xref: /freebsd/sys/vm/swap_pager.c (revision 243e928310d073338c5ec089f0dce238a80b9866)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 #define SWM_FREE	0x02	/* free, period			*/
317 #define SWM_POP		0x04	/* pop out			*/
318 
319 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
321 static int nsw_rcount;		/* free read buffers			*/
322 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
323 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
324 static int nsw_wcount_async_max;/* assigned maximum			*/
325 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
326 
327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
330     "Maximum running async swap ops");
331 
332 static struct swblock **swhash;
333 static int swhash_mask;
334 static struct mtx swhash_mtx;
335 
336 static struct sx sw_alloc_sx;
337 
338 /*
339  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
340  * of searching a named list by hashing it just a little.
341  */
342 
343 #define NOBJLISTS		8
344 
345 #define NOBJLIST(handle)	\
346 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
347 
348 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
349 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
350 static uma_zone_t	swap_zone;
351 
352 /*
353  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
354  * calls hooked from other parts of the VM system and do not appear here.
355  * (see vm/swap_pager.h).
356  */
357 static vm_object_t
358 		swap_pager_alloc(void *handle, vm_ooffset_t size,
359 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
360 static void	swap_pager_dealloc(vm_object_t object);
361 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
362     int *);
363 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
364     int *, pgo_getpages_iodone_t, void *);
365 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
366 static boolean_t
367 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
368 static void	swap_pager_init(void);
369 static void	swap_pager_unswapped(vm_page_t);
370 static void	swap_pager_swapoff(struct swdevt *sp);
371 
372 struct pagerops swappagerops = {
373 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
374 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
375 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
376 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
377 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
378 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
379 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
380 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
381 };
382 
383 /*
384  * dmmax is in page-sized chunks with the new swap system.  It was
385  * dev-bsized chunks in the old.  dmmax is always a power of 2.
386  *
387  * swap_*() routines are externally accessible.  swp_*() routines are
388  * internal.
389  */
390 static int dmmax;
391 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
392 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
393 
394 SYSCTL_INT(_vm, OID_AUTO, dmmax,
395 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
396 
397 static void	swp_sizecheck(void);
398 static void	swp_pager_async_iodone(struct buf *bp);
399 static int	swapongeom(struct thread *, struct vnode *);
400 static int	swaponvp(struct thread *, struct vnode *, u_long);
401 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
402 
403 /*
404  * Swap bitmap functions
405  */
406 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
407 static daddr_t	swp_pager_getswapspace(int npages);
408 
409 /*
410  * Metadata functions
411  */
412 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
413 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
414 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
415 static void swp_pager_meta_free_all(vm_object_t);
416 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
417 
418 /*
419  * SWP_SIZECHECK() -	update swap_pager_full indication
420  *
421  *	update the swap_pager_almost_full indication and warn when we are
422  *	about to run out of swap space, using lowat/hiwat hysteresis.
423  *
424  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
425  *
426  *	No restrictions on call
427  *	This routine may not block.
428  */
429 static void
430 swp_sizecheck(void)
431 {
432 
433 	if (swap_pager_avail < nswap_lowat) {
434 		if (swap_pager_almost_full == 0) {
435 			printf("swap_pager: out of swap space\n");
436 			swap_pager_almost_full = 1;
437 		}
438 	} else {
439 		swap_pager_full = 0;
440 		if (swap_pager_avail > nswap_hiwat)
441 			swap_pager_almost_full = 0;
442 	}
443 }
444 
445 /*
446  * SWP_PAGER_HASH() -	hash swap meta data
447  *
448  *	This is an helper function which hashes the swapblk given
449  *	the object and page index.  It returns a pointer to a pointer
450  *	to the object, or a pointer to a NULL pointer if it could not
451  *	find a swapblk.
452  */
453 static struct swblock **
454 swp_pager_hash(vm_object_t object, vm_pindex_t index)
455 {
456 	struct swblock **pswap;
457 	struct swblock *swap;
458 
459 	index &= ~(vm_pindex_t)SWAP_META_MASK;
460 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
461 	while ((swap = *pswap) != NULL) {
462 		if (swap->swb_object == object &&
463 		    swap->swb_index == index
464 		) {
465 			break;
466 		}
467 		pswap = &swap->swb_hnext;
468 	}
469 	return (pswap);
470 }
471 
472 /*
473  * SWAP_PAGER_INIT() -	initialize the swap pager!
474  *
475  *	Expected to be started from system init.  NOTE:  This code is run
476  *	before much else so be careful what you depend on.  Most of the VM
477  *	system has yet to be initialized at this point.
478  */
479 static void
480 swap_pager_init(void)
481 {
482 	/*
483 	 * Initialize object lists
484 	 */
485 	int i;
486 
487 	for (i = 0; i < NOBJLISTS; ++i)
488 		TAILQ_INIT(&swap_pager_object_list[i]);
489 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
490 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
491 	sx_init(&swdev_syscall_lock, "swsysc");
492 
493 	/*
494 	 * Device Stripe, in PAGE_SIZE'd blocks
495 	 */
496 	dmmax = SWB_NPAGES * 2;
497 }
498 
499 /*
500  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
501  *
502  *	Expected to be started from pageout process once, prior to entering
503  *	its main loop.
504  */
505 void
506 swap_pager_swap_init(void)
507 {
508 	unsigned long n, n2;
509 
510 	/*
511 	 * Number of in-transit swap bp operations.  Don't
512 	 * exhaust the pbufs completely.  Make sure we
513 	 * initialize workable values (0 will work for hysteresis
514 	 * but it isn't very efficient).
515 	 *
516 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
517 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
518 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
519 	 * constrained by the swap device interleave stripe size.
520 	 *
521 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
522 	 * designed to prevent other I/O from having high latencies due to
523 	 * our pageout I/O.  The value 4 works well for one or two active swap
524 	 * devices but is probably a little low if you have more.  Even so,
525 	 * a higher value would probably generate only a limited improvement
526 	 * with three or four active swap devices since the system does not
527 	 * typically have to pageout at extreme bandwidths.   We will want
528 	 * at least 2 per swap devices, and 4 is a pretty good value if you
529 	 * have one NFS swap device due to the command/ack latency over NFS.
530 	 * So it all works out pretty well.
531 	 */
532 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
533 
534 	mtx_lock(&pbuf_mtx);
535 	nsw_rcount = (nswbuf + 1) / 2;
536 	nsw_wcount_sync = (nswbuf + 3) / 4;
537 	nsw_wcount_async = 4;
538 	nsw_wcount_async_max = nsw_wcount_async;
539 	mtx_unlock(&pbuf_mtx);
540 
541 	/*
542 	 * Initialize our zone.  Right now I'm just guessing on the number
543 	 * we need based on the number of pages in the system.  Each swblock
544 	 * can hold 32 pages, so this is probably overkill.  This reservation
545 	 * is typically limited to around 32MB by default.
546 	 */
547 	n = vm_cnt.v_page_count / 2;
548 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
549 		n = maxswzone / sizeof(struct swblock);
550 	n2 = n;
551 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
552 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
553 	if (swap_zone == NULL)
554 		panic("failed to create swap_zone.");
555 	do {
556 		if (uma_zone_reserve_kva(swap_zone, n))
557 			break;
558 		/*
559 		 * if the allocation failed, try a zone two thirds the
560 		 * size of the previous attempt.
561 		 */
562 		n -= ((n + 2) / 3);
563 	} while (n > 0);
564 	if (n2 != n)
565 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
566 	swap_maxpages = n * SWAP_META_PAGES;
567 	swzone = n * sizeof(struct swblock);
568 	n2 = n;
569 
570 	/*
571 	 * Initialize our meta-data hash table.  The swapper does not need to
572 	 * be quite as efficient as the VM system, so we do not use an
573 	 * oversized hash table.
574 	 *
575 	 * 	n: 		size of hash table, must be power of 2
576 	 *	swhash_mask:	hash table index mask
577 	 */
578 	for (n = 1; n < n2 / 8; n *= 2)
579 		;
580 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
581 	swhash_mask = n - 1;
582 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
583 }
584 
585 /*
586  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
587  *			its metadata structures.
588  *
589  *	This routine is called from the mmap and fork code to create a new
590  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
591  *	and then converting it with swp_pager_meta_build().
592  *
593  *	This routine may block in vm_object_allocate() and create a named
594  *	object lookup race, so we must interlock.
595  *
596  * MPSAFE
597  */
598 static vm_object_t
599 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
600     vm_ooffset_t offset, struct ucred *cred)
601 {
602 	vm_object_t object;
603 	vm_pindex_t pindex;
604 
605 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
606 	if (handle) {
607 		/*
608 		 * Reference existing named region or allocate new one.  There
609 		 * should not be a race here against swp_pager_meta_build()
610 		 * as called from vm_page_remove() in regards to the lookup
611 		 * of the handle.
612 		 */
613 		sx_xlock(&sw_alloc_sx);
614 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
615 		if (object == NULL) {
616 			if (cred != NULL) {
617 				if (!swap_reserve_by_cred(size, cred)) {
618 					sx_xunlock(&sw_alloc_sx);
619 					return (NULL);
620 				}
621 				crhold(cred);
622 			}
623 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
624 			VM_OBJECT_WLOCK(object);
625 			object->handle = handle;
626 			if (cred != NULL) {
627 				object->cred = cred;
628 				object->charge = size;
629 			}
630 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
631 			VM_OBJECT_WUNLOCK(object);
632 		}
633 		sx_xunlock(&sw_alloc_sx);
634 	} else {
635 		if (cred != NULL) {
636 			if (!swap_reserve_by_cred(size, cred))
637 				return (NULL);
638 			crhold(cred);
639 		}
640 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
641 		VM_OBJECT_WLOCK(object);
642 		if (cred != NULL) {
643 			object->cred = cred;
644 			object->charge = size;
645 		}
646 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
647 		VM_OBJECT_WUNLOCK(object);
648 	}
649 	return (object);
650 }
651 
652 /*
653  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
654  *
655  *	The swap backing for the object is destroyed.  The code is
656  *	designed such that we can reinstantiate it later, but this
657  *	routine is typically called only when the entire object is
658  *	about to be destroyed.
659  *
660  *	The object must be locked.
661  */
662 static void
663 swap_pager_dealloc(vm_object_t object)
664 {
665 
666 	/*
667 	 * Remove from list right away so lookups will fail if we block for
668 	 * pageout completion.
669 	 */
670 	if (object->handle != NULL) {
671 		mtx_lock(&sw_alloc_mtx);
672 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
673 		mtx_unlock(&sw_alloc_mtx);
674 	}
675 
676 	VM_OBJECT_ASSERT_WLOCKED(object);
677 	vm_object_pip_wait(object, "swpdea");
678 
679 	/*
680 	 * Free all remaining metadata.  We only bother to free it from
681 	 * the swap meta data.  We do not attempt to free swapblk's still
682 	 * associated with vm_page_t's for this object.  We do not care
683 	 * if paging is still in progress on some objects.
684 	 */
685 	swp_pager_meta_free_all(object);
686 	object->handle = NULL;
687 	object->type = OBJT_DEAD;
688 }
689 
690 /************************************************************************
691  *			SWAP PAGER BITMAP ROUTINES			*
692  ************************************************************************/
693 
694 /*
695  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696  *
697  *	Allocate swap for the requested number of pages.  The starting
698  *	swap block number (a page index) is returned or SWAPBLK_NONE
699  *	if the allocation failed.
700  *
701  *	Also has the side effect of advising that somebody made a mistake
702  *	when they configured swap and didn't configure enough.
703  *
704  *	This routine may not sleep.
705  *
706  *	We allocate in round-robin fashion from the configured devices.
707  */
708 static daddr_t
709 swp_pager_getswapspace(int npages)
710 {
711 	daddr_t blk;
712 	struct swdevt *sp;
713 	int i;
714 
715 	blk = SWAPBLK_NONE;
716 	mtx_lock(&sw_dev_mtx);
717 	sp = swdevhd;
718 	for (i = 0; i < nswapdev; i++) {
719 		if (sp == NULL)
720 			sp = TAILQ_FIRST(&swtailq);
721 		if (!(sp->sw_flags & SW_CLOSING)) {
722 			blk = blist_alloc(sp->sw_blist, npages);
723 			if (blk != SWAPBLK_NONE) {
724 				blk += sp->sw_first;
725 				sp->sw_used += npages;
726 				swap_pager_avail -= npages;
727 				swp_sizecheck();
728 				swdevhd = TAILQ_NEXT(sp, sw_list);
729 				goto done;
730 			}
731 		}
732 		sp = TAILQ_NEXT(sp, sw_list);
733 	}
734 	if (swap_pager_full != 2) {
735 		printf("swap_pager_getswapspace(%d): failed\n", npages);
736 		swap_pager_full = 2;
737 		swap_pager_almost_full = 1;
738 	}
739 	swdevhd = NULL;
740 done:
741 	mtx_unlock(&sw_dev_mtx);
742 	return (blk);
743 }
744 
745 static int
746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747 {
748 
749 	return (blk >= sp->sw_first && blk < sp->sw_end);
750 }
751 
752 static void
753 swp_pager_strategy(struct buf *bp)
754 {
755 	struct swdevt *sp;
756 
757 	mtx_lock(&sw_dev_mtx);
758 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760 			mtx_unlock(&sw_dev_mtx);
761 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762 			    unmapped_buf_allowed) {
763 				bp->b_data = unmapped_buf;
764 				bp->b_offset = 0;
765 			} else {
766 				pmap_qenter((vm_offset_t)bp->b_data,
767 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
768 			}
769 			sp->sw_strategy(bp, sp);
770 			return;
771 		}
772 	}
773 	panic("Swapdev not found");
774 }
775 
776 
777 /*
778  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
779  *
780  *	This routine returns the specified swap blocks back to the bitmap.
781  *
782  *	This routine may not sleep.
783  */
784 static void
785 swp_pager_freeswapspace(daddr_t blk, int npages)
786 {
787 	struct swdevt *sp;
788 
789 	mtx_lock(&sw_dev_mtx);
790 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
791 		if (blk >= sp->sw_first && blk < sp->sw_end) {
792 			sp->sw_used -= npages;
793 			/*
794 			 * If we are attempting to stop swapping on
795 			 * this device, we don't want to mark any
796 			 * blocks free lest they be reused.
797 			 */
798 			if ((sp->sw_flags & SW_CLOSING) == 0) {
799 				blist_free(sp->sw_blist, blk - sp->sw_first,
800 				    npages);
801 				swap_pager_avail += npages;
802 				swp_sizecheck();
803 			}
804 			mtx_unlock(&sw_dev_mtx);
805 			return;
806 		}
807 	}
808 	panic("Swapdev not found");
809 }
810 
811 /*
812  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
813  *				range within an object.
814  *
815  *	This is a globally accessible routine.
816  *
817  *	This routine removes swapblk assignments from swap metadata.
818  *
819  *	The external callers of this routine typically have already destroyed
820  *	or renamed vm_page_t's associated with this range in the object so
821  *	we should be ok.
822  *
823  *	The object must be locked.
824  */
825 void
826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
827 {
828 
829 	swp_pager_meta_free(object, start, size);
830 }
831 
832 /*
833  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
834  *
835  *	Assigns swap blocks to the specified range within the object.  The
836  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
837  *
838  *	Returns 0 on success, -1 on failure.
839  */
840 int
841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
842 {
843 	int n = 0;
844 	daddr_t blk = SWAPBLK_NONE;
845 	vm_pindex_t beg = start;	/* save start index */
846 
847 	VM_OBJECT_WLOCK(object);
848 	while (size) {
849 		if (n == 0) {
850 			n = BLIST_MAX_ALLOC;
851 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
852 				n >>= 1;
853 				if (n == 0) {
854 					swp_pager_meta_free(object, beg, start - beg);
855 					VM_OBJECT_WUNLOCK(object);
856 					return (-1);
857 				}
858 			}
859 		}
860 		swp_pager_meta_build(object, start, blk);
861 		--size;
862 		++start;
863 		++blk;
864 		--n;
865 	}
866 	swp_pager_meta_free(object, start, n);
867 	VM_OBJECT_WUNLOCK(object);
868 	return (0);
869 }
870 
871 /*
872  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
873  *			and destroy the source.
874  *
875  *	Copy any valid swapblks from the source to the destination.  In
876  *	cases where both the source and destination have a valid swapblk,
877  *	we keep the destination's.
878  *
879  *	This routine is allowed to sleep.  It may sleep allocating metadata
880  *	indirectly through swp_pager_meta_build() or if paging is still in
881  *	progress on the source.
882  *
883  *	The source object contains no vm_page_t's (which is just as well)
884  *
885  *	The source object is of type OBJT_SWAP.
886  *
887  *	The source and destination objects must be locked.
888  *	Both object locks may temporarily be released.
889  */
890 void
891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
892     vm_pindex_t offset, int destroysource)
893 {
894 	vm_pindex_t i;
895 
896 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
897 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
898 
899 	/*
900 	 * If destroysource is set, we remove the source object from the
901 	 * swap_pager internal queue now.
902 	 */
903 	if (destroysource) {
904 		if (srcobject->handle != NULL) {
905 			mtx_lock(&sw_alloc_mtx);
906 			TAILQ_REMOVE(
907 			    NOBJLIST(srcobject->handle),
908 			    srcobject,
909 			    pager_object_list
910 			);
911 			mtx_unlock(&sw_alloc_mtx);
912 		}
913 	}
914 
915 	/*
916 	 * transfer source to destination.
917 	 */
918 	for (i = 0; i < dstobject->size; ++i) {
919 		daddr_t dstaddr;
920 
921 		/*
922 		 * Locate (without changing) the swapblk on the destination,
923 		 * unless it is invalid in which case free it silently, or
924 		 * if the destination is a resident page, in which case the
925 		 * source is thrown away.
926 		 */
927 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
928 
929 		if (dstaddr == SWAPBLK_NONE) {
930 			/*
931 			 * Destination has no swapblk and is not resident,
932 			 * copy source.
933 			 */
934 			daddr_t srcaddr;
935 
936 			srcaddr = swp_pager_meta_ctl(
937 			    srcobject,
938 			    i + offset,
939 			    SWM_POP
940 			);
941 
942 			if (srcaddr != SWAPBLK_NONE) {
943 				/*
944 				 * swp_pager_meta_build() can sleep.
945 				 */
946 				vm_object_pip_add(srcobject, 1);
947 				VM_OBJECT_WUNLOCK(srcobject);
948 				vm_object_pip_add(dstobject, 1);
949 				swp_pager_meta_build(dstobject, i, srcaddr);
950 				vm_object_pip_wakeup(dstobject);
951 				VM_OBJECT_WLOCK(srcobject);
952 				vm_object_pip_wakeup(srcobject);
953 			}
954 		} else {
955 			/*
956 			 * Destination has valid swapblk or it is represented
957 			 * by a resident page.  We destroy the sourceblock.
958 			 */
959 
960 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
961 		}
962 	}
963 
964 	/*
965 	 * Free left over swap blocks in source.
966 	 *
967 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
968 	 * double-remove the object from the swap queues.
969 	 */
970 	if (destroysource) {
971 		swp_pager_meta_free_all(srcobject);
972 		/*
973 		 * Reverting the type is not necessary, the caller is going
974 		 * to destroy srcobject directly, but I'm doing it here
975 		 * for consistency since we've removed the object from its
976 		 * queues.
977 		 */
978 		srcobject->type = OBJT_DEFAULT;
979 	}
980 }
981 
982 /*
983  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
984  *				the requested page.
985  *
986  *	We determine whether good backing store exists for the requested
987  *	page and return TRUE if it does, FALSE if it doesn't.
988  *
989  *	If TRUE, we also try to determine how much valid, contiguous backing
990  *	store exists before and after the requested page within a reasonable
991  *	distance.  We do not try to restrict it to the swap device stripe
992  *	(that is handled in getpages/putpages).  It probably isn't worth
993  *	doing here.
994  */
995 static boolean_t
996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
997 {
998 	daddr_t blk0;
999 
1000 	VM_OBJECT_ASSERT_LOCKED(object);
1001 	/*
1002 	 * do we have good backing store at the requested index ?
1003 	 */
1004 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1005 
1006 	if (blk0 == SWAPBLK_NONE) {
1007 		if (before)
1008 			*before = 0;
1009 		if (after)
1010 			*after = 0;
1011 		return (FALSE);
1012 	}
1013 
1014 	/*
1015 	 * find backwards-looking contiguous good backing store
1016 	 */
1017 	if (before != NULL) {
1018 		int i;
1019 
1020 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1021 			daddr_t blk;
1022 
1023 			if (i > pindex)
1024 				break;
1025 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1026 			if (blk != blk0 - i)
1027 				break;
1028 		}
1029 		*before = (i - 1);
1030 	}
1031 
1032 	/*
1033 	 * find forward-looking contiguous good backing store
1034 	 */
1035 	if (after != NULL) {
1036 		int i;
1037 
1038 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1039 			daddr_t blk;
1040 
1041 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1042 			if (blk != blk0 + i)
1043 				break;
1044 		}
1045 		*after = (i - 1);
1046 	}
1047 	return (TRUE);
1048 }
1049 
1050 /*
1051  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1052  *
1053  *	This removes any associated swap backing store, whether valid or
1054  *	not, from the page.
1055  *
1056  *	This routine is typically called when a page is made dirty, at
1057  *	which point any associated swap can be freed.  MADV_FREE also
1058  *	calls us in a special-case situation
1059  *
1060  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1061  *	should make the page dirty before calling this routine.  This routine
1062  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1063  *	depends on it.
1064  *
1065  *	This routine may not sleep.
1066  *
1067  *	The object containing the page must be locked.
1068  */
1069 static void
1070 swap_pager_unswapped(vm_page_t m)
1071 {
1072 
1073 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1074 }
1075 
1076 /*
1077  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1078  *
1079  *	Attempt to retrieve (m, count) pages from backing store, but make
1080  *	sure we retrieve at least m[reqpage].  We try to load in as large
1081  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1082  *	belongs to the same object.
1083  *
1084  *	The code is designed for asynchronous operation and
1085  *	immediate-notification of 'reqpage' but tends not to be
1086  *	used that way.  Please do not optimize-out this algorithmic
1087  *	feature, I intend to improve on it in the future.
1088  *
1089  *	The parent has a single vm_object_pip_add() reference prior to
1090  *	calling us and we should return with the same.
1091  *
1092  *	The parent has BUSY'd the pages.  We should return with 'm'
1093  *	left busy, but the others adjusted.
1094  */
1095 static int
1096 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1097     int *rahead)
1098 {
1099 	struct buf *bp;
1100 	daddr_t blk;
1101 
1102 	/*
1103 	 * Calculate range to retrieve.  The pages have already been assigned
1104 	 * their swapblks.  We require a *contiguous* range but we know it to
1105 	 * not span devices.   If we do not supply it, bad things
1106 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1107 	 * loops are set up such that the case(s) are handled implicitly.
1108 	 *
1109 	 * The swp_*() calls must be made with the object locked.
1110 	 */
1111 	blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0);
1112 
1113 	if (blk == SWAPBLK_NONE)
1114 		return (VM_PAGER_FAIL);
1115 
1116 #ifdef INVARIANTS
1117 	for (int i = 0; i < count; i++)
1118 		KASSERT(blk + i ==
1119 		    swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0),
1120 		    ("%s: range is not contiguous", __func__));
1121 #endif
1122 
1123 	/*
1124 	 * Getpbuf() can sleep.
1125 	 */
1126 	VM_OBJECT_WUNLOCK(object);
1127 	/*
1128 	 * Get a swap buffer header to perform the IO
1129 	 */
1130 	bp = getpbuf(&nsw_rcount);
1131 	bp->b_flags |= B_PAGING;
1132 
1133 	bp->b_iocmd = BIO_READ;
1134 	bp->b_iodone = swp_pager_async_iodone;
1135 	bp->b_rcred = crhold(thread0.td_ucred);
1136 	bp->b_wcred = crhold(thread0.td_ucred);
1137 	bp->b_blkno = blk;
1138 	bp->b_bcount = PAGE_SIZE * count;
1139 	bp->b_bufsize = PAGE_SIZE * count;
1140 	bp->b_npages = count;
1141 
1142 	VM_OBJECT_WLOCK(object);
1143 	for (int i = 0; i < count; i++) {
1144 		bp->b_pages[i] = m[i];
1145 		m[i]->oflags |= VPO_SWAPINPROG;
1146 	}
1147 
1148 	PCPU_INC(cnt.v_swapin);
1149 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1150 
1151 	/*
1152 	 * We still hold the lock on mreq, and our automatic completion routine
1153 	 * does not remove it.
1154 	 */
1155 	vm_object_pip_add(object, bp->b_npages);
1156 	VM_OBJECT_WUNLOCK(object);
1157 
1158 	/*
1159 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1160 	 * this point because we automatically release it on completion.
1161 	 * Instead, we look at the one page we are interested in which we
1162 	 * still hold a lock on even through the I/O completion.
1163 	 *
1164 	 * The other pages in our m[] array are also released on completion,
1165 	 * so we cannot assume they are valid anymore either.
1166 	 *
1167 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1168 	 */
1169 	BUF_KERNPROC(bp);
1170 	swp_pager_strategy(bp);
1171 
1172 	/*
1173 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1174 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1175 	 * is set in the meta-data.
1176 	 */
1177 	VM_OBJECT_WLOCK(object);
1178 	while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1179 		m[0]->oflags |= VPO_SWAPSLEEP;
1180 		PCPU_INC(cnt.v_intrans);
1181 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1182 		    "swread", hz * 20)) {
1183 			printf(
1184 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1185 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * If we had an unrecoverable read error pages will not be valid.
1191 	 */
1192 	for (int i = 0; i < count; i++)
1193 		if (m[i]->valid != VM_PAGE_BITS_ALL)
1194 			return (VM_PAGER_ERROR);
1195 
1196 	if (rbehind)
1197 		*rbehind = 0;
1198 	if (rahead)
1199 		*rahead = 0;
1200 
1201 	return (VM_PAGER_OK);
1202 
1203 	/*
1204 	 * A final note: in a low swap situation, we cannot deallocate swap
1205 	 * and mark a page dirty here because the caller is likely to mark
1206 	 * the page clean when we return, causing the page to possibly revert
1207 	 * to all-zero's later.
1208 	 */
1209 }
1210 
1211 /*
1212  * 	swap_pager_getpages_async():
1213  *
1214  *	Right now this is emulation of asynchronous operation on top of
1215  *	swap_pager_getpages().
1216  */
1217 static int
1218 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1219     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1220 {
1221 	int r, error;
1222 
1223 	r = swap_pager_getpages(object, m, count, rbehind, rahead);
1224 	VM_OBJECT_WUNLOCK(object);
1225 	switch (r) {
1226 	case VM_PAGER_OK:
1227 		error = 0;
1228 		break;
1229 	case VM_PAGER_ERROR:
1230 		error = EIO;
1231 		break;
1232 	case VM_PAGER_FAIL:
1233 		error = EINVAL;
1234 		break;
1235 	default:
1236 		panic("unhandled swap_pager_getpages() error %d", r);
1237 	}
1238 	(iodone)(arg, m, count, error);
1239 	VM_OBJECT_WLOCK(object);
1240 
1241 	return (r);
1242 }
1243 
1244 /*
1245  *	swap_pager_putpages:
1246  *
1247  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1248  *
1249  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1250  *	are automatically converted to SWAP objects.
1251  *
1252  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1253  *	vm_page reservation system coupled with properly written VFS devices
1254  *	should ensure that no low-memory deadlock occurs.  This is an area
1255  *	which needs work.
1256  *
1257  *	The parent has N vm_object_pip_add() references prior to
1258  *	calling us and will remove references for rtvals[] that are
1259  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1260  *	completion.
1261  *
1262  *	The parent has soft-busy'd the pages it passes us and will unbusy
1263  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1264  *	We need to unbusy the rest on I/O completion.
1265  */
1266 static void
1267 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1268     int flags, int *rtvals)
1269 {
1270 	int i, n;
1271 	boolean_t sync;
1272 
1273 	if (count && m[0]->object != object) {
1274 		panic("swap_pager_putpages: object mismatch %p/%p",
1275 		    object,
1276 		    m[0]->object
1277 		);
1278 	}
1279 
1280 	/*
1281 	 * Step 1
1282 	 *
1283 	 * Turn object into OBJT_SWAP
1284 	 * check for bogus sysops
1285 	 * force sync if not pageout process
1286 	 */
1287 	if (object->type != OBJT_SWAP)
1288 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1289 	VM_OBJECT_WUNLOCK(object);
1290 
1291 	n = 0;
1292 	if (curproc != pageproc)
1293 		sync = TRUE;
1294 	else
1295 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1296 
1297 	/*
1298 	 * Step 2
1299 	 *
1300 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1301 	 * The page is left dirty until the pageout operation completes
1302 	 * successfully.
1303 	 */
1304 	for (i = 0; i < count; i += n) {
1305 		int j;
1306 		struct buf *bp;
1307 		daddr_t blk;
1308 
1309 		/*
1310 		 * Maximum I/O size is limited by a number of factors.
1311 		 */
1312 		n = min(BLIST_MAX_ALLOC, count - i);
1313 		n = min(n, nsw_cluster_max);
1314 
1315 		/*
1316 		 * Get biggest block of swap we can.  If we fail, fall
1317 		 * back and try to allocate a smaller block.  Don't go
1318 		 * overboard trying to allocate space if it would overly
1319 		 * fragment swap.
1320 		 */
1321 		while (
1322 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1323 		    n > 4
1324 		) {
1325 			n >>= 1;
1326 		}
1327 		if (blk == SWAPBLK_NONE) {
1328 			for (j = 0; j < n; ++j)
1329 				rtvals[i+j] = VM_PAGER_FAIL;
1330 			continue;
1331 		}
1332 
1333 		/*
1334 		 * All I/O parameters have been satisfied, build the I/O
1335 		 * request and assign the swap space.
1336 		 */
1337 		if (sync == TRUE) {
1338 			bp = getpbuf(&nsw_wcount_sync);
1339 		} else {
1340 			bp = getpbuf(&nsw_wcount_async);
1341 			bp->b_flags = B_ASYNC;
1342 		}
1343 		bp->b_flags |= B_PAGING;
1344 		bp->b_iocmd = BIO_WRITE;
1345 
1346 		bp->b_rcred = crhold(thread0.td_ucred);
1347 		bp->b_wcred = crhold(thread0.td_ucred);
1348 		bp->b_bcount = PAGE_SIZE * n;
1349 		bp->b_bufsize = PAGE_SIZE * n;
1350 		bp->b_blkno = blk;
1351 
1352 		VM_OBJECT_WLOCK(object);
1353 		for (j = 0; j < n; ++j) {
1354 			vm_page_t mreq = m[i+j];
1355 
1356 			swp_pager_meta_build(
1357 			    mreq->object,
1358 			    mreq->pindex,
1359 			    blk + j
1360 			);
1361 			vm_page_dirty(mreq);
1362 			mreq->oflags |= VPO_SWAPINPROG;
1363 			bp->b_pages[j] = mreq;
1364 		}
1365 		VM_OBJECT_WUNLOCK(object);
1366 		bp->b_npages = n;
1367 		/*
1368 		 * Must set dirty range for NFS to work.
1369 		 */
1370 		bp->b_dirtyoff = 0;
1371 		bp->b_dirtyend = bp->b_bcount;
1372 
1373 		PCPU_INC(cnt.v_swapout);
1374 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1375 
1376 		/*
1377 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1378 		 * can call the async completion routine at the end of a
1379 		 * synchronous I/O operation.  Otherwise, our caller would
1380 		 * perform duplicate unbusy and wakeup operations on the page
1381 		 * and object, respectively.
1382 		 */
1383 		for (j = 0; j < n; j++)
1384 			rtvals[i + j] = VM_PAGER_PEND;
1385 
1386 		/*
1387 		 * asynchronous
1388 		 *
1389 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1390 		 */
1391 		if (sync == FALSE) {
1392 			bp->b_iodone = swp_pager_async_iodone;
1393 			BUF_KERNPROC(bp);
1394 			swp_pager_strategy(bp);
1395 			continue;
1396 		}
1397 
1398 		/*
1399 		 * synchronous
1400 		 *
1401 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1402 		 */
1403 		bp->b_iodone = bdone;
1404 		swp_pager_strategy(bp);
1405 
1406 		/*
1407 		 * Wait for the sync I/O to complete.
1408 		 */
1409 		bwait(bp, PVM, "swwrt");
1410 
1411 		/*
1412 		 * Now that we are through with the bp, we can call the
1413 		 * normal async completion, which frees everything up.
1414 		 */
1415 		swp_pager_async_iodone(bp);
1416 	}
1417 	VM_OBJECT_WLOCK(object);
1418 }
1419 
1420 /*
1421  *	swp_pager_async_iodone:
1422  *
1423  *	Completion routine for asynchronous reads and writes from/to swap.
1424  *	Also called manually by synchronous code to finish up a bp.
1425  *
1426  *	This routine may not sleep.
1427  */
1428 static void
1429 swp_pager_async_iodone(struct buf *bp)
1430 {
1431 	int i;
1432 	vm_object_t object = NULL;
1433 
1434 	/*
1435 	 * report error
1436 	 */
1437 	if (bp->b_ioflags & BIO_ERROR) {
1438 		printf(
1439 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1440 			"size %ld, error %d\n",
1441 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1442 		    (long)bp->b_blkno,
1443 		    (long)bp->b_bcount,
1444 		    bp->b_error
1445 		);
1446 	}
1447 
1448 	/*
1449 	 * remove the mapping for kernel virtual
1450 	 */
1451 	if (buf_mapped(bp))
1452 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1453 	else
1454 		bp->b_data = bp->b_kvabase;
1455 
1456 	if (bp->b_npages) {
1457 		object = bp->b_pages[0]->object;
1458 		VM_OBJECT_WLOCK(object);
1459 	}
1460 
1461 	/*
1462 	 * cleanup pages.  If an error occurs writing to swap, we are in
1463 	 * very serious trouble.  If it happens to be a disk error, though,
1464 	 * we may be able to recover by reassigning the swap later on.  So
1465 	 * in this case we remove the m->swapblk assignment for the page
1466 	 * but do not free it in the rlist.  The errornous block(s) are thus
1467 	 * never reallocated as swap.  Redirty the page and continue.
1468 	 */
1469 	for (i = 0; i < bp->b_npages; ++i) {
1470 		vm_page_t m = bp->b_pages[i];
1471 
1472 		m->oflags &= ~VPO_SWAPINPROG;
1473 		if (m->oflags & VPO_SWAPSLEEP) {
1474 			m->oflags &= ~VPO_SWAPSLEEP;
1475 			wakeup(&object->paging_in_progress);
1476 		}
1477 
1478 		if (bp->b_ioflags & BIO_ERROR) {
1479 			/*
1480 			 * If an error occurs I'd love to throw the swapblk
1481 			 * away without freeing it back to swapspace, so it
1482 			 * can never be used again.  But I can't from an
1483 			 * interrupt.
1484 			 */
1485 			if (bp->b_iocmd == BIO_READ) {
1486 				/*
1487 				 * NOTE: for reads, m->dirty will probably
1488 				 * be overridden by the original caller of
1489 				 * getpages so don't play cute tricks here.
1490 				 */
1491 				m->valid = 0;
1492 			} else {
1493 				/*
1494 				 * If a write error occurs, reactivate page
1495 				 * so it doesn't clog the inactive list,
1496 				 * then finish the I/O.
1497 				 */
1498 				vm_page_dirty(m);
1499 				vm_page_lock(m);
1500 				vm_page_activate(m);
1501 				vm_page_unlock(m);
1502 				vm_page_sunbusy(m);
1503 			}
1504 		} else if (bp->b_iocmd == BIO_READ) {
1505 			/*
1506 			 * NOTE: for reads, m->dirty will probably be
1507 			 * overridden by the original caller of getpages so
1508 			 * we cannot set them in order to free the underlying
1509 			 * swap in a low-swap situation.  I don't think we'd
1510 			 * want to do that anyway, but it was an optimization
1511 			 * that existed in the old swapper for a time before
1512 			 * it got ripped out due to precisely this problem.
1513 			 */
1514 			KASSERT(!pmap_page_is_mapped(m),
1515 			    ("swp_pager_async_iodone: page %p is mapped", m));
1516 			KASSERT(m->dirty == 0,
1517 			    ("swp_pager_async_iodone: page %p is dirty", m));
1518 			m->valid = VM_PAGE_BITS_ALL;
1519 		} else {
1520 			/*
1521 			 * For write success, clear the dirty
1522 			 * status, then finish the I/O ( which decrements the
1523 			 * busy count and possibly wakes waiter's up ).
1524 			 */
1525 			KASSERT(!pmap_page_is_write_mapped(m),
1526 			    ("swp_pager_async_iodone: page %p is not write"
1527 			    " protected", m));
1528 			vm_page_undirty(m);
1529 			vm_page_sunbusy(m);
1530 			if (vm_page_count_severe()) {
1531 				vm_page_lock(m);
1532 				vm_page_try_to_cache(m);
1533 				vm_page_unlock(m);
1534 			}
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * adjust pip.  NOTE: the original parent may still have its own
1540 	 * pip refs on the object.
1541 	 */
1542 	if (object != NULL) {
1543 		vm_object_pip_wakeupn(object, bp->b_npages);
1544 		VM_OBJECT_WUNLOCK(object);
1545 	}
1546 
1547 	/*
1548 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1549 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1550 	 * trigger a KASSERT in relpbuf().
1551 	 */
1552 	if (bp->b_vp) {
1553 		    bp->b_vp = NULL;
1554 		    bp->b_bufobj = NULL;
1555 	}
1556 	/*
1557 	 * release the physical I/O buffer
1558 	 */
1559 	relpbuf(
1560 	    bp,
1561 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1562 		((bp->b_flags & B_ASYNC) ?
1563 		    &nsw_wcount_async :
1564 		    &nsw_wcount_sync
1565 		)
1566 	    )
1567 	);
1568 }
1569 
1570 /*
1571  *	swap_pager_isswapped:
1572  *
1573  *	Return 1 if at least one page in the given object is paged
1574  *	out to the given swap device.
1575  *
1576  *	This routine may not sleep.
1577  */
1578 int
1579 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1580 {
1581 	daddr_t index = 0;
1582 	int bcount;
1583 	int i;
1584 
1585 	VM_OBJECT_ASSERT_WLOCKED(object);
1586 	if (object->type != OBJT_SWAP)
1587 		return (0);
1588 
1589 	mtx_lock(&swhash_mtx);
1590 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1591 		struct swblock *swap;
1592 
1593 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1594 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1595 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1596 					mtx_unlock(&swhash_mtx);
1597 					return (1);
1598 				}
1599 			}
1600 		}
1601 		index += SWAP_META_PAGES;
1602 	}
1603 	mtx_unlock(&swhash_mtx);
1604 	return (0);
1605 }
1606 
1607 /*
1608  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1609  *
1610  *	This routine dissociates the page at the given index within a
1611  *	swap block from its backing store, paging it in if necessary.
1612  *	If the page is paged in, it is placed in the inactive queue,
1613  *	since it had its backing store ripped out from under it.
1614  *	We also attempt to swap in all other pages in the swap block,
1615  *	we only guarantee that the one at the specified index is
1616  *	paged in.
1617  *
1618  *	XXX - The code to page the whole block in doesn't work, so we
1619  *	      revert to the one-by-one behavior for now.  Sigh.
1620  */
1621 static inline void
1622 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1623 {
1624 	vm_page_t m;
1625 
1626 	vm_object_pip_add(object, 1);
1627 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1628 	if (m->valid == VM_PAGE_BITS_ALL) {
1629 		vm_object_pip_wakeup(object);
1630 		vm_page_dirty(m);
1631 		vm_page_lock(m);
1632 		vm_page_activate(m);
1633 		vm_page_unlock(m);
1634 		vm_page_xunbusy(m);
1635 		vm_pager_page_unswapped(m);
1636 		return;
1637 	}
1638 
1639 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1640 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1641 	vm_object_pip_wakeup(object);
1642 	vm_page_dirty(m);
1643 	vm_page_lock(m);
1644 	vm_page_deactivate(m);
1645 	vm_page_unlock(m);
1646 	vm_page_xunbusy(m);
1647 	vm_pager_page_unswapped(m);
1648 }
1649 
1650 /*
1651  *	swap_pager_swapoff:
1652  *
1653  *	Page in all of the pages that have been paged out to the
1654  *	given device.  The corresponding blocks in the bitmap must be
1655  *	marked as allocated and the device must be flagged SW_CLOSING.
1656  *	There may be no processes swapped out to the device.
1657  *
1658  *	This routine may block.
1659  */
1660 static void
1661 swap_pager_swapoff(struct swdevt *sp)
1662 {
1663 	struct swblock *swap;
1664 	int i, j, retries;
1665 
1666 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1667 
1668 	retries = 0;
1669 full_rescan:
1670 	mtx_lock(&swhash_mtx);
1671 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1672 restart:
1673 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1674 			vm_object_t object = swap->swb_object;
1675 			vm_pindex_t pindex = swap->swb_index;
1676 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1677 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1678 					/* avoid deadlock */
1679 					if (!VM_OBJECT_TRYWLOCK(object)) {
1680 						break;
1681 					} else {
1682 						mtx_unlock(&swhash_mtx);
1683 						swp_pager_force_pagein(object,
1684 						    pindex + j);
1685 						VM_OBJECT_WUNLOCK(object);
1686 						mtx_lock(&swhash_mtx);
1687 						goto restart;
1688 					}
1689 				}
1690 			}
1691 		}
1692 	}
1693 	mtx_unlock(&swhash_mtx);
1694 	if (sp->sw_used) {
1695 		/*
1696 		 * Objects may be locked or paging to the device being
1697 		 * removed, so we will miss their pages and need to
1698 		 * make another pass.  We have marked this device as
1699 		 * SW_CLOSING, so the activity should finish soon.
1700 		 */
1701 		retries++;
1702 		if (retries > 100) {
1703 			panic("swapoff: failed to locate %d swap blocks",
1704 			    sp->sw_used);
1705 		}
1706 		pause("swpoff", hz / 20);
1707 		goto full_rescan;
1708 	}
1709 }
1710 
1711 /************************************************************************
1712  *				SWAP META DATA 				*
1713  ************************************************************************
1714  *
1715  *	These routines manipulate the swap metadata stored in the
1716  *	OBJT_SWAP object.
1717  *
1718  *	Swap metadata is implemented with a global hash and not directly
1719  *	linked into the object.  Instead the object simply contains
1720  *	appropriate tracking counters.
1721  */
1722 
1723 /*
1724  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1725  *
1726  *	We first convert the object to a swap object if it is a default
1727  *	object.
1728  *
1729  *	The specified swapblk is added to the object's swap metadata.  If
1730  *	the swapblk is not valid, it is freed instead.  Any previously
1731  *	assigned swapblk is freed.
1732  */
1733 static void
1734 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1735 {
1736 	static volatile int exhausted;
1737 	struct swblock *swap;
1738 	struct swblock **pswap;
1739 	int idx;
1740 
1741 	VM_OBJECT_ASSERT_WLOCKED(object);
1742 	/*
1743 	 * Convert default object to swap object if necessary
1744 	 */
1745 	if (object->type != OBJT_SWAP) {
1746 		object->type = OBJT_SWAP;
1747 		object->un_pager.swp.swp_bcount = 0;
1748 
1749 		if (object->handle != NULL) {
1750 			mtx_lock(&sw_alloc_mtx);
1751 			TAILQ_INSERT_TAIL(
1752 			    NOBJLIST(object->handle),
1753 			    object,
1754 			    pager_object_list
1755 			);
1756 			mtx_unlock(&sw_alloc_mtx);
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * Locate hash entry.  If not found create, but if we aren't adding
1762 	 * anything just return.  If we run out of space in the map we wait
1763 	 * and, since the hash table may have changed, retry.
1764 	 */
1765 retry:
1766 	mtx_lock(&swhash_mtx);
1767 	pswap = swp_pager_hash(object, pindex);
1768 
1769 	if ((swap = *pswap) == NULL) {
1770 		int i;
1771 
1772 		if (swapblk == SWAPBLK_NONE)
1773 			goto done;
1774 
1775 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1776 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1777 		if (swap == NULL) {
1778 			mtx_unlock(&swhash_mtx);
1779 			VM_OBJECT_WUNLOCK(object);
1780 			if (uma_zone_exhausted(swap_zone)) {
1781 				if (atomic_cmpset_int(&exhausted, 0, 1))
1782 					printf("swap zone exhausted, "
1783 					    "increase kern.maxswzone\n");
1784 				vm_pageout_oom(VM_OOM_SWAPZ);
1785 				pause("swzonex", 10);
1786 			} else
1787 				VM_WAIT;
1788 			VM_OBJECT_WLOCK(object);
1789 			goto retry;
1790 		}
1791 
1792 		if (atomic_cmpset_int(&exhausted, 1, 0))
1793 			printf("swap zone ok\n");
1794 
1795 		swap->swb_hnext = NULL;
1796 		swap->swb_object = object;
1797 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1798 		swap->swb_count = 0;
1799 
1800 		++object->un_pager.swp.swp_bcount;
1801 
1802 		for (i = 0; i < SWAP_META_PAGES; ++i)
1803 			swap->swb_pages[i] = SWAPBLK_NONE;
1804 	}
1805 
1806 	/*
1807 	 * Delete prior contents of metadata
1808 	 */
1809 	idx = pindex & SWAP_META_MASK;
1810 
1811 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1812 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1813 		--swap->swb_count;
1814 	}
1815 
1816 	/*
1817 	 * Enter block into metadata
1818 	 */
1819 	swap->swb_pages[idx] = swapblk;
1820 	if (swapblk != SWAPBLK_NONE)
1821 		++swap->swb_count;
1822 done:
1823 	mtx_unlock(&swhash_mtx);
1824 }
1825 
1826 /*
1827  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1828  *
1829  *	The requested range of blocks is freed, with any associated swap
1830  *	returned to the swap bitmap.
1831  *
1832  *	This routine will free swap metadata structures as they are cleaned
1833  *	out.  This routine does *NOT* operate on swap metadata associated
1834  *	with resident pages.
1835  */
1836 static void
1837 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1838 {
1839 
1840 	VM_OBJECT_ASSERT_LOCKED(object);
1841 	if (object->type != OBJT_SWAP)
1842 		return;
1843 
1844 	while (count > 0) {
1845 		struct swblock **pswap;
1846 		struct swblock *swap;
1847 
1848 		mtx_lock(&swhash_mtx);
1849 		pswap = swp_pager_hash(object, index);
1850 
1851 		if ((swap = *pswap) != NULL) {
1852 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1853 
1854 			if (v != SWAPBLK_NONE) {
1855 				swp_pager_freeswapspace(v, 1);
1856 				swap->swb_pages[index & SWAP_META_MASK] =
1857 					SWAPBLK_NONE;
1858 				if (--swap->swb_count == 0) {
1859 					*pswap = swap->swb_hnext;
1860 					uma_zfree(swap_zone, swap);
1861 					--object->un_pager.swp.swp_bcount;
1862 				}
1863 			}
1864 			--count;
1865 			++index;
1866 		} else {
1867 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1868 			count -= n;
1869 			index += n;
1870 		}
1871 		mtx_unlock(&swhash_mtx);
1872 	}
1873 }
1874 
1875 /*
1876  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1877  *
1878  *	This routine locates and destroys all swap metadata associated with
1879  *	an object.
1880  */
1881 static void
1882 swp_pager_meta_free_all(vm_object_t object)
1883 {
1884 	daddr_t index = 0;
1885 
1886 	VM_OBJECT_ASSERT_WLOCKED(object);
1887 	if (object->type != OBJT_SWAP)
1888 		return;
1889 
1890 	while (object->un_pager.swp.swp_bcount) {
1891 		struct swblock **pswap;
1892 		struct swblock *swap;
1893 
1894 		mtx_lock(&swhash_mtx);
1895 		pswap = swp_pager_hash(object, index);
1896 		if ((swap = *pswap) != NULL) {
1897 			int i;
1898 
1899 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1900 				daddr_t v = swap->swb_pages[i];
1901 				if (v != SWAPBLK_NONE) {
1902 					--swap->swb_count;
1903 					swp_pager_freeswapspace(v, 1);
1904 				}
1905 			}
1906 			if (swap->swb_count != 0)
1907 				panic("swap_pager_meta_free_all: swb_count != 0");
1908 			*pswap = swap->swb_hnext;
1909 			uma_zfree(swap_zone, swap);
1910 			--object->un_pager.swp.swp_bcount;
1911 		}
1912 		mtx_unlock(&swhash_mtx);
1913 		index += SWAP_META_PAGES;
1914 	}
1915 }
1916 
1917 /*
1918  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1919  *
1920  *	This routine is capable of looking up, popping, or freeing
1921  *	swapblk assignments in the swap meta data or in the vm_page_t.
1922  *	The routine typically returns the swapblk being looked-up, or popped,
1923  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1924  *	was invalid.  This routine will automatically free any invalid
1925  *	meta-data swapblks.
1926  *
1927  *	It is not possible to store invalid swapblks in the swap meta data
1928  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1929  *
1930  *	When acting on a busy resident page and paging is in progress, we
1931  *	have to wait until paging is complete but otherwise can act on the
1932  *	busy page.
1933  *
1934  *	SWM_FREE	remove and free swap block from metadata
1935  *	SWM_POP		remove from meta data but do not free.. pop it out
1936  */
1937 static daddr_t
1938 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1939 {
1940 	struct swblock **pswap;
1941 	struct swblock *swap;
1942 	daddr_t r1;
1943 	int idx;
1944 
1945 	VM_OBJECT_ASSERT_LOCKED(object);
1946 	/*
1947 	 * The meta data only exists of the object is OBJT_SWAP
1948 	 * and even then might not be allocated yet.
1949 	 */
1950 	if (object->type != OBJT_SWAP)
1951 		return (SWAPBLK_NONE);
1952 
1953 	r1 = SWAPBLK_NONE;
1954 	mtx_lock(&swhash_mtx);
1955 	pswap = swp_pager_hash(object, pindex);
1956 
1957 	if ((swap = *pswap) != NULL) {
1958 		idx = pindex & SWAP_META_MASK;
1959 		r1 = swap->swb_pages[idx];
1960 
1961 		if (r1 != SWAPBLK_NONE) {
1962 			if (flags & SWM_FREE) {
1963 				swp_pager_freeswapspace(r1, 1);
1964 				r1 = SWAPBLK_NONE;
1965 			}
1966 			if (flags & (SWM_FREE|SWM_POP)) {
1967 				swap->swb_pages[idx] = SWAPBLK_NONE;
1968 				if (--swap->swb_count == 0) {
1969 					*pswap = swap->swb_hnext;
1970 					uma_zfree(swap_zone, swap);
1971 					--object->un_pager.swp.swp_bcount;
1972 				}
1973 			}
1974 		}
1975 	}
1976 	mtx_unlock(&swhash_mtx);
1977 	return (r1);
1978 }
1979 
1980 /*
1981  * System call swapon(name) enables swapping on device name,
1982  * which must be in the swdevsw.  Return EBUSY
1983  * if already swapping on this device.
1984  */
1985 #ifndef _SYS_SYSPROTO_H_
1986 struct swapon_args {
1987 	char *name;
1988 };
1989 #endif
1990 
1991 /*
1992  * MPSAFE
1993  */
1994 /* ARGSUSED */
1995 int
1996 sys_swapon(struct thread *td, struct swapon_args *uap)
1997 {
1998 	struct vattr attr;
1999 	struct vnode *vp;
2000 	struct nameidata nd;
2001 	int error;
2002 
2003 	error = priv_check(td, PRIV_SWAPON);
2004 	if (error)
2005 		return (error);
2006 
2007 	sx_xlock(&swdev_syscall_lock);
2008 
2009 	/*
2010 	 * Swap metadata may not fit in the KVM if we have physical
2011 	 * memory of >1GB.
2012 	 */
2013 	if (swap_zone == NULL) {
2014 		error = ENOMEM;
2015 		goto done;
2016 	}
2017 
2018 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2019 	    uap->name, td);
2020 	error = namei(&nd);
2021 	if (error)
2022 		goto done;
2023 
2024 	NDFREE(&nd, NDF_ONLY_PNBUF);
2025 	vp = nd.ni_vp;
2026 
2027 	if (vn_isdisk(vp, &error)) {
2028 		error = swapongeom(td, vp);
2029 	} else if (vp->v_type == VREG &&
2030 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2031 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2032 		/*
2033 		 * Allow direct swapping to NFS regular files in the same
2034 		 * way that nfs_mountroot() sets up diskless swapping.
2035 		 */
2036 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2037 	}
2038 
2039 	if (error)
2040 		vrele(vp);
2041 done:
2042 	sx_xunlock(&swdev_syscall_lock);
2043 	return (error);
2044 }
2045 
2046 /*
2047  * Check that the total amount of swap currently configured does not
2048  * exceed half the theoretical maximum.  If it does, print a warning
2049  * message and return -1; otherwise, return 0.
2050  */
2051 static int
2052 swapon_check_swzone(unsigned long npages)
2053 {
2054 	unsigned long maxpages;
2055 
2056 	/* absolute maximum we can handle assuming 100% efficiency */
2057 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2058 
2059 	/* recommend using no more than half that amount */
2060 	if (npages > maxpages / 2) {
2061 		printf("warning: total configured swap (%lu pages) "
2062 		    "exceeds maximum recommended amount (%lu pages).\n",
2063 		    npages, maxpages / 2);
2064 		printf("warning: increase kern.maxswzone "
2065 		    "or reduce amount of swap.\n");
2066 		return (-1);
2067 	}
2068 	return (0);
2069 }
2070 
2071 static void
2072 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2073     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2074 {
2075 	struct swdevt *sp, *tsp;
2076 	swblk_t dvbase;
2077 	u_long mblocks;
2078 
2079 	/*
2080 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2081 	 * First chop nblks off to page-align it, then convert.
2082 	 *
2083 	 * sw->sw_nblks is in page-sized chunks now too.
2084 	 */
2085 	nblks &= ~(ctodb(1) - 1);
2086 	nblks = dbtoc(nblks);
2087 
2088 	/*
2089 	 * If we go beyond this, we get overflows in the radix
2090 	 * tree bitmap code.
2091 	 */
2092 	mblocks = 0x40000000 / BLIST_META_RADIX;
2093 	if (nblks > mblocks) {
2094 		printf(
2095     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2096 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2097 		nblks = mblocks;
2098 	}
2099 
2100 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2101 	sp->sw_vp = vp;
2102 	sp->sw_id = id;
2103 	sp->sw_dev = dev;
2104 	sp->sw_flags = 0;
2105 	sp->sw_nblks = nblks;
2106 	sp->sw_used = 0;
2107 	sp->sw_strategy = strategy;
2108 	sp->sw_close = close;
2109 	sp->sw_flags = flags;
2110 
2111 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2112 	/*
2113 	 * Do not free the first two block in order to avoid overwriting
2114 	 * any bsd label at the front of the partition
2115 	 */
2116 	blist_free(sp->sw_blist, 2, nblks - 2);
2117 
2118 	dvbase = 0;
2119 	mtx_lock(&sw_dev_mtx);
2120 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2121 		if (tsp->sw_end >= dvbase) {
2122 			/*
2123 			 * We put one uncovered page between the devices
2124 			 * in order to definitively prevent any cross-device
2125 			 * I/O requests
2126 			 */
2127 			dvbase = tsp->sw_end + 1;
2128 		}
2129 	}
2130 	sp->sw_first = dvbase;
2131 	sp->sw_end = dvbase + nblks;
2132 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2133 	nswapdev++;
2134 	swap_pager_avail += nblks;
2135 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2136 	swapon_check_swzone(swap_total / PAGE_SIZE);
2137 	swp_sizecheck();
2138 	mtx_unlock(&sw_dev_mtx);
2139 }
2140 
2141 /*
2142  * SYSCALL: swapoff(devname)
2143  *
2144  * Disable swapping on the given device.
2145  *
2146  * XXX: Badly designed system call: it should use a device index
2147  * rather than filename as specification.  We keep sw_vp around
2148  * only to make this work.
2149  */
2150 #ifndef _SYS_SYSPROTO_H_
2151 struct swapoff_args {
2152 	char *name;
2153 };
2154 #endif
2155 
2156 /*
2157  * MPSAFE
2158  */
2159 /* ARGSUSED */
2160 int
2161 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2162 {
2163 	struct vnode *vp;
2164 	struct nameidata nd;
2165 	struct swdevt *sp;
2166 	int error;
2167 
2168 	error = priv_check(td, PRIV_SWAPOFF);
2169 	if (error)
2170 		return (error);
2171 
2172 	sx_xlock(&swdev_syscall_lock);
2173 
2174 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2175 	    td);
2176 	error = namei(&nd);
2177 	if (error)
2178 		goto done;
2179 	NDFREE(&nd, NDF_ONLY_PNBUF);
2180 	vp = nd.ni_vp;
2181 
2182 	mtx_lock(&sw_dev_mtx);
2183 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2184 		if (sp->sw_vp == vp)
2185 			break;
2186 	}
2187 	mtx_unlock(&sw_dev_mtx);
2188 	if (sp == NULL) {
2189 		error = EINVAL;
2190 		goto done;
2191 	}
2192 	error = swapoff_one(sp, td->td_ucred);
2193 done:
2194 	sx_xunlock(&swdev_syscall_lock);
2195 	return (error);
2196 }
2197 
2198 static int
2199 swapoff_one(struct swdevt *sp, struct ucred *cred)
2200 {
2201 	u_long nblks, dvbase;
2202 #ifdef MAC
2203 	int error;
2204 #endif
2205 
2206 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2207 #ifdef MAC
2208 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2209 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2210 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2211 	if (error != 0)
2212 		return (error);
2213 #endif
2214 	nblks = sp->sw_nblks;
2215 
2216 	/*
2217 	 * We can turn off this swap device safely only if the
2218 	 * available virtual memory in the system will fit the amount
2219 	 * of data we will have to page back in, plus an epsilon so
2220 	 * the system doesn't become critically low on swap space.
2221 	 */
2222 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2223 	    nblks + nswap_lowat) {
2224 		return (ENOMEM);
2225 	}
2226 
2227 	/*
2228 	 * Prevent further allocations on this device.
2229 	 */
2230 	mtx_lock(&sw_dev_mtx);
2231 	sp->sw_flags |= SW_CLOSING;
2232 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2233 		swap_pager_avail -= blist_fill(sp->sw_blist,
2234 		     dvbase, dmmax);
2235 	}
2236 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2237 	mtx_unlock(&sw_dev_mtx);
2238 
2239 	/*
2240 	 * Page in the contents of the device and close it.
2241 	 */
2242 	swap_pager_swapoff(sp);
2243 
2244 	sp->sw_close(curthread, sp);
2245 	mtx_lock(&sw_dev_mtx);
2246 	sp->sw_id = NULL;
2247 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2248 	nswapdev--;
2249 	if (nswapdev == 0) {
2250 		swap_pager_full = 2;
2251 		swap_pager_almost_full = 1;
2252 	}
2253 	if (swdevhd == sp)
2254 		swdevhd = NULL;
2255 	mtx_unlock(&sw_dev_mtx);
2256 	blist_destroy(sp->sw_blist);
2257 	free(sp, M_VMPGDATA);
2258 	return (0);
2259 }
2260 
2261 void
2262 swapoff_all(void)
2263 {
2264 	struct swdevt *sp, *spt;
2265 	const char *devname;
2266 	int error;
2267 
2268 	sx_xlock(&swdev_syscall_lock);
2269 
2270 	mtx_lock(&sw_dev_mtx);
2271 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2272 		mtx_unlock(&sw_dev_mtx);
2273 		if (vn_isdisk(sp->sw_vp, NULL))
2274 			devname = devtoname(sp->sw_vp->v_rdev);
2275 		else
2276 			devname = "[file]";
2277 		error = swapoff_one(sp, thread0.td_ucred);
2278 		if (error != 0) {
2279 			printf("Cannot remove swap device %s (error=%d), "
2280 			    "skipping.\n", devname, error);
2281 		} else if (bootverbose) {
2282 			printf("Swap device %s removed.\n", devname);
2283 		}
2284 		mtx_lock(&sw_dev_mtx);
2285 	}
2286 	mtx_unlock(&sw_dev_mtx);
2287 
2288 	sx_xunlock(&swdev_syscall_lock);
2289 }
2290 
2291 void
2292 swap_pager_status(int *total, int *used)
2293 {
2294 	struct swdevt *sp;
2295 
2296 	*total = 0;
2297 	*used = 0;
2298 	mtx_lock(&sw_dev_mtx);
2299 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2300 		*total += sp->sw_nblks;
2301 		*used += sp->sw_used;
2302 	}
2303 	mtx_unlock(&sw_dev_mtx);
2304 }
2305 
2306 int
2307 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2308 {
2309 	struct swdevt *sp;
2310 	const char *tmp_devname;
2311 	int error, n;
2312 
2313 	n = 0;
2314 	error = ENOENT;
2315 	mtx_lock(&sw_dev_mtx);
2316 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2317 		if (n != name) {
2318 			n++;
2319 			continue;
2320 		}
2321 		xs->xsw_version = XSWDEV_VERSION;
2322 		xs->xsw_dev = sp->sw_dev;
2323 		xs->xsw_flags = sp->sw_flags;
2324 		xs->xsw_nblks = sp->sw_nblks;
2325 		xs->xsw_used = sp->sw_used;
2326 		if (devname != NULL) {
2327 			if (vn_isdisk(sp->sw_vp, NULL))
2328 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2329 			else
2330 				tmp_devname = "[file]";
2331 			strncpy(devname, tmp_devname, len);
2332 		}
2333 		error = 0;
2334 		break;
2335 	}
2336 	mtx_unlock(&sw_dev_mtx);
2337 	return (error);
2338 }
2339 
2340 static int
2341 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2342 {
2343 	struct xswdev xs;
2344 	int error;
2345 
2346 	if (arg2 != 1)			/* name length */
2347 		return (EINVAL);
2348 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2349 	if (error != 0)
2350 		return (error);
2351 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2352 	return (error);
2353 }
2354 
2355 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2356     "Number of swap devices");
2357 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2358     sysctl_vm_swap_info,
2359     "Swap statistics by device");
2360 
2361 /*
2362  * vmspace_swap_count() - count the approximate swap usage in pages for a
2363  *			  vmspace.
2364  *
2365  *	The map must be locked.
2366  *
2367  *	Swap usage is determined by taking the proportional swap used by
2368  *	VM objects backing the VM map.  To make up for fractional losses,
2369  *	if the VM object has any swap use at all the associated map entries
2370  *	count for at least 1 swap page.
2371  */
2372 long
2373 vmspace_swap_count(struct vmspace *vmspace)
2374 {
2375 	vm_map_t map;
2376 	vm_map_entry_t cur;
2377 	vm_object_t object;
2378 	long count, n;
2379 
2380 	map = &vmspace->vm_map;
2381 	count = 0;
2382 
2383 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2384 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2385 		    (object = cur->object.vm_object) != NULL) {
2386 			VM_OBJECT_WLOCK(object);
2387 			if (object->type == OBJT_SWAP &&
2388 			    object->un_pager.swp.swp_bcount != 0) {
2389 				n = (cur->end - cur->start) / PAGE_SIZE;
2390 				count += object->un_pager.swp.swp_bcount *
2391 				    SWAP_META_PAGES * n / object->size + 1;
2392 			}
2393 			VM_OBJECT_WUNLOCK(object);
2394 		}
2395 	}
2396 	return (count);
2397 }
2398 
2399 /*
2400  * GEOM backend
2401  *
2402  * Swapping onto disk devices.
2403  *
2404  */
2405 
2406 static g_orphan_t swapgeom_orphan;
2407 
2408 static struct g_class g_swap_class = {
2409 	.name = "SWAP",
2410 	.version = G_VERSION,
2411 	.orphan = swapgeom_orphan,
2412 };
2413 
2414 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2415 
2416 
2417 static void
2418 swapgeom_close_ev(void *arg, int flags)
2419 {
2420 	struct g_consumer *cp;
2421 
2422 	cp = arg;
2423 	g_access(cp, -1, -1, 0);
2424 	g_detach(cp);
2425 	g_destroy_consumer(cp);
2426 }
2427 
2428 /*
2429  * Add a reference to the g_consumer for an inflight transaction.
2430  */
2431 static void
2432 swapgeom_acquire(struct g_consumer *cp)
2433 {
2434 
2435 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2436 	cp->index++;
2437 }
2438 
2439 /*
2440  * Remove a reference from the g_consumer. Post a close event if
2441  * all referneces go away.
2442  */
2443 static void
2444 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2445 {
2446 
2447 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2448 	cp->index--;
2449 	if (cp->index == 0) {
2450 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2451 			sp->sw_id = NULL;
2452 	}
2453 }
2454 
2455 static void
2456 swapgeom_done(struct bio *bp2)
2457 {
2458 	struct swdevt *sp;
2459 	struct buf *bp;
2460 	struct g_consumer *cp;
2461 
2462 	bp = bp2->bio_caller2;
2463 	cp = bp2->bio_from;
2464 	bp->b_ioflags = bp2->bio_flags;
2465 	if (bp2->bio_error)
2466 		bp->b_ioflags |= BIO_ERROR;
2467 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2468 	bp->b_error = bp2->bio_error;
2469 	bufdone(bp);
2470 	sp = bp2->bio_caller1;
2471 	mtx_lock(&sw_dev_mtx);
2472 	swapgeom_release(cp, sp);
2473 	mtx_unlock(&sw_dev_mtx);
2474 	g_destroy_bio(bp2);
2475 }
2476 
2477 static void
2478 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2479 {
2480 	struct bio *bio;
2481 	struct g_consumer *cp;
2482 
2483 	mtx_lock(&sw_dev_mtx);
2484 	cp = sp->sw_id;
2485 	if (cp == NULL) {
2486 		mtx_unlock(&sw_dev_mtx);
2487 		bp->b_error = ENXIO;
2488 		bp->b_ioflags |= BIO_ERROR;
2489 		bufdone(bp);
2490 		return;
2491 	}
2492 	swapgeom_acquire(cp);
2493 	mtx_unlock(&sw_dev_mtx);
2494 	if (bp->b_iocmd == BIO_WRITE)
2495 		bio = g_new_bio();
2496 	else
2497 		bio = g_alloc_bio();
2498 	if (bio == NULL) {
2499 		mtx_lock(&sw_dev_mtx);
2500 		swapgeom_release(cp, sp);
2501 		mtx_unlock(&sw_dev_mtx);
2502 		bp->b_error = ENOMEM;
2503 		bp->b_ioflags |= BIO_ERROR;
2504 		bufdone(bp);
2505 		return;
2506 	}
2507 
2508 	bio->bio_caller1 = sp;
2509 	bio->bio_caller2 = bp;
2510 	bio->bio_cmd = bp->b_iocmd;
2511 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2512 	bio->bio_length = bp->b_bcount;
2513 	bio->bio_done = swapgeom_done;
2514 	if (!buf_mapped(bp)) {
2515 		bio->bio_ma = bp->b_pages;
2516 		bio->bio_data = unmapped_buf;
2517 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2518 		bio->bio_ma_n = bp->b_npages;
2519 		bio->bio_flags |= BIO_UNMAPPED;
2520 	} else {
2521 		bio->bio_data = bp->b_data;
2522 		bio->bio_ma = NULL;
2523 	}
2524 	g_io_request(bio, cp);
2525 	return;
2526 }
2527 
2528 static void
2529 swapgeom_orphan(struct g_consumer *cp)
2530 {
2531 	struct swdevt *sp;
2532 	int destroy;
2533 
2534 	mtx_lock(&sw_dev_mtx);
2535 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2536 		if (sp->sw_id == cp) {
2537 			sp->sw_flags |= SW_CLOSING;
2538 			break;
2539 		}
2540 	}
2541 	/*
2542 	 * Drop reference we were created with. Do directly since we're in a
2543 	 * special context where we don't have to queue the call to
2544 	 * swapgeom_close_ev().
2545 	 */
2546 	cp->index--;
2547 	destroy = ((sp != NULL) && (cp->index == 0));
2548 	if (destroy)
2549 		sp->sw_id = NULL;
2550 	mtx_unlock(&sw_dev_mtx);
2551 	if (destroy)
2552 		swapgeom_close_ev(cp, 0);
2553 }
2554 
2555 static void
2556 swapgeom_close(struct thread *td, struct swdevt *sw)
2557 {
2558 	struct g_consumer *cp;
2559 
2560 	mtx_lock(&sw_dev_mtx);
2561 	cp = sw->sw_id;
2562 	sw->sw_id = NULL;
2563 	mtx_unlock(&sw_dev_mtx);
2564 	/* XXX: direct call when Giant untangled */
2565 	if (cp != NULL)
2566 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2567 }
2568 
2569 
2570 struct swh0h0 {
2571 	struct cdev *dev;
2572 	struct vnode *vp;
2573 	int	error;
2574 };
2575 
2576 static void
2577 swapongeom_ev(void *arg, int flags)
2578 {
2579 	struct swh0h0 *swh;
2580 	struct g_provider *pp;
2581 	struct g_consumer *cp;
2582 	static struct g_geom *gp;
2583 	struct swdevt *sp;
2584 	u_long nblks;
2585 	int error;
2586 
2587 	swh = arg;
2588 	swh->error = 0;
2589 	pp = g_dev_getprovider(swh->dev);
2590 	if (pp == NULL) {
2591 		swh->error = ENODEV;
2592 		return;
2593 	}
2594 	mtx_lock(&sw_dev_mtx);
2595 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2596 		cp = sp->sw_id;
2597 		if (cp != NULL && cp->provider == pp) {
2598 			mtx_unlock(&sw_dev_mtx);
2599 			swh->error = EBUSY;
2600 			return;
2601 		}
2602 	}
2603 	mtx_unlock(&sw_dev_mtx);
2604 	if (gp == NULL)
2605 		gp = g_new_geomf(&g_swap_class, "swap");
2606 	cp = g_new_consumer(gp);
2607 	cp->index = 1;		/* Number of active I/Os, plus one for being active. */
2608 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2609 	g_attach(cp, pp);
2610 	/*
2611 	 * XXX: Every time you think you can improve the margin for
2612 	 * footshooting, somebody depends on the ability to do so:
2613 	 * savecore(8) wants to write to our swapdev so we cannot
2614 	 * set an exclusive count :-(
2615 	 */
2616 	error = g_access(cp, 1, 1, 0);
2617 	if (error) {
2618 		g_detach(cp);
2619 		g_destroy_consumer(cp);
2620 		swh->error = error;
2621 		return;
2622 	}
2623 	nblks = pp->mediasize / DEV_BSIZE;
2624 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2625 	    swapgeom_close, dev2udev(swh->dev),
2626 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2627 	swh->error = 0;
2628 }
2629 
2630 static int
2631 swapongeom(struct thread *td, struct vnode *vp)
2632 {
2633 	int error;
2634 	struct swh0h0 swh;
2635 
2636 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2637 
2638 	swh.dev = vp->v_rdev;
2639 	swh.vp = vp;
2640 	swh.error = 0;
2641 	/* XXX: direct call when Giant untangled */
2642 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2643 	if (!error)
2644 		error = swh.error;
2645 	VOP_UNLOCK(vp, 0);
2646 	return (error);
2647 }
2648 
2649 /*
2650  * VNODE backend
2651  *
2652  * This is used mainly for network filesystem (read: probably only tested
2653  * with NFS) swapfiles.
2654  *
2655  */
2656 
2657 static void
2658 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2659 {
2660 	struct vnode *vp2;
2661 
2662 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2663 
2664 	vp2 = sp->sw_id;
2665 	vhold(vp2);
2666 	if (bp->b_iocmd == BIO_WRITE) {
2667 		if (bp->b_bufobj)
2668 			bufobj_wdrop(bp->b_bufobj);
2669 		bufobj_wref(&vp2->v_bufobj);
2670 	}
2671 	if (bp->b_bufobj != &vp2->v_bufobj)
2672 		bp->b_bufobj = &vp2->v_bufobj;
2673 	bp->b_vp = vp2;
2674 	bp->b_iooffset = dbtob(bp->b_blkno);
2675 	bstrategy(bp);
2676 	return;
2677 }
2678 
2679 static void
2680 swapdev_close(struct thread *td, struct swdevt *sp)
2681 {
2682 
2683 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2684 	vrele(sp->sw_vp);
2685 }
2686 
2687 
2688 static int
2689 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2690 {
2691 	struct swdevt *sp;
2692 	int error;
2693 
2694 	if (nblks == 0)
2695 		return (ENXIO);
2696 	mtx_lock(&sw_dev_mtx);
2697 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2698 		if (sp->sw_id == vp) {
2699 			mtx_unlock(&sw_dev_mtx);
2700 			return (EBUSY);
2701 		}
2702 	}
2703 	mtx_unlock(&sw_dev_mtx);
2704 
2705 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2706 #ifdef MAC
2707 	error = mac_system_check_swapon(td->td_ucred, vp);
2708 	if (error == 0)
2709 #endif
2710 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2711 	(void) VOP_UNLOCK(vp, 0);
2712 	if (error)
2713 		return (error);
2714 
2715 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2716 	    NODEV, 0);
2717 	return (0);
2718 }
2719 
2720 static int
2721 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2722 {
2723 	int error, new, n;
2724 
2725 	new = nsw_wcount_async_max;
2726 	error = sysctl_handle_int(oidp, &new, 0, req);
2727 	if (error != 0 || req->newptr == NULL)
2728 		return (error);
2729 
2730 	if (new > nswbuf / 2 || new < 1)
2731 		return (EINVAL);
2732 
2733 	mtx_lock(&pbuf_mtx);
2734 	while (nsw_wcount_async_max != new) {
2735 		/*
2736 		 * Adjust difference.  If the current async count is too low,
2737 		 * we will need to sqeeze our update slowly in.  Sleep with a
2738 		 * higher priority than getpbuf() to finish faster.
2739 		 */
2740 		n = new - nsw_wcount_async_max;
2741 		if (nsw_wcount_async + n >= 0) {
2742 			nsw_wcount_async += n;
2743 			nsw_wcount_async_max += n;
2744 			wakeup(&nsw_wcount_async);
2745 		} else {
2746 			nsw_wcount_async_max -= nsw_wcount_async;
2747 			nsw_wcount_async = 0;
2748 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2749 			    "swpsysctl", 0);
2750 		}
2751 	}
2752 	mtx_unlock(&pbuf_mtx);
2753 
2754 	return (0);
2755 }
2756