1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 #define SWM_FREE 0x02 /* free, period */ 317 #define SWM_POP 0x04 /* pop out */ 318 319 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 321 static int nsw_rcount; /* free read buffers */ 322 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 323 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 324 static int nsw_wcount_async_max;/* assigned maximum */ 325 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 326 327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 329 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 330 "Maximum running async swap ops"); 331 332 static struct swblock **swhash; 333 static int swhash_mask; 334 static struct mtx swhash_mtx; 335 336 static struct sx sw_alloc_sx; 337 338 /* 339 * "named" and "unnamed" anon region objects. Try to reduce the overhead 340 * of searching a named list by hashing it just a little. 341 */ 342 343 #define NOBJLISTS 8 344 345 #define NOBJLIST(handle) \ 346 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 347 348 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 349 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 350 static uma_zone_t swap_zone; 351 352 /* 353 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 354 * calls hooked from other parts of the VM system and do not appear here. 355 * (see vm/swap_pager.h). 356 */ 357 static vm_object_t 358 swap_pager_alloc(void *handle, vm_ooffset_t size, 359 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 360 static void swap_pager_dealloc(vm_object_t object); 361 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 362 int *); 363 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 364 int *, pgo_getpages_iodone_t, void *); 365 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 366 static boolean_t 367 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 368 static void swap_pager_init(void); 369 static void swap_pager_unswapped(vm_page_t); 370 static void swap_pager_swapoff(struct swdevt *sp); 371 372 struct pagerops swappagerops = { 373 .pgo_init = swap_pager_init, /* early system initialization of pager */ 374 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 375 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 376 .pgo_getpages = swap_pager_getpages, /* pagein */ 377 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 378 .pgo_putpages = swap_pager_putpages, /* pageout */ 379 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 380 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 381 }; 382 383 /* 384 * dmmax is in page-sized chunks with the new swap system. It was 385 * dev-bsized chunks in the old. dmmax is always a power of 2. 386 * 387 * swap_*() routines are externally accessible. swp_*() routines are 388 * internal. 389 */ 390 static int dmmax; 391 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 392 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 393 394 SYSCTL_INT(_vm, OID_AUTO, dmmax, 395 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 396 397 static void swp_sizecheck(void); 398 static void swp_pager_async_iodone(struct buf *bp); 399 static int swapongeom(struct thread *, struct vnode *); 400 static int swaponvp(struct thread *, struct vnode *, u_long); 401 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 402 403 /* 404 * Swap bitmap functions 405 */ 406 static void swp_pager_freeswapspace(daddr_t blk, int npages); 407 static daddr_t swp_pager_getswapspace(int npages); 408 409 /* 410 * Metadata functions 411 */ 412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 415 static void swp_pager_meta_free_all(vm_object_t); 416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 417 418 /* 419 * SWP_SIZECHECK() - update swap_pager_full indication 420 * 421 * update the swap_pager_almost_full indication and warn when we are 422 * about to run out of swap space, using lowat/hiwat hysteresis. 423 * 424 * Clear swap_pager_full ( task killing ) indication when lowat is met. 425 * 426 * No restrictions on call 427 * This routine may not block. 428 */ 429 static void 430 swp_sizecheck(void) 431 { 432 433 if (swap_pager_avail < nswap_lowat) { 434 if (swap_pager_almost_full == 0) { 435 printf("swap_pager: out of swap space\n"); 436 swap_pager_almost_full = 1; 437 } 438 } else { 439 swap_pager_full = 0; 440 if (swap_pager_avail > nswap_hiwat) 441 swap_pager_almost_full = 0; 442 } 443 } 444 445 /* 446 * SWP_PAGER_HASH() - hash swap meta data 447 * 448 * This is an helper function which hashes the swapblk given 449 * the object and page index. It returns a pointer to a pointer 450 * to the object, or a pointer to a NULL pointer if it could not 451 * find a swapblk. 452 */ 453 static struct swblock ** 454 swp_pager_hash(vm_object_t object, vm_pindex_t index) 455 { 456 struct swblock **pswap; 457 struct swblock *swap; 458 459 index &= ~(vm_pindex_t)SWAP_META_MASK; 460 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 461 while ((swap = *pswap) != NULL) { 462 if (swap->swb_object == object && 463 swap->swb_index == index 464 ) { 465 break; 466 } 467 pswap = &swap->swb_hnext; 468 } 469 return (pswap); 470 } 471 472 /* 473 * SWAP_PAGER_INIT() - initialize the swap pager! 474 * 475 * Expected to be started from system init. NOTE: This code is run 476 * before much else so be careful what you depend on. Most of the VM 477 * system has yet to be initialized at this point. 478 */ 479 static void 480 swap_pager_init(void) 481 { 482 /* 483 * Initialize object lists 484 */ 485 int i; 486 487 for (i = 0; i < NOBJLISTS; ++i) 488 TAILQ_INIT(&swap_pager_object_list[i]); 489 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 490 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 491 sx_init(&swdev_syscall_lock, "swsysc"); 492 493 /* 494 * Device Stripe, in PAGE_SIZE'd blocks 495 */ 496 dmmax = SWB_NPAGES * 2; 497 } 498 499 /* 500 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 501 * 502 * Expected to be started from pageout process once, prior to entering 503 * its main loop. 504 */ 505 void 506 swap_pager_swap_init(void) 507 { 508 unsigned long n, n2; 509 510 /* 511 * Number of in-transit swap bp operations. Don't 512 * exhaust the pbufs completely. Make sure we 513 * initialize workable values (0 will work for hysteresis 514 * but it isn't very efficient). 515 * 516 * The nsw_cluster_max is constrained by the bp->b_pages[] 517 * array (MAXPHYS/PAGE_SIZE) and our locally defined 518 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 519 * constrained by the swap device interleave stripe size. 520 * 521 * Currently we hardwire nsw_wcount_async to 4. This limit is 522 * designed to prevent other I/O from having high latencies due to 523 * our pageout I/O. The value 4 works well for one or two active swap 524 * devices but is probably a little low if you have more. Even so, 525 * a higher value would probably generate only a limited improvement 526 * with three or four active swap devices since the system does not 527 * typically have to pageout at extreme bandwidths. We will want 528 * at least 2 per swap devices, and 4 is a pretty good value if you 529 * have one NFS swap device due to the command/ack latency over NFS. 530 * So it all works out pretty well. 531 */ 532 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 533 534 mtx_lock(&pbuf_mtx); 535 nsw_rcount = (nswbuf + 1) / 2; 536 nsw_wcount_sync = (nswbuf + 3) / 4; 537 nsw_wcount_async = 4; 538 nsw_wcount_async_max = nsw_wcount_async; 539 mtx_unlock(&pbuf_mtx); 540 541 /* 542 * Initialize our zone. Right now I'm just guessing on the number 543 * we need based on the number of pages in the system. Each swblock 544 * can hold 32 pages, so this is probably overkill. This reservation 545 * is typically limited to around 32MB by default. 546 */ 547 n = vm_cnt.v_page_count / 2; 548 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 549 n = maxswzone / sizeof(struct swblock); 550 n2 = n; 551 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 552 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 553 if (swap_zone == NULL) 554 panic("failed to create swap_zone."); 555 do { 556 if (uma_zone_reserve_kva(swap_zone, n)) 557 break; 558 /* 559 * if the allocation failed, try a zone two thirds the 560 * size of the previous attempt. 561 */ 562 n -= ((n + 2) / 3); 563 } while (n > 0); 564 if (n2 != n) 565 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 566 swap_maxpages = n * SWAP_META_PAGES; 567 swzone = n * sizeof(struct swblock); 568 n2 = n; 569 570 /* 571 * Initialize our meta-data hash table. The swapper does not need to 572 * be quite as efficient as the VM system, so we do not use an 573 * oversized hash table. 574 * 575 * n: size of hash table, must be power of 2 576 * swhash_mask: hash table index mask 577 */ 578 for (n = 1; n < n2 / 8; n *= 2) 579 ; 580 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 581 swhash_mask = n - 1; 582 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 583 } 584 585 /* 586 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 587 * its metadata structures. 588 * 589 * This routine is called from the mmap and fork code to create a new 590 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 591 * and then converting it with swp_pager_meta_build(). 592 * 593 * This routine may block in vm_object_allocate() and create a named 594 * object lookup race, so we must interlock. 595 * 596 * MPSAFE 597 */ 598 static vm_object_t 599 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 600 vm_ooffset_t offset, struct ucred *cred) 601 { 602 vm_object_t object; 603 vm_pindex_t pindex; 604 605 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 606 if (handle) { 607 /* 608 * Reference existing named region or allocate new one. There 609 * should not be a race here against swp_pager_meta_build() 610 * as called from vm_page_remove() in regards to the lookup 611 * of the handle. 612 */ 613 sx_xlock(&sw_alloc_sx); 614 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 615 if (object == NULL) { 616 if (cred != NULL) { 617 if (!swap_reserve_by_cred(size, cred)) { 618 sx_xunlock(&sw_alloc_sx); 619 return (NULL); 620 } 621 crhold(cred); 622 } 623 object = vm_object_allocate(OBJT_DEFAULT, pindex); 624 VM_OBJECT_WLOCK(object); 625 object->handle = handle; 626 if (cred != NULL) { 627 object->cred = cred; 628 object->charge = size; 629 } 630 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 631 VM_OBJECT_WUNLOCK(object); 632 } 633 sx_xunlock(&sw_alloc_sx); 634 } else { 635 if (cred != NULL) { 636 if (!swap_reserve_by_cred(size, cred)) 637 return (NULL); 638 crhold(cred); 639 } 640 object = vm_object_allocate(OBJT_DEFAULT, pindex); 641 VM_OBJECT_WLOCK(object); 642 if (cred != NULL) { 643 object->cred = cred; 644 object->charge = size; 645 } 646 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 647 VM_OBJECT_WUNLOCK(object); 648 } 649 return (object); 650 } 651 652 /* 653 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 654 * 655 * The swap backing for the object is destroyed. The code is 656 * designed such that we can reinstantiate it later, but this 657 * routine is typically called only when the entire object is 658 * about to be destroyed. 659 * 660 * The object must be locked. 661 */ 662 static void 663 swap_pager_dealloc(vm_object_t object) 664 { 665 666 /* 667 * Remove from list right away so lookups will fail if we block for 668 * pageout completion. 669 */ 670 if (object->handle != NULL) { 671 mtx_lock(&sw_alloc_mtx); 672 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 673 mtx_unlock(&sw_alloc_mtx); 674 } 675 676 VM_OBJECT_ASSERT_WLOCKED(object); 677 vm_object_pip_wait(object, "swpdea"); 678 679 /* 680 * Free all remaining metadata. We only bother to free it from 681 * the swap meta data. We do not attempt to free swapblk's still 682 * associated with vm_page_t's for this object. We do not care 683 * if paging is still in progress on some objects. 684 */ 685 swp_pager_meta_free_all(object); 686 object->handle = NULL; 687 object->type = OBJT_DEAD; 688 } 689 690 /************************************************************************ 691 * SWAP PAGER BITMAP ROUTINES * 692 ************************************************************************/ 693 694 /* 695 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 696 * 697 * Allocate swap for the requested number of pages. The starting 698 * swap block number (a page index) is returned or SWAPBLK_NONE 699 * if the allocation failed. 700 * 701 * Also has the side effect of advising that somebody made a mistake 702 * when they configured swap and didn't configure enough. 703 * 704 * This routine may not sleep. 705 * 706 * We allocate in round-robin fashion from the configured devices. 707 */ 708 static daddr_t 709 swp_pager_getswapspace(int npages) 710 { 711 daddr_t blk; 712 struct swdevt *sp; 713 int i; 714 715 blk = SWAPBLK_NONE; 716 mtx_lock(&sw_dev_mtx); 717 sp = swdevhd; 718 for (i = 0; i < nswapdev; i++) { 719 if (sp == NULL) 720 sp = TAILQ_FIRST(&swtailq); 721 if (!(sp->sw_flags & SW_CLOSING)) { 722 blk = blist_alloc(sp->sw_blist, npages); 723 if (blk != SWAPBLK_NONE) { 724 blk += sp->sw_first; 725 sp->sw_used += npages; 726 swap_pager_avail -= npages; 727 swp_sizecheck(); 728 swdevhd = TAILQ_NEXT(sp, sw_list); 729 goto done; 730 } 731 } 732 sp = TAILQ_NEXT(sp, sw_list); 733 } 734 if (swap_pager_full != 2) { 735 printf("swap_pager_getswapspace(%d): failed\n", npages); 736 swap_pager_full = 2; 737 swap_pager_almost_full = 1; 738 } 739 swdevhd = NULL; 740 done: 741 mtx_unlock(&sw_dev_mtx); 742 return (blk); 743 } 744 745 static int 746 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 747 { 748 749 return (blk >= sp->sw_first && blk < sp->sw_end); 750 } 751 752 static void 753 swp_pager_strategy(struct buf *bp) 754 { 755 struct swdevt *sp; 756 757 mtx_lock(&sw_dev_mtx); 758 TAILQ_FOREACH(sp, &swtailq, sw_list) { 759 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 760 mtx_unlock(&sw_dev_mtx); 761 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 762 unmapped_buf_allowed) { 763 bp->b_data = unmapped_buf; 764 bp->b_offset = 0; 765 } else { 766 pmap_qenter((vm_offset_t)bp->b_data, 767 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 768 } 769 sp->sw_strategy(bp, sp); 770 return; 771 } 772 } 773 panic("Swapdev not found"); 774 } 775 776 777 /* 778 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 779 * 780 * This routine returns the specified swap blocks back to the bitmap. 781 * 782 * This routine may not sleep. 783 */ 784 static void 785 swp_pager_freeswapspace(daddr_t blk, int npages) 786 { 787 struct swdevt *sp; 788 789 mtx_lock(&sw_dev_mtx); 790 TAILQ_FOREACH(sp, &swtailq, sw_list) { 791 if (blk >= sp->sw_first && blk < sp->sw_end) { 792 sp->sw_used -= npages; 793 /* 794 * If we are attempting to stop swapping on 795 * this device, we don't want to mark any 796 * blocks free lest they be reused. 797 */ 798 if ((sp->sw_flags & SW_CLOSING) == 0) { 799 blist_free(sp->sw_blist, blk - sp->sw_first, 800 npages); 801 swap_pager_avail += npages; 802 swp_sizecheck(); 803 } 804 mtx_unlock(&sw_dev_mtx); 805 return; 806 } 807 } 808 panic("Swapdev not found"); 809 } 810 811 /* 812 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 813 * range within an object. 814 * 815 * This is a globally accessible routine. 816 * 817 * This routine removes swapblk assignments from swap metadata. 818 * 819 * The external callers of this routine typically have already destroyed 820 * or renamed vm_page_t's associated with this range in the object so 821 * we should be ok. 822 * 823 * The object must be locked. 824 */ 825 void 826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 827 { 828 829 swp_pager_meta_free(object, start, size); 830 } 831 832 /* 833 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 834 * 835 * Assigns swap blocks to the specified range within the object. The 836 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 837 * 838 * Returns 0 on success, -1 on failure. 839 */ 840 int 841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 842 { 843 int n = 0; 844 daddr_t blk = SWAPBLK_NONE; 845 vm_pindex_t beg = start; /* save start index */ 846 847 VM_OBJECT_WLOCK(object); 848 while (size) { 849 if (n == 0) { 850 n = BLIST_MAX_ALLOC; 851 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 852 n >>= 1; 853 if (n == 0) { 854 swp_pager_meta_free(object, beg, start - beg); 855 VM_OBJECT_WUNLOCK(object); 856 return (-1); 857 } 858 } 859 } 860 swp_pager_meta_build(object, start, blk); 861 --size; 862 ++start; 863 ++blk; 864 --n; 865 } 866 swp_pager_meta_free(object, start, n); 867 VM_OBJECT_WUNLOCK(object); 868 return (0); 869 } 870 871 /* 872 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 873 * and destroy the source. 874 * 875 * Copy any valid swapblks from the source to the destination. In 876 * cases where both the source and destination have a valid swapblk, 877 * we keep the destination's. 878 * 879 * This routine is allowed to sleep. It may sleep allocating metadata 880 * indirectly through swp_pager_meta_build() or if paging is still in 881 * progress on the source. 882 * 883 * The source object contains no vm_page_t's (which is just as well) 884 * 885 * The source object is of type OBJT_SWAP. 886 * 887 * The source and destination objects must be locked. 888 * Both object locks may temporarily be released. 889 */ 890 void 891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 892 vm_pindex_t offset, int destroysource) 893 { 894 vm_pindex_t i; 895 896 VM_OBJECT_ASSERT_WLOCKED(srcobject); 897 VM_OBJECT_ASSERT_WLOCKED(dstobject); 898 899 /* 900 * If destroysource is set, we remove the source object from the 901 * swap_pager internal queue now. 902 */ 903 if (destroysource) { 904 if (srcobject->handle != NULL) { 905 mtx_lock(&sw_alloc_mtx); 906 TAILQ_REMOVE( 907 NOBJLIST(srcobject->handle), 908 srcobject, 909 pager_object_list 910 ); 911 mtx_unlock(&sw_alloc_mtx); 912 } 913 } 914 915 /* 916 * transfer source to destination. 917 */ 918 for (i = 0; i < dstobject->size; ++i) { 919 daddr_t dstaddr; 920 921 /* 922 * Locate (without changing) the swapblk on the destination, 923 * unless it is invalid in which case free it silently, or 924 * if the destination is a resident page, in which case the 925 * source is thrown away. 926 */ 927 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 928 929 if (dstaddr == SWAPBLK_NONE) { 930 /* 931 * Destination has no swapblk and is not resident, 932 * copy source. 933 */ 934 daddr_t srcaddr; 935 936 srcaddr = swp_pager_meta_ctl( 937 srcobject, 938 i + offset, 939 SWM_POP 940 ); 941 942 if (srcaddr != SWAPBLK_NONE) { 943 /* 944 * swp_pager_meta_build() can sleep. 945 */ 946 vm_object_pip_add(srcobject, 1); 947 VM_OBJECT_WUNLOCK(srcobject); 948 vm_object_pip_add(dstobject, 1); 949 swp_pager_meta_build(dstobject, i, srcaddr); 950 vm_object_pip_wakeup(dstobject); 951 VM_OBJECT_WLOCK(srcobject); 952 vm_object_pip_wakeup(srcobject); 953 } 954 } else { 955 /* 956 * Destination has valid swapblk or it is represented 957 * by a resident page. We destroy the sourceblock. 958 */ 959 960 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 961 } 962 } 963 964 /* 965 * Free left over swap blocks in source. 966 * 967 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 968 * double-remove the object from the swap queues. 969 */ 970 if (destroysource) { 971 swp_pager_meta_free_all(srcobject); 972 /* 973 * Reverting the type is not necessary, the caller is going 974 * to destroy srcobject directly, but I'm doing it here 975 * for consistency since we've removed the object from its 976 * queues. 977 */ 978 srcobject->type = OBJT_DEFAULT; 979 } 980 } 981 982 /* 983 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 984 * the requested page. 985 * 986 * We determine whether good backing store exists for the requested 987 * page and return TRUE if it does, FALSE if it doesn't. 988 * 989 * If TRUE, we also try to determine how much valid, contiguous backing 990 * store exists before and after the requested page within a reasonable 991 * distance. We do not try to restrict it to the swap device stripe 992 * (that is handled in getpages/putpages). It probably isn't worth 993 * doing here. 994 */ 995 static boolean_t 996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 997 { 998 daddr_t blk0; 999 1000 VM_OBJECT_ASSERT_LOCKED(object); 1001 /* 1002 * do we have good backing store at the requested index ? 1003 */ 1004 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1005 1006 if (blk0 == SWAPBLK_NONE) { 1007 if (before) 1008 *before = 0; 1009 if (after) 1010 *after = 0; 1011 return (FALSE); 1012 } 1013 1014 /* 1015 * find backwards-looking contiguous good backing store 1016 */ 1017 if (before != NULL) { 1018 int i; 1019 1020 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1021 daddr_t blk; 1022 1023 if (i > pindex) 1024 break; 1025 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1026 if (blk != blk0 - i) 1027 break; 1028 } 1029 *before = (i - 1); 1030 } 1031 1032 /* 1033 * find forward-looking contiguous good backing store 1034 */ 1035 if (after != NULL) { 1036 int i; 1037 1038 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1039 daddr_t blk; 1040 1041 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1042 if (blk != blk0 + i) 1043 break; 1044 } 1045 *after = (i - 1); 1046 } 1047 return (TRUE); 1048 } 1049 1050 /* 1051 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1052 * 1053 * This removes any associated swap backing store, whether valid or 1054 * not, from the page. 1055 * 1056 * This routine is typically called when a page is made dirty, at 1057 * which point any associated swap can be freed. MADV_FREE also 1058 * calls us in a special-case situation 1059 * 1060 * NOTE!!! If the page is clean and the swap was valid, the caller 1061 * should make the page dirty before calling this routine. This routine 1062 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1063 * depends on it. 1064 * 1065 * This routine may not sleep. 1066 * 1067 * The object containing the page must be locked. 1068 */ 1069 static void 1070 swap_pager_unswapped(vm_page_t m) 1071 { 1072 1073 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1074 } 1075 1076 /* 1077 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1078 * 1079 * Attempt to retrieve (m, count) pages from backing store, but make 1080 * sure we retrieve at least m[reqpage]. We try to load in as large 1081 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1082 * belongs to the same object. 1083 * 1084 * The code is designed for asynchronous operation and 1085 * immediate-notification of 'reqpage' but tends not to be 1086 * used that way. Please do not optimize-out this algorithmic 1087 * feature, I intend to improve on it in the future. 1088 * 1089 * The parent has a single vm_object_pip_add() reference prior to 1090 * calling us and we should return with the same. 1091 * 1092 * The parent has BUSY'd the pages. We should return with 'm' 1093 * left busy, but the others adjusted. 1094 */ 1095 static int 1096 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 1097 int *rahead) 1098 { 1099 struct buf *bp; 1100 daddr_t blk; 1101 1102 /* 1103 * Calculate range to retrieve. The pages have already been assigned 1104 * their swapblks. We require a *contiguous* range but we know it to 1105 * not span devices. If we do not supply it, bad things 1106 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1107 * loops are set up such that the case(s) are handled implicitly. 1108 * 1109 * The swp_*() calls must be made with the object locked. 1110 */ 1111 blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0); 1112 1113 if (blk == SWAPBLK_NONE) 1114 return (VM_PAGER_FAIL); 1115 1116 #ifdef INVARIANTS 1117 for (int i = 0; i < count; i++) 1118 KASSERT(blk + i == 1119 swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0), 1120 ("%s: range is not contiguous", __func__)); 1121 #endif 1122 1123 /* 1124 * Getpbuf() can sleep. 1125 */ 1126 VM_OBJECT_WUNLOCK(object); 1127 /* 1128 * Get a swap buffer header to perform the IO 1129 */ 1130 bp = getpbuf(&nsw_rcount); 1131 bp->b_flags |= B_PAGING; 1132 1133 bp->b_iocmd = BIO_READ; 1134 bp->b_iodone = swp_pager_async_iodone; 1135 bp->b_rcred = crhold(thread0.td_ucred); 1136 bp->b_wcred = crhold(thread0.td_ucred); 1137 bp->b_blkno = blk; 1138 bp->b_bcount = PAGE_SIZE * count; 1139 bp->b_bufsize = PAGE_SIZE * count; 1140 bp->b_npages = count; 1141 1142 VM_OBJECT_WLOCK(object); 1143 for (int i = 0; i < count; i++) { 1144 bp->b_pages[i] = m[i]; 1145 m[i]->oflags |= VPO_SWAPINPROG; 1146 } 1147 1148 PCPU_INC(cnt.v_swapin); 1149 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1150 1151 /* 1152 * We still hold the lock on mreq, and our automatic completion routine 1153 * does not remove it. 1154 */ 1155 vm_object_pip_add(object, bp->b_npages); 1156 VM_OBJECT_WUNLOCK(object); 1157 1158 /* 1159 * perform the I/O. NOTE!!! bp cannot be considered valid after 1160 * this point because we automatically release it on completion. 1161 * Instead, we look at the one page we are interested in which we 1162 * still hold a lock on even through the I/O completion. 1163 * 1164 * The other pages in our m[] array are also released on completion, 1165 * so we cannot assume they are valid anymore either. 1166 * 1167 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1168 */ 1169 BUF_KERNPROC(bp); 1170 swp_pager_strategy(bp); 1171 1172 /* 1173 * wait for the page we want to complete. VPO_SWAPINPROG is always 1174 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1175 * is set in the meta-data. 1176 */ 1177 VM_OBJECT_WLOCK(object); 1178 while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { 1179 m[0]->oflags |= VPO_SWAPSLEEP; 1180 PCPU_INC(cnt.v_intrans); 1181 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1182 "swread", hz * 20)) { 1183 printf( 1184 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1185 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1186 } 1187 } 1188 1189 /* 1190 * If we had an unrecoverable read error pages will not be valid. 1191 */ 1192 for (int i = 0; i < count; i++) 1193 if (m[i]->valid != VM_PAGE_BITS_ALL) 1194 return (VM_PAGER_ERROR); 1195 1196 if (rbehind) 1197 *rbehind = 0; 1198 if (rahead) 1199 *rahead = 0; 1200 1201 return (VM_PAGER_OK); 1202 1203 /* 1204 * A final note: in a low swap situation, we cannot deallocate swap 1205 * and mark a page dirty here because the caller is likely to mark 1206 * the page clean when we return, causing the page to possibly revert 1207 * to all-zero's later. 1208 */ 1209 } 1210 1211 /* 1212 * swap_pager_getpages_async(): 1213 * 1214 * Right now this is emulation of asynchronous operation on top of 1215 * swap_pager_getpages(). 1216 */ 1217 static int 1218 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1219 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1220 { 1221 int r, error; 1222 1223 r = swap_pager_getpages(object, m, count, rbehind, rahead); 1224 VM_OBJECT_WUNLOCK(object); 1225 switch (r) { 1226 case VM_PAGER_OK: 1227 error = 0; 1228 break; 1229 case VM_PAGER_ERROR: 1230 error = EIO; 1231 break; 1232 case VM_PAGER_FAIL: 1233 error = EINVAL; 1234 break; 1235 default: 1236 panic("unhandled swap_pager_getpages() error %d", r); 1237 } 1238 (iodone)(arg, m, count, error); 1239 VM_OBJECT_WLOCK(object); 1240 1241 return (r); 1242 } 1243 1244 /* 1245 * swap_pager_putpages: 1246 * 1247 * Assign swap (if necessary) and initiate I/O on the specified pages. 1248 * 1249 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1250 * are automatically converted to SWAP objects. 1251 * 1252 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1253 * vm_page reservation system coupled with properly written VFS devices 1254 * should ensure that no low-memory deadlock occurs. This is an area 1255 * which needs work. 1256 * 1257 * The parent has N vm_object_pip_add() references prior to 1258 * calling us and will remove references for rtvals[] that are 1259 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1260 * completion. 1261 * 1262 * The parent has soft-busy'd the pages it passes us and will unbusy 1263 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1264 * We need to unbusy the rest on I/O completion. 1265 */ 1266 static void 1267 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1268 int flags, int *rtvals) 1269 { 1270 int i, n; 1271 boolean_t sync; 1272 1273 if (count && m[0]->object != object) { 1274 panic("swap_pager_putpages: object mismatch %p/%p", 1275 object, 1276 m[0]->object 1277 ); 1278 } 1279 1280 /* 1281 * Step 1 1282 * 1283 * Turn object into OBJT_SWAP 1284 * check for bogus sysops 1285 * force sync if not pageout process 1286 */ 1287 if (object->type != OBJT_SWAP) 1288 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1289 VM_OBJECT_WUNLOCK(object); 1290 1291 n = 0; 1292 if (curproc != pageproc) 1293 sync = TRUE; 1294 else 1295 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1296 1297 /* 1298 * Step 2 1299 * 1300 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1301 * The page is left dirty until the pageout operation completes 1302 * successfully. 1303 */ 1304 for (i = 0; i < count; i += n) { 1305 int j; 1306 struct buf *bp; 1307 daddr_t blk; 1308 1309 /* 1310 * Maximum I/O size is limited by a number of factors. 1311 */ 1312 n = min(BLIST_MAX_ALLOC, count - i); 1313 n = min(n, nsw_cluster_max); 1314 1315 /* 1316 * Get biggest block of swap we can. If we fail, fall 1317 * back and try to allocate a smaller block. Don't go 1318 * overboard trying to allocate space if it would overly 1319 * fragment swap. 1320 */ 1321 while ( 1322 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1323 n > 4 1324 ) { 1325 n >>= 1; 1326 } 1327 if (blk == SWAPBLK_NONE) { 1328 for (j = 0; j < n; ++j) 1329 rtvals[i+j] = VM_PAGER_FAIL; 1330 continue; 1331 } 1332 1333 /* 1334 * All I/O parameters have been satisfied, build the I/O 1335 * request and assign the swap space. 1336 */ 1337 if (sync == TRUE) { 1338 bp = getpbuf(&nsw_wcount_sync); 1339 } else { 1340 bp = getpbuf(&nsw_wcount_async); 1341 bp->b_flags = B_ASYNC; 1342 } 1343 bp->b_flags |= B_PAGING; 1344 bp->b_iocmd = BIO_WRITE; 1345 1346 bp->b_rcred = crhold(thread0.td_ucred); 1347 bp->b_wcred = crhold(thread0.td_ucred); 1348 bp->b_bcount = PAGE_SIZE * n; 1349 bp->b_bufsize = PAGE_SIZE * n; 1350 bp->b_blkno = blk; 1351 1352 VM_OBJECT_WLOCK(object); 1353 for (j = 0; j < n; ++j) { 1354 vm_page_t mreq = m[i+j]; 1355 1356 swp_pager_meta_build( 1357 mreq->object, 1358 mreq->pindex, 1359 blk + j 1360 ); 1361 vm_page_dirty(mreq); 1362 mreq->oflags |= VPO_SWAPINPROG; 1363 bp->b_pages[j] = mreq; 1364 } 1365 VM_OBJECT_WUNLOCK(object); 1366 bp->b_npages = n; 1367 /* 1368 * Must set dirty range for NFS to work. 1369 */ 1370 bp->b_dirtyoff = 0; 1371 bp->b_dirtyend = bp->b_bcount; 1372 1373 PCPU_INC(cnt.v_swapout); 1374 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1375 1376 /* 1377 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1378 * can call the async completion routine at the end of a 1379 * synchronous I/O operation. Otherwise, our caller would 1380 * perform duplicate unbusy and wakeup operations on the page 1381 * and object, respectively. 1382 */ 1383 for (j = 0; j < n; j++) 1384 rtvals[i + j] = VM_PAGER_PEND; 1385 1386 /* 1387 * asynchronous 1388 * 1389 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1390 */ 1391 if (sync == FALSE) { 1392 bp->b_iodone = swp_pager_async_iodone; 1393 BUF_KERNPROC(bp); 1394 swp_pager_strategy(bp); 1395 continue; 1396 } 1397 1398 /* 1399 * synchronous 1400 * 1401 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1402 */ 1403 bp->b_iodone = bdone; 1404 swp_pager_strategy(bp); 1405 1406 /* 1407 * Wait for the sync I/O to complete. 1408 */ 1409 bwait(bp, PVM, "swwrt"); 1410 1411 /* 1412 * Now that we are through with the bp, we can call the 1413 * normal async completion, which frees everything up. 1414 */ 1415 swp_pager_async_iodone(bp); 1416 } 1417 VM_OBJECT_WLOCK(object); 1418 } 1419 1420 /* 1421 * swp_pager_async_iodone: 1422 * 1423 * Completion routine for asynchronous reads and writes from/to swap. 1424 * Also called manually by synchronous code to finish up a bp. 1425 * 1426 * This routine may not sleep. 1427 */ 1428 static void 1429 swp_pager_async_iodone(struct buf *bp) 1430 { 1431 int i; 1432 vm_object_t object = NULL; 1433 1434 /* 1435 * report error 1436 */ 1437 if (bp->b_ioflags & BIO_ERROR) { 1438 printf( 1439 "swap_pager: I/O error - %s failed; blkno %ld," 1440 "size %ld, error %d\n", 1441 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1442 (long)bp->b_blkno, 1443 (long)bp->b_bcount, 1444 bp->b_error 1445 ); 1446 } 1447 1448 /* 1449 * remove the mapping for kernel virtual 1450 */ 1451 if (buf_mapped(bp)) 1452 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1453 else 1454 bp->b_data = bp->b_kvabase; 1455 1456 if (bp->b_npages) { 1457 object = bp->b_pages[0]->object; 1458 VM_OBJECT_WLOCK(object); 1459 } 1460 1461 /* 1462 * cleanup pages. If an error occurs writing to swap, we are in 1463 * very serious trouble. If it happens to be a disk error, though, 1464 * we may be able to recover by reassigning the swap later on. So 1465 * in this case we remove the m->swapblk assignment for the page 1466 * but do not free it in the rlist. The errornous block(s) are thus 1467 * never reallocated as swap. Redirty the page and continue. 1468 */ 1469 for (i = 0; i < bp->b_npages; ++i) { 1470 vm_page_t m = bp->b_pages[i]; 1471 1472 m->oflags &= ~VPO_SWAPINPROG; 1473 if (m->oflags & VPO_SWAPSLEEP) { 1474 m->oflags &= ~VPO_SWAPSLEEP; 1475 wakeup(&object->paging_in_progress); 1476 } 1477 1478 if (bp->b_ioflags & BIO_ERROR) { 1479 /* 1480 * If an error occurs I'd love to throw the swapblk 1481 * away without freeing it back to swapspace, so it 1482 * can never be used again. But I can't from an 1483 * interrupt. 1484 */ 1485 if (bp->b_iocmd == BIO_READ) { 1486 /* 1487 * NOTE: for reads, m->dirty will probably 1488 * be overridden by the original caller of 1489 * getpages so don't play cute tricks here. 1490 */ 1491 m->valid = 0; 1492 } else { 1493 /* 1494 * If a write error occurs, reactivate page 1495 * so it doesn't clog the inactive list, 1496 * then finish the I/O. 1497 */ 1498 vm_page_dirty(m); 1499 vm_page_lock(m); 1500 vm_page_activate(m); 1501 vm_page_unlock(m); 1502 vm_page_sunbusy(m); 1503 } 1504 } else if (bp->b_iocmd == BIO_READ) { 1505 /* 1506 * NOTE: for reads, m->dirty will probably be 1507 * overridden by the original caller of getpages so 1508 * we cannot set them in order to free the underlying 1509 * swap in a low-swap situation. I don't think we'd 1510 * want to do that anyway, but it was an optimization 1511 * that existed in the old swapper for a time before 1512 * it got ripped out due to precisely this problem. 1513 */ 1514 KASSERT(!pmap_page_is_mapped(m), 1515 ("swp_pager_async_iodone: page %p is mapped", m)); 1516 KASSERT(m->dirty == 0, 1517 ("swp_pager_async_iodone: page %p is dirty", m)); 1518 m->valid = VM_PAGE_BITS_ALL; 1519 } else { 1520 /* 1521 * For write success, clear the dirty 1522 * status, then finish the I/O ( which decrements the 1523 * busy count and possibly wakes waiter's up ). 1524 */ 1525 KASSERT(!pmap_page_is_write_mapped(m), 1526 ("swp_pager_async_iodone: page %p is not write" 1527 " protected", m)); 1528 vm_page_undirty(m); 1529 vm_page_sunbusy(m); 1530 if (vm_page_count_severe()) { 1531 vm_page_lock(m); 1532 vm_page_try_to_cache(m); 1533 vm_page_unlock(m); 1534 } 1535 } 1536 } 1537 1538 /* 1539 * adjust pip. NOTE: the original parent may still have its own 1540 * pip refs on the object. 1541 */ 1542 if (object != NULL) { 1543 vm_object_pip_wakeupn(object, bp->b_npages); 1544 VM_OBJECT_WUNLOCK(object); 1545 } 1546 1547 /* 1548 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1549 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1550 * trigger a KASSERT in relpbuf(). 1551 */ 1552 if (bp->b_vp) { 1553 bp->b_vp = NULL; 1554 bp->b_bufobj = NULL; 1555 } 1556 /* 1557 * release the physical I/O buffer 1558 */ 1559 relpbuf( 1560 bp, 1561 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1562 ((bp->b_flags & B_ASYNC) ? 1563 &nsw_wcount_async : 1564 &nsw_wcount_sync 1565 ) 1566 ) 1567 ); 1568 } 1569 1570 /* 1571 * swap_pager_isswapped: 1572 * 1573 * Return 1 if at least one page in the given object is paged 1574 * out to the given swap device. 1575 * 1576 * This routine may not sleep. 1577 */ 1578 int 1579 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1580 { 1581 daddr_t index = 0; 1582 int bcount; 1583 int i; 1584 1585 VM_OBJECT_ASSERT_WLOCKED(object); 1586 if (object->type != OBJT_SWAP) 1587 return (0); 1588 1589 mtx_lock(&swhash_mtx); 1590 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1591 struct swblock *swap; 1592 1593 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1594 for (i = 0; i < SWAP_META_PAGES; ++i) { 1595 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1596 mtx_unlock(&swhash_mtx); 1597 return (1); 1598 } 1599 } 1600 } 1601 index += SWAP_META_PAGES; 1602 } 1603 mtx_unlock(&swhash_mtx); 1604 return (0); 1605 } 1606 1607 /* 1608 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1609 * 1610 * This routine dissociates the page at the given index within a 1611 * swap block from its backing store, paging it in if necessary. 1612 * If the page is paged in, it is placed in the inactive queue, 1613 * since it had its backing store ripped out from under it. 1614 * We also attempt to swap in all other pages in the swap block, 1615 * we only guarantee that the one at the specified index is 1616 * paged in. 1617 * 1618 * XXX - The code to page the whole block in doesn't work, so we 1619 * revert to the one-by-one behavior for now. Sigh. 1620 */ 1621 static inline void 1622 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1623 { 1624 vm_page_t m; 1625 1626 vm_object_pip_add(object, 1); 1627 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1628 if (m->valid == VM_PAGE_BITS_ALL) { 1629 vm_object_pip_wakeup(object); 1630 vm_page_dirty(m); 1631 vm_page_lock(m); 1632 vm_page_activate(m); 1633 vm_page_unlock(m); 1634 vm_page_xunbusy(m); 1635 vm_pager_page_unswapped(m); 1636 return; 1637 } 1638 1639 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1640 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1641 vm_object_pip_wakeup(object); 1642 vm_page_dirty(m); 1643 vm_page_lock(m); 1644 vm_page_deactivate(m); 1645 vm_page_unlock(m); 1646 vm_page_xunbusy(m); 1647 vm_pager_page_unswapped(m); 1648 } 1649 1650 /* 1651 * swap_pager_swapoff: 1652 * 1653 * Page in all of the pages that have been paged out to the 1654 * given device. The corresponding blocks in the bitmap must be 1655 * marked as allocated and the device must be flagged SW_CLOSING. 1656 * There may be no processes swapped out to the device. 1657 * 1658 * This routine may block. 1659 */ 1660 static void 1661 swap_pager_swapoff(struct swdevt *sp) 1662 { 1663 struct swblock *swap; 1664 int i, j, retries; 1665 1666 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1667 1668 retries = 0; 1669 full_rescan: 1670 mtx_lock(&swhash_mtx); 1671 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1672 restart: 1673 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1674 vm_object_t object = swap->swb_object; 1675 vm_pindex_t pindex = swap->swb_index; 1676 for (j = 0; j < SWAP_META_PAGES; ++j) { 1677 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1678 /* avoid deadlock */ 1679 if (!VM_OBJECT_TRYWLOCK(object)) { 1680 break; 1681 } else { 1682 mtx_unlock(&swhash_mtx); 1683 swp_pager_force_pagein(object, 1684 pindex + j); 1685 VM_OBJECT_WUNLOCK(object); 1686 mtx_lock(&swhash_mtx); 1687 goto restart; 1688 } 1689 } 1690 } 1691 } 1692 } 1693 mtx_unlock(&swhash_mtx); 1694 if (sp->sw_used) { 1695 /* 1696 * Objects may be locked or paging to the device being 1697 * removed, so we will miss their pages and need to 1698 * make another pass. We have marked this device as 1699 * SW_CLOSING, so the activity should finish soon. 1700 */ 1701 retries++; 1702 if (retries > 100) { 1703 panic("swapoff: failed to locate %d swap blocks", 1704 sp->sw_used); 1705 } 1706 pause("swpoff", hz / 20); 1707 goto full_rescan; 1708 } 1709 } 1710 1711 /************************************************************************ 1712 * SWAP META DATA * 1713 ************************************************************************ 1714 * 1715 * These routines manipulate the swap metadata stored in the 1716 * OBJT_SWAP object. 1717 * 1718 * Swap metadata is implemented with a global hash and not directly 1719 * linked into the object. Instead the object simply contains 1720 * appropriate tracking counters. 1721 */ 1722 1723 /* 1724 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1725 * 1726 * We first convert the object to a swap object if it is a default 1727 * object. 1728 * 1729 * The specified swapblk is added to the object's swap metadata. If 1730 * the swapblk is not valid, it is freed instead. Any previously 1731 * assigned swapblk is freed. 1732 */ 1733 static void 1734 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1735 { 1736 static volatile int exhausted; 1737 struct swblock *swap; 1738 struct swblock **pswap; 1739 int idx; 1740 1741 VM_OBJECT_ASSERT_WLOCKED(object); 1742 /* 1743 * Convert default object to swap object if necessary 1744 */ 1745 if (object->type != OBJT_SWAP) { 1746 object->type = OBJT_SWAP; 1747 object->un_pager.swp.swp_bcount = 0; 1748 1749 if (object->handle != NULL) { 1750 mtx_lock(&sw_alloc_mtx); 1751 TAILQ_INSERT_TAIL( 1752 NOBJLIST(object->handle), 1753 object, 1754 pager_object_list 1755 ); 1756 mtx_unlock(&sw_alloc_mtx); 1757 } 1758 } 1759 1760 /* 1761 * Locate hash entry. If not found create, but if we aren't adding 1762 * anything just return. If we run out of space in the map we wait 1763 * and, since the hash table may have changed, retry. 1764 */ 1765 retry: 1766 mtx_lock(&swhash_mtx); 1767 pswap = swp_pager_hash(object, pindex); 1768 1769 if ((swap = *pswap) == NULL) { 1770 int i; 1771 1772 if (swapblk == SWAPBLK_NONE) 1773 goto done; 1774 1775 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1776 (curproc == pageproc ? M_USE_RESERVE : 0)); 1777 if (swap == NULL) { 1778 mtx_unlock(&swhash_mtx); 1779 VM_OBJECT_WUNLOCK(object); 1780 if (uma_zone_exhausted(swap_zone)) { 1781 if (atomic_cmpset_int(&exhausted, 0, 1)) 1782 printf("swap zone exhausted, " 1783 "increase kern.maxswzone\n"); 1784 vm_pageout_oom(VM_OOM_SWAPZ); 1785 pause("swzonex", 10); 1786 } else 1787 VM_WAIT; 1788 VM_OBJECT_WLOCK(object); 1789 goto retry; 1790 } 1791 1792 if (atomic_cmpset_int(&exhausted, 1, 0)) 1793 printf("swap zone ok\n"); 1794 1795 swap->swb_hnext = NULL; 1796 swap->swb_object = object; 1797 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1798 swap->swb_count = 0; 1799 1800 ++object->un_pager.swp.swp_bcount; 1801 1802 for (i = 0; i < SWAP_META_PAGES; ++i) 1803 swap->swb_pages[i] = SWAPBLK_NONE; 1804 } 1805 1806 /* 1807 * Delete prior contents of metadata 1808 */ 1809 idx = pindex & SWAP_META_MASK; 1810 1811 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1812 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1813 --swap->swb_count; 1814 } 1815 1816 /* 1817 * Enter block into metadata 1818 */ 1819 swap->swb_pages[idx] = swapblk; 1820 if (swapblk != SWAPBLK_NONE) 1821 ++swap->swb_count; 1822 done: 1823 mtx_unlock(&swhash_mtx); 1824 } 1825 1826 /* 1827 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1828 * 1829 * The requested range of blocks is freed, with any associated swap 1830 * returned to the swap bitmap. 1831 * 1832 * This routine will free swap metadata structures as they are cleaned 1833 * out. This routine does *NOT* operate on swap metadata associated 1834 * with resident pages. 1835 */ 1836 static void 1837 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1838 { 1839 1840 VM_OBJECT_ASSERT_LOCKED(object); 1841 if (object->type != OBJT_SWAP) 1842 return; 1843 1844 while (count > 0) { 1845 struct swblock **pswap; 1846 struct swblock *swap; 1847 1848 mtx_lock(&swhash_mtx); 1849 pswap = swp_pager_hash(object, index); 1850 1851 if ((swap = *pswap) != NULL) { 1852 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1853 1854 if (v != SWAPBLK_NONE) { 1855 swp_pager_freeswapspace(v, 1); 1856 swap->swb_pages[index & SWAP_META_MASK] = 1857 SWAPBLK_NONE; 1858 if (--swap->swb_count == 0) { 1859 *pswap = swap->swb_hnext; 1860 uma_zfree(swap_zone, swap); 1861 --object->un_pager.swp.swp_bcount; 1862 } 1863 } 1864 --count; 1865 ++index; 1866 } else { 1867 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1868 count -= n; 1869 index += n; 1870 } 1871 mtx_unlock(&swhash_mtx); 1872 } 1873 } 1874 1875 /* 1876 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1877 * 1878 * This routine locates and destroys all swap metadata associated with 1879 * an object. 1880 */ 1881 static void 1882 swp_pager_meta_free_all(vm_object_t object) 1883 { 1884 daddr_t index = 0; 1885 1886 VM_OBJECT_ASSERT_WLOCKED(object); 1887 if (object->type != OBJT_SWAP) 1888 return; 1889 1890 while (object->un_pager.swp.swp_bcount) { 1891 struct swblock **pswap; 1892 struct swblock *swap; 1893 1894 mtx_lock(&swhash_mtx); 1895 pswap = swp_pager_hash(object, index); 1896 if ((swap = *pswap) != NULL) { 1897 int i; 1898 1899 for (i = 0; i < SWAP_META_PAGES; ++i) { 1900 daddr_t v = swap->swb_pages[i]; 1901 if (v != SWAPBLK_NONE) { 1902 --swap->swb_count; 1903 swp_pager_freeswapspace(v, 1); 1904 } 1905 } 1906 if (swap->swb_count != 0) 1907 panic("swap_pager_meta_free_all: swb_count != 0"); 1908 *pswap = swap->swb_hnext; 1909 uma_zfree(swap_zone, swap); 1910 --object->un_pager.swp.swp_bcount; 1911 } 1912 mtx_unlock(&swhash_mtx); 1913 index += SWAP_META_PAGES; 1914 } 1915 } 1916 1917 /* 1918 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1919 * 1920 * This routine is capable of looking up, popping, or freeing 1921 * swapblk assignments in the swap meta data or in the vm_page_t. 1922 * The routine typically returns the swapblk being looked-up, or popped, 1923 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1924 * was invalid. This routine will automatically free any invalid 1925 * meta-data swapblks. 1926 * 1927 * It is not possible to store invalid swapblks in the swap meta data 1928 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1929 * 1930 * When acting on a busy resident page and paging is in progress, we 1931 * have to wait until paging is complete but otherwise can act on the 1932 * busy page. 1933 * 1934 * SWM_FREE remove and free swap block from metadata 1935 * SWM_POP remove from meta data but do not free.. pop it out 1936 */ 1937 static daddr_t 1938 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1939 { 1940 struct swblock **pswap; 1941 struct swblock *swap; 1942 daddr_t r1; 1943 int idx; 1944 1945 VM_OBJECT_ASSERT_LOCKED(object); 1946 /* 1947 * The meta data only exists of the object is OBJT_SWAP 1948 * and even then might not be allocated yet. 1949 */ 1950 if (object->type != OBJT_SWAP) 1951 return (SWAPBLK_NONE); 1952 1953 r1 = SWAPBLK_NONE; 1954 mtx_lock(&swhash_mtx); 1955 pswap = swp_pager_hash(object, pindex); 1956 1957 if ((swap = *pswap) != NULL) { 1958 idx = pindex & SWAP_META_MASK; 1959 r1 = swap->swb_pages[idx]; 1960 1961 if (r1 != SWAPBLK_NONE) { 1962 if (flags & SWM_FREE) { 1963 swp_pager_freeswapspace(r1, 1); 1964 r1 = SWAPBLK_NONE; 1965 } 1966 if (flags & (SWM_FREE|SWM_POP)) { 1967 swap->swb_pages[idx] = SWAPBLK_NONE; 1968 if (--swap->swb_count == 0) { 1969 *pswap = swap->swb_hnext; 1970 uma_zfree(swap_zone, swap); 1971 --object->un_pager.swp.swp_bcount; 1972 } 1973 } 1974 } 1975 } 1976 mtx_unlock(&swhash_mtx); 1977 return (r1); 1978 } 1979 1980 /* 1981 * System call swapon(name) enables swapping on device name, 1982 * which must be in the swdevsw. Return EBUSY 1983 * if already swapping on this device. 1984 */ 1985 #ifndef _SYS_SYSPROTO_H_ 1986 struct swapon_args { 1987 char *name; 1988 }; 1989 #endif 1990 1991 /* 1992 * MPSAFE 1993 */ 1994 /* ARGSUSED */ 1995 int 1996 sys_swapon(struct thread *td, struct swapon_args *uap) 1997 { 1998 struct vattr attr; 1999 struct vnode *vp; 2000 struct nameidata nd; 2001 int error; 2002 2003 error = priv_check(td, PRIV_SWAPON); 2004 if (error) 2005 return (error); 2006 2007 sx_xlock(&swdev_syscall_lock); 2008 2009 /* 2010 * Swap metadata may not fit in the KVM if we have physical 2011 * memory of >1GB. 2012 */ 2013 if (swap_zone == NULL) { 2014 error = ENOMEM; 2015 goto done; 2016 } 2017 2018 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2019 uap->name, td); 2020 error = namei(&nd); 2021 if (error) 2022 goto done; 2023 2024 NDFREE(&nd, NDF_ONLY_PNBUF); 2025 vp = nd.ni_vp; 2026 2027 if (vn_isdisk(vp, &error)) { 2028 error = swapongeom(td, vp); 2029 } else if (vp->v_type == VREG && 2030 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2031 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2032 /* 2033 * Allow direct swapping to NFS regular files in the same 2034 * way that nfs_mountroot() sets up diskless swapping. 2035 */ 2036 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2037 } 2038 2039 if (error) 2040 vrele(vp); 2041 done: 2042 sx_xunlock(&swdev_syscall_lock); 2043 return (error); 2044 } 2045 2046 /* 2047 * Check that the total amount of swap currently configured does not 2048 * exceed half the theoretical maximum. If it does, print a warning 2049 * message and return -1; otherwise, return 0. 2050 */ 2051 static int 2052 swapon_check_swzone(unsigned long npages) 2053 { 2054 unsigned long maxpages; 2055 2056 /* absolute maximum we can handle assuming 100% efficiency */ 2057 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2058 2059 /* recommend using no more than half that amount */ 2060 if (npages > maxpages / 2) { 2061 printf("warning: total configured swap (%lu pages) " 2062 "exceeds maximum recommended amount (%lu pages).\n", 2063 npages, maxpages / 2); 2064 printf("warning: increase kern.maxswzone " 2065 "or reduce amount of swap.\n"); 2066 return (-1); 2067 } 2068 return (0); 2069 } 2070 2071 static void 2072 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2073 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2074 { 2075 struct swdevt *sp, *tsp; 2076 swblk_t dvbase; 2077 u_long mblocks; 2078 2079 /* 2080 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2081 * First chop nblks off to page-align it, then convert. 2082 * 2083 * sw->sw_nblks is in page-sized chunks now too. 2084 */ 2085 nblks &= ~(ctodb(1) - 1); 2086 nblks = dbtoc(nblks); 2087 2088 /* 2089 * If we go beyond this, we get overflows in the radix 2090 * tree bitmap code. 2091 */ 2092 mblocks = 0x40000000 / BLIST_META_RADIX; 2093 if (nblks > mblocks) { 2094 printf( 2095 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2096 mblocks / 1024 / 1024 * PAGE_SIZE); 2097 nblks = mblocks; 2098 } 2099 2100 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2101 sp->sw_vp = vp; 2102 sp->sw_id = id; 2103 sp->sw_dev = dev; 2104 sp->sw_flags = 0; 2105 sp->sw_nblks = nblks; 2106 sp->sw_used = 0; 2107 sp->sw_strategy = strategy; 2108 sp->sw_close = close; 2109 sp->sw_flags = flags; 2110 2111 sp->sw_blist = blist_create(nblks, M_WAITOK); 2112 /* 2113 * Do not free the first two block in order to avoid overwriting 2114 * any bsd label at the front of the partition 2115 */ 2116 blist_free(sp->sw_blist, 2, nblks - 2); 2117 2118 dvbase = 0; 2119 mtx_lock(&sw_dev_mtx); 2120 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2121 if (tsp->sw_end >= dvbase) { 2122 /* 2123 * We put one uncovered page between the devices 2124 * in order to definitively prevent any cross-device 2125 * I/O requests 2126 */ 2127 dvbase = tsp->sw_end + 1; 2128 } 2129 } 2130 sp->sw_first = dvbase; 2131 sp->sw_end = dvbase + nblks; 2132 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2133 nswapdev++; 2134 swap_pager_avail += nblks; 2135 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2136 swapon_check_swzone(swap_total / PAGE_SIZE); 2137 swp_sizecheck(); 2138 mtx_unlock(&sw_dev_mtx); 2139 } 2140 2141 /* 2142 * SYSCALL: swapoff(devname) 2143 * 2144 * Disable swapping on the given device. 2145 * 2146 * XXX: Badly designed system call: it should use a device index 2147 * rather than filename as specification. We keep sw_vp around 2148 * only to make this work. 2149 */ 2150 #ifndef _SYS_SYSPROTO_H_ 2151 struct swapoff_args { 2152 char *name; 2153 }; 2154 #endif 2155 2156 /* 2157 * MPSAFE 2158 */ 2159 /* ARGSUSED */ 2160 int 2161 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2162 { 2163 struct vnode *vp; 2164 struct nameidata nd; 2165 struct swdevt *sp; 2166 int error; 2167 2168 error = priv_check(td, PRIV_SWAPOFF); 2169 if (error) 2170 return (error); 2171 2172 sx_xlock(&swdev_syscall_lock); 2173 2174 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2175 td); 2176 error = namei(&nd); 2177 if (error) 2178 goto done; 2179 NDFREE(&nd, NDF_ONLY_PNBUF); 2180 vp = nd.ni_vp; 2181 2182 mtx_lock(&sw_dev_mtx); 2183 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2184 if (sp->sw_vp == vp) 2185 break; 2186 } 2187 mtx_unlock(&sw_dev_mtx); 2188 if (sp == NULL) { 2189 error = EINVAL; 2190 goto done; 2191 } 2192 error = swapoff_one(sp, td->td_ucred); 2193 done: 2194 sx_xunlock(&swdev_syscall_lock); 2195 return (error); 2196 } 2197 2198 static int 2199 swapoff_one(struct swdevt *sp, struct ucred *cred) 2200 { 2201 u_long nblks, dvbase; 2202 #ifdef MAC 2203 int error; 2204 #endif 2205 2206 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2207 #ifdef MAC 2208 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2209 error = mac_system_check_swapoff(cred, sp->sw_vp); 2210 (void) VOP_UNLOCK(sp->sw_vp, 0); 2211 if (error != 0) 2212 return (error); 2213 #endif 2214 nblks = sp->sw_nblks; 2215 2216 /* 2217 * We can turn off this swap device safely only if the 2218 * available virtual memory in the system will fit the amount 2219 * of data we will have to page back in, plus an epsilon so 2220 * the system doesn't become critically low on swap space. 2221 */ 2222 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2223 nblks + nswap_lowat) { 2224 return (ENOMEM); 2225 } 2226 2227 /* 2228 * Prevent further allocations on this device. 2229 */ 2230 mtx_lock(&sw_dev_mtx); 2231 sp->sw_flags |= SW_CLOSING; 2232 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2233 swap_pager_avail -= blist_fill(sp->sw_blist, 2234 dvbase, dmmax); 2235 } 2236 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2237 mtx_unlock(&sw_dev_mtx); 2238 2239 /* 2240 * Page in the contents of the device and close it. 2241 */ 2242 swap_pager_swapoff(sp); 2243 2244 sp->sw_close(curthread, sp); 2245 mtx_lock(&sw_dev_mtx); 2246 sp->sw_id = NULL; 2247 TAILQ_REMOVE(&swtailq, sp, sw_list); 2248 nswapdev--; 2249 if (nswapdev == 0) { 2250 swap_pager_full = 2; 2251 swap_pager_almost_full = 1; 2252 } 2253 if (swdevhd == sp) 2254 swdevhd = NULL; 2255 mtx_unlock(&sw_dev_mtx); 2256 blist_destroy(sp->sw_blist); 2257 free(sp, M_VMPGDATA); 2258 return (0); 2259 } 2260 2261 void 2262 swapoff_all(void) 2263 { 2264 struct swdevt *sp, *spt; 2265 const char *devname; 2266 int error; 2267 2268 sx_xlock(&swdev_syscall_lock); 2269 2270 mtx_lock(&sw_dev_mtx); 2271 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2272 mtx_unlock(&sw_dev_mtx); 2273 if (vn_isdisk(sp->sw_vp, NULL)) 2274 devname = devtoname(sp->sw_vp->v_rdev); 2275 else 2276 devname = "[file]"; 2277 error = swapoff_one(sp, thread0.td_ucred); 2278 if (error != 0) { 2279 printf("Cannot remove swap device %s (error=%d), " 2280 "skipping.\n", devname, error); 2281 } else if (bootverbose) { 2282 printf("Swap device %s removed.\n", devname); 2283 } 2284 mtx_lock(&sw_dev_mtx); 2285 } 2286 mtx_unlock(&sw_dev_mtx); 2287 2288 sx_xunlock(&swdev_syscall_lock); 2289 } 2290 2291 void 2292 swap_pager_status(int *total, int *used) 2293 { 2294 struct swdevt *sp; 2295 2296 *total = 0; 2297 *used = 0; 2298 mtx_lock(&sw_dev_mtx); 2299 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2300 *total += sp->sw_nblks; 2301 *used += sp->sw_used; 2302 } 2303 mtx_unlock(&sw_dev_mtx); 2304 } 2305 2306 int 2307 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2308 { 2309 struct swdevt *sp; 2310 const char *tmp_devname; 2311 int error, n; 2312 2313 n = 0; 2314 error = ENOENT; 2315 mtx_lock(&sw_dev_mtx); 2316 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2317 if (n != name) { 2318 n++; 2319 continue; 2320 } 2321 xs->xsw_version = XSWDEV_VERSION; 2322 xs->xsw_dev = sp->sw_dev; 2323 xs->xsw_flags = sp->sw_flags; 2324 xs->xsw_nblks = sp->sw_nblks; 2325 xs->xsw_used = sp->sw_used; 2326 if (devname != NULL) { 2327 if (vn_isdisk(sp->sw_vp, NULL)) 2328 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2329 else 2330 tmp_devname = "[file]"; 2331 strncpy(devname, tmp_devname, len); 2332 } 2333 error = 0; 2334 break; 2335 } 2336 mtx_unlock(&sw_dev_mtx); 2337 return (error); 2338 } 2339 2340 static int 2341 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2342 { 2343 struct xswdev xs; 2344 int error; 2345 2346 if (arg2 != 1) /* name length */ 2347 return (EINVAL); 2348 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2349 if (error != 0) 2350 return (error); 2351 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2352 return (error); 2353 } 2354 2355 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2356 "Number of swap devices"); 2357 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2358 sysctl_vm_swap_info, 2359 "Swap statistics by device"); 2360 2361 /* 2362 * vmspace_swap_count() - count the approximate swap usage in pages for a 2363 * vmspace. 2364 * 2365 * The map must be locked. 2366 * 2367 * Swap usage is determined by taking the proportional swap used by 2368 * VM objects backing the VM map. To make up for fractional losses, 2369 * if the VM object has any swap use at all the associated map entries 2370 * count for at least 1 swap page. 2371 */ 2372 long 2373 vmspace_swap_count(struct vmspace *vmspace) 2374 { 2375 vm_map_t map; 2376 vm_map_entry_t cur; 2377 vm_object_t object; 2378 long count, n; 2379 2380 map = &vmspace->vm_map; 2381 count = 0; 2382 2383 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2384 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2385 (object = cur->object.vm_object) != NULL) { 2386 VM_OBJECT_WLOCK(object); 2387 if (object->type == OBJT_SWAP && 2388 object->un_pager.swp.swp_bcount != 0) { 2389 n = (cur->end - cur->start) / PAGE_SIZE; 2390 count += object->un_pager.swp.swp_bcount * 2391 SWAP_META_PAGES * n / object->size + 1; 2392 } 2393 VM_OBJECT_WUNLOCK(object); 2394 } 2395 } 2396 return (count); 2397 } 2398 2399 /* 2400 * GEOM backend 2401 * 2402 * Swapping onto disk devices. 2403 * 2404 */ 2405 2406 static g_orphan_t swapgeom_orphan; 2407 2408 static struct g_class g_swap_class = { 2409 .name = "SWAP", 2410 .version = G_VERSION, 2411 .orphan = swapgeom_orphan, 2412 }; 2413 2414 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2415 2416 2417 static void 2418 swapgeom_close_ev(void *arg, int flags) 2419 { 2420 struct g_consumer *cp; 2421 2422 cp = arg; 2423 g_access(cp, -1, -1, 0); 2424 g_detach(cp); 2425 g_destroy_consumer(cp); 2426 } 2427 2428 /* 2429 * Add a reference to the g_consumer for an inflight transaction. 2430 */ 2431 static void 2432 swapgeom_acquire(struct g_consumer *cp) 2433 { 2434 2435 mtx_assert(&sw_dev_mtx, MA_OWNED); 2436 cp->index++; 2437 } 2438 2439 /* 2440 * Remove a reference from the g_consumer. Post a close event if 2441 * all referneces go away. 2442 */ 2443 static void 2444 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2445 { 2446 2447 mtx_assert(&sw_dev_mtx, MA_OWNED); 2448 cp->index--; 2449 if (cp->index == 0) { 2450 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2451 sp->sw_id = NULL; 2452 } 2453 } 2454 2455 static void 2456 swapgeom_done(struct bio *bp2) 2457 { 2458 struct swdevt *sp; 2459 struct buf *bp; 2460 struct g_consumer *cp; 2461 2462 bp = bp2->bio_caller2; 2463 cp = bp2->bio_from; 2464 bp->b_ioflags = bp2->bio_flags; 2465 if (bp2->bio_error) 2466 bp->b_ioflags |= BIO_ERROR; 2467 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2468 bp->b_error = bp2->bio_error; 2469 bufdone(bp); 2470 sp = bp2->bio_caller1; 2471 mtx_lock(&sw_dev_mtx); 2472 swapgeom_release(cp, sp); 2473 mtx_unlock(&sw_dev_mtx); 2474 g_destroy_bio(bp2); 2475 } 2476 2477 static void 2478 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2479 { 2480 struct bio *bio; 2481 struct g_consumer *cp; 2482 2483 mtx_lock(&sw_dev_mtx); 2484 cp = sp->sw_id; 2485 if (cp == NULL) { 2486 mtx_unlock(&sw_dev_mtx); 2487 bp->b_error = ENXIO; 2488 bp->b_ioflags |= BIO_ERROR; 2489 bufdone(bp); 2490 return; 2491 } 2492 swapgeom_acquire(cp); 2493 mtx_unlock(&sw_dev_mtx); 2494 if (bp->b_iocmd == BIO_WRITE) 2495 bio = g_new_bio(); 2496 else 2497 bio = g_alloc_bio(); 2498 if (bio == NULL) { 2499 mtx_lock(&sw_dev_mtx); 2500 swapgeom_release(cp, sp); 2501 mtx_unlock(&sw_dev_mtx); 2502 bp->b_error = ENOMEM; 2503 bp->b_ioflags |= BIO_ERROR; 2504 bufdone(bp); 2505 return; 2506 } 2507 2508 bio->bio_caller1 = sp; 2509 bio->bio_caller2 = bp; 2510 bio->bio_cmd = bp->b_iocmd; 2511 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2512 bio->bio_length = bp->b_bcount; 2513 bio->bio_done = swapgeom_done; 2514 if (!buf_mapped(bp)) { 2515 bio->bio_ma = bp->b_pages; 2516 bio->bio_data = unmapped_buf; 2517 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2518 bio->bio_ma_n = bp->b_npages; 2519 bio->bio_flags |= BIO_UNMAPPED; 2520 } else { 2521 bio->bio_data = bp->b_data; 2522 bio->bio_ma = NULL; 2523 } 2524 g_io_request(bio, cp); 2525 return; 2526 } 2527 2528 static void 2529 swapgeom_orphan(struct g_consumer *cp) 2530 { 2531 struct swdevt *sp; 2532 int destroy; 2533 2534 mtx_lock(&sw_dev_mtx); 2535 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2536 if (sp->sw_id == cp) { 2537 sp->sw_flags |= SW_CLOSING; 2538 break; 2539 } 2540 } 2541 /* 2542 * Drop reference we were created with. Do directly since we're in a 2543 * special context where we don't have to queue the call to 2544 * swapgeom_close_ev(). 2545 */ 2546 cp->index--; 2547 destroy = ((sp != NULL) && (cp->index == 0)); 2548 if (destroy) 2549 sp->sw_id = NULL; 2550 mtx_unlock(&sw_dev_mtx); 2551 if (destroy) 2552 swapgeom_close_ev(cp, 0); 2553 } 2554 2555 static void 2556 swapgeom_close(struct thread *td, struct swdevt *sw) 2557 { 2558 struct g_consumer *cp; 2559 2560 mtx_lock(&sw_dev_mtx); 2561 cp = sw->sw_id; 2562 sw->sw_id = NULL; 2563 mtx_unlock(&sw_dev_mtx); 2564 /* XXX: direct call when Giant untangled */ 2565 if (cp != NULL) 2566 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2567 } 2568 2569 2570 struct swh0h0 { 2571 struct cdev *dev; 2572 struct vnode *vp; 2573 int error; 2574 }; 2575 2576 static void 2577 swapongeom_ev(void *arg, int flags) 2578 { 2579 struct swh0h0 *swh; 2580 struct g_provider *pp; 2581 struct g_consumer *cp; 2582 static struct g_geom *gp; 2583 struct swdevt *sp; 2584 u_long nblks; 2585 int error; 2586 2587 swh = arg; 2588 swh->error = 0; 2589 pp = g_dev_getprovider(swh->dev); 2590 if (pp == NULL) { 2591 swh->error = ENODEV; 2592 return; 2593 } 2594 mtx_lock(&sw_dev_mtx); 2595 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2596 cp = sp->sw_id; 2597 if (cp != NULL && cp->provider == pp) { 2598 mtx_unlock(&sw_dev_mtx); 2599 swh->error = EBUSY; 2600 return; 2601 } 2602 } 2603 mtx_unlock(&sw_dev_mtx); 2604 if (gp == NULL) 2605 gp = g_new_geomf(&g_swap_class, "swap"); 2606 cp = g_new_consumer(gp); 2607 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2608 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2609 g_attach(cp, pp); 2610 /* 2611 * XXX: Every time you think you can improve the margin for 2612 * footshooting, somebody depends on the ability to do so: 2613 * savecore(8) wants to write to our swapdev so we cannot 2614 * set an exclusive count :-( 2615 */ 2616 error = g_access(cp, 1, 1, 0); 2617 if (error) { 2618 g_detach(cp); 2619 g_destroy_consumer(cp); 2620 swh->error = error; 2621 return; 2622 } 2623 nblks = pp->mediasize / DEV_BSIZE; 2624 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2625 swapgeom_close, dev2udev(swh->dev), 2626 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2627 swh->error = 0; 2628 } 2629 2630 static int 2631 swapongeom(struct thread *td, struct vnode *vp) 2632 { 2633 int error; 2634 struct swh0h0 swh; 2635 2636 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2637 2638 swh.dev = vp->v_rdev; 2639 swh.vp = vp; 2640 swh.error = 0; 2641 /* XXX: direct call when Giant untangled */ 2642 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2643 if (!error) 2644 error = swh.error; 2645 VOP_UNLOCK(vp, 0); 2646 return (error); 2647 } 2648 2649 /* 2650 * VNODE backend 2651 * 2652 * This is used mainly for network filesystem (read: probably only tested 2653 * with NFS) swapfiles. 2654 * 2655 */ 2656 2657 static void 2658 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2659 { 2660 struct vnode *vp2; 2661 2662 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2663 2664 vp2 = sp->sw_id; 2665 vhold(vp2); 2666 if (bp->b_iocmd == BIO_WRITE) { 2667 if (bp->b_bufobj) 2668 bufobj_wdrop(bp->b_bufobj); 2669 bufobj_wref(&vp2->v_bufobj); 2670 } 2671 if (bp->b_bufobj != &vp2->v_bufobj) 2672 bp->b_bufobj = &vp2->v_bufobj; 2673 bp->b_vp = vp2; 2674 bp->b_iooffset = dbtob(bp->b_blkno); 2675 bstrategy(bp); 2676 return; 2677 } 2678 2679 static void 2680 swapdev_close(struct thread *td, struct swdevt *sp) 2681 { 2682 2683 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2684 vrele(sp->sw_vp); 2685 } 2686 2687 2688 static int 2689 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2690 { 2691 struct swdevt *sp; 2692 int error; 2693 2694 if (nblks == 0) 2695 return (ENXIO); 2696 mtx_lock(&sw_dev_mtx); 2697 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2698 if (sp->sw_id == vp) { 2699 mtx_unlock(&sw_dev_mtx); 2700 return (EBUSY); 2701 } 2702 } 2703 mtx_unlock(&sw_dev_mtx); 2704 2705 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2706 #ifdef MAC 2707 error = mac_system_check_swapon(td->td_ucred, vp); 2708 if (error == 0) 2709 #endif 2710 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2711 (void) VOP_UNLOCK(vp, 0); 2712 if (error) 2713 return (error); 2714 2715 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2716 NODEV, 0); 2717 return (0); 2718 } 2719 2720 static int 2721 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2722 { 2723 int error, new, n; 2724 2725 new = nsw_wcount_async_max; 2726 error = sysctl_handle_int(oidp, &new, 0, req); 2727 if (error != 0 || req->newptr == NULL) 2728 return (error); 2729 2730 if (new > nswbuf / 2 || new < 1) 2731 return (EINVAL); 2732 2733 mtx_lock(&pbuf_mtx); 2734 while (nsw_wcount_async_max != new) { 2735 /* 2736 * Adjust difference. If the current async count is too low, 2737 * we will need to sqeeze our update slowly in. Sleep with a 2738 * higher priority than getpbuf() to finish faster. 2739 */ 2740 n = new - nsw_wcount_async_max; 2741 if (nsw_wcount_async + n >= 0) { 2742 nsw_wcount_async += n; 2743 nsw_wcount_async_max += n; 2744 wakeup(&nsw_wcount_async); 2745 } else { 2746 nsw_wcount_async_max -= nsw_wcount_async; 2747 nsw_wcount_async = 0; 2748 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2749 "swpsysctl", 0); 2750 } 2751 } 2752 mtx_unlock(&pbuf_mtx); 2753 2754 return (0); 2755 } 2756