xref: /freebsd/sys/vm/swap_pager.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_mac.h"
73 #include "opt_swap.h"
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/conf.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/mac.h>
89 #include <sys/malloc.h>
90 #include <sys/sysctl.h>
91 #include <sys/sysproto.h>
92 #include <sys/blist.h>
93 #include <sys/lock.h>
94 #include <sys/sx.h>
95 #include <sys/vmmeter.h>
96 
97 #include <vm/vm.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_kern.h>
101 #include <vm/vm_object.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_param.h>
106 #include <vm/swap_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/uma.h>
109 
110 #include <geom/geom.h>
111 
112 /*
113  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
114  * pages per allocation.  We recommend you stick with the default of 8.
115  * The 16-page limit is due to the radix code (kern/subr_blist.c).
116  */
117 #ifndef MAX_PAGEOUT_CLUSTER
118 #define MAX_PAGEOUT_CLUSTER 16
119 #endif
120 
121 #if !defined(SWB_NPAGES)
122 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
123 #endif
124 
125 /*
126  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
127  *
128  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
129  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
130  * 32K worth of data, two levels represent 256K, three levels represent
131  * 2 MBytes.   This is acceptable.
132  *
133  * Overall memory utilization is about the same as the old swap structure.
134  */
135 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
136 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
137 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
138 
139 typedef	int32_t	swblk_t;	/*
140 				 * swap offset.  This is the type used to
141 				 * address the "virtual swap device" and
142 				 * therefore the maximum swap space is
143 				 * 2^32 pages.
144 				 */
145 
146 struct swdevt;
147 typedef void sw_strategy_t(struct buf *bp, struct swdevt *sw);
148 typedef void sw_close_t(struct thread *td, struct swdevt *sw);
149 
150 /*
151  * Swap device table
152  */
153 struct swdevt {
154 	int	sw_flags;
155 	int	sw_nblks;
156 	int     sw_used;
157 	udev_t	sw_udev;
158 	struct vnode *sw_vp;
159 	void	*sw_id;
160 	swblk_t	sw_first;
161 	swblk_t	sw_end;
162 	struct blist *sw_blist;
163 	TAILQ_ENTRY(swdevt)	sw_list;
164 	sw_strategy_t		*sw_strategy;
165 	sw_close_t		*sw_close;
166 };
167 
168 #define	SW_CLOSING	0x04
169 
170 struct swblock {
171 	struct swblock	*swb_hnext;
172 	vm_object_t	swb_object;
173 	vm_pindex_t	swb_index;
174 	int		swb_count;
175 	daddr_t		swb_pages[SWAP_META_PAGES];
176 };
177 
178 static struct mtx sw_dev_mtx;
179 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
180 static struct swdevt *swdevhd;	/* Allocate from here next */
181 static int nswapdev;		/* Number of swap devices */
182 int swap_pager_avail;
183 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
184 
185 static void swapdev_strategy(struct buf *, struct swdevt *sw);
186 
187 #define SWM_FREE	0x02	/* free, period			*/
188 #define SWM_POP		0x04	/* pop out			*/
189 
190 int swap_pager_full;		/* swap space exhaustion (task killing) */
191 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
192 static int nsw_rcount;		/* free read buffers			*/
193 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
194 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
195 static int nsw_wcount_async_max;/* assigned maximum			*/
196 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
197 
198 static struct swblock **swhash;
199 static int swhash_mask;
200 static struct mtx swhash_mtx;
201 
202 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
203 static struct sx sw_alloc_sx;
204 
205 
206 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
207         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
208 
209 /*
210  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
211  * of searching a named list by hashing it just a little.
212  */
213 
214 #define NOBJLISTS		8
215 
216 #define NOBJLIST(handle)	\
217 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
218 
219 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
220 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
221 static struct pagerlst	swap_pager_un_object_list;
222 static uma_zone_t	swap_zone;
223 
224 /*
225  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
226  * calls hooked from other parts of the VM system and do not appear here.
227  * (see vm/swap_pager.h).
228  */
229 static vm_object_t
230 		swap_pager_alloc(void *handle, vm_ooffset_t size,
231 				      vm_prot_t prot, vm_ooffset_t offset);
232 static void	swap_pager_dealloc(vm_object_t object);
233 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
234 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
235 static boolean_t
236 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
237 static void	swap_pager_init(void);
238 static void	swap_pager_unswapped(vm_page_t);
239 static void	swap_pager_swapoff(struct swdevt *sp, int *sw_used);
240 
241 struct pagerops swappagerops = {
242 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
243 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
244 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
245 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
246 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
247 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
248 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
249 };
250 
251 /*
252  * dmmax is in page-sized chunks with the new swap system.  It was
253  * dev-bsized chunks in the old.  dmmax is always a power of 2.
254  *
255  * swap_*() routines are externally accessible.  swp_*() routines are
256  * internal.
257  */
258 static int dmmax;
259 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
260 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
261 
262 SYSCTL_INT(_vm, OID_AUTO, dmmax,
263 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
264 
265 static void	swp_sizecheck(void);
266 static void	swp_pager_sync_iodone(struct buf *bp);
267 static void	swp_pager_async_iodone(struct buf *bp);
268 static int	swapongeom(struct thread *, struct vnode *);
269 static int	swaponvp(struct thread *, struct vnode *, u_long);
270 
271 /*
272  * Swap bitmap functions
273  */
274 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
275 static daddr_t	swp_pager_getswapspace(int npages);
276 
277 /*
278  * Metadata functions
279  */
280 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
281 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
282 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
283 static void swp_pager_meta_free_all(vm_object_t);
284 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
285 
286 /*
287  * SWP_SIZECHECK() -	update swap_pager_full indication
288  *
289  *	update the swap_pager_almost_full indication and warn when we are
290  *	about to run out of swap space, using lowat/hiwat hysteresis.
291  *
292  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
293  *
294  *	No restrictions on call
295  *	This routine may not block.
296  *	This routine must be called at splvm()
297  */
298 static void
299 swp_sizecheck(void)
300 {
301 
302 	if (swap_pager_avail < nswap_lowat) {
303 		if (swap_pager_almost_full == 0) {
304 			printf("swap_pager: out of swap space\n");
305 			swap_pager_almost_full = 1;
306 		}
307 	} else {
308 		swap_pager_full = 0;
309 		if (swap_pager_avail > nswap_hiwat)
310 			swap_pager_almost_full = 0;
311 	}
312 }
313 
314 /*
315  * SWP_PAGER_HASH() -	hash swap meta data
316  *
317  *	This is an helper function which hashes the swapblk given
318  *	the object and page index.  It returns a pointer to a pointer
319  *	to the object, or a pointer to a NULL pointer if it could not
320  *	find a swapblk.
321  *
322  *	This routine must be called at splvm().
323  */
324 static struct swblock **
325 swp_pager_hash(vm_object_t object, vm_pindex_t index)
326 {
327 	struct swblock **pswap;
328 	struct swblock *swap;
329 
330 	index &= ~(vm_pindex_t)SWAP_META_MASK;
331 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
332 	while ((swap = *pswap) != NULL) {
333 		if (swap->swb_object == object &&
334 		    swap->swb_index == index
335 		) {
336 			break;
337 		}
338 		pswap = &swap->swb_hnext;
339 	}
340 	return (pswap);
341 }
342 
343 /*
344  * SWAP_PAGER_INIT() -	initialize the swap pager!
345  *
346  *	Expected to be started from system init.  NOTE:  This code is run
347  *	before much else so be careful what you depend on.  Most of the VM
348  *	system has yet to be initialized at this point.
349  */
350 static void
351 swap_pager_init(void)
352 {
353 	/*
354 	 * Initialize object lists
355 	 */
356 	int i;
357 
358 	for (i = 0; i < NOBJLISTS; ++i)
359 		TAILQ_INIT(&swap_pager_object_list[i]);
360 	TAILQ_INIT(&swap_pager_un_object_list);
361 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
362 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
363 
364 	/*
365 	 * Device Stripe, in PAGE_SIZE'd blocks
366 	 */
367 	dmmax = SWB_NPAGES * 2;
368 }
369 
370 /*
371  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
372  *
373  *	Expected to be started from pageout process once, prior to entering
374  *	its main loop.
375  */
376 void
377 swap_pager_swap_init(void)
378 {
379 	int n, n2;
380 
381 	/*
382 	 * Number of in-transit swap bp operations.  Don't
383 	 * exhaust the pbufs completely.  Make sure we
384 	 * initialize workable values (0 will work for hysteresis
385 	 * but it isn't very efficient).
386 	 *
387 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
388 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
389 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
390 	 * constrained by the swap device interleave stripe size.
391 	 *
392 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
393 	 * designed to prevent other I/O from having high latencies due to
394 	 * our pageout I/O.  The value 4 works well for one or two active swap
395 	 * devices but is probably a little low if you have more.  Even so,
396 	 * a higher value would probably generate only a limited improvement
397 	 * with three or four active swap devices since the system does not
398 	 * typically have to pageout at extreme bandwidths.   We will want
399 	 * at least 2 per swap devices, and 4 is a pretty good value if you
400 	 * have one NFS swap device due to the command/ack latency over NFS.
401 	 * So it all works out pretty well.
402 	 */
403 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
404 
405 	mtx_lock(&pbuf_mtx);
406 	nsw_rcount = (nswbuf + 1) / 2;
407 	nsw_wcount_sync = (nswbuf + 3) / 4;
408 	nsw_wcount_async = 4;
409 	nsw_wcount_async_max = nsw_wcount_async;
410 	mtx_unlock(&pbuf_mtx);
411 
412 	/*
413 	 * Initialize our zone.  Right now I'm just guessing on the number
414 	 * we need based on the number of pages in the system.  Each swblock
415 	 * can hold 16 pages, so this is probably overkill.  This reservation
416 	 * is typically limited to around 32MB by default.
417 	 */
418 	n = cnt.v_page_count / 2;
419 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
420 		n = maxswzone / sizeof(struct swblock);
421 	n2 = n;
422 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
423 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
424 	do {
425 		if (uma_zone_set_obj(swap_zone, NULL, n))
426 			break;
427 		/*
428 		 * if the allocation failed, try a zone two thirds the
429 		 * size of the previous attempt.
430 		 */
431 		n -= ((n + 2) / 3);
432 	} while (n > 0);
433 	if (swap_zone == NULL)
434 		panic("failed to create swap_zone.");
435 	if (n2 != n)
436 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
437 	n2 = n;
438 
439 	/*
440 	 * Initialize our meta-data hash table.  The swapper does not need to
441 	 * be quite as efficient as the VM system, so we do not use an
442 	 * oversized hash table.
443 	 *
444 	 * 	n: 		size of hash table, must be power of 2
445 	 *	swhash_mask:	hash table index mask
446 	 */
447 	for (n = 1; n < n2 / 8; n *= 2)
448 		;
449 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
450 	swhash_mask = n - 1;
451 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
452 }
453 
454 /*
455  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
456  *			its metadata structures.
457  *
458  *	This routine is called from the mmap and fork code to create a new
459  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
460  *	and then converting it with swp_pager_meta_build().
461  *
462  *	This routine may block in vm_object_allocate() and create a named
463  *	object lookup race, so we must interlock.   We must also run at
464  *	splvm() for the object lookup to handle races with interrupts, but
465  *	we do not have to maintain splvm() in between the lookup and the
466  *	add because (I believe) it is not possible to attempt to create
467  *	a new swap object w/handle when a default object with that handle
468  *	already exists.
469  *
470  * MPSAFE
471  */
472 static vm_object_t
473 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
474 		 vm_ooffset_t offset)
475 {
476 	vm_object_t object;
477 
478 	mtx_lock(&Giant);
479 	if (handle) {
480 		/*
481 		 * Reference existing named region or allocate new one.  There
482 		 * should not be a race here against swp_pager_meta_build()
483 		 * as called from vm_page_remove() in regards to the lookup
484 		 * of the handle.
485 		 */
486 		sx_xlock(&sw_alloc_sx);
487 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
488 
489 		if (object != NULL) {
490 			vm_object_reference(object);
491 		} else {
492 			object = vm_object_allocate(OBJT_DEFAULT,
493 				OFF_TO_IDX(offset + PAGE_MASK + size));
494 			object->handle = handle;
495 
496 			VM_OBJECT_LOCK(object);
497 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
498 			VM_OBJECT_UNLOCK(object);
499 		}
500 		sx_xunlock(&sw_alloc_sx);
501 	} else {
502 		object = vm_object_allocate(OBJT_DEFAULT,
503 			OFF_TO_IDX(offset + PAGE_MASK + size));
504 
505 		VM_OBJECT_LOCK(object);
506 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
507 		VM_OBJECT_UNLOCK(object);
508 	}
509 	mtx_unlock(&Giant);
510 	return (object);
511 }
512 
513 /*
514  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
515  *
516  *	The swap backing for the object is destroyed.  The code is
517  *	designed such that we can reinstantiate it later, but this
518  *	routine is typically called only when the entire object is
519  *	about to be destroyed.
520  *
521  *	This routine may block, but no longer does.
522  *
523  *	The object must be locked or unreferenceable.
524  */
525 static void
526 swap_pager_dealloc(vm_object_t object)
527 {
528 	int s;
529 
530 	/*
531 	 * Remove from list right away so lookups will fail if we block for
532 	 * pageout completion.
533 	 */
534 	mtx_lock(&sw_alloc_mtx);
535 	if (object->handle == NULL) {
536 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
537 	} else {
538 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
539 	}
540 	mtx_unlock(&sw_alloc_mtx);
541 
542 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
543 	vm_object_pip_wait(object, "swpdea");
544 
545 	/*
546 	 * Free all remaining metadata.  We only bother to free it from
547 	 * the swap meta data.  We do not attempt to free swapblk's still
548 	 * associated with vm_page_t's for this object.  We do not care
549 	 * if paging is still in progress on some objects.
550 	 */
551 	s = splvm();
552 	swp_pager_meta_free_all(object);
553 	splx(s);
554 }
555 
556 /************************************************************************
557  *			SWAP PAGER BITMAP ROUTINES			*
558  ************************************************************************/
559 
560 /*
561  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
562  *
563  *	Allocate swap for the requested number of pages.  The starting
564  *	swap block number (a page index) is returned or SWAPBLK_NONE
565  *	if the allocation failed.
566  *
567  *	Also has the side effect of advising that somebody made a mistake
568  *	when they configured swap and didn't configure enough.
569  *
570  *	Must be called at splvm() to avoid races with bitmap frees from
571  *	vm_page_remove() aka swap_pager_page_removed().
572  *
573  *	This routine may not block
574  *	This routine must be called at splvm().
575  *
576  *	We allocate in round-robin fashion from the configured devices.
577  */
578 static daddr_t
579 swp_pager_getswapspace(int npages)
580 {
581 	daddr_t blk;
582 	struct swdevt *sp;
583 	int i;
584 
585 	blk = SWAPBLK_NONE;
586 	mtx_lock(&sw_dev_mtx);
587 	sp = swdevhd;
588 	for (i = 0; i < nswapdev; i++) {
589 		if (sp == NULL)
590 			sp = TAILQ_FIRST(&swtailq);
591 		if (!(sp->sw_flags & SW_CLOSING)) {
592 			blk = blist_alloc(sp->sw_blist, npages);
593 			if (blk != SWAPBLK_NONE) {
594 				blk += sp->sw_first;
595 				sp->sw_used += npages;
596 				swap_pager_avail -= npages;
597 				swp_sizecheck();
598 				swdevhd = TAILQ_NEXT(sp, sw_list);
599 				goto done;
600 			}
601 		}
602 		sp = TAILQ_NEXT(sp, sw_list);
603 	}
604 	if (swap_pager_full != 2) {
605 		printf("swap_pager_getswapspace(%d): failed\n", npages);
606 		swap_pager_full = 2;
607 		swap_pager_almost_full = 1;
608 	}
609 	swdevhd = NULL;
610 done:
611 	mtx_unlock(&sw_dev_mtx);
612 	return (blk);
613 }
614 
615 static struct swdevt *
616 swp_pager_find_dev(daddr_t blk)
617 {
618 	struct swdevt *sp;
619 
620 	mtx_lock(&sw_dev_mtx);
621 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
622 		if (blk >= sp->sw_first && blk < sp->sw_end) {
623 			mtx_unlock(&sw_dev_mtx);
624 			return (sp);
625 		}
626 	}
627 	panic("Swapdev not found");
628 }
629 
630 static void
631 swp_pager_strategy(struct buf *bp)
632 {
633 	struct swdevt *sp;
634 
635 	mtx_lock(&sw_dev_mtx);
636 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
637 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
638 			mtx_unlock(&sw_dev_mtx);
639 			sp->sw_strategy(bp, sp);
640 			return;
641 		}
642 	}
643 	panic("Swapdev not found");
644 }
645 
646 
647 /*
648  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
649  *
650  *	This routine returns the specified swap blocks back to the bitmap.
651  *
652  *	Note:  This routine may not block (it could in the old swap code),
653  *	and through the use of the new blist routines it does not block.
654  *
655  *	We must be called at splvm() to avoid races with bitmap frees from
656  *	vm_page_remove() aka swap_pager_page_removed().
657  *
658  *	This routine may not block
659  *	This routine must be called at splvm().
660  */
661 static void
662 swp_pager_freeswapspace(daddr_t blk, int npages)
663 {
664 	struct swdevt *sp;
665 
666 	mtx_lock(&sw_dev_mtx);
667 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
668 		if (blk >= sp->sw_first && blk < sp->sw_end) {
669 			sp->sw_used -= npages;
670 			/*
671 			 * If we are attempting to stop swapping on
672 			 * this device, we don't want to mark any
673 			 * blocks free lest they be reused.
674 			 */
675 			if ((sp->sw_flags & SW_CLOSING) == 0) {
676 				blist_free(sp->sw_blist, blk - sp->sw_first,
677 				    npages);
678 				swap_pager_avail += npages;
679 				swp_sizecheck();
680 			}
681 			mtx_unlock(&sw_dev_mtx);
682 			return;
683 		}
684 	}
685 	panic("Swapdev not found");
686 }
687 
688 /*
689  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
690  *				range within an object.
691  *
692  *	This is a globally accessible routine.
693  *
694  *	This routine removes swapblk assignments from swap metadata.
695  *
696  *	The external callers of this routine typically have already destroyed
697  *	or renamed vm_page_t's associated with this range in the object so
698  *	we should be ok.
699  *
700  *	This routine may be called at any spl.  We up our spl to splvm temporarily
701  *	in order to perform the metadata removal.
702  */
703 void
704 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
705 {
706 	int s = splvm();
707 
708 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
709 	swp_pager_meta_free(object, start, size);
710 	splx(s);
711 }
712 
713 /*
714  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
715  *
716  *	Assigns swap blocks to the specified range within the object.  The
717  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
718  *
719  *	Returns 0 on success, -1 on failure.
720  */
721 int
722 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
723 {
724 	int s;
725 	int n = 0;
726 	daddr_t blk = SWAPBLK_NONE;
727 	vm_pindex_t beg = start;	/* save start index */
728 
729 	s = splvm();
730 	VM_OBJECT_LOCK(object);
731 	while (size) {
732 		if (n == 0) {
733 			n = BLIST_MAX_ALLOC;
734 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
735 				n >>= 1;
736 				if (n == 0) {
737 					swp_pager_meta_free(object, beg, start - beg);
738 					VM_OBJECT_UNLOCK(object);
739 					splx(s);
740 					return (-1);
741 				}
742 			}
743 		}
744 		swp_pager_meta_build(object, start, blk);
745 		--size;
746 		++start;
747 		++blk;
748 		--n;
749 	}
750 	swp_pager_meta_free(object, start, n);
751 	VM_OBJECT_UNLOCK(object);
752 	splx(s);
753 	return (0);
754 }
755 
756 /*
757  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
758  *			and destroy the source.
759  *
760  *	Copy any valid swapblks from the source to the destination.  In
761  *	cases where both the source and destination have a valid swapblk,
762  *	we keep the destination's.
763  *
764  *	This routine is allowed to block.  It may block allocating metadata
765  *	indirectly through swp_pager_meta_build() or if paging is still in
766  *	progress on the source.
767  *
768  *	This routine can be called at any spl
769  *
770  *	XXX vm_page_collapse() kinda expects us not to block because we
771  *	supposedly do not need to allocate memory, but for the moment we
772  *	*may* have to get a little memory from the zone allocator, but
773  *	it is taken from the interrupt memory.  We should be ok.
774  *
775  *	The source object contains no vm_page_t's (which is just as well)
776  *
777  *	The source object is of type OBJT_SWAP.
778  *
779  *	The source and destination objects must be locked or
780  *	inaccessible (XXX are they ?)
781  */
782 void
783 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
784     vm_pindex_t offset, int destroysource)
785 {
786 	vm_pindex_t i;
787 	int s;
788 
789 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
790 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
791 
792 	s = splvm();
793 	/*
794 	 * If destroysource is set, we remove the source object from the
795 	 * swap_pager internal queue now.
796 	 */
797 	if (destroysource) {
798 		mtx_lock(&sw_alloc_mtx);
799 		if (srcobject->handle == NULL) {
800 			TAILQ_REMOVE(
801 			    &swap_pager_un_object_list,
802 			    srcobject,
803 			    pager_object_list
804 			);
805 		} else {
806 			TAILQ_REMOVE(
807 			    NOBJLIST(srcobject->handle),
808 			    srcobject,
809 			    pager_object_list
810 			);
811 		}
812 		mtx_unlock(&sw_alloc_mtx);
813 	}
814 
815 	/*
816 	 * transfer source to destination.
817 	 */
818 	for (i = 0; i < dstobject->size; ++i) {
819 		daddr_t dstaddr;
820 
821 		/*
822 		 * Locate (without changing) the swapblk on the destination,
823 		 * unless it is invalid in which case free it silently, or
824 		 * if the destination is a resident page, in which case the
825 		 * source is thrown away.
826 		 */
827 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
828 
829 		if (dstaddr == SWAPBLK_NONE) {
830 			/*
831 			 * Destination has no swapblk and is not resident,
832 			 * copy source.
833 			 */
834 			daddr_t srcaddr;
835 
836 			srcaddr = swp_pager_meta_ctl(
837 			    srcobject,
838 			    i + offset,
839 			    SWM_POP
840 			);
841 
842 			if (srcaddr != SWAPBLK_NONE) {
843 				/*
844 				 * swp_pager_meta_build() can sleep.
845 				 */
846 				vm_object_pip_add(srcobject, 1);
847 				VM_OBJECT_UNLOCK(srcobject);
848 				vm_object_pip_add(dstobject, 1);
849 				swp_pager_meta_build(dstobject, i, srcaddr);
850 				vm_object_pip_wakeup(dstobject);
851 				VM_OBJECT_LOCK(srcobject);
852 				vm_object_pip_wakeup(srcobject);
853 			}
854 		} else {
855 			/*
856 			 * Destination has valid swapblk or it is represented
857 			 * by a resident page.  We destroy the sourceblock.
858 			 */
859 
860 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
861 		}
862 	}
863 
864 	/*
865 	 * Free left over swap blocks in source.
866 	 *
867 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
868 	 * double-remove the object from the swap queues.
869 	 */
870 	if (destroysource) {
871 		swp_pager_meta_free_all(srcobject);
872 		/*
873 		 * Reverting the type is not necessary, the caller is going
874 		 * to destroy srcobject directly, but I'm doing it here
875 		 * for consistency since we've removed the object from its
876 		 * queues.
877 		 */
878 		srcobject->type = OBJT_DEFAULT;
879 	}
880 	splx(s);
881 }
882 
883 /*
884  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
885  *				the requested page.
886  *
887  *	We determine whether good backing store exists for the requested
888  *	page and return TRUE if it does, FALSE if it doesn't.
889  *
890  *	If TRUE, we also try to determine how much valid, contiguous backing
891  *	store exists before and after the requested page within a reasonable
892  *	distance.  We do not try to restrict it to the swap device stripe
893  *	(that is handled in getpages/putpages).  It probably isn't worth
894  *	doing here.
895  */
896 static boolean_t
897 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
898 {
899 	daddr_t blk0;
900 	int s;
901 
902 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
903 	/*
904 	 * do we have good backing store at the requested index ?
905 	 */
906 	s = splvm();
907 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
908 
909 	if (blk0 == SWAPBLK_NONE) {
910 		splx(s);
911 		if (before)
912 			*before = 0;
913 		if (after)
914 			*after = 0;
915 		return (FALSE);
916 	}
917 
918 	/*
919 	 * find backwards-looking contiguous good backing store
920 	 */
921 	if (before != NULL) {
922 		int i;
923 
924 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
925 			daddr_t blk;
926 
927 			if (i > pindex)
928 				break;
929 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
930 			if (blk != blk0 - i)
931 				break;
932 		}
933 		*before = (i - 1);
934 	}
935 
936 	/*
937 	 * find forward-looking contiguous good backing store
938 	 */
939 	if (after != NULL) {
940 		int i;
941 
942 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
943 			daddr_t blk;
944 
945 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
946 			if (blk != blk0 + i)
947 				break;
948 		}
949 		*after = (i - 1);
950 	}
951 	splx(s);
952 	return (TRUE);
953 }
954 
955 /*
956  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
957  *
958  *	This removes any associated swap backing store, whether valid or
959  *	not, from the page.
960  *
961  *	This routine is typically called when a page is made dirty, at
962  *	which point any associated swap can be freed.  MADV_FREE also
963  *	calls us in a special-case situation
964  *
965  *	NOTE!!!  If the page is clean and the swap was valid, the caller
966  *	should make the page dirty before calling this routine.  This routine
967  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
968  *	depends on it.
969  *
970  *	This routine may not block
971  *	This routine must be called at splvm()
972  */
973 static void
974 swap_pager_unswapped(vm_page_t m)
975 {
976 
977 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
978 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
979 }
980 
981 /*
982  * SWAP_PAGER_GETPAGES() - bring pages in from swap
983  *
984  *	Attempt to retrieve (m, count) pages from backing store, but make
985  *	sure we retrieve at least m[reqpage].  We try to load in as large
986  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
987  *	belongs to the same object.
988  *
989  *	The code is designed for asynchronous operation and
990  *	immediate-notification of 'reqpage' but tends not to be
991  *	used that way.  Please do not optimize-out this algorithmic
992  *	feature, I intend to improve on it in the future.
993  *
994  *	The parent has a single vm_object_pip_add() reference prior to
995  *	calling us and we should return with the same.
996  *
997  *	The parent has BUSY'd the pages.  We should return with 'm'
998  *	left busy, but the others adjusted.
999  */
1000 static int
1001 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1002 {
1003 	struct buf *bp;
1004 	vm_page_t mreq;
1005 	int s;
1006 	int i;
1007 	int j;
1008 	daddr_t blk;
1009 
1010 	mreq = m[reqpage];
1011 
1012 	KASSERT(mreq->object == object,
1013 	    ("swap_pager_getpages: object mismatch %p/%p",
1014 	    object, mreq->object));
1015 
1016 	/*
1017 	 * Calculate range to retrieve.  The pages have already been assigned
1018 	 * their swapblks.  We require a *contiguous* range but we know it to
1019 	 * not span devices.   If we do not supply it, bad things
1020 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1021 	 * loops are set up such that the case(s) are handled implicitly.
1022 	 *
1023 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1024 	 * not need to be, but it will go a little faster if it is.
1025 	 */
1026 	s = splvm();
1027 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1028 
1029 	for (i = reqpage - 1; i >= 0; --i) {
1030 		daddr_t iblk;
1031 
1032 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1033 		if (blk != iblk + (reqpage - i))
1034 			break;
1035 	}
1036 	++i;
1037 
1038 	for (j = reqpage + 1; j < count; ++j) {
1039 		daddr_t jblk;
1040 
1041 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1042 		if (blk != jblk - (j - reqpage))
1043 			break;
1044 	}
1045 
1046 	/*
1047 	 * free pages outside our collection range.   Note: we never free
1048 	 * mreq, it must remain busy throughout.
1049 	 */
1050 	vm_page_lock_queues();
1051 	{
1052 		int k;
1053 
1054 		for (k = 0; k < i; ++k)
1055 			vm_page_free(m[k]);
1056 		for (k = j; k < count; ++k)
1057 			vm_page_free(m[k]);
1058 	}
1059 	vm_page_unlock_queues();
1060 	splx(s);
1061 
1062 
1063 	/*
1064 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1065 	 * still busy, but the others unbusied.
1066 	 */
1067 	if (blk == SWAPBLK_NONE)
1068 		return (VM_PAGER_FAIL);
1069 
1070 	/*
1071 	 * Getpbuf() can sleep.
1072 	 */
1073 	VM_OBJECT_UNLOCK(object);
1074 	/*
1075 	 * Get a swap buffer header to perform the IO
1076 	 */
1077 	bp = getpbuf(&nsw_rcount);
1078 	bp->b_flags |= B_PAGING;
1079 
1080 	/*
1081 	 * map our page(s) into kva for input
1082 	 */
1083 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1084 
1085 	bp->b_iocmd = BIO_READ;
1086 	bp->b_iodone = swp_pager_async_iodone;
1087 	bp->b_rcred = crhold(thread0.td_ucred);
1088 	bp->b_wcred = crhold(thread0.td_ucred);
1089 	bp->b_blkno = blk - (reqpage - i);
1090 	bp->b_bcount = PAGE_SIZE * (j - i);
1091 	bp->b_bufsize = PAGE_SIZE * (j - i);
1092 	bp->b_pager.pg_reqpage = reqpage - i;
1093 
1094 	VM_OBJECT_LOCK(object);
1095 	vm_page_lock_queues();
1096 	{
1097 		int k;
1098 
1099 		for (k = i; k < j; ++k) {
1100 			bp->b_pages[k - i] = m[k];
1101 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1102 		}
1103 	}
1104 	vm_page_unlock_queues();
1105 	VM_OBJECT_UNLOCK(object);
1106 	bp->b_npages = j - i;
1107 
1108 	cnt.v_swapin++;
1109 	cnt.v_swappgsin += bp->b_npages;
1110 
1111 	/*
1112 	 * We still hold the lock on mreq, and our automatic completion routine
1113 	 * does not remove it.
1114 	 */
1115 	VM_OBJECT_LOCK(mreq->object);
1116 	vm_object_pip_add(mreq->object, bp->b_npages);
1117 	VM_OBJECT_UNLOCK(mreq->object);
1118 
1119 	/*
1120 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1121 	 * this point because we automatically release it on completion.
1122 	 * Instead, we look at the one page we are interested in which we
1123 	 * still hold a lock on even through the I/O completion.
1124 	 *
1125 	 * The other pages in our m[] array are also released on completion,
1126 	 * so we cannot assume they are valid anymore either.
1127 	 *
1128 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1129 	 */
1130 	BUF_KERNPROC(bp);
1131 	swp_pager_strategy(bp);
1132 
1133 	/*
1134 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1135 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1136 	 * is set in the meta-data.
1137 	 */
1138 	s = splvm();
1139 	vm_page_lock_queues();
1140 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1141 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1142 		cnt.v_intrans++;
1143 		if (msleep(mreq, &vm_page_queue_mtx, PSWP, "swread", hz*20)) {
1144 			printf(
1145 			    "swap_pager: indefinite wait buffer: device:"
1146 				" %s, blkno: %ld, size: %ld\n",
1147 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1148 			    bp->b_bcount
1149 			);
1150 		}
1151 	}
1152 	vm_page_unlock_queues();
1153 	splx(s);
1154 
1155 	VM_OBJECT_LOCK(mreq->object);
1156 	/*
1157 	 * mreq is left busied after completion, but all the other pages
1158 	 * are freed.  If we had an unrecoverable read error the page will
1159 	 * not be valid.
1160 	 */
1161 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1162 		return (VM_PAGER_ERROR);
1163 	} else {
1164 		return (VM_PAGER_OK);
1165 	}
1166 
1167 	/*
1168 	 * A final note: in a low swap situation, we cannot deallocate swap
1169 	 * and mark a page dirty here because the caller is likely to mark
1170 	 * the page clean when we return, causing the page to possibly revert
1171 	 * to all-zero's later.
1172 	 */
1173 }
1174 
1175 /*
1176  *	swap_pager_putpages:
1177  *
1178  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1179  *
1180  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1181  *	are automatically converted to SWAP objects.
1182  *
1183  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1184  *	vm_page reservation system coupled with properly written VFS devices
1185  *	should ensure that no low-memory deadlock occurs.  This is an area
1186  *	which needs work.
1187  *
1188  *	The parent has N vm_object_pip_add() references prior to
1189  *	calling us and will remove references for rtvals[] that are
1190  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1191  *	completion.
1192  *
1193  *	The parent has soft-busy'd the pages it passes us and will unbusy
1194  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1195  *	We need to unbusy the rest on I/O completion.
1196  */
1197 void
1198 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1199     boolean_t sync, int *rtvals)
1200 {
1201 	int i;
1202 	int n = 0;
1203 
1204 	GIANT_REQUIRED;
1205 	if (count && m[0]->object != object) {
1206 		panic("swap_pager_getpages: object mismatch %p/%p",
1207 		    object,
1208 		    m[0]->object
1209 		);
1210 	}
1211 
1212 	/*
1213 	 * Step 1
1214 	 *
1215 	 * Turn object into OBJT_SWAP
1216 	 * check for bogus sysops
1217 	 * force sync if not pageout process
1218 	 */
1219 	if (object->type != OBJT_SWAP)
1220 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1221 	VM_OBJECT_UNLOCK(object);
1222 
1223 	if (curproc != pageproc)
1224 		sync = TRUE;
1225 
1226 	/*
1227 	 * Step 2
1228 	 *
1229 	 * Update nsw parameters from swap_async_max sysctl values.
1230 	 * Do not let the sysop crash the machine with bogus numbers.
1231 	 */
1232 	mtx_lock(&pbuf_mtx);
1233 	if (swap_async_max != nsw_wcount_async_max) {
1234 		int n;
1235 		int s;
1236 
1237 		/*
1238 		 * limit range
1239 		 */
1240 		if ((n = swap_async_max) > nswbuf / 2)
1241 			n = nswbuf / 2;
1242 		if (n < 1)
1243 			n = 1;
1244 		swap_async_max = n;
1245 
1246 		/*
1247 		 * Adjust difference ( if possible ).  If the current async
1248 		 * count is too low, we may not be able to make the adjustment
1249 		 * at this time.
1250 		 */
1251 		s = splvm();
1252 		n -= nsw_wcount_async_max;
1253 		if (nsw_wcount_async + n >= 0) {
1254 			nsw_wcount_async += n;
1255 			nsw_wcount_async_max += n;
1256 			wakeup(&nsw_wcount_async);
1257 		}
1258 		splx(s);
1259 	}
1260 	mtx_unlock(&pbuf_mtx);
1261 
1262 	/*
1263 	 * Step 3
1264 	 *
1265 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1266 	 * The page is left dirty until the pageout operation completes
1267 	 * successfully.
1268 	 */
1269 	for (i = 0; i < count; i += n) {
1270 		int s;
1271 		int j;
1272 		struct buf *bp;
1273 		daddr_t blk;
1274 
1275 		/*
1276 		 * Maximum I/O size is limited by a number of factors.
1277 		 */
1278 		n = min(BLIST_MAX_ALLOC, count - i);
1279 		n = min(n, nsw_cluster_max);
1280 
1281 		s = splvm();
1282 
1283 		/*
1284 		 * Get biggest block of swap we can.  If we fail, fall
1285 		 * back and try to allocate a smaller block.  Don't go
1286 		 * overboard trying to allocate space if it would overly
1287 		 * fragment swap.
1288 		 */
1289 		while (
1290 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1291 		    n > 4
1292 		) {
1293 			n >>= 1;
1294 		}
1295 		if (blk == SWAPBLK_NONE) {
1296 			for (j = 0; j < n; ++j)
1297 				rtvals[i+j] = VM_PAGER_FAIL;
1298 			splx(s);
1299 			continue;
1300 		}
1301 
1302 		/*
1303 		 * All I/O parameters have been satisfied, build the I/O
1304 		 * request and assign the swap space.
1305 		 */
1306 		if (sync == TRUE) {
1307 			bp = getpbuf(&nsw_wcount_sync);
1308 		} else {
1309 			bp = getpbuf(&nsw_wcount_async);
1310 			bp->b_flags = B_ASYNC;
1311 		}
1312 		bp->b_flags |= B_PAGING;
1313 		bp->b_iocmd = BIO_WRITE;
1314 
1315 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1316 
1317 		bp->b_rcred = crhold(thread0.td_ucred);
1318 		bp->b_wcred = crhold(thread0.td_ucred);
1319 		bp->b_bcount = PAGE_SIZE * n;
1320 		bp->b_bufsize = PAGE_SIZE * n;
1321 		bp->b_blkno = blk;
1322 
1323 		VM_OBJECT_LOCK(object);
1324 		for (j = 0; j < n; ++j) {
1325 			vm_page_t mreq = m[i+j];
1326 
1327 			swp_pager_meta_build(
1328 			    mreq->object,
1329 			    mreq->pindex,
1330 			    blk + j
1331 			);
1332 			vm_page_dirty(mreq);
1333 			rtvals[i+j] = VM_PAGER_OK;
1334 
1335 			vm_page_lock_queues();
1336 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1337 			vm_page_unlock_queues();
1338 			bp->b_pages[j] = mreq;
1339 		}
1340 		VM_OBJECT_UNLOCK(object);
1341 		bp->b_npages = n;
1342 		/*
1343 		 * Must set dirty range for NFS to work.
1344 		 */
1345 		bp->b_dirtyoff = 0;
1346 		bp->b_dirtyend = bp->b_bcount;
1347 
1348 		cnt.v_swapout++;
1349 		cnt.v_swappgsout += bp->b_npages;
1350 
1351 		splx(s);
1352 
1353 		/*
1354 		 * asynchronous
1355 		 *
1356 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1357 		 */
1358 		if (sync == FALSE) {
1359 			bp->b_iodone = swp_pager_async_iodone;
1360 			BUF_KERNPROC(bp);
1361 			swp_pager_strategy(bp);
1362 
1363 			for (j = 0; j < n; ++j)
1364 				rtvals[i+j] = VM_PAGER_PEND;
1365 			/* restart outter loop */
1366 			continue;
1367 		}
1368 
1369 		/*
1370 		 * synchronous
1371 		 *
1372 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1373 		 */
1374 		bp->b_iodone = swp_pager_sync_iodone;
1375 		swp_pager_strategy(bp);
1376 
1377 		/*
1378 		 * Wait for the sync I/O to complete, then update rtvals.
1379 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1380 		 * our async completion routine at the end, thus avoiding a
1381 		 * double-free.
1382 		 */
1383 		s = splbio();
1384 		while ((bp->b_flags & B_DONE) == 0) {
1385 			tsleep(bp, PVM, "swwrt", 0);
1386 		}
1387 		for (j = 0; j < n; ++j)
1388 			rtvals[i+j] = VM_PAGER_PEND;
1389 		/*
1390 		 * Now that we are through with the bp, we can call the
1391 		 * normal async completion, which frees everything up.
1392 		 */
1393 		swp_pager_async_iodone(bp);
1394 		splx(s);
1395 	}
1396 	VM_OBJECT_LOCK(object);
1397 }
1398 
1399 /*
1400  *	swap_pager_sync_iodone:
1401  *
1402  *	Completion routine for synchronous reads and writes from/to swap.
1403  *	We just mark the bp is complete and wake up anyone waiting on it.
1404  *
1405  *	This routine may not block.  This routine is called at splbio() or better.
1406  */
1407 static void
1408 swp_pager_sync_iodone(struct buf *bp)
1409 {
1410 	bp->b_flags |= B_DONE;
1411 	bp->b_flags &= ~B_ASYNC;
1412 	wakeup(bp);
1413 }
1414 
1415 /*
1416  *	swp_pager_async_iodone:
1417  *
1418  *	Completion routine for asynchronous reads and writes from/to swap.
1419  *	Also called manually by synchronous code to finish up a bp.
1420  *
1421  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1422  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1423  *	unbusy all pages except the 'main' request page.  For WRITE
1424  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1425  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1426  *
1427  *	This routine may not block.
1428  *	This routine is called at splbio() or better
1429  *
1430  *	We up ourselves to splvm() as required for various vm_page related
1431  *	calls.
1432  */
1433 static void
1434 swp_pager_async_iodone(struct buf *bp)
1435 {
1436 	int s;
1437 	int i;
1438 	vm_object_t object = NULL;
1439 
1440 	GIANT_REQUIRED;
1441 	bp->b_flags |= B_DONE;
1442 
1443 	/*
1444 	 * report error
1445 	 */
1446 	if (bp->b_ioflags & BIO_ERROR) {
1447 		printf(
1448 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1449 			"size %ld, error %d\n",
1450 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1451 		    (long)bp->b_blkno,
1452 		    (long)bp->b_bcount,
1453 		    bp->b_error
1454 		);
1455 	}
1456 
1457 	/*
1458 	 * set object, raise to splvm().
1459 	 */
1460 	s = splvm();
1461 
1462 	/*
1463 	 * remove the mapping for kernel virtual
1464 	 */
1465 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1466 
1467 	if (bp->b_npages) {
1468 		object = bp->b_pages[0]->object;
1469 		VM_OBJECT_LOCK(object);
1470 	}
1471 	vm_page_lock_queues();
1472 	/*
1473 	 * cleanup pages.  If an error occurs writing to swap, we are in
1474 	 * very serious trouble.  If it happens to be a disk error, though,
1475 	 * we may be able to recover by reassigning the swap later on.  So
1476 	 * in this case we remove the m->swapblk assignment for the page
1477 	 * but do not free it in the rlist.  The errornous block(s) are thus
1478 	 * never reallocated as swap.  Redirty the page and continue.
1479 	 */
1480 	for (i = 0; i < bp->b_npages; ++i) {
1481 		vm_page_t m = bp->b_pages[i];
1482 
1483 		vm_page_flag_clear(m, PG_SWAPINPROG);
1484 
1485 		if (bp->b_ioflags & BIO_ERROR) {
1486 			/*
1487 			 * If an error occurs I'd love to throw the swapblk
1488 			 * away without freeing it back to swapspace, so it
1489 			 * can never be used again.  But I can't from an
1490 			 * interrupt.
1491 			 */
1492 			if (bp->b_iocmd == BIO_READ) {
1493 				/*
1494 				 * When reading, reqpage needs to stay
1495 				 * locked for the parent, but all other
1496 				 * pages can be freed.  We still want to
1497 				 * wakeup the parent waiting on the page,
1498 				 * though.  ( also: pg_reqpage can be -1 and
1499 				 * not match anything ).
1500 				 *
1501 				 * We have to wake specifically requested pages
1502 				 * up too because we cleared PG_SWAPINPROG and
1503 				 * someone may be waiting for that.
1504 				 *
1505 				 * NOTE: for reads, m->dirty will probably
1506 				 * be overridden by the original caller of
1507 				 * getpages so don't play cute tricks here.
1508 				 *
1509 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1510 				 * AS THIS MESSES WITH object->memq, and it is
1511 				 * not legal to mess with object->memq from an
1512 				 * interrupt.
1513 				 */
1514 				m->valid = 0;
1515 				vm_page_flag_clear(m, PG_ZERO);
1516 				if (i != bp->b_pager.pg_reqpage)
1517 					vm_page_free(m);
1518 				else
1519 					vm_page_flash(m);
1520 				/*
1521 				 * If i == bp->b_pager.pg_reqpage, do not wake
1522 				 * the page up.  The caller needs to.
1523 				 */
1524 			} else {
1525 				/*
1526 				 * If a write error occurs, reactivate page
1527 				 * so it doesn't clog the inactive list,
1528 				 * then finish the I/O.
1529 				 */
1530 				vm_page_dirty(m);
1531 				vm_page_activate(m);
1532 				vm_page_io_finish(m);
1533 			}
1534 		} else if (bp->b_iocmd == BIO_READ) {
1535 			/*
1536 			 * For read success, clear dirty bits.  Nobody should
1537 			 * have this page mapped but don't take any chances,
1538 			 * make sure the pmap modify bits are also cleared.
1539 			 *
1540 			 * NOTE: for reads, m->dirty will probably be
1541 			 * overridden by the original caller of getpages so
1542 			 * we cannot set them in order to free the underlying
1543 			 * swap in a low-swap situation.  I don't think we'd
1544 			 * want to do that anyway, but it was an optimization
1545 			 * that existed in the old swapper for a time before
1546 			 * it got ripped out due to precisely this problem.
1547 			 *
1548 			 * clear PG_ZERO in page.
1549 			 *
1550 			 * If not the requested page then deactivate it.
1551 			 *
1552 			 * Note that the requested page, reqpage, is left
1553 			 * busied, but we still have to wake it up.  The
1554 			 * other pages are released (unbusied) by
1555 			 * vm_page_wakeup().  We do not set reqpage's
1556 			 * valid bits here, it is up to the caller.
1557 			 */
1558 			pmap_clear_modify(m);
1559 			m->valid = VM_PAGE_BITS_ALL;
1560 			vm_page_undirty(m);
1561 			vm_page_flag_clear(m, PG_ZERO);
1562 
1563 			/*
1564 			 * We have to wake specifically requested pages
1565 			 * up too because we cleared PG_SWAPINPROG and
1566 			 * could be waiting for it in getpages.  However,
1567 			 * be sure to not unbusy getpages specifically
1568 			 * requested page - getpages expects it to be
1569 			 * left busy.
1570 			 */
1571 			if (i != bp->b_pager.pg_reqpage) {
1572 				vm_page_deactivate(m);
1573 				vm_page_wakeup(m);
1574 			} else {
1575 				vm_page_flash(m);
1576 			}
1577 		} else {
1578 			/*
1579 			 * For write success, clear the modify and dirty
1580 			 * status, then finish the I/O ( which decrements the
1581 			 * busy count and possibly wakes waiter's up ).
1582 			 */
1583 			pmap_clear_modify(m);
1584 			vm_page_undirty(m);
1585 			vm_page_io_finish(m);
1586 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1587 				pmap_page_protect(m, VM_PROT_READ);
1588 		}
1589 	}
1590 	vm_page_unlock_queues();
1591 
1592 	/*
1593 	 * adjust pip.  NOTE: the original parent may still have its own
1594 	 * pip refs on the object.
1595 	 */
1596 	if (object != NULL) {
1597 		vm_object_pip_wakeupn(object, bp->b_npages);
1598 		VM_OBJECT_UNLOCK(object);
1599 	}
1600 
1601 	/*
1602 	 * release the physical I/O buffer
1603 	 */
1604 	relpbuf(
1605 	    bp,
1606 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1607 		((bp->b_flags & B_ASYNC) ?
1608 		    &nsw_wcount_async :
1609 		    &nsw_wcount_sync
1610 		)
1611 	    )
1612 	);
1613 	splx(s);
1614 }
1615 
1616 /*
1617  *	swap_pager_isswapped:
1618  *
1619  *	Return 1 if at least one page in the given object is paged
1620  *	out to the given swap device.
1621  *
1622  *	This routine may not block.
1623  */
1624 int
1625 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1626 {
1627 	daddr_t index = 0;
1628 	int bcount;
1629 	int i;
1630 
1631 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1632 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1633 		struct swblock *swap;
1634 
1635 		mtx_lock(&swhash_mtx);
1636 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1637 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1638 				daddr_t v = swap->swb_pages[i];
1639 				if (v == SWAPBLK_NONE)
1640 					continue;
1641 				if (swp_pager_find_dev(v) == sp) {
1642 					mtx_unlock(&swhash_mtx);
1643 					return 1;
1644 				}
1645 			}
1646 		}
1647 		mtx_unlock(&swhash_mtx);
1648 		index += SWAP_META_PAGES;
1649 		if (index > 0x20000000)
1650 			panic("swap_pager_isswapped: failed to locate all swap meta blocks");
1651 	}
1652 	return 0;
1653 }
1654 
1655 /*
1656  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1657  *
1658  *	This routine dissociates the page at the given index within a
1659  *	swap block from its backing store, paging it in if necessary.
1660  *	If the page is paged in, it is placed in the inactive queue,
1661  *	since it had its backing store ripped out from under it.
1662  *	We also attempt to swap in all other pages in the swap block,
1663  *	we only guarantee that the one at the specified index is
1664  *	paged in.
1665  *
1666  *	XXX - The code to page the whole block in doesn't work, so we
1667  *	      revert to the one-by-one behavior for now.  Sigh.
1668  */
1669 static __inline void
1670 swp_pager_force_pagein(struct swblock *swap, int idx)
1671 {
1672 	vm_object_t object;
1673 	vm_page_t m;
1674 	vm_pindex_t pindex;
1675 
1676 	object = swap->swb_object;
1677 	pindex = swap->swb_index;
1678 	mtx_unlock(&swhash_mtx);
1679 
1680 	VM_OBJECT_LOCK(object);
1681 	vm_object_pip_add(object, 1);
1682 	m = vm_page_grab(object, pindex + idx, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1683 	if (m->valid == VM_PAGE_BITS_ALL) {
1684 		vm_object_pip_subtract(object, 1);
1685 		vm_page_lock_queues();
1686 		vm_page_activate(m);
1687 		vm_page_dirty(m);
1688 		vm_page_wakeup(m);
1689 		vm_page_unlock_queues();
1690 		vm_pager_page_unswapped(m);
1691 		VM_OBJECT_UNLOCK(object);
1692 		return;
1693 	}
1694 
1695 	if (swap_pager_getpages(object, &m, 1, 0) !=
1696 	    VM_PAGER_OK)
1697 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1698 	vm_object_pip_subtract(object, 1);
1699 	vm_page_lock_queues();
1700 	vm_page_dirty(m);
1701 	vm_page_dontneed(m);
1702 	vm_page_wakeup(m);
1703 	vm_page_unlock_queues();
1704 	vm_pager_page_unswapped(m);
1705 	VM_OBJECT_UNLOCK(object);
1706 }
1707 
1708 
1709 /*
1710  *	swap_pager_swapoff:
1711  *
1712  *	Page in all of the pages that have been paged out to the
1713  *	given device.  The corresponding blocks in the bitmap must be
1714  *	marked as allocated and the device must be flagged SW_CLOSING.
1715  *	There may be no processes swapped out to the device.
1716  *
1717  *	The sw_used parameter points to the field in the swdev structure
1718  *	that contains a count of the number of blocks still allocated
1719  *	on the device.  If we encounter objects with a nonzero pip count
1720  *	in our scan, we use this number to determine if we're really done.
1721  *
1722  *	This routine may block.
1723  */
1724 static void
1725 swap_pager_swapoff(struct swdevt *sp, int *sw_used)
1726 {
1727 	struct swblock **pswap;
1728 	struct swblock *swap;
1729 	vm_object_t waitobj;
1730 	daddr_t v;
1731 	int i, j;
1732 
1733 	GIANT_REQUIRED;
1734 
1735 full_rescan:
1736 	waitobj = NULL;
1737 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1738 restart:
1739 		pswap = &swhash[i];
1740 		mtx_lock(&swhash_mtx);
1741 		while ((swap = *pswap) != NULL) {
1742                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1743                                 v = swap->swb_pages[j];
1744                                 if (v != SWAPBLK_NONE &&
1745 				    swp_pager_find_dev(v) == sp)
1746                                         break;
1747                         }
1748 			if (j < SWAP_META_PAGES) {
1749 				swp_pager_force_pagein(swap, j);
1750 				goto restart;
1751 			} else if (swap->swb_object->paging_in_progress) {
1752 				if (!waitobj)
1753 					waitobj = swap->swb_object;
1754 			}
1755 			pswap = &swap->swb_hnext;
1756 		}
1757 		mtx_unlock(&swhash_mtx);
1758 	}
1759 	if (waitobj && *sw_used) {
1760 	    /*
1761 	     * We wait on an arbitrary object to clock our rescans
1762 	     * to the rate of paging completion.
1763 	     */
1764 	    VM_OBJECT_LOCK(waitobj);
1765 	    vm_object_pip_wait(waitobj, "swpoff");
1766 	    VM_OBJECT_UNLOCK(waitobj);
1767 	    goto full_rescan;
1768 	}
1769 	if (*sw_used)
1770 	    panic("swapoff: failed to locate %d swap blocks", *sw_used);
1771 }
1772 
1773 /************************************************************************
1774  *				SWAP META DATA 				*
1775  ************************************************************************
1776  *
1777  *	These routines manipulate the swap metadata stored in the
1778  *	OBJT_SWAP object.  All swp_*() routines must be called at
1779  *	splvm() because swap can be freed up by the low level vm_page
1780  *	code which might be called from interrupts beyond what splbio() covers.
1781  *
1782  *	Swap metadata is implemented with a global hash and not directly
1783  *	linked into the object.  Instead the object simply contains
1784  *	appropriate tracking counters.
1785  */
1786 
1787 /*
1788  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1789  *
1790  *	We first convert the object to a swap object if it is a default
1791  *	object.
1792  *
1793  *	The specified swapblk is added to the object's swap metadata.  If
1794  *	the swapblk is not valid, it is freed instead.  Any previously
1795  *	assigned swapblk is freed.
1796  *
1797  *	This routine must be called at splvm(), except when used to convert
1798  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1799  */
1800 static void
1801 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1802 {
1803 	struct swblock *swap;
1804 	struct swblock **pswap;
1805 	int idx;
1806 
1807 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1808 	/*
1809 	 * Convert default object to swap object if necessary
1810 	 */
1811 	if (object->type != OBJT_SWAP) {
1812 		object->type = OBJT_SWAP;
1813 		object->un_pager.swp.swp_bcount = 0;
1814 
1815 		mtx_lock(&sw_alloc_mtx);
1816 		if (object->handle != NULL) {
1817 			TAILQ_INSERT_TAIL(
1818 			    NOBJLIST(object->handle),
1819 			    object,
1820 			    pager_object_list
1821 			);
1822 		} else {
1823 			TAILQ_INSERT_TAIL(
1824 			    &swap_pager_un_object_list,
1825 			    object,
1826 			    pager_object_list
1827 			);
1828 		}
1829 		mtx_unlock(&sw_alloc_mtx);
1830 	}
1831 
1832 	/*
1833 	 * Locate hash entry.  If not found create, but if we aren't adding
1834 	 * anything just return.  If we run out of space in the map we wait
1835 	 * and, since the hash table may have changed, retry.
1836 	 */
1837 retry:
1838 	mtx_lock(&swhash_mtx);
1839 	pswap = swp_pager_hash(object, pindex);
1840 
1841 	if ((swap = *pswap) == NULL) {
1842 		int i;
1843 
1844 		if (swapblk == SWAPBLK_NONE)
1845 			goto done;
1846 
1847 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1848 		if (swap == NULL) {
1849 			mtx_unlock(&swhash_mtx);
1850 			VM_OBJECT_UNLOCK(object);
1851 			VM_WAIT;
1852 			VM_OBJECT_LOCK(object);
1853 			goto retry;
1854 		}
1855 
1856 		swap->swb_hnext = NULL;
1857 		swap->swb_object = object;
1858 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1859 		swap->swb_count = 0;
1860 
1861 		++object->un_pager.swp.swp_bcount;
1862 
1863 		for (i = 0; i < SWAP_META_PAGES; ++i)
1864 			swap->swb_pages[i] = SWAPBLK_NONE;
1865 	}
1866 
1867 	/*
1868 	 * Delete prior contents of metadata
1869 	 */
1870 	idx = pindex & SWAP_META_MASK;
1871 
1872 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1873 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1874 		--swap->swb_count;
1875 	}
1876 
1877 	/*
1878 	 * Enter block into metadata
1879 	 */
1880 	swap->swb_pages[idx] = swapblk;
1881 	if (swapblk != SWAPBLK_NONE)
1882 		++swap->swb_count;
1883 done:
1884 	mtx_unlock(&swhash_mtx);
1885 }
1886 
1887 /*
1888  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1889  *
1890  *	The requested range of blocks is freed, with any associated swap
1891  *	returned to the swap bitmap.
1892  *
1893  *	This routine will free swap metadata structures as they are cleaned
1894  *	out.  This routine does *NOT* operate on swap metadata associated
1895  *	with resident pages.
1896  *
1897  *	This routine must be called at splvm()
1898  */
1899 static void
1900 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1901 {
1902 
1903 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1904 	if (object->type != OBJT_SWAP)
1905 		return;
1906 
1907 	while (count > 0) {
1908 		struct swblock **pswap;
1909 		struct swblock *swap;
1910 
1911 		mtx_lock(&swhash_mtx);
1912 		pswap = swp_pager_hash(object, index);
1913 
1914 		if ((swap = *pswap) != NULL) {
1915 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1916 
1917 			if (v != SWAPBLK_NONE) {
1918 				swp_pager_freeswapspace(v, 1);
1919 				swap->swb_pages[index & SWAP_META_MASK] =
1920 					SWAPBLK_NONE;
1921 				if (--swap->swb_count == 0) {
1922 					*pswap = swap->swb_hnext;
1923 					uma_zfree(swap_zone, swap);
1924 					--object->un_pager.swp.swp_bcount;
1925 				}
1926 			}
1927 			--count;
1928 			++index;
1929 		} else {
1930 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1931 			count -= n;
1932 			index += n;
1933 		}
1934 		mtx_unlock(&swhash_mtx);
1935 	}
1936 }
1937 
1938 /*
1939  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1940  *
1941  *	This routine locates and destroys all swap metadata associated with
1942  *	an object.
1943  *
1944  *	This routine must be called at splvm()
1945  */
1946 static void
1947 swp_pager_meta_free_all(vm_object_t object)
1948 {
1949 	daddr_t index = 0;
1950 
1951 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1952 	if (object->type != OBJT_SWAP)
1953 		return;
1954 
1955 	while (object->un_pager.swp.swp_bcount) {
1956 		struct swblock **pswap;
1957 		struct swblock *swap;
1958 
1959 		mtx_lock(&swhash_mtx);
1960 		pswap = swp_pager_hash(object, index);
1961 		if ((swap = *pswap) != NULL) {
1962 			int i;
1963 
1964 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1965 				daddr_t v = swap->swb_pages[i];
1966 				if (v != SWAPBLK_NONE) {
1967 					--swap->swb_count;
1968 					swp_pager_freeswapspace(v, 1);
1969 				}
1970 			}
1971 			if (swap->swb_count != 0)
1972 				panic("swap_pager_meta_free_all: swb_count != 0");
1973 			*pswap = swap->swb_hnext;
1974 			uma_zfree(swap_zone, swap);
1975 			--object->un_pager.swp.swp_bcount;
1976 		}
1977 		mtx_unlock(&swhash_mtx);
1978 		index += SWAP_META_PAGES;
1979 		if (index > 0x20000000)
1980 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1981 	}
1982 }
1983 
1984 /*
1985  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1986  *
1987  *	This routine is capable of looking up, popping, or freeing
1988  *	swapblk assignments in the swap meta data or in the vm_page_t.
1989  *	The routine typically returns the swapblk being looked-up, or popped,
1990  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1991  *	was invalid.  This routine will automatically free any invalid
1992  *	meta-data swapblks.
1993  *
1994  *	It is not possible to store invalid swapblks in the swap meta data
1995  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1996  *
1997  *	When acting on a busy resident page and paging is in progress, we
1998  *	have to wait until paging is complete but otherwise can act on the
1999  *	busy page.
2000  *
2001  *	This routine must be called at splvm().
2002  *
2003  *	SWM_FREE	remove and free swap block from metadata
2004  *	SWM_POP		remove from meta data but do not free.. pop it out
2005  */
2006 static daddr_t
2007 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2008 {
2009 	struct swblock **pswap;
2010 	struct swblock *swap;
2011 	daddr_t r1;
2012 	int idx;
2013 
2014 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2015 	/*
2016 	 * The meta data only exists of the object is OBJT_SWAP
2017 	 * and even then might not be allocated yet.
2018 	 */
2019 	if (object->type != OBJT_SWAP)
2020 		return (SWAPBLK_NONE);
2021 
2022 	r1 = SWAPBLK_NONE;
2023 	mtx_lock(&swhash_mtx);
2024 	pswap = swp_pager_hash(object, pindex);
2025 
2026 	if ((swap = *pswap) != NULL) {
2027 		idx = pindex & SWAP_META_MASK;
2028 		r1 = swap->swb_pages[idx];
2029 
2030 		if (r1 != SWAPBLK_NONE) {
2031 			if (flags & SWM_FREE) {
2032 				swp_pager_freeswapspace(r1, 1);
2033 				r1 = SWAPBLK_NONE;
2034 			}
2035 			if (flags & (SWM_FREE|SWM_POP)) {
2036 				swap->swb_pages[idx] = SWAPBLK_NONE;
2037 				if (--swap->swb_count == 0) {
2038 					*pswap = swap->swb_hnext;
2039 					uma_zfree(swap_zone, swap);
2040 					--object->un_pager.swp.swp_bcount;
2041 				}
2042 			}
2043 		}
2044 	}
2045 	mtx_unlock(&swhash_mtx);
2046 	return (r1);
2047 }
2048 
2049 /*
2050  * System call swapon(name) enables swapping on device name,
2051  * which must be in the swdevsw.  Return EBUSY
2052  * if already swapping on this device.
2053  */
2054 #ifndef _SYS_SYSPROTO_H_
2055 struct swapon_args {
2056 	char *name;
2057 };
2058 #endif
2059 
2060 /*
2061  * MPSAFE
2062  */
2063 /* ARGSUSED */
2064 int
2065 swapon(struct thread *td, struct swapon_args *uap)
2066 {
2067 	struct vattr attr;
2068 	struct vnode *vp;
2069 	struct nameidata nd;
2070 	int error;
2071 
2072 	mtx_lock(&Giant);
2073 	error = suser(td);
2074 	if (error)
2075 		goto done2;
2076 
2077 	while (swdev_syscall_active)
2078 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2079 	swdev_syscall_active = 1;
2080 
2081 	/*
2082 	 * Swap metadata may not fit in the KVM if we have physical
2083 	 * memory of >1GB.
2084 	 */
2085 	if (swap_zone == NULL) {
2086 		error = ENOMEM;
2087 		goto done;
2088 	}
2089 
2090 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2091 	error = namei(&nd);
2092 	if (error)
2093 		goto done;
2094 
2095 	NDFREE(&nd, NDF_ONLY_PNBUF);
2096 	vp = nd.ni_vp;
2097 
2098 	if (vn_isdisk(vp, &error)) {
2099 		error = swapongeom(td, vp);
2100 	} else if (vp->v_type == VREG &&
2101 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2102 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) {
2103 		/*
2104 		 * Allow direct swapping to NFS regular files in the same
2105 		 * way that nfs_mountroot() sets up diskless swapping.
2106 		 */
2107 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2108 	}
2109 
2110 	if (error)
2111 		vrele(vp);
2112 done:
2113 	swdev_syscall_active = 0;
2114 	wakeup_one(&swdev_syscall_active);
2115 done2:
2116 	mtx_unlock(&Giant);
2117 	return (error);
2118 }
2119 
2120 static void
2121 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, udev_t udev)
2122 {
2123 	struct swdevt *sp, *tsp;
2124 	swblk_t dvbase;
2125 	u_long mblocks;
2126 
2127 	/*
2128 	 * If we go beyond this, we get overflows in the radix
2129 	 * tree bitmap code.
2130 	 */
2131 	mblocks = 0x40000000 / BLIST_META_RADIX;
2132 	if (nblks > mblocks) {
2133 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2134 			mblocks);
2135 		nblks = mblocks;
2136 	}
2137 	/*
2138 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2139 	 * First chop nblks off to page-align it, then convert.
2140 	 *
2141 	 * sw->sw_nblks is in page-sized chunks now too.
2142 	 */
2143 	nblks &= ~(ctodb(1) - 1);
2144 	nblks = dbtoc(nblks);
2145 
2146 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2147 	sp->sw_vp = vp;
2148 	sp->sw_id = id;
2149 	sp->sw_udev = udev;
2150 	sp->sw_flags = 0;
2151 	sp->sw_nblks = nblks;
2152 	sp->sw_used = 0;
2153 	sp->sw_strategy = strategy;
2154 	sp->sw_close = close;
2155 
2156 	sp->sw_blist = blist_create(nblks);
2157 	/*
2158 	 * Do not free the first two block in order to avoid overwriting
2159 	 * any bsd label at the front of the partition
2160 	 */
2161 	blist_free(sp->sw_blist, 2, nblks - 2);
2162 
2163 	dvbase = 0;
2164 	mtx_lock(&sw_dev_mtx);
2165 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2166 		if (tsp->sw_end >= dvbase) {
2167 			/*
2168 			 * We put one uncovered page between the devices
2169 			 * in order to definitively prevent any cross-device
2170 			 * I/O requests
2171 			 */
2172 			dvbase = tsp->sw_end + 1;
2173 		}
2174 	}
2175 	sp->sw_first = dvbase;
2176 	sp->sw_end = dvbase + nblks;
2177 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2178 	nswapdev++;
2179 	swap_pager_avail += nblks;
2180 	swp_sizecheck();
2181 	mtx_unlock(&sw_dev_mtx);
2182 }
2183 
2184 /*
2185  * SYSCALL: swapoff(devname)
2186  *
2187  * Disable swapping on the given device.
2188  *
2189  * XXX: Badly designed system call: it should use a device index
2190  * rather than filename as specification.  We keep sw_vp around
2191  * only to make this work.
2192  */
2193 #ifndef _SYS_SYSPROTO_H_
2194 struct swapoff_args {
2195 	char *name;
2196 };
2197 #endif
2198 
2199 /*
2200  * MPSAFE
2201  */
2202 /* ARGSUSED */
2203 int
2204 swapoff(struct thread *td, struct swapoff_args *uap)
2205 {
2206 	struct vnode *vp;
2207 	struct nameidata nd;
2208 	struct swdevt *sp;
2209 	u_long nblks, dvbase;
2210 	int error;
2211 
2212 	mtx_lock(&Giant);
2213 
2214 	error = suser(td);
2215 	if (error)
2216 		goto done2;
2217 
2218 	while (swdev_syscall_active)
2219 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2220 	swdev_syscall_active = 1;
2221 
2222 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td);
2223 	error = namei(&nd);
2224 	if (error)
2225 		goto done;
2226 	NDFREE(&nd, NDF_ONLY_PNBUF);
2227 	vp = nd.ni_vp;
2228 
2229 	mtx_lock(&sw_dev_mtx);
2230 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2231 		if (sp->sw_vp == vp)
2232 			goto found;
2233 	}
2234 	mtx_unlock(&sw_dev_mtx);
2235 	error = EINVAL;
2236 	goto done;
2237 found:
2238 	mtx_unlock(&sw_dev_mtx);
2239 #ifdef MAC
2240 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2241 	error = mac_check_system_swapoff(td->td_ucred, vp);
2242 	(void) VOP_UNLOCK(vp, 0, td);
2243 	if (error != 0)
2244 		goto done;
2245 #endif
2246 
2247 	nblks = sp->sw_nblks;
2248 
2249 	/*
2250 	 * We can turn off this swap device safely only if the
2251 	 * available virtual memory in the system will fit the amount
2252 	 * of data we will have to page back in, plus an epsilon so
2253 	 * the system doesn't become critically low on swap space.
2254 	 */
2255 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2256 	    nblks + nswap_lowat) {
2257 		error = ENOMEM;
2258 		goto done;
2259 	}
2260 
2261 	/*
2262 	 * Prevent further allocations on this device.
2263 	 */
2264 	mtx_lock(&sw_dev_mtx);
2265 	sp->sw_flags |= SW_CLOSING;
2266 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2267 		swap_pager_avail -= blist_fill(sp->sw_blist,
2268 		     dvbase, dmmax);
2269 	}
2270 	mtx_unlock(&sw_dev_mtx);
2271 
2272 	/*
2273 	 * Page in the contents of the device and close it.
2274 	 */
2275 #ifndef NO_SWAPPING
2276        	vm_proc_swapin_all(sp);
2277 #endif /* !NO_SWAPPING */
2278 	swap_pager_swapoff(sp, &sp->sw_used);
2279 
2280 	sp->sw_close(td, sp);
2281 	sp->sw_id = NULL;
2282 	mtx_lock(&sw_dev_mtx);
2283 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2284 	nswapdev--;
2285 	if (swdevhd == sp)
2286 		swdevhd = NULL;
2287 	mtx_unlock(&sw_dev_mtx);
2288 	blist_destroy(sp->sw_blist);
2289 	free(sp, M_VMPGDATA);
2290 
2291 done:
2292 	swdev_syscall_active = 0;
2293 	wakeup_one(&swdev_syscall_active);
2294 done2:
2295 	mtx_unlock(&Giant);
2296 	return (error);
2297 }
2298 
2299 void
2300 swap_pager_status(int *total, int *used)
2301 {
2302 	struct swdevt *sp;
2303 
2304 	*total = 0;
2305 	*used = 0;
2306 	mtx_lock(&sw_dev_mtx);
2307 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2308 		*total += sp->sw_nblks;
2309 		*used += sp->sw_used;
2310 	}
2311 	mtx_unlock(&sw_dev_mtx);
2312 }
2313 
2314 static int
2315 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2316 {
2317 	int	*name = (int *)arg1;
2318 	int	error, n;
2319 	struct xswdev xs;
2320 	struct swdevt *sp;
2321 
2322 	if (arg2 != 1) /* name length */
2323 		return (EINVAL);
2324 
2325 	n = 0;
2326 	mtx_lock(&sw_dev_mtx);
2327 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2328 		if (n == *name) {
2329 			mtx_unlock(&sw_dev_mtx);
2330 			xs.xsw_version = XSWDEV_VERSION;
2331 			xs.xsw_dev = sp->sw_udev;
2332 			xs.xsw_flags = sp->sw_flags;
2333 			xs.xsw_nblks = sp->sw_nblks;
2334 			xs.xsw_used = sp->sw_used;
2335 
2336 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2337 			return (error);
2338 		}
2339 		n++;
2340 	}
2341 	mtx_unlock(&sw_dev_mtx);
2342 	return (ENOENT);
2343 }
2344 
2345 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2346     "Number of swap devices");
2347 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2348     "Swap statistics by device");
2349 
2350 /*
2351  * vmspace_swap_count() - count the approximate swap useage in pages for a
2352  *			  vmspace.
2353  *
2354  *	The map must be locked.
2355  *
2356  *	Swap useage is determined by taking the proportional swap used by
2357  *	VM objects backing the VM map.  To make up for fractional losses,
2358  *	if the VM object has any swap use at all the associated map entries
2359  *	count for at least 1 swap page.
2360  */
2361 int
2362 vmspace_swap_count(struct vmspace *vmspace)
2363 {
2364 	vm_map_t map = &vmspace->vm_map;
2365 	vm_map_entry_t cur;
2366 	int count = 0;
2367 
2368 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2369 		vm_object_t object;
2370 
2371 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2372 		    (object = cur->object.vm_object) != NULL) {
2373 			VM_OBJECT_LOCK(object);
2374 			if (object->type == OBJT_SWAP &&
2375 			    object->un_pager.swp.swp_bcount != 0) {
2376 				int n = (cur->end - cur->start) / PAGE_SIZE;
2377 
2378 				count += object->un_pager.swp.swp_bcount *
2379 				    SWAP_META_PAGES * n / object->size + 1;
2380 			}
2381 			VM_OBJECT_UNLOCK(object);
2382 		}
2383 	}
2384 	return (count);
2385 }
2386 
2387 /*
2388  * GEOM backend
2389  *
2390  * Swapping onto disk devices.
2391  *
2392  */
2393 
2394 static struct g_class g_swap_class = {
2395 	.name = "SWAP",
2396 };
2397 
2398 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2399 
2400 
2401 static void
2402 swapgeom_done(struct bio *bp2)
2403 {
2404 	struct buf *bp;
2405 
2406 	bp = bp2->bio_caller2;
2407 	if (bp2->bio_error)
2408 		bp->b_ioflags |= BIO_ERROR;
2409 	mtx_lock(&Giant);
2410 	bufdone(bp);
2411 	mtx_unlock(&Giant);
2412 	g_destroy_bio(bp2);
2413 }
2414 
2415 static void
2416 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2417 {
2418 	struct bio *bio;
2419 	struct g_consumer *cp;
2420 
2421 	cp = sp->sw_id;
2422 	if (cp == NULL) {
2423 		bp->b_error = ENXIO;
2424 		bp->b_ioflags |= BIO_ERROR;
2425 		bufdone(bp);
2426 		return;
2427 	}
2428 	bio = g_clone_bio(&bp->b_io);
2429 	bio->bio_caller2 = bp;
2430 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2431 	bio->bio_length = bp->b_bcount;
2432 	bio->bio_done = swapgeom_done;
2433 	g_io_request(bio, cp);
2434 	return;
2435 }
2436 
2437 static void
2438 swapgeom_orphan(struct g_consumer *cp)
2439 {
2440 	struct swdevt *sp;
2441 
2442 	mtx_lock(&sw_dev_mtx);
2443 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2444 		if (sp->sw_id == cp)
2445 			sp->sw_id = NULL;
2446 	mtx_unlock(&sw_dev_mtx);
2447 }
2448 
2449 static void
2450 swapgeom_close_ev(void *arg, int flags)
2451 {
2452 	struct g_consumer *cp;
2453 
2454 	cp = arg;
2455 	g_access_rel(cp, -1, -1, 0);
2456 	g_detach(cp);
2457 	g_destroy_consumer(cp);
2458 }
2459 
2460 static void
2461 swapgeom_close(struct thread *td, struct swdevt *sw)
2462 {
2463 
2464 	/* XXX: direct call when Giant untangled */
2465 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2466 }
2467 
2468 
2469 struct swh0h0 {
2470 	dev_t	dev;
2471 	struct vnode *vp;
2472 	int	error;
2473 };
2474 
2475 static void
2476 swapongeom_ev(void *arg, int flags)
2477 {
2478 	struct swh0h0 *swh;
2479 	struct g_provider *pp;
2480 	struct g_consumer *cp;
2481 	static struct g_geom *gp;
2482 	struct swdevt *sp;
2483 	u_long nblks;
2484 	int error;
2485 
2486 	swh = arg;
2487 	swh->error = 0;
2488 	pp = g_dev_getprovider(swh->dev);
2489 	if (pp == NULL) {
2490 		swh->error = ENODEV;
2491 		return;
2492 	}
2493 	mtx_lock(&sw_dev_mtx);
2494 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2495 		cp = sp->sw_id;
2496 		if (cp != NULL && cp->provider == pp) {
2497 			mtx_unlock(&sw_dev_mtx);
2498 			swh->error = EBUSY;
2499 			return;
2500 		}
2501 	}
2502 	mtx_unlock(&sw_dev_mtx);
2503 	if (gp == NULL) {
2504 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2505 		gp->orphan = swapgeom_orphan;
2506 	}
2507 	cp = g_new_consumer(gp);
2508 	g_attach(cp, pp);
2509 	/*
2510 	 * XXX: Everytime you think you can improve the margin for
2511 	 * footshooting, somebody depends on the ability to do so:
2512 	 * savecore(8) wants to write to our swapdev so we cannot
2513 	 * set an exclusive count :-(
2514 	 */
2515 	error = g_access_rel(cp, 1, 1, 0);
2516 	if (error) {
2517 		g_detach(cp);
2518 		g_destroy_consumer(cp);
2519 		swh->error = error;
2520 		return;
2521 	}
2522 	nblks = pp->mediasize / DEV_BSIZE;
2523 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2524 	    swapgeom_close, dev2udev(swh->dev));
2525 	swh->error = 0;
2526 	return;
2527 }
2528 
2529 static int
2530 swapongeom(struct thread *td, struct vnode *vp)
2531 {
2532 	int error;
2533 	struct swh0h0 swh;
2534 
2535 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2536 
2537 	swh.dev = vp->v_rdev;
2538 	swh.vp = vp;
2539 	swh.error = 0;
2540 	/* XXX: direct call when Giant untangled */
2541 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2542 	if (!error)
2543 		error = swh.error;
2544 	VOP_UNLOCK(vp, 0, td);
2545 	return (error);
2546 }
2547 
2548 /*
2549  * VNODE backend
2550  *
2551  * This is used mainly for network filesystem (read: probably only tested
2552  * with NFS) swapfiles.
2553  *
2554  */
2555 
2556 static void
2557 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2558 {
2559 	int s;
2560 	struct vnode *vp, *vp2;
2561 
2562 	bp->b_dev = NODEV;
2563 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2564 
2565 	vp2 = sp->sw_id;
2566 	vhold(vp2);
2567 	s = splvm();
2568 	if (bp->b_iocmd == BIO_WRITE) {
2569 		vp = bp->b_vp;
2570 		if (vp) {
2571 			VI_LOCK(vp);
2572 			vp->v_numoutput--;
2573 			if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) {
2574 				vp->v_iflag &= ~VI_BWAIT;
2575 				wakeup(&vp->v_numoutput);
2576 			}
2577 			VI_UNLOCK(vp);
2578 		}
2579 		VI_LOCK(vp2);
2580 		vp2->v_numoutput++;
2581 		VI_UNLOCK(vp2);
2582 	}
2583 	bp->b_vp = vp2;
2584 	splx(s);
2585 	bp->b_iooffset = dbtob(bp->b_blkno);
2586 	VOP_STRATEGY(vp2, bp);
2587 	return;
2588 }
2589 
2590 static void
2591 swapdev_close(struct thread *td, struct swdevt *sp)
2592 {
2593 
2594 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2595 	vrele(sp->sw_vp);
2596 }
2597 
2598 
2599 static int
2600 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2601 {
2602 	struct swdevt *sp;
2603 	int error;
2604 
2605 	if (nblks == 0)
2606 		return (ENXIO);
2607 	mtx_lock(&sw_dev_mtx);
2608 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2609 		if (sp->sw_id == vp) {
2610 			mtx_unlock(&sw_dev_mtx);
2611 			return (EBUSY);
2612 		}
2613 	}
2614 	mtx_unlock(&sw_dev_mtx);
2615 
2616 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2617 #ifdef MAC
2618 	error = mac_check_system_swapon(td->td_ucred, vp);
2619 	if (error == 0)
2620 #endif
2621 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, -1);
2622 	(void) VOP_UNLOCK(vp, 0, td);
2623 	if (error)
2624 		return (error);
2625 
2626 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2627 	    NOUDEV);
2628 	return (0);
2629 }
2630