1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1998 Matthew Dillon, 5 * Copyright (c) 1994 John S. Dyson 6 * Copyright (c) 1990 University of Utah. 7 * Copyright (c) 1982, 1986, 1989, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * New Swap System 43 * Matthew Dillon 44 * 45 * Radix Bitmap 'blists'. 46 * 47 * - The new swapper uses the new radix bitmap code. This should scale 48 * to arbitrarily small or arbitrarily large swap spaces and an almost 49 * arbitrary degree of fragmentation. 50 * 51 * Features: 52 * 53 * - on the fly reallocation of swap during putpages. The new system 54 * does not try to keep previously allocated swap blocks for dirty 55 * pages. 56 * 57 * - on the fly deallocation of swap 58 * 59 * - No more garbage collection required. Unnecessarily allocated swap 60 * blocks only exist for dirty vm_page_t's now and these are already 61 * cycled (in a high-load system) by the pager. We also do on-the-fly 62 * removal of invalidated swap blocks when a page is destroyed 63 * or renamed. 64 * 65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 66 * 67 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 68 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/bio.h> 78 #include <sys/blist.h> 79 #include <sys/buf.h> 80 #include <sys/conf.h> 81 #include <sys/disk.h> 82 #include <sys/disklabel.h> 83 #include <sys/eventhandler.h> 84 #include <sys/fcntl.h> 85 #include <sys/lock.h> 86 #include <sys/kernel.h> 87 #include <sys/mount.h> 88 #include <sys/namei.h> 89 #include <sys/malloc.h> 90 #include <sys/pctrie.h> 91 #include <sys/priv.h> 92 #include <sys/proc.h> 93 #include <sys/racct.h> 94 #include <sys/resource.h> 95 #include <sys/resourcevar.h> 96 #include <sys/rwlock.h> 97 #include <sys/sbuf.h> 98 #include <sys/sysctl.h> 99 #include <sys/sysproto.h> 100 #include <sys/systm.h> 101 #include <sys/sx.h> 102 #include <sys/vmmeter.h> 103 #include <sys/vnode.h> 104 105 #include <security/mac/mac_framework.h> 106 107 #include <vm/vm.h> 108 #include <vm/pmap.h> 109 #include <vm/vm_map.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_object.h> 112 #include <vm/vm_page.h> 113 #include <vm/vm_pager.h> 114 #include <vm/vm_pageout.h> 115 #include <vm/vm_param.h> 116 #include <vm/swap_pager.h> 117 #include <vm/vm_extern.h> 118 #include <vm/uma.h> 119 120 #include <geom/geom.h> 121 122 /* 123 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 124 * The 64-page limit is due to the radix code (kern/subr_blist.c). 125 */ 126 #ifndef MAX_PAGEOUT_CLUSTER 127 #define MAX_PAGEOUT_CLUSTER 32 128 #endif 129 130 #if !defined(SWB_NPAGES) 131 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 132 #endif 133 134 #define SWAP_META_PAGES PCTRIE_COUNT 135 136 /* 137 * A swblk structure maps each page index within a 138 * SWAP_META_PAGES-aligned and sized range to the address of an 139 * on-disk swap block (or SWAPBLK_NONE). The collection of these 140 * mappings for an entire vm object is implemented as a pc-trie. 141 */ 142 struct swblk { 143 vm_pindex_t p; 144 daddr_t d[SWAP_META_PAGES]; 145 }; 146 147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 148 static struct mtx sw_dev_mtx; 149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 150 static struct swdevt *swdevhd; /* Allocate from here next */ 151 static int nswapdev; /* Number of swap devices */ 152 int swap_pager_avail; 153 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 154 155 static u_long swap_reserved; 156 static u_long swap_total; 157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS); 158 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 159 &swap_reserved, 0, sysctl_page_shift, "A", 160 "Amount of swap storage needed to back all allocated anonymous memory."); 161 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 162 &swap_total, 0, sysctl_page_shift, "A", 163 "Total amount of available swap storage."); 164 165 static int overcommit = 0; 166 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0, 167 "Configure virtual memory overcommit behavior. See tuning(7) " 168 "for details."); 169 static unsigned long swzone; 170 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 171 "Actual size of swap metadata zone"); 172 static unsigned long swap_maxpages; 173 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 174 "Maximum amount of swap supported"); 175 176 /* bits from overcommit */ 177 #define SWAP_RESERVE_FORCE_ON (1 << 0) 178 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 179 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 180 181 static int 182 sysctl_page_shift(SYSCTL_HANDLER_ARGS) 183 { 184 uint64_t newval; 185 u_long value = *(u_long *)arg1; 186 187 newval = ((uint64_t)value) << PAGE_SHIFT; 188 return (sysctl_handle_64(oidp, &newval, 0, req)); 189 } 190 191 int 192 swap_reserve(vm_ooffset_t incr) 193 { 194 195 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 196 } 197 198 int 199 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 200 { 201 u_long r, s, prev, pincr; 202 int res, error; 203 static int curfail; 204 static struct timeval lastfail; 205 struct uidinfo *uip; 206 207 uip = cred->cr_ruidinfo; 208 209 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__, 210 (uintmax_t)incr)); 211 212 #ifdef RACCT 213 if (racct_enable) { 214 PROC_LOCK(curproc); 215 error = racct_add(curproc, RACCT_SWAP, incr); 216 PROC_UNLOCK(curproc); 217 if (error != 0) 218 return (0); 219 } 220 #endif 221 222 pincr = atop(incr); 223 res = 0; 224 prev = atomic_fetchadd_long(&swap_reserved, pincr); 225 r = prev + pincr; 226 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 227 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - 228 vm_wire_count(); 229 } else 230 s = 0; 231 s += swap_total; 232 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 233 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 234 res = 1; 235 } else { 236 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 237 if (prev < pincr) 238 panic("swap_reserved < incr on overcommit fail"); 239 } 240 if (res) { 241 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr); 242 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 243 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) && 244 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) { 245 res = 0; 246 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr); 247 if (prev < pincr) 248 panic("uip->ui_vmsize < incr on overcommit fail"); 249 } 250 } 251 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 252 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 253 uip->ui_uid, curproc->p_pid, incr); 254 } 255 256 #ifdef RACCT 257 if (racct_enable && !res) { 258 PROC_LOCK(curproc); 259 racct_sub(curproc, RACCT_SWAP, incr); 260 PROC_UNLOCK(curproc); 261 } 262 #endif 263 264 return (res); 265 } 266 267 void 268 swap_reserve_force(vm_ooffset_t incr) 269 { 270 struct uidinfo *uip; 271 u_long pincr; 272 273 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__, 274 (uintmax_t)incr)); 275 276 PROC_LOCK(curproc); 277 #ifdef RACCT 278 if (racct_enable) 279 racct_add_force(curproc, RACCT_SWAP, incr); 280 #endif 281 pincr = atop(incr); 282 atomic_add_long(&swap_reserved, pincr); 283 uip = curproc->p_ucred->cr_ruidinfo; 284 atomic_add_long(&uip->ui_vmsize, pincr); 285 PROC_UNLOCK(curproc); 286 } 287 288 void 289 swap_release(vm_ooffset_t decr) 290 { 291 struct ucred *cred; 292 293 PROC_LOCK(curproc); 294 cred = curproc->p_ucred; 295 swap_release_by_cred(decr, cred); 296 PROC_UNLOCK(curproc); 297 } 298 299 void 300 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 301 { 302 u_long prev, pdecr; 303 struct uidinfo *uip; 304 305 uip = cred->cr_ruidinfo; 306 307 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__, 308 (uintmax_t)decr)); 309 310 pdecr = atop(decr); 311 prev = atomic_fetchadd_long(&swap_reserved, -pdecr); 312 if (prev < pdecr) 313 panic("swap_reserved < decr"); 314 315 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr); 316 if (prev < pdecr) 317 printf("negative vmsize for uid = %d\n", uip->ui_uid); 318 #ifdef RACCT 319 if (racct_enable) 320 racct_sub_cred(cred, RACCT_SWAP, decr); 321 #endif 322 } 323 324 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 325 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 326 static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */ 327 static int nsw_wcount_async; /* limit async write buffers */ 328 static int nsw_wcount_async_max;/* assigned maximum */ 329 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 330 331 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 332 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 333 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 334 "Maximum running async swap ops"); 335 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS); 336 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD | 337 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A", 338 "Swap Fragmentation Info"); 339 340 static struct sx sw_alloc_sx; 341 342 /* 343 * "named" and "unnamed" anon region objects. Try to reduce the overhead 344 * of searching a named list by hashing it just a little. 345 */ 346 347 #define NOBJLISTS 8 348 349 #define NOBJLIST(handle) \ 350 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 351 352 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 353 static uma_zone_t swwbuf_zone; 354 static uma_zone_t swrbuf_zone; 355 static uma_zone_t swblk_zone; 356 static uma_zone_t swpctrie_zone; 357 358 /* 359 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 360 * calls hooked from other parts of the VM system and do not appear here. 361 * (see vm/swap_pager.h). 362 */ 363 static vm_object_t 364 swap_pager_alloc(void *handle, vm_ooffset_t size, 365 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 366 static void swap_pager_dealloc(vm_object_t object); 367 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 368 int *); 369 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 370 int *, pgo_getpages_iodone_t, void *); 371 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 372 static boolean_t 373 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 374 static void swap_pager_init(void); 375 static void swap_pager_unswapped(vm_page_t); 376 static void swap_pager_swapoff(struct swdevt *sp); 377 static void swap_pager_update_writecount(vm_object_t object, 378 vm_offset_t start, vm_offset_t end); 379 static void swap_pager_release_writecount(vm_object_t object, 380 vm_offset_t start, vm_offset_t end); 381 382 struct pagerops swappagerops = { 383 .pgo_init = swap_pager_init, /* early system initialization of pager */ 384 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 385 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 386 .pgo_getpages = swap_pager_getpages, /* pagein */ 387 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 388 .pgo_putpages = swap_pager_putpages, /* pageout */ 389 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 390 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 391 .pgo_update_writecount = swap_pager_update_writecount, 392 .pgo_release_writecount = swap_pager_release_writecount, 393 }; 394 395 /* 396 * swap_*() routines are externally accessible. swp_*() routines are 397 * internal. 398 */ 399 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 400 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 401 402 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 403 "Maximum size of a swap block in pages"); 404 405 static void swp_sizecheck(void); 406 static void swp_pager_async_iodone(struct buf *bp); 407 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit); 408 static void swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb); 409 static int swapongeom(struct vnode *); 410 static int swaponvp(struct thread *, struct vnode *, u_long); 411 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 412 413 /* 414 * Swap bitmap functions 415 */ 416 static void swp_pager_freeswapspace(daddr_t blk, daddr_t npages); 417 static daddr_t swp_pager_getswapspace(int *npages, int limit); 418 419 /* 420 * Metadata functions 421 */ 422 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 423 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 424 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst, 425 vm_pindex_t pindex, vm_pindex_t count); 426 static void swp_pager_meta_free_all(vm_object_t); 427 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t); 428 429 static void 430 swp_pager_init_freerange(daddr_t *start, daddr_t *num) 431 { 432 433 *start = SWAPBLK_NONE; 434 *num = 0; 435 } 436 437 static void 438 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr) 439 { 440 441 if (*start + *num == addr) { 442 (*num)++; 443 } else { 444 swp_pager_freeswapspace(*start, *num); 445 *start = addr; 446 *num = 1; 447 } 448 } 449 450 static void * 451 swblk_trie_alloc(struct pctrie *ptree) 452 { 453 454 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ? 455 M_USE_RESERVE : 0))); 456 } 457 458 static void 459 swblk_trie_free(struct pctrie *ptree, void *node) 460 { 461 462 uma_zfree(swpctrie_zone, node); 463 } 464 465 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free); 466 467 /* 468 * SWP_SIZECHECK() - update swap_pager_full indication 469 * 470 * update the swap_pager_almost_full indication and warn when we are 471 * about to run out of swap space, using lowat/hiwat hysteresis. 472 * 473 * Clear swap_pager_full ( task killing ) indication when lowat is met. 474 * 475 * No restrictions on call 476 * This routine may not block. 477 */ 478 static void 479 swp_sizecheck(void) 480 { 481 482 if (swap_pager_avail < nswap_lowat) { 483 if (swap_pager_almost_full == 0) { 484 printf("swap_pager: out of swap space\n"); 485 swap_pager_almost_full = 1; 486 } 487 } else { 488 swap_pager_full = 0; 489 if (swap_pager_avail > nswap_hiwat) 490 swap_pager_almost_full = 0; 491 } 492 } 493 494 /* 495 * SWAP_PAGER_INIT() - initialize the swap pager! 496 * 497 * Expected to be started from system init. NOTE: This code is run 498 * before much else so be careful what you depend on. Most of the VM 499 * system has yet to be initialized at this point. 500 */ 501 static void 502 swap_pager_init(void) 503 { 504 /* 505 * Initialize object lists 506 */ 507 int i; 508 509 for (i = 0; i < NOBJLISTS; ++i) 510 TAILQ_INIT(&swap_pager_object_list[i]); 511 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 512 sx_init(&sw_alloc_sx, "swspsx"); 513 sx_init(&swdev_syscall_lock, "swsysc"); 514 } 515 516 /* 517 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 518 * 519 * Expected to be started from pageout process once, prior to entering 520 * its main loop. 521 */ 522 void 523 swap_pager_swap_init(void) 524 { 525 unsigned long n, n2; 526 527 /* 528 * Number of in-transit swap bp operations. Don't 529 * exhaust the pbufs completely. Make sure we 530 * initialize workable values (0 will work for hysteresis 531 * but it isn't very efficient). 532 * 533 * The nsw_cluster_max is constrained by the bp->b_pages[] 534 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally 535 * defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 536 * constrained by the swap device interleave stripe size. 537 * 538 * Currently we hardwire nsw_wcount_async to 4. This limit is 539 * designed to prevent other I/O from having high latencies due to 540 * our pageout I/O. The value 4 works well for one or two active swap 541 * devices but is probably a little low if you have more. Even so, 542 * a higher value would probably generate only a limited improvement 543 * with three or four active swap devices since the system does not 544 * typically have to pageout at extreme bandwidths. We will want 545 * at least 2 per swap devices, and 4 is a pretty good value if you 546 * have one NFS swap device due to the command/ack latency over NFS. 547 * So it all works out pretty well. 548 */ 549 nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER); 550 551 nsw_wcount_async = 4; 552 nsw_wcount_async_max = nsw_wcount_async; 553 mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF); 554 555 swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4); 556 swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2); 557 558 /* 559 * Initialize our zone, taking the user's requested size or 560 * estimating the number we need based on the number of pages 561 * in the system. 562 */ 563 n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) : 564 vm_cnt.v_page_count / 2; 565 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL, 566 pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM); 567 if (swpctrie_zone == NULL) 568 panic("failed to create swap pctrie zone."); 569 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL, 570 NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM); 571 if (swblk_zone == NULL) 572 panic("failed to create swap blk zone."); 573 n2 = n; 574 do { 575 if (uma_zone_reserve_kva(swblk_zone, n)) 576 break; 577 /* 578 * if the allocation failed, try a zone two thirds the 579 * size of the previous attempt. 580 */ 581 n -= ((n + 2) / 3); 582 } while (n > 0); 583 584 /* 585 * Often uma_zone_reserve_kva() cannot reserve exactly the 586 * requested size. Account for the difference when 587 * calculating swap_maxpages. 588 */ 589 n = uma_zone_get_max(swblk_zone); 590 591 if (n < n2) 592 printf("Swap blk zone entries changed from %lu to %lu.\n", 593 n2, n); 594 /* absolute maximum we can handle assuming 100% efficiency */ 595 swap_maxpages = n * SWAP_META_PAGES; 596 swzone = n * sizeof(struct swblk); 597 if (!uma_zone_reserve_kva(swpctrie_zone, n)) 598 printf("Cannot reserve swap pctrie zone, " 599 "reduce kern.maxswzone.\n"); 600 } 601 602 static vm_object_t 603 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 604 vm_ooffset_t offset) 605 { 606 vm_object_t object; 607 608 if (cred != NULL) { 609 if (!swap_reserve_by_cred(size, cred)) 610 return (NULL); 611 crhold(cred); 612 } 613 614 /* 615 * The un_pager.swp.swp_blks trie is initialized by 616 * vm_object_allocate() to ensure the correct order of 617 * visibility to other threads. 618 */ 619 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 620 PAGE_MASK + size)); 621 622 object->un_pager.swp.writemappings = 0; 623 object->handle = handle; 624 if (cred != NULL) { 625 object->cred = cred; 626 object->charge = size; 627 } 628 return (object); 629 } 630 631 /* 632 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 633 * its metadata structures. 634 * 635 * This routine is called from the mmap and fork code to create a new 636 * OBJT_SWAP object. 637 * 638 * This routine must ensure that no live duplicate is created for 639 * the named object request, which is protected against by 640 * holding the sw_alloc_sx lock in case handle != NULL. 641 */ 642 static vm_object_t 643 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 644 vm_ooffset_t offset, struct ucred *cred) 645 { 646 vm_object_t object; 647 648 if (handle != NULL) { 649 /* 650 * Reference existing named region or allocate new one. There 651 * should not be a race here against swp_pager_meta_build() 652 * as called from vm_page_remove() in regards to the lookup 653 * of the handle. 654 */ 655 sx_xlock(&sw_alloc_sx); 656 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 657 if (object == NULL) { 658 object = swap_pager_alloc_init(handle, cred, size, 659 offset); 660 if (object != NULL) { 661 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 662 object, pager_object_list); 663 } 664 } 665 sx_xunlock(&sw_alloc_sx); 666 } else { 667 object = swap_pager_alloc_init(handle, cred, size, offset); 668 } 669 return (object); 670 } 671 672 /* 673 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 674 * 675 * The swap backing for the object is destroyed. The code is 676 * designed such that we can reinstantiate it later, but this 677 * routine is typically called only when the entire object is 678 * about to be destroyed. 679 * 680 * The object must be locked. 681 */ 682 static void 683 swap_pager_dealloc(vm_object_t object) 684 { 685 686 VM_OBJECT_ASSERT_WLOCKED(object); 687 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 688 689 /* 690 * Remove from list right away so lookups will fail if we block for 691 * pageout completion. 692 */ 693 if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) { 694 VM_OBJECT_WUNLOCK(object); 695 sx_xlock(&sw_alloc_sx); 696 TAILQ_REMOVE(NOBJLIST(object->handle), object, 697 pager_object_list); 698 sx_xunlock(&sw_alloc_sx); 699 VM_OBJECT_WLOCK(object); 700 } 701 702 vm_object_pip_wait(object, "swpdea"); 703 704 /* 705 * Free all remaining metadata. We only bother to free it from 706 * the swap meta data. We do not attempt to free swapblk's still 707 * associated with vm_page_t's for this object. We do not care 708 * if paging is still in progress on some objects. 709 */ 710 swp_pager_meta_free_all(object); 711 object->handle = NULL; 712 object->type = OBJT_DEAD; 713 } 714 715 /************************************************************************ 716 * SWAP PAGER BITMAP ROUTINES * 717 ************************************************************************/ 718 719 /* 720 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 721 * 722 * Allocate swap for up to the requested number of pages, and at 723 * least a minimum number of pages. The starting swap block number 724 * (a page index) is returned or SWAPBLK_NONE if the allocation 725 * failed. 726 * 727 * Also has the side effect of advising that somebody made a mistake 728 * when they configured swap and didn't configure enough. 729 * 730 * This routine may not sleep. 731 * 732 * We allocate in round-robin fashion from the configured devices. 733 */ 734 static daddr_t 735 swp_pager_getswapspace(int *io_npages, int limit) 736 { 737 daddr_t blk; 738 struct swdevt *sp; 739 int mpages, npages; 740 741 blk = SWAPBLK_NONE; 742 mpages = *io_npages; 743 npages = imin(BLIST_MAX_ALLOC, mpages); 744 mtx_lock(&sw_dev_mtx); 745 sp = swdevhd; 746 while (!TAILQ_EMPTY(&swtailq)) { 747 if (sp == NULL) 748 sp = TAILQ_FIRST(&swtailq); 749 if ((sp->sw_flags & SW_CLOSING) == 0) 750 blk = blist_alloc(sp->sw_blist, &npages, mpages); 751 if (blk != SWAPBLK_NONE) 752 break; 753 sp = TAILQ_NEXT(sp, sw_list); 754 if (swdevhd == sp) { 755 if (npages <= limit) 756 break; 757 mpages = npages - 1; 758 npages >>= 1; 759 } 760 } 761 if (blk != SWAPBLK_NONE) { 762 *io_npages = npages; 763 blk += sp->sw_first; 764 sp->sw_used += npages; 765 swap_pager_avail -= npages; 766 swp_sizecheck(); 767 swdevhd = TAILQ_NEXT(sp, sw_list); 768 } else { 769 if (swap_pager_full != 2) { 770 printf("swp_pager_getswapspace(%d): failed\n", 771 *io_npages); 772 swap_pager_full = 2; 773 swap_pager_almost_full = 1; 774 } 775 swdevhd = NULL; 776 } 777 mtx_unlock(&sw_dev_mtx); 778 return (blk); 779 } 780 781 static bool 782 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 783 { 784 785 return (blk >= sp->sw_first && blk < sp->sw_end); 786 } 787 788 static void 789 swp_pager_strategy(struct buf *bp) 790 { 791 struct swdevt *sp; 792 793 mtx_lock(&sw_dev_mtx); 794 TAILQ_FOREACH(sp, &swtailq, sw_list) { 795 if (swp_pager_isondev(bp->b_blkno, sp)) { 796 mtx_unlock(&sw_dev_mtx); 797 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 798 unmapped_buf_allowed) { 799 bp->b_data = unmapped_buf; 800 bp->b_offset = 0; 801 } else { 802 pmap_qenter((vm_offset_t)bp->b_data, 803 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 804 } 805 sp->sw_strategy(bp, sp); 806 return; 807 } 808 } 809 panic("Swapdev not found"); 810 } 811 812 813 /* 814 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 815 * 816 * This routine returns the specified swap blocks back to the bitmap. 817 * 818 * This routine may not sleep. 819 */ 820 static void 821 swp_pager_freeswapspace(daddr_t blk, daddr_t npages) 822 { 823 struct swdevt *sp; 824 825 if (npages == 0) 826 return; 827 mtx_lock(&sw_dev_mtx); 828 TAILQ_FOREACH(sp, &swtailq, sw_list) { 829 if (swp_pager_isondev(blk, sp)) { 830 sp->sw_used -= npages; 831 /* 832 * If we are attempting to stop swapping on 833 * this device, we don't want to mark any 834 * blocks free lest they be reused. 835 */ 836 if ((sp->sw_flags & SW_CLOSING) == 0) { 837 blist_free(sp->sw_blist, blk - sp->sw_first, 838 npages); 839 swap_pager_avail += npages; 840 swp_sizecheck(); 841 } 842 mtx_unlock(&sw_dev_mtx); 843 return; 844 } 845 } 846 panic("Swapdev not found"); 847 } 848 849 /* 850 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats 851 */ 852 static int 853 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS) 854 { 855 struct sbuf sbuf; 856 struct swdevt *sp; 857 const char *devname; 858 int error; 859 860 error = sysctl_wire_old_buffer(req, 0); 861 if (error != 0) 862 return (error); 863 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 864 mtx_lock(&sw_dev_mtx); 865 TAILQ_FOREACH(sp, &swtailq, sw_list) { 866 if (vn_isdisk(sp->sw_vp, NULL)) 867 devname = devtoname(sp->sw_vp->v_rdev); 868 else 869 devname = "[file]"; 870 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname); 871 blist_stats(sp->sw_blist, &sbuf); 872 } 873 mtx_unlock(&sw_dev_mtx); 874 error = sbuf_finish(&sbuf); 875 sbuf_delete(&sbuf); 876 return (error); 877 } 878 879 /* 880 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 881 * range within an object. 882 * 883 * This is a globally accessible routine. 884 * 885 * This routine removes swapblk assignments from swap metadata. 886 * 887 * The external callers of this routine typically have already destroyed 888 * or renamed vm_page_t's associated with this range in the object so 889 * we should be ok. 890 * 891 * The object must be locked. 892 */ 893 void 894 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 895 { 896 897 swp_pager_meta_free(object, start, size); 898 } 899 900 /* 901 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 902 * 903 * Assigns swap blocks to the specified range within the object. The 904 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 905 * 906 * Returns 0 on success, -1 on failure. 907 */ 908 int 909 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 910 { 911 daddr_t addr, blk, n_free, s_free; 912 int i, j, n; 913 914 swp_pager_init_freerange(&s_free, &n_free); 915 VM_OBJECT_WLOCK(object); 916 for (i = 0; i < size; i += n) { 917 n = size - i; 918 blk = swp_pager_getswapspace(&n, 1); 919 if (blk == SWAPBLK_NONE) { 920 swp_pager_meta_free(object, start, i); 921 VM_OBJECT_WUNLOCK(object); 922 return (-1); 923 } 924 for (j = 0; j < n; ++j) { 925 addr = swp_pager_meta_build(object, 926 start + i + j, blk + j); 927 if (addr != SWAPBLK_NONE) 928 swp_pager_update_freerange(&s_free, &n_free, 929 addr); 930 } 931 } 932 swp_pager_freeswapspace(s_free, n_free); 933 VM_OBJECT_WUNLOCK(object); 934 return (0); 935 } 936 937 static bool 938 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject, 939 vm_pindex_t pindex, daddr_t addr) 940 { 941 daddr_t dstaddr; 942 943 KASSERT(srcobject->type == OBJT_SWAP, 944 ("%s: Srcobject not swappable", __func__)); 945 if (dstobject->type == OBJT_SWAP && 946 swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) { 947 /* Caller should destroy the source block. */ 948 return (false); 949 } 950 951 /* 952 * Destination has no swapblk and is not resident, transfer source. 953 * swp_pager_meta_build() can sleep. 954 */ 955 vm_object_pip_add(srcobject, 1); 956 VM_OBJECT_WUNLOCK(srcobject); 957 vm_object_pip_add(dstobject, 1); 958 dstaddr = swp_pager_meta_build(dstobject, pindex, addr); 959 KASSERT(dstaddr == SWAPBLK_NONE, 960 ("Unexpected destination swapblk")); 961 vm_object_pip_wakeup(dstobject); 962 VM_OBJECT_WLOCK(srcobject); 963 vm_object_pip_wakeup(srcobject); 964 return (true); 965 } 966 967 /* 968 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 969 * and destroy the source. 970 * 971 * Copy any valid swapblks from the source to the destination. In 972 * cases where both the source and destination have a valid swapblk, 973 * we keep the destination's. 974 * 975 * This routine is allowed to sleep. It may sleep allocating metadata 976 * indirectly through swp_pager_meta_build() or if paging is still in 977 * progress on the source. 978 * 979 * The source object contains no vm_page_t's (which is just as well) 980 * 981 * The source object is of type OBJT_SWAP. 982 * 983 * The source and destination objects must be locked. 984 * Both object locks may temporarily be released. 985 */ 986 void 987 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 988 vm_pindex_t offset, int destroysource) 989 { 990 991 VM_OBJECT_ASSERT_WLOCKED(srcobject); 992 VM_OBJECT_ASSERT_WLOCKED(dstobject); 993 994 /* 995 * If destroysource is set, we remove the source object from the 996 * swap_pager internal queue now. 997 */ 998 if (destroysource && (srcobject->flags & OBJ_ANON) == 0 && 999 srcobject->handle != NULL) { 1000 vm_object_pip_add(srcobject, 1); 1001 VM_OBJECT_WUNLOCK(srcobject); 1002 vm_object_pip_add(dstobject, 1); 1003 VM_OBJECT_WUNLOCK(dstobject); 1004 sx_xlock(&sw_alloc_sx); 1005 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 1006 pager_object_list); 1007 sx_xunlock(&sw_alloc_sx); 1008 VM_OBJECT_WLOCK(dstobject); 1009 vm_object_pip_wakeup(dstobject); 1010 VM_OBJECT_WLOCK(srcobject); 1011 vm_object_pip_wakeup(srcobject); 1012 } 1013 1014 /* 1015 * Transfer source to destination. 1016 */ 1017 swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size); 1018 1019 /* 1020 * Free left over swap blocks in source. 1021 * 1022 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 1023 * double-remove the object from the swap queues. 1024 */ 1025 if (destroysource) { 1026 swp_pager_meta_free_all(srcobject); 1027 /* 1028 * Reverting the type is not necessary, the caller is going 1029 * to destroy srcobject directly, but I'm doing it here 1030 * for consistency since we've removed the object from its 1031 * queues. 1032 */ 1033 srcobject->type = OBJT_DEFAULT; 1034 } 1035 } 1036 1037 /* 1038 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 1039 * the requested page. 1040 * 1041 * We determine whether good backing store exists for the requested 1042 * page and return TRUE if it does, FALSE if it doesn't. 1043 * 1044 * If TRUE, we also try to determine how much valid, contiguous backing 1045 * store exists before and after the requested page. 1046 */ 1047 static boolean_t 1048 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 1049 int *after) 1050 { 1051 daddr_t blk, blk0; 1052 int i; 1053 1054 VM_OBJECT_ASSERT_LOCKED(object); 1055 KASSERT(object->type == OBJT_SWAP, 1056 ("%s: object not swappable", __func__)); 1057 1058 /* 1059 * do we have good backing store at the requested index ? 1060 */ 1061 blk0 = swp_pager_meta_lookup(object, pindex); 1062 if (blk0 == SWAPBLK_NONE) { 1063 if (before) 1064 *before = 0; 1065 if (after) 1066 *after = 0; 1067 return (FALSE); 1068 } 1069 1070 /* 1071 * find backwards-looking contiguous good backing store 1072 */ 1073 if (before != NULL) { 1074 for (i = 1; i < SWB_NPAGES; i++) { 1075 if (i > pindex) 1076 break; 1077 blk = swp_pager_meta_lookup(object, pindex - i); 1078 if (blk != blk0 - i) 1079 break; 1080 } 1081 *before = i - 1; 1082 } 1083 1084 /* 1085 * find forward-looking contiguous good backing store 1086 */ 1087 if (after != NULL) { 1088 for (i = 1; i < SWB_NPAGES; i++) { 1089 blk = swp_pager_meta_lookup(object, pindex + i); 1090 if (blk != blk0 + i) 1091 break; 1092 } 1093 *after = i - 1; 1094 } 1095 return (TRUE); 1096 } 1097 1098 /* 1099 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1100 * 1101 * This removes any associated swap backing store, whether valid or 1102 * not, from the page. 1103 * 1104 * This routine is typically called when a page is made dirty, at 1105 * which point any associated swap can be freed. MADV_FREE also 1106 * calls us in a special-case situation 1107 * 1108 * NOTE!!! If the page is clean and the swap was valid, the caller 1109 * should make the page dirty before calling this routine. This routine 1110 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1111 * depends on it. 1112 * 1113 * This routine may not sleep. 1114 * 1115 * The object containing the page must be locked. 1116 */ 1117 static void 1118 swap_pager_unswapped(vm_page_t m) 1119 { 1120 struct swblk *sb; 1121 1122 VM_OBJECT_ASSERT_WLOCKED(m->object); 1123 1124 /* 1125 * The meta data only exists if the object is OBJT_SWAP 1126 * and even then might not be allocated yet. 1127 */ 1128 KASSERT(m->object->type == OBJT_SWAP, 1129 ("Free object not swappable")); 1130 1131 sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks, 1132 rounddown(m->pindex, SWAP_META_PAGES)); 1133 if (sb == NULL) 1134 return; 1135 if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE) 1136 return; 1137 swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1); 1138 sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE; 1139 swp_pager_free_empty_swblk(m->object, sb); 1140 } 1141 1142 /* 1143 * swap_pager_getpages() - bring pages in from swap 1144 * 1145 * Attempt to page in the pages in array "ma" of length "count". The 1146 * caller may optionally specify that additional pages preceding and 1147 * succeeding the specified range be paged in. The number of such pages 1148 * is returned in the "rbehind" and "rahead" parameters, and they will 1149 * be in the inactive queue upon return. 1150 * 1151 * The pages in "ma" must be busied and will remain busied upon return. 1152 */ 1153 static int 1154 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind, 1155 int *rahead) 1156 { 1157 struct buf *bp; 1158 vm_page_t bm, mpred, msucc, p; 1159 vm_pindex_t pindex; 1160 daddr_t blk; 1161 int i, maxahead, maxbehind, reqcount; 1162 1163 reqcount = count; 1164 1165 /* 1166 * Determine the final number of read-behind pages and 1167 * allocate them BEFORE releasing the object lock. Otherwise, 1168 * there can be a problematic race with vm_object_split(). 1169 * Specifically, vm_object_split() might first transfer pages 1170 * that precede ma[0] in the current object to a new object, 1171 * and then this function incorrectly recreates those pages as 1172 * read-behind pages in the current object. 1173 */ 1174 KASSERT(object->type == OBJT_SWAP, 1175 ("%s: object not swappable", __func__)); 1176 if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) 1177 return (VM_PAGER_FAIL); 1178 1179 /* 1180 * Clip the readahead and readbehind ranges to exclude resident pages. 1181 */ 1182 if (rahead != NULL) { 1183 KASSERT(reqcount - 1 <= maxahead, 1184 ("page count %d extends beyond swap block", reqcount)); 1185 *rahead = imin(*rahead, maxahead - (reqcount - 1)); 1186 pindex = ma[reqcount - 1]->pindex; 1187 msucc = TAILQ_NEXT(ma[reqcount - 1], listq); 1188 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1189 *rahead = msucc->pindex - pindex - 1; 1190 } 1191 if (rbehind != NULL) { 1192 *rbehind = imin(*rbehind, maxbehind); 1193 pindex = ma[0]->pindex; 1194 mpred = TAILQ_PREV(ma[0], pglist, listq); 1195 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1196 *rbehind = pindex - mpred->pindex - 1; 1197 } 1198 1199 bm = ma[0]; 1200 for (i = 0; i < count; i++) 1201 ma[i]->oflags |= VPO_SWAPINPROG; 1202 1203 /* 1204 * Allocate readahead and readbehind pages. 1205 */ 1206 if (rbehind != NULL) { 1207 for (i = 1; i <= *rbehind; i++) { 1208 p = vm_page_alloc(object, ma[0]->pindex - i, 1209 VM_ALLOC_NORMAL); 1210 if (p == NULL) 1211 break; 1212 p->oflags |= VPO_SWAPINPROG; 1213 bm = p; 1214 } 1215 *rbehind = i - 1; 1216 } 1217 if (rahead != NULL) { 1218 for (i = 0; i < *rahead; i++) { 1219 p = vm_page_alloc(object, 1220 ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); 1221 if (p == NULL) 1222 break; 1223 p->oflags |= VPO_SWAPINPROG; 1224 } 1225 *rahead = i; 1226 } 1227 if (rbehind != NULL) 1228 count += *rbehind; 1229 if (rahead != NULL) 1230 count += *rahead; 1231 1232 vm_object_pip_add(object, count); 1233 1234 pindex = bm->pindex; 1235 blk = swp_pager_meta_lookup(object, pindex); 1236 KASSERT(blk != SWAPBLK_NONE, 1237 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1238 1239 VM_OBJECT_WUNLOCK(object); 1240 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1241 /* Pages cannot leave the object while busy. */ 1242 for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) { 1243 MPASS(p->pindex == bm->pindex + i); 1244 bp->b_pages[i] = p; 1245 } 1246 1247 bp->b_flags |= B_PAGING; 1248 bp->b_iocmd = BIO_READ; 1249 bp->b_iodone = swp_pager_async_iodone; 1250 bp->b_rcred = crhold(thread0.td_ucred); 1251 bp->b_wcred = crhold(thread0.td_ucred); 1252 bp->b_blkno = blk; 1253 bp->b_bcount = PAGE_SIZE * count; 1254 bp->b_bufsize = PAGE_SIZE * count; 1255 bp->b_npages = count; 1256 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1257 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1258 1259 VM_CNT_INC(v_swapin); 1260 VM_CNT_ADD(v_swappgsin, count); 1261 1262 /* 1263 * perform the I/O. NOTE!!! bp cannot be considered valid after 1264 * this point because we automatically release it on completion. 1265 * Instead, we look at the one page we are interested in which we 1266 * still hold a lock on even through the I/O completion. 1267 * 1268 * The other pages in our ma[] array are also released on completion, 1269 * so we cannot assume they are valid anymore either. 1270 * 1271 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1272 */ 1273 BUF_KERNPROC(bp); 1274 swp_pager_strategy(bp); 1275 1276 /* 1277 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1278 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1279 * is set in the metadata for each page in the request. 1280 */ 1281 VM_OBJECT_WLOCK(object); 1282 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) { 1283 ma[0]->oflags |= VPO_SWAPSLEEP; 1284 VM_CNT_INC(v_intrans); 1285 if (VM_OBJECT_SLEEP(object, &object->handle, PSWP, 1286 "swread", hz * 20)) { 1287 printf( 1288 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1289 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1290 } 1291 } 1292 1293 /* 1294 * If we had an unrecoverable read error pages will not be valid. 1295 */ 1296 for (i = 0; i < reqcount; i++) 1297 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1298 return (VM_PAGER_ERROR); 1299 1300 return (VM_PAGER_OK); 1301 1302 /* 1303 * A final note: in a low swap situation, we cannot deallocate swap 1304 * and mark a page dirty here because the caller is likely to mark 1305 * the page clean when we return, causing the page to possibly revert 1306 * to all-zero's later. 1307 */ 1308 } 1309 1310 /* 1311 * swap_pager_getpages_async(): 1312 * 1313 * Right now this is emulation of asynchronous operation on top of 1314 * swap_pager_getpages(). 1315 */ 1316 static int 1317 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count, 1318 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1319 { 1320 int r, error; 1321 1322 r = swap_pager_getpages(object, ma, count, rbehind, rahead); 1323 VM_OBJECT_WUNLOCK(object); 1324 switch (r) { 1325 case VM_PAGER_OK: 1326 error = 0; 1327 break; 1328 case VM_PAGER_ERROR: 1329 error = EIO; 1330 break; 1331 case VM_PAGER_FAIL: 1332 error = EINVAL; 1333 break; 1334 default: 1335 panic("unhandled swap_pager_getpages() error %d", r); 1336 } 1337 (iodone)(arg, ma, count, error); 1338 VM_OBJECT_WLOCK(object); 1339 1340 return (r); 1341 } 1342 1343 /* 1344 * swap_pager_putpages: 1345 * 1346 * Assign swap (if necessary) and initiate I/O on the specified pages. 1347 * 1348 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1349 * are automatically converted to SWAP objects. 1350 * 1351 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1352 * vm_page reservation system coupled with properly written VFS devices 1353 * should ensure that no low-memory deadlock occurs. This is an area 1354 * which needs work. 1355 * 1356 * The parent has N vm_object_pip_add() references prior to 1357 * calling us and will remove references for rtvals[] that are 1358 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1359 * completion. 1360 * 1361 * The parent has soft-busy'd the pages it passes us and will unbusy 1362 * those whose rtvals[] entry is not set to VM_PAGER_PEND on return. 1363 * We need to unbusy the rest on I/O completion. 1364 */ 1365 static void 1366 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count, 1367 int flags, int *rtvals) 1368 { 1369 struct buf *bp; 1370 daddr_t addr, blk, n_free, s_free; 1371 vm_page_t mreq; 1372 int i, j, n; 1373 bool async; 1374 1375 KASSERT(count == 0 || ma[0]->object == object, 1376 ("%s: object mismatch %p/%p", 1377 __func__, object, ma[0]->object)); 1378 1379 /* 1380 * Step 1 1381 * 1382 * Turn object into OBJT_SWAP. Force sync if not a pageout process. 1383 */ 1384 if (object->type != OBJT_SWAP) { 1385 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1386 KASSERT(addr == SWAPBLK_NONE, 1387 ("unexpected object swap block")); 1388 } 1389 VM_OBJECT_WUNLOCK(object); 1390 async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0; 1391 swp_pager_init_freerange(&s_free, &n_free); 1392 1393 /* 1394 * Step 2 1395 * 1396 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1397 * The page is left dirty until the pageout operation completes 1398 * successfully. 1399 */ 1400 for (i = 0; i < count; i += n) { 1401 /* Maximum I/O size is limited by maximum swap block size. */ 1402 n = min(count - i, nsw_cluster_max); 1403 1404 /* Get a block of swap of size up to size n. */ 1405 blk = swp_pager_getswapspace(&n, 4); 1406 if (blk == SWAPBLK_NONE) { 1407 for (j = 0; j < n; ++j) 1408 rtvals[i + j] = VM_PAGER_FAIL; 1409 continue; 1410 } 1411 1412 /* 1413 * All I/O parameters have been satisfied. Build the I/O 1414 * request and assign the swap space. 1415 */ 1416 if (async) { 1417 mtx_lock(&swbuf_mtx); 1418 while (nsw_wcount_async == 0) 1419 msleep(&nsw_wcount_async, &swbuf_mtx, PVM, 1420 "swbufa", 0); 1421 nsw_wcount_async--; 1422 mtx_unlock(&swbuf_mtx); 1423 } 1424 bp = uma_zalloc(swwbuf_zone, M_WAITOK); 1425 if (async) 1426 bp->b_flags = B_ASYNC; 1427 bp->b_flags |= B_PAGING; 1428 bp->b_iocmd = BIO_WRITE; 1429 1430 bp->b_rcred = crhold(thread0.td_ucred); 1431 bp->b_wcred = crhold(thread0.td_ucred); 1432 bp->b_bcount = PAGE_SIZE * n; 1433 bp->b_bufsize = PAGE_SIZE * n; 1434 bp->b_blkno = blk; 1435 1436 VM_OBJECT_WLOCK(object); 1437 for (j = 0; j < n; ++j) { 1438 mreq = ma[i + j]; 1439 addr = swp_pager_meta_build(mreq->object, mreq->pindex, 1440 blk + j); 1441 if (addr != SWAPBLK_NONE) 1442 swp_pager_update_freerange(&s_free, &n_free, 1443 addr); 1444 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1445 mreq->oflags |= VPO_SWAPINPROG; 1446 bp->b_pages[j] = mreq; 1447 } 1448 VM_OBJECT_WUNLOCK(object); 1449 bp->b_npages = n; 1450 /* 1451 * Must set dirty range for NFS to work. 1452 */ 1453 bp->b_dirtyoff = 0; 1454 bp->b_dirtyend = bp->b_bcount; 1455 1456 VM_CNT_INC(v_swapout); 1457 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1458 1459 /* 1460 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1461 * can call the async completion routine at the end of a 1462 * synchronous I/O operation. Otherwise, our caller would 1463 * perform duplicate unbusy and wakeup operations on the page 1464 * and object, respectively. 1465 */ 1466 for (j = 0; j < n; j++) 1467 rtvals[i + j] = VM_PAGER_PEND; 1468 1469 /* 1470 * asynchronous 1471 * 1472 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1473 */ 1474 if (async) { 1475 bp->b_iodone = swp_pager_async_iodone; 1476 BUF_KERNPROC(bp); 1477 swp_pager_strategy(bp); 1478 continue; 1479 } 1480 1481 /* 1482 * synchronous 1483 * 1484 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1485 */ 1486 bp->b_iodone = bdone; 1487 swp_pager_strategy(bp); 1488 1489 /* 1490 * Wait for the sync I/O to complete. 1491 */ 1492 bwait(bp, PVM, "swwrt"); 1493 1494 /* 1495 * Now that we are through with the bp, we can call the 1496 * normal async completion, which frees everything up. 1497 */ 1498 swp_pager_async_iodone(bp); 1499 } 1500 swp_pager_freeswapspace(s_free, n_free); 1501 VM_OBJECT_WLOCK(object); 1502 } 1503 1504 /* 1505 * swp_pager_async_iodone: 1506 * 1507 * Completion routine for asynchronous reads and writes from/to swap. 1508 * Also called manually by synchronous code to finish up a bp. 1509 * 1510 * This routine may not sleep. 1511 */ 1512 static void 1513 swp_pager_async_iodone(struct buf *bp) 1514 { 1515 int i; 1516 vm_object_t object = NULL; 1517 1518 /* 1519 * Report error - unless we ran out of memory, in which case 1520 * we've already logged it in swapgeom_strategy(). 1521 */ 1522 if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) { 1523 printf( 1524 "swap_pager: I/O error - %s failed; blkno %ld," 1525 "size %ld, error %d\n", 1526 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1527 (long)bp->b_blkno, 1528 (long)bp->b_bcount, 1529 bp->b_error 1530 ); 1531 } 1532 1533 /* 1534 * remove the mapping for kernel virtual 1535 */ 1536 if (buf_mapped(bp)) 1537 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1538 else 1539 bp->b_data = bp->b_kvabase; 1540 1541 if (bp->b_npages) { 1542 object = bp->b_pages[0]->object; 1543 VM_OBJECT_WLOCK(object); 1544 } 1545 1546 /* 1547 * cleanup pages. If an error occurs writing to swap, we are in 1548 * very serious trouble. If it happens to be a disk error, though, 1549 * we may be able to recover by reassigning the swap later on. So 1550 * in this case we remove the m->swapblk assignment for the page 1551 * but do not free it in the rlist. The errornous block(s) are thus 1552 * never reallocated as swap. Redirty the page and continue. 1553 */ 1554 for (i = 0; i < bp->b_npages; ++i) { 1555 vm_page_t m = bp->b_pages[i]; 1556 1557 m->oflags &= ~VPO_SWAPINPROG; 1558 if (m->oflags & VPO_SWAPSLEEP) { 1559 m->oflags &= ~VPO_SWAPSLEEP; 1560 wakeup(&object->handle); 1561 } 1562 1563 if (bp->b_ioflags & BIO_ERROR) { 1564 /* 1565 * If an error occurs I'd love to throw the swapblk 1566 * away without freeing it back to swapspace, so it 1567 * can never be used again. But I can't from an 1568 * interrupt. 1569 */ 1570 if (bp->b_iocmd == BIO_READ) { 1571 /* 1572 * NOTE: for reads, m->dirty will probably 1573 * be overridden by the original caller of 1574 * getpages so don't play cute tricks here. 1575 */ 1576 vm_page_invalid(m); 1577 } else { 1578 /* 1579 * If a write error occurs, reactivate page 1580 * so it doesn't clog the inactive list, 1581 * then finish the I/O. 1582 */ 1583 MPASS(m->dirty == VM_PAGE_BITS_ALL); 1584 vm_page_lock(m); 1585 vm_page_activate(m); 1586 vm_page_unlock(m); 1587 vm_page_sunbusy(m); 1588 } 1589 } else if (bp->b_iocmd == BIO_READ) { 1590 /* 1591 * NOTE: for reads, m->dirty will probably be 1592 * overridden by the original caller of getpages so 1593 * we cannot set them in order to free the underlying 1594 * swap in a low-swap situation. I don't think we'd 1595 * want to do that anyway, but it was an optimization 1596 * that existed in the old swapper for a time before 1597 * it got ripped out due to precisely this problem. 1598 */ 1599 KASSERT(!pmap_page_is_mapped(m), 1600 ("swp_pager_async_iodone: page %p is mapped", m)); 1601 KASSERT(m->dirty == 0, 1602 ("swp_pager_async_iodone: page %p is dirty", m)); 1603 1604 vm_page_valid(m); 1605 if (i < bp->b_pgbefore || 1606 i >= bp->b_npages - bp->b_pgafter) 1607 vm_page_readahead_finish(m); 1608 } else { 1609 /* 1610 * For write success, clear the dirty 1611 * status, then finish the I/O ( which decrements the 1612 * busy count and possibly wakes waiter's up ). 1613 * A page is only written to swap after a period of 1614 * inactivity. Therefore, we do not expect it to be 1615 * reused. 1616 */ 1617 KASSERT(!pmap_page_is_write_mapped(m), 1618 ("swp_pager_async_iodone: page %p is not write" 1619 " protected", m)); 1620 vm_page_undirty(m); 1621 vm_page_lock(m); 1622 vm_page_deactivate_noreuse(m); 1623 vm_page_unlock(m); 1624 vm_page_sunbusy(m); 1625 } 1626 } 1627 1628 /* 1629 * adjust pip. NOTE: the original parent may still have its own 1630 * pip refs on the object. 1631 */ 1632 if (object != NULL) { 1633 vm_object_pip_wakeupn(object, bp->b_npages); 1634 VM_OBJECT_WUNLOCK(object); 1635 } 1636 1637 /* 1638 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1639 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1640 * trigger a KASSERT in relpbuf(). 1641 */ 1642 if (bp->b_vp) { 1643 bp->b_vp = NULL; 1644 bp->b_bufobj = NULL; 1645 } 1646 /* 1647 * release the physical I/O buffer 1648 */ 1649 if (bp->b_flags & B_ASYNC) { 1650 mtx_lock(&swbuf_mtx); 1651 if (++nsw_wcount_async == 1) 1652 wakeup(&nsw_wcount_async); 1653 mtx_unlock(&swbuf_mtx); 1654 } 1655 uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp); 1656 } 1657 1658 int 1659 swap_pager_nswapdev(void) 1660 { 1661 1662 return (nswapdev); 1663 } 1664 1665 static void 1666 swp_pager_force_dirty(vm_page_t m) 1667 { 1668 1669 vm_page_dirty(m); 1670 #ifdef INVARIANTS 1671 vm_page_lock(m); 1672 if (!vm_page_wired(m) && m->queue == PQ_NONE) 1673 panic("page %p is neither wired nor queued", m); 1674 vm_page_unlock(m); 1675 #endif 1676 vm_page_xunbusy(m); 1677 swap_pager_unswapped(m); 1678 } 1679 1680 static void 1681 swp_pager_force_launder(vm_page_t m) 1682 { 1683 1684 vm_page_dirty(m); 1685 vm_page_lock(m); 1686 vm_page_launder(m); 1687 vm_page_unlock(m); 1688 vm_page_xunbusy(m); 1689 swap_pager_unswapped(m); 1690 } 1691 1692 /* 1693 * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in 1694 * 1695 * This routine dissociates pages starting at the given index within an 1696 * object from their backing store, paging them in if they do not reside 1697 * in memory. Pages that are paged in are marked dirty and placed in the 1698 * laundry queue. Pages are marked dirty because they no longer have 1699 * backing store. They are placed in the laundry queue because they have 1700 * not been accessed recently. Otherwise, they would already reside in 1701 * memory. 1702 */ 1703 static void 1704 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages) 1705 { 1706 vm_page_t ma[npages]; 1707 int i, j; 1708 1709 KASSERT(npages > 0, ("%s: No pages", __func__)); 1710 KASSERT(npages <= MAXPHYS / PAGE_SIZE, 1711 ("%s: Too many pages: %d", __func__, npages)); 1712 KASSERT(object->type == OBJT_SWAP, 1713 ("%s: Object not swappable", __func__)); 1714 vm_object_pip_add(object, npages); 1715 vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages); 1716 for (i = j = 0;; i++) { 1717 /* Count nonresident pages, to page-in all at once. */ 1718 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL) 1719 continue; 1720 if (j < i) { 1721 /* Page-in nonresident pages. Mark for laundering. */ 1722 if (swap_pager_getpages(object, &ma[j], i - j, NULL, 1723 NULL) != VM_PAGER_OK) 1724 panic("%s: read from swap failed", __func__); 1725 do { 1726 swp_pager_force_launder(ma[j]); 1727 } while (++j < i); 1728 } 1729 if (i == npages) 1730 break; 1731 /* Mark dirty a resident page. */ 1732 swp_pager_force_dirty(ma[j++]); 1733 } 1734 vm_object_pip_wakeupn(object, npages); 1735 } 1736 1737 /* 1738 * swap_pager_swapoff_object: 1739 * 1740 * Page in all of the pages that have been paged out for an object 1741 * to a swap device. 1742 */ 1743 static void 1744 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object) 1745 { 1746 struct swblk *sb; 1747 vm_pindex_t pi, s_pindex; 1748 daddr_t blk, n_blks, s_blk; 1749 int i; 1750 1751 KASSERT(object->type == OBJT_SWAP, 1752 ("%s: Object not swappable", __func__)); 1753 n_blks = 0; 1754 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 1755 &object->un_pager.swp.swp_blks, pi)) != NULL; ) { 1756 for (i = 0; i < SWAP_META_PAGES; i++) { 1757 blk = sb->d[i]; 1758 if (!swp_pager_isondev(blk, sp)) 1759 blk = SWAPBLK_NONE; 1760 1761 /* 1762 * If there are no blocks/pages accumulated, start a new 1763 * accumulation here. 1764 */ 1765 if (n_blks == 0) { 1766 if (blk != SWAPBLK_NONE) { 1767 s_blk = blk; 1768 s_pindex = sb->p + i; 1769 n_blks = 1; 1770 } 1771 continue; 1772 } 1773 1774 /* 1775 * If the accumulation can be extended without breaking 1776 * the sequence of consecutive blocks and pages that 1777 * swp_pager_force_pagein() depends on, do so. 1778 */ 1779 if (n_blks < MAXPHYS / PAGE_SIZE && 1780 s_blk + n_blks == blk && 1781 s_pindex + n_blks == sb->p + i) { 1782 ++n_blks; 1783 continue; 1784 } 1785 1786 /* 1787 * The sequence of consecutive blocks and pages cannot 1788 * be extended, so page them all in here. Then, 1789 * because doing so involves releasing and reacquiring 1790 * a lock that protects the swap block pctrie, do not 1791 * rely on the current swap block. Break this loop and 1792 * re-fetch the same pindex from the pctrie again. 1793 */ 1794 swp_pager_force_pagein(object, s_pindex, n_blks); 1795 n_blks = 0; 1796 break; 1797 } 1798 if (i == SWAP_META_PAGES) 1799 pi = sb->p + SWAP_META_PAGES; 1800 } 1801 if (n_blks > 0) 1802 swp_pager_force_pagein(object, s_pindex, n_blks); 1803 } 1804 1805 /* 1806 * swap_pager_swapoff: 1807 * 1808 * Page in all of the pages that have been paged out to the 1809 * given device. The corresponding blocks in the bitmap must be 1810 * marked as allocated and the device must be flagged SW_CLOSING. 1811 * There may be no processes swapped out to the device. 1812 * 1813 * This routine may block. 1814 */ 1815 static void 1816 swap_pager_swapoff(struct swdevt *sp) 1817 { 1818 vm_object_t object; 1819 int retries; 1820 1821 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1822 1823 retries = 0; 1824 full_rescan: 1825 mtx_lock(&vm_object_list_mtx); 1826 TAILQ_FOREACH(object, &vm_object_list, object_list) { 1827 if (object->type != OBJT_SWAP) 1828 continue; 1829 mtx_unlock(&vm_object_list_mtx); 1830 /* Depends on type-stability. */ 1831 VM_OBJECT_WLOCK(object); 1832 1833 /* 1834 * Dead objects are eventually terminated on their own. 1835 */ 1836 if ((object->flags & OBJ_DEAD) != 0) 1837 goto next_obj; 1838 1839 /* 1840 * Sync with fences placed after pctrie 1841 * initialization. We must not access pctrie below 1842 * unless we checked that our object is swap and not 1843 * dead. 1844 */ 1845 atomic_thread_fence_acq(); 1846 if (object->type != OBJT_SWAP) 1847 goto next_obj; 1848 1849 swap_pager_swapoff_object(sp, object); 1850 next_obj: 1851 VM_OBJECT_WUNLOCK(object); 1852 mtx_lock(&vm_object_list_mtx); 1853 } 1854 mtx_unlock(&vm_object_list_mtx); 1855 1856 if (sp->sw_used) { 1857 /* 1858 * Objects may be locked or paging to the device being 1859 * removed, so we will miss their pages and need to 1860 * make another pass. We have marked this device as 1861 * SW_CLOSING, so the activity should finish soon. 1862 */ 1863 retries++; 1864 if (retries > 100) { 1865 panic("swapoff: failed to locate %d swap blocks", 1866 sp->sw_used); 1867 } 1868 pause("swpoff", hz / 20); 1869 goto full_rescan; 1870 } 1871 EVENTHANDLER_INVOKE(swapoff, sp); 1872 } 1873 1874 /************************************************************************ 1875 * SWAP META DATA * 1876 ************************************************************************ 1877 * 1878 * These routines manipulate the swap metadata stored in the 1879 * OBJT_SWAP object. 1880 * 1881 * Swap metadata is implemented with a global hash and not directly 1882 * linked into the object. Instead the object simply contains 1883 * appropriate tracking counters. 1884 */ 1885 1886 /* 1887 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free? 1888 */ 1889 static bool 1890 swp_pager_swblk_empty(struct swblk *sb, int start, int limit) 1891 { 1892 int i; 1893 1894 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES); 1895 for (i = start; i < limit; i++) { 1896 if (sb->d[i] != SWAPBLK_NONE) 1897 return (false); 1898 } 1899 return (true); 1900 } 1901 1902 /* 1903 * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free 1904 * 1905 * Nothing is done if the block is still in use. 1906 */ 1907 static void 1908 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb) 1909 { 1910 1911 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 1912 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 1913 uma_zfree(swblk_zone, sb); 1914 } 1915 } 1916 1917 /* 1918 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1919 * 1920 * We first convert the object to a swap object if it is a default 1921 * object. 1922 * 1923 * The specified swapblk is added to the object's swap metadata. If 1924 * the swapblk is not valid, it is freed instead. Any previously 1925 * assigned swapblk is returned. 1926 */ 1927 static daddr_t 1928 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1929 { 1930 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted; 1931 struct swblk *sb, *sb1; 1932 vm_pindex_t modpi, rdpi; 1933 daddr_t prev_swapblk; 1934 int error, i; 1935 1936 VM_OBJECT_ASSERT_WLOCKED(object); 1937 1938 /* 1939 * Convert default object to swap object if necessary 1940 */ 1941 if (object->type != OBJT_SWAP) { 1942 pctrie_init(&object->un_pager.swp.swp_blks); 1943 1944 /* 1945 * Ensure that swap_pager_swapoff()'s iteration over 1946 * object_list does not see a garbage pctrie. 1947 */ 1948 atomic_thread_fence_rel(); 1949 1950 object->type = OBJT_SWAP; 1951 object->un_pager.swp.writemappings = 0; 1952 KASSERT((object->flags & OBJ_ANON) != 0 || 1953 object->handle == NULL, 1954 ("default pager %p with handle %p", 1955 object, object->handle)); 1956 } 1957 1958 rdpi = rounddown(pindex, SWAP_META_PAGES); 1959 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi); 1960 if (sb == NULL) { 1961 if (swapblk == SWAPBLK_NONE) 1962 return (SWAPBLK_NONE); 1963 for (;;) { 1964 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc == 1965 pageproc ? M_USE_RESERVE : 0)); 1966 if (sb != NULL) { 1967 sb->p = rdpi; 1968 for (i = 0; i < SWAP_META_PAGES; i++) 1969 sb->d[i] = SWAPBLK_NONE; 1970 if (atomic_cmpset_int(&swblk_zone_exhausted, 1971 1, 0)) 1972 printf("swblk zone ok\n"); 1973 break; 1974 } 1975 VM_OBJECT_WUNLOCK(object); 1976 if (uma_zone_exhausted(swblk_zone)) { 1977 if (atomic_cmpset_int(&swblk_zone_exhausted, 1978 0, 1)) 1979 printf("swap blk zone exhausted, " 1980 "increase kern.maxswzone\n"); 1981 vm_pageout_oom(VM_OOM_SWAPZ); 1982 pause("swzonxb", 10); 1983 } else 1984 uma_zwait(swblk_zone); 1985 VM_OBJECT_WLOCK(object); 1986 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 1987 rdpi); 1988 if (sb != NULL) 1989 /* 1990 * Somebody swapped out a nearby page, 1991 * allocating swblk at the rdpi index, 1992 * while we dropped the object lock. 1993 */ 1994 goto allocated; 1995 } 1996 for (;;) { 1997 error = SWAP_PCTRIE_INSERT( 1998 &object->un_pager.swp.swp_blks, sb); 1999 if (error == 0) { 2000 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2001 1, 0)) 2002 printf("swpctrie zone ok\n"); 2003 break; 2004 } 2005 VM_OBJECT_WUNLOCK(object); 2006 if (uma_zone_exhausted(swpctrie_zone)) { 2007 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 2008 0, 1)) 2009 printf("swap pctrie zone exhausted, " 2010 "increase kern.maxswzone\n"); 2011 vm_pageout_oom(VM_OOM_SWAPZ); 2012 pause("swzonxp", 10); 2013 } else 2014 uma_zwait(swpctrie_zone); 2015 VM_OBJECT_WLOCK(object); 2016 sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 2017 rdpi); 2018 if (sb1 != NULL) { 2019 uma_zfree(swblk_zone, sb); 2020 sb = sb1; 2021 goto allocated; 2022 } 2023 } 2024 } 2025 allocated: 2026 MPASS(sb->p == rdpi); 2027 2028 modpi = pindex % SWAP_META_PAGES; 2029 /* Return prior contents of metadata. */ 2030 prev_swapblk = sb->d[modpi]; 2031 /* Enter block into metadata. */ 2032 sb->d[modpi] = swapblk; 2033 2034 /* 2035 * Free the swblk if we end up with the empty page run. 2036 */ 2037 if (swapblk == SWAPBLK_NONE) 2038 swp_pager_free_empty_swblk(object, sb); 2039 return (prev_swapblk); 2040 } 2041 2042 /* 2043 * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap 2044 * metadata, or transfer it into dstobject. 2045 * 2046 * This routine will free swap metadata structures as they are cleaned 2047 * out. 2048 */ 2049 static void 2050 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject, 2051 vm_pindex_t pindex, vm_pindex_t count) 2052 { 2053 struct swblk *sb; 2054 daddr_t n_free, s_free; 2055 vm_pindex_t offset, last; 2056 int i, limit, start; 2057 2058 VM_OBJECT_ASSERT_WLOCKED(srcobject); 2059 if (srcobject->type != OBJT_SWAP || count == 0) 2060 return; 2061 2062 swp_pager_init_freerange(&s_free, &n_free); 2063 offset = pindex; 2064 last = pindex + count; 2065 for (;;) { 2066 sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks, 2067 rounddown(pindex, SWAP_META_PAGES)); 2068 if (sb == NULL || sb->p >= last) 2069 break; 2070 start = pindex > sb->p ? pindex - sb->p : 0; 2071 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p : 2072 SWAP_META_PAGES; 2073 for (i = start; i < limit; i++) { 2074 if (sb->d[i] == SWAPBLK_NONE) 2075 continue; 2076 if (dstobject == NULL || 2077 !swp_pager_xfer_source(srcobject, dstobject, 2078 sb->p + i - offset, sb->d[i])) { 2079 swp_pager_update_freerange(&s_free, &n_free, 2080 sb->d[i]); 2081 } 2082 sb->d[i] = SWAPBLK_NONE; 2083 } 2084 pindex = sb->p + SWAP_META_PAGES; 2085 if (swp_pager_swblk_empty(sb, 0, start) && 2086 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2087 SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks, 2088 sb->p); 2089 uma_zfree(swblk_zone, sb); 2090 } 2091 } 2092 swp_pager_freeswapspace(s_free, n_free); 2093 } 2094 2095 /* 2096 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2097 * 2098 * The requested range of blocks is freed, with any associated swap 2099 * returned to the swap bitmap. 2100 * 2101 * This routine will free swap metadata structures as they are cleaned 2102 * out. This routine does *NOT* operate on swap metadata associated 2103 * with resident pages. 2104 */ 2105 static void 2106 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count) 2107 { 2108 swp_pager_meta_transfer(object, NULL, pindex, count); 2109 } 2110 2111 /* 2112 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2113 * 2114 * This routine locates and destroys all swap metadata associated with 2115 * an object. 2116 */ 2117 static void 2118 swp_pager_meta_free_all(vm_object_t object) 2119 { 2120 struct swblk *sb; 2121 daddr_t n_free, s_free; 2122 vm_pindex_t pindex; 2123 int i; 2124 2125 VM_OBJECT_ASSERT_WLOCKED(object); 2126 if (object->type != OBJT_SWAP) 2127 return; 2128 2129 swp_pager_init_freerange(&s_free, &n_free); 2130 for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 2131 &object->un_pager.swp.swp_blks, pindex)) != NULL;) { 2132 pindex = sb->p + SWAP_META_PAGES; 2133 for (i = 0; i < SWAP_META_PAGES; i++) { 2134 if (sb->d[i] == SWAPBLK_NONE) 2135 continue; 2136 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]); 2137 } 2138 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 2139 uma_zfree(swblk_zone, sb); 2140 } 2141 swp_pager_freeswapspace(s_free, n_free); 2142 } 2143 2144 /* 2145 * SWP_PAGER_METACTL() - misc control of swap meta data. 2146 * 2147 * This routine is capable of looking up, or removing swapblk 2148 * assignments in the swap meta data. It returns the swapblk being 2149 * looked-up, popped, or SWAPBLK_NONE if the block was invalid. 2150 * 2151 * When acting on a busy resident page and paging is in progress, we 2152 * have to wait until paging is complete but otherwise can act on the 2153 * busy page. 2154 */ 2155 static daddr_t 2156 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex) 2157 { 2158 struct swblk *sb; 2159 2160 VM_OBJECT_ASSERT_LOCKED(object); 2161 2162 /* 2163 * The meta data only exists if the object is OBJT_SWAP 2164 * and even then might not be allocated yet. 2165 */ 2166 KASSERT(object->type == OBJT_SWAP, 2167 ("Lookup object not swappable")); 2168 2169 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 2170 rounddown(pindex, SWAP_META_PAGES)); 2171 if (sb == NULL) 2172 return (SWAPBLK_NONE); 2173 return (sb->d[pindex % SWAP_META_PAGES]); 2174 } 2175 2176 /* 2177 * Returns the least page index which is greater than or equal to the 2178 * parameter pindex and for which there is a swap block allocated. 2179 * Returns object's size if the object's type is not swap or if there 2180 * are no allocated swap blocks for the object after the requested 2181 * pindex. 2182 */ 2183 vm_pindex_t 2184 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex) 2185 { 2186 struct swblk *sb; 2187 int i; 2188 2189 VM_OBJECT_ASSERT_LOCKED(object); 2190 if (object->type != OBJT_SWAP) 2191 return (object->size); 2192 2193 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2194 rounddown(pindex, SWAP_META_PAGES)); 2195 if (sb == NULL) 2196 return (object->size); 2197 if (sb->p < pindex) { 2198 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) { 2199 if (sb->d[i] != SWAPBLK_NONE) 2200 return (sb->p + i); 2201 } 2202 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2203 roundup(pindex, SWAP_META_PAGES)); 2204 if (sb == NULL) 2205 return (object->size); 2206 } 2207 for (i = 0; i < SWAP_META_PAGES; i++) { 2208 if (sb->d[i] != SWAPBLK_NONE) 2209 return (sb->p + i); 2210 } 2211 2212 /* 2213 * We get here if a swblk is present in the trie but it 2214 * doesn't map any blocks. 2215 */ 2216 MPASS(0); 2217 return (object->size); 2218 } 2219 2220 /* 2221 * System call swapon(name) enables swapping on device name, 2222 * which must be in the swdevsw. Return EBUSY 2223 * if already swapping on this device. 2224 */ 2225 #ifndef _SYS_SYSPROTO_H_ 2226 struct swapon_args { 2227 char *name; 2228 }; 2229 #endif 2230 2231 /* 2232 * MPSAFE 2233 */ 2234 /* ARGSUSED */ 2235 int 2236 sys_swapon(struct thread *td, struct swapon_args *uap) 2237 { 2238 struct vattr attr; 2239 struct vnode *vp; 2240 struct nameidata nd; 2241 int error; 2242 2243 error = priv_check(td, PRIV_SWAPON); 2244 if (error) 2245 return (error); 2246 2247 sx_xlock(&swdev_syscall_lock); 2248 2249 /* 2250 * Swap metadata may not fit in the KVM if we have physical 2251 * memory of >1GB. 2252 */ 2253 if (swblk_zone == NULL) { 2254 error = ENOMEM; 2255 goto done; 2256 } 2257 2258 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2259 uap->name, td); 2260 error = namei(&nd); 2261 if (error) 2262 goto done; 2263 2264 NDFREE(&nd, NDF_ONLY_PNBUF); 2265 vp = nd.ni_vp; 2266 2267 if (vn_isdisk(vp, &error)) { 2268 error = swapongeom(vp); 2269 } else if (vp->v_type == VREG && 2270 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2271 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2272 /* 2273 * Allow direct swapping to NFS regular files in the same 2274 * way that nfs_mountroot() sets up diskless swapping. 2275 */ 2276 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2277 } 2278 2279 if (error) 2280 vrele(vp); 2281 done: 2282 sx_xunlock(&swdev_syscall_lock); 2283 return (error); 2284 } 2285 2286 /* 2287 * Check that the total amount of swap currently configured does not 2288 * exceed half the theoretical maximum. If it does, print a warning 2289 * message. 2290 */ 2291 static void 2292 swapon_check_swzone(void) 2293 { 2294 2295 /* recommend using no more than half that amount */ 2296 if (swap_total > swap_maxpages / 2) { 2297 printf("warning: total configured swap (%lu pages) " 2298 "exceeds maximum recommended amount (%lu pages).\n", 2299 swap_total, swap_maxpages / 2); 2300 printf("warning: increase kern.maxswzone " 2301 "or reduce amount of swap.\n"); 2302 } 2303 } 2304 2305 static void 2306 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2307 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2308 { 2309 struct swdevt *sp, *tsp; 2310 swblk_t dvbase; 2311 u_long mblocks; 2312 2313 /* 2314 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2315 * First chop nblks off to page-align it, then convert. 2316 * 2317 * sw->sw_nblks is in page-sized chunks now too. 2318 */ 2319 nblks &= ~(ctodb(1) - 1); 2320 nblks = dbtoc(nblks); 2321 2322 /* 2323 * If we go beyond this, we get overflows in the radix 2324 * tree bitmap code. 2325 */ 2326 mblocks = 0x40000000 / BLIST_META_RADIX; 2327 if (nblks > mblocks) { 2328 printf( 2329 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2330 mblocks / 1024 / 1024 * PAGE_SIZE); 2331 nblks = mblocks; 2332 } 2333 2334 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2335 sp->sw_vp = vp; 2336 sp->sw_id = id; 2337 sp->sw_dev = dev; 2338 sp->sw_nblks = nblks; 2339 sp->sw_used = 0; 2340 sp->sw_strategy = strategy; 2341 sp->sw_close = close; 2342 sp->sw_flags = flags; 2343 2344 sp->sw_blist = blist_create(nblks, M_WAITOK); 2345 /* 2346 * Do not free the first blocks in order to avoid overwriting 2347 * any bsd label at the front of the partition 2348 */ 2349 blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE), 2350 nblks - howmany(BBSIZE, PAGE_SIZE)); 2351 2352 dvbase = 0; 2353 mtx_lock(&sw_dev_mtx); 2354 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2355 if (tsp->sw_end >= dvbase) { 2356 /* 2357 * We put one uncovered page between the devices 2358 * in order to definitively prevent any cross-device 2359 * I/O requests 2360 */ 2361 dvbase = tsp->sw_end + 1; 2362 } 2363 } 2364 sp->sw_first = dvbase; 2365 sp->sw_end = dvbase + nblks; 2366 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2367 nswapdev++; 2368 swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE); 2369 swap_total += nblks; 2370 swapon_check_swzone(); 2371 swp_sizecheck(); 2372 mtx_unlock(&sw_dev_mtx); 2373 EVENTHANDLER_INVOKE(swapon, sp); 2374 } 2375 2376 /* 2377 * SYSCALL: swapoff(devname) 2378 * 2379 * Disable swapping on the given device. 2380 * 2381 * XXX: Badly designed system call: it should use a device index 2382 * rather than filename as specification. We keep sw_vp around 2383 * only to make this work. 2384 */ 2385 #ifndef _SYS_SYSPROTO_H_ 2386 struct swapoff_args { 2387 char *name; 2388 }; 2389 #endif 2390 2391 /* 2392 * MPSAFE 2393 */ 2394 /* ARGSUSED */ 2395 int 2396 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2397 { 2398 struct vnode *vp; 2399 struct nameidata nd; 2400 struct swdevt *sp; 2401 int error; 2402 2403 error = priv_check(td, PRIV_SWAPOFF); 2404 if (error) 2405 return (error); 2406 2407 sx_xlock(&swdev_syscall_lock); 2408 2409 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2410 td); 2411 error = namei(&nd); 2412 if (error) 2413 goto done; 2414 NDFREE(&nd, NDF_ONLY_PNBUF); 2415 vp = nd.ni_vp; 2416 2417 mtx_lock(&sw_dev_mtx); 2418 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2419 if (sp->sw_vp == vp) 2420 break; 2421 } 2422 mtx_unlock(&sw_dev_mtx); 2423 if (sp == NULL) { 2424 error = EINVAL; 2425 goto done; 2426 } 2427 error = swapoff_one(sp, td->td_ucred); 2428 done: 2429 sx_xunlock(&swdev_syscall_lock); 2430 return (error); 2431 } 2432 2433 static int 2434 swapoff_one(struct swdevt *sp, struct ucred *cred) 2435 { 2436 u_long nblks; 2437 #ifdef MAC 2438 int error; 2439 #endif 2440 2441 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2442 #ifdef MAC 2443 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2444 error = mac_system_check_swapoff(cred, sp->sw_vp); 2445 (void) VOP_UNLOCK(sp->sw_vp, 0); 2446 if (error != 0) 2447 return (error); 2448 #endif 2449 nblks = sp->sw_nblks; 2450 2451 /* 2452 * We can turn off this swap device safely only if the 2453 * available virtual memory in the system will fit the amount 2454 * of data we will have to page back in, plus an epsilon so 2455 * the system doesn't become critically low on swap space. 2456 */ 2457 if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat) 2458 return (ENOMEM); 2459 2460 /* 2461 * Prevent further allocations on this device. 2462 */ 2463 mtx_lock(&sw_dev_mtx); 2464 sp->sw_flags |= SW_CLOSING; 2465 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2466 swap_total -= nblks; 2467 mtx_unlock(&sw_dev_mtx); 2468 2469 /* 2470 * Page in the contents of the device and close it. 2471 */ 2472 swap_pager_swapoff(sp); 2473 2474 sp->sw_close(curthread, sp); 2475 mtx_lock(&sw_dev_mtx); 2476 sp->sw_id = NULL; 2477 TAILQ_REMOVE(&swtailq, sp, sw_list); 2478 nswapdev--; 2479 if (nswapdev == 0) { 2480 swap_pager_full = 2; 2481 swap_pager_almost_full = 1; 2482 } 2483 if (swdevhd == sp) 2484 swdevhd = NULL; 2485 mtx_unlock(&sw_dev_mtx); 2486 blist_destroy(sp->sw_blist); 2487 free(sp, M_VMPGDATA); 2488 return (0); 2489 } 2490 2491 void 2492 swapoff_all(void) 2493 { 2494 struct swdevt *sp, *spt; 2495 const char *devname; 2496 int error; 2497 2498 sx_xlock(&swdev_syscall_lock); 2499 2500 mtx_lock(&sw_dev_mtx); 2501 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2502 mtx_unlock(&sw_dev_mtx); 2503 if (vn_isdisk(sp->sw_vp, NULL)) 2504 devname = devtoname(sp->sw_vp->v_rdev); 2505 else 2506 devname = "[file]"; 2507 error = swapoff_one(sp, thread0.td_ucred); 2508 if (error != 0) { 2509 printf("Cannot remove swap device %s (error=%d), " 2510 "skipping.\n", devname, error); 2511 } else if (bootverbose) { 2512 printf("Swap device %s removed.\n", devname); 2513 } 2514 mtx_lock(&sw_dev_mtx); 2515 } 2516 mtx_unlock(&sw_dev_mtx); 2517 2518 sx_xunlock(&swdev_syscall_lock); 2519 } 2520 2521 void 2522 swap_pager_status(int *total, int *used) 2523 { 2524 struct swdevt *sp; 2525 2526 *total = 0; 2527 *used = 0; 2528 mtx_lock(&sw_dev_mtx); 2529 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2530 *total += sp->sw_nblks; 2531 *used += sp->sw_used; 2532 } 2533 mtx_unlock(&sw_dev_mtx); 2534 } 2535 2536 int 2537 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2538 { 2539 struct swdevt *sp; 2540 const char *tmp_devname; 2541 int error, n; 2542 2543 n = 0; 2544 error = ENOENT; 2545 mtx_lock(&sw_dev_mtx); 2546 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2547 if (n != name) { 2548 n++; 2549 continue; 2550 } 2551 xs->xsw_version = XSWDEV_VERSION; 2552 xs->xsw_dev = sp->sw_dev; 2553 xs->xsw_flags = sp->sw_flags; 2554 xs->xsw_nblks = sp->sw_nblks; 2555 xs->xsw_used = sp->sw_used; 2556 if (devname != NULL) { 2557 if (vn_isdisk(sp->sw_vp, NULL)) 2558 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2559 else 2560 tmp_devname = "[file]"; 2561 strncpy(devname, tmp_devname, len); 2562 } 2563 error = 0; 2564 break; 2565 } 2566 mtx_unlock(&sw_dev_mtx); 2567 return (error); 2568 } 2569 2570 #if defined(COMPAT_FREEBSD11) 2571 #define XSWDEV_VERSION_11 1 2572 struct xswdev11 { 2573 u_int xsw_version; 2574 uint32_t xsw_dev; 2575 int xsw_flags; 2576 int xsw_nblks; 2577 int xsw_used; 2578 }; 2579 #endif 2580 2581 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2582 struct xswdev32 { 2583 u_int xsw_version; 2584 u_int xsw_dev1, xsw_dev2; 2585 int xsw_flags; 2586 int xsw_nblks; 2587 int xsw_used; 2588 }; 2589 #endif 2590 2591 static int 2592 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2593 { 2594 struct xswdev xs; 2595 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2596 struct xswdev32 xs32; 2597 #endif 2598 #if defined(COMPAT_FREEBSD11) 2599 struct xswdev11 xs11; 2600 #endif 2601 int error; 2602 2603 if (arg2 != 1) /* name length */ 2604 return (EINVAL); 2605 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2606 if (error != 0) 2607 return (error); 2608 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2609 if (req->oldlen == sizeof(xs32)) { 2610 xs32.xsw_version = XSWDEV_VERSION; 2611 xs32.xsw_dev1 = xs.xsw_dev; 2612 xs32.xsw_dev2 = xs.xsw_dev >> 32; 2613 xs32.xsw_flags = xs.xsw_flags; 2614 xs32.xsw_nblks = xs.xsw_nblks; 2615 xs32.xsw_used = xs.xsw_used; 2616 error = SYSCTL_OUT(req, &xs32, sizeof(xs32)); 2617 return (error); 2618 } 2619 #endif 2620 #if defined(COMPAT_FREEBSD11) 2621 if (req->oldlen == sizeof(xs11)) { 2622 xs11.xsw_version = XSWDEV_VERSION_11; 2623 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 2624 xs11.xsw_flags = xs.xsw_flags; 2625 xs11.xsw_nblks = xs.xsw_nblks; 2626 xs11.xsw_used = xs.xsw_used; 2627 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 2628 return (error); 2629 } 2630 #endif 2631 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2632 return (error); 2633 } 2634 2635 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2636 "Number of swap devices"); 2637 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2638 sysctl_vm_swap_info, 2639 "Swap statistics by device"); 2640 2641 /* 2642 * Count the approximate swap usage in pages for a vmspace. The 2643 * shadowed or not yet copied on write swap blocks are not accounted. 2644 * The map must be locked. 2645 */ 2646 long 2647 vmspace_swap_count(struct vmspace *vmspace) 2648 { 2649 vm_map_t map; 2650 vm_map_entry_t cur; 2651 vm_object_t object; 2652 struct swblk *sb; 2653 vm_pindex_t e, pi; 2654 long count; 2655 int i; 2656 2657 map = &vmspace->vm_map; 2658 count = 0; 2659 2660 VM_MAP_ENTRY_FOREACH(cur, map) { 2661 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2662 continue; 2663 object = cur->object.vm_object; 2664 if (object == NULL || object->type != OBJT_SWAP) 2665 continue; 2666 VM_OBJECT_RLOCK(object); 2667 if (object->type != OBJT_SWAP) 2668 goto unlock; 2669 pi = OFF_TO_IDX(cur->offset); 2670 e = pi + OFF_TO_IDX(cur->end - cur->start); 2671 for (;; pi = sb->p + SWAP_META_PAGES) { 2672 sb = SWAP_PCTRIE_LOOKUP_GE( 2673 &object->un_pager.swp.swp_blks, pi); 2674 if (sb == NULL || sb->p >= e) 2675 break; 2676 for (i = 0; i < SWAP_META_PAGES; i++) { 2677 if (sb->p + i < e && 2678 sb->d[i] != SWAPBLK_NONE) 2679 count++; 2680 } 2681 } 2682 unlock: 2683 VM_OBJECT_RUNLOCK(object); 2684 } 2685 return (count); 2686 } 2687 2688 /* 2689 * GEOM backend 2690 * 2691 * Swapping onto disk devices. 2692 * 2693 */ 2694 2695 static g_orphan_t swapgeom_orphan; 2696 2697 static struct g_class g_swap_class = { 2698 .name = "SWAP", 2699 .version = G_VERSION, 2700 .orphan = swapgeom_orphan, 2701 }; 2702 2703 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2704 2705 2706 static void 2707 swapgeom_close_ev(void *arg, int flags) 2708 { 2709 struct g_consumer *cp; 2710 2711 cp = arg; 2712 g_access(cp, -1, -1, 0); 2713 g_detach(cp); 2714 g_destroy_consumer(cp); 2715 } 2716 2717 /* 2718 * Add a reference to the g_consumer for an inflight transaction. 2719 */ 2720 static void 2721 swapgeom_acquire(struct g_consumer *cp) 2722 { 2723 2724 mtx_assert(&sw_dev_mtx, MA_OWNED); 2725 cp->index++; 2726 } 2727 2728 /* 2729 * Remove a reference from the g_consumer. Post a close event if all 2730 * references go away, since the function might be called from the 2731 * biodone context. 2732 */ 2733 static void 2734 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2735 { 2736 2737 mtx_assert(&sw_dev_mtx, MA_OWNED); 2738 cp->index--; 2739 if (cp->index == 0) { 2740 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2741 sp->sw_id = NULL; 2742 } 2743 } 2744 2745 static void 2746 swapgeom_done(struct bio *bp2) 2747 { 2748 struct swdevt *sp; 2749 struct buf *bp; 2750 struct g_consumer *cp; 2751 2752 bp = bp2->bio_caller2; 2753 cp = bp2->bio_from; 2754 bp->b_ioflags = bp2->bio_flags; 2755 if (bp2->bio_error) 2756 bp->b_ioflags |= BIO_ERROR; 2757 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2758 bp->b_error = bp2->bio_error; 2759 bp->b_caller1 = NULL; 2760 bufdone(bp); 2761 sp = bp2->bio_caller1; 2762 mtx_lock(&sw_dev_mtx); 2763 swapgeom_release(cp, sp); 2764 mtx_unlock(&sw_dev_mtx); 2765 g_destroy_bio(bp2); 2766 } 2767 2768 static void 2769 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2770 { 2771 struct bio *bio; 2772 struct g_consumer *cp; 2773 2774 mtx_lock(&sw_dev_mtx); 2775 cp = sp->sw_id; 2776 if (cp == NULL) { 2777 mtx_unlock(&sw_dev_mtx); 2778 bp->b_error = ENXIO; 2779 bp->b_ioflags |= BIO_ERROR; 2780 bufdone(bp); 2781 return; 2782 } 2783 swapgeom_acquire(cp); 2784 mtx_unlock(&sw_dev_mtx); 2785 if (bp->b_iocmd == BIO_WRITE) 2786 bio = g_new_bio(); 2787 else 2788 bio = g_alloc_bio(); 2789 if (bio == NULL) { 2790 mtx_lock(&sw_dev_mtx); 2791 swapgeom_release(cp, sp); 2792 mtx_unlock(&sw_dev_mtx); 2793 bp->b_error = ENOMEM; 2794 bp->b_ioflags |= BIO_ERROR; 2795 printf("swap_pager: cannot allocate bio\n"); 2796 bufdone(bp); 2797 return; 2798 } 2799 2800 bp->b_caller1 = bio; 2801 bio->bio_caller1 = sp; 2802 bio->bio_caller2 = bp; 2803 bio->bio_cmd = bp->b_iocmd; 2804 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2805 bio->bio_length = bp->b_bcount; 2806 bio->bio_done = swapgeom_done; 2807 if (!buf_mapped(bp)) { 2808 bio->bio_ma = bp->b_pages; 2809 bio->bio_data = unmapped_buf; 2810 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2811 bio->bio_ma_n = bp->b_npages; 2812 bio->bio_flags |= BIO_UNMAPPED; 2813 } else { 2814 bio->bio_data = bp->b_data; 2815 bio->bio_ma = NULL; 2816 } 2817 g_io_request(bio, cp); 2818 return; 2819 } 2820 2821 static void 2822 swapgeom_orphan(struct g_consumer *cp) 2823 { 2824 struct swdevt *sp; 2825 int destroy; 2826 2827 mtx_lock(&sw_dev_mtx); 2828 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2829 if (sp->sw_id == cp) { 2830 sp->sw_flags |= SW_CLOSING; 2831 break; 2832 } 2833 } 2834 /* 2835 * Drop reference we were created with. Do directly since we're in a 2836 * special context where we don't have to queue the call to 2837 * swapgeom_close_ev(). 2838 */ 2839 cp->index--; 2840 destroy = ((sp != NULL) && (cp->index == 0)); 2841 if (destroy) 2842 sp->sw_id = NULL; 2843 mtx_unlock(&sw_dev_mtx); 2844 if (destroy) 2845 swapgeom_close_ev(cp, 0); 2846 } 2847 2848 static void 2849 swapgeom_close(struct thread *td, struct swdevt *sw) 2850 { 2851 struct g_consumer *cp; 2852 2853 mtx_lock(&sw_dev_mtx); 2854 cp = sw->sw_id; 2855 sw->sw_id = NULL; 2856 mtx_unlock(&sw_dev_mtx); 2857 2858 /* 2859 * swapgeom_close() may be called from the biodone context, 2860 * where we cannot perform topology changes. Delegate the 2861 * work to the events thread. 2862 */ 2863 if (cp != NULL) 2864 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2865 } 2866 2867 static int 2868 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2869 { 2870 struct g_provider *pp; 2871 struct g_consumer *cp; 2872 static struct g_geom *gp; 2873 struct swdevt *sp; 2874 u_long nblks; 2875 int error; 2876 2877 pp = g_dev_getprovider(dev); 2878 if (pp == NULL) 2879 return (ENODEV); 2880 mtx_lock(&sw_dev_mtx); 2881 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2882 cp = sp->sw_id; 2883 if (cp != NULL && cp->provider == pp) { 2884 mtx_unlock(&sw_dev_mtx); 2885 return (EBUSY); 2886 } 2887 } 2888 mtx_unlock(&sw_dev_mtx); 2889 if (gp == NULL) 2890 gp = g_new_geomf(&g_swap_class, "swap"); 2891 cp = g_new_consumer(gp); 2892 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2893 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2894 g_attach(cp, pp); 2895 /* 2896 * XXX: Every time you think you can improve the margin for 2897 * footshooting, somebody depends on the ability to do so: 2898 * savecore(8) wants to write to our swapdev so we cannot 2899 * set an exclusive count :-( 2900 */ 2901 error = g_access(cp, 1, 1, 0); 2902 if (error != 0) { 2903 g_detach(cp); 2904 g_destroy_consumer(cp); 2905 return (error); 2906 } 2907 nblks = pp->mediasize / DEV_BSIZE; 2908 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2909 swapgeom_close, dev2udev(dev), 2910 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2911 return (0); 2912 } 2913 2914 static int 2915 swapongeom(struct vnode *vp) 2916 { 2917 int error; 2918 2919 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2920 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2921 error = ENOENT; 2922 } else { 2923 g_topology_lock(); 2924 error = swapongeom_locked(vp->v_rdev, vp); 2925 g_topology_unlock(); 2926 } 2927 VOP_UNLOCK(vp, 0); 2928 return (error); 2929 } 2930 2931 /* 2932 * VNODE backend 2933 * 2934 * This is used mainly for network filesystem (read: probably only tested 2935 * with NFS) swapfiles. 2936 * 2937 */ 2938 2939 static void 2940 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2941 { 2942 struct vnode *vp2; 2943 2944 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2945 2946 vp2 = sp->sw_id; 2947 vhold(vp2); 2948 if (bp->b_iocmd == BIO_WRITE) { 2949 if (bp->b_bufobj) 2950 bufobj_wdrop(bp->b_bufobj); 2951 bufobj_wref(&vp2->v_bufobj); 2952 } 2953 if (bp->b_bufobj != &vp2->v_bufobj) 2954 bp->b_bufobj = &vp2->v_bufobj; 2955 bp->b_vp = vp2; 2956 bp->b_iooffset = dbtob(bp->b_blkno); 2957 bstrategy(bp); 2958 return; 2959 } 2960 2961 static void 2962 swapdev_close(struct thread *td, struct swdevt *sp) 2963 { 2964 2965 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2966 vrele(sp->sw_vp); 2967 } 2968 2969 2970 static int 2971 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2972 { 2973 struct swdevt *sp; 2974 int error; 2975 2976 if (nblks == 0) 2977 return (ENXIO); 2978 mtx_lock(&sw_dev_mtx); 2979 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2980 if (sp->sw_id == vp) { 2981 mtx_unlock(&sw_dev_mtx); 2982 return (EBUSY); 2983 } 2984 } 2985 mtx_unlock(&sw_dev_mtx); 2986 2987 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2988 #ifdef MAC 2989 error = mac_system_check_swapon(td->td_ucred, vp); 2990 if (error == 0) 2991 #endif 2992 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2993 (void) VOP_UNLOCK(vp, 0); 2994 if (error) 2995 return (error); 2996 2997 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2998 NODEV, 0); 2999 return (0); 3000 } 3001 3002 static int 3003 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 3004 { 3005 int error, new, n; 3006 3007 new = nsw_wcount_async_max; 3008 error = sysctl_handle_int(oidp, &new, 0, req); 3009 if (error != 0 || req->newptr == NULL) 3010 return (error); 3011 3012 if (new > nswbuf / 2 || new < 1) 3013 return (EINVAL); 3014 3015 mtx_lock(&swbuf_mtx); 3016 while (nsw_wcount_async_max != new) { 3017 /* 3018 * Adjust difference. If the current async count is too low, 3019 * we will need to sqeeze our update slowly in. Sleep with a 3020 * higher priority than getpbuf() to finish faster. 3021 */ 3022 n = new - nsw_wcount_async_max; 3023 if (nsw_wcount_async + n >= 0) { 3024 nsw_wcount_async += n; 3025 nsw_wcount_async_max += n; 3026 wakeup(&nsw_wcount_async); 3027 } else { 3028 nsw_wcount_async_max -= nsw_wcount_async; 3029 nsw_wcount_async = 0; 3030 msleep(&nsw_wcount_async, &swbuf_mtx, PSWP, 3031 "swpsysctl", 0); 3032 } 3033 } 3034 mtx_unlock(&swbuf_mtx); 3035 3036 return (0); 3037 } 3038 3039 static void 3040 swap_pager_update_writecount(vm_object_t object, vm_offset_t start, 3041 vm_offset_t end) 3042 { 3043 3044 VM_OBJECT_WLOCK(object); 3045 KASSERT((object->flags & OBJ_ANON) == 0, 3046 ("Splittable object with writecount")); 3047 object->un_pager.swp.writemappings += (vm_ooffset_t)end - start; 3048 VM_OBJECT_WUNLOCK(object); 3049 } 3050 3051 static void 3052 swap_pager_release_writecount(vm_object_t object, vm_offset_t start, 3053 vm_offset_t end) 3054 { 3055 3056 VM_OBJECT_WLOCK(object); 3057 KASSERT((object->flags & OBJ_ANON) == 0, 3058 ("Splittable object with writecount")); 3059 object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start; 3060 VM_OBJECT_WUNLOCK(object); 3061 } 3062