mreq->oflags |= VPO_WANTED;
1222 		PCPU_INC(cnt.v_intrans);
1223 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1224 			printf(
1225 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1226 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * mreq is left busied after completion, but all the other pages
1232 	 * are freed.  If we had an unrecoverable read error the page will
1233 	 * not be valid.
1234 	 */
1235 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1236 		return (VM_PAGER_ERROR);
1237 	} else {
1238 		return (VM_PAGER_OK);
1239 	}
1240 
1241 	/*
1242 	 * A final note: in a low swap situation, we cannot deallocate swap
1243 	 * and mark a page dirty here because the caller is likely to mark
1244 	 * the page clean when we return, causing the page to possibly revert
1245 	 * to all-zero's later.
1246 	 */
1247 }
1248 
1249 /*
1250  *	swap_pager_putpages:
1251  *
1252  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1253  *
1254  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1255  *	are automatically converted to SWAP objects.
1256  *
1257  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1258  *	vm_page reservation system coupled with properly written VFS devices
1259  *	should ensure that no low-memory deadlock occurs.  This is an area
1260  *	which needs work.
1261  *
1262  *	The parent has N vm_object_pip_add() references prior to
1263  *	calling us and will remove references for rtvals[] that are
1264  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1265  *	completion.
1266  *
1267  *	The parent has soft-busy'd the pages it passes us and will unbusy
1268  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1269  *	We need to unbusy the rest on I/O completion.
1270  */
1271 void
1272 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1273     boolean_t sync, int *rtvals)
1274 {
1275 	int i;
1276 	int n = 0;
1277 
1278 	if (count && m[0]->object != object) {
1279 		panic("swap_pager_putpages: object mismatch %p/%p",
1280 		    object,
1281 		    m[0]->object
1282 		);
1283 	}
1284 
1285 	/*
1286 	 * Step 1
1287 	 *
1288 	 * Turn object into OBJT_SWAP
1289 	 * check for bogus sysops
1290 	 * force sync if not pageout process
1291 	 */
1292 	if (object->type != OBJT_SWAP)
1293 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1294 	VM_OBJECT_UNLOCK(object);
1295 
1296 	if (curproc != pageproc)
1297 		sync = TRUE;
1298 
1299 	/*
1300 	 * Step 2
1301 	 *
1302 	 * Update nsw parameters from swap_async_max sysctl values.
1303 	 * Do not let the sysop crash the machine with bogus numbers.
1304 	 */
1305 	mtx_lock(&pbuf_mtx);
1306 	if (swap_async_max != nsw_wcount_async_max) {
1307 		int n;
1308 
1309 		/*
1310 		 * limit range
1311 		 */
1312 		if ((n = swap_async_max) > nswbuf / 2)
1313 			n = nswbuf / 2;
1314 		if (n < 1)
1315 			n = 1;
1316 		swap_async_max = n;
1317 
1318 		/*
1319 		 * Adjust difference ( if possible ).  If the current async
1320 		 * count is too low, we may not be able to make the adjustment
1321 		 * at this time.
1322 		 */
1323 		n -= nsw_wcount_async_max;
1324 		if (nsw_wcount_async + n >= 0) {
1325 			nsw_wcount_async += n;
1326 			nsw_wcount_async_max += n;
1327 			wakeup(&nsw_wcount_async);
1328 		}
1329 	}
1330 	mtx_unlock(&pbuf_mtx);
1331 
1332 	/*
1333 	 * Step 3
1334 	 *
1335 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1336 	 * The page is left dirty until the pageout operation completes
1337 	 * successfully.
1338 	 */
1339 	for (i = 0; i < count; i += n) {
1340 		int j;
1341 		struct buf *bp;
1342 		daddr_t blk;
1343 
1344 		/*
1345 		 * Maximum I/O size is limited by a number of factors.
1346 		 */
1347 		n = min(BLIST_MAX_ALLOC, count - i);
1348 		n = min(n, nsw_cluster_max);
1349 
1350 		/*
1351 		 * Get biggest block of swap we can.  If we fail, fall
1352 		 * back and try to allocate a smaller block.  Don't go
1353 		 * overboard trying to allocate space if it would overly
1354 		 * fragment swap.
1355 		 */
1356 		while (
1357 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1358 		    n > 4
1359 		) {
1360 			n >>= 1;
1361 		}
1362 		if (blk == SWAPBLK_NONE) {
1363 			for (j = 0; j < n; ++j)
1364 				rtvals[i+j] = VM_PAGER_FAIL;
1365 			continue;
1366 		}
1367 
1368 		/*
1369 		 * All I/O parameters have been satisfied, build the I/O
1370 		 * request and assign the swap space.
1371 		 */
1372 		if (sync == TRUE) {
1373 			bp = getpbuf(&nsw_wcount_sync);
1374 		} else {
1375 			bp = getpbuf(&nsw_wcount_async);
1376 			bp->b_flags = B_ASYNC;
1377 		}
1378 		bp->b_flags |= B_PAGING;
1379 		bp->b_iocmd = BIO_WRITE;
1380 
1381 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1382 
1383 		bp->b_rcred = crhold(thread0.td_ucred);
1384 		bp->b_wcred = crhold(thread0.td_ucred);
1385 		bp->b_bcount = PAGE_SIZE * n;
1386 		bp->b_bufsize = PAGE_SIZE * n;
1387 		bp->b_blkno = blk;
1388 
1389 		VM_OBJECT_LOCK(object);
1390 		for (j = 0; j < n; ++j) {
1391 			vm_page_t mreq = m[i+j];
1392 
1393 			swp_pager_meta_build(
1394 			    mreq->object,
1395 			    mreq->pindex,
1396 			    blk + j
1397 			);
1398 			vm_page_dirty(mreq);
1399 			rtvals[i+j] = VM_PAGER_OK;
1400 
1401 			mreq->oflags |= VPO_SWAPINPROG;
1402 			bp->b_pages[j] = mreq;
1403 		}
1404 		VM_OBJECT_UNLOCK(object);
1405 		bp->b_npages = n;
1406 		/*
1407 		 * Must set dirty range for NFS to work.
1408 		 */
1409 		bp->b_dirtyoff = 0;
1410 		bp->b_dirtyend = bp->b_bcount;
1411 
1412 		PCPU_INC(cnt.v_swapout);
1413 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1414 
1415 		/*
1416 		 * asynchronous
1417 		 *
1418 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1419 		 */
1420 		if (sync == FALSE) {
1421 			bp->b_iodone = swp_pager_async_iodone;
1422 			BUF_KERNPROC(bp);
1423 			swp_pager_strategy(bp);
1424 
1425 			for (j = 0; j < n; ++j)
1426 				rtvals[i+j] = VM_PAGER_PEND;
1427 			/* restart outter loop */
1428 			continue;
1429 		}
1430 
1431 		/*
1432 		 * synchronous
1433 		 *
1434 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1435 		 */
1436 		bp->b_iodone = bdone;
1437 		swp_pager_strategy(bp);
1438 
1439 		/*
1440 		 * Wait for the sync I/O to complete, then update rtvals.
1441 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1442 		 * our async completion routine at the end, thus avoiding a
1443 		 * double-free.
1444 		 */
1445 		bwait(bp, PVM, "swwrt");
1446 		for (j = 0; j < n; ++j)
1447 			rtvals[i+j] = VM_PAGER_PEND;
1448 		/*
1449 		 * Now that we are through with the bp, we can call the
1450 		 * normal async completion, which frees everything up.
1451 		 */
1452 		swp_pager_async_iodone(bp);
1453 	}
1454 	VM_OBJECT_LOCK(object);
1455 }
1456 
1457 /*
1458  *	swp_pager_async_iodone:
1459  *
1460  *	Completion routine for asynchronous reads and writes from/to swap.
1461  *	Also called manually by synchronous code to finish up a bp.
1462  *
1463  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1464  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1465  *	unbusy all pages except the 'main' request page.  For WRITE
1466  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1467  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1468  *
1469  *	This routine may not block.
1470  */
1471 static void
1472 swp_pager_async_iodone(struct buf *bp)
1473 {
1474 	int i;
1475 	vm_object_t object = NULL;
1476 
1477 	/*
1478 	 * report error
1479 	 */
1480 	if (bp->b_ioflags & BIO_ERROR) {
1481 		printf(
1482 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1483 			"size %ld, error %d\n",
1484 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1485 		    (long)bp->b_blkno,
1486 		    (long)bp->b_bcount,
1487 		    bp->b_error
1488 		);
1489 	}
1490 
1491 	/*
1492 	 * remove the mapping for kernel virtual
1493 	 */
1494 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1495 
1496 	if (bp->b_npages) {
1497 		object = bp->b_pages[0]->object;
1498 		VM_OBJECT_LOCK(object);
1499 	}
1500 
1501 	/*
1502 	 * cleanup pages.  If an error occurs writing to swap, we are in
1503 	 * very serious trouble.  If it happens to be a disk error, though,
1504 	 * we may be able to recover by reassigning the swap later on.  So
1505 	 * in this case we remove the m->swapblk assignment for the page
1506 	 * but do not free it in the rlist.  The errornous block(s) are thus
1507 	 * never reallocated as swap.  Redirty the page and continue.
1508 	 */
1509 	for (i = 0; i < bp->b_npages; ++i) {
1510 		vm_page_t m = bp->b_pages[i];
1511 
1512 		m->oflags &= ~VPO_SWAPINPROG;
1513 
1514 		if (bp->b_ioflags & BIO_ERROR) {
1515 			/*
1516 			 * If an error occurs I'd love to throw the swapblk
1517 			 * away without freeing it back to swapspace, so it
1518 			 * can never be used again.  But I can't from an
1519 			 * interrupt.
1520 			 */
1521 			if (bp->b_iocmd == BIO_READ) {
1522 				/*
1523 				 * When reading, reqpage needs to stay
1524 				 * locked for the parent, but all other
1525 				 * pages can be freed.  We still want to
1526 				 * wakeup the parent waiting on the page,
1527 				 * though.  ( also: pg_reqpage can be -1 and
1528 				 * not match anything ).
1529 				 *
1530 				 * We have to wake specifically requested pages
1531 				 * up too because we cleared VPO_SWAPINPROG and
1532 				 * someone may be waiting for that.
1533 				 *
1534 				 * NOTE: for reads, m->dirty will probably
1535 				 * be overridden by the original caller of
1536 				 * getpages so don't play cute tricks here.
1537 				 */
1538 				m->valid = 0;
1539 				if (i != bp->b_pager.pg_reqpage)
1540 					swp_pager_free_nrpage(m);
1541 				else
1542 					vm_page_flash(m);
1543 				/*
1544 				 * If i == bp->b_pager.pg_reqpage, do not wake
1545 				 * the page up.  The caller needs to.
1546 				 */
1547 			} else {
1548 				/*
1549 				 * If a write error occurs, reactivate page
1550 				 * so it doesn't clog the inactive list,
1551 				 * then finish the I/O.
1552 				 */
1553 				vm_page_dirty(m);
1554 				vm_page_lock(m);
1555 				vm_page_activate(m);
1556 				vm_page_unlock(m);
1557 				vm_page_io_finish(m);
1558 			}
1559 		} else if (bp->b_iocmd == BIO_READ) {
1560 			/*
1561 			 * NOTE: for reads, m->dirty will probably be
1562 			 * overridden by the original caller of getpages so
1563 			 * we cannot set them in order to free the underlying
1564 			 * swap in a low-swap situation.  I don't think we'd
1565 			 * want to do that anyway, but it was an optimization
1566 			 * that existed in the old swapper for a time before
1567 			 * it got ripped out due to precisely this problem.
1568 			 *
1569 			 * If not the requested page then deactivate it.
1570 			 *
1571 			 * Note that the requested page, reqpage, is left
1572 			 * busied, but we still have to wake it up.  The
1573 			 * other pages are released (unbusied) by
1574 			 * vm_page_wakeup().
1575 			 */
1576 			KASSERT(!pmap_page_is_mapped(m),
1577 			    ("swp_pager_async_iodone: page %p is mapped", m));
1578 			m->valid = VM_PAGE_BITS_ALL;
1579 			KASSERT(m->dirty == 0,
1580 			    ("swp_pager_async_iodone: page %p is dirty", m));
1581 
1582 			/*
1583 			 * We have to wake specifically requested pages
1584 			 * up too because we cleared VPO_SWAPINPROG and
1585 			 * could be waiting for it in getpages.  However,
1586 			 * be sure to not unbusy getpages specifically
1587 			 * requested page - getpages expects it to be
1588 			 * left busy.
1589 			 */
1590 			if (i != bp->b_pager.pg_reqpage) {
1591 				vm_page_lock(m);
1592 				vm_page_deactivate(m);
1593 				vm_page_unlock(m);
1594 				vm_page_wakeup(m);
1595 			} else
1596 				vm_page_flash(m);
1597 		} else {
1598 			/*
1599 			 * For write success, clear the dirty
1600 			 * status, then finish the I/O ( which decrements the
1601 			 * busy count and possibly wakes waiter's up ).
1602 			 */
1603 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1604 			    ("swp_pager_async_iodone: page %p is not write"
1605 			    " protected", m));
1606 			vm_page_undirty(m);
1607 			vm_page_io_finish(m);
1608 			if (vm_page_count_severe()) {
1609 				vm_page_lock(m);
1610 				vm_page_try_to_cache(m);
1611 				vm_page_unlock(m);
1612 			}
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * adjust pip.  NOTE: the original parent may still have its own
1618 	 * pip refs on the object.
1619 	 */
1620 	if (object != NULL) {
1621 		vm_object_pip_wakeupn(object, bp->b_npages);
1622 		VM_OBJECT_UNLOCK(object);
1623 	}
1624 
1625 	/*
1626 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628 	 * trigger a KASSERT in relpbuf().
1629 	 */
1630 	if (bp->b_vp) {
1631 		    bp->b_vp = NULL;
1632 		    bp->b_bufobj = NULL;
1633 	}
1634 	/*
1635 	 * release the physical I/O buffer
1636 	 */
1637 	relpbuf(
1638 	    bp,
1639 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1640 		((bp->b_flags & B_ASYNC) ?
1641 		    &nsw_wcount_async :
1642 		    &nsw_wcount_sync
1643 		)
1644 	    )
1645 	);
1646 }
1647 
1648 /*
1649  *	swap_pager_isswapped:
1650  *
1651  *	Return 1 if at least one page in the given object is paged
1652  *	out to the given swap device.
1653  *
1654  *	This routine may not block.
1655  */
1656 int
1657 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1658 {
1659 	daddr_t index = 0;
1660 	int bcount;
1661 	int i;
1662 
1663 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1664 	if (object->type != OBJT_SWAP)
1665 		return (0);
1666 
1667 	mtx_lock(&swhash_mtx);
1668 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1669 		struct swblock *swap;
1670 
1671 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1672 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1673 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1674 					mtx_unlock(&swhash_mtx);
1675 					return (1);
1676 				}
1677 			}
1678 		}
1679 		index += SWAP_META_PAGES;
1680 	}
1681 	mtx_unlock(&swhash_mtx);
1682 	return (0);
1683 }
1684 
1685 /*
1686  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1687  *
1688  *	This routine dissociates the page at the given index within a
1689  *	swap block from its backing store, paging it in if necessary.
1690  *	If the page is paged in, it is placed in the inactive queue,
1691  *	since it had its backing store ripped out from under it.
1692  *	We also attempt to swap in all other pages in the swap block,
1693  *	we only guarantee that the one at the specified index is
1694  *	paged in.
1695  *
1696  *	XXX - The code to page the whole block in doesn't work, so we
1697  *	      revert to the one-by-one behavior for now.  Sigh.
1698  */
1699 static inline void
1700 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1701 {
1702 	vm_page_t m;
1703 
1704 	vm_object_pip_add(object, 1);
1705 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1706 	if (m->valid == VM_PAGE_BITS_ALL) {
1707 		vm_object_pip_subtract(object, 1);
1708 		vm_page_dirty(m);
1709 		vm_page_lock(m);
1710 		vm_page_activate(m);
1711 		vm_page_unlock(m);
1712 		vm_page_wakeup(m);
1713 		vm_pager_page_unswapped(m);
1714 		return;
1715 	}
1716 
1717 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1718 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1719 	vm_object_pip_subtract(object, 1);
1720 	vm_page_dirty(m);
1721 	vm_page_lock(m);
1722 	vm_page_deactivate(m);
1723 	vm_page_unlock(m);
1724 	vm_page_wakeup(m);
1725 	vm_pager_page_unswapped(m);
1726 }
1727 
1728 /*
1729  *	swap_pager_swapoff:
1730  *
1731  *	Page in all of the pages that have been paged out to the
1732  *	given device.  The corresponding blocks in the bitmap must be
1733  *	marked as allocated and the device must be flagged SW_CLOSING.
1734  *	There may be no processes swapped out to the device.
1735  *
1736  *	This routine may block.
1737  */
1738 static void
1739 swap_pager_swapoff(struct swdevt *sp)
1740 {
1741 	struct swblock *swap;
1742 	int i, j, retries;
1743 
1744 	GIANT_REQUIRED;
1745 
1746 	retries = 0;
1747 full_rescan:
1748 	mtx_lock(&swhash_mtx);
1749 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1750 restart:
1751 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1752 			vm_object_t object = swap->swb_object;
1753 			vm_pindex_t pindex = swap->swb_index;
1754                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1755                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1756 					/* avoid deadlock */
1757 					if (!VM_OBJECT_TRYLOCK(object)) {
1758 						break;
1759 					} else {
1760 						mtx_unlock(&swhash_mtx);
1761 						swp_pager_force_pagein(object,
1762 						    pindex + j);
1763 						VM_OBJECT_UNLOCK(object);
1764 						mtx_lock(&swhash_mtx);
1765 						goto restart;
1766 					}
1767 				}
1768                         }
1769 		}
1770 	}
1771 	mtx_unlock(&swhash_mtx);
1772 	if (sp->sw_used) {
1773 		/*
1774 		 * Objects may be locked or paging to the device being
1775 		 * removed, so we will miss their pages and need to
1776 		 * make another pass.  We have marked this device as
1777 		 * SW_CLOSING, so the activity should finish soon.
1778 		 */
1779 		retries++;
1780 		if (retries > 100) {
1781 			panic("swapoff: failed to locate %d swap blocks",
1782 			    sp->sw_used);
1783 		}
1784 		pause("swpoff", hz / 20);
1785 		goto full_rescan;
1786 	}
1787 }
1788 
1789 /************************************************************************
1790  *				SWAP META DATA 				*
1791  ************************************************************************
1792  *
1793  *	These routines manipulate the swap metadata stored in the
1794  *	OBJT_SWAP object.
1795  *
1796  *	Swap metadata is implemented with a global hash and not directly
1797  *	linked into the object.  Instead the object simply contains
1798  *	appropriate tracking counters.
1799  */
1800 
1801 /*
1802  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1803  *
1804  *	We first convert the object to a swap object if it is a default
1805  *	object.
1806  *
1807  *	The specified swapblk is added to the object's swap metadata.  If
1808  *	the swapblk is not valid, it is freed instead.  Any previously
1809  *	assigned swapblk is freed.
1810  */
1811 static void
1812 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1813 {
1814 	struct swblock *swap;
1815 	struct swblock **pswap;
1816 	int idx;
1817 
1818 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1819 	/*
1820 	 * Convert default object to swap object if necessary
1821 	 */
1822 	if (object->type != OBJT_SWAP) {
1823 		object->type = OBJT_SWAP;
1824 		object->un_pager.swp.swp_bcount = 0;
1825 
1826 		if (object->handle != NULL) {
1827 			mtx_lock(&sw_alloc_mtx);
1828 			TAILQ_INSERT_TAIL(
1829 			    NOBJLIST(object->handle),
1830 			    object,
1831 			    pager_object_list
1832 			);
1833 			mtx_unlock(&sw_alloc_mtx);
1834 		}
1835 	}
1836 
1837 	/*
1838 	 * Locate hash entry.  If not found create, but if we aren't adding
1839 	 * anything just return.  If we run out of space in the map we wait
1840 	 * and, since the hash table may have changed, retry.
1841 	 */
1842 retry:
1843 	mtx_lock(&swhash_mtx);
1844 	pswap = swp_pager_hash(object, pindex);
1845 
1846 	if ((swap = *pswap) == NULL) {
1847 		int i;
1848 
1849 		if (swapblk == SWAPBLK_NONE)
1850 			goto done;
1851 
1852 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1853 		if (swap == NULL) {
1854 			mtx_unlock(&swhash_mtx);
1855 			VM_OBJECT_UNLOCK(object);
1856 			if (uma_zone_exhausted(swap_zone)) {
1857 				printf("swap zone exhausted, increase kern.maxswzone\n");
1858 				vm_pageout_oom(VM_OOM_SWAPZ);
1859 				pause("swzonex", 10);
1860 			} else
1861 				VM_WAIT;
1862 			VM_OBJECT_LOCK(object);
1863 			goto retry;
1864 		}
1865 
1866 		swap->swb_hnext = NULL;
1867 		swap->swb_object = object;
1868 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1869 		swap->swb_count = 0;
1870 
1871 		++object->un_pager.swp.swp_bcount;
1872 
1873 		for (i = 0; i < SWAP_META_PAGES; ++i)
1874 			swap->swb_pages[i] = SWAPBLK_NONE;
1875 	}
1876 
1877 	/*
1878 	 * Delete prior contents of metadata
1879 	 */
1880 	idx = pindex & SWAP_META_MASK;
1881 
1882 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1883 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1884 		--swap->swb_count;
1885 	}
1886 
1887 	/*
1888 	 * Enter block into metadata
1889 	 */
1890 	swap->swb_pages[idx] = swapblk;
1891 	if (swapblk != SWAPBLK_NONE)
1892 		++swap->swb_count;
1893 done:
1894 	mtx_unlock(&swhash_mtx);
1895 }
1896 
1897 /*
1898  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1899  *
1900  *	The requested range of blocks is freed, with any associated swap
1901  *	returned to the swap bitmap.
1902  *
1903  *	This routine will free swap metadata structures as they are cleaned
1904  *	out.  This routine does *NOT* operate on swap metadata associated
1905  *	with resident pages.
1906  */
1907 static void
1908 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1909 {
1910 
1911 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1912 	if (object->type != OBJT_SWAP)
1913 		return;
1914 
1915 	while (count > 0) {
1916 		struct swblock **pswap;
1917 		struct swblock *swap;
1918 
1919 		mtx_lock(&swhash_mtx);
1920 		pswap = swp_pager_hash(object, index);
1921 
1922 		if ((swap = *pswap) != NULL) {
1923 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1924 
1925 			if (v != SWAPBLK_NONE) {
1926 				swp_pager_freeswapspace(v, 1);
1927 				swap->swb_pages[index & SWAP_META_MASK] =
1928 					SWAPBLK_NONE;
1929 				if (--swap->swb_count == 0) {
1930 					*pswap = swap->swb_hnext;
1931 					uma_zfree(swap_zone, swap);
1932 					--object->un_pager.swp.swp_bcount;
1933 				}
1934 			}
1935 			--count;
1936 			++index;
1937 		} else {
1938 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1939 			count -= n;
1940 			index += n;
1941 		}
1942 		mtx_unlock(&swhash_mtx);
1943 	}
1944 }
1945 
1946 /*
1947  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1948  *
1949  *	This routine locates and destroys all swap metadata associated with
1950  *	an object.
1951  */
1952 static void
1953 swp_pager_meta_free_all(vm_object_t object)
1954 {
1955 	daddr_t index = 0;
1956 
1957 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1958 	if (object->type != OBJT_SWAP)
1959 		return;
1960 
1961 	while (object->un_pager.swp.swp_bcount) {
1962 		struct swblock **pswap;
1963 		struct swblock *swap;
1964 
1965 		mtx_lock(&swhash_mtx);
1966 		pswap = swp_pager_hash(object, index);
1967 		if ((swap = *pswap) != NULL) {
1968 			int i;
1969 
1970 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1971 				daddr_t v = swap->swb_pages[i];
1972 				if (v != SWAPBLK_NONE) {
1973 					--swap->swb_count;
1974 					swp_pager_freeswapspace(v, 1);
1975 				}
1976 			}
1977 			if (swap->swb_count != 0)
1978 				panic("swap_pager_meta_free_all: swb_count != 0");
1979 			*pswap = swap->swb_hnext;
1980 			uma_zfree(swap_zone, swap);
1981 			--object->un_pager.swp.swp_bcount;
1982 		}
1983 		mtx_unlock(&swhash_mtx);
1984 		index += SWAP_META_PAGES;
1985 	}
1986 }
1987 
1988 /*
1989  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1990  *
1991  *	This routine is capable of looking up, popping, or freeing
1992  *	swapblk assignments in the swap meta data or in the vm_page_t.
1993  *	The routine typically returns the swapblk being looked-up, or popped,
1994  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1995  *	was invalid.  This routine will automatically free any invalid
1996  *	meta-data swapblks.
1997  *
1998  *	It is not possible to store invalid swapblks in the swap meta data
1999  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2000  *
2001  *	When acting on a busy resident page and paging is in progress, we
2002  *	have to wait until paging is complete but otherwise can act on the
2003  *	busy page.
2004  *
2005  *	SWM_FREE	remove and free swap block from metadata
2006  *	SWM_POP		remove from meta data but do not free.. pop it out
2007  */
2008 static daddr_t
2009 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2010 {
2011 	struct swblock **pswap;
2012 	struct swblock *swap;
2013 	daddr_t r1;
2014 	int idx;
2015 
2016 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2017 	/*
2018 	 * The meta data only exists of the object is OBJT_SWAP
2019 	 * and even then might not be allocated yet.
2020 	 */
2021 	if (object->type != OBJT_SWAP)
2022 		return (SWAPBLK_NONE);
2023 
2024 	r1 = SWAPBLK_NONE;
2025 	mtx_lock(&swhash_mtx);
2026 	pswap = swp_pager_hash(object, pindex);
2027 
2028 	if ((swap = *pswap) != NULL) {
2029 		idx = pindex & SWAP_META_MASK;
2030 		r1 = swap->swb_pages[idx];
2031 
2032 		if (r1 != SWAPBLK_NONE) {
2033 			if (flags & SWM_FREE) {
2034 				swp_pager_freeswapspace(r1, 1);
2035 				r1 = SWAPBLK_NONE;
2036 			}
2037 			if (flags & (SWM_FREE|SWM_POP)) {
2038 				swap->swb_pages[idx] = SWAPBLK_NONE;
2039 				if (--swap->swb_count == 0) {
2040 					*pswap = swap->swb_hnext;
2041 					uma_zfree(swap_zone, swap);
2042 					--object->un_pager.swp.swp_bcount;
2043 				}
2044 			}
2045 		}
2046 	}
2047 	mtx_unlock(&swhash_mtx);
2048 	return (r1);
2049 }
2050 
2051 /*
2052  * System call swapon(name) enables swapping on device name,
2053  * which must be in the swdevsw.  Return EBUSY
2054  * if already swapping on this device.
2055  */
2056 #ifndef _SYS_SYSPROTO_H_
2057 struct swapon_args {
2058 	char *name;
2059 };
2060 #endif
2061 
2062 /*
2063  * MPSAFE
2064  */
2065 /* ARGSUSED */
2066 int
2067 swapon(struct thread *td, struct swapon_args *uap)
2068 {
2069 	struct vattr attr;
2070 	struct vnode *vp;
2071 	struct nameidata nd;
2072 	int error;
2073 
2074 	error = priv_check(td, PRIV_SWAPON);
2075 	if (error)
2076 		return (error);
2077 
2078 	mtx_lock(&Giant);
2079 	while (swdev_syscall_active)
2080 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2081 	swdev_syscall_active = 1;
2082 
2083 	/*
2084 	 * Swap metadata may not fit in the KVM if we have physical
2085 	 * memory of >1GB.
2086 	 */
2087 	if (swap_zone == NULL) {
2088 		error = ENOMEM;
2089 		goto done;
2090 	}
2091 
2092 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2093 	    uap->name, td);
2094 	error = namei(&nd);
2095 	if (error)
2096 		goto done;
2097 
2098 	NDFREE(&nd, NDF_ONLY_PNBUF);
2099 	vp = nd.ni_vp;
2100 
2101 	if (vn_isdisk(vp, &error)) {
2102 		error = swapongeom(td, vp);
2103 	} else if (vp->v_type == VREG &&
2104 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2105 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2106 		/*
2107 		 * Allow direct swapping to NFS regular files in the same
2108 		 * way that nfs_mountroot() sets up diskless swapping.
2109 		 */
2110 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2111 	}
2112 
2113 	if (error)
2114 		vrele(vp);
2115 done:
2116 	swdev_syscall_active = 0;
2117 	wakeup_one(&swdev_syscall_active);
2118 	mtx_unlock(&Giant);
2119 	return (error);
2120 }
2121 
2122 static void
2123 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2124 {
2125 	struct swdevt *sp, *tsp;
2126 	swblk_t dvbase;
2127 	u_long mblocks;
2128 
2129 	/*
2130 	 * If we go beyond this, we get overflows in the radix
2131 	 * tree bitmap code.
2132 	 */
2133 	mblocks = 0x40000000 / BLIST_META_RADIX;
2134 	if (nblks > mblocks) {
2135 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2136 			mblocks);
2137 		nblks = mblocks;
2138 	}
2139 	/*
2140 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2141 	 * First chop nblks off to page-align it, then convert.
2142 	 *
2143 	 * sw->sw_nblks is in page-sized chunks now too.
2144 	 */
2145 	nblks &= ~(ctodb(1) - 1);
2146 	nblks = dbtoc(nblks);
2147 
2148 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2149 	sp->sw_vp = vp;
2150 	sp->sw_id = id;
2151 	sp->sw_dev = dev;
2152 	sp->sw_flags = 0;
2153 	sp->sw_nblks = nblks;
2154 	sp->sw_used = 0;
2155 	sp->sw_strategy = strategy;
2156 	sp->sw_close = close;
2157 
2158 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2159 	/*
2160 	 * Do not free the first two block in order to avoid overwriting
2161 	 * any bsd label at the front of the partition
2162 	 */
2163 	blist_free(sp->sw_blist, 2, nblks - 2);
2164 
2165 	dvbase = 0;
2166 	mtx_lock(&sw_dev_mtx);
2167 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2168 		if (tsp->sw_end >= dvbase) {
2169 			/*
2170 			 * We put one uncovered page between the devices
2171 			 * in order to definitively prevent any cross-device
2172 			 * I/O requests
2173 			 */
2174 			dvbase = tsp->sw_end + 1;
2175 		}
2176 	}
2177 	sp->sw_first = dvbase;
2178 	sp->sw_end = dvbase + nblks;
2179 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2180 	nswapdev++;
2181 	swap_pager_avail += nblks;
2182 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2183 	swp_sizecheck();
2184 	mtx_unlock(&sw_dev_mtx);
2185 }
2186 
2187 /*
2188  * SYSCALL: swapoff(devname)
2189  *
2190  * Disable swapping on the given device.
2191  *
2192  * XXX: Badly designed system call: it should use a device index
2193  * rather than filename as specification.  We keep sw_vp around
2194  * only to make this work.
2195  */
2196 #ifndef _SYS_SYSPROTO_H_
2197 struct swapoff_args {
2198 	char *name;
2199 };
2200 #endif
2201 
2202 /*
2203  * MPSAFE
2204  */
2205 /* ARGSUSED */
2206 int
2207 swapoff(struct thread *td, struct swapoff_args *uap)
2208 {
2209 	struct vnode *vp;
2210 	struct nameidata nd;
2211 	struct swdevt *sp;
2212 	int error;
2213 
2214 	error = priv_check(td, PRIV_SWAPOFF);
2215 	if (error)
2216 		return (error);
2217 
2218 	mtx_lock(&Giant);
2219 	while (swdev_syscall_active)
2220 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2221 	swdev_syscall_active = 1;
2222 
2223 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2224 	    td);
2225 	error = namei(&nd);
2226 	if (error)
2227 		goto done;
2228 	NDFREE(&nd, NDF_ONLY_PNBUF);
2229 	vp = nd.ni_vp;
2230 
2231 	mtx_lock(&sw_dev_mtx);
2232 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2233 		if (sp->sw_vp == vp)
2234 			break;
2235 	}
2236 	mtx_unlock(&sw_dev_mtx);
2237 	if (sp == NULL) {
2238 		error = EINVAL;
2239 		goto done;
2240 	}
2241 	error = swapoff_one(sp, td->td_ucred);
2242 done:
2243 	swdev_syscall_active = 0;
2244 	wakeup_one(&swdev_syscall_active);
2245 	mtx_unlock(&Giant);
2246 	return (error);
2247 }
2248 
2249 static int
2250 swapoff_one(struct swdevt *sp, struct ucred *cred)
2251 {
2252 	u_long nblks, dvbase;
2253 #ifdef MAC
2254 	int error;
2255 #endif
2256 
2257 	mtx_assert(&Giant, MA_OWNED);
2258 #ifdef MAC
2259 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2260 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2261 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2262 	if (error != 0)
2263 		return (error);
2264 #endif
2265 	nblks = sp->sw_nblks;
2266 
2267 	/*
2268 	 * We can turn off this swap device safely only if the
2269 	 * available virtual memory in the system will fit the amount
2270 	 * of data we will have to page back in, plus an epsilon so
2271 	 * the system doesn't become critically low on swap space.
2272 	 */
2273 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2274 	    nblks + nswap_lowat) {
2275 		return (ENOMEM);
2276 	}
2277 
2278 	/*
2279 	 * Prevent further allocations on this device.
2280 	 */
2281 	mtx_lock(&sw_dev_mtx);
2282 	sp->sw_flags |= SW_CLOSING;
2283 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2284 		swap_pager_avail -= blist_fill(sp->sw_blist,
2285 		     dvbase, dmmax);
2286 	}
2287 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2288 	mtx_unlock(&sw_dev_mtx);
2289 
2290 	/*
2291 	 * Page in the contents of the device and close it.
2292 	 */
2293 	swap_pager_swapoff(sp);
2294 
2295 	sp->sw_close(curthread, sp);
2296 	sp->sw_id = NULL;
2297 	mtx_lock(&sw_dev_mtx);
2298 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2299 	nswapdev--;
2300 	if (nswapdev == 0) {
2301 		swap_pager_full = 2;
2302 		swap_pager_almost_full = 1;
2303 	}
2304 	if (swdevhd == sp)
2305 		swdevhd = NULL;
2306 	mtx_unlock(&sw_dev_mtx);
2307 	blist_destroy(sp->sw_blist);
2308 	free(sp, M_VMPGDATA);
2309 	return (0);
2310 }
2311 
2312 void
2313 swapoff_all(void)
2314 {
2315 	struct swdevt *sp, *spt;
2316 	const char *devname;
2317 	int error;
2318 
2319 	mtx_lock(&Giant);
2320 	while (swdev_syscall_active)
2321 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2322 	swdev_syscall_active = 1;
2323 
2324 	mtx_lock(&sw_dev_mtx);
2325 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2326 		mtx_unlock(&sw_dev_mtx);
2327 		if (vn_isdisk(sp->sw_vp, NULL))
2328 			devname = sp->sw_vp->v_rdev->si_name;
2329 		else
2330 			devname = "[file]";
2331 		error = swapoff_one(sp, thread0.td_ucred);
2332 		if (error != 0) {
2333 			printf("Cannot remove swap device %s (error=%d), "
2334 			    "skipping.\n", devname, error);
2335 		} else if (bootverbose) {
2336 			printf("Swap device %s removed.\n", devname);
2337 		}
2338 		mtx_lock(&sw_dev_mtx);
2339 	}
2340 	mtx_unlock(&sw_dev_mtx);
2341 
2342 	swdev_syscall_active = 0;
2343 	wakeup_one(&swdev_syscall_active);
2344 	mtx_unlock(&Giant);
2345 }
2346 
2347 void
2348 swap_pager_status(int *total, int *used)
2349 {
2350 	struct swdevt *sp;
2351 
2352 	*total = 0;
2353 	*used = 0;
2354 	mtx_lock(&sw_dev_mtx);
2355 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2356 		*total += sp->sw_nblks;
2357 		*used += sp->sw_used;
2358 	}
2359 	mtx_unlock(&sw_dev_mtx);
2360 }
2361 
2362 static int
2363 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2364 {
2365 	int	*name = (int *)arg1;
2366 	int	error, n;
2367 	struct xswdev xs;
2368 	struct swdevt *sp;
2369 
2370 	if (arg2 != 1) /* name length */
2371 		return (EINVAL);
2372 
2373 	n = 0;
2374 	mtx_lock(&sw_dev_mtx);
2375 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2376 		if (n == *name) {
2377 			mtx_unlock(&sw_dev_mtx);
2378 			xs.xsw_version = XSWDEV_VERSION;
2379 			xs.xsw_dev = sp->sw_dev;
2380 			xs.xsw_flags = sp->sw_flags;
2381 			xs.xsw_nblks = sp->sw_nblks;
2382 			xs.xsw_used = sp->sw_used;
2383 
2384 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2385 			return (error);
2386 		}
2387 		n++;
2388 	}
2389 	mtx_unlock(&sw_dev_mtx);
2390 	return (ENOENT);
2391 }
2392 
2393 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2394     "Number of swap devices");
2395 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2396     "Swap statistics by device");
2397 
2398 /*
2399  * vmspace_swap_count() - count the approximate swap usage in pages for a
2400  *			  vmspace.
2401  *
2402  *	The map must be locked.
2403  *
2404  *	Swap usage is determined by taking the proportional swap used by
2405  *	VM objects backing the VM map.  To make up for fractional losses,
2406  *	if the VM object has any swap use at all the associated map entries
2407  *	count for at least 1 swap page.
2408  */
2409 long
2410 vmspace_swap_count(struct vmspace *vmspace)
2411 {
2412 	vm_map_t map;
2413 	vm_map_entry_t cur;
2414 	vm_object_t object;
2415 	long count, n;
2416 
2417 	map = &vmspace->vm_map;
2418 	count = 0;
2419 
2420 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2421 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2422 		    (object = cur->object.vm_object) != NULL) {
2423 			VM_OBJECT_LOCK(object);
2424 			if (object->type == OBJT_SWAP &&
2425 			    object->un_pager.swp.swp_bcount != 0) {
2426 				n = (cur->end - cur->start) / PAGE_SIZE;
2427 				count += object->un_pager.swp.swp_bcount *
2428 				    SWAP_META_PAGES * n / object->size + 1;
2429 			}
2430 			VM_OBJECT_UNLOCK(object);
2431 		}
2432 	}
2433 	return (count);
2434 }
2435 
2436 /*
2437  * GEOM backend
2438  *
2439  * Swapping onto disk devices.
2440  *
2441  */
2442 
2443 static g_orphan_t swapgeom_orphan;
2444 
2445 static struct g_class g_swap_class = {
2446 	.name = "SWAP",
2447 	.version = G_VERSION,
2448 	.orphan = swapgeom_orphan,
2449 };
2450 
2451 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2452 
2453 
2454 static void
2455 swapgeom_done(struct bio *bp2)
2456 {
2457 	struct buf *bp;
2458 
2459 	bp = bp2->bio_caller2;
2460 	bp->b_ioflags = bp2->bio_flags;
2461 	if (bp2->bio_error)
2462 		bp->b_ioflags |= BIO_ERROR;
2463 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2464 	bp->b_error = bp2->bio_error;
2465 	bufdone(bp);
2466 	g_destroy_bio(bp2);
2467 }
2468 
2469 static void
2470 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2471 {
2472 	struct bio *bio;
2473 	struct g_consumer *cp;
2474 
2475 	cp = sp->sw_id;
2476 	if (cp == NULL) {
2477 		bp->b_error = ENXIO;
2478 		bp->b_ioflags |= BIO_ERROR;
2479 		bufdone(bp);
2480 		return;
2481 	}
2482 	if (bp->b_iocmd == BIO_WRITE)
2483 		bio = g_new_bio();
2484 	else
2485 		bio = g_alloc_bio();
2486 	if (bio == NULL) {
2487 		bp->b_error = ENOMEM;
2488 		bp->b_ioflags |= BIO_ERROR;
2489 		bufdone(bp);
2490 		return;
2491 	}
2492 
2493 	bio->bio_caller2 = bp;
2494 	bio->bio_cmd = bp->b_iocmd;
2495 	bio->bio_data = bp->b_data;
2496 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2497 	bio->bio_length = bp->b_bcount;
2498 	bio->bio_done = swapgeom_done;
2499 	g_io_request(bio, cp);
2500 	return;
2501 }
2502 
2503 static void
2504 swapgeom_orphan(struct g_consumer *cp)
2505 {
2506 	struct swdevt *sp;
2507 
2508 	mtx_lock(&sw_dev_mtx);
2509 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2510 		if (sp->sw_id == cp)
2511 			sp->sw_id = NULL;
2512 	mtx_unlock(&sw_dev_mtx);
2513 }
2514 
2515 static void
2516 swapgeom_close_ev(void *arg, int flags)
2517 {
2518 	struct g_consumer *cp;
2519 
2520 	cp = arg;
2521 	g_access(cp, -1, -1, 0);
2522 	g_detach(cp);
2523 	g_destroy_consumer(cp);
2524 }
2525 
2526 static void
2527 swapgeom_close(struct thread *td, struct swdevt *sw)
2528 {
2529 
2530 	/* XXX: direct call when Giant untangled */
2531 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2532 }
2533 
2534 
2535 struct swh0h0 {
2536 	struct cdev *dev;
2537 	struct vnode *vp;
2538 	int	error;
2539 };
2540 
2541 static void
2542 swapongeom_ev(void *arg, int flags)
2543 {
2544 	struct swh0h0 *swh;
2545 	struct g_provider *pp;
2546 	struct g_consumer *cp;
2547 	static struct g_geom *gp;
2548 	struct swdevt *sp;
2549 	u_long nblks;
2550 	int error;
2551 
2552 	swh = arg;
2553 	swh->error = 0;
2554 	pp = g_dev_getprovider(swh->dev);
2555 	if (pp == NULL) {
2556 		swh->error = ENODEV;
2557 		return;
2558 	}
2559 	mtx_lock(&sw_dev_mtx);
2560 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2561 		cp = sp->sw_id;
2562 		if (cp != NULL && cp->provider == pp) {
2563 			mtx_unlock(&sw_dev_mtx);
2564 			swh->error = EBUSY;
2565 			return;
2566 		}
2567 	}
2568 	mtx_unlock(&sw_dev_mtx);
2569 	if (gp == NULL)
2570 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2571 	cp = g_new_consumer(gp);
2572 	g_attach(cp, pp);
2573 	/*
2574 	 * XXX: Everytime you think you can improve the margin for
2575 	 * footshooting, somebody depends on the ability to do so:
2576 	 * savecore(8) wants to write to our swapdev so we cannot
2577 	 * set an exclusive count :-(
2578 	 */
2579 	error = g_access(cp, 1, 1, 0);
2580 	if (error) {
2581 		g_detach(cp);
2582 		g_destroy_consumer(cp);
2583 		swh->error = error;
2584 		return;
2585 	}
2586 	nblks = pp->mediasize / DEV_BSIZE;
2587 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2588 	    swapgeom_close, dev2udev(swh->dev));
2589 	swh->error = 0;
2590 	return;
2591 }
2592 
2593 static int
2594 swapongeom(struct thread *td, struct vnode *vp)
2595 {
2596 	int error;
2597 	struct swh0h0 swh;
2598 
2599 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2600 
2601 	swh.dev = vp->v_rdev;
2602 	swh.vp = vp;
2603 	swh.error = 0;
2604 	/* XXX: direct call when Giant untangled */
2605 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2606 	if (!error)
2607 		error = swh.error;
2608 	VOP_UNLOCK(vp, 0);
2609 	return (error);
2610 }
2611 
2612 /*
2613  * VNODE backend
2614  *
2615  * This is used mainly for network filesystem (read: probably only tested
2616  * with NFS) swapfiles.
2617  *
2618  */
2619 
2620 static void
2621 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2622 {
2623 	struct vnode *vp2;
2624 
2625 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2626 
2627 	vp2 = sp->sw_id;
2628 	vhold(vp2);
2629 	if (bp->b_iocmd == BIO_WRITE) {
2630 		if (bp->b_bufobj)
2631 			bufobj_wdrop(bp->b_bufobj);
2632 		bufobj_wref(&vp2->v_bufobj);
2633 	}
2634 	if (bp->b_bufobj != &vp2->v_bufobj)
2635 		bp->b_bufobj = &vp2->v_bufobj;
2636 	bp->b_vp = vp2;
2637 	bp->b_iooffset = dbtob(bp->b_blkno);
2638 	bstrategy(bp);
2639 	return;
2640 }
2641 
2642 static void
2643 swapdev_close(struct thread *td, struct swdevt *sp)
2644 {
2645 
2646 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2647 	vrele(sp->sw_vp);
2648 }
2649 
2650 
2651 static int
2652 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2653 {
2654 	struct swdevt *sp;
2655 	int error;
2656 
2657 	if (nblks == 0)
2658 		return (ENXIO);
2659 	mtx_lock(&sw_dev_mtx);
2660 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2661 		if (sp->sw_id == vp) {
2662 			mtx_unlock(&sw_dev_mtx);
2663 			return (EBUSY);
2664 		}
2665 	}
2666 	mtx_unlock(&sw_dev_mtx);
2667 
2668 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2669 #ifdef MAC
2670 	error = mac_system_check_swapon(td->td_ucred, vp);
2671 	if (error == 0)
2672 #endif
2673 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2674 	(void) VOP_UNLOCK(vp, 0);
2675 	if (error)
2676 		return (error);
2677 
2678 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2679 	    NODEV);
2680 	return (0);
2681 }
2682