1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_mac.h" 73 #include "opt_swap.h" 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/conf.h> 79 #include <sys/kernel.h> 80 #include <sys/priv.h> 81 #include <sys/proc.h> 82 #include <sys/bio.h> 83 #include <sys/buf.h> 84 #include <sys/disk.h> 85 #include <sys/fcntl.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/vnode.h> 89 #include <sys/malloc.h> 90 #include <sys/sysctl.h> 91 #include <sys/sysproto.h> 92 #include <sys/blist.h> 93 #include <sys/lock.h> 94 #include <sys/sx.h> 95 #include <sys/vmmeter.h> 96 97 #include <security/mac/mac_framework.h> 98 99 #include <vm/vm.h> 100 #include <vm/pmap.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_kern.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_pageout.h> 107 #include <vm/vm_param.h> 108 #include <vm/swap_pager.h> 109 #include <vm/vm_extern.h> 110 #include <vm/uma.h> 111 112 #include <geom/geom.h> 113 114 /* 115 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, or 16 116 * pages per allocation. We recommend you stick with the default of 8. 117 * The 16-page limit is due to the radix code (kern/subr_blist.c). 118 */ 119 #ifndef MAX_PAGEOUT_CLUSTER 120 #define MAX_PAGEOUT_CLUSTER 16 121 #endif 122 123 #if !defined(SWB_NPAGES) 124 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 125 #endif 126 127 /* 128 * Piecemeal swap metadata structure. Swap is stored in a radix tree. 129 * 130 * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix 131 * is basically 8. Assuming PAGE_SIZE == 4096, one tree level represents 132 * 32K worth of data, two levels represent 256K, three levels represent 133 * 2 MBytes. This is acceptable. 134 * 135 * Overall memory utilization is about the same as the old swap structure. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static struct mtx sw_dev_mtx; 150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 151 static struct swdevt *swdevhd; /* Allocate from here next */ 152 static int nswapdev; /* Number of swap devices */ 153 int swap_pager_avail; 154 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 155 156 static void swapdev_strategy(struct buf *, struct swdevt *sw); 157 158 #define SWM_FREE 0x02 /* free, period */ 159 #define SWM_POP 0x04 /* pop out */ 160 161 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 162 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 163 static int nsw_rcount; /* free read buffers */ 164 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 165 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 166 static int nsw_wcount_async_max;/* assigned maximum */ 167 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 168 169 static struct swblock **swhash; 170 static int swhash_mask; 171 static struct mtx swhash_mtx; 172 173 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 174 static struct sx sw_alloc_sx; 175 176 177 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 178 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 179 180 /* 181 * "named" and "unnamed" anon region objects. Try to reduce the overhead 182 * of searching a named list by hashing it just a little. 183 */ 184 185 #define NOBJLISTS 8 186 187 #define NOBJLIST(handle) \ 188 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 189 190 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 191 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 192 static uma_zone_t swap_zone; 193 static struct vm_object swap_zone_obj; 194 195 /* 196 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 197 * calls hooked from other parts of the VM system and do not appear here. 198 * (see vm/swap_pager.h). 199 */ 200 static vm_object_t 201 swap_pager_alloc(void *handle, vm_ooffset_t size, 202 vm_prot_t prot, vm_ooffset_t offset); 203 static void swap_pager_dealloc(vm_object_t object); 204 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int); 205 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 206 static boolean_t 207 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 208 static void swap_pager_init(void); 209 static void swap_pager_unswapped(vm_page_t); 210 static void swap_pager_swapoff(struct swdevt *sp); 211 212 struct pagerops swappagerops = { 213 .pgo_init = swap_pager_init, /* early system initialization of pager */ 214 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 215 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 216 .pgo_getpages = swap_pager_getpages, /* pagein */ 217 .pgo_putpages = swap_pager_putpages, /* pageout */ 218 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 219 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 220 }; 221 222 /* 223 * dmmax is in page-sized chunks with the new swap system. It was 224 * dev-bsized chunks in the old. dmmax is always a power of 2. 225 * 226 * swap_*() routines are externally accessible. swp_*() routines are 227 * internal. 228 */ 229 static int dmmax; 230 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 231 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 232 233 SYSCTL_INT(_vm, OID_AUTO, dmmax, 234 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 235 236 static void swp_sizecheck(void); 237 static void swp_pager_async_iodone(struct buf *bp); 238 static int swapongeom(struct thread *, struct vnode *); 239 static int swaponvp(struct thread *, struct vnode *, u_long); 240 static int swapoff_one(struct swdevt *sp, struct thread *td); 241 242 /* 243 * Swap bitmap functions 244 */ 245 static void swp_pager_freeswapspace(daddr_t blk, int npages); 246 static daddr_t swp_pager_getswapspace(int npages); 247 248 /* 249 * Metadata functions 250 */ 251 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 252 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 253 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 254 static void swp_pager_meta_free_all(vm_object_t); 255 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 256 257 /* 258 * SWP_SIZECHECK() - update swap_pager_full indication 259 * 260 * update the swap_pager_almost_full indication and warn when we are 261 * about to run out of swap space, using lowat/hiwat hysteresis. 262 * 263 * Clear swap_pager_full ( task killing ) indication when lowat is met. 264 * 265 * No restrictions on call 266 * This routine may not block. 267 * This routine must be called at splvm() 268 */ 269 static void 270 swp_sizecheck(void) 271 { 272 273 if (swap_pager_avail < nswap_lowat) { 274 if (swap_pager_almost_full == 0) { 275 printf("swap_pager: out of swap space\n"); 276 swap_pager_almost_full = 1; 277 } 278 } else { 279 swap_pager_full = 0; 280 if (swap_pager_avail > nswap_hiwat) 281 swap_pager_almost_full = 0; 282 } 283 } 284 285 /* 286 * SWP_PAGER_HASH() - hash swap meta data 287 * 288 * This is an helper function which hashes the swapblk given 289 * the object and page index. It returns a pointer to a pointer 290 * to the object, or a pointer to a NULL pointer if it could not 291 * find a swapblk. 292 * 293 * This routine must be called at splvm(). 294 */ 295 static struct swblock ** 296 swp_pager_hash(vm_object_t object, vm_pindex_t index) 297 { 298 struct swblock **pswap; 299 struct swblock *swap; 300 301 index &= ~(vm_pindex_t)SWAP_META_MASK; 302 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 303 while ((swap = *pswap) != NULL) { 304 if (swap->swb_object == object && 305 swap->swb_index == index 306 ) { 307 break; 308 } 309 pswap = &swap->swb_hnext; 310 } 311 return (pswap); 312 } 313 314 /* 315 * SWAP_PAGER_INIT() - initialize the swap pager! 316 * 317 * Expected to be started from system init. NOTE: This code is run 318 * before much else so be careful what you depend on. Most of the VM 319 * system has yet to be initialized at this point. 320 */ 321 static void 322 swap_pager_init(void) 323 { 324 /* 325 * Initialize object lists 326 */ 327 int i; 328 329 for (i = 0; i < NOBJLISTS; ++i) 330 TAILQ_INIT(&swap_pager_object_list[i]); 331 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 332 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 333 334 /* 335 * Device Stripe, in PAGE_SIZE'd blocks 336 */ 337 dmmax = SWB_NPAGES * 2; 338 } 339 340 /* 341 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 342 * 343 * Expected to be started from pageout process once, prior to entering 344 * its main loop. 345 */ 346 void 347 swap_pager_swap_init(void) 348 { 349 int n, n2; 350 351 /* 352 * Number of in-transit swap bp operations. Don't 353 * exhaust the pbufs completely. Make sure we 354 * initialize workable values (0 will work for hysteresis 355 * but it isn't very efficient). 356 * 357 * The nsw_cluster_max is constrained by the bp->b_pages[] 358 * array (MAXPHYS/PAGE_SIZE) and our locally defined 359 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 360 * constrained by the swap device interleave stripe size. 361 * 362 * Currently we hardwire nsw_wcount_async to 4. This limit is 363 * designed to prevent other I/O from having high latencies due to 364 * our pageout I/O. The value 4 works well for one or two active swap 365 * devices but is probably a little low if you have more. Even so, 366 * a higher value would probably generate only a limited improvement 367 * with three or four active swap devices since the system does not 368 * typically have to pageout at extreme bandwidths. We will want 369 * at least 2 per swap devices, and 4 is a pretty good value if you 370 * have one NFS swap device due to the command/ack latency over NFS. 371 * So it all works out pretty well. 372 */ 373 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 374 375 mtx_lock(&pbuf_mtx); 376 nsw_rcount = (nswbuf + 1) / 2; 377 nsw_wcount_sync = (nswbuf + 3) / 4; 378 nsw_wcount_async = 4; 379 nsw_wcount_async_max = nsw_wcount_async; 380 mtx_unlock(&pbuf_mtx); 381 382 /* 383 * Initialize our zone. Right now I'm just guessing on the number 384 * we need based on the number of pages in the system. Each swblock 385 * can hold 16 pages, so this is probably overkill. This reservation 386 * is typically limited to around 32MB by default. 387 */ 388 n = cnt.v_page_count / 2; 389 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 390 n = maxswzone / sizeof(struct swblock); 391 n2 = n; 392 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 393 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 394 if (swap_zone == NULL) 395 panic("failed to create swap_zone."); 396 do { 397 if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n)) 398 break; 399 /* 400 * if the allocation failed, try a zone two thirds the 401 * size of the previous attempt. 402 */ 403 n -= ((n + 2) / 3); 404 } while (n > 0); 405 if (n2 != n) 406 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 407 n2 = n; 408 409 /* 410 * Initialize our meta-data hash table. The swapper does not need to 411 * be quite as efficient as the VM system, so we do not use an 412 * oversized hash table. 413 * 414 * n: size of hash table, must be power of 2 415 * swhash_mask: hash table index mask 416 */ 417 for (n = 1; n < n2 / 8; n *= 2) 418 ; 419 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 420 swhash_mask = n - 1; 421 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 422 } 423 424 /* 425 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 426 * its metadata structures. 427 * 428 * This routine is called from the mmap and fork code to create a new 429 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 430 * and then converting it with swp_pager_meta_build(). 431 * 432 * This routine may block in vm_object_allocate() and create a named 433 * object lookup race, so we must interlock. We must also run at 434 * splvm() for the object lookup to handle races with interrupts, but 435 * we do not have to maintain splvm() in between the lookup and the 436 * add because (I believe) it is not possible to attempt to create 437 * a new swap object w/handle when a default object with that handle 438 * already exists. 439 * 440 * MPSAFE 441 */ 442 static vm_object_t 443 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 444 vm_ooffset_t offset) 445 { 446 vm_object_t object; 447 vm_pindex_t pindex; 448 449 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 450 451 if (handle) { 452 mtx_lock(&Giant); 453 /* 454 * Reference existing named region or allocate new one. There 455 * should not be a race here against swp_pager_meta_build() 456 * as called from vm_page_remove() in regards to the lookup 457 * of the handle. 458 */ 459 sx_xlock(&sw_alloc_sx); 460 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 461 462 if (object != NULL) { 463 vm_object_reference(object); 464 } else { 465 object = vm_object_allocate(OBJT_DEFAULT, pindex); 466 object->handle = handle; 467 468 VM_OBJECT_LOCK(object); 469 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 470 VM_OBJECT_UNLOCK(object); 471 } 472 sx_xunlock(&sw_alloc_sx); 473 mtx_unlock(&Giant); 474 } else { 475 object = vm_object_allocate(OBJT_DEFAULT, pindex); 476 477 VM_OBJECT_LOCK(object); 478 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 479 VM_OBJECT_UNLOCK(object); 480 } 481 return (object); 482 } 483 484 /* 485 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 486 * 487 * The swap backing for the object is destroyed. The code is 488 * designed such that we can reinstantiate it later, but this 489 * routine is typically called only when the entire object is 490 * about to be destroyed. 491 * 492 * This routine may block, but no longer does. 493 * 494 * The object must be locked or unreferenceable. 495 */ 496 static void 497 swap_pager_dealloc(vm_object_t object) 498 { 499 500 /* 501 * Remove from list right away so lookups will fail if we block for 502 * pageout completion. 503 */ 504 if (object->handle != NULL) { 505 mtx_lock(&sw_alloc_mtx); 506 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 507 mtx_unlock(&sw_alloc_mtx); 508 } 509 510 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 511 vm_object_pip_wait(object, "swpdea"); 512 513 /* 514 * Free all remaining metadata. We only bother to free it from 515 * the swap meta data. We do not attempt to free swapblk's still 516 * associated with vm_page_t's for this object. We do not care 517 * if paging is still in progress on some objects. 518 */ 519 swp_pager_meta_free_all(object); 520 } 521 522 /************************************************************************ 523 * SWAP PAGER BITMAP ROUTINES * 524 ************************************************************************/ 525 526 /* 527 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 528 * 529 * Allocate swap for the requested number of pages. The starting 530 * swap block number (a page index) is returned or SWAPBLK_NONE 531 * if the allocation failed. 532 * 533 * Also has the side effect of advising that somebody made a mistake 534 * when they configured swap and didn't configure enough. 535 * 536 * Must be called at splvm() to avoid races with bitmap frees from 537 * vm_page_remove() aka swap_pager_page_removed(). 538 * 539 * This routine may not block 540 * This routine must be called at splvm(). 541 * 542 * We allocate in round-robin fashion from the configured devices. 543 */ 544 static daddr_t 545 swp_pager_getswapspace(int npages) 546 { 547 daddr_t blk; 548 struct swdevt *sp; 549 int i; 550 551 blk = SWAPBLK_NONE; 552 mtx_lock(&sw_dev_mtx); 553 sp = swdevhd; 554 for (i = 0; i < nswapdev; i++) { 555 if (sp == NULL) 556 sp = TAILQ_FIRST(&swtailq); 557 if (!(sp->sw_flags & SW_CLOSING)) { 558 blk = blist_alloc(sp->sw_blist, npages); 559 if (blk != SWAPBLK_NONE) { 560 blk += sp->sw_first; 561 sp->sw_used += npages; 562 swap_pager_avail -= npages; 563 swp_sizecheck(); 564 swdevhd = TAILQ_NEXT(sp, sw_list); 565 goto done; 566 } 567 } 568 sp = TAILQ_NEXT(sp, sw_list); 569 } 570 if (swap_pager_full != 2) { 571 printf("swap_pager_getswapspace(%d): failed\n", npages); 572 swap_pager_full = 2; 573 swap_pager_almost_full = 1; 574 } 575 swdevhd = NULL; 576 done: 577 mtx_unlock(&sw_dev_mtx); 578 return (blk); 579 } 580 581 static int 582 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 583 { 584 585 return (blk >= sp->sw_first && blk < sp->sw_end); 586 } 587 588 static void 589 swp_pager_strategy(struct buf *bp) 590 { 591 struct swdevt *sp; 592 593 mtx_lock(&sw_dev_mtx); 594 TAILQ_FOREACH(sp, &swtailq, sw_list) { 595 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 596 mtx_unlock(&sw_dev_mtx); 597 sp->sw_strategy(bp, sp); 598 return; 599 } 600 } 601 panic("Swapdev not found"); 602 } 603 604 605 /* 606 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 607 * 608 * This routine returns the specified swap blocks back to the bitmap. 609 * 610 * Note: This routine may not block (it could in the old swap code), 611 * and through the use of the new blist routines it does not block. 612 * 613 * We must be called at splvm() to avoid races with bitmap frees from 614 * vm_page_remove() aka swap_pager_page_removed(). 615 * 616 * This routine may not block 617 * This routine must be called at splvm(). 618 */ 619 static void 620 swp_pager_freeswapspace(daddr_t blk, int npages) 621 { 622 struct swdevt *sp; 623 624 mtx_lock(&sw_dev_mtx); 625 TAILQ_FOREACH(sp, &swtailq, sw_list) { 626 if (blk >= sp->sw_first && blk < sp->sw_end) { 627 sp->sw_used -= npages; 628 /* 629 * If we are attempting to stop swapping on 630 * this device, we don't want to mark any 631 * blocks free lest they be reused. 632 */ 633 if ((sp->sw_flags & SW_CLOSING) == 0) { 634 blist_free(sp->sw_blist, blk - sp->sw_first, 635 npages); 636 swap_pager_avail += npages; 637 swp_sizecheck(); 638 } 639 mtx_unlock(&sw_dev_mtx); 640 return; 641 } 642 } 643 panic("Swapdev not found"); 644 } 645 646 /* 647 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 648 * range within an object. 649 * 650 * This is a globally accessible routine. 651 * 652 * This routine removes swapblk assignments from swap metadata. 653 * 654 * The external callers of this routine typically have already destroyed 655 * or renamed vm_page_t's associated with this range in the object so 656 * we should be ok. 657 * 658 * This routine may be called at any spl. We up our spl to splvm temporarily 659 * in order to perform the metadata removal. 660 */ 661 void 662 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 663 { 664 665 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 666 swp_pager_meta_free(object, start, size); 667 } 668 669 /* 670 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 671 * 672 * Assigns swap blocks to the specified range within the object. The 673 * swap blocks are not zerod. Any previous swap assignment is destroyed. 674 * 675 * Returns 0 on success, -1 on failure. 676 */ 677 int 678 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 679 { 680 int n = 0; 681 daddr_t blk = SWAPBLK_NONE; 682 vm_pindex_t beg = start; /* save start index */ 683 684 VM_OBJECT_LOCK(object); 685 while (size) { 686 if (n == 0) { 687 n = BLIST_MAX_ALLOC; 688 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 689 n >>= 1; 690 if (n == 0) { 691 swp_pager_meta_free(object, beg, start - beg); 692 VM_OBJECT_UNLOCK(object); 693 return (-1); 694 } 695 } 696 } 697 swp_pager_meta_build(object, start, blk); 698 --size; 699 ++start; 700 ++blk; 701 --n; 702 } 703 swp_pager_meta_free(object, start, n); 704 VM_OBJECT_UNLOCK(object); 705 return (0); 706 } 707 708 /* 709 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 710 * and destroy the source. 711 * 712 * Copy any valid swapblks from the source to the destination. In 713 * cases where both the source and destination have a valid swapblk, 714 * we keep the destination's. 715 * 716 * This routine is allowed to block. It may block allocating metadata 717 * indirectly through swp_pager_meta_build() or if paging is still in 718 * progress on the source. 719 * 720 * This routine can be called at any spl 721 * 722 * XXX vm_page_collapse() kinda expects us not to block because we 723 * supposedly do not need to allocate memory, but for the moment we 724 * *may* have to get a little memory from the zone allocator, but 725 * it is taken from the interrupt memory. We should be ok. 726 * 727 * The source object contains no vm_page_t's (which is just as well) 728 * 729 * The source object is of type OBJT_SWAP. 730 * 731 * The source and destination objects must be locked or 732 * inaccessible (XXX are they ?) 733 */ 734 void 735 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 736 vm_pindex_t offset, int destroysource) 737 { 738 vm_pindex_t i; 739 740 VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED); 741 VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED); 742 743 /* 744 * If destroysource is set, we remove the source object from the 745 * swap_pager internal queue now. 746 */ 747 if (destroysource) { 748 if (srcobject->handle != NULL) { 749 mtx_lock(&sw_alloc_mtx); 750 TAILQ_REMOVE( 751 NOBJLIST(srcobject->handle), 752 srcobject, 753 pager_object_list 754 ); 755 mtx_unlock(&sw_alloc_mtx); 756 } 757 } 758 759 /* 760 * transfer source to destination. 761 */ 762 for (i = 0; i < dstobject->size; ++i) { 763 daddr_t dstaddr; 764 765 /* 766 * Locate (without changing) the swapblk on the destination, 767 * unless it is invalid in which case free it silently, or 768 * if the destination is a resident page, in which case the 769 * source is thrown away. 770 */ 771 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 772 773 if (dstaddr == SWAPBLK_NONE) { 774 /* 775 * Destination has no swapblk and is not resident, 776 * copy source. 777 */ 778 daddr_t srcaddr; 779 780 srcaddr = swp_pager_meta_ctl( 781 srcobject, 782 i + offset, 783 SWM_POP 784 ); 785 786 if (srcaddr != SWAPBLK_NONE) { 787 /* 788 * swp_pager_meta_build() can sleep. 789 */ 790 vm_object_pip_add(srcobject, 1); 791 VM_OBJECT_UNLOCK(srcobject); 792 vm_object_pip_add(dstobject, 1); 793 swp_pager_meta_build(dstobject, i, srcaddr); 794 vm_object_pip_wakeup(dstobject); 795 VM_OBJECT_LOCK(srcobject); 796 vm_object_pip_wakeup(srcobject); 797 } 798 } else { 799 /* 800 * Destination has valid swapblk or it is represented 801 * by a resident page. We destroy the sourceblock. 802 */ 803 804 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 805 } 806 } 807 808 /* 809 * Free left over swap blocks in source. 810 * 811 * We have to revert the type to OBJT_DEFAULT so we do not accidently 812 * double-remove the object from the swap queues. 813 */ 814 if (destroysource) { 815 swp_pager_meta_free_all(srcobject); 816 /* 817 * Reverting the type is not necessary, the caller is going 818 * to destroy srcobject directly, but I'm doing it here 819 * for consistency since we've removed the object from its 820 * queues. 821 */ 822 srcobject->type = OBJT_DEFAULT; 823 } 824 } 825 826 /* 827 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 828 * the requested page. 829 * 830 * We determine whether good backing store exists for the requested 831 * page and return TRUE if it does, FALSE if it doesn't. 832 * 833 * If TRUE, we also try to determine how much valid, contiguous backing 834 * store exists before and after the requested page within a reasonable 835 * distance. We do not try to restrict it to the swap device stripe 836 * (that is handled in getpages/putpages). It probably isn't worth 837 * doing here. 838 */ 839 static boolean_t 840 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 841 { 842 daddr_t blk0; 843 844 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 845 /* 846 * do we have good backing store at the requested index ? 847 */ 848 blk0 = swp_pager_meta_ctl(object, pindex, 0); 849 850 if (blk0 == SWAPBLK_NONE) { 851 if (before) 852 *before = 0; 853 if (after) 854 *after = 0; 855 return (FALSE); 856 } 857 858 /* 859 * find backwards-looking contiguous good backing store 860 */ 861 if (before != NULL) { 862 int i; 863 864 for (i = 1; i < (SWB_NPAGES/2); ++i) { 865 daddr_t blk; 866 867 if (i > pindex) 868 break; 869 blk = swp_pager_meta_ctl(object, pindex - i, 0); 870 if (blk != blk0 - i) 871 break; 872 } 873 *before = (i - 1); 874 } 875 876 /* 877 * find forward-looking contiguous good backing store 878 */ 879 if (after != NULL) { 880 int i; 881 882 for (i = 1; i < (SWB_NPAGES/2); ++i) { 883 daddr_t blk; 884 885 blk = swp_pager_meta_ctl(object, pindex + i, 0); 886 if (blk != blk0 + i) 887 break; 888 } 889 *after = (i - 1); 890 } 891 return (TRUE); 892 } 893 894 /* 895 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 896 * 897 * This removes any associated swap backing store, whether valid or 898 * not, from the page. 899 * 900 * This routine is typically called when a page is made dirty, at 901 * which point any associated swap can be freed. MADV_FREE also 902 * calls us in a special-case situation 903 * 904 * NOTE!!! If the page is clean and the swap was valid, the caller 905 * should make the page dirty before calling this routine. This routine 906 * does NOT change the m->dirty status of the page. Also: MADV_FREE 907 * depends on it. 908 * 909 * This routine may not block 910 * This routine must be called at splvm() 911 */ 912 static void 913 swap_pager_unswapped(vm_page_t m) 914 { 915 916 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 917 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 918 } 919 920 /* 921 * SWAP_PAGER_GETPAGES() - bring pages in from swap 922 * 923 * Attempt to retrieve (m, count) pages from backing store, but make 924 * sure we retrieve at least m[reqpage]. We try to load in as large 925 * a chunk surrounding m[reqpage] as is contiguous in swap and which 926 * belongs to the same object. 927 * 928 * The code is designed for asynchronous operation and 929 * immediate-notification of 'reqpage' but tends not to be 930 * used that way. Please do not optimize-out this algorithmic 931 * feature, I intend to improve on it in the future. 932 * 933 * The parent has a single vm_object_pip_add() reference prior to 934 * calling us and we should return with the same. 935 * 936 * The parent has BUSY'd the pages. We should return with 'm' 937 * left busy, but the others adjusted. 938 */ 939 static int 940 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 941 { 942 struct buf *bp; 943 vm_page_t mreq; 944 int i; 945 int j; 946 daddr_t blk; 947 948 mreq = m[reqpage]; 949 950 KASSERT(mreq->object == object, 951 ("swap_pager_getpages: object mismatch %p/%p", 952 object, mreq->object)); 953 954 /* 955 * Calculate range to retrieve. The pages have already been assigned 956 * their swapblks. We require a *contiguous* range but we know it to 957 * not span devices. If we do not supply it, bad things 958 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 959 * loops are set up such that the case(s) are handled implicitly. 960 * 961 * The swp_*() calls must be made at splvm(). vm_page_free() does 962 * not need to be, but it will go a little faster if it is. 963 */ 964 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 965 966 for (i = reqpage - 1; i >= 0; --i) { 967 daddr_t iblk; 968 969 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 970 if (blk != iblk + (reqpage - i)) 971 break; 972 } 973 ++i; 974 975 for (j = reqpage + 1; j < count; ++j) { 976 daddr_t jblk; 977 978 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 979 if (blk != jblk - (j - reqpage)) 980 break; 981 } 982 983 /* 984 * free pages outside our collection range. Note: we never free 985 * mreq, it must remain busy throughout. 986 */ 987 if (0 < i || j < count) { 988 int k; 989 990 vm_page_lock_queues(); 991 for (k = 0; k < i; ++k) 992 vm_page_free(m[k]); 993 for (k = j; k < count; ++k) 994 vm_page_free(m[k]); 995 vm_page_unlock_queues(); 996 } 997 998 /* 999 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1000 * still busy, but the others unbusied. 1001 */ 1002 if (blk == SWAPBLK_NONE) 1003 return (VM_PAGER_FAIL); 1004 1005 /* 1006 * Getpbuf() can sleep. 1007 */ 1008 VM_OBJECT_UNLOCK(object); 1009 /* 1010 * Get a swap buffer header to perform the IO 1011 */ 1012 bp = getpbuf(&nsw_rcount); 1013 bp->b_flags |= B_PAGING; 1014 1015 /* 1016 * map our page(s) into kva for input 1017 */ 1018 pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i); 1019 1020 bp->b_iocmd = BIO_READ; 1021 bp->b_iodone = swp_pager_async_iodone; 1022 bp->b_rcred = crhold(thread0.td_ucred); 1023 bp->b_wcred = crhold(thread0.td_ucred); 1024 bp->b_blkno = blk - (reqpage - i); 1025 bp->b_bcount = PAGE_SIZE * (j - i); 1026 bp->b_bufsize = PAGE_SIZE * (j - i); 1027 bp->b_pager.pg_reqpage = reqpage - i; 1028 1029 VM_OBJECT_LOCK(object); 1030 { 1031 int k; 1032 1033 for (k = i; k < j; ++k) { 1034 bp->b_pages[k - i] = m[k]; 1035 m[k]->oflags |= VPO_SWAPINPROG; 1036 } 1037 } 1038 bp->b_npages = j - i; 1039 1040 PCPU_INC(cnt.v_swapin); 1041 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1042 1043 /* 1044 * We still hold the lock on mreq, and our automatic completion routine 1045 * does not remove it. 1046 */ 1047 vm_object_pip_add(object, bp->b_npages); 1048 VM_OBJECT_UNLOCK(object); 1049 1050 /* 1051 * perform the I/O. NOTE!!! bp cannot be considered valid after 1052 * this point because we automatically release it on completion. 1053 * Instead, we look at the one page we are interested in which we 1054 * still hold a lock on even through the I/O completion. 1055 * 1056 * The other pages in our m[] array are also released on completion, 1057 * so we cannot assume they are valid anymore either. 1058 * 1059 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1060 */ 1061 BUF_KERNPROC(bp); 1062 swp_pager_strategy(bp); 1063 1064 /* 1065 * wait for the page we want to complete. VPO_SWAPINPROG is always 1066 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1067 * is set in the meta-data. 1068 */ 1069 VM_OBJECT_LOCK(object); 1070 while ((mreq->oflags & VPO_SWAPINPROG) != 0) { 1071 mreq->oflags |= VPO_WANTED; 1072 vm_page_lock_queues(); 1073 vm_page_flag_set(mreq, PG_REFERENCED); 1074 vm_page_unlock_queues(); 1075 PCPU_INC(cnt.v_intrans); 1076 if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) { 1077 printf( 1078 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1079 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1080 } 1081 } 1082 1083 /* 1084 * mreq is left busied after completion, but all the other pages 1085 * are freed. If we had an unrecoverable read error the page will 1086 * not be valid. 1087 */ 1088 if (mreq->valid != VM_PAGE_BITS_ALL) { 1089 return (VM_PAGER_ERROR); 1090 } else { 1091 return (VM_PAGER_OK); 1092 } 1093 1094 /* 1095 * A final note: in a low swap situation, we cannot deallocate swap 1096 * and mark a page dirty here because the caller is likely to mark 1097 * the page clean when we return, causing the page to possibly revert 1098 * to all-zero's later. 1099 */ 1100 } 1101 1102 /* 1103 * swap_pager_putpages: 1104 * 1105 * Assign swap (if necessary) and initiate I/O on the specified pages. 1106 * 1107 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1108 * are automatically converted to SWAP objects. 1109 * 1110 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1111 * vm_page reservation system coupled with properly written VFS devices 1112 * should ensure that no low-memory deadlock occurs. This is an area 1113 * which needs work. 1114 * 1115 * The parent has N vm_object_pip_add() references prior to 1116 * calling us and will remove references for rtvals[] that are 1117 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1118 * completion. 1119 * 1120 * The parent has soft-busy'd the pages it passes us and will unbusy 1121 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1122 * We need to unbusy the rest on I/O completion. 1123 */ 1124 void 1125 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1126 boolean_t sync, int *rtvals) 1127 { 1128 int i; 1129 int n = 0; 1130 1131 if (count && m[0]->object != object) { 1132 panic("swap_pager_getpages: object mismatch %p/%p", 1133 object, 1134 m[0]->object 1135 ); 1136 } 1137 1138 /* 1139 * Step 1 1140 * 1141 * Turn object into OBJT_SWAP 1142 * check for bogus sysops 1143 * force sync if not pageout process 1144 */ 1145 if (object->type != OBJT_SWAP) 1146 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1147 VM_OBJECT_UNLOCK(object); 1148 1149 if (curproc != pageproc) 1150 sync = TRUE; 1151 1152 /* 1153 * Step 2 1154 * 1155 * Update nsw parameters from swap_async_max sysctl values. 1156 * Do not let the sysop crash the machine with bogus numbers. 1157 */ 1158 mtx_lock(&pbuf_mtx); 1159 if (swap_async_max != nsw_wcount_async_max) { 1160 int n; 1161 1162 /* 1163 * limit range 1164 */ 1165 if ((n = swap_async_max) > nswbuf / 2) 1166 n = nswbuf / 2; 1167 if (n < 1) 1168 n = 1; 1169 swap_async_max = n; 1170 1171 /* 1172 * Adjust difference ( if possible ). If the current async 1173 * count is too low, we may not be able to make the adjustment 1174 * at this time. 1175 */ 1176 n -= nsw_wcount_async_max; 1177 if (nsw_wcount_async + n >= 0) { 1178 nsw_wcount_async += n; 1179 nsw_wcount_async_max += n; 1180 wakeup(&nsw_wcount_async); 1181 } 1182 } 1183 mtx_unlock(&pbuf_mtx); 1184 1185 /* 1186 * Step 3 1187 * 1188 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1189 * The page is left dirty until the pageout operation completes 1190 * successfully. 1191 */ 1192 for (i = 0; i < count; i += n) { 1193 int j; 1194 struct buf *bp; 1195 daddr_t blk; 1196 1197 /* 1198 * Maximum I/O size is limited by a number of factors. 1199 */ 1200 n = min(BLIST_MAX_ALLOC, count - i); 1201 n = min(n, nsw_cluster_max); 1202 1203 /* 1204 * Get biggest block of swap we can. If we fail, fall 1205 * back and try to allocate a smaller block. Don't go 1206 * overboard trying to allocate space if it would overly 1207 * fragment swap. 1208 */ 1209 while ( 1210 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1211 n > 4 1212 ) { 1213 n >>= 1; 1214 } 1215 if (blk == SWAPBLK_NONE) { 1216 for (j = 0; j < n; ++j) 1217 rtvals[i+j] = VM_PAGER_FAIL; 1218 continue; 1219 } 1220 1221 /* 1222 * All I/O parameters have been satisfied, build the I/O 1223 * request and assign the swap space. 1224 */ 1225 if (sync == TRUE) { 1226 bp = getpbuf(&nsw_wcount_sync); 1227 } else { 1228 bp = getpbuf(&nsw_wcount_async); 1229 bp->b_flags = B_ASYNC; 1230 } 1231 bp->b_flags |= B_PAGING; 1232 bp->b_iocmd = BIO_WRITE; 1233 1234 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1235 1236 bp->b_rcred = crhold(thread0.td_ucred); 1237 bp->b_wcred = crhold(thread0.td_ucred); 1238 bp->b_bcount = PAGE_SIZE * n; 1239 bp->b_bufsize = PAGE_SIZE * n; 1240 bp->b_blkno = blk; 1241 1242 VM_OBJECT_LOCK(object); 1243 for (j = 0; j < n; ++j) { 1244 vm_page_t mreq = m[i+j]; 1245 1246 swp_pager_meta_build( 1247 mreq->object, 1248 mreq->pindex, 1249 blk + j 1250 ); 1251 vm_page_dirty(mreq); 1252 rtvals[i+j] = VM_PAGER_OK; 1253 1254 mreq->oflags |= VPO_SWAPINPROG; 1255 bp->b_pages[j] = mreq; 1256 } 1257 VM_OBJECT_UNLOCK(object); 1258 bp->b_npages = n; 1259 /* 1260 * Must set dirty range for NFS to work. 1261 */ 1262 bp->b_dirtyoff = 0; 1263 bp->b_dirtyend = bp->b_bcount; 1264 1265 PCPU_INC(cnt.v_swapout); 1266 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1267 1268 /* 1269 * asynchronous 1270 * 1271 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1272 */ 1273 if (sync == FALSE) { 1274 bp->b_iodone = swp_pager_async_iodone; 1275 BUF_KERNPROC(bp); 1276 swp_pager_strategy(bp); 1277 1278 for (j = 0; j < n; ++j) 1279 rtvals[i+j] = VM_PAGER_PEND; 1280 /* restart outter loop */ 1281 continue; 1282 } 1283 1284 /* 1285 * synchronous 1286 * 1287 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1288 */ 1289 bp->b_iodone = bdone; 1290 swp_pager_strategy(bp); 1291 1292 /* 1293 * Wait for the sync I/O to complete, then update rtvals. 1294 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1295 * our async completion routine at the end, thus avoiding a 1296 * double-free. 1297 */ 1298 bwait(bp, PVM, "swwrt"); 1299 for (j = 0; j < n; ++j) 1300 rtvals[i+j] = VM_PAGER_PEND; 1301 /* 1302 * Now that we are through with the bp, we can call the 1303 * normal async completion, which frees everything up. 1304 */ 1305 swp_pager_async_iodone(bp); 1306 } 1307 VM_OBJECT_LOCK(object); 1308 } 1309 1310 /* 1311 * swp_pager_async_iodone: 1312 * 1313 * Completion routine for asynchronous reads and writes from/to swap. 1314 * Also called manually by synchronous code to finish up a bp. 1315 * 1316 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1317 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1318 * unbusy all pages except the 'main' request page. For WRITE 1319 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1320 * because we marked them all VM_PAGER_PEND on return from putpages ). 1321 * 1322 * This routine may not block. 1323 * This routine is called at splbio() or better 1324 * 1325 * We up ourselves to splvm() as required for various vm_page related 1326 * calls. 1327 */ 1328 static void 1329 swp_pager_async_iodone(struct buf *bp) 1330 { 1331 int i; 1332 vm_object_t object = NULL; 1333 1334 /* 1335 * report error 1336 */ 1337 if (bp->b_ioflags & BIO_ERROR) { 1338 printf( 1339 "swap_pager: I/O error - %s failed; blkno %ld," 1340 "size %ld, error %d\n", 1341 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1342 (long)bp->b_blkno, 1343 (long)bp->b_bcount, 1344 bp->b_error 1345 ); 1346 } 1347 1348 /* 1349 * remove the mapping for kernel virtual 1350 */ 1351 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1352 1353 if (bp->b_npages) { 1354 object = bp->b_pages[0]->object; 1355 VM_OBJECT_LOCK(object); 1356 } 1357 vm_page_lock_queues(); 1358 /* 1359 * cleanup pages. If an error occurs writing to swap, we are in 1360 * very serious trouble. If it happens to be a disk error, though, 1361 * we may be able to recover by reassigning the swap later on. So 1362 * in this case we remove the m->swapblk assignment for the page 1363 * but do not free it in the rlist. The errornous block(s) are thus 1364 * never reallocated as swap. Redirty the page and continue. 1365 */ 1366 for (i = 0; i < bp->b_npages; ++i) { 1367 vm_page_t m = bp->b_pages[i]; 1368 1369 m->oflags &= ~VPO_SWAPINPROG; 1370 1371 if (bp->b_ioflags & BIO_ERROR) { 1372 /* 1373 * If an error occurs I'd love to throw the swapblk 1374 * away without freeing it back to swapspace, so it 1375 * can never be used again. But I can't from an 1376 * interrupt. 1377 */ 1378 if (bp->b_iocmd == BIO_READ) { 1379 /* 1380 * When reading, reqpage needs to stay 1381 * locked for the parent, but all other 1382 * pages can be freed. We still want to 1383 * wakeup the parent waiting on the page, 1384 * though. ( also: pg_reqpage can be -1 and 1385 * not match anything ). 1386 * 1387 * We have to wake specifically requested pages 1388 * up too because we cleared VPO_SWAPINPROG and 1389 * someone may be waiting for that. 1390 * 1391 * NOTE: for reads, m->dirty will probably 1392 * be overridden by the original caller of 1393 * getpages so don't play cute tricks here. 1394 */ 1395 m->valid = 0; 1396 if (i != bp->b_pager.pg_reqpage) 1397 vm_page_free(m); 1398 else 1399 vm_page_flash(m); 1400 /* 1401 * If i == bp->b_pager.pg_reqpage, do not wake 1402 * the page up. The caller needs to. 1403 */ 1404 } else { 1405 /* 1406 * If a write error occurs, reactivate page 1407 * so it doesn't clog the inactive list, 1408 * then finish the I/O. 1409 */ 1410 vm_page_dirty(m); 1411 vm_page_activate(m); 1412 vm_page_io_finish(m); 1413 } 1414 } else if (bp->b_iocmd == BIO_READ) { 1415 /* 1416 * For read success, clear dirty bits. Nobody should 1417 * have this page mapped but don't take any chances, 1418 * make sure the pmap modify bits are also cleared. 1419 * 1420 * NOTE: for reads, m->dirty will probably be 1421 * overridden by the original caller of getpages so 1422 * we cannot set them in order to free the underlying 1423 * swap in a low-swap situation. I don't think we'd 1424 * want to do that anyway, but it was an optimization 1425 * that existed in the old swapper for a time before 1426 * it got ripped out due to precisely this problem. 1427 * 1428 * If not the requested page then deactivate it. 1429 * 1430 * Note that the requested page, reqpage, is left 1431 * busied, but we still have to wake it up. The 1432 * other pages are released (unbusied) by 1433 * vm_page_wakeup(). We do not set reqpage's 1434 * valid bits here, it is up to the caller. 1435 */ 1436 pmap_clear_modify(m); 1437 m->valid = VM_PAGE_BITS_ALL; 1438 vm_page_undirty(m); 1439 1440 /* 1441 * We have to wake specifically requested pages 1442 * up too because we cleared VPO_SWAPINPROG and 1443 * could be waiting for it in getpages. However, 1444 * be sure to not unbusy getpages specifically 1445 * requested page - getpages expects it to be 1446 * left busy. 1447 */ 1448 if (i != bp->b_pager.pg_reqpage) { 1449 vm_page_deactivate(m); 1450 vm_page_wakeup(m); 1451 } else { 1452 vm_page_flash(m); 1453 } 1454 } else { 1455 /* 1456 * For write success, clear the modify and dirty 1457 * status, then finish the I/O ( which decrements the 1458 * busy count and possibly wakes waiter's up ). 1459 */ 1460 pmap_clear_modify(m); 1461 vm_page_undirty(m); 1462 vm_page_io_finish(m); 1463 if (vm_page_count_severe()) 1464 vm_page_try_to_cache(m); 1465 } 1466 } 1467 vm_page_unlock_queues(); 1468 1469 /* 1470 * adjust pip. NOTE: the original parent may still have its own 1471 * pip refs on the object. 1472 */ 1473 if (object != NULL) { 1474 vm_object_pip_wakeupn(object, bp->b_npages); 1475 VM_OBJECT_UNLOCK(object); 1476 } 1477 1478 /* 1479 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1480 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1481 * trigger a KASSERT in relpbuf(). 1482 */ 1483 if (bp->b_vp) { 1484 bp->b_vp = NULL; 1485 bp->b_bufobj = NULL; 1486 } 1487 /* 1488 * release the physical I/O buffer 1489 */ 1490 relpbuf( 1491 bp, 1492 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1493 ((bp->b_flags & B_ASYNC) ? 1494 &nsw_wcount_async : 1495 &nsw_wcount_sync 1496 ) 1497 ) 1498 ); 1499 } 1500 1501 /* 1502 * swap_pager_isswapped: 1503 * 1504 * Return 1 if at least one page in the given object is paged 1505 * out to the given swap device. 1506 * 1507 * This routine may not block. 1508 */ 1509 int 1510 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1511 { 1512 daddr_t index = 0; 1513 int bcount; 1514 int i; 1515 1516 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1517 if (object->type != OBJT_SWAP) 1518 return (0); 1519 1520 mtx_lock(&swhash_mtx); 1521 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1522 struct swblock *swap; 1523 1524 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1525 for (i = 0; i < SWAP_META_PAGES; ++i) { 1526 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1527 mtx_unlock(&swhash_mtx); 1528 return (1); 1529 } 1530 } 1531 } 1532 index += SWAP_META_PAGES; 1533 if (index > 0x20000000) 1534 panic("swap_pager_isswapped: failed to locate all swap meta blocks"); 1535 } 1536 mtx_unlock(&swhash_mtx); 1537 return (0); 1538 } 1539 1540 /* 1541 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1542 * 1543 * This routine dissociates the page at the given index within a 1544 * swap block from its backing store, paging it in if necessary. 1545 * If the page is paged in, it is placed in the inactive queue, 1546 * since it had its backing store ripped out from under it. 1547 * We also attempt to swap in all other pages in the swap block, 1548 * we only guarantee that the one at the specified index is 1549 * paged in. 1550 * 1551 * XXX - The code to page the whole block in doesn't work, so we 1552 * revert to the one-by-one behavior for now. Sigh. 1553 */ 1554 static inline void 1555 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1556 { 1557 vm_page_t m; 1558 1559 vm_object_pip_add(object, 1); 1560 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY); 1561 if (m->valid == VM_PAGE_BITS_ALL) { 1562 vm_object_pip_subtract(object, 1); 1563 vm_page_lock_queues(); 1564 vm_page_activate(m); 1565 vm_page_dirty(m); 1566 vm_page_unlock_queues(); 1567 vm_page_wakeup(m); 1568 vm_pager_page_unswapped(m); 1569 return; 1570 } 1571 1572 if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK) 1573 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1574 vm_object_pip_subtract(object, 1); 1575 vm_page_lock_queues(); 1576 vm_page_dirty(m); 1577 vm_page_dontneed(m); 1578 vm_page_unlock_queues(); 1579 vm_page_wakeup(m); 1580 vm_pager_page_unswapped(m); 1581 } 1582 1583 /* 1584 * swap_pager_swapoff: 1585 * 1586 * Page in all of the pages that have been paged out to the 1587 * given device. The corresponding blocks in the bitmap must be 1588 * marked as allocated and the device must be flagged SW_CLOSING. 1589 * There may be no processes swapped out to the device. 1590 * 1591 * This routine may block. 1592 */ 1593 static void 1594 swap_pager_swapoff(struct swdevt *sp) 1595 { 1596 struct swblock *swap; 1597 int i, j, retries; 1598 1599 GIANT_REQUIRED; 1600 1601 retries = 0; 1602 full_rescan: 1603 mtx_lock(&swhash_mtx); 1604 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1605 restart: 1606 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1607 vm_object_t object = swap->swb_object; 1608 vm_pindex_t pindex = swap->swb_index; 1609 for (j = 0; j < SWAP_META_PAGES; ++j) { 1610 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1611 /* avoid deadlock */ 1612 if (!VM_OBJECT_TRYLOCK(object)) { 1613 break; 1614 } else { 1615 mtx_unlock(&swhash_mtx); 1616 swp_pager_force_pagein(object, 1617 pindex + j); 1618 VM_OBJECT_UNLOCK(object); 1619 mtx_lock(&swhash_mtx); 1620 goto restart; 1621 } 1622 } 1623 } 1624 } 1625 } 1626 mtx_unlock(&swhash_mtx); 1627 if (sp->sw_used) { 1628 /* 1629 * Objects may be locked or paging to the device being 1630 * removed, so we will miss their pages and need to 1631 * make another pass. We have marked this device as 1632 * SW_CLOSING, so the activity should finish soon. 1633 */ 1634 retries++; 1635 if (retries > 100) { 1636 panic("swapoff: failed to locate %d swap blocks", 1637 sp->sw_used); 1638 } 1639 pause("swpoff", hz / 20); 1640 goto full_rescan; 1641 } 1642 } 1643 1644 /************************************************************************ 1645 * SWAP META DATA * 1646 ************************************************************************ 1647 * 1648 * These routines manipulate the swap metadata stored in the 1649 * OBJT_SWAP object. All swp_*() routines must be called at 1650 * splvm() because swap can be freed up by the low level vm_page 1651 * code which might be called from interrupts beyond what splbio() covers. 1652 * 1653 * Swap metadata is implemented with a global hash and not directly 1654 * linked into the object. Instead the object simply contains 1655 * appropriate tracking counters. 1656 */ 1657 1658 /* 1659 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1660 * 1661 * We first convert the object to a swap object if it is a default 1662 * object. 1663 * 1664 * The specified swapblk is added to the object's swap metadata. If 1665 * the swapblk is not valid, it is freed instead. Any previously 1666 * assigned swapblk is freed. 1667 * 1668 * This routine must be called at splvm(), except when used to convert 1669 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1670 */ 1671 static void 1672 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1673 { 1674 struct swblock *swap; 1675 struct swblock **pswap; 1676 int idx; 1677 1678 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1679 /* 1680 * Convert default object to swap object if necessary 1681 */ 1682 if (object->type != OBJT_SWAP) { 1683 object->type = OBJT_SWAP; 1684 object->un_pager.swp.swp_bcount = 0; 1685 1686 if (object->handle != NULL) { 1687 mtx_lock(&sw_alloc_mtx); 1688 TAILQ_INSERT_TAIL( 1689 NOBJLIST(object->handle), 1690 object, 1691 pager_object_list 1692 ); 1693 mtx_unlock(&sw_alloc_mtx); 1694 } 1695 } 1696 1697 /* 1698 * Locate hash entry. If not found create, but if we aren't adding 1699 * anything just return. If we run out of space in the map we wait 1700 * and, since the hash table may have changed, retry. 1701 */ 1702 retry: 1703 mtx_lock(&swhash_mtx); 1704 pswap = swp_pager_hash(object, pindex); 1705 1706 if ((swap = *pswap) == NULL) { 1707 int i; 1708 1709 if (swapblk == SWAPBLK_NONE) 1710 goto done; 1711 1712 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT); 1713 if (swap == NULL) { 1714 mtx_unlock(&swhash_mtx); 1715 VM_OBJECT_UNLOCK(object); 1716 if (uma_zone_exhausted(swap_zone)) 1717 printf("swap zone exhausted, increase kern.maxswzone\n"); 1718 VM_WAIT; 1719 VM_OBJECT_LOCK(object); 1720 goto retry; 1721 } 1722 1723 swap->swb_hnext = NULL; 1724 swap->swb_object = object; 1725 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1726 swap->swb_count = 0; 1727 1728 ++object->un_pager.swp.swp_bcount; 1729 1730 for (i = 0; i < SWAP_META_PAGES; ++i) 1731 swap->swb_pages[i] = SWAPBLK_NONE; 1732 } 1733 1734 /* 1735 * Delete prior contents of metadata 1736 */ 1737 idx = pindex & SWAP_META_MASK; 1738 1739 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1740 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1741 --swap->swb_count; 1742 } 1743 1744 /* 1745 * Enter block into metadata 1746 */ 1747 swap->swb_pages[idx] = swapblk; 1748 if (swapblk != SWAPBLK_NONE) 1749 ++swap->swb_count; 1750 done: 1751 mtx_unlock(&swhash_mtx); 1752 } 1753 1754 /* 1755 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1756 * 1757 * The requested range of blocks is freed, with any associated swap 1758 * returned to the swap bitmap. 1759 * 1760 * This routine will free swap metadata structures as they are cleaned 1761 * out. This routine does *NOT* operate on swap metadata associated 1762 * with resident pages. 1763 * 1764 * This routine must be called at splvm() 1765 */ 1766 static void 1767 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1768 { 1769 1770 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1771 if (object->type != OBJT_SWAP) 1772 return; 1773 1774 while (count > 0) { 1775 struct swblock **pswap; 1776 struct swblock *swap; 1777 1778 mtx_lock(&swhash_mtx); 1779 pswap = swp_pager_hash(object, index); 1780 1781 if ((swap = *pswap) != NULL) { 1782 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1783 1784 if (v != SWAPBLK_NONE) { 1785 swp_pager_freeswapspace(v, 1); 1786 swap->swb_pages[index & SWAP_META_MASK] = 1787 SWAPBLK_NONE; 1788 if (--swap->swb_count == 0) { 1789 *pswap = swap->swb_hnext; 1790 uma_zfree(swap_zone, swap); 1791 --object->un_pager.swp.swp_bcount; 1792 } 1793 } 1794 --count; 1795 ++index; 1796 } else { 1797 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1798 count -= n; 1799 index += n; 1800 } 1801 mtx_unlock(&swhash_mtx); 1802 } 1803 } 1804 1805 /* 1806 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1807 * 1808 * This routine locates and destroys all swap metadata associated with 1809 * an object. 1810 * 1811 * This routine must be called at splvm() 1812 */ 1813 static void 1814 swp_pager_meta_free_all(vm_object_t object) 1815 { 1816 daddr_t index = 0; 1817 1818 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1819 if (object->type != OBJT_SWAP) 1820 return; 1821 1822 while (object->un_pager.swp.swp_bcount) { 1823 struct swblock **pswap; 1824 struct swblock *swap; 1825 1826 mtx_lock(&swhash_mtx); 1827 pswap = swp_pager_hash(object, index); 1828 if ((swap = *pswap) != NULL) { 1829 int i; 1830 1831 for (i = 0; i < SWAP_META_PAGES; ++i) { 1832 daddr_t v = swap->swb_pages[i]; 1833 if (v != SWAPBLK_NONE) { 1834 --swap->swb_count; 1835 swp_pager_freeswapspace(v, 1); 1836 } 1837 } 1838 if (swap->swb_count != 0) 1839 panic("swap_pager_meta_free_all: swb_count != 0"); 1840 *pswap = swap->swb_hnext; 1841 uma_zfree(swap_zone, swap); 1842 --object->un_pager.swp.swp_bcount; 1843 } 1844 mtx_unlock(&swhash_mtx); 1845 index += SWAP_META_PAGES; 1846 if (index > 0x20000000) 1847 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1848 } 1849 } 1850 1851 /* 1852 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1853 * 1854 * This routine is capable of looking up, popping, or freeing 1855 * swapblk assignments in the swap meta data or in the vm_page_t. 1856 * The routine typically returns the swapblk being looked-up, or popped, 1857 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1858 * was invalid. This routine will automatically free any invalid 1859 * meta-data swapblks. 1860 * 1861 * It is not possible to store invalid swapblks in the swap meta data 1862 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1863 * 1864 * When acting on a busy resident page and paging is in progress, we 1865 * have to wait until paging is complete but otherwise can act on the 1866 * busy page. 1867 * 1868 * This routine must be called at splvm(). 1869 * 1870 * SWM_FREE remove and free swap block from metadata 1871 * SWM_POP remove from meta data but do not free.. pop it out 1872 */ 1873 static daddr_t 1874 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1875 { 1876 struct swblock **pswap; 1877 struct swblock *swap; 1878 daddr_t r1; 1879 int idx; 1880 1881 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 1882 /* 1883 * The meta data only exists of the object is OBJT_SWAP 1884 * and even then might not be allocated yet. 1885 */ 1886 if (object->type != OBJT_SWAP) 1887 return (SWAPBLK_NONE); 1888 1889 r1 = SWAPBLK_NONE; 1890 mtx_lock(&swhash_mtx); 1891 pswap = swp_pager_hash(object, pindex); 1892 1893 if ((swap = *pswap) != NULL) { 1894 idx = pindex & SWAP_META_MASK; 1895 r1 = swap->swb_pages[idx]; 1896 1897 if (r1 != SWAPBLK_NONE) { 1898 if (flags & SWM_FREE) { 1899 swp_pager_freeswapspace(r1, 1); 1900 r1 = SWAPBLK_NONE; 1901 } 1902 if (flags & (SWM_FREE|SWM_POP)) { 1903 swap->swb_pages[idx] = SWAPBLK_NONE; 1904 if (--swap->swb_count == 0) { 1905 *pswap = swap->swb_hnext; 1906 uma_zfree(swap_zone, swap); 1907 --object->un_pager.swp.swp_bcount; 1908 } 1909 } 1910 } 1911 } 1912 mtx_unlock(&swhash_mtx); 1913 return (r1); 1914 } 1915 1916 /* 1917 * System call swapon(name) enables swapping on device name, 1918 * which must be in the swdevsw. Return EBUSY 1919 * if already swapping on this device. 1920 */ 1921 #ifndef _SYS_SYSPROTO_H_ 1922 struct swapon_args { 1923 char *name; 1924 }; 1925 #endif 1926 1927 /* 1928 * MPSAFE 1929 */ 1930 /* ARGSUSED */ 1931 int 1932 swapon(struct thread *td, struct swapon_args *uap) 1933 { 1934 struct vattr attr; 1935 struct vnode *vp; 1936 struct nameidata nd; 1937 int error; 1938 1939 error = priv_check(td, PRIV_SWAPON); 1940 if (error) 1941 return (error); 1942 1943 mtx_lock(&Giant); 1944 while (swdev_syscall_active) 1945 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 1946 swdev_syscall_active = 1; 1947 1948 /* 1949 * Swap metadata may not fit in the KVM if we have physical 1950 * memory of >1GB. 1951 */ 1952 if (swap_zone == NULL) { 1953 error = ENOMEM; 1954 goto done; 1955 } 1956 1957 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 1958 uap->name, td); 1959 error = namei(&nd); 1960 if (error) 1961 goto done; 1962 1963 NDFREE(&nd, NDF_ONLY_PNBUF); 1964 vp = nd.ni_vp; 1965 1966 if (vn_isdisk(vp, &error)) { 1967 error = swapongeom(td, vp); 1968 } else if (vp->v_type == VREG && 1969 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 1970 (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { 1971 /* 1972 * Allow direct swapping to NFS regular files in the same 1973 * way that nfs_mountroot() sets up diskless swapping. 1974 */ 1975 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 1976 } 1977 1978 if (error) 1979 vrele(vp); 1980 done: 1981 swdev_syscall_active = 0; 1982 wakeup_one(&swdev_syscall_active); 1983 mtx_unlock(&Giant); 1984 return (error); 1985 } 1986 1987 static void 1988 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev) 1989 { 1990 struct swdevt *sp, *tsp; 1991 swblk_t dvbase; 1992 u_long mblocks; 1993 1994 /* 1995 * If we go beyond this, we get overflows in the radix 1996 * tree bitmap code. 1997 */ 1998 mblocks = 0x40000000 / BLIST_META_RADIX; 1999 if (nblks > mblocks) { 2000 printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n", 2001 mblocks); 2002 nblks = mblocks; 2003 } 2004 /* 2005 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2006 * First chop nblks off to page-align it, then convert. 2007 * 2008 * sw->sw_nblks is in page-sized chunks now too. 2009 */ 2010 nblks &= ~(ctodb(1) - 1); 2011 nblks = dbtoc(nblks); 2012 2013 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2014 sp->sw_vp = vp; 2015 sp->sw_id = id; 2016 sp->sw_dev = dev; 2017 sp->sw_flags = 0; 2018 sp->sw_nblks = nblks; 2019 sp->sw_used = 0; 2020 sp->sw_strategy = strategy; 2021 sp->sw_close = close; 2022 2023 sp->sw_blist = blist_create(nblks); 2024 /* 2025 * Do not free the first two block in order to avoid overwriting 2026 * any bsd label at the front of the partition 2027 */ 2028 blist_free(sp->sw_blist, 2, nblks - 2); 2029 2030 dvbase = 0; 2031 mtx_lock(&sw_dev_mtx); 2032 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2033 if (tsp->sw_end >= dvbase) { 2034 /* 2035 * We put one uncovered page between the devices 2036 * in order to definitively prevent any cross-device 2037 * I/O requests 2038 */ 2039 dvbase = tsp->sw_end + 1; 2040 } 2041 } 2042 sp->sw_first = dvbase; 2043 sp->sw_end = dvbase + nblks; 2044 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2045 nswapdev++; 2046 swap_pager_avail += nblks; 2047 swp_sizecheck(); 2048 mtx_unlock(&sw_dev_mtx); 2049 } 2050 2051 /* 2052 * SYSCALL: swapoff(devname) 2053 * 2054 * Disable swapping on the given device. 2055 * 2056 * XXX: Badly designed system call: it should use a device index 2057 * rather than filename as specification. We keep sw_vp around 2058 * only to make this work. 2059 */ 2060 #ifndef _SYS_SYSPROTO_H_ 2061 struct swapoff_args { 2062 char *name; 2063 }; 2064 #endif 2065 2066 /* 2067 * MPSAFE 2068 */ 2069 /* ARGSUSED */ 2070 int 2071 swapoff(struct thread *td, struct swapoff_args *uap) 2072 { 2073 struct vnode *vp; 2074 struct nameidata nd; 2075 struct swdevt *sp; 2076 int error; 2077 2078 error = priv_check(td, PRIV_SWAPOFF); 2079 if (error) 2080 return (error); 2081 2082 mtx_lock(&Giant); 2083 while (swdev_syscall_active) 2084 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2085 swdev_syscall_active = 1; 2086 2087 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2088 td); 2089 error = namei(&nd); 2090 if (error) 2091 goto done; 2092 NDFREE(&nd, NDF_ONLY_PNBUF); 2093 vp = nd.ni_vp; 2094 2095 mtx_lock(&sw_dev_mtx); 2096 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2097 if (sp->sw_vp == vp) 2098 break; 2099 } 2100 mtx_unlock(&sw_dev_mtx); 2101 if (sp == NULL) { 2102 error = EINVAL; 2103 goto done; 2104 } 2105 error = swapoff_one(sp, td); 2106 done: 2107 swdev_syscall_active = 0; 2108 wakeup_one(&swdev_syscall_active); 2109 mtx_unlock(&Giant); 2110 return (error); 2111 } 2112 2113 static int 2114 swapoff_one(struct swdevt *sp, struct thread *td) 2115 { 2116 u_long nblks, dvbase; 2117 #ifdef MAC 2118 int error; 2119 #endif 2120 2121 mtx_assert(&Giant, MA_OWNED); 2122 #ifdef MAC 2123 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY, td); 2124 error = mac_check_system_swapoff(td->td_ucred, sp->sw_vp); 2125 (void) VOP_UNLOCK(sp->sw_vp, 0, td); 2126 if (error != 0) 2127 return (error); 2128 #endif 2129 nblks = sp->sw_nblks; 2130 2131 /* 2132 * We can turn off this swap device safely only if the 2133 * available virtual memory in the system will fit the amount 2134 * of data we will have to page back in, plus an epsilon so 2135 * the system doesn't become critically low on swap space. 2136 */ 2137 if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail < 2138 nblks + nswap_lowat) { 2139 return (ENOMEM); 2140 } 2141 2142 /* 2143 * Prevent further allocations on this device. 2144 */ 2145 mtx_lock(&sw_dev_mtx); 2146 sp->sw_flags |= SW_CLOSING; 2147 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2148 swap_pager_avail -= blist_fill(sp->sw_blist, 2149 dvbase, dmmax); 2150 } 2151 mtx_unlock(&sw_dev_mtx); 2152 2153 /* 2154 * Page in the contents of the device and close it. 2155 */ 2156 swap_pager_swapoff(sp); 2157 2158 sp->sw_close(td, sp); 2159 sp->sw_id = NULL; 2160 mtx_lock(&sw_dev_mtx); 2161 TAILQ_REMOVE(&swtailq, sp, sw_list); 2162 nswapdev--; 2163 if (nswapdev == 0) { 2164 swap_pager_full = 2; 2165 swap_pager_almost_full = 1; 2166 } 2167 if (swdevhd == sp) 2168 swdevhd = NULL; 2169 mtx_unlock(&sw_dev_mtx); 2170 blist_destroy(sp->sw_blist); 2171 free(sp, M_VMPGDATA); 2172 return (0); 2173 } 2174 2175 void 2176 swapoff_all(void) 2177 { 2178 struct swdevt *sp, *spt; 2179 const char *devname; 2180 int error; 2181 2182 mtx_lock(&Giant); 2183 while (swdev_syscall_active) 2184 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2185 swdev_syscall_active = 1; 2186 2187 mtx_lock(&sw_dev_mtx); 2188 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2189 mtx_unlock(&sw_dev_mtx); 2190 if (vn_isdisk(sp->sw_vp, NULL)) 2191 devname = sp->sw_vp->v_rdev->si_name; 2192 else 2193 devname = "[file]"; 2194 error = swapoff_one(sp, &thread0); 2195 if (error != 0) { 2196 printf("Cannot remove swap device %s (error=%d), " 2197 "skipping.\n", devname, error); 2198 } else if (bootverbose) { 2199 printf("Swap device %s removed.\n", devname); 2200 } 2201 mtx_lock(&sw_dev_mtx); 2202 } 2203 mtx_unlock(&sw_dev_mtx); 2204 2205 swdev_syscall_active = 0; 2206 wakeup_one(&swdev_syscall_active); 2207 mtx_unlock(&Giant); 2208 } 2209 2210 void 2211 swap_pager_status(int *total, int *used) 2212 { 2213 struct swdevt *sp; 2214 2215 *total = 0; 2216 *used = 0; 2217 mtx_lock(&sw_dev_mtx); 2218 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2219 *total += sp->sw_nblks; 2220 *used += sp->sw_used; 2221 } 2222 mtx_unlock(&sw_dev_mtx); 2223 } 2224 2225 static int 2226 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2227 { 2228 int *name = (int *)arg1; 2229 int error, n; 2230 struct xswdev xs; 2231 struct swdevt *sp; 2232 2233 if (arg2 != 1) /* name length */ 2234 return (EINVAL); 2235 2236 n = 0; 2237 mtx_lock(&sw_dev_mtx); 2238 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2239 if (n == *name) { 2240 mtx_unlock(&sw_dev_mtx); 2241 xs.xsw_version = XSWDEV_VERSION; 2242 xs.xsw_dev = sp->sw_dev; 2243 xs.xsw_flags = sp->sw_flags; 2244 xs.xsw_nblks = sp->sw_nblks; 2245 xs.xsw_used = sp->sw_used; 2246 2247 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2248 return (error); 2249 } 2250 n++; 2251 } 2252 mtx_unlock(&sw_dev_mtx); 2253 return (ENOENT); 2254 } 2255 2256 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2257 "Number of swap devices"); 2258 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2259 "Swap statistics by device"); 2260 2261 /* 2262 * vmspace_swap_count() - count the approximate swap useage in pages for a 2263 * vmspace. 2264 * 2265 * The map must be locked. 2266 * 2267 * Swap useage is determined by taking the proportional swap used by 2268 * VM objects backing the VM map. To make up for fractional losses, 2269 * if the VM object has any swap use at all the associated map entries 2270 * count for at least 1 swap page. 2271 */ 2272 int 2273 vmspace_swap_count(struct vmspace *vmspace) 2274 { 2275 vm_map_t map = &vmspace->vm_map; 2276 vm_map_entry_t cur; 2277 int count = 0; 2278 2279 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2280 vm_object_t object; 2281 2282 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2283 (object = cur->object.vm_object) != NULL) { 2284 VM_OBJECT_LOCK(object); 2285 if (object->type == OBJT_SWAP && 2286 object->un_pager.swp.swp_bcount != 0) { 2287 int n = (cur->end - cur->start) / PAGE_SIZE; 2288 2289 count += object->un_pager.swp.swp_bcount * 2290 SWAP_META_PAGES * n / object->size + 1; 2291 } 2292 VM_OBJECT_UNLOCK(object); 2293 } 2294 } 2295 return (count); 2296 } 2297 2298 /* 2299 * GEOM backend 2300 * 2301 * Swapping onto disk devices. 2302 * 2303 */ 2304 2305 static g_orphan_t swapgeom_orphan; 2306 2307 static struct g_class g_swap_class = { 2308 .name = "SWAP", 2309 .version = G_VERSION, 2310 .orphan = swapgeom_orphan, 2311 }; 2312 2313 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2314 2315 2316 static void 2317 swapgeom_done(struct bio *bp2) 2318 { 2319 struct buf *bp; 2320 2321 bp = bp2->bio_caller2; 2322 bp->b_ioflags = bp2->bio_flags; 2323 if (bp2->bio_error) 2324 bp->b_ioflags |= BIO_ERROR; 2325 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2326 bp->b_error = bp2->bio_error; 2327 bufdone(bp); 2328 g_destroy_bio(bp2); 2329 } 2330 2331 static void 2332 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2333 { 2334 struct bio *bio; 2335 struct g_consumer *cp; 2336 2337 cp = sp->sw_id; 2338 if (cp == NULL) { 2339 bp->b_error = ENXIO; 2340 bp->b_ioflags |= BIO_ERROR; 2341 bufdone(bp); 2342 return; 2343 } 2344 bio = g_alloc_bio(); 2345 #if 0 2346 /* 2347 * XXX: We shouldn't really sleep here when we run out of buffers 2348 * XXX: but the alternative is worse right now. 2349 */ 2350 if (bio == NULL) { 2351 bp->b_error = ENOMEM; 2352 bp->b_ioflags |= BIO_ERROR; 2353 bufdone(bp); 2354 return; 2355 } 2356 #endif 2357 bio->bio_caller2 = bp; 2358 bio->bio_cmd = bp->b_iocmd; 2359 bio->bio_data = bp->b_data; 2360 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2361 bio->bio_length = bp->b_bcount; 2362 bio->bio_done = swapgeom_done; 2363 g_io_request(bio, cp); 2364 return; 2365 } 2366 2367 static void 2368 swapgeom_orphan(struct g_consumer *cp) 2369 { 2370 struct swdevt *sp; 2371 2372 mtx_lock(&sw_dev_mtx); 2373 TAILQ_FOREACH(sp, &swtailq, sw_list) 2374 if (sp->sw_id == cp) 2375 sp->sw_id = NULL; 2376 mtx_unlock(&sw_dev_mtx); 2377 } 2378 2379 static void 2380 swapgeom_close_ev(void *arg, int flags) 2381 { 2382 struct g_consumer *cp; 2383 2384 cp = arg; 2385 g_access(cp, -1, -1, 0); 2386 g_detach(cp); 2387 g_destroy_consumer(cp); 2388 } 2389 2390 static void 2391 swapgeom_close(struct thread *td, struct swdevt *sw) 2392 { 2393 2394 /* XXX: direct call when Giant untangled */ 2395 g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL); 2396 } 2397 2398 2399 struct swh0h0 { 2400 struct cdev *dev; 2401 struct vnode *vp; 2402 int error; 2403 }; 2404 2405 static void 2406 swapongeom_ev(void *arg, int flags) 2407 { 2408 struct swh0h0 *swh; 2409 struct g_provider *pp; 2410 struct g_consumer *cp; 2411 static struct g_geom *gp; 2412 struct swdevt *sp; 2413 u_long nblks; 2414 int error; 2415 2416 swh = arg; 2417 swh->error = 0; 2418 pp = g_dev_getprovider(swh->dev); 2419 if (pp == NULL) { 2420 swh->error = ENODEV; 2421 return; 2422 } 2423 mtx_lock(&sw_dev_mtx); 2424 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2425 cp = sp->sw_id; 2426 if (cp != NULL && cp->provider == pp) { 2427 mtx_unlock(&sw_dev_mtx); 2428 swh->error = EBUSY; 2429 return; 2430 } 2431 } 2432 mtx_unlock(&sw_dev_mtx); 2433 if (gp == NULL) 2434 gp = g_new_geomf(&g_swap_class, "swap", NULL); 2435 cp = g_new_consumer(gp); 2436 g_attach(cp, pp); 2437 /* 2438 * XXX: Everytime you think you can improve the margin for 2439 * footshooting, somebody depends on the ability to do so: 2440 * savecore(8) wants to write to our swapdev so we cannot 2441 * set an exclusive count :-( 2442 */ 2443 error = g_access(cp, 1, 1, 0); 2444 if (error) { 2445 g_detach(cp); 2446 g_destroy_consumer(cp); 2447 swh->error = error; 2448 return; 2449 } 2450 nblks = pp->mediasize / DEV_BSIZE; 2451 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2452 swapgeom_close, dev2udev(swh->dev)); 2453 swh->error = 0; 2454 return; 2455 } 2456 2457 static int 2458 swapongeom(struct thread *td, struct vnode *vp) 2459 { 2460 int error; 2461 struct swh0h0 swh; 2462 2463 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2464 2465 swh.dev = vp->v_rdev; 2466 swh.vp = vp; 2467 swh.error = 0; 2468 /* XXX: direct call when Giant untangled */ 2469 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2470 if (!error) 2471 error = swh.error; 2472 VOP_UNLOCK(vp, 0, td); 2473 return (error); 2474 } 2475 2476 /* 2477 * VNODE backend 2478 * 2479 * This is used mainly for network filesystem (read: probably only tested 2480 * with NFS) swapfiles. 2481 * 2482 */ 2483 2484 static void 2485 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2486 { 2487 struct vnode *vp2; 2488 2489 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2490 2491 vp2 = sp->sw_id; 2492 vhold(vp2); 2493 if (bp->b_iocmd == BIO_WRITE) { 2494 if (bp->b_bufobj) 2495 bufobj_wdrop(bp->b_bufobj); 2496 bufobj_wref(&vp2->v_bufobj); 2497 } 2498 if (bp->b_bufobj != &vp2->v_bufobj) 2499 bp->b_bufobj = &vp2->v_bufobj; 2500 bp->b_vp = vp2; 2501 bp->b_iooffset = dbtob(bp->b_blkno); 2502 bstrategy(bp); 2503 return; 2504 } 2505 2506 static void 2507 swapdev_close(struct thread *td, struct swdevt *sp) 2508 { 2509 2510 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2511 vrele(sp->sw_vp); 2512 } 2513 2514 2515 static int 2516 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2517 { 2518 struct swdevt *sp; 2519 int error; 2520 2521 if (nblks == 0) 2522 return (ENXIO); 2523 mtx_lock(&sw_dev_mtx); 2524 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2525 if (sp->sw_id == vp) { 2526 mtx_unlock(&sw_dev_mtx); 2527 return (EBUSY); 2528 } 2529 } 2530 mtx_unlock(&sw_dev_mtx); 2531 2532 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 2533 #ifdef MAC 2534 error = mac_check_system_swapon(td->td_ucred, vp); 2535 if (error == 0) 2536 #endif 2537 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2538 (void) VOP_UNLOCK(vp, 0, td); 2539 if (error) 2540 return (error); 2541 2542 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2543 NODEV); 2544 return (0); 2545 } 2546