xref: /freebsd/sys/vm/swap_pager.c (revision 426de76026cd7f586975b79b7159ee83bdaaacd1)
1 /*
2  * Copyright (c) 1994 John S. Dyson
3  * Copyright (c) 1990 University of Utah.
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
40  *
41  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
42  * $Id: swap_pager.c,v 1.8 1994/08/29 06:23:18 davidg Exp $
43  */
44 
45 /*
46  * Quick hack to page to dedicated partition(s).
47  * TODO:
48  *	Add multiprocessor locks
49  *	Deal with async writes in a better fashion
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/proc.h>
55 #include <sys/buf.h>
56 #include <sys/vnode.h>
57 #include <sys/malloc.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 #include <sys/rlist.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_pager.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/swap_pager.h>
67 
68 #ifndef NPENDINGIO
69 #define NPENDINGIO	16
70 #endif
71 
72 int nswiodone;
73 extern int vm_pageout_rate_limit;
74 static int cleandone;
75 extern int hz;
76 int swap_pager_full;
77 extern vm_map_t pager_map;
78 extern int vm_swap_size;
79 
80 #define MAX_PAGEOUT_CLUSTER 8
81 
82 TAILQ_HEAD(swpclean, swpagerclean);
83 
84 typedef	struct swpagerclean	*swp_clean_t;
85 
86 struct swpagerclean {
87 	TAILQ_ENTRY(swpagerclean)	spc_list;
88 	int				spc_flags;
89 	struct buf			*spc_bp;
90 	sw_pager_t			spc_swp;
91 	vm_offset_t			spc_kva;
92 	int				spc_count;
93 	vm_page_t			spc_m[MAX_PAGEOUT_CLUSTER];
94 } swcleanlist [NPENDINGIO] ;
95 
96 
97 extern vm_map_t kernel_map;
98 
99 /* spc_flags values */
100 #define SPC_ERROR	0x01
101 
102 #define SWB_EMPTY (-1)
103 
104 struct swpclean swap_pager_done;	/* list of compileted page cleans */
105 struct swpclean swap_pager_inuse;	/* list of pending page cleans */
106 struct swpclean swap_pager_free;	/* list of free pager clean structs */
107 struct pagerlst swap_pager_list;	/* list of "named" anon regions */
108 struct pagerlst swap_pager_un_list;	/* list of "unnamed" anon pagers */
109 
110 #define	SWAP_FREE_NEEDED	0x1	/* need a swap block */
111 int swap_pager_needflags;
112 struct rlist *swapfrag;
113 
114 struct pagerlst *swp_qs[]={
115 	&swap_pager_list, &swap_pager_un_list, (struct pagerlst *) 0
116 };
117 
118 int swap_pager_putmulti();
119 
120 struct pagerops swappagerops = {
121 	swap_pager_init,
122 	swap_pager_alloc,
123 	swap_pager_dealloc,
124 	swap_pager_getpage,
125 	swap_pager_getmulti,
126 	swap_pager_putpage,
127 	swap_pager_putmulti,
128 	swap_pager_haspage
129 };
130 
131 int npendingio = NPENDINGIO;
132 int pendingiowait;
133 int require_swap_init;
134 void swap_pager_finish();
135 int dmmin, dmmax;
136 extern int vm_page_count;
137 
138 struct buf * getpbuf() ;
139 void relpbuf(struct buf *bp) ;
140 
141 static inline void swapsizecheck() {
142 	if( vm_swap_size < 128*btodb(PAGE_SIZE)) {
143 		if( swap_pager_full)
144 			printf("swap_pager: out of space\n");
145 		swap_pager_full = 1;
146 	} else if( vm_swap_size > 192*btodb(PAGE_SIZE))
147 		swap_pager_full = 0;
148 }
149 
150 void
151 swap_pager_init()
152 {
153 	dfltpagerops = &swappagerops;
154 
155 	TAILQ_INIT(&swap_pager_list);
156 	TAILQ_INIT(&swap_pager_un_list);
157 
158 	/*
159 	 * Initialize clean lists
160 	 */
161 	TAILQ_INIT(&swap_pager_inuse);
162 	TAILQ_INIT(&swap_pager_done);
163 	TAILQ_INIT(&swap_pager_free);
164 
165 	require_swap_init = 1;
166 
167 	/*
168 	 * Calculate the swap allocation constants.
169 	 */
170 
171 	dmmin = CLBYTES/DEV_BSIZE;
172 	dmmax = btodb(SWB_NPAGES*PAGE_SIZE)*2;
173 
174 }
175 
176 /*
177  * Allocate a pager structure and associated resources.
178  * Note that if we are called from the pageout daemon (handle == NULL)
179  * we should not wait for memory as it could resulting in deadlock.
180  */
181 vm_pager_t
182 swap_pager_alloc(handle, size, prot, offset)
183 	caddr_t handle;
184 	register vm_size_t size;
185 	vm_prot_t prot;
186 	vm_offset_t offset;
187 {
188 	register vm_pager_t pager;
189 	register sw_pager_t swp;
190 	int waitok;
191 	int i,j;
192 
193 	if (require_swap_init) {
194 		swp_clean_t spc;
195 		struct buf *bp;
196 		/*
197 		 * kva's are allocated here so that we dont need to keep
198 		 * doing kmem_alloc pageables at runtime
199 		 */
200 		for (i = 0, spc = swcleanlist; i < npendingio ; i++, spc++) {
201 			spc->spc_kva = kmem_alloc_pageable(pager_map, PAGE_SIZE*MAX_PAGEOUT_CLUSTER);
202 			if (!spc->spc_kva) {
203 				break;
204 			}
205 			spc->spc_bp = malloc( sizeof( *bp), M_TEMP, M_NOWAIT);
206 			if (!spc->spc_bp) {
207 				kmem_free_wakeup(pager_map, spc->spc_kva, PAGE_SIZE);
208 				break;
209 			}
210 			spc->spc_flags = 0;
211 			TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
212 		}
213 		require_swap_init = 0;
214 		if( size == 0)
215 			return(NULL);
216 	}
217 
218 	/*
219 	 * If this is a "named" anonymous region, look it up and
220 	 * return the appropriate pager if it exists.
221 	 */
222 	if (handle) {
223 		pager = vm_pager_lookup(&swap_pager_list, handle);
224 		if (pager != NULL) {
225 			/*
226 			 * Use vm_object_lookup to gain a reference
227 			 * to the object and also to remove from the
228 			 * object cache.
229 			 */
230 			if (vm_object_lookup(pager) == NULL)
231 				panic("swap_pager_alloc: bad object");
232 			return(pager);
233 		}
234 	}
235 
236 	if (swap_pager_full) {
237 		return(NULL);
238 	}
239 
240 	/*
241 	 * Pager doesn't exist, allocate swap management resources
242 	 * and initialize.
243 	 */
244 	waitok = handle ? M_WAITOK : M_NOWAIT;
245 	pager = (vm_pager_t)malloc(sizeof *pager, M_VMPAGER, waitok);
246 	if (pager == NULL)
247 		return(NULL);
248 	swp = (sw_pager_t)malloc(sizeof *swp, M_VMPGDATA, waitok);
249 	if (swp == NULL) {
250 		free((caddr_t)pager, M_VMPAGER);
251 		return(NULL);
252 	}
253 	size = round_page(size);
254 	swp->sw_osize = size;
255 	swp->sw_nblocks = (btodb(size) + btodb(SWB_NPAGES * PAGE_SIZE) - 1) / btodb(SWB_NPAGES*PAGE_SIZE);
256 	swp->sw_blocks = (sw_blk_t)
257 		malloc(swp->sw_nblocks*sizeof(*swp->sw_blocks),
258 		       M_VMPGDATA, waitok);
259 	if (swp->sw_blocks == NULL) {
260 		free((caddr_t)swp, M_VMPGDATA);
261 		free((caddr_t)pager, M_VMPAGER);
262 		return(NULL);
263 	}
264 
265 	for (i = 0; i < swp->sw_nblocks; i++) {
266 		swp->sw_blocks[i].swb_valid = 0;
267 		swp->sw_blocks[i].swb_locked = 0;
268 		for (j = 0; j < SWB_NPAGES; j++)
269 			swp->sw_blocks[i].swb_block[j] = SWB_EMPTY;
270 	}
271 
272 	swp->sw_poip = 0;
273 	if (handle) {
274 		vm_object_t object;
275 
276 		swp->sw_flags = SW_NAMED;
277 		TAILQ_INSERT_TAIL(&swap_pager_list, pager, pg_list);
278 		/*
279 		 * Consistant with other pagers: return with object
280 		 * referenced.  Can't do this with handle == NULL
281 		 * since it might be the pageout daemon calling.
282 		 */
283 		object = vm_object_allocate(size);
284 		vm_object_enter(object, pager);
285 		vm_object_setpager(object, pager, 0, FALSE);
286 	} else {
287 		swp->sw_flags = 0;
288 		TAILQ_INSERT_TAIL(&swap_pager_un_list, pager, pg_list);
289 	}
290 	pager->pg_handle = handle;
291 	pager->pg_ops = &swappagerops;
292 	pager->pg_type = PG_SWAP;
293 	pager->pg_data = (caddr_t)swp;
294 
295 	return(pager);
296 }
297 
298 /*
299  * returns disk block associated with pager and offset
300  * additionally, as a side effect returns a flag indicating
301  * if the block has been written
302  */
303 
304 static int *
305 swap_pager_diskaddr(swp, offset, valid)
306 	sw_pager_t swp;
307 	vm_offset_t offset;
308 	int *valid;
309 {
310 	register sw_blk_t swb;
311 	int ix;
312 
313 	if (valid)
314 		*valid = 0;
315 	ix = offset / (SWB_NPAGES*PAGE_SIZE);
316 	if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks) {
317 		return(FALSE);
318 	}
319 	swb = &swp->sw_blocks[ix];
320 	ix = (offset % (SWB_NPAGES*PAGE_SIZE)) / PAGE_SIZE;
321 	if (valid)
322 		*valid = swb->swb_valid & (1<<ix);
323 	return &swb->swb_block[ix];
324 }
325 
326 /*
327  * Utility routine to set the valid (written) bit for
328  * a block associated with a pager and offset
329  */
330 static void
331 swap_pager_setvalid(swp, offset, valid)
332 	sw_pager_t swp;
333 	vm_offset_t offset;
334 	int valid;
335 {
336 	register sw_blk_t swb;
337 	int ix;
338 
339 	ix = offset / (SWB_NPAGES*PAGE_SIZE);
340 	if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks)
341 		return;
342 
343 	swb = &swp->sw_blocks[ix];
344 	ix = (offset % (SWB_NPAGES*PAGE_SIZE)) / PAGE_SIZE;
345 	if (valid)
346 		swb->swb_valid |= (1 << ix);
347 	else
348 		swb->swb_valid &= ~(1 << ix);
349 	return;
350 }
351 
352 /*
353  * this routine allocates swap space with a fragmentation
354  * minimization policy.
355  */
356 int
357 swap_pager_getswapspace( unsigned amount, unsigned *rtval) {
358 #ifdef EXP
359 	unsigned tmpalloc;
360 	unsigned nblocksfrag = btodb(SWB_NPAGES*PAGE_SIZE);
361 	if( amount < nblocksfrag) {
362 		if( rlist_alloc(&swapfrag, amount, rtval))
363 			return 1;
364 		if( !rlist_alloc(&swapmap, nblocksfrag, &tmpalloc))
365 			return 0;
366 		rlist_free( &swapfrag, tmpalloc+amount, tmpalloc + nblocksfrag - 1);
367 		*rtval = tmpalloc;
368 		return 1;
369 	}
370 #endif
371 	if( !rlist_alloc(&swapmap, amount, rtval))
372 		return 0;
373 	else
374 		return 1;
375 }
376 
377 /*
378  * this routine frees swap space with a fragmentation
379  * minimization policy.
380  */
381 void
382 swap_pager_freeswapspace( unsigned from, unsigned to) {
383 	unsigned nblocksfrag = btodb(SWB_NPAGES*PAGE_SIZE);
384 	unsigned tmpalloc;
385 #ifdef EXP
386 	if( ((to + 1) - from) >= nblocksfrag) {
387 #endif
388 		rlist_free(&swapmap, from, to);
389 #ifdef EXP
390 		return;
391 	}
392 	rlist_free(&swapfrag, from, to);
393 	while( rlist_alloc(&swapfrag, nblocksfrag, &tmpalloc)) {
394 		rlist_free(&swapmap, tmpalloc, tmpalloc + nblocksfrag-1);
395 	}
396 #endif
397 }
398 /*
399  * this routine frees swap blocks from a specified pager
400  */
401 void
402 _swap_pager_freespace(swp, start, size)
403 	sw_pager_t swp;
404 	vm_offset_t start;
405 	vm_offset_t size;
406 {
407 	vm_offset_t i;
408 	int s;
409 
410 	s = splbio();
411 	for (i = start; i < round_page(start + size - 1); i += PAGE_SIZE) {
412 		int valid;
413 		int *addr = swap_pager_diskaddr(swp, i, &valid);
414 		if (addr && *addr != SWB_EMPTY) {
415 			swap_pager_freeswapspace(*addr, *addr+btodb(PAGE_SIZE) - 1);
416 			if( valid) {
417 				vm_swap_size += btodb(PAGE_SIZE);
418 				swap_pager_setvalid(swp, i, 0);
419 			}
420 			*addr = SWB_EMPTY;
421 		}
422 	}
423 	swapsizecheck();
424 	splx(s);
425 }
426 
427 void
428 swap_pager_freespace(pager, start, size)
429 	vm_pager_t pager;
430 	vm_offset_t start;
431 	vm_offset_t size;
432 {
433 	_swap_pager_freespace((sw_pager_t) pager->pg_data, start, size);
434 }
435 
436 /*
437  * swap_pager_reclaim frees up over-allocated space from all pagers
438  * this eliminates internal fragmentation due to allocation of space
439  * for segments that are never swapped to. It has been written so that
440  * it does not block until the rlist_free operation occurs; it keeps
441  * the queues consistant.
442  */
443 
444 /*
445  * Maximum number of blocks (pages) to reclaim per pass
446  */
447 #define MAXRECLAIM 256
448 
449 void
450 swap_pager_reclaim()
451 {
452 	vm_pager_t p;
453 	sw_pager_t swp;
454 	int i, j, k;
455 	int s;
456 	int reclaimcount;
457 	static int reclaims[MAXRECLAIM];
458 	static int in_reclaim;
459 
460 /*
461  * allow only one process to be in the swap_pager_reclaim subroutine
462  */
463 	s = splbio();
464 	if (in_reclaim) {
465 		tsleep((caddr_t) &in_reclaim, PSWP, "swrclm", 0);
466 		splx(s);
467 		return;
468 	}
469 	in_reclaim = 1;
470 	reclaimcount = 0;
471 
472 	/* for each pager queue */
473 	for (k = 0; swp_qs[k]; k++) {
474 
475 		p = swp_qs[k]->tqh_first;
476 		while (p && (reclaimcount < MAXRECLAIM)) {
477 
478 			/*
479 			 * see if any blocks associated with a pager has been
480 			 * allocated but not used (written)
481 			 */
482 			swp = (sw_pager_t) p->pg_data;
483 			for (i = 0; i < swp->sw_nblocks; i++) {
484 				sw_blk_t swb = &swp->sw_blocks[i];
485 				if( swb->swb_locked)
486 					continue;
487 				for (j = 0; j < SWB_NPAGES; j++) {
488 					if (swb->swb_block[j] != SWB_EMPTY &&
489 						(swb->swb_valid & (1 << j)) == 0) {
490 						reclaims[reclaimcount++] = swb->swb_block[j];
491 						swb->swb_block[j] = SWB_EMPTY;
492 						if (reclaimcount >= MAXRECLAIM)
493 							goto rfinished;
494 					}
495 				}
496 			}
497 			p = p->pg_list.tqe_next;
498 		}
499 	}
500 
501 rfinished:
502 
503 /*
504  * free the blocks that have been added to the reclaim list
505  */
506 	for (i = 0; i < reclaimcount; i++) {
507 		swap_pager_freeswapspace(reclaims[i], reclaims[i]+btodb(PAGE_SIZE) - 1);
508 		swapsizecheck();
509 		wakeup((caddr_t) &in_reclaim);
510 	}
511 
512 	splx(s);
513 	in_reclaim = 0;
514 	wakeup((caddr_t) &in_reclaim);
515 }
516 
517 
518 /*
519  * swap_pager_copy copies blocks from one pager to another and
520  * destroys the source pager
521  */
522 
523 void
524 swap_pager_copy(srcpager, srcoffset, dstpager, dstoffset, offset)
525 	vm_pager_t srcpager;
526 	vm_offset_t srcoffset;
527 	vm_pager_t dstpager;
528 	vm_offset_t dstoffset;
529 	vm_offset_t offset;
530 {
531 	sw_pager_t srcswp, dstswp;
532 	vm_offset_t i;
533 	int s;
534 
535 	srcswp = (sw_pager_t) srcpager->pg_data;
536 	dstswp = (sw_pager_t) dstpager->pg_data;
537 
538 /*
539  * remove the source pager from the swap_pager internal queue
540  */
541 	s = splbio();
542 	if (srcswp->sw_flags & SW_NAMED) {
543 		TAILQ_REMOVE(&swap_pager_list, srcpager, pg_list);
544 		srcswp->sw_flags &= ~SW_NAMED;
545 	} else {
546 		TAILQ_REMOVE(&swap_pager_un_list, srcpager, pg_list);
547 	}
548 
549 	while (srcswp->sw_poip) {
550 		tsleep((caddr_t)srcswp, PVM, "spgout", 0);
551 	}
552 	splx(s);
553 
554 /*
555  * clean all of the pages that are currently active and finished
556  */
557 	(void) swap_pager_clean();
558 
559 	s = splbio();
560 /*
561  * clear source block before destination object
562  * (release allocated space)
563  */
564 	for (i = 0; i < offset + srcoffset; i += PAGE_SIZE) {
565 		int valid;
566 		int *addr = swap_pager_diskaddr(srcswp, i, &valid);
567 		if (addr && *addr != SWB_EMPTY) {
568 			swap_pager_freeswapspace(*addr, *addr+btodb(PAGE_SIZE) - 1);
569 			if( valid)
570 				vm_swap_size += btodb(PAGE_SIZE);
571 			swapsizecheck();
572 			*addr = SWB_EMPTY;
573 		}
574 	}
575 /*
576  * transfer source to destination
577  */
578 	for (i = 0; i < dstswp->sw_osize; i += PAGE_SIZE) {
579 		int srcvalid, dstvalid;
580 		int *srcaddrp = swap_pager_diskaddr(srcswp, i + offset + srcoffset,
581 			&srcvalid);
582 		int *dstaddrp;
583 	/*
584 	 * see if the source has space allocated
585 	 */
586 		if (srcaddrp && *srcaddrp != SWB_EMPTY) {
587 		/*
588 		 * if the source is valid and the dest has no space, then
589 		 * copy the allocation from the srouce to the dest.
590 		 */
591 			if (srcvalid) {
592 				dstaddrp = swap_pager_diskaddr(dstswp, i + dstoffset, &dstvalid);
593 				/*
594 				 * if the dest already has a valid block, deallocate the
595 				 * source block without copying.
596 				 */
597 				if (!dstvalid && dstaddrp && *dstaddrp != SWB_EMPTY) {
598 					swap_pager_freeswapspace(*dstaddrp, *dstaddrp+btodb(PAGE_SIZE) - 1);
599 					*dstaddrp = SWB_EMPTY;
600 				}
601 				if (dstaddrp && *dstaddrp == SWB_EMPTY) {
602 					*dstaddrp = *srcaddrp;
603 					*srcaddrp = SWB_EMPTY;
604 					swap_pager_setvalid(dstswp, i + dstoffset, 1);
605 					vm_swap_size -= btodb(PAGE_SIZE);
606 				}
607 			}
608 		/*
609 		 * if the source is not empty at this point, then deallocate the space.
610 		 */
611 			if (*srcaddrp != SWB_EMPTY) {
612 				swap_pager_freeswapspace(*srcaddrp, *srcaddrp+btodb(PAGE_SIZE) - 1);
613 				if( srcvalid)
614 					vm_swap_size += btodb(PAGE_SIZE);
615 				*srcaddrp = SWB_EMPTY;
616 			}
617 		}
618 	}
619 
620 /*
621  * deallocate the rest of the source object
622  */
623 	for (i = dstswp->sw_osize + offset + srcoffset; i < srcswp->sw_osize; i += PAGE_SIZE) {
624 		int valid;
625 		int *srcaddrp = swap_pager_diskaddr(srcswp, i, &valid);
626 		if (srcaddrp && *srcaddrp != SWB_EMPTY) {
627 			swap_pager_freeswapspace(*srcaddrp, *srcaddrp+btodb(PAGE_SIZE) - 1);
628 			if( valid)
629 				vm_swap_size += btodb(PAGE_SIZE);
630 			*srcaddrp = SWB_EMPTY;
631 		}
632 	}
633 
634 	swapsizecheck();
635 	splx(s);
636 
637 	free((caddr_t)srcswp->sw_blocks, M_VMPGDATA);
638 	srcswp->sw_blocks = 0;
639 	free((caddr_t)srcswp, M_VMPGDATA);
640 	srcpager->pg_data = 0;
641 	free((caddr_t)srcpager, M_VMPAGER);
642 
643 	return;
644 }
645 
646 
647 void
648 swap_pager_dealloc(pager)
649 	vm_pager_t pager;
650 {
651 	register int i,j;
652 	register sw_blk_t bp;
653 	register sw_pager_t swp;
654 	int s;
655 
656 	/*
657 	 * Remove from list right away so lookups will fail if we
658 	 * block for pageout completion.
659 	 */
660 	s = splbio();
661 	swp = (sw_pager_t) pager->pg_data;
662 	if (swp->sw_flags & SW_NAMED) {
663 		TAILQ_REMOVE(&swap_pager_list, pager, pg_list);
664 		swp->sw_flags &= ~SW_NAMED;
665 	} else {
666 		TAILQ_REMOVE(&swap_pager_un_list, pager, pg_list);
667 	}
668 	/*
669 	 * Wait for all pageouts to finish and remove
670 	 * all entries from cleaning list.
671 	 */
672 
673 	while (swp->sw_poip) {
674 		tsleep((caddr_t)swp, PVM, "swpout", 0);
675 	}
676 	splx(s);
677 
678 
679 	(void) swap_pager_clean();
680 
681 	/*
682 	 * Free left over swap blocks
683 	 */
684 	s = splbio();
685 	for (i = 0, bp = swp->sw_blocks; i < swp->sw_nblocks; i++, bp++) {
686 		for (j = 0; j < SWB_NPAGES; j++)
687 		if (bp->swb_block[j] != SWB_EMPTY) {
688 			swap_pager_freeswapspace((unsigned)bp->swb_block[j],
689 				(unsigned)bp->swb_block[j] + btodb(PAGE_SIZE) - 1);
690 			if( bp->swb_valid & (1<<j))
691 				vm_swap_size += btodb(PAGE_SIZE);
692 			bp->swb_block[j] = SWB_EMPTY;
693 		}
694 	}
695 	splx(s);
696 	swapsizecheck();
697 
698 	/*
699 	 * Free swap management resources
700 	 */
701 	free((caddr_t)swp->sw_blocks, M_VMPGDATA);
702 	swp->sw_blocks = 0;
703 	free((caddr_t)swp, M_VMPGDATA);
704 	pager->pg_data = 0;
705 	free((caddr_t)pager, M_VMPAGER);
706 }
707 
708 /*
709  * swap_pager_getmulti can get multiple pages.
710  */
711 int
712 swap_pager_getmulti(pager, m, count, reqpage, sync)
713 	vm_pager_t pager;
714 	vm_page_t *m;
715 	int count;
716 	int reqpage;
717 	boolean_t sync;
718 {
719 	if( reqpage >= count)
720 		panic("swap_pager_getmulti: reqpage >= count\n");
721 	return swap_pager_input((sw_pager_t) pager->pg_data, m, count, reqpage);
722 }
723 
724 /*
725  * swap_pager_getpage gets individual pages
726  */
727 int
728 swap_pager_getpage(pager, m, sync)
729 	vm_pager_t pager;
730 	vm_page_t m;
731 	boolean_t sync;
732 {
733 	vm_page_t marray[1];
734 
735 	marray[0] = m;
736 	return swap_pager_input((sw_pager_t)pager->pg_data, marray, 1, 0);
737 }
738 
739 int
740 swap_pager_putmulti(pager, m, c, sync, rtvals)
741 	vm_pager_t pager;
742 	vm_page_t *m;
743 	int c;
744 	boolean_t sync;
745 	int *rtvals;
746 {
747 	int flags;
748 
749 	if (pager == NULL) {
750 		(void) swap_pager_clean();
751 		return VM_PAGER_OK;
752 	}
753 
754 	flags = B_WRITE;
755 	if (!sync)
756 		flags |= B_ASYNC;
757 
758 	return swap_pager_output((sw_pager_t)pager->pg_data, m, c, flags, rtvals);
759 }
760 
761 /*
762  * swap_pager_putpage writes individual pages
763  */
764 int
765 swap_pager_putpage(pager, m, sync)
766 	vm_pager_t pager;
767 	vm_page_t m;
768 	boolean_t sync;
769 {
770 	int flags;
771 	vm_page_t marray[1];
772 	int rtvals[1];
773 
774 
775 	if (pager == NULL) {
776 		(void) swap_pager_clean();
777 		return VM_PAGER_OK;
778 	}
779 
780 	marray[0] = m;
781 	flags = B_WRITE;
782 	if (!sync)
783 		flags |= B_ASYNC;
784 
785 	swap_pager_output((sw_pager_t)pager->pg_data, marray, 1, flags, rtvals);
786 
787 	return rtvals[0];
788 }
789 
790 static inline int
791 const swap_pager_block_index(swp, offset)
792 	sw_pager_t swp;
793 	vm_offset_t offset;
794 {
795 	return (offset / (SWB_NPAGES*PAGE_SIZE));
796 }
797 
798 static inline int
799 const swap_pager_block_offset(swp, offset)
800 	sw_pager_t swp;
801 	vm_offset_t offset;
802 {
803 	return ((offset % (PAGE_SIZE*SWB_NPAGES)) / PAGE_SIZE);
804 }
805 
806 /*
807  * _swap_pager_haspage returns TRUE if the pager has data that has
808  * been written out.
809  */
810 static boolean_t
811 _swap_pager_haspage(swp, offset)
812 	sw_pager_t swp;
813 	vm_offset_t offset;
814 {
815 	register sw_blk_t swb;
816 	int ix;
817 
818 	ix = offset / (SWB_NPAGES*PAGE_SIZE);
819 	if (swp->sw_blocks == NULL || ix >= swp->sw_nblocks) {
820 		return(FALSE);
821 	}
822 	swb = &swp->sw_blocks[ix];
823 	ix = (offset % (SWB_NPAGES*PAGE_SIZE)) / PAGE_SIZE;
824 	if (swb->swb_block[ix] != SWB_EMPTY) {
825 		if (swb->swb_valid & (1 << ix))
826 			return TRUE;
827 	}
828 
829 	return(FALSE);
830 }
831 
832 /*
833  * swap_pager_haspage is the externally accessible version of
834  * _swap_pager_haspage above.  this routine takes a vm_pager_t
835  * for an argument instead of sw_pager_t.
836  */
837 boolean_t
838 swap_pager_haspage(pager, offset)
839 	vm_pager_t pager;
840 	vm_offset_t offset;
841 {
842 	return _swap_pager_haspage((sw_pager_t) pager->pg_data, offset);
843 }
844 
845 /*
846  * swap_pager_freepage is a convienience routine that clears the busy
847  * bit and deallocates a page.
848  */
849 static void
850 swap_pager_freepage(m)
851 	vm_page_t m;
852 {
853 	PAGE_WAKEUP(m);
854 	vm_page_free(m);
855 }
856 
857 /*
858  * swap_pager_ridpages is a convienience routine that deallocates all
859  * but the required page.  this is usually used in error returns that
860  * need to invalidate the "extra" readahead pages.
861  */
862 static void
863 swap_pager_ridpages(m, count, reqpage)
864 	vm_page_t *m;
865 	int count;
866 	int reqpage;
867 {
868 	int i;
869 	for (i = 0; i < count; i++)
870 		if (i != reqpage)
871 			swap_pager_freepage(m[i]);
872 }
873 
874 int swapwritecount=0;
875 
876 /*
877  * swap_pager_iodone1 is the completion routine for both reads and async writes
878  */
879 void
880 swap_pager_iodone1(bp)
881 	struct buf *bp;
882 {
883 	bp->b_flags |= B_DONE;
884 	bp->b_flags &= ~B_ASYNC;
885 	wakeup((caddr_t)bp);
886 /*
887 	if ((bp->b_flags & B_READ) == 0)
888 		vwakeup(bp);
889 */
890 }
891 
892 
893 int
894 swap_pager_input(swp, m, count, reqpage)
895 	register sw_pager_t swp;
896 	vm_page_t *m;
897 	int count, reqpage;
898 {
899 	register struct buf *bp;
900 	sw_blk_t swb[count];
901 	register int s;
902 	int i;
903 	boolean_t rv;
904 	vm_offset_t kva, off[count];
905 	swp_clean_t spc;
906 	vm_offset_t paging_offset;
907 	vm_object_t object;
908 	int reqaddr[count];
909 
910 	int first, last;
911 	int failed;
912 	int reqdskregion;
913 
914 	object = m[reqpage]->object;
915 	paging_offset = object->paging_offset;
916 	/*
917 	 * First determine if the page exists in the pager if this is
918 	 * a sync read.  This quickly handles cases where we are
919 	 * following shadow chains looking for the top level object
920 	 * with the page.
921 	 */
922 	if (swp->sw_blocks == NULL) {
923 		swap_pager_ridpages(m, count, reqpage);
924 		return(VM_PAGER_FAIL);
925 	}
926 
927 	for(i = 0; i < count; i++) {
928 		vm_offset_t foff = m[i]->offset + paging_offset;
929 		int ix = swap_pager_block_index(swp, foff);
930 		if (ix >= swp->sw_nblocks) {
931 			int j;
932 			if( i <= reqpage) {
933 				swap_pager_ridpages(m, count, reqpage);
934 				return(VM_PAGER_FAIL);
935 			}
936 			for(j = i; j < count; j++) {
937 				swap_pager_freepage(m[j]);
938 			}
939 			count = i;
940 			break;
941 		}
942 
943 		swb[i] = &swp->sw_blocks[ix];
944 		off[i] = swap_pager_block_offset(swp, foff);
945 		reqaddr[i] = swb[i]->swb_block[off[i]];
946 	}
947 
948 	/* make sure that our required input request is existant */
949 
950 	if (reqaddr[reqpage] == SWB_EMPTY ||
951 		(swb[reqpage]->swb_valid & (1 << off[reqpage])) == 0) {
952 		swap_pager_ridpages(m, count, reqpage);
953 		return(VM_PAGER_FAIL);
954 	}
955 
956 
957 	reqdskregion = reqaddr[reqpage] / dmmax;
958 
959 	/*
960 	 * search backwards for the first contiguous page to transfer
961 	 */
962 	failed = 0;
963 	first = 0;
964 	for (i = reqpage - 1; i >= 0; --i) {
965 		if ( failed || (reqaddr[i] == SWB_EMPTY) ||
966 			(swb[i]->swb_valid & (1 << off[i])) == 0 ||
967 			(reqaddr[i] != (reqaddr[reqpage] + (i - reqpage) * btodb(PAGE_SIZE))) ||
968 			((reqaddr[i] / dmmax) != reqdskregion)) {
969 				failed = 1;
970 				swap_pager_freepage(m[i]);
971 				if (first == 0)
972 					first = i + 1;
973 		}
974 	}
975 	/*
976 	 * search forwards for the last contiguous page to transfer
977 	 */
978 	failed = 0;
979 	last = count;
980 	for (i = reqpage + 1; i < count; i++) {
981 		if ( failed || (reqaddr[i] == SWB_EMPTY) ||
982 			(swb[i]->swb_valid & (1 << off[i])) == 0 ||
983 			(reqaddr[i] != (reqaddr[reqpage] + (i - reqpage) * btodb(PAGE_SIZE))) ||
984 			((reqaddr[i] / dmmax) != reqdskregion)) {
985 				failed = 1;
986 				swap_pager_freepage(m[i]);
987 				if (last == count)
988 					last = i;
989 		}
990 	}
991 
992 	count = last;
993 	if (first != 0) {
994 		for (i = first; i < count; i++) {
995 			m[i-first] = m[i];
996 			reqaddr[i-first] = reqaddr[i];
997 			off[i-first] = off[i];
998 		}
999 		count -= first;
1000 		reqpage -= first;
1001 	}
1002 
1003 	++swb[reqpage]->swb_locked;
1004 
1005 	/*
1006 	 * at this point:
1007 	 * "m" is a pointer to the array of vm_page_t for paging I/O
1008 	 * "count" is the number of vm_page_t entries represented by "m"
1009 	 * "object" is the vm_object_t for I/O
1010 	 * "reqpage" is the index into "m" for the page actually faulted
1011 	 */
1012 
1013 	spc = NULL;	/* we might not use an spc data structure */
1014 
1015 	if (count == 1) {
1016 		/*
1017 		 * if a kva has not been allocated, we can only do a one page transfer,
1018 		 * so we free the other pages that might have been allocated by
1019 		 * vm_fault.
1020 		 */
1021 		swap_pager_ridpages(m, count, reqpage);
1022 		m[0] = m[reqpage];
1023 		reqaddr[0] = reqaddr[reqpage];
1024 
1025 		count = 1;
1026 		reqpage = 0;
1027 	/*
1028 	 * get a swap pager clean data structure, block until we get it
1029 	 */
1030 		if (swap_pager_free.tqh_first == NULL) {
1031 			s = splbio();
1032 			if( curproc == pageproc)
1033 				(void) swap_pager_clean();
1034 			else
1035 				wakeup((caddr_t) &vm_pages_needed);
1036 			while (swap_pager_free.tqh_first == NULL) {
1037 				swap_pager_needflags |= SWAP_FREE_NEEDED;
1038 				tsleep((caddr_t)&swap_pager_free,
1039 					PVM, "swpfre", 0);
1040 				if( curproc == pageproc)
1041 					(void) swap_pager_clean();
1042 				else
1043 					wakeup((caddr_t) &vm_pages_needed);
1044 			}
1045 			splx(s);
1046 		}
1047 		spc = swap_pager_free.tqh_first;
1048 		TAILQ_REMOVE(&swap_pager_free, spc, spc_list);
1049 		kva = spc->spc_kva;
1050 		bp = spc->spc_bp;
1051 		bzero(bp, sizeof *bp);
1052 		bp->b_spc = spc;
1053 	} else {
1054 	/*
1055 	 * Get a swap buffer header to perform the IO
1056 	 */
1057 		bp = getpbuf();
1058 		kva = (vm_offset_t) bp->b_data;
1059 	}
1060 
1061 	/*
1062 	 * map our page(s) into kva for input
1063 	 */
1064 	pmap_qenter( kva, m, count);
1065 
1066 	s = splbio();
1067 	bp->b_flags = B_BUSY | B_READ | B_CALL;
1068 	bp->b_iodone = swap_pager_iodone1;
1069 	bp->b_proc = &proc0;	/* XXX (but without B_PHYS set this is ok) */
1070 	bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
1071 	crhold(bp->b_rcred);
1072 	crhold(bp->b_wcred);
1073 	bp->b_un.b_addr = (caddr_t) kva;
1074 	bp->b_blkno = reqaddr[0];
1075 	bp->b_bcount = PAGE_SIZE*count;
1076 	bp->b_bufsize = PAGE_SIZE*count;
1077 
1078 	bgetvp( swapdev_vp, bp);
1079 
1080 	swp->sw_piip++;
1081 
1082 	/*
1083 	 * perform the I/O
1084 	 */
1085 	VOP_STRATEGY(bp);
1086 
1087 	/*
1088 	 * wait for the sync I/O to complete
1089 	 */
1090 	while ((bp->b_flags & B_DONE) == 0) {
1091 		tsleep((caddr_t)bp, PVM, "swread", 0);
1092 	}
1093 	rv = (bp->b_flags & B_ERROR) ? VM_PAGER_FAIL : VM_PAGER_OK;
1094 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_DIRTY|B_CALL|B_DONE);
1095 
1096 	--swp->sw_piip;
1097 	if (swp->sw_piip == 0)
1098 		wakeup((caddr_t) swp);
1099 
1100 	/*
1101 	 * relpbuf does this, but we maintain our own buffer
1102 	 * list also...
1103 	 */
1104 	if (bp->b_vp)
1105 		brelvp(bp);
1106 
1107 	splx(s);
1108 	--swb[reqpage]->swb_locked;
1109 
1110 	/*
1111 	 * remove the mapping for kernel virtual
1112 	 */
1113 	pmap_qremove( kva, count);
1114 
1115 	if (spc) {
1116 		/*
1117 		 * if we have used an spc, we need to free it.
1118 		 */
1119 		if( bp->b_rcred != NOCRED)
1120 			crfree(bp->b_rcred);
1121 		if( bp->b_wcred != NOCRED)
1122 			crfree(bp->b_wcred);
1123 		TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
1124 		if (swap_pager_needflags & SWAP_FREE_NEEDED) {
1125 			swap_pager_needflags &= ~SWAP_FREE_NEEDED;
1126 			wakeup((caddr_t)&swap_pager_free);
1127 		}
1128 	} else {
1129 		/*
1130 		 * release the physical I/O buffer
1131 		 */
1132 		relpbuf(bp);
1133 		/*
1134 		 * finish up input if everything is ok
1135 		 */
1136 		if( rv == VM_PAGER_OK) {
1137 			for (i = 0; i < count; i++) {
1138 				pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
1139 				m[i]->flags |= PG_CLEAN;
1140 				m[i]->flags &= ~PG_LAUNDRY;
1141 				if (i != reqpage) {
1142 					/*
1143 					 * whether or not to leave the page activated
1144 					 * is up in the air, but we should put the page
1145 					 * on a page queue somewhere. (it already is in
1146 					 * the object).
1147 					 * After some emperical results, it is best
1148 					 * to deactivate the readahead pages.
1149 					 */
1150 					vm_page_deactivate(m[i]);
1151 
1152 					/*
1153 					 * just in case someone was asking for this
1154 					 * page we now tell them that it is ok to use
1155 					 */
1156 					m[i]->flags &= ~PG_FAKE;
1157 					PAGE_WAKEUP(m[i]);
1158 				}
1159 			}
1160 			if( swap_pager_full) {
1161 				_swap_pager_freespace( swp, m[0]->offset+paging_offset, count*PAGE_SIZE);
1162 			}
1163 		} else {
1164 			swap_pager_ridpages(m, count, reqpage);
1165 		}
1166 	}
1167 	return(rv);
1168 }
1169 
1170 int
1171 swap_pager_output(swp, m, count, flags, rtvals)
1172 	register sw_pager_t swp;
1173 	vm_page_t *m;
1174 	int count;
1175 	int flags;
1176 	int *rtvals;
1177 {
1178 	register struct buf *bp;
1179 	sw_blk_t swb[count];
1180 	register int s;
1181 	int i, j, ix;
1182 	boolean_t rv;
1183 	vm_offset_t kva, off, foff;
1184 	swp_clean_t spc;
1185 	vm_offset_t paging_offset;
1186 	vm_object_t object;
1187 	int reqaddr[count];
1188 	int failed;
1189 
1190 /*
1191 	if( count > 1)
1192 		printf("off: 0x%x, count: %d\n", m[0]->offset, count);
1193 */
1194 	spc = NULL;
1195 
1196 	object = m[0]->object;
1197 	paging_offset = object->paging_offset;
1198 
1199 	failed = 0;
1200 	for(j=0;j<count;j++) {
1201 		foff = m[j]->offset + paging_offset;
1202 		ix = swap_pager_block_index(swp, foff);
1203 		swb[j] = 0;
1204 		if( swp->sw_blocks == NULL || ix >= swp->sw_nblocks) {
1205 			rtvals[j] = VM_PAGER_FAIL;
1206 			failed = 1;
1207 			continue;
1208 		} else {
1209 			rtvals[j] = VM_PAGER_OK;
1210 		}
1211 		swb[j] = &swp->sw_blocks[ix];
1212 		++swb[j]->swb_locked;
1213 		if( failed) {
1214 			rtvals[j] = VM_PAGER_FAIL;
1215 			continue;
1216 		}
1217 		off = swap_pager_block_offset(swp, foff);
1218 		reqaddr[j] = swb[j]->swb_block[off];
1219 		if( reqaddr[j] == SWB_EMPTY) {
1220 			int blk;
1221 			int tries;
1222 			int ntoget;
1223 			tries = 0;
1224 			s = splbio();
1225 
1226 			/*
1227 			 * if any other pages have been allocated in this block, we
1228 			 * only try to get one page.
1229 			 */
1230 			for (i = 0; i < SWB_NPAGES; i++) {
1231 				if (swb[j]->swb_block[i] != SWB_EMPTY)
1232 					break;
1233 			}
1234 
1235 
1236 			ntoget = (i == SWB_NPAGES) ? SWB_NPAGES : 1;
1237 			/*
1238 			 * this code is alittle conservative, but works
1239 			 * (the intent of this code is to allocate small chunks
1240 			 *  for small objects)
1241 			 */
1242 			if( (m[j]->offset == 0) && (ntoget*PAGE_SIZE > object->size)) {
1243 				ntoget = (object->size + (PAGE_SIZE-1))/PAGE_SIZE;
1244 			}
1245 
1246 retrygetspace:
1247 			if (!swap_pager_full && ntoget > 1 &&
1248 				swap_pager_getswapspace(ntoget * btodb(PAGE_SIZE), &blk)) {
1249 
1250 				for (i = 0; i < ntoget; i++) {
1251 					swb[j]->swb_block[i] = blk + btodb(PAGE_SIZE) * i;
1252 					swb[j]->swb_valid = 0;
1253 				}
1254 
1255 				reqaddr[j] = swb[j]->swb_block[off];
1256 			} else if (!swap_pager_getswapspace(btodb(PAGE_SIZE),
1257 				&swb[j]->swb_block[off])) {
1258 				/*
1259 				 * if the allocation has failed, we try to reclaim space and
1260 				 * retry.
1261 				 */
1262 				if (++tries == 1) {
1263 					swap_pager_reclaim();
1264 					goto retrygetspace;
1265 				}
1266 				rtvals[j] = VM_PAGER_AGAIN;
1267 				failed = 1;
1268 			} else {
1269 				reqaddr[j] = swb[j]->swb_block[off];
1270 				swb[j]->swb_valid &= ~(1<<off);
1271 			}
1272 			splx(s);
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * search forwards for the last contiguous page to transfer
1278 	 */
1279 	failed = 0;
1280 	for (i = 0; i < count; i++) {
1281 		if( failed || (reqaddr[i] != reqaddr[0] + i*btodb(PAGE_SIZE)) ||
1282 			(reqaddr[i] / dmmax) != (reqaddr[0] / dmmax) ||
1283 			(rtvals[i] != VM_PAGER_OK)) {
1284 			failed = 1;
1285 			if( rtvals[i] == VM_PAGER_OK)
1286 				rtvals[i] = VM_PAGER_AGAIN;
1287 		}
1288 	}
1289 
1290 	for(i = 0; i < count; i++) {
1291 		if( rtvals[i] != VM_PAGER_OK) {
1292 			if( swb[i])
1293 				--swb[i]->swb_locked;
1294 		}
1295 	}
1296 
1297 	for(i = 0; i < count; i++)
1298 		if( rtvals[i] != VM_PAGER_OK)
1299 			break;
1300 
1301 	if( i == 0) {
1302 		return VM_PAGER_AGAIN;
1303 	}
1304 
1305 	count = i;
1306 	for(i=0;i<count;i++) {
1307 		if( reqaddr[i] == SWB_EMPTY)
1308 			printf("I/O to empty block????\n");
1309 	}
1310 
1311 	/*
1312 	 */
1313 
1314 	/*
1315 	 * For synchronous writes, we clean up
1316 	 * all completed async pageouts.
1317 	 */
1318 	if ((flags & B_ASYNC) == 0) {
1319 		swap_pager_clean();
1320 	}
1321 
1322 	kva = 0;
1323 
1324 	/*
1325 	 * we allocate a new kva for transfers > 1 page
1326 	 * but for transfers == 1 page, the swap_pager_free list contains
1327 	 * entries that have pre-allocated kva's (for efficiency).
1328 	 * NOTE -- we do not use the physical buffer pool or the
1329 	 * preallocated associated kva's because of the potential for
1330 	 * deadlock.  This is very subtile -- but deadlocks or resource
1331 	 * contention must be avoided on pageouts -- or your system will
1332 	 * sleep (forever) !!!
1333 	 */
1334 /*
1335 	if ( count > 1) {
1336 		kva = kmem_alloc_pageable(pager_map, count*PAGE_SIZE);
1337 		if( !kva) {
1338 			for (i = 0; i < count; i++) {
1339 				if( swb[i])
1340 					--swb[i]->swb_locked;
1341 				rtvals[i] = VM_PAGER_AGAIN;
1342 			}
1343 			return VM_PAGER_AGAIN;
1344 		}
1345 	}
1346 */
1347 
1348 	/*
1349 	 * get a swap pager clean data structure, block until we get it
1350 	 */
1351 	if (swap_pager_free.tqh_first == NULL) {
1352 		s = splbio();
1353 		if( curproc == pageproc)
1354 			(void) swap_pager_clean();
1355 		else
1356 			wakeup((caddr_t) &vm_pages_needed);
1357 		while (swap_pager_free.tqh_first == NULL) {
1358 			swap_pager_needflags |= SWAP_FREE_NEEDED;
1359 			tsleep((caddr_t)&swap_pager_free,
1360 				PVM, "swpfre", 0);
1361 			if( curproc == pageproc)
1362 				(void) swap_pager_clean();
1363 			else
1364 				wakeup((caddr_t) &vm_pages_needed);
1365 		}
1366 		splx(s);
1367 	}
1368 
1369 	spc = swap_pager_free.tqh_first;
1370 	TAILQ_REMOVE(&swap_pager_free, spc, spc_list);
1371 
1372 	kva = spc->spc_kva;
1373 
1374 	/*
1375 	 * map our page(s) into kva for I/O
1376 	 */
1377 	pmap_qenter(kva, m, count);
1378 
1379 	/*
1380 	 * get the base I/O offset into the swap file
1381 	 */
1382 	for(i=0;i<count;i++) {
1383 		foff = m[i]->offset + paging_offset;
1384 		off = swap_pager_block_offset(swp, foff);
1385 		/*
1386 		 * if we are setting the valid bit anew,
1387 		 * then diminish the swap free space
1388 		 */
1389 		if( (swb[i]->swb_valid & (1 << off)) == 0)
1390 			vm_swap_size -= btodb(PAGE_SIZE);
1391 
1392 		/*
1393 		 * set the valid bit
1394 		 */
1395 		swb[i]->swb_valid |= (1 << off);
1396 		/*
1397 		 * and unlock the data structure
1398 		 */
1399 		--swb[i]->swb_locked;
1400 	}
1401 
1402 	s = splbio();
1403 	/*
1404 	 * Get a swap buffer header and perform the IO
1405 	 */
1406 	bp = spc->spc_bp;
1407 	bzero(bp, sizeof *bp);
1408 	bp->b_spc = spc;
1409 
1410 	bp->b_flags = B_BUSY;
1411 	bp->b_proc = &proc0;	/* XXX (but without B_PHYS set this is ok) */
1412 	bp->b_rcred = bp->b_wcred = bp->b_proc->p_ucred;
1413 	if( bp->b_rcred != NOCRED)
1414 		crhold(bp->b_rcred);
1415 	if( bp->b_wcred != NOCRED)
1416 		crhold(bp->b_wcred);
1417 	bp->b_data = (caddr_t) kva;
1418 	bp->b_blkno = reqaddr[0];
1419 	bgetvp( swapdev_vp, bp);
1420 
1421 	bp->b_bcount = PAGE_SIZE*count;
1422 	bp->b_bufsize = PAGE_SIZE*count;
1423 	swapdev_vp->v_numoutput++;
1424 
1425 	/*
1426 	 * If this is an async write we set up additional buffer fields
1427 	 * and place a "cleaning" entry on the inuse queue.
1428 	 */
1429 	if ( flags & B_ASYNC ) {
1430 		spc->spc_flags = 0;
1431 		spc->spc_swp = swp;
1432 		for(i=0;i<count;i++)
1433 			spc->spc_m[i] = m[i];
1434 		spc->spc_count = count;
1435 		/*
1436 		 * the completion routine for async writes
1437 		 */
1438 		bp->b_flags |= B_CALL;
1439 		bp->b_iodone = swap_pager_iodone;
1440 		bp->b_dirtyoff = 0;
1441 		bp->b_dirtyend = bp->b_bcount;
1442 		swp->sw_poip++;
1443 		TAILQ_INSERT_TAIL(&swap_pager_inuse, spc, spc_list);
1444 	} else {
1445 		swp->sw_poip++;
1446 		bp->b_flags |= B_CALL;
1447 		bp->b_iodone = swap_pager_iodone1;
1448 	}
1449 	/*
1450 	 * perform the I/O
1451 	 */
1452 	VOP_STRATEGY(bp);
1453 	if ((flags & (B_READ|B_ASYNC)) == B_ASYNC ) {
1454 		if ((bp->b_flags & B_DONE) == B_DONE) {
1455 			swap_pager_clean();
1456 		}
1457 		splx(s);
1458 		for(i=0;i<count;i++) {
1459 			rtvals[i] = VM_PAGER_PEND;
1460 		}
1461 		return VM_PAGER_PEND;
1462 	}
1463 
1464 	/*
1465 	 * wait for the sync I/O to complete
1466 	 */
1467 	while ((bp->b_flags & B_DONE) == 0) {
1468 		tsleep((caddr_t)bp, PVM, "swwrt", 0);
1469 	}
1470 	rv = (bp->b_flags & B_ERROR) ? VM_PAGER_FAIL : VM_PAGER_OK;
1471 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_DIRTY|B_CALL|B_DONE);
1472 
1473 	--swp->sw_poip;
1474 	if (swp->sw_poip == 0)
1475 		wakeup((caddr_t) swp);
1476 
1477 	if (bp->b_vp)
1478 		brelvp(bp);
1479 
1480 	splx(s);
1481 
1482 	/*
1483 	 * remove the mapping for kernel virtual
1484 	 */
1485 	pmap_qremove( kva, count);
1486 
1487 	/*
1488 	 * if we have written the page, then indicate that the page
1489 	 * is clean.
1490 	 */
1491 	if (rv == VM_PAGER_OK) {
1492 		for(i=0;i<count;i++) {
1493 			if( rtvals[i] == VM_PAGER_OK) {
1494 				m[i]->flags |= PG_CLEAN;
1495 				m[i]->flags &= ~PG_LAUNDRY;
1496 				pmap_clear_modify(VM_PAGE_TO_PHYS(m[i]));
1497 				/*
1498 				 * optimization, if a page has been read during the
1499 				 * pageout process, we activate it.
1500 				 */
1501 				if ( (m[i]->flags & PG_ACTIVE) == 0 &&
1502 					pmap_is_referenced(VM_PAGE_TO_PHYS(m[i])))
1503 					vm_page_activate(m[i]);
1504 			}
1505 		}
1506 	} else {
1507 		for(i=0;i<count;i++) {
1508 			rtvals[i] = rv;
1509 			m[i]->flags |= PG_LAUNDRY;
1510 		}
1511 	}
1512 
1513 	if( bp->b_rcred != NOCRED)
1514 		crfree(bp->b_rcred);
1515 	if( bp->b_wcred != NOCRED)
1516 		crfree(bp->b_wcred);
1517 	TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
1518 	if (swap_pager_needflags & SWAP_FREE_NEEDED) {
1519 		swap_pager_needflags &= ~SWAP_FREE_NEEDED;
1520 		wakeup((caddr_t)&swap_pager_free);
1521 	}
1522 
1523 	return(rv);
1524 }
1525 
1526 boolean_t
1527 swap_pager_clean()
1528 {
1529 	register swp_clean_t spc, tspc;
1530 	register int s;
1531 
1532 	tspc = NULL;
1533 	if (swap_pager_done.tqh_first == NULL)
1534 		return FALSE;
1535 	for (;;) {
1536 		s = splbio();
1537 		/*
1538 		 * Look up and removal from done list must be done
1539 		 * at splbio() to avoid conflicts with swap_pager_iodone.
1540 		 */
1541 		while (spc = swap_pager_done.tqh_first) {
1542 			pmap_qremove( spc->spc_kva, spc->spc_count);
1543 			swap_pager_finish(spc);
1544 			TAILQ_REMOVE(&swap_pager_done, spc, spc_list);
1545 			goto doclean;
1546 		}
1547 
1548 		/*
1549 		 * No operations done, thats all we can do for now.
1550 		 */
1551 
1552 		splx(s);
1553 		break;
1554 
1555 		/*
1556 		 * The desired page was found to be busy earlier in
1557 		 * the scan but has since completed.
1558 		 */
1559 doclean:
1560 		if (tspc && tspc == spc) {
1561 			tspc = NULL;
1562 		}
1563 		spc->spc_flags = 0;
1564 		TAILQ_INSERT_TAIL(&swap_pager_free, spc, spc_list);
1565 		if (swap_pager_needflags & SWAP_FREE_NEEDED) {
1566 			swap_pager_needflags &= ~SWAP_FREE_NEEDED;
1567 			wakeup((caddr_t)&swap_pager_free);
1568 		}
1569 		++cleandone;
1570 		splx(s);
1571 	}
1572 
1573 	return(tspc ? TRUE : FALSE);
1574 }
1575 
1576 void
1577 swap_pager_finish(spc)
1578 	register swp_clean_t spc;
1579 {
1580 	vm_object_t object = spc->spc_m[0]->object;
1581 	int i;
1582 
1583 	if ((object->paging_in_progress -= spc->spc_count) == 0)
1584 		thread_wakeup((int) object);
1585 
1586 	/*
1587 	 * If no error mark as clean and inform the pmap system.
1588 	 * If error, mark as dirty so we will try again.
1589 	 * (XXX could get stuck doing this, should give up after awhile)
1590 	 */
1591 	if (spc->spc_flags & SPC_ERROR) {
1592 		for(i=0;i<spc->spc_count;i++) {
1593 			printf("swap_pager_finish: clean of page %x failed\n",
1594 			       VM_PAGE_TO_PHYS(spc->spc_m[i]));
1595 			spc->spc_m[i]->flags |= PG_LAUNDRY;
1596 		}
1597 	} else {
1598 		for(i=0;i<spc->spc_count;i++) {
1599 			pmap_clear_modify(VM_PAGE_TO_PHYS(spc->spc_m[i]));
1600 			spc->spc_m[i]->flags |= PG_CLEAN;
1601 		}
1602 	}
1603 
1604 
1605 	for(i=0;i<spc->spc_count;i++) {
1606 		/*
1607 		 * we wakeup any processes that are waiting on
1608 		 * these pages.
1609 		 */
1610 		PAGE_WAKEUP(spc->spc_m[i]);
1611 	}
1612 	nswiodone -= spc->spc_count;
1613 
1614 	return;
1615 }
1616 
1617 /*
1618  * swap_pager_iodone
1619  */
1620 void
1621 swap_pager_iodone(bp)
1622 	register struct buf *bp;
1623 {
1624 	register swp_clean_t spc;
1625 	int s;
1626 
1627 	s = splbio();
1628 	spc = (swp_clean_t) bp->b_spc;
1629 	TAILQ_REMOVE(&swap_pager_inuse, spc, spc_list);
1630 	TAILQ_INSERT_TAIL(&swap_pager_done, spc, spc_list);
1631 	if (bp->b_flags & B_ERROR) {
1632 		spc->spc_flags |= SPC_ERROR;
1633 		printf("error %d blkno %d sz %d ",
1634 			bp->b_error, bp->b_blkno, bp->b_bcount);
1635 	}
1636 
1637 /*
1638 	if ((bp->b_flags & B_READ) == 0)
1639 		vwakeup(bp);
1640 */
1641 
1642 	bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_DIRTY|B_ASYNC);
1643 	if (bp->b_vp) {
1644 		brelvp(bp);
1645 	}
1646 	if( bp->b_rcred != NOCRED)
1647 		crfree(bp->b_rcred);
1648 	if( bp->b_wcred != NOCRED)
1649 		crfree(bp->b_wcred);
1650 
1651 	nswiodone += spc->spc_count;
1652 	if (--spc->spc_swp->sw_poip == 0) {
1653 		wakeup((caddr_t)spc->spc_swp);
1654 	}
1655 
1656 	if ((swap_pager_needflags & SWAP_FREE_NEEDED) ||
1657 	    swap_pager_inuse.tqh_first == 0) {
1658 		swap_pager_needflags &= ~SWAP_FREE_NEEDED;
1659 		wakeup((caddr_t)&swap_pager_free);
1660 		wakeup((caddr_t)&vm_pages_needed);
1661 	}
1662 
1663 	if (vm_pageout_pages_needed) {
1664 		wakeup((caddr_t)&vm_pageout_pages_needed);
1665 	}
1666 
1667 	if ((swap_pager_inuse.tqh_first == NULL) ||
1668 	    (cnt.v_free_count < cnt.v_free_min &&
1669 	    nswiodone + cnt.v_free_count >= cnt.v_free_min) ) {
1670 		wakeup((caddr_t)&vm_pages_needed);
1671 	}
1672 	splx(s);
1673 }
1674 
1675 /*
1676  * return true if any swap control structures can be allocated
1677  */
1678 int
1679 swap_pager_ready() {
1680 	if( swap_pager_free.tqh_first)
1681 		return 1;
1682 	else
1683 		return 0;
1684 }
1685