xref: /freebsd/sys/vm/swap_pager.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	PROC_LOCK(curproc);
202 	error = racct_add(curproc, RACCT_SWAP, incr);
203 	PROC_UNLOCK(curproc);
204 	if (error != 0)
205 		return (0);
206 #endif
207 
208 	res = 0;
209 	mtx_lock(&sw_dev_mtx);
210 	r = swap_reserved + incr;
211 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
212 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
213 		s *= PAGE_SIZE;
214 	} else
215 		s = 0;
216 	s += swap_total;
217 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
218 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
219 		res = 1;
220 		swap_reserved = r;
221 	}
222 	mtx_unlock(&sw_dev_mtx);
223 
224 	if (res) {
225 		PROC_LOCK(curproc);
226 		UIDINFO_VMSIZE_LOCK(uip);
227 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
228 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
229 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
230 			res = 0;
231 		else
232 			uip->ui_vmsize += incr;
233 		UIDINFO_VMSIZE_UNLOCK(uip);
234 		PROC_UNLOCK(curproc);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 static void swapdev_strategy(struct buf *, struct swdevt *sw);
317 
318 #define SWM_FREE	0x02	/* free, period			*/
319 #define SWM_POP		0x04	/* pop out			*/
320 
321 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
322 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
323 static int nsw_rcount;		/* free read buffers			*/
324 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
325 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
326 static int nsw_wcount_async_max;/* assigned maximum			*/
327 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
328 
329 static struct swblock **swhash;
330 static int swhash_mask;
331 static struct mtx swhash_mtx;
332 
333 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
334 static struct sx sw_alloc_sx;
335 
336 
337 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
338 	CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
339 
340 /*
341  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
342  * of searching a named list by hashing it just a little.
343  */
344 
345 #define NOBJLISTS		8
346 
347 #define NOBJLIST(handle)	\
348 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
349 
350 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
351 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
352 static uma_zone_t	swap_zone;
353 
354 /*
355  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
356  * calls hooked from other parts of the VM system and do not appear here.
357  * (see vm/swap_pager.h).
358  */
359 static vm_object_t
360 		swap_pager_alloc(void *handle, vm_ooffset_t size,
361 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
362 static void	swap_pager_dealloc(vm_object_t object);
363 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
364 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365 static boolean_t
366 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367 static void	swap_pager_init(void);
368 static void	swap_pager_unswapped(vm_page_t);
369 static void	swap_pager_swapoff(struct swdevt *sp);
370 
371 struct pagerops swappagerops = {
372 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
377 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
378 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
379 };
380 
381 /*
382  * dmmax is in page-sized chunks with the new swap system.  It was
383  * dev-bsized chunks in the old.  dmmax is always a power of 2.
384  *
385  * swap_*() routines are externally accessible.  swp_*() routines are
386  * internal.
387  */
388 static int dmmax;
389 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
390 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
391 
392 SYSCTL_INT(_vm, OID_AUTO, dmmax,
393 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
394 
395 static void	swp_sizecheck(void);
396 static void	swp_pager_async_iodone(struct buf *bp);
397 static int	swapongeom(struct thread *, struct vnode *);
398 static int	swaponvp(struct thread *, struct vnode *, u_long);
399 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
400 
401 /*
402  * Swap bitmap functions
403  */
404 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
405 static daddr_t	swp_pager_getswapspace(int npages);
406 
407 /*
408  * Metadata functions
409  */
410 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
411 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
412 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
413 static void swp_pager_meta_free_all(vm_object_t);
414 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
415 
416 static void
417 swp_pager_free_nrpage(vm_page_t m)
418 {
419 
420 	vm_page_lock(m);
421 	if (m->wire_count == 0)
422 		vm_page_free(m);
423 	vm_page_unlock(m);
424 }
425 
426 /*
427  * SWP_SIZECHECK() -	update swap_pager_full indication
428  *
429  *	update the swap_pager_almost_full indication and warn when we are
430  *	about to run out of swap space, using lowat/hiwat hysteresis.
431  *
432  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
433  *
434  *	No restrictions on call
435  *	This routine may not block.
436  */
437 static void
438 swp_sizecheck(void)
439 {
440 
441 	if (swap_pager_avail < nswap_lowat) {
442 		if (swap_pager_almost_full == 0) {
443 			printf("swap_pager: out of swap space\n");
444 			swap_pager_almost_full = 1;
445 		}
446 	} else {
447 		swap_pager_full = 0;
448 		if (swap_pager_avail > nswap_hiwat)
449 			swap_pager_almost_full = 0;
450 	}
451 }
452 
453 /*
454  * SWP_PAGER_HASH() -	hash swap meta data
455  *
456  *	This is an helper function which hashes the swapblk given
457  *	the object and page index.  It returns a pointer to a pointer
458  *	to the object, or a pointer to a NULL pointer if it could not
459  *	find a swapblk.
460  */
461 static struct swblock **
462 swp_pager_hash(vm_object_t object, vm_pindex_t index)
463 {
464 	struct swblock **pswap;
465 	struct swblock *swap;
466 
467 	index &= ~(vm_pindex_t)SWAP_META_MASK;
468 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
469 	while ((swap = *pswap) != NULL) {
470 		if (swap->swb_object == object &&
471 		    swap->swb_index == index
472 		) {
473 			break;
474 		}
475 		pswap = &swap->swb_hnext;
476 	}
477 	return (pswap);
478 }
479 
480 /*
481  * SWAP_PAGER_INIT() -	initialize the swap pager!
482  *
483  *	Expected to be started from system init.  NOTE:  This code is run
484  *	before much else so be careful what you depend on.  Most of the VM
485  *	system has yet to be initialized at this point.
486  */
487 static void
488 swap_pager_init(void)
489 {
490 	/*
491 	 * Initialize object lists
492 	 */
493 	int i;
494 
495 	for (i = 0; i < NOBJLISTS; ++i)
496 		TAILQ_INIT(&swap_pager_object_list[i]);
497 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
498 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
499 
500 	/*
501 	 * Device Stripe, in PAGE_SIZE'd blocks
502 	 */
503 	dmmax = SWB_NPAGES * 2;
504 }
505 
506 /*
507  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
508  *
509  *	Expected to be started from pageout process once, prior to entering
510  *	its main loop.
511  */
512 void
513 swap_pager_swap_init(void)
514 {
515 	unsigned long n, n2;
516 
517 	/*
518 	 * Number of in-transit swap bp operations.  Don't
519 	 * exhaust the pbufs completely.  Make sure we
520 	 * initialize workable values (0 will work for hysteresis
521 	 * but it isn't very efficient).
522 	 *
523 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
524 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
525 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
526 	 * constrained by the swap device interleave stripe size.
527 	 *
528 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
529 	 * designed to prevent other I/O from having high latencies due to
530 	 * our pageout I/O.  The value 4 works well for one or two active swap
531 	 * devices but is probably a little low if you have more.  Even so,
532 	 * a higher value would probably generate only a limited improvement
533 	 * with three or four active swap devices since the system does not
534 	 * typically have to pageout at extreme bandwidths.   We will want
535 	 * at least 2 per swap devices, and 4 is a pretty good value if you
536 	 * have one NFS swap device due to the command/ack latency over NFS.
537 	 * So it all works out pretty well.
538 	 */
539 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
540 
541 	mtx_lock(&pbuf_mtx);
542 	nsw_rcount = (nswbuf + 1) / 2;
543 	nsw_wcount_sync = (nswbuf + 3) / 4;
544 	nsw_wcount_async = 4;
545 	nsw_wcount_async_max = nsw_wcount_async;
546 	mtx_unlock(&pbuf_mtx);
547 
548 	/*
549 	 * Initialize our zone.  Right now I'm just guessing on the number
550 	 * we need based on the number of pages in the system.  Each swblock
551 	 * can hold 32 pages, so this is probably overkill.  This reservation
552 	 * is typically limited to around 32MB by default.
553 	 */
554 	n = vm_cnt.v_page_count / 2;
555 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
556 		n = maxswzone / sizeof(struct swblock);
557 	n2 = n;
558 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
559 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
560 	if (swap_zone == NULL)
561 		panic("failed to create swap_zone.");
562 	do {
563 		if (uma_zone_reserve_kva(swap_zone, n))
564 			break;
565 		/*
566 		 * if the allocation failed, try a zone two thirds the
567 		 * size of the previous attempt.
568 		 */
569 		n -= ((n + 2) / 3);
570 	} while (n > 0);
571 	if (n2 != n)
572 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
573 	swap_maxpages = n * SWAP_META_PAGES;
574 	swzone = n * sizeof(struct swblock);
575 	n2 = n;
576 
577 	/*
578 	 * Initialize our meta-data hash table.  The swapper does not need to
579 	 * be quite as efficient as the VM system, so we do not use an
580 	 * oversized hash table.
581 	 *
582 	 * 	n: 		size of hash table, must be power of 2
583 	 *	swhash_mask:	hash table index mask
584 	 */
585 	for (n = 1; n < n2 / 8; n *= 2)
586 		;
587 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
588 	swhash_mask = n - 1;
589 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
590 }
591 
592 /*
593  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
594  *			its metadata structures.
595  *
596  *	This routine is called from the mmap and fork code to create a new
597  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
598  *	and then converting it with swp_pager_meta_build().
599  *
600  *	This routine may block in vm_object_allocate() and create a named
601  *	object lookup race, so we must interlock.
602  *
603  * MPSAFE
604  */
605 static vm_object_t
606 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
607     vm_ooffset_t offset, struct ucred *cred)
608 {
609 	vm_object_t object;
610 	vm_pindex_t pindex;
611 
612 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
613 	if (handle) {
614 		mtx_lock(&Giant);
615 		/*
616 		 * Reference existing named region or allocate new one.  There
617 		 * should not be a race here against swp_pager_meta_build()
618 		 * as called from vm_page_remove() in regards to the lookup
619 		 * of the handle.
620 		 */
621 		sx_xlock(&sw_alloc_sx);
622 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
623 		if (object == NULL) {
624 			if (cred != NULL) {
625 				if (!swap_reserve_by_cred(size, cred)) {
626 					sx_xunlock(&sw_alloc_sx);
627 					mtx_unlock(&Giant);
628 					return (NULL);
629 				}
630 				crhold(cred);
631 			}
632 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
633 			VM_OBJECT_WLOCK(object);
634 			object->handle = handle;
635 			if (cred != NULL) {
636 				object->cred = cred;
637 				object->charge = size;
638 			}
639 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
640 			VM_OBJECT_WUNLOCK(object);
641 		}
642 		sx_xunlock(&sw_alloc_sx);
643 		mtx_unlock(&Giant);
644 	} else {
645 		if (cred != NULL) {
646 			if (!swap_reserve_by_cred(size, cred))
647 				return (NULL);
648 			crhold(cred);
649 		}
650 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
651 		VM_OBJECT_WLOCK(object);
652 		if (cred != NULL) {
653 			object->cred = cred;
654 			object->charge = size;
655 		}
656 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
657 		VM_OBJECT_WUNLOCK(object);
658 	}
659 	return (object);
660 }
661 
662 /*
663  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
664  *
665  *	The swap backing for the object is destroyed.  The code is
666  *	designed such that we can reinstantiate it later, but this
667  *	routine is typically called only when the entire object is
668  *	about to be destroyed.
669  *
670  *	The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675 
676 	/*
677 	 * Remove from list right away so lookups will fail if we block for
678 	 * pageout completion.
679 	 */
680 	if (object->handle != NULL) {
681 		mtx_lock(&sw_alloc_mtx);
682 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
683 		mtx_unlock(&sw_alloc_mtx);
684 	}
685 
686 	VM_OBJECT_ASSERT_WLOCKED(object);
687 	vm_object_pip_wait(object, "swpdea");
688 
689 	/*
690 	 * Free all remaining metadata.  We only bother to free it from
691 	 * the swap meta data.  We do not attempt to free swapblk's still
692 	 * associated with vm_page_t's for this object.  We do not care
693 	 * if paging is still in progress on some objects.
694 	 */
695 	swp_pager_meta_free_all(object);
696 }
697 
698 /************************************************************************
699  *			SWAP PAGER BITMAP ROUTINES			*
700  ************************************************************************/
701 
702 /*
703  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
704  *
705  *	Allocate swap for the requested number of pages.  The starting
706  *	swap block number (a page index) is returned or SWAPBLK_NONE
707  *	if the allocation failed.
708  *
709  *	Also has the side effect of advising that somebody made a mistake
710  *	when they configured swap and didn't configure enough.
711  *
712  *	This routine may not sleep.
713  *
714  *	We allocate in round-robin fashion from the configured devices.
715  */
716 static daddr_t
717 swp_pager_getswapspace(int npages)
718 {
719 	daddr_t blk;
720 	struct swdevt *sp;
721 	int i;
722 
723 	blk = SWAPBLK_NONE;
724 	mtx_lock(&sw_dev_mtx);
725 	sp = swdevhd;
726 	for (i = 0; i < nswapdev; i++) {
727 		if (sp == NULL)
728 			sp = TAILQ_FIRST(&swtailq);
729 		if (!(sp->sw_flags & SW_CLOSING)) {
730 			blk = blist_alloc(sp->sw_blist, npages);
731 			if (blk != SWAPBLK_NONE) {
732 				blk += sp->sw_first;
733 				sp->sw_used += npages;
734 				swap_pager_avail -= npages;
735 				swp_sizecheck();
736 				swdevhd = TAILQ_NEXT(sp, sw_list);
737 				goto done;
738 			}
739 		}
740 		sp = TAILQ_NEXT(sp, sw_list);
741 	}
742 	if (swap_pager_full != 2) {
743 		printf("swap_pager_getswapspace(%d): failed\n", npages);
744 		swap_pager_full = 2;
745 		swap_pager_almost_full = 1;
746 	}
747 	swdevhd = NULL;
748 done:
749 	mtx_unlock(&sw_dev_mtx);
750 	return (blk);
751 }
752 
753 static int
754 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
755 {
756 
757 	return (blk >= sp->sw_first && blk < sp->sw_end);
758 }
759 
760 static void
761 swp_pager_strategy(struct buf *bp)
762 {
763 	struct swdevt *sp;
764 
765 	mtx_lock(&sw_dev_mtx);
766 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
767 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
768 			mtx_unlock(&sw_dev_mtx);
769 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
770 			    unmapped_buf_allowed) {
771 				bp->b_kvaalloc = bp->b_data;
772 				bp->b_data = unmapped_buf;
773 				bp->b_kvabase = unmapped_buf;
774 				bp->b_offset = 0;
775 				bp->b_flags |= B_UNMAPPED;
776 			} else {
777 				pmap_qenter((vm_offset_t)bp->b_data,
778 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
779 			}
780 			sp->sw_strategy(bp, sp);
781 			return;
782 		}
783 	}
784 	panic("Swapdev not found");
785 }
786 
787 
788 /*
789  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
790  *
791  *	This routine returns the specified swap blocks back to the bitmap.
792  *
793  *	This routine may not sleep.
794  */
795 static void
796 swp_pager_freeswapspace(daddr_t blk, int npages)
797 {
798 	struct swdevt *sp;
799 
800 	mtx_lock(&sw_dev_mtx);
801 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
802 		if (blk >= sp->sw_first && blk < sp->sw_end) {
803 			sp->sw_used -= npages;
804 			/*
805 			 * If we are attempting to stop swapping on
806 			 * this device, we don't want to mark any
807 			 * blocks free lest they be reused.
808 			 */
809 			if ((sp->sw_flags & SW_CLOSING) == 0) {
810 				blist_free(sp->sw_blist, blk - sp->sw_first,
811 				    npages);
812 				swap_pager_avail += npages;
813 				swp_sizecheck();
814 			}
815 			mtx_unlock(&sw_dev_mtx);
816 			return;
817 		}
818 	}
819 	panic("Swapdev not found");
820 }
821 
822 /*
823  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
824  *				range within an object.
825  *
826  *	This is a globally accessible routine.
827  *
828  *	This routine removes swapblk assignments from swap metadata.
829  *
830  *	The external callers of this routine typically have already destroyed
831  *	or renamed vm_page_t's associated with this range in the object so
832  *	we should be ok.
833  *
834  *	The object must be locked.
835  */
836 void
837 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
838 {
839 
840 	swp_pager_meta_free(object, start, size);
841 }
842 
843 /*
844  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
845  *
846  *	Assigns swap blocks to the specified range within the object.  The
847  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
848  *
849  *	Returns 0 on success, -1 on failure.
850  */
851 int
852 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
853 {
854 	int n = 0;
855 	daddr_t blk = SWAPBLK_NONE;
856 	vm_pindex_t beg = start;	/* save start index */
857 
858 	VM_OBJECT_WLOCK(object);
859 	while (size) {
860 		if (n == 0) {
861 			n = BLIST_MAX_ALLOC;
862 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
863 				n >>= 1;
864 				if (n == 0) {
865 					swp_pager_meta_free(object, beg, start - beg);
866 					VM_OBJECT_WUNLOCK(object);
867 					return (-1);
868 				}
869 			}
870 		}
871 		swp_pager_meta_build(object, start, blk);
872 		--size;
873 		++start;
874 		++blk;
875 		--n;
876 	}
877 	swp_pager_meta_free(object, start, n);
878 	VM_OBJECT_WUNLOCK(object);
879 	return (0);
880 }
881 
882 /*
883  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
884  *			and destroy the source.
885  *
886  *	Copy any valid swapblks from the source to the destination.  In
887  *	cases where both the source and destination have a valid swapblk,
888  *	we keep the destination's.
889  *
890  *	This routine is allowed to sleep.  It may sleep allocating metadata
891  *	indirectly through swp_pager_meta_build() or if paging is still in
892  *	progress on the source.
893  *
894  *	The source object contains no vm_page_t's (which is just as well)
895  *
896  *	The source object is of type OBJT_SWAP.
897  *
898  *	The source and destination objects must be locked.
899  *	Both object locks may temporarily be released.
900  */
901 void
902 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
903     vm_pindex_t offset, int destroysource)
904 {
905 	vm_pindex_t i;
906 
907 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
908 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
909 
910 	/*
911 	 * If destroysource is set, we remove the source object from the
912 	 * swap_pager internal queue now.
913 	 */
914 	if (destroysource) {
915 		if (srcobject->handle != NULL) {
916 			mtx_lock(&sw_alloc_mtx);
917 			TAILQ_REMOVE(
918 			    NOBJLIST(srcobject->handle),
919 			    srcobject,
920 			    pager_object_list
921 			);
922 			mtx_unlock(&sw_alloc_mtx);
923 		}
924 	}
925 
926 	/*
927 	 * transfer source to destination.
928 	 */
929 	for (i = 0; i < dstobject->size; ++i) {
930 		daddr_t dstaddr;
931 
932 		/*
933 		 * Locate (without changing) the swapblk on the destination,
934 		 * unless it is invalid in which case free it silently, or
935 		 * if the destination is a resident page, in which case the
936 		 * source is thrown away.
937 		 */
938 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
939 
940 		if (dstaddr == SWAPBLK_NONE) {
941 			/*
942 			 * Destination has no swapblk and is not resident,
943 			 * copy source.
944 			 */
945 			daddr_t srcaddr;
946 
947 			srcaddr = swp_pager_meta_ctl(
948 			    srcobject,
949 			    i + offset,
950 			    SWM_POP
951 			);
952 
953 			if (srcaddr != SWAPBLK_NONE) {
954 				/*
955 				 * swp_pager_meta_build() can sleep.
956 				 */
957 				vm_object_pip_add(srcobject, 1);
958 				VM_OBJECT_WUNLOCK(srcobject);
959 				vm_object_pip_add(dstobject, 1);
960 				swp_pager_meta_build(dstobject, i, srcaddr);
961 				vm_object_pip_wakeup(dstobject);
962 				VM_OBJECT_WLOCK(srcobject);
963 				vm_object_pip_wakeup(srcobject);
964 			}
965 		} else {
966 			/*
967 			 * Destination has valid swapblk or it is represented
968 			 * by a resident page.  We destroy the sourceblock.
969 			 */
970 
971 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
972 		}
973 	}
974 
975 	/*
976 	 * Free left over swap blocks in source.
977 	 *
978 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
979 	 * double-remove the object from the swap queues.
980 	 */
981 	if (destroysource) {
982 		swp_pager_meta_free_all(srcobject);
983 		/*
984 		 * Reverting the type is not necessary, the caller is going
985 		 * to destroy srcobject directly, but I'm doing it here
986 		 * for consistency since we've removed the object from its
987 		 * queues.
988 		 */
989 		srcobject->type = OBJT_DEFAULT;
990 	}
991 }
992 
993 /*
994  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
995  *				the requested page.
996  *
997  *	We determine whether good backing store exists for the requested
998  *	page and return TRUE if it does, FALSE if it doesn't.
999  *
1000  *	If TRUE, we also try to determine how much valid, contiguous backing
1001  *	store exists before and after the requested page within a reasonable
1002  *	distance.  We do not try to restrict it to the swap device stripe
1003  *	(that is handled in getpages/putpages).  It probably isn't worth
1004  *	doing here.
1005  */
1006 static boolean_t
1007 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1008 {
1009 	daddr_t blk0;
1010 
1011 	VM_OBJECT_ASSERT_LOCKED(object);
1012 	/*
1013 	 * do we have good backing store at the requested index ?
1014 	 */
1015 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1016 
1017 	if (blk0 == SWAPBLK_NONE) {
1018 		if (before)
1019 			*before = 0;
1020 		if (after)
1021 			*after = 0;
1022 		return (FALSE);
1023 	}
1024 
1025 	/*
1026 	 * find backwards-looking contiguous good backing store
1027 	 */
1028 	if (before != NULL) {
1029 		int i;
1030 
1031 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1032 			daddr_t blk;
1033 
1034 			if (i > pindex)
1035 				break;
1036 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1037 			if (blk != blk0 - i)
1038 				break;
1039 		}
1040 		*before = (i - 1);
1041 	}
1042 
1043 	/*
1044 	 * find forward-looking contiguous good backing store
1045 	 */
1046 	if (after != NULL) {
1047 		int i;
1048 
1049 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1050 			daddr_t blk;
1051 
1052 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1053 			if (blk != blk0 + i)
1054 				break;
1055 		}
1056 		*after = (i - 1);
1057 	}
1058 	return (TRUE);
1059 }
1060 
1061 /*
1062  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1063  *
1064  *	This removes any associated swap backing store, whether valid or
1065  *	not, from the page.
1066  *
1067  *	This routine is typically called when a page is made dirty, at
1068  *	which point any associated swap can be freed.  MADV_FREE also
1069  *	calls us in a special-case situation
1070  *
1071  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1072  *	should make the page dirty before calling this routine.  This routine
1073  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1074  *	depends on it.
1075  *
1076  *	This routine may not sleep.
1077  *
1078  *	The object containing the page must be locked.
1079  */
1080 static void
1081 swap_pager_unswapped(vm_page_t m)
1082 {
1083 
1084 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1085 }
1086 
1087 /*
1088  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1089  *
1090  *	Attempt to retrieve (m, count) pages from backing store, but make
1091  *	sure we retrieve at least m[reqpage].  We try to load in as large
1092  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1093  *	belongs to the same object.
1094  *
1095  *	The code is designed for asynchronous operation and
1096  *	immediate-notification of 'reqpage' but tends not to be
1097  *	used that way.  Please do not optimize-out this algorithmic
1098  *	feature, I intend to improve on it in the future.
1099  *
1100  *	The parent has a single vm_object_pip_add() reference prior to
1101  *	calling us and we should return with the same.
1102  *
1103  *	The parent has BUSY'd the pages.  We should return with 'm'
1104  *	left busy, but the others adjusted.
1105  */
1106 static int
1107 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1108 {
1109 	struct buf *bp;
1110 	vm_page_t mreq;
1111 	int i;
1112 	int j;
1113 	daddr_t blk;
1114 
1115 	mreq = m[reqpage];
1116 
1117 	KASSERT(mreq->object == object,
1118 	    ("swap_pager_getpages: object mismatch %p/%p",
1119 	    object, mreq->object));
1120 
1121 	/*
1122 	 * Calculate range to retrieve.  The pages have already been assigned
1123 	 * their swapblks.  We require a *contiguous* range but we know it to
1124 	 * not span devices.   If we do not supply it, bad things
1125 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1126 	 * loops are set up such that the case(s) are handled implicitly.
1127 	 *
1128 	 * The swp_*() calls must be made with the object locked.
1129 	 */
1130 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1131 
1132 	for (i = reqpage - 1; i >= 0; --i) {
1133 		daddr_t iblk;
1134 
1135 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1136 		if (blk != iblk + (reqpage - i))
1137 			break;
1138 	}
1139 	++i;
1140 
1141 	for (j = reqpage + 1; j < count; ++j) {
1142 		daddr_t jblk;
1143 
1144 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1145 		if (blk != jblk - (j - reqpage))
1146 			break;
1147 	}
1148 
1149 	/*
1150 	 * free pages outside our collection range.   Note: we never free
1151 	 * mreq, it must remain busy throughout.
1152 	 */
1153 	if (0 < i || j < count) {
1154 		int k;
1155 
1156 		for (k = 0; k < i; ++k)
1157 			swp_pager_free_nrpage(m[k]);
1158 		for (k = j; k < count; ++k)
1159 			swp_pager_free_nrpage(m[k]);
1160 	}
1161 
1162 	/*
1163 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1164 	 * still busy, but the others unbusied.
1165 	 */
1166 	if (blk == SWAPBLK_NONE)
1167 		return (VM_PAGER_FAIL);
1168 
1169 	/*
1170 	 * Getpbuf() can sleep.
1171 	 */
1172 	VM_OBJECT_WUNLOCK(object);
1173 	/*
1174 	 * Get a swap buffer header to perform the IO
1175 	 */
1176 	bp = getpbuf(&nsw_rcount);
1177 	bp->b_flags |= B_PAGING;
1178 
1179 	bp->b_iocmd = BIO_READ;
1180 	bp->b_iodone = swp_pager_async_iodone;
1181 	bp->b_rcred = crhold(thread0.td_ucred);
1182 	bp->b_wcred = crhold(thread0.td_ucred);
1183 	bp->b_blkno = blk - (reqpage - i);
1184 	bp->b_bcount = PAGE_SIZE * (j - i);
1185 	bp->b_bufsize = PAGE_SIZE * (j - i);
1186 	bp->b_pager.pg_reqpage = reqpage - i;
1187 
1188 	VM_OBJECT_WLOCK(object);
1189 	{
1190 		int k;
1191 
1192 		for (k = i; k < j; ++k) {
1193 			bp->b_pages[k - i] = m[k];
1194 			m[k]->oflags |= VPO_SWAPINPROG;
1195 		}
1196 	}
1197 	bp->b_npages = j - i;
1198 
1199 	PCPU_INC(cnt.v_swapin);
1200 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1201 
1202 	/*
1203 	 * We still hold the lock on mreq, and our automatic completion routine
1204 	 * does not remove it.
1205 	 */
1206 	vm_object_pip_add(object, bp->b_npages);
1207 	VM_OBJECT_WUNLOCK(object);
1208 
1209 	/*
1210 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1211 	 * this point because we automatically release it on completion.
1212 	 * Instead, we look at the one page we are interested in which we
1213 	 * still hold a lock on even through the I/O completion.
1214 	 *
1215 	 * The other pages in our m[] array are also released on completion,
1216 	 * so we cannot assume they are valid anymore either.
1217 	 *
1218 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1219 	 */
1220 	BUF_KERNPROC(bp);
1221 	swp_pager_strategy(bp);
1222 
1223 	/*
1224 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1225 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1226 	 * is set in the meta-data.
1227 	 */
1228 	VM_OBJECT_WLOCK(object);
1229 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1230 		mreq->oflags |= VPO_SWAPSLEEP;
1231 		PCPU_INC(cnt.v_intrans);
1232 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1233 		    "swread", hz * 20)) {
1234 			printf(
1235 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1236 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1237 		}
1238 	}
1239 
1240 	/*
1241 	 * mreq is left busied after completion, but all the other pages
1242 	 * are freed.  If we had an unrecoverable read error the page will
1243 	 * not be valid.
1244 	 */
1245 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1246 		return (VM_PAGER_ERROR);
1247 	} else {
1248 		return (VM_PAGER_OK);
1249 	}
1250 
1251 	/*
1252 	 * A final note: in a low swap situation, we cannot deallocate swap
1253 	 * and mark a page dirty here because the caller is likely to mark
1254 	 * the page clean when we return, causing the page to possibly revert
1255 	 * to all-zero's later.
1256 	 */
1257 }
1258 
1259 /*
1260  *	swap_pager_putpages:
1261  *
1262  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1263  *
1264  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1265  *	are automatically converted to SWAP objects.
1266  *
1267  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1268  *	vm_page reservation system coupled with properly written VFS devices
1269  *	should ensure that no low-memory deadlock occurs.  This is an area
1270  *	which needs work.
1271  *
1272  *	The parent has N vm_object_pip_add() references prior to
1273  *	calling us and will remove references for rtvals[] that are
1274  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1275  *	completion.
1276  *
1277  *	The parent has soft-busy'd the pages it passes us and will unbusy
1278  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1279  *	We need to unbusy the rest on I/O completion.
1280  */
1281 void
1282 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1283     boolean_t sync, int *rtvals)
1284 {
1285 	int i;
1286 	int n = 0;
1287 
1288 	if (count && m[0]->object != object) {
1289 		panic("swap_pager_putpages: object mismatch %p/%p",
1290 		    object,
1291 		    m[0]->object
1292 		);
1293 	}
1294 
1295 	/*
1296 	 * Step 1
1297 	 *
1298 	 * Turn object into OBJT_SWAP
1299 	 * check for bogus sysops
1300 	 * force sync if not pageout process
1301 	 */
1302 	if (object->type != OBJT_SWAP)
1303 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1304 	VM_OBJECT_WUNLOCK(object);
1305 
1306 	if (curproc != pageproc)
1307 		sync = TRUE;
1308 
1309 	/*
1310 	 * Step 2
1311 	 *
1312 	 * Update nsw parameters from swap_async_max sysctl values.
1313 	 * Do not let the sysop crash the machine with bogus numbers.
1314 	 */
1315 	mtx_lock(&pbuf_mtx);
1316 	if (swap_async_max != nsw_wcount_async_max) {
1317 		int n;
1318 
1319 		/*
1320 		 * limit range
1321 		 */
1322 		if ((n = swap_async_max) > nswbuf / 2)
1323 			n = nswbuf / 2;
1324 		if (n < 1)
1325 			n = 1;
1326 		swap_async_max = n;
1327 
1328 		/*
1329 		 * Adjust difference ( if possible ).  If the current async
1330 		 * count is too low, we may not be able to make the adjustment
1331 		 * at this time.
1332 		 */
1333 		n -= nsw_wcount_async_max;
1334 		if (nsw_wcount_async + n >= 0) {
1335 			nsw_wcount_async += n;
1336 			nsw_wcount_async_max += n;
1337 			wakeup(&nsw_wcount_async);
1338 		}
1339 	}
1340 	mtx_unlock(&pbuf_mtx);
1341 
1342 	/*
1343 	 * Step 3
1344 	 *
1345 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1346 	 * The page is left dirty until the pageout operation completes
1347 	 * successfully.
1348 	 */
1349 	for (i = 0; i < count; i += n) {
1350 		int j;
1351 		struct buf *bp;
1352 		daddr_t blk;
1353 
1354 		/*
1355 		 * Maximum I/O size is limited by a number of factors.
1356 		 */
1357 		n = min(BLIST_MAX_ALLOC, count - i);
1358 		n = min(n, nsw_cluster_max);
1359 
1360 		/*
1361 		 * Get biggest block of swap we can.  If we fail, fall
1362 		 * back and try to allocate a smaller block.  Don't go
1363 		 * overboard trying to allocate space if it would overly
1364 		 * fragment swap.
1365 		 */
1366 		while (
1367 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1368 		    n > 4
1369 		) {
1370 			n >>= 1;
1371 		}
1372 		if (blk == SWAPBLK_NONE) {
1373 			for (j = 0; j < n; ++j)
1374 				rtvals[i+j] = VM_PAGER_FAIL;
1375 			continue;
1376 		}
1377 
1378 		/*
1379 		 * All I/O parameters have been satisfied, build the I/O
1380 		 * request and assign the swap space.
1381 		 */
1382 		if (sync == TRUE) {
1383 			bp = getpbuf(&nsw_wcount_sync);
1384 		} else {
1385 			bp = getpbuf(&nsw_wcount_async);
1386 			bp->b_flags = B_ASYNC;
1387 		}
1388 		bp->b_flags |= B_PAGING;
1389 		bp->b_iocmd = BIO_WRITE;
1390 
1391 		bp->b_rcred = crhold(thread0.td_ucred);
1392 		bp->b_wcred = crhold(thread0.td_ucred);
1393 		bp->b_bcount = PAGE_SIZE * n;
1394 		bp->b_bufsize = PAGE_SIZE * n;
1395 		bp->b_blkno = blk;
1396 
1397 		VM_OBJECT_WLOCK(object);
1398 		for (j = 0; j < n; ++j) {
1399 			vm_page_t mreq = m[i+j];
1400 
1401 			swp_pager_meta_build(
1402 			    mreq->object,
1403 			    mreq->pindex,
1404 			    blk + j
1405 			);
1406 			vm_page_dirty(mreq);
1407 			rtvals[i+j] = VM_PAGER_OK;
1408 
1409 			mreq->oflags |= VPO_SWAPINPROG;
1410 			bp->b_pages[j] = mreq;
1411 		}
1412 		VM_OBJECT_WUNLOCK(object);
1413 		bp->b_npages = n;
1414 		/*
1415 		 * Must set dirty range for NFS to work.
1416 		 */
1417 		bp->b_dirtyoff = 0;
1418 		bp->b_dirtyend = bp->b_bcount;
1419 
1420 		PCPU_INC(cnt.v_swapout);
1421 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1422 
1423 		/*
1424 		 * asynchronous
1425 		 *
1426 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1427 		 */
1428 		if (sync == FALSE) {
1429 			bp->b_iodone = swp_pager_async_iodone;
1430 			BUF_KERNPROC(bp);
1431 			swp_pager_strategy(bp);
1432 
1433 			for (j = 0; j < n; ++j)
1434 				rtvals[i+j] = VM_PAGER_PEND;
1435 			/* restart outter loop */
1436 			continue;
1437 		}
1438 
1439 		/*
1440 		 * synchronous
1441 		 *
1442 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1443 		 */
1444 		bp->b_iodone = bdone;
1445 		swp_pager_strategy(bp);
1446 
1447 		/*
1448 		 * Wait for the sync I/O to complete, then update rtvals.
1449 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1450 		 * our async completion routine at the end, thus avoiding a
1451 		 * double-free.
1452 		 */
1453 		bwait(bp, PVM, "swwrt");
1454 		for (j = 0; j < n; ++j)
1455 			rtvals[i+j] = VM_PAGER_PEND;
1456 		/*
1457 		 * Now that we are through with the bp, we can call the
1458 		 * normal async completion, which frees everything up.
1459 		 */
1460 		swp_pager_async_iodone(bp);
1461 	}
1462 	VM_OBJECT_WLOCK(object);
1463 }
1464 
1465 /*
1466  *	swp_pager_async_iodone:
1467  *
1468  *	Completion routine for asynchronous reads and writes from/to swap.
1469  *	Also called manually by synchronous code to finish up a bp.
1470  *
1471  *	This routine may not sleep.
1472  */
1473 static void
1474 swp_pager_async_iodone(struct buf *bp)
1475 {
1476 	int i;
1477 	vm_object_t object = NULL;
1478 
1479 	/*
1480 	 * report error
1481 	 */
1482 	if (bp->b_ioflags & BIO_ERROR) {
1483 		printf(
1484 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1485 			"size %ld, error %d\n",
1486 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1487 		    (long)bp->b_blkno,
1488 		    (long)bp->b_bcount,
1489 		    bp->b_error
1490 		);
1491 	}
1492 
1493 	/*
1494 	 * remove the mapping for kernel virtual
1495 	 */
1496 	if ((bp->b_flags & B_UNMAPPED) != 0) {
1497 		bp->b_data = bp->b_kvaalloc;
1498 		bp->b_kvabase = bp->b_kvaalloc;
1499 		bp->b_flags &= ~B_UNMAPPED;
1500 	} else
1501 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1502 
1503 	if (bp->b_npages) {
1504 		object = bp->b_pages[0]->object;
1505 		VM_OBJECT_WLOCK(object);
1506 	}
1507 
1508 	/*
1509 	 * cleanup pages.  If an error occurs writing to swap, we are in
1510 	 * very serious trouble.  If it happens to be a disk error, though,
1511 	 * we may be able to recover by reassigning the swap later on.  So
1512 	 * in this case we remove the m->swapblk assignment for the page
1513 	 * but do not free it in the rlist.  The errornous block(s) are thus
1514 	 * never reallocated as swap.  Redirty the page and continue.
1515 	 */
1516 	for (i = 0; i < bp->b_npages; ++i) {
1517 		vm_page_t m = bp->b_pages[i];
1518 
1519 		m->oflags &= ~VPO_SWAPINPROG;
1520 		if (m->oflags & VPO_SWAPSLEEP) {
1521 			m->oflags &= ~VPO_SWAPSLEEP;
1522 			wakeup(&object->paging_in_progress);
1523 		}
1524 
1525 		if (bp->b_ioflags & BIO_ERROR) {
1526 			/*
1527 			 * If an error occurs I'd love to throw the swapblk
1528 			 * away without freeing it back to swapspace, so it
1529 			 * can never be used again.  But I can't from an
1530 			 * interrupt.
1531 			 */
1532 			if (bp->b_iocmd == BIO_READ) {
1533 				/*
1534 				 * When reading, reqpage needs to stay
1535 				 * locked for the parent, but all other
1536 				 * pages can be freed.  We still want to
1537 				 * wakeup the parent waiting on the page,
1538 				 * though.  ( also: pg_reqpage can be -1 and
1539 				 * not match anything ).
1540 				 *
1541 				 * We have to wake specifically requested pages
1542 				 * up too because we cleared VPO_SWAPINPROG and
1543 				 * someone may be waiting for that.
1544 				 *
1545 				 * NOTE: for reads, m->dirty will probably
1546 				 * be overridden by the original caller of
1547 				 * getpages so don't play cute tricks here.
1548 				 */
1549 				m->valid = 0;
1550 				if (i != bp->b_pager.pg_reqpage)
1551 					swp_pager_free_nrpage(m);
1552 				else {
1553 					vm_page_lock(m);
1554 					vm_page_flash(m);
1555 					vm_page_unlock(m);
1556 				}
1557 				/*
1558 				 * If i == bp->b_pager.pg_reqpage, do not wake
1559 				 * the page up.  The caller needs to.
1560 				 */
1561 			} else {
1562 				/*
1563 				 * If a write error occurs, reactivate page
1564 				 * so it doesn't clog the inactive list,
1565 				 * then finish the I/O.
1566 				 */
1567 				vm_page_dirty(m);
1568 				vm_page_lock(m);
1569 				vm_page_activate(m);
1570 				vm_page_unlock(m);
1571 				vm_page_sunbusy(m);
1572 			}
1573 		} else if (bp->b_iocmd == BIO_READ) {
1574 			/*
1575 			 * NOTE: for reads, m->dirty will probably be
1576 			 * overridden by the original caller of getpages so
1577 			 * we cannot set them in order to free the underlying
1578 			 * swap in a low-swap situation.  I don't think we'd
1579 			 * want to do that anyway, but it was an optimization
1580 			 * that existed in the old swapper for a time before
1581 			 * it got ripped out due to precisely this problem.
1582 			 *
1583 			 * If not the requested page then deactivate it.
1584 			 *
1585 			 * Note that the requested page, reqpage, is left
1586 			 * busied, but we still have to wake it up.  The
1587 			 * other pages are released (unbusied) by
1588 			 * vm_page_xunbusy().
1589 			 */
1590 			KASSERT(!pmap_page_is_mapped(m),
1591 			    ("swp_pager_async_iodone: page %p is mapped", m));
1592 			m->valid = VM_PAGE_BITS_ALL;
1593 			KASSERT(m->dirty == 0,
1594 			    ("swp_pager_async_iodone: page %p is dirty", m));
1595 
1596 			/*
1597 			 * We have to wake specifically requested pages
1598 			 * up too because we cleared VPO_SWAPINPROG and
1599 			 * could be waiting for it in getpages.  However,
1600 			 * be sure to not unbusy getpages specifically
1601 			 * requested page - getpages expects it to be
1602 			 * left busy.
1603 			 */
1604 			if (i != bp->b_pager.pg_reqpage) {
1605 				vm_page_lock(m);
1606 				vm_page_deactivate(m);
1607 				vm_page_unlock(m);
1608 				vm_page_xunbusy(m);
1609 			} else {
1610 				vm_page_lock(m);
1611 				vm_page_flash(m);
1612 				vm_page_unlock(m);
1613 			}
1614 		} else {
1615 			/*
1616 			 * For write success, clear the dirty
1617 			 * status, then finish the I/O ( which decrements the
1618 			 * busy count and possibly wakes waiter's up ).
1619 			 */
1620 			KASSERT(!pmap_page_is_write_mapped(m),
1621 			    ("swp_pager_async_iodone: page %p is not write"
1622 			    " protected", m));
1623 			vm_page_undirty(m);
1624 			vm_page_sunbusy(m);
1625 			if (vm_page_count_severe()) {
1626 				vm_page_lock(m);
1627 				vm_page_try_to_cache(m);
1628 				vm_page_unlock(m);
1629 			}
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * adjust pip.  NOTE: the original parent may still have its own
1635 	 * pip refs on the object.
1636 	 */
1637 	if (object != NULL) {
1638 		vm_object_pip_wakeupn(object, bp->b_npages);
1639 		VM_OBJECT_WUNLOCK(object);
1640 	}
1641 
1642 	/*
1643 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1644 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1645 	 * trigger a KASSERT in relpbuf().
1646 	 */
1647 	if (bp->b_vp) {
1648 		    bp->b_vp = NULL;
1649 		    bp->b_bufobj = NULL;
1650 	}
1651 	/*
1652 	 * release the physical I/O buffer
1653 	 */
1654 	relpbuf(
1655 	    bp,
1656 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1657 		((bp->b_flags & B_ASYNC) ?
1658 		    &nsw_wcount_async :
1659 		    &nsw_wcount_sync
1660 		)
1661 	    )
1662 	);
1663 }
1664 
1665 /*
1666  *	swap_pager_isswapped:
1667  *
1668  *	Return 1 if at least one page in the given object is paged
1669  *	out to the given swap device.
1670  *
1671  *	This routine may not sleep.
1672  */
1673 int
1674 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1675 {
1676 	daddr_t index = 0;
1677 	int bcount;
1678 	int i;
1679 
1680 	VM_OBJECT_ASSERT_WLOCKED(object);
1681 	if (object->type != OBJT_SWAP)
1682 		return (0);
1683 
1684 	mtx_lock(&swhash_mtx);
1685 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1686 		struct swblock *swap;
1687 
1688 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1689 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1690 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1691 					mtx_unlock(&swhash_mtx);
1692 					return (1);
1693 				}
1694 			}
1695 		}
1696 		index += SWAP_META_PAGES;
1697 	}
1698 	mtx_unlock(&swhash_mtx);
1699 	return (0);
1700 }
1701 
1702 /*
1703  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1704  *
1705  *	This routine dissociates the page at the given index within a
1706  *	swap block from its backing store, paging it in if necessary.
1707  *	If the page is paged in, it is placed in the inactive queue,
1708  *	since it had its backing store ripped out from under it.
1709  *	We also attempt to swap in all other pages in the swap block,
1710  *	we only guarantee that the one at the specified index is
1711  *	paged in.
1712  *
1713  *	XXX - The code to page the whole block in doesn't work, so we
1714  *	      revert to the one-by-one behavior for now.  Sigh.
1715  */
1716 static inline void
1717 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1718 {
1719 	vm_page_t m;
1720 
1721 	vm_object_pip_add(object, 1);
1722 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1723 	if (m->valid == VM_PAGE_BITS_ALL) {
1724 		vm_object_pip_wakeup(object);
1725 		vm_page_dirty(m);
1726 		vm_page_lock(m);
1727 		vm_page_activate(m);
1728 		vm_page_unlock(m);
1729 		vm_page_xunbusy(m);
1730 		vm_pager_page_unswapped(m);
1731 		return;
1732 	}
1733 
1734 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1735 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1736 	vm_object_pip_wakeup(object);
1737 	vm_page_dirty(m);
1738 	vm_page_lock(m);
1739 	vm_page_deactivate(m);
1740 	vm_page_unlock(m);
1741 	vm_page_xunbusy(m);
1742 	vm_pager_page_unswapped(m);
1743 }
1744 
1745 /*
1746  *	swap_pager_swapoff:
1747  *
1748  *	Page in all of the pages that have been paged out to the
1749  *	given device.  The corresponding blocks in the bitmap must be
1750  *	marked as allocated and the device must be flagged SW_CLOSING.
1751  *	There may be no processes swapped out to the device.
1752  *
1753  *	This routine may block.
1754  */
1755 static void
1756 swap_pager_swapoff(struct swdevt *sp)
1757 {
1758 	struct swblock *swap;
1759 	int i, j, retries;
1760 
1761 	GIANT_REQUIRED;
1762 
1763 	retries = 0;
1764 full_rescan:
1765 	mtx_lock(&swhash_mtx);
1766 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1767 restart:
1768 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1769 			vm_object_t object = swap->swb_object;
1770 			vm_pindex_t pindex = swap->swb_index;
1771 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1772 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1773 					/* avoid deadlock */
1774 					if (!VM_OBJECT_TRYWLOCK(object)) {
1775 						break;
1776 					} else {
1777 						mtx_unlock(&swhash_mtx);
1778 						swp_pager_force_pagein(object,
1779 						    pindex + j);
1780 						VM_OBJECT_WUNLOCK(object);
1781 						mtx_lock(&swhash_mtx);
1782 						goto restart;
1783 					}
1784 				}
1785 			}
1786 		}
1787 	}
1788 	mtx_unlock(&swhash_mtx);
1789 	if (sp->sw_used) {
1790 		/*
1791 		 * Objects may be locked or paging to the device being
1792 		 * removed, so we will miss their pages and need to
1793 		 * make another pass.  We have marked this device as
1794 		 * SW_CLOSING, so the activity should finish soon.
1795 		 */
1796 		retries++;
1797 		if (retries > 100) {
1798 			panic("swapoff: failed to locate %d swap blocks",
1799 			    sp->sw_used);
1800 		}
1801 		pause("swpoff", hz / 20);
1802 		goto full_rescan;
1803 	}
1804 }
1805 
1806 /************************************************************************
1807  *				SWAP META DATA 				*
1808  ************************************************************************
1809  *
1810  *	These routines manipulate the swap metadata stored in the
1811  *	OBJT_SWAP object.
1812  *
1813  *	Swap metadata is implemented with a global hash and not directly
1814  *	linked into the object.  Instead the object simply contains
1815  *	appropriate tracking counters.
1816  */
1817 
1818 /*
1819  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1820  *
1821  *	We first convert the object to a swap object if it is a default
1822  *	object.
1823  *
1824  *	The specified swapblk is added to the object's swap metadata.  If
1825  *	the swapblk is not valid, it is freed instead.  Any previously
1826  *	assigned swapblk is freed.
1827  */
1828 static void
1829 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1830 {
1831 	static volatile int exhausted;
1832 	struct swblock *swap;
1833 	struct swblock **pswap;
1834 	int idx;
1835 
1836 	VM_OBJECT_ASSERT_WLOCKED(object);
1837 	/*
1838 	 * Convert default object to swap object if necessary
1839 	 */
1840 	if (object->type != OBJT_SWAP) {
1841 		object->type = OBJT_SWAP;
1842 		object->un_pager.swp.swp_bcount = 0;
1843 
1844 		if (object->handle != NULL) {
1845 			mtx_lock(&sw_alloc_mtx);
1846 			TAILQ_INSERT_TAIL(
1847 			    NOBJLIST(object->handle),
1848 			    object,
1849 			    pager_object_list
1850 			);
1851 			mtx_unlock(&sw_alloc_mtx);
1852 		}
1853 	}
1854 
1855 	/*
1856 	 * Locate hash entry.  If not found create, but if we aren't adding
1857 	 * anything just return.  If we run out of space in the map we wait
1858 	 * and, since the hash table may have changed, retry.
1859 	 */
1860 retry:
1861 	mtx_lock(&swhash_mtx);
1862 	pswap = swp_pager_hash(object, pindex);
1863 
1864 	if ((swap = *pswap) == NULL) {
1865 		int i;
1866 
1867 		if (swapblk == SWAPBLK_NONE)
1868 			goto done;
1869 
1870 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1871 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1872 		if (swap == NULL) {
1873 			mtx_unlock(&swhash_mtx);
1874 			VM_OBJECT_WUNLOCK(object);
1875 			if (uma_zone_exhausted(swap_zone)) {
1876 				if (atomic_cmpset_int(&exhausted, 0, 1))
1877 					printf("swap zone exhausted, "
1878 					    "increase kern.maxswzone\n");
1879 				vm_pageout_oom(VM_OOM_SWAPZ);
1880 				pause("swzonex", 10);
1881 			} else
1882 				VM_WAIT;
1883 			VM_OBJECT_WLOCK(object);
1884 			goto retry;
1885 		}
1886 
1887 		if (atomic_cmpset_int(&exhausted, 1, 0))
1888 			printf("swap zone ok\n");
1889 
1890 		swap->swb_hnext = NULL;
1891 		swap->swb_object = object;
1892 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1893 		swap->swb_count = 0;
1894 
1895 		++object->un_pager.swp.swp_bcount;
1896 
1897 		for (i = 0; i < SWAP_META_PAGES; ++i)
1898 			swap->swb_pages[i] = SWAPBLK_NONE;
1899 	}
1900 
1901 	/*
1902 	 * Delete prior contents of metadata
1903 	 */
1904 	idx = pindex & SWAP_META_MASK;
1905 
1906 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1907 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1908 		--swap->swb_count;
1909 	}
1910 
1911 	/*
1912 	 * Enter block into metadata
1913 	 */
1914 	swap->swb_pages[idx] = swapblk;
1915 	if (swapblk != SWAPBLK_NONE)
1916 		++swap->swb_count;
1917 done:
1918 	mtx_unlock(&swhash_mtx);
1919 }
1920 
1921 /*
1922  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1923  *
1924  *	The requested range of blocks is freed, with any associated swap
1925  *	returned to the swap bitmap.
1926  *
1927  *	This routine will free swap metadata structures as they are cleaned
1928  *	out.  This routine does *NOT* operate on swap metadata associated
1929  *	with resident pages.
1930  */
1931 static void
1932 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1933 {
1934 
1935 	VM_OBJECT_ASSERT_LOCKED(object);
1936 	if (object->type != OBJT_SWAP)
1937 		return;
1938 
1939 	while (count > 0) {
1940 		struct swblock **pswap;
1941 		struct swblock *swap;
1942 
1943 		mtx_lock(&swhash_mtx);
1944 		pswap = swp_pager_hash(object, index);
1945 
1946 		if ((swap = *pswap) != NULL) {
1947 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1948 
1949 			if (v != SWAPBLK_NONE) {
1950 				swp_pager_freeswapspace(v, 1);
1951 				swap->swb_pages[index & SWAP_META_MASK] =
1952 					SWAPBLK_NONE;
1953 				if (--swap->swb_count == 0) {
1954 					*pswap = swap->swb_hnext;
1955 					uma_zfree(swap_zone, swap);
1956 					--object->un_pager.swp.swp_bcount;
1957 				}
1958 			}
1959 			--count;
1960 			++index;
1961 		} else {
1962 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1963 			count -= n;
1964 			index += n;
1965 		}
1966 		mtx_unlock(&swhash_mtx);
1967 	}
1968 }
1969 
1970 /*
1971  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1972  *
1973  *	This routine locates and destroys all swap metadata associated with
1974  *	an object.
1975  */
1976 static void
1977 swp_pager_meta_free_all(vm_object_t object)
1978 {
1979 	daddr_t index = 0;
1980 
1981 	VM_OBJECT_ASSERT_WLOCKED(object);
1982 	if (object->type != OBJT_SWAP)
1983 		return;
1984 
1985 	while (object->un_pager.swp.swp_bcount) {
1986 		struct swblock **pswap;
1987 		struct swblock *swap;
1988 
1989 		mtx_lock(&swhash_mtx);
1990 		pswap = swp_pager_hash(object, index);
1991 		if ((swap = *pswap) != NULL) {
1992 			int i;
1993 
1994 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1995 				daddr_t v = swap->swb_pages[i];
1996 				if (v != SWAPBLK_NONE) {
1997 					--swap->swb_count;
1998 					swp_pager_freeswapspace(v, 1);
1999 				}
2000 			}
2001 			if (swap->swb_count != 0)
2002 				panic("swap_pager_meta_free_all: swb_count != 0");
2003 			*pswap = swap->swb_hnext;
2004 			uma_zfree(swap_zone, swap);
2005 			--object->un_pager.swp.swp_bcount;
2006 		}
2007 		mtx_unlock(&swhash_mtx);
2008 		index += SWAP_META_PAGES;
2009 	}
2010 }
2011 
2012 /*
2013  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2014  *
2015  *	This routine is capable of looking up, popping, or freeing
2016  *	swapblk assignments in the swap meta data or in the vm_page_t.
2017  *	The routine typically returns the swapblk being looked-up, or popped,
2018  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2019  *	was invalid.  This routine will automatically free any invalid
2020  *	meta-data swapblks.
2021  *
2022  *	It is not possible to store invalid swapblks in the swap meta data
2023  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2024  *
2025  *	When acting on a busy resident page and paging is in progress, we
2026  *	have to wait until paging is complete but otherwise can act on the
2027  *	busy page.
2028  *
2029  *	SWM_FREE	remove and free swap block from metadata
2030  *	SWM_POP		remove from meta data but do not free.. pop it out
2031  */
2032 static daddr_t
2033 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2034 {
2035 	struct swblock **pswap;
2036 	struct swblock *swap;
2037 	daddr_t r1;
2038 	int idx;
2039 
2040 	VM_OBJECT_ASSERT_LOCKED(object);
2041 	/*
2042 	 * The meta data only exists of the object is OBJT_SWAP
2043 	 * and even then might not be allocated yet.
2044 	 */
2045 	if (object->type != OBJT_SWAP)
2046 		return (SWAPBLK_NONE);
2047 
2048 	r1 = SWAPBLK_NONE;
2049 	mtx_lock(&swhash_mtx);
2050 	pswap = swp_pager_hash(object, pindex);
2051 
2052 	if ((swap = *pswap) != NULL) {
2053 		idx = pindex & SWAP_META_MASK;
2054 		r1 = swap->swb_pages[idx];
2055 
2056 		if (r1 != SWAPBLK_NONE) {
2057 			if (flags & SWM_FREE) {
2058 				swp_pager_freeswapspace(r1, 1);
2059 				r1 = SWAPBLK_NONE;
2060 			}
2061 			if (flags & (SWM_FREE|SWM_POP)) {
2062 				swap->swb_pages[idx] = SWAPBLK_NONE;
2063 				if (--swap->swb_count == 0) {
2064 					*pswap = swap->swb_hnext;
2065 					uma_zfree(swap_zone, swap);
2066 					--object->un_pager.swp.swp_bcount;
2067 				}
2068 			}
2069 		}
2070 	}
2071 	mtx_unlock(&swhash_mtx);
2072 	return (r1);
2073 }
2074 
2075 /*
2076  * System call swapon(name) enables swapping on device name,
2077  * which must be in the swdevsw.  Return EBUSY
2078  * if already swapping on this device.
2079  */
2080 #ifndef _SYS_SYSPROTO_H_
2081 struct swapon_args {
2082 	char *name;
2083 };
2084 #endif
2085 
2086 /*
2087  * MPSAFE
2088  */
2089 /* ARGSUSED */
2090 int
2091 sys_swapon(struct thread *td, struct swapon_args *uap)
2092 {
2093 	struct vattr attr;
2094 	struct vnode *vp;
2095 	struct nameidata nd;
2096 	int error;
2097 
2098 	error = priv_check(td, PRIV_SWAPON);
2099 	if (error)
2100 		return (error);
2101 
2102 	mtx_lock(&Giant);
2103 	while (swdev_syscall_active)
2104 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2105 	swdev_syscall_active = 1;
2106 
2107 	/*
2108 	 * Swap metadata may not fit in the KVM if we have physical
2109 	 * memory of >1GB.
2110 	 */
2111 	if (swap_zone == NULL) {
2112 		error = ENOMEM;
2113 		goto done;
2114 	}
2115 
2116 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2117 	    uap->name, td);
2118 	error = namei(&nd);
2119 	if (error)
2120 		goto done;
2121 
2122 	NDFREE(&nd, NDF_ONLY_PNBUF);
2123 	vp = nd.ni_vp;
2124 
2125 	if (vn_isdisk(vp, &error)) {
2126 		error = swapongeom(td, vp);
2127 	} else if (vp->v_type == VREG &&
2128 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2129 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2130 		/*
2131 		 * Allow direct swapping to NFS regular files in the same
2132 		 * way that nfs_mountroot() sets up diskless swapping.
2133 		 */
2134 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2135 	}
2136 
2137 	if (error)
2138 		vrele(vp);
2139 done:
2140 	swdev_syscall_active = 0;
2141 	wakeup_one(&swdev_syscall_active);
2142 	mtx_unlock(&Giant);
2143 	return (error);
2144 }
2145 
2146 /*
2147  * Check that the total amount of swap currently configured does not
2148  * exceed half the theoretical maximum.  If it does, print a warning
2149  * message and return -1; otherwise, return 0.
2150  */
2151 static int
2152 swapon_check_swzone(unsigned long npages)
2153 {
2154 	unsigned long maxpages;
2155 
2156 	/* absolute maximum we can handle assuming 100% efficiency */
2157 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2158 
2159 	/* recommend using no more than half that amount */
2160 	if (npages > maxpages / 2) {
2161 		printf("warning: total configured swap (%lu pages) "
2162 		    "exceeds maximum recommended amount (%lu pages).\n",
2163 		    npages, maxpages / 2);
2164 		printf("warning: increase kern.maxswzone "
2165 		    "or reduce amount of swap.\n");
2166 		return (-1);
2167 	}
2168 	return (0);
2169 }
2170 
2171 static void
2172 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2173     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2174 {
2175 	struct swdevt *sp, *tsp;
2176 	swblk_t dvbase;
2177 	u_long mblocks;
2178 
2179 	/*
2180 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2181 	 * First chop nblks off to page-align it, then convert.
2182 	 *
2183 	 * sw->sw_nblks is in page-sized chunks now too.
2184 	 */
2185 	nblks &= ~(ctodb(1) - 1);
2186 	nblks = dbtoc(nblks);
2187 
2188 	/*
2189 	 * If we go beyond this, we get overflows in the radix
2190 	 * tree bitmap code.
2191 	 */
2192 	mblocks = 0x40000000 / BLIST_META_RADIX;
2193 	if (nblks > mblocks) {
2194 		printf(
2195     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2196 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2197 		nblks = mblocks;
2198 	}
2199 
2200 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2201 	sp->sw_vp = vp;
2202 	sp->sw_id = id;
2203 	sp->sw_dev = dev;
2204 	sp->sw_flags = 0;
2205 	sp->sw_nblks = nblks;
2206 	sp->sw_used = 0;
2207 	sp->sw_strategy = strategy;
2208 	sp->sw_close = close;
2209 	sp->sw_flags = flags;
2210 
2211 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2212 	/*
2213 	 * Do not free the first two block in order to avoid overwriting
2214 	 * any bsd label at the front of the partition
2215 	 */
2216 	blist_free(sp->sw_blist, 2, nblks - 2);
2217 
2218 	dvbase = 0;
2219 	mtx_lock(&sw_dev_mtx);
2220 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2221 		if (tsp->sw_end >= dvbase) {
2222 			/*
2223 			 * We put one uncovered page between the devices
2224 			 * in order to definitively prevent any cross-device
2225 			 * I/O requests
2226 			 */
2227 			dvbase = tsp->sw_end + 1;
2228 		}
2229 	}
2230 	sp->sw_first = dvbase;
2231 	sp->sw_end = dvbase + nblks;
2232 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2233 	nswapdev++;
2234 	swap_pager_avail += nblks;
2235 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2236 	swapon_check_swzone(swap_total / PAGE_SIZE);
2237 	swp_sizecheck();
2238 	mtx_unlock(&sw_dev_mtx);
2239 }
2240 
2241 /*
2242  * SYSCALL: swapoff(devname)
2243  *
2244  * Disable swapping on the given device.
2245  *
2246  * XXX: Badly designed system call: it should use a device index
2247  * rather than filename as specification.  We keep sw_vp around
2248  * only to make this work.
2249  */
2250 #ifndef _SYS_SYSPROTO_H_
2251 struct swapoff_args {
2252 	char *name;
2253 };
2254 #endif
2255 
2256 /*
2257  * MPSAFE
2258  */
2259 /* ARGSUSED */
2260 int
2261 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2262 {
2263 	struct vnode *vp;
2264 	struct nameidata nd;
2265 	struct swdevt *sp;
2266 	int error;
2267 
2268 	error = priv_check(td, PRIV_SWAPOFF);
2269 	if (error)
2270 		return (error);
2271 
2272 	mtx_lock(&Giant);
2273 	while (swdev_syscall_active)
2274 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2275 	swdev_syscall_active = 1;
2276 
2277 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2278 	    td);
2279 	error = namei(&nd);
2280 	if (error)
2281 		goto done;
2282 	NDFREE(&nd, NDF_ONLY_PNBUF);
2283 	vp = nd.ni_vp;
2284 
2285 	mtx_lock(&sw_dev_mtx);
2286 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2287 		if (sp->sw_vp == vp)
2288 			break;
2289 	}
2290 	mtx_unlock(&sw_dev_mtx);
2291 	if (sp == NULL) {
2292 		error = EINVAL;
2293 		goto done;
2294 	}
2295 	error = swapoff_one(sp, td->td_ucred);
2296 done:
2297 	swdev_syscall_active = 0;
2298 	wakeup_one(&swdev_syscall_active);
2299 	mtx_unlock(&Giant);
2300 	return (error);
2301 }
2302 
2303 static int
2304 swapoff_one(struct swdevt *sp, struct ucred *cred)
2305 {
2306 	u_long nblks, dvbase;
2307 #ifdef MAC
2308 	int error;
2309 #endif
2310 
2311 	mtx_assert(&Giant, MA_OWNED);
2312 #ifdef MAC
2313 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2314 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2315 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2316 	if (error != 0)
2317 		return (error);
2318 #endif
2319 	nblks = sp->sw_nblks;
2320 
2321 	/*
2322 	 * We can turn off this swap device safely only if the
2323 	 * available virtual memory in the system will fit the amount
2324 	 * of data we will have to page back in, plus an epsilon so
2325 	 * the system doesn't become critically low on swap space.
2326 	 */
2327 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2328 	    nblks + nswap_lowat) {
2329 		return (ENOMEM);
2330 	}
2331 
2332 	/*
2333 	 * Prevent further allocations on this device.
2334 	 */
2335 	mtx_lock(&sw_dev_mtx);
2336 	sp->sw_flags |= SW_CLOSING;
2337 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2338 		swap_pager_avail -= blist_fill(sp->sw_blist,
2339 		     dvbase, dmmax);
2340 	}
2341 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2342 	mtx_unlock(&sw_dev_mtx);
2343 
2344 	/*
2345 	 * Page in the contents of the device and close it.
2346 	 */
2347 	swap_pager_swapoff(sp);
2348 
2349 	sp->sw_close(curthread, sp);
2350 	sp->sw_id = NULL;
2351 	mtx_lock(&sw_dev_mtx);
2352 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2353 	nswapdev--;
2354 	if (nswapdev == 0) {
2355 		swap_pager_full = 2;
2356 		swap_pager_almost_full = 1;
2357 	}
2358 	if (swdevhd == sp)
2359 		swdevhd = NULL;
2360 	mtx_unlock(&sw_dev_mtx);
2361 	blist_destroy(sp->sw_blist);
2362 	free(sp, M_VMPGDATA);
2363 	return (0);
2364 }
2365 
2366 void
2367 swapoff_all(void)
2368 {
2369 	struct swdevt *sp, *spt;
2370 	const char *devname;
2371 	int error;
2372 
2373 	mtx_lock(&Giant);
2374 	while (swdev_syscall_active)
2375 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2376 	swdev_syscall_active = 1;
2377 
2378 	mtx_lock(&sw_dev_mtx);
2379 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2380 		mtx_unlock(&sw_dev_mtx);
2381 		if (vn_isdisk(sp->sw_vp, NULL))
2382 			devname = devtoname(sp->sw_vp->v_rdev);
2383 		else
2384 			devname = "[file]";
2385 		error = swapoff_one(sp, thread0.td_ucred);
2386 		if (error != 0) {
2387 			printf("Cannot remove swap device %s (error=%d), "
2388 			    "skipping.\n", devname, error);
2389 		} else if (bootverbose) {
2390 			printf("Swap device %s removed.\n", devname);
2391 		}
2392 		mtx_lock(&sw_dev_mtx);
2393 	}
2394 	mtx_unlock(&sw_dev_mtx);
2395 
2396 	swdev_syscall_active = 0;
2397 	wakeup_one(&swdev_syscall_active);
2398 	mtx_unlock(&Giant);
2399 }
2400 
2401 void
2402 swap_pager_status(int *total, int *used)
2403 {
2404 	struct swdevt *sp;
2405 
2406 	*total = 0;
2407 	*used = 0;
2408 	mtx_lock(&sw_dev_mtx);
2409 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2410 		*total += sp->sw_nblks;
2411 		*used += sp->sw_used;
2412 	}
2413 	mtx_unlock(&sw_dev_mtx);
2414 }
2415 
2416 int
2417 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2418 {
2419 	struct swdevt *sp;
2420 	const char *tmp_devname;
2421 	int error, n;
2422 
2423 	n = 0;
2424 	error = ENOENT;
2425 	mtx_lock(&sw_dev_mtx);
2426 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2427 		if (n != name) {
2428 			n++;
2429 			continue;
2430 		}
2431 		xs->xsw_version = XSWDEV_VERSION;
2432 		xs->xsw_dev = sp->sw_dev;
2433 		xs->xsw_flags = sp->sw_flags;
2434 		xs->xsw_nblks = sp->sw_nblks;
2435 		xs->xsw_used = sp->sw_used;
2436 		if (devname != NULL) {
2437 			if (vn_isdisk(sp->sw_vp, NULL))
2438 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2439 			else
2440 				tmp_devname = "[file]";
2441 			strncpy(devname, tmp_devname, len);
2442 		}
2443 		error = 0;
2444 		break;
2445 	}
2446 	mtx_unlock(&sw_dev_mtx);
2447 	return (error);
2448 }
2449 
2450 static int
2451 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2452 {
2453 	struct xswdev xs;
2454 	int error;
2455 
2456 	if (arg2 != 1)			/* name length */
2457 		return (EINVAL);
2458 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2459 	if (error != 0)
2460 		return (error);
2461 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2462 	return (error);
2463 }
2464 
2465 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2466     "Number of swap devices");
2467 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2468     "Swap statistics by device");
2469 
2470 /*
2471  * vmspace_swap_count() - count the approximate swap usage in pages for a
2472  *			  vmspace.
2473  *
2474  *	The map must be locked.
2475  *
2476  *	Swap usage is determined by taking the proportional swap used by
2477  *	VM objects backing the VM map.  To make up for fractional losses,
2478  *	if the VM object has any swap use at all the associated map entries
2479  *	count for at least 1 swap page.
2480  */
2481 long
2482 vmspace_swap_count(struct vmspace *vmspace)
2483 {
2484 	vm_map_t map;
2485 	vm_map_entry_t cur;
2486 	vm_object_t object;
2487 	long count, n;
2488 
2489 	map = &vmspace->vm_map;
2490 	count = 0;
2491 
2492 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2493 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2494 		    (object = cur->object.vm_object) != NULL) {
2495 			VM_OBJECT_WLOCK(object);
2496 			if (object->type == OBJT_SWAP &&
2497 			    object->un_pager.swp.swp_bcount != 0) {
2498 				n = (cur->end - cur->start) / PAGE_SIZE;
2499 				count += object->un_pager.swp.swp_bcount *
2500 				    SWAP_META_PAGES * n / object->size + 1;
2501 			}
2502 			VM_OBJECT_WUNLOCK(object);
2503 		}
2504 	}
2505 	return (count);
2506 }
2507 
2508 /*
2509  * GEOM backend
2510  *
2511  * Swapping onto disk devices.
2512  *
2513  */
2514 
2515 static g_orphan_t swapgeom_orphan;
2516 
2517 static struct g_class g_swap_class = {
2518 	.name = "SWAP",
2519 	.version = G_VERSION,
2520 	.orphan = swapgeom_orphan,
2521 };
2522 
2523 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2524 
2525 
2526 static void
2527 swapgeom_done(struct bio *bp2)
2528 {
2529 	struct buf *bp;
2530 
2531 	bp = bp2->bio_caller2;
2532 	bp->b_ioflags = bp2->bio_flags;
2533 	if (bp2->bio_error)
2534 		bp->b_ioflags |= BIO_ERROR;
2535 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2536 	bp->b_error = bp2->bio_error;
2537 	bufdone(bp);
2538 	g_destroy_bio(bp2);
2539 }
2540 
2541 static void
2542 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2543 {
2544 	struct bio *bio;
2545 	struct g_consumer *cp;
2546 
2547 	cp = sp->sw_id;
2548 	if (cp == NULL) {
2549 		bp->b_error = ENXIO;
2550 		bp->b_ioflags |= BIO_ERROR;
2551 		bufdone(bp);
2552 		return;
2553 	}
2554 	if (bp->b_iocmd == BIO_WRITE)
2555 		bio = g_new_bio();
2556 	else
2557 		bio = g_alloc_bio();
2558 	if (bio == NULL) {
2559 		bp->b_error = ENOMEM;
2560 		bp->b_ioflags |= BIO_ERROR;
2561 		bufdone(bp);
2562 		return;
2563 	}
2564 
2565 	bio->bio_caller2 = bp;
2566 	bio->bio_cmd = bp->b_iocmd;
2567 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2568 	bio->bio_length = bp->b_bcount;
2569 	bio->bio_done = swapgeom_done;
2570 	if ((bp->b_flags & B_UNMAPPED) != 0) {
2571 		bio->bio_ma = bp->b_pages;
2572 		bio->bio_data = unmapped_buf;
2573 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2574 		bio->bio_ma_n = bp->b_npages;
2575 		bio->bio_flags |= BIO_UNMAPPED;
2576 	} else {
2577 		bio->bio_data = bp->b_data;
2578 		bio->bio_ma = NULL;
2579 	}
2580 	g_io_request(bio, cp);
2581 	return;
2582 }
2583 
2584 static void
2585 swapgeom_orphan(struct g_consumer *cp)
2586 {
2587 	struct swdevt *sp;
2588 
2589 	mtx_lock(&sw_dev_mtx);
2590 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2591 		if (sp->sw_id == cp)
2592 			sp->sw_flags |= SW_CLOSING;
2593 	mtx_unlock(&sw_dev_mtx);
2594 }
2595 
2596 static void
2597 swapgeom_close_ev(void *arg, int flags)
2598 {
2599 	struct g_consumer *cp;
2600 
2601 	cp = arg;
2602 	g_access(cp, -1, -1, 0);
2603 	g_detach(cp);
2604 	g_destroy_consumer(cp);
2605 }
2606 
2607 static void
2608 swapgeom_close(struct thread *td, struct swdevt *sw)
2609 {
2610 
2611 	/* XXX: direct call when Giant untangled */
2612 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2613 }
2614 
2615 
2616 struct swh0h0 {
2617 	struct cdev *dev;
2618 	struct vnode *vp;
2619 	int	error;
2620 };
2621 
2622 static void
2623 swapongeom_ev(void *arg, int flags)
2624 {
2625 	struct swh0h0 *swh;
2626 	struct g_provider *pp;
2627 	struct g_consumer *cp;
2628 	static struct g_geom *gp;
2629 	struct swdevt *sp;
2630 	u_long nblks;
2631 	int error;
2632 
2633 	swh = arg;
2634 	swh->error = 0;
2635 	pp = g_dev_getprovider(swh->dev);
2636 	if (pp == NULL) {
2637 		swh->error = ENODEV;
2638 		return;
2639 	}
2640 	mtx_lock(&sw_dev_mtx);
2641 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2642 		cp = sp->sw_id;
2643 		if (cp != NULL && cp->provider == pp) {
2644 			mtx_unlock(&sw_dev_mtx);
2645 			swh->error = EBUSY;
2646 			return;
2647 		}
2648 	}
2649 	mtx_unlock(&sw_dev_mtx);
2650 	if (gp == NULL)
2651 		gp = g_new_geomf(&g_swap_class, "swap");
2652 	cp = g_new_consumer(gp);
2653 	g_attach(cp, pp);
2654 	/*
2655 	 * XXX: Everytime you think you can improve the margin for
2656 	 * footshooting, somebody depends on the ability to do so:
2657 	 * savecore(8) wants to write to our swapdev so we cannot
2658 	 * set an exclusive count :-(
2659 	 */
2660 	error = g_access(cp, 1, 1, 0);
2661 	if (error) {
2662 		g_detach(cp);
2663 		g_destroy_consumer(cp);
2664 		swh->error = error;
2665 		return;
2666 	}
2667 	nblks = pp->mediasize / DEV_BSIZE;
2668 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2669 	    swapgeom_close, dev2udev(swh->dev),
2670 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2671 	swh->error = 0;
2672 }
2673 
2674 static int
2675 swapongeom(struct thread *td, struct vnode *vp)
2676 {
2677 	int error;
2678 	struct swh0h0 swh;
2679 
2680 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2681 
2682 	swh.dev = vp->v_rdev;
2683 	swh.vp = vp;
2684 	swh.error = 0;
2685 	/* XXX: direct call when Giant untangled */
2686 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2687 	if (!error)
2688 		error = swh.error;
2689 	VOP_UNLOCK(vp, 0);
2690 	return (error);
2691 }
2692 
2693 /*
2694  * VNODE backend
2695  *
2696  * This is used mainly for network filesystem (read: probably only tested
2697  * with NFS) swapfiles.
2698  *
2699  */
2700 
2701 static void
2702 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2703 {
2704 	struct vnode *vp2;
2705 
2706 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2707 
2708 	vp2 = sp->sw_id;
2709 	vhold(vp2);
2710 	if (bp->b_iocmd == BIO_WRITE) {
2711 		if (bp->b_bufobj)
2712 			bufobj_wdrop(bp->b_bufobj);
2713 		bufobj_wref(&vp2->v_bufobj);
2714 	}
2715 	if (bp->b_bufobj != &vp2->v_bufobj)
2716 		bp->b_bufobj = &vp2->v_bufobj;
2717 	bp->b_vp = vp2;
2718 	bp->b_iooffset = dbtob(bp->b_blkno);
2719 	bstrategy(bp);
2720 	return;
2721 }
2722 
2723 static void
2724 swapdev_close(struct thread *td, struct swdevt *sp)
2725 {
2726 
2727 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2728 	vrele(sp->sw_vp);
2729 }
2730 
2731 
2732 static int
2733 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2734 {
2735 	struct swdevt *sp;
2736 	int error;
2737 
2738 	if (nblks == 0)
2739 		return (ENXIO);
2740 	mtx_lock(&sw_dev_mtx);
2741 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2742 		if (sp->sw_id == vp) {
2743 			mtx_unlock(&sw_dev_mtx);
2744 			return (EBUSY);
2745 		}
2746 	}
2747 	mtx_unlock(&sw_dev_mtx);
2748 
2749 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2750 #ifdef MAC
2751 	error = mac_system_check_swapon(td->td_ucred, vp);
2752 	if (error == 0)
2753 #endif
2754 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2755 	(void) VOP_UNLOCK(vp, 0);
2756 	if (error)
2757 		return (error);
2758 
2759 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2760 	    NODEV, 0);
2761 	return (0);
2762 }
2763