1 /*- 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include "opt_swap.h" 73 #include "opt_vm.h" 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/conf.h> 78 #include <sys/kernel.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/bio.h> 82 #include <sys/buf.h> 83 #include <sys/disk.h> 84 #include <sys/fcntl.h> 85 #include <sys/mount.h> 86 #include <sys/namei.h> 87 #include <sys/vnode.h> 88 #include <sys/malloc.h> 89 #include <sys/racct.h> 90 #include <sys/resource.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/sysproto.h> 95 #include <sys/blist.h> 96 #include <sys/lock.h> 97 #include <sys/sx.h> 98 #include <sys/vmmeter.h> 99 100 #include <security/mac/mac_framework.h> 101 102 #include <vm/vm.h> 103 #include <vm/pmap.h> 104 #include <vm/vm_map.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_param.h> 111 #include <vm/swap_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/uma.h> 114 115 #include <geom/geom.h> 116 117 /* 118 * SWB_NPAGES must be a power of 2. It may be set to 1, 2, 4, 8, 16 119 * or 32 pages per allocation. 120 * The 32-page limit is due to the radix code (kern/subr_blist.c). 121 */ 122 #ifndef MAX_PAGEOUT_CLUSTER 123 #define MAX_PAGEOUT_CLUSTER 16 124 #endif 125 126 #if !defined(SWB_NPAGES) 127 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 128 #endif 129 130 /* 131 * The swblock structure maps an object and a small, fixed-size range 132 * of page indices to disk addresses within a swap area. 133 * The collection of these mappings is implemented as a hash table. 134 * Unused disk addresses within a swap area are allocated and managed 135 * using a blist. 136 */ 137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t)) 138 #define SWAP_META_PAGES (SWB_NPAGES * 2) 139 #define SWAP_META_MASK (SWAP_META_PAGES - 1) 140 141 struct swblock { 142 struct swblock *swb_hnext; 143 vm_object_t swb_object; 144 vm_pindex_t swb_index; 145 int swb_count; 146 daddr_t swb_pages[SWAP_META_PAGES]; 147 }; 148 149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 150 static struct mtx sw_dev_mtx; 151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 152 static struct swdevt *swdevhd; /* Allocate from here next */ 153 static int nswapdev; /* Number of swap devices */ 154 int swap_pager_avail; 155 static int swdev_syscall_active = 0; /* serialize swap(on|off) */ 156 157 static vm_ooffset_t swap_total; 158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0, 159 "Total amount of available swap storage."); 160 static vm_ooffset_t swap_reserved; 161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0, 162 "Amount of swap storage needed to back all allocated anonymous memory."); 163 static int overcommit = 0; 164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0, 165 "Configure virtual memory overcommit behavior. See tuning(7) " 166 "for details."); 167 static unsigned long swzone; 168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 169 "Actual size of swap metadata zone"); 170 static unsigned long swap_maxpages; 171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 172 "Maximum amount of swap supported"); 173 174 /* bits from overcommit */ 175 #define SWAP_RESERVE_FORCE_ON (1 << 0) 176 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 177 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 178 179 int 180 swap_reserve(vm_ooffset_t incr) 181 { 182 183 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 184 } 185 186 int 187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 188 { 189 vm_ooffset_t r, s; 190 int res, error; 191 static int curfail; 192 static struct timeval lastfail; 193 struct uidinfo *uip; 194 195 uip = cred->cr_ruidinfo; 196 197 if (incr & PAGE_MASK) 198 panic("swap_reserve: & PAGE_MASK"); 199 200 #ifdef RACCT 201 if (racct_enable) { 202 PROC_LOCK(curproc); 203 error = racct_add(curproc, RACCT_SWAP, incr); 204 PROC_UNLOCK(curproc); 205 if (error != 0) 206 return (0); 207 } 208 #endif 209 210 res = 0; 211 mtx_lock(&sw_dev_mtx); 212 r = swap_reserved + incr; 213 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 214 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count; 215 s *= PAGE_SIZE; 216 } else 217 s = 0; 218 s += swap_total; 219 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 220 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 221 res = 1; 222 swap_reserved = r; 223 } 224 mtx_unlock(&sw_dev_mtx); 225 226 if (res) { 227 UIDINFO_VMSIZE_LOCK(uip); 228 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 229 uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) && 230 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) 231 res = 0; 232 else 233 uip->ui_vmsize += incr; 234 UIDINFO_VMSIZE_UNLOCK(uip); 235 if (!res) { 236 mtx_lock(&sw_dev_mtx); 237 swap_reserved -= incr; 238 mtx_unlock(&sw_dev_mtx); 239 } 240 } 241 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 242 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 243 uip->ui_uid, curproc->p_pid, incr); 244 } 245 246 #ifdef RACCT 247 if (!res) { 248 PROC_LOCK(curproc); 249 racct_sub(curproc, RACCT_SWAP, incr); 250 PROC_UNLOCK(curproc); 251 } 252 #endif 253 254 return (res); 255 } 256 257 void 258 swap_reserve_force(vm_ooffset_t incr) 259 { 260 struct uidinfo *uip; 261 262 mtx_lock(&sw_dev_mtx); 263 swap_reserved += incr; 264 mtx_unlock(&sw_dev_mtx); 265 266 #ifdef RACCT 267 PROC_LOCK(curproc); 268 racct_add_force(curproc, RACCT_SWAP, incr); 269 PROC_UNLOCK(curproc); 270 #endif 271 272 uip = curthread->td_ucred->cr_ruidinfo; 273 PROC_LOCK(curproc); 274 UIDINFO_VMSIZE_LOCK(uip); 275 uip->ui_vmsize += incr; 276 UIDINFO_VMSIZE_UNLOCK(uip); 277 PROC_UNLOCK(curproc); 278 } 279 280 void 281 swap_release(vm_ooffset_t decr) 282 { 283 struct ucred *cred; 284 285 PROC_LOCK(curproc); 286 cred = curthread->td_ucred; 287 swap_release_by_cred(decr, cred); 288 PROC_UNLOCK(curproc); 289 } 290 291 void 292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 293 { 294 struct uidinfo *uip; 295 296 uip = cred->cr_ruidinfo; 297 298 if (decr & PAGE_MASK) 299 panic("swap_release: & PAGE_MASK"); 300 301 mtx_lock(&sw_dev_mtx); 302 if (swap_reserved < decr) 303 panic("swap_reserved < decr"); 304 swap_reserved -= decr; 305 mtx_unlock(&sw_dev_mtx); 306 307 UIDINFO_VMSIZE_LOCK(uip); 308 if (uip->ui_vmsize < decr) 309 printf("negative vmsize for uid = %d\n", uip->ui_uid); 310 uip->ui_vmsize -= decr; 311 UIDINFO_VMSIZE_UNLOCK(uip); 312 313 racct_sub_cred(cred, RACCT_SWAP, decr); 314 } 315 316 #define SWM_FREE 0x02 /* free, period */ 317 #define SWM_POP 0x04 /* pop out */ 318 319 int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 321 static int nsw_rcount; /* free read buffers */ 322 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 323 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 324 static int nsw_wcount_async_max;/* assigned maximum */ 325 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 326 327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW, 329 NULL, 0, sysctl_swap_async_max, "I", "Maximum running async swap ops"); 330 331 static struct swblock **swhash; 332 static int swhash_mask; 333 static struct mtx swhash_mtx; 334 335 static struct sx sw_alloc_sx; 336 337 /* 338 * "named" and "unnamed" anon region objects. Try to reduce the overhead 339 * of searching a named list by hashing it just a little. 340 */ 341 342 #define NOBJLISTS 8 343 344 #define NOBJLIST(handle) \ 345 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 346 347 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 348 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 349 static uma_zone_t swap_zone; 350 351 /* 352 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 353 * calls hooked from other parts of the VM system and do not appear here. 354 * (see vm/swap_pager.h). 355 */ 356 static vm_object_t 357 swap_pager_alloc(void *handle, vm_ooffset_t size, 358 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 359 static void swap_pager_dealloc(vm_object_t object); 360 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 361 int *); 362 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 363 int *, pgo_getpages_iodone_t, void *); 364 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 365 static boolean_t 366 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 367 static void swap_pager_init(void); 368 static void swap_pager_unswapped(vm_page_t); 369 static void swap_pager_swapoff(struct swdevt *sp); 370 371 struct pagerops swappagerops = { 372 .pgo_init = swap_pager_init, /* early system initialization of pager */ 373 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 374 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 375 .pgo_getpages = swap_pager_getpages, /* pagein */ 376 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 377 .pgo_putpages = swap_pager_putpages, /* pageout */ 378 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 379 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 380 }; 381 382 /* 383 * dmmax is in page-sized chunks with the new swap system. It was 384 * dev-bsized chunks in the old. dmmax is always a power of 2. 385 * 386 * swap_*() routines are externally accessible. swp_*() routines are 387 * internal. 388 */ 389 static int dmmax; 390 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 391 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 392 393 SYSCTL_INT(_vm, OID_AUTO, dmmax, 394 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 395 396 static void swp_sizecheck(void); 397 static void swp_pager_async_iodone(struct buf *bp); 398 static int swapongeom(struct thread *, struct vnode *); 399 static int swaponvp(struct thread *, struct vnode *, u_long); 400 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 401 402 /* 403 * Swap bitmap functions 404 */ 405 static void swp_pager_freeswapspace(daddr_t blk, int npages); 406 static daddr_t swp_pager_getswapspace(int npages); 407 408 /* 409 * Metadata functions 410 */ 411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index); 412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t); 414 static void swp_pager_meta_free_all(vm_object_t); 415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 416 417 /* 418 * SWP_SIZECHECK() - update swap_pager_full indication 419 * 420 * update the swap_pager_almost_full indication and warn when we are 421 * about to run out of swap space, using lowat/hiwat hysteresis. 422 * 423 * Clear swap_pager_full ( task killing ) indication when lowat is met. 424 * 425 * No restrictions on call 426 * This routine may not block. 427 */ 428 static void 429 swp_sizecheck(void) 430 { 431 432 if (swap_pager_avail < nswap_lowat) { 433 if (swap_pager_almost_full == 0) { 434 printf("swap_pager: out of swap space\n"); 435 swap_pager_almost_full = 1; 436 } 437 } else { 438 swap_pager_full = 0; 439 if (swap_pager_avail > nswap_hiwat) 440 swap_pager_almost_full = 0; 441 } 442 } 443 444 /* 445 * SWP_PAGER_HASH() - hash swap meta data 446 * 447 * This is an helper function which hashes the swapblk given 448 * the object and page index. It returns a pointer to a pointer 449 * to the object, or a pointer to a NULL pointer if it could not 450 * find a swapblk. 451 */ 452 static struct swblock ** 453 swp_pager_hash(vm_object_t object, vm_pindex_t index) 454 { 455 struct swblock **pswap; 456 struct swblock *swap; 457 458 index &= ~(vm_pindex_t)SWAP_META_MASK; 459 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 460 while ((swap = *pswap) != NULL) { 461 if (swap->swb_object == object && 462 swap->swb_index == index 463 ) { 464 break; 465 } 466 pswap = &swap->swb_hnext; 467 } 468 return (pswap); 469 } 470 471 /* 472 * SWAP_PAGER_INIT() - initialize the swap pager! 473 * 474 * Expected to be started from system init. NOTE: This code is run 475 * before much else so be careful what you depend on. Most of the VM 476 * system has yet to be initialized at this point. 477 */ 478 static void 479 swap_pager_init(void) 480 { 481 /* 482 * Initialize object lists 483 */ 484 int i; 485 486 for (i = 0; i < NOBJLISTS; ++i) 487 TAILQ_INIT(&swap_pager_object_list[i]); 488 mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF); 489 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 490 491 /* 492 * Device Stripe, in PAGE_SIZE'd blocks 493 */ 494 dmmax = SWB_NPAGES * 2; 495 } 496 497 /* 498 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 499 * 500 * Expected to be started from pageout process once, prior to entering 501 * its main loop. 502 */ 503 void 504 swap_pager_swap_init(void) 505 { 506 unsigned long n, n2; 507 508 /* 509 * Number of in-transit swap bp operations. Don't 510 * exhaust the pbufs completely. Make sure we 511 * initialize workable values (0 will work for hysteresis 512 * but it isn't very efficient). 513 * 514 * The nsw_cluster_max is constrained by the bp->b_pages[] 515 * array (MAXPHYS/PAGE_SIZE) and our locally defined 516 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 517 * constrained by the swap device interleave stripe size. 518 * 519 * Currently we hardwire nsw_wcount_async to 4. This limit is 520 * designed to prevent other I/O from having high latencies due to 521 * our pageout I/O. The value 4 works well for one or two active swap 522 * devices but is probably a little low if you have more. Even so, 523 * a higher value would probably generate only a limited improvement 524 * with three or four active swap devices since the system does not 525 * typically have to pageout at extreme bandwidths. We will want 526 * at least 2 per swap devices, and 4 is a pretty good value if you 527 * have one NFS swap device due to the command/ack latency over NFS. 528 * So it all works out pretty well. 529 */ 530 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 531 532 mtx_lock(&pbuf_mtx); 533 nsw_rcount = (nswbuf + 1) / 2; 534 nsw_wcount_sync = (nswbuf + 3) / 4; 535 nsw_wcount_async = 4; 536 nsw_wcount_async_max = nsw_wcount_async; 537 mtx_unlock(&pbuf_mtx); 538 539 /* 540 * Initialize our zone. Right now I'm just guessing on the number 541 * we need based on the number of pages in the system. Each swblock 542 * can hold 32 pages, so this is probably overkill. This reservation 543 * is typically limited to around 32MB by default. 544 */ 545 n = vm_cnt.v_page_count / 2; 546 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 547 n = maxswzone / sizeof(struct swblock); 548 n2 = n; 549 swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL, 550 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM); 551 if (swap_zone == NULL) 552 panic("failed to create swap_zone."); 553 do { 554 if (uma_zone_reserve_kva(swap_zone, n)) 555 break; 556 /* 557 * if the allocation failed, try a zone two thirds the 558 * size of the previous attempt. 559 */ 560 n -= ((n + 2) / 3); 561 } while (n > 0); 562 if (n2 != n) 563 printf("Swap zone entries reduced from %lu to %lu.\n", n2, n); 564 swap_maxpages = n * SWAP_META_PAGES; 565 swzone = n * sizeof(struct swblock); 566 n2 = n; 567 568 /* 569 * Initialize our meta-data hash table. The swapper does not need to 570 * be quite as efficient as the VM system, so we do not use an 571 * oversized hash table. 572 * 573 * n: size of hash table, must be power of 2 574 * swhash_mask: hash table index mask 575 */ 576 for (n = 1; n < n2 / 8; n *= 2) 577 ; 578 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 579 swhash_mask = n - 1; 580 mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF); 581 } 582 583 /* 584 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 585 * its metadata structures. 586 * 587 * This routine is called from the mmap and fork code to create a new 588 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 589 * and then converting it with swp_pager_meta_build(). 590 * 591 * This routine may block in vm_object_allocate() and create a named 592 * object lookup race, so we must interlock. 593 * 594 * MPSAFE 595 */ 596 static vm_object_t 597 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 598 vm_ooffset_t offset, struct ucred *cred) 599 { 600 vm_object_t object; 601 vm_pindex_t pindex; 602 603 pindex = OFF_TO_IDX(offset + PAGE_MASK + size); 604 if (handle) { 605 mtx_lock(&Giant); 606 /* 607 * Reference existing named region or allocate new one. There 608 * should not be a race here against swp_pager_meta_build() 609 * as called from vm_page_remove() in regards to the lookup 610 * of the handle. 611 */ 612 sx_xlock(&sw_alloc_sx); 613 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 614 if (object == NULL) { 615 if (cred != NULL) { 616 if (!swap_reserve_by_cred(size, cred)) { 617 sx_xunlock(&sw_alloc_sx); 618 mtx_unlock(&Giant); 619 return (NULL); 620 } 621 crhold(cred); 622 } 623 object = vm_object_allocate(OBJT_DEFAULT, pindex); 624 VM_OBJECT_WLOCK(object); 625 object->handle = handle; 626 if (cred != NULL) { 627 object->cred = cred; 628 object->charge = size; 629 } 630 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 631 VM_OBJECT_WUNLOCK(object); 632 } 633 sx_xunlock(&sw_alloc_sx); 634 mtx_unlock(&Giant); 635 } else { 636 if (cred != NULL) { 637 if (!swap_reserve_by_cred(size, cred)) 638 return (NULL); 639 crhold(cred); 640 } 641 object = vm_object_allocate(OBJT_DEFAULT, pindex); 642 VM_OBJECT_WLOCK(object); 643 if (cred != NULL) { 644 object->cred = cred; 645 object->charge = size; 646 } 647 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 648 VM_OBJECT_WUNLOCK(object); 649 } 650 return (object); 651 } 652 653 /* 654 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 655 * 656 * The swap backing for the object is destroyed. The code is 657 * designed such that we can reinstantiate it later, but this 658 * routine is typically called only when the entire object is 659 * about to be destroyed. 660 * 661 * The object must be locked. 662 */ 663 static void 664 swap_pager_dealloc(vm_object_t object) 665 { 666 667 /* 668 * Remove from list right away so lookups will fail if we block for 669 * pageout completion. 670 */ 671 if (object->handle != NULL) { 672 mtx_lock(&sw_alloc_mtx); 673 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 674 mtx_unlock(&sw_alloc_mtx); 675 } 676 677 VM_OBJECT_ASSERT_WLOCKED(object); 678 vm_object_pip_wait(object, "swpdea"); 679 680 /* 681 * Free all remaining metadata. We only bother to free it from 682 * the swap meta data. We do not attempt to free swapblk's still 683 * associated with vm_page_t's for this object. We do not care 684 * if paging is still in progress on some objects. 685 */ 686 swp_pager_meta_free_all(object); 687 object->handle = NULL; 688 object->type = OBJT_DEAD; 689 } 690 691 /************************************************************************ 692 * SWAP PAGER BITMAP ROUTINES * 693 ************************************************************************/ 694 695 /* 696 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 697 * 698 * Allocate swap for the requested number of pages. The starting 699 * swap block number (a page index) is returned or SWAPBLK_NONE 700 * if the allocation failed. 701 * 702 * Also has the side effect of advising that somebody made a mistake 703 * when they configured swap and didn't configure enough. 704 * 705 * This routine may not sleep. 706 * 707 * We allocate in round-robin fashion from the configured devices. 708 */ 709 static daddr_t 710 swp_pager_getswapspace(int npages) 711 { 712 daddr_t blk; 713 struct swdevt *sp; 714 int i; 715 716 blk = SWAPBLK_NONE; 717 mtx_lock(&sw_dev_mtx); 718 sp = swdevhd; 719 for (i = 0; i < nswapdev; i++) { 720 if (sp == NULL) 721 sp = TAILQ_FIRST(&swtailq); 722 if (!(sp->sw_flags & SW_CLOSING)) { 723 blk = blist_alloc(sp->sw_blist, npages); 724 if (blk != SWAPBLK_NONE) { 725 blk += sp->sw_first; 726 sp->sw_used += npages; 727 swap_pager_avail -= npages; 728 swp_sizecheck(); 729 swdevhd = TAILQ_NEXT(sp, sw_list); 730 goto done; 731 } 732 } 733 sp = TAILQ_NEXT(sp, sw_list); 734 } 735 if (swap_pager_full != 2) { 736 printf("swap_pager_getswapspace(%d): failed\n", npages); 737 swap_pager_full = 2; 738 swap_pager_almost_full = 1; 739 } 740 swdevhd = NULL; 741 done: 742 mtx_unlock(&sw_dev_mtx); 743 return (blk); 744 } 745 746 static int 747 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 748 { 749 750 return (blk >= sp->sw_first && blk < sp->sw_end); 751 } 752 753 static void 754 swp_pager_strategy(struct buf *bp) 755 { 756 struct swdevt *sp; 757 758 mtx_lock(&sw_dev_mtx); 759 TAILQ_FOREACH(sp, &swtailq, sw_list) { 760 if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) { 761 mtx_unlock(&sw_dev_mtx); 762 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 763 unmapped_buf_allowed) { 764 bp->b_data = unmapped_buf; 765 bp->b_offset = 0; 766 } else { 767 pmap_qenter((vm_offset_t)bp->b_data, 768 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 769 } 770 sp->sw_strategy(bp, sp); 771 return; 772 } 773 } 774 panic("Swapdev not found"); 775 } 776 777 778 /* 779 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 780 * 781 * This routine returns the specified swap blocks back to the bitmap. 782 * 783 * This routine may not sleep. 784 */ 785 static void 786 swp_pager_freeswapspace(daddr_t blk, int npages) 787 { 788 struct swdevt *sp; 789 790 mtx_lock(&sw_dev_mtx); 791 TAILQ_FOREACH(sp, &swtailq, sw_list) { 792 if (blk >= sp->sw_first && blk < sp->sw_end) { 793 sp->sw_used -= npages; 794 /* 795 * If we are attempting to stop swapping on 796 * this device, we don't want to mark any 797 * blocks free lest they be reused. 798 */ 799 if ((sp->sw_flags & SW_CLOSING) == 0) { 800 blist_free(sp->sw_blist, blk - sp->sw_first, 801 npages); 802 swap_pager_avail += npages; 803 swp_sizecheck(); 804 } 805 mtx_unlock(&sw_dev_mtx); 806 return; 807 } 808 } 809 panic("Swapdev not found"); 810 } 811 812 /* 813 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 814 * range within an object. 815 * 816 * This is a globally accessible routine. 817 * 818 * This routine removes swapblk assignments from swap metadata. 819 * 820 * The external callers of this routine typically have already destroyed 821 * or renamed vm_page_t's associated with this range in the object so 822 * we should be ok. 823 * 824 * The object must be locked. 825 */ 826 void 827 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 828 { 829 830 swp_pager_meta_free(object, start, size); 831 } 832 833 /* 834 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 835 * 836 * Assigns swap blocks to the specified range within the object. The 837 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 838 * 839 * Returns 0 on success, -1 on failure. 840 */ 841 int 842 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 843 { 844 int n = 0; 845 daddr_t blk = SWAPBLK_NONE; 846 vm_pindex_t beg = start; /* save start index */ 847 848 VM_OBJECT_WLOCK(object); 849 while (size) { 850 if (n == 0) { 851 n = BLIST_MAX_ALLOC; 852 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 853 n >>= 1; 854 if (n == 0) { 855 swp_pager_meta_free(object, beg, start - beg); 856 VM_OBJECT_WUNLOCK(object); 857 return (-1); 858 } 859 } 860 } 861 swp_pager_meta_build(object, start, blk); 862 --size; 863 ++start; 864 ++blk; 865 --n; 866 } 867 swp_pager_meta_free(object, start, n); 868 VM_OBJECT_WUNLOCK(object); 869 return (0); 870 } 871 872 /* 873 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 874 * and destroy the source. 875 * 876 * Copy any valid swapblks from the source to the destination. In 877 * cases where both the source and destination have a valid swapblk, 878 * we keep the destination's. 879 * 880 * This routine is allowed to sleep. It may sleep allocating metadata 881 * indirectly through swp_pager_meta_build() or if paging is still in 882 * progress on the source. 883 * 884 * The source object contains no vm_page_t's (which is just as well) 885 * 886 * The source object is of type OBJT_SWAP. 887 * 888 * The source and destination objects must be locked. 889 * Both object locks may temporarily be released. 890 */ 891 void 892 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 893 vm_pindex_t offset, int destroysource) 894 { 895 vm_pindex_t i; 896 897 VM_OBJECT_ASSERT_WLOCKED(srcobject); 898 VM_OBJECT_ASSERT_WLOCKED(dstobject); 899 900 /* 901 * If destroysource is set, we remove the source object from the 902 * swap_pager internal queue now. 903 */ 904 if (destroysource) { 905 if (srcobject->handle != NULL) { 906 mtx_lock(&sw_alloc_mtx); 907 TAILQ_REMOVE( 908 NOBJLIST(srcobject->handle), 909 srcobject, 910 pager_object_list 911 ); 912 mtx_unlock(&sw_alloc_mtx); 913 } 914 } 915 916 /* 917 * transfer source to destination. 918 */ 919 for (i = 0; i < dstobject->size; ++i) { 920 daddr_t dstaddr; 921 922 /* 923 * Locate (without changing) the swapblk on the destination, 924 * unless it is invalid in which case free it silently, or 925 * if the destination is a resident page, in which case the 926 * source is thrown away. 927 */ 928 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 929 930 if (dstaddr == SWAPBLK_NONE) { 931 /* 932 * Destination has no swapblk and is not resident, 933 * copy source. 934 */ 935 daddr_t srcaddr; 936 937 srcaddr = swp_pager_meta_ctl( 938 srcobject, 939 i + offset, 940 SWM_POP 941 ); 942 943 if (srcaddr != SWAPBLK_NONE) { 944 /* 945 * swp_pager_meta_build() can sleep. 946 */ 947 vm_object_pip_add(srcobject, 1); 948 VM_OBJECT_WUNLOCK(srcobject); 949 vm_object_pip_add(dstobject, 1); 950 swp_pager_meta_build(dstobject, i, srcaddr); 951 vm_object_pip_wakeup(dstobject); 952 VM_OBJECT_WLOCK(srcobject); 953 vm_object_pip_wakeup(srcobject); 954 } 955 } else { 956 /* 957 * Destination has valid swapblk or it is represented 958 * by a resident page. We destroy the sourceblock. 959 */ 960 961 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 962 } 963 } 964 965 /* 966 * Free left over swap blocks in source. 967 * 968 * We have to revert the type to OBJT_DEFAULT so we do not accidently 969 * double-remove the object from the swap queues. 970 */ 971 if (destroysource) { 972 swp_pager_meta_free_all(srcobject); 973 /* 974 * Reverting the type is not necessary, the caller is going 975 * to destroy srcobject directly, but I'm doing it here 976 * for consistency since we've removed the object from its 977 * queues. 978 */ 979 srcobject->type = OBJT_DEFAULT; 980 } 981 } 982 983 /* 984 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 985 * the requested page. 986 * 987 * We determine whether good backing store exists for the requested 988 * page and return TRUE if it does, FALSE if it doesn't. 989 * 990 * If TRUE, we also try to determine how much valid, contiguous backing 991 * store exists before and after the requested page within a reasonable 992 * distance. We do not try to restrict it to the swap device stripe 993 * (that is handled in getpages/putpages). It probably isn't worth 994 * doing here. 995 */ 996 static boolean_t 997 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after) 998 { 999 daddr_t blk0; 1000 1001 VM_OBJECT_ASSERT_LOCKED(object); 1002 /* 1003 * do we have good backing store at the requested index ? 1004 */ 1005 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1006 1007 if (blk0 == SWAPBLK_NONE) { 1008 if (before) 1009 *before = 0; 1010 if (after) 1011 *after = 0; 1012 return (FALSE); 1013 } 1014 1015 /* 1016 * find backwards-looking contiguous good backing store 1017 */ 1018 if (before != NULL) { 1019 int i; 1020 1021 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1022 daddr_t blk; 1023 1024 if (i > pindex) 1025 break; 1026 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1027 if (blk != blk0 - i) 1028 break; 1029 } 1030 *before = (i - 1); 1031 } 1032 1033 /* 1034 * find forward-looking contiguous good backing store 1035 */ 1036 if (after != NULL) { 1037 int i; 1038 1039 for (i = 1; i < (SWB_NPAGES/2); ++i) { 1040 daddr_t blk; 1041 1042 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1043 if (blk != blk0 + i) 1044 break; 1045 } 1046 *after = (i - 1); 1047 } 1048 return (TRUE); 1049 } 1050 1051 /* 1052 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1053 * 1054 * This removes any associated swap backing store, whether valid or 1055 * not, from the page. 1056 * 1057 * This routine is typically called when a page is made dirty, at 1058 * which point any associated swap can be freed. MADV_FREE also 1059 * calls us in a special-case situation 1060 * 1061 * NOTE!!! If the page is clean and the swap was valid, the caller 1062 * should make the page dirty before calling this routine. This routine 1063 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1064 * depends on it. 1065 * 1066 * This routine may not sleep. 1067 * 1068 * The object containing the page must be locked. 1069 */ 1070 static void 1071 swap_pager_unswapped(vm_page_t m) 1072 { 1073 1074 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 1075 } 1076 1077 /* 1078 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1079 * 1080 * Attempt to retrieve (m, count) pages from backing store, but make 1081 * sure we retrieve at least m[reqpage]. We try to load in as large 1082 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1083 * belongs to the same object. 1084 * 1085 * The code is designed for asynchronous operation and 1086 * immediate-notification of 'reqpage' but tends not to be 1087 * used that way. Please do not optimize-out this algorithmic 1088 * feature, I intend to improve on it in the future. 1089 * 1090 * The parent has a single vm_object_pip_add() reference prior to 1091 * calling us and we should return with the same. 1092 * 1093 * The parent has BUSY'd the pages. We should return with 'm' 1094 * left busy, but the others adjusted. 1095 */ 1096 static int 1097 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind, 1098 int *rahead) 1099 { 1100 struct buf *bp; 1101 daddr_t blk; 1102 1103 /* 1104 * Calculate range to retrieve. The pages have already been assigned 1105 * their swapblks. We require a *contiguous* range but we know it to 1106 * not span devices. If we do not supply it, bad things 1107 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1108 * loops are set up such that the case(s) are handled implicitly. 1109 * 1110 * The swp_*() calls must be made with the object locked. 1111 */ 1112 blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0); 1113 1114 if (blk == SWAPBLK_NONE) 1115 return (VM_PAGER_FAIL); 1116 1117 #ifdef INVARIANTS 1118 for (int i = 0; i < count; i++) 1119 KASSERT(blk + i == 1120 swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0), 1121 ("%s: range is not contiguous", __func__)); 1122 #endif 1123 1124 /* 1125 * Getpbuf() can sleep. 1126 */ 1127 VM_OBJECT_WUNLOCK(object); 1128 /* 1129 * Get a swap buffer header to perform the IO 1130 */ 1131 bp = getpbuf(&nsw_rcount); 1132 bp->b_flags |= B_PAGING; 1133 1134 bp->b_iocmd = BIO_READ; 1135 bp->b_iodone = swp_pager_async_iodone; 1136 bp->b_rcred = crhold(thread0.td_ucred); 1137 bp->b_wcred = crhold(thread0.td_ucred); 1138 bp->b_blkno = blk; 1139 bp->b_bcount = PAGE_SIZE * count; 1140 bp->b_bufsize = PAGE_SIZE * count; 1141 bp->b_npages = count; 1142 1143 VM_OBJECT_WLOCK(object); 1144 for (int i = 0; i < count; i++) { 1145 bp->b_pages[i] = m[i]; 1146 m[i]->oflags |= VPO_SWAPINPROG; 1147 } 1148 1149 PCPU_INC(cnt.v_swapin); 1150 PCPU_ADD(cnt.v_swappgsin, bp->b_npages); 1151 1152 /* 1153 * We still hold the lock on mreq, and our automatic completion routine 1154 * does not remove it. 1155 */ 1156 vm_object_pip_add(object, bp->b_npages); 1157 VM_OBJECT_WUNLOCK(object); 1158 1159 /* 1160 * perform the I/O. NOTE!!! bp cannot be considered valid after 1161 * this point because we automatically release it on completion. 1162 * Instead, we look at the one page we are interested in which we 1163 * still hold a lock on even through the I/O completion. 1164 * 1165 * The other pages in our m[] array are also released on completion, 1166 * so we cannot assume they are valid anymore either. 1167 * 1168 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1169 */ 1170 BUF_KERNPROC(bp); 1171 swp_pager_strategy(bp); 1172 1173 /* 1174 * wait for the page we want to complete. VPO_SWAPINPROG is always 1175 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1176 * is set in the meta-data. 1177 */ 1178 VM_OBJECT_WLOCK(object); 1179 while ((m[0]->oflags & VPO_SWAPINPROG) != 0) { 1180 m[0]->oflags |= VPO_SWAPSLEEP; 1181 PCPU_INC(cnt.v_intrans); 1182 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1183 "swread", hz * 20)) { 1184 printf( 1185 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1186 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1187 } 1188 } 1189 1190 /* 1191 * If we had an unrecoverable read error pages will not be valid. 1192 */ 1193 for (int i = 0; i < count; i++) 1194 if (m[i]->valid != VM_PAGE_BITS_ALL) 1195 return (VM_PAGER_ERROR); 1196 1197 if (rbehind) 1198 *rbehind = 0; 1199 if (rahead) 1200 *rahead = 0; 1201 1202 return (VM_PAGER_OK); 1203 1204 /* 1205 * A final note: in a low swap situation, we cannot deallocate swap 1206 * and mark a page dirty here because the caller is likely to mark 1207 * the page clean when we return, causing the page to possibly revert 1208 * to all-zero's later. 1209 */ 1210 } 1211 1212 /* 1213 * swap_pager_getpages_async(): 1214 * 1215 * Right now this is emulation of asynchronous operation on top of 1216 * swap_pager_getpages(). 1217 */ 1218 static int 1219 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count, 1220 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1221 { 1222 int r, error; 1223 1224 r = swap_pager_getpages(object, m, count, rbehind, rahead); 1225 VM_OBJECT_WUNLOCK(object); 1226 switch (r) { 1227 case VM_PAGER_OK: 1228 error = 0; 1229 break; 1230 case VM_PAGER_ERROR: 1231 error = EIO; 1232 break; 1233 case VM_PAGER_FAIL: 1234 error = EINVAL; 1235 break; 1236 default: 1237 panic("unhandled swap_pager_getpages() error %d", r); 1238 } 1239 (iodone)(arg, m, count, error); 1240 VM_OBJECT_WLOCK(object); 1241 1242 return (r); 1243 } 1244 1245 /* 1246 * swap_pager_putpages: 1247 * 1248 * Assign swap (if necessary) and initiate I/O on the specified pages. 1249 * 1250 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1251 * are automatically converted to SWAP objects. 1252 * 1253 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1254 * vm_page reservation system coupled with properly written VFS devices 1255 * should ensure that no low-memory deadlock occurs. This is an area 1256 * which needs work. 1257 * 1258 * The parent has N vm_object_pip_add() references prior to 1259 * calling us and will remove references for rtvals[] that are 1260 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1261 * completion. 1262 * 1263 * The parent has soft-busy'd the pages it passes us and will unbusy 1264 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1265 * We need to unbusy the rest on I/O completion. 1266 */ 1267 static void 1268 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1269 int flags, int *rtvals) 1270 { 1271 int i, n; 1272 boolean_t sync; 1273 1274 if (count && m[0]->object != object) { 1275 panic("swap_pager_putpages: object mismatch %p/%p", 1276 object, 1277 m[0]->object 1278 ); 1279 } 1280 1281 /* 1282 * Step 1 1283 * 1284 * Turn object into OBJT_SWAP 1285 * check for bogus sysops 1286 * force sync if not pageout process 1287 */ 1288 if (object->type != OBJT_SWAP) 1289 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1290 VM_OBJECT_WUNLOCK(object); 1291 1292 n = 0; 1293 if (curproc != pageproc) 1294 sync = TRUE; 1295 else 1296 sync = (flags & VM_PAGER_PUT_SYNC) != 0; 1297 1298 /* 1299 * Step 2 1300 * 1301 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1302 * The page is left dirty until the pageout operation completes 1303 * successfully. 1304 */ 1305 for (i = 0; i < count; i += n) { 1306 int j; 1307 struct buf *bp; 1308 daddr_t blk; 1309 1310 /* 1311 * Maximum I/O size is limited by a number of factors. 1312 */ 1313 n = min(BLIST_MAX_ALLOC, count - i); 1314 n = min(n, nsw_cluster_max); 1315 1316 /* 1317 * Get biggest block of swap we can. If we fail, fall 1318 * back and try to allocate a smaller block. Don't go 1319 * overboard trying to allocate space if it would overly 1320 * fragment swap. 1321 */ 1322 while ( 1323 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1324 n > 4 1325 ) { 1326 n >>= 1; 1327 } 1328 if (blk == SWAPBLK_NONE) { 1329 for (j = 0; j < n; ++j) 1330 rtvals[i+j] = VM_PAGER_FAIL; 1331 continue; 1332 } 1333 1334 /* 1335 * All I/O parameters have been satisfied, build the I/O 1336 * request and assign the swap space. 1337 */ 1338 if (sync == TRUE) { 1339 bp = getpbuf(&nsw_wcount_sync); 1340 } else { 1341 bp = getpbuf(&nsw_wcount_async); 1342 bp->b_flags = B_ASYNC; 1343 } 1344 bp->b_flags |= B_PAGING; 1345 bp->b_iocmd = BIO_WRITE; 1346 1347 bp->b_rcred = crhold(thread0.td_ucred); 1348 bp->b_wcred = crhold(thread0.td_ucred); 1349 bp->b_bcount = PAGE_SIZE * n; 1350 bp->b_bufsize = PAGE_SIZE * n; 1351 bp->b_blkno = blk; 1352 1353 VM_OBJECT_WLOCK(object); 1354 for (j = 0; j < n; ++j) { 1355 vm_page_t mreq = m[i+j]; 1356 1357 swp_pager_meta_build( 1358 mreq->object, 1359 mreq->pindex, 1360 blk + j 1361 ); 1362 vm_page_dirty(mreq); 1363 mreq->oflags |= VPO_SWAPINPROG; 1364 bp->b_pages[j] = mreq; 1365 } 1366 VM_OBJECT_WUNLOCK(object); 1367 bp->b_npages = n; 1368 /* 1369 * Must set dirty range for NFS to work. 1370 */ 1371 bp->b_dirtyoff = 0; 1372 bp->b_dirtyend = bp->b_bcount; 1373 1374 PCPU_INC(cnt.v_swapout); 1375 PCPU_ADD(cnt.v_swappgsout, bp->b_npages); 1376 1377 /* 1378 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1379 * can call the async completion routine at the end of a 1380 * synchronous I/O operation. Otherwise, our caller would 1381 * perform duplicate unbusy and wakeup operations on the page 1382 * and object, respectively. 1383 */ 1384 for (j = 0; j < n; j++) 1385 rtvals[i + j] = VM_PAGER_PEND; 1386 1387 /* 1388 * asynchronous 1389 * 1390 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1391 */ 1392 if (sync == FALSE) { 1393 bp->b_iodone = swp_pager_async_iodone; 1394 BUF_KERNPROC(bp); 1395 swp_pager_strategy(bp); 1396 continue; 1397 } 1398 1399 /* 1400 * synchronous 1401 * 1402 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1403 */ 1404 bp->b_iodone = bdone; 1405 swp_pager_strategy(bp); 1406 1407 /* 1408 * Wait for the sync I/O to complete. 1409 */ 1410 bwait(bp, PVM, "swwrt"); 1411 1412 /* 1413 * Now that we are through with the bp, we can call the 1414 * normal async completion, which frees everything up. 1415 */ 1416 swp_pager_async_iodone(bp); 1417 } 1418 VM_OBJECT_WLOCK(object); 1419 } 1420 1421 /* 1422 * swp_pager_async_iodone: 1423 * 1424 * Completion routine for asynchronous reads and writes from/to swap. 1425 * Also called manually by synchronous code to finish up a bp. 1426 * 1427 * This routine may not sleep. 1428 */ 1429 static void 1430 swp_pager_async_iodone(struct buf *bp) 1431 { 1432 int i; 1433 vm_object_t object = NULL; 1434 1435 /* 1436 * report error 1437 */ 1438 if (bp->b_ioflags & BIO_ERROR) { 1439 printf( 1440 "swap_pager: I/O error - %s failed; blkno %ld," 1441 "size %ld, error %d\n", 1442 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1443 (long)bp->b_blkno, 1444 (long)bp->b_bcount, 1445 bp->b_error 1446 ); 1447 } 1448 1449 /* 1450 * remove the mapping for kernel virtual 1451 */ 1452 if (buf_mapped(bp)) 1453 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1454 else 1455 bp->b_data = bp->b_kvabase; 1456 1457 if (bp->b_npages) { 1458 object = bp->b_pages[0]->object; 1459 VM_OBJECT_WLOCK(object); 1460 } 1461 1462 /* 1463 * cleanup pages. If an error occurs writing to swap, we are in 1464 * very serious trouble. If it happens to be a disk error, though, 1465 * we may be able to recover by reassigning the swap later on. So 1466 * in this case we remove the m->swapblk assignment for the page 1467 * but do not free it in the rlist. The errornous block(s) are thus 1468 * never reallocated as swap. Redirty the page and continue. 1469 */ 1470 for (i = 0; i < bp->b_npages; ++i) { 1471 vm_page_t m = bp->b_pages[i]; 1472 1473 m->oflags &= ~VPO_SWAPINPROG; 1474 if (m->oflags & VPO_SWAPSLEEP) { 1475 m->oflags &= ~VPO_SWAPSLEEP; 1476 wakeup(&object->paging_in_progress); 1477 } 1478 1479 if (bp->b_ioflags & BIO_ERROR) { 1480 /* 1481 * If an error occurs I'd love to throw the swapblk 1482 * away without freeing it back to swapspace, so it 1483 * can never be used again. But I can't from an 1484 * interrupt. 1485 */ 1486 if (bp->b_iocmd == BIO_READ) { 1487 /* 1488 * NOTE: for reads, m->dirty will probably 1489 * be overridden by the original caller of 1490 * getpages so don't play cute tricks here. 1491 */ 1492 m->valid = 0; 1493 } else { 1494 /* 1495 * If a write error occurs, reactivate page 1496 * so it doesn't clog the inactive list, 1497 * then finish the I/O. 1498 */ 1499 vm_page_dirty(m); 1500 vm_page_lock(m); 1501 vm_page_activate(m); 1502 vm_page_unlock(m); 1503 vm_page_sunbusy(m); 1504 } 1505 } else if (bp->b_iocmd == BIO_READ) { 1506 /* 1507 * NOTE: for reads, m->dirty will probably be 1508 * overridden by the original caller of getpages so 1509 * we cannot set them in order to free the underlying 1510 * swap in a low-swap situation. I don't think we'd 1511 * want to do that anyway, but it was an optimization 1512 * that existed in the old swapper for a time before 1513 * it got ripped out due to precisely this problem. 1514 */ 1515 KASSERT(!pmap_page_is_mapped(m), 1516 ("swp_pager_async_iodone: page %p is mapped", m)); 1517 KASSERT(m->dirty == 0, 1518 ("swp_pager_async_iodone: page %p is dirty", m)); 1519 m->valid = VM_PAGE_BITS_ALL; 1520 } else { 1521 /* 1522 * For write success, clear the dirty 1523 * status, then finish the I/O ( which decrements the 1524 * busy count and possibly wakes waiter's up ). 1525 */ 1526 KASSERT(!pmap_page_is_write_mapped(m), 1527 ("swp_pager_async_iodone: page %p is not write" 1528 " protected", m)); 1529 vm_page_undirty(m); 1530 vm_page_sunbusy(m); 1531 if (vm_page_count_severe()) { 1532 vm_page_lock(m); 1533 vm_page_try_to_cache(m); 1534 vm_page_unlock(m); 1535 } 1536 } 1537 } 1538 1539 /* 1540 * adjust pip. NOTE: the original parent may still have its own 1541 * pip refs on the object. 1542 */ 1543 if (object != NULL) { 1544 vm_object_pip_wakeupn(object, bp->b_npages); 1545 VM_OBJECT_WUNLOCK(object); 1546 } 1547 1548 /* 1549 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1550 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1551 * trigger a KASSERT in relpbuf(). 1552 */ 1553 if (bp->b_vp) { 1554 bp->b_vp = NULL; 1555 bp->b_bufobj = NULL; 1556 } 1557 /* 1558 * release the physical I/O buffer 1559 */ 1560 relpbuf( 1561 bp, 1562 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1563 ((bp->b_flags & B_ASYNC) ? 1564 &nsw_wcount_async : 1565 &nsw_wcount_sync 1566 ) 1567 ) 1568 ); 1569 } 1570 1571 /* 1572 * swap_pager_isswapped: 1573 * 1574 * Return 1 if at least one page in the given object is paged 1575 * out to the given swap device. 1576 * 1577 * This routine may not sleep. 1578 */ 1579 int 1580 swap_pager_isswapped(vm_object_t object, struct swdevt *sp) 1581 { 1582 daddr_t index = 0; 1583 int bcount; 1584 int i; 1585 1586 VM_OBJECT_ASSERT_WLOCKED(object); 1587 if (object->type != OBJT_SWAP) 1588 return (0); 1589 1590 mtx_lock(&swhash_mtx); 1591 for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) { 1592 struct swblock *swap; 1593 1594 if ((swap = *swp_pager_hash(object, index)) != NULL) { 1595 for (i = 0; i < SWAP_META_PAGES; ++i) { 1596 if (swp_pager_isondev(swap->swb_pages[i], sp)) { 1597 mtx_unlock(&swhash_mtx); 1598 return (1); 1599 } 1600 } 1601 } 1602 index += SWAP_META_PAGES; 1603 } 1604 mtx_unlock(&swhash_mtx); 1605 return (0); 1606 } 1607 1608 /* 1609 * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in 1610 * 1611 * This routine dissociates the page at the given index within a 1612 * swap block from its backing store, paging it in if necessary. 1613 * If the page is paged in, it is placed in the inactive queue, 1614 * since it had its backing store ripped out from under it. 1615 * We also attempt to swap in all other pages in the swap block, 1616 * we only guarantee that the one at the specified index is 1617 * paged in. 1618 * 1619 * XXX - The code to page the whole block in doesn't work, so we 1620 * revert to the one-by-one behavior for now. Sigh. 1621 */ 1622 static inline void 1623 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex) 1624 { 1625 vm_page_t m; 1626 1627 vm_object_pip_add(object, 1); 1628 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL); 1629 if (m->valid == VM_PAGE_BITS_ALL) { 1630 vm_object_pip_wakeup(object); 1631 vm_page_dirty(m); 1632 vm_page_lock(m); 1633 vm_page_activate(m); 1634 vm_page_unlock(m); 1635 vm_page_xunbusy(m); 1636 vm_pager_page_unswapped(m); 1637 return; 1638 } 1639 1640 if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK) 1641 panic("swap_pager_force_pagein: read from swap failed");/*XXX*/ 1642 vm_object_pip_wakeup(object); 1643 vm_page_dirty(m); 1644 vm_page_lock(m); 1645 vm_page_deactivate(m); 1646 vm_page_unlock(m); 1647 vm_page_xunbusy(m); 1648 vm_pager_page_unswapped(m); 1649 } 1650 1651 /* 1652 * swap_pager_swapoff: 1653 * 1654 * Page in all of the pages that have been paged out to the 1655 * given device. The corresponding blocks in the bitmap must be 1656 * marked as allocated and the device must be flagged SW_CLOSING. 1657 * There may be no processes swapped out to the device. 1658 * 1659 * This routine may block. 1660 */ 1661 static void 1662 swap_pager_swapoff(struct swdevt *sp) 1663 { 1664 struct swblock *swap; 1665 int i, j, retries; 1666 1667 GIANT_REQUIRED; 1668 1669 retries = 0; 1670 full_rescan: 1671 mtx_lock(&swhash_mtx); 1672 for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */ 1673 restart: 1674 for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) { 1675 vm_object_t object = swap->swb_object; 1676 vm_pindex_t pindex = swap->swb_index; 1677 for (j = 0; j < SWAP_META_PAGES; ++j) { 1678 if (swp_pager_isondev(swap->swb_pages[j], sp)) { 1679 /* avoid deadlock */ 1680 if (!VM_OBJECT_TRYWLOCK(object)) { 1681 break; 1682 } else { 1683 mtx_unlock(&swhash_mtx); 1684 swp_pager_force_pagein(object, 1685 pindex + j); 1686 VM_OBJECT_WUNLOCK(object); 1687 mtx_lock(&swhash_mtx); 1688 goto restart; 1689 } 1690 } 1691 } 1692 } 1693 } 1694 mtx_unlock(&swhash_mtx); 1695 if (sp->sw_used) { 1696 /* 1697 * Objects may be locked or paging to the device being 1698 * removed, so we will miss their pages and need to 1699 * make another pass. We have marked this device as 1700 * SW_CLOSING, so the activity should finish soon. 1701 */ 1702 retries++; 1703 if (retries > 100) { 1704 panic("swapoff: failed to locate %d swap blocks", 1705 sp->sw_used); 1706 } 1707 pause("swpoff", hz / 20); 1708 goto full_rescan; 1709 } 1710 } 1711 1712 /************************************************************************ 1713 * SWAP META DATA * 1714 ************************************************************************ 1715 * 1716 * These routines manipulate the swap metadata stored in the 1717 * OBJT_SWAP object. 1718 * 1719 * Swap metadata is implemented with a global hash and not directly 1720 * linked into the object. Instead the object simply contains 1721 * appropriate tracking counters. 1722 */ 1723 1724 /* 1725 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1726 * 1727 * We first convert the object to a swap object if it is a default 1728 * object. 1729 * 1730 * The specified swapblk is added to the object's swap metadata. If 1731 * the swapblk is not valid, it is freed instead. Any previously 1732 * assigned swapblk is freed. 1733 */ 1734 static void 1735 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1736 { 1737 static volatile int exhausted; 1738 struct swblock *swap; 1739 struct swblock **pswap; 1740 int idx; 1741 1742 VM_OBJECT_ASSERT_WLOCKED(object); 1743 /* 1744 * Convert default object to swap object if necessary 1745 */ 1746 if (object->type != OBJT_SWAP) { 1747 object->type = OBJT_SWAP; 1748 object->un_pager.swp.swp_bcount = 0; 1749 1750 if (object->handle != NULL) { 1751 mtx_lock(&sw_alloc_mtx); 1752 TAILQ_INSERT_TAIL( 1753 NOBJLIST(object->handle), 1754 object, 1755 pager_object_list 1756 ); 1757 mtx_unlock(&sw_alloc_mtx); 1758 } 1759 } 1760 1761 /* 1762 * Locate hash entry. If not found create, but if we aren't adding 1763 * anything just return. If we run out of space in the map we wait 1764 * and, since the hash table may have changed, retry. 1765 */ 1766 retry: 1767 mtx_lock(&swhash_mtx); 1768 pswap = swp_pager_hash(object, pindex); 1769 1770 if ((swap = *pswap) == NULL) { 1771 int i; 1772 1773 if (swapblk == SWAPBLK_NONE) 1774 goto done; 1775 1776 swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT | 1777 (curproc == pageproc ? M_USE_RESERVE : 0)); 1778 if (swap == NULL) { 1779 mtx_unlock(&swhash_mtx); 1780 VM_OBJECT_WUNLOCK(object); 1781 if (uma_zone_exhausted(swap_zone)) { 1782 if (atomic_cmpset_int(&exhausted, 0, 1)) 1783 printf("swap zone exhausted, " 1784 "increase kern.maxswzone\n"); 1785 vm_pageout_oom(VM_OOM_SWAPZ); 1786 pause("swzonex", 10); 1787 } else 1788 VM_WAIT; 1789 VM_OBJECT_WLOCK(object); 1790 goto retry; 1791 } 1792 1793 if (atomic_cmpset_int(&exhausted, 1, 0)) 1794 printf("swap zone ok\n"); 1795 1796 swap->swb_hnext = NULL; 1797 swap->swb_object = object; 1798 swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK; 1799 swap->swb_count = 0; 1800 1801 ++object->un_pager.swp.swp_bcount; 1802 1803 for (i = 0; i < SWAP_META_PAGES; ++i) 1804 swap->swb_pages[i] = SWAPBLK_NONE; 1805 } 1806 1807 /* 1808 * Delete prior contents of metadata 1809 */ 1810 idx = pindex & SWAP_META_MASK; 1811 1812 if (swap->swb_pages[idx] != SWAPBLK_NONE) { 1813 swp_pager_freeswapspace(swap->swb_pages[idx], 1); 1814 --swap->swb_count; 1815 } 1816 1817 /* 1818 * Enter block into metadata 1819 */ 1820 swap->swb_pages[idx] = swapblk; 1821 if (swapblk != SWAPBLK_NONE) 1822 ++swap->swb_count; 1823 done: 1824 mtx_unlock(&swhash_mtx); 1825 } 1826 1827 /* 1828 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1829 * 1830 * The requested range of blocks is freed, with any associated swap 1831 * returned to the swap bitmap. 1832 * 1833 * This routine will free swap metadata structures as they are cleaned 1834 * out. This routine does *NOT* operate on swap metadata associated 1835 * with resident pages. 1836 */ 1837 static void 1838 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1839 { 1840 1841 VM_OBJECT_ASSERT_LOCKED(object); 1842 if (object->type != OBJT_SWAP) 1843 return; 1844 1845 while (count > 0) { 1846 struct swblock **pswap; 1847 struct swblock *swap; 1848 1849 mtx_lock(&swhash_mtx); 1850 pswap = swp_pager_hash(object, index); 1851 1852 if ((swap = *pswap) != NULL) { 1853 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1854 1855 if (v != SWAPBLK_NONE) { 1856 swp_pager_freeswapspace(v, 1); 1857 swap->swb_pages[index & SWAP_META_MASK] = 1858 SWAPBLK_NONE; 1859 if (--swap->swb_count == 0) { 1860 *pswap = swap->swb_hnext; 1861 uma_zfree(swap_zone, swap); 1862 --object->un_pager.swp.swp_bcount; 1863 } 1864 } 1865 --count; 1866 ++index; 1867 } else { 1868 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1869 count -= n; 1870 index += n; 1871 } 1872 mtx_unlock(&swhash_mtx); 1873 } 1874 } 1875 1876 /* 1877 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1878 * 1879 * This routine locates and destroys all swap metadata associated with 1880 * an object. 1881 */ 1882 static void 1883 swp_pager_meta_free_all(vm_object_t object) 1884 { 1885 daddr_t index = 0; 1886 1887 VM_OBJECT_ASSERT_WLOCKED(object); 1888 if (object->type != OBJT_SWAP) 1889 return; 1890 1891 while (object->un_pager.swp.swp_bcount) { 1892 struct swblock **pswap; 1893 struct swblock *swap; 1894 1895 mtx_lock(&swhash_mtx); 1896 pswap = swp_pager_hash(object, index); 1897 if ((swap = *pswap) != NULL) { 1898 int i; 1899 1900 for (i = 0; i < SWAP_META_PAGES; ++i) { 1901 daddr_t v = swap->swb_pages[i]; 1902 if (v != SWAPBLK_NONE) { 1903 --swap->swb_count; 1904 swp_pager_freeswapspace(v, 1); 1905 } 1906 } 1907 if (swap->swb_count != 0) 1908 panic("swap_pager_meta_free_all: swb_count != 0"); 1909 *pswap = swap->swb_hnext; 1910 uma_zfree(swap_zone, swap); 1911 --object->un_pager.swp.swp_bcount; 1912 } 1913 mtx_unlock(&swhash_mtx); 1914 index += SWAP_META_PAGES; 1915 } 1916 } 1917 1918 /* 1919 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1920 * 1921 * This routine is capable of looking up, popping, or freeing 1922 * swapblk assignments in the swap meta data or in the vm_page_t. 1923 * The routine typically returns the swapblk being looked-up, or popped, 1924 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1925 * was invalid. This routine will automatically free any invalid 1926 * meta-data swapblks. 1927 * 1928 * It is not possible to store invalid swapblks in the swap meta data 1929 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1930 * 1931 * When acting on a busy resident page and paging is in progress, we 1932 * have to wait until paging is complete but otherwise can act on the 1933 * busy page. 1934 * 1935 * SWM_FREE remove and free swap block from metadata 1936 * SWM_POP remove from meta data but do not free.. pop it out 1937 */ 1938 static daddr_t 1939 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 1940 { 1941 struct swblock **pswap; 1942 struct swblock *swap; 1943 daddr_t r1; 1944 int idx; 1945 1946 VM_OBJECT_ASSERT_LOCKED(object); 1947 /* 1948 * The meta data only exists of the object is OBJT_SWAP 1949 * and even then might not be allocated yet. 1950 */ 1951 if (object->type != OBJT_SWAP) 1952 return (SWAPBLK_NONE); 1953 1954 r1 = SWAPBLK_NONE; 1955 mtx_lock(&swhash_mtx); 1956 pswap = swp_pager_hash(object, pindex); 1957 1958 if ((swap = *pswap) != NULL) { 1959 idx = pindex & SWAP_META_MASK; 1960 r1 = swap->swb_pages[idx]; 1961 1962 if (r1 != SWAPBLK_NONE) { 1963 if (flags & SWM_FREE) { 1964 swp_pager_freeswapspace(r1, 1); 1965 r1 = SWAPBLK_NONE; 1966 } 1967 if (flags & (SWM_FREE|SWM_POP)) { 1968 swap->swb_pages[idx] = SWAPBLK_NONE; 1969 if (--swap->swb_count == 0) { 1970 *pswap = swap->swb_hnext; 1971 uma_zfree(swap_zone, swap); 1972 --object->un_pager.swp.swp_bcount; 1973 } 1974 } 1975 } 1976 } 1977 mtx_unlock(&swhash_mtx); 1978 return (r1); 1979 } 1980 1981 /* 1982 * System call swapon(name) enables swapping on device name, 1983 * which must be in the swdevsw. Return EBUSY 1984 * if already swapping on this device. 1985 */ 1986 #ifndef _SYS_SYSPROTO_H_ 1987 struct swapon_args { 1988 char *name; 1989 }; 1990 #endif 1991 1992 /* 1993 * MPSAFE 1994 */ 1995 /* ARGSUSED */ 1996 int 1997 sys_swapon(struct thread *td, struct swapon_args *uap) 1998 { 1999 struct vattr attr; 2000 struct vnode *vp; 2001 struct nameidata nd; 2002 int error; 2003 2004 error = priv_check(td, PRIV_SWAPON); 2005 if (error) 2006 return (error); 2007 2008 mtx_lock(&Giant); 2009 while (swdev_syscall_active) 2010 tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); 2011 swdev_syscall_active = 1; 2012 2013 /* 2014 * Swap metadata may not fit in the KVM if we have physical 2015 * memory of >1GB. 2016 */ 2017 if (swap_zone == NULL) { 2018 error = ENOMEM; 2019 goto done; 2020 } 2021 2022 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2023 uap->name, td); 2024 error = namei(&nd); 2025 if (error) 2026 goto done; 2027 2028 NDFREE(&nd, NDF_ONLY_PNBUF); 2029 vp = nd.ni_vp; 2030 2031 if (vn_isdisk(vp, &error)) { 2032 error = swapongeom(td, vp); 2033 } else if (vp->v_type == VREG && 2034 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2035 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2036 /* 2037 * Allow direct swapping to NFS regular files in the same 2038 * way that nfs_mountroot() sets up diskless swapping. 2039 */ 2040 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2041 } 2042 2043 if (error) 2044 vrele(vp); 2045 done: 2046 swdev_syscall_active = 0; 2047 wakeup_one(&swdev_syscall_active); 2048 mtx_unlock(&Giant); 2049 return (error); 2050 } 2051 2052 /* 2053 * Check that the total amount of swap currently configured does not 2054 * exceed half the theoretical maximum. If it does, print a warning 2055 * message and return -1; otherwise, return 0. 2056 */ 2057 static int 2058 swapon_check_swzone(unsigned long npages) 2059 { 2060 unsigned long maxpages; 2061 2062 /* absolute maximum we can handle assuming 100% efficiency */ 2063 maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES; 2064 2065 /* recommend using no more than half that amount */ 2066 if (npages > maxpages / 2) { 2067 printf("warning: total configured swap (%lu pages) " 2068 "exceeds maximum recommended amount (%lu pages).\n", 2069 npages, maxpages / 2); 2070 printf("warning: increase kern.maxswzone " 2071 "or reduce amount of swap.\n"); 2072 return (-1); 2073 } 2074 return (0); 2075 } 2076 2077 static void 2078 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2079 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2080 { 2081 struct swdevt *sp, *tsp; 2082 swblk_t dvbase; 2083 u_long mblocks; 2084 2085 /* 2086 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2087 * First chop nblks off to page-align it, then convert. 2088 * 2089 * sw->sw_nblks is in page-sized chunks now too. 2090 */ 2091 nblks &= ~(ctodb(1) - 1); 2092 nblks = dbtoc(nblks); 2093 2094 /* 2095 * If we go beyond this, we get overflows in the radix 2096 * tree bitmap code. 2097 */ 2098 mblocks = 0x40000000 / BLIST_META_RADIX; 2099 if (nblks > mblocks) { 2100 printf( 2101 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2102 mblocks / 1024 / 1024 * PAGE_SIZE); 2103 nblks = mblocks; 2104 } 2105 2106 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2107 sp->sw_vp = vp; 2108 sp->sw_id = id; 2109 sp->sw_dev = dev; 2110 sp->sw_flags = 0; 2111 sp->sw_nblks = nblks; 2112 sp->sw_used = 0; 2113 sp->sw_strategy = strategy; 2114 sp->sw_close = close; 2115 sp->sw_flags = flags; 2116 2117 sp->sw_blist = blist_create(nblks, M_WAITOK); 2118 /* 2119 * Do not free the first two block in order to avoid overwriting 2120 * any bsd label at the front of the partition 2121 */ 2122 blist_free(sp->sw_blist, 2, nblks - 2); 2123 2124 dvbase = 0; 2125 mtx_lock(&sw_dev_mtx); 2126 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2127 if (tsp->sw_end >= dvbase) { 2128 /* 2129 * We put one uncovered page between the devices 2130 * in order to definitively prevent any cross-device 2131 * I/O requests 2132 */ 2133 dvbase = tsp->sw_end + 1; 2134 } 2135 } 2136 sp->sw_first = dvbase; 2137 sp->sw_end = dvbase + nblks; 2138 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2139 nswapdev++; 2140 swap_pager_avail += nblks; 2141 swap_total += (vm_ooffset_t)nblks * PAGE_SIZE; 2142 swapon_check_swzone(swap_total / PAGE_SIZE); 2143 swp_sizecheck(); 2144 mtx_unlock(&sw_dev_mtx); 2145 } 2146 2147 /* 2148 * SYSCALL: swapoff(devname) 2149 * 2150 * Disable swapping on the given device. 2151 * 2152 * XXX: Badly designed system call: it should use a device index 2153 * rather than filename as specification. We keep sw_vp around 2154 * only to make this work. 2155 */ 2156 #ifndef _SYS_SYSPROTO_H_ 2157 struct swapoff_args { 2158 char *name; 2159 }; 2160 #endif 2161 2162 /* 2163 * MPSAFE 2164 */ 2165 /* ARGSUSED */ 2166 int 2167 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2168 { 2169 struct vnode *vp; 2170 struct nameidata nd; 2171 struct swdevt *sp; 2172 int error; 2173 2174 error = priv_check(td, PRIV_SWAPOFF); 2175 if (error) 2176 return (error); 2177 2178 mtx_lock(&Giant); 2179 while (swdev_syscall_active) 2180 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2181 swdev_syscall_active = 1; 2182 2183 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2184 td); 2185 error = namei(&nd); 2186 if (error) 2187 goto done; 2188 NDFREE(&nd, NDF_ONLY_PNBUF); 2189 vp = nd.ni_vp; 2190 2191 mtx_lock(&sw_dev_mtx); 2192 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2193 if (sp->sw_vp == vp) 2194 break; 2195 } 2196 mtx_unlock(&sw_dev_mtx); 2197 if (sp == NULL) { 2198 error = EINVAL; 2199 goto done; 2200 } 2201 error = swapoff_one(sp, td->td_ucred); 2202 done: 2203 swdev_syscall_active = 0; 2204 wakeup_one(&swdev_syscall_active); 2205 mtx_unlock(&Giant); 2206 return (error); 2207 } 2208 2209 static int 2210 swapoff_one(struct swdevt *sp, struct ucred *cred) 2211 { 2212 u_long nblks, dvbase; 2213 #ifdef MAC 2214 int error; 2215 #endif 2216 2217 mtx_assert(&Giant, MA_OWNED); 2218 #ifdef MAC 2219 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2220 error = mac_system_check_swapoff(cred, sp->sw_vp); 2221 (void) VOP_UNLOCK(sp->sw_vp, 0); 2222 if (error != 0) 2223 return (error); 2224 #endif 2225 nblks = sp->sw_nblks; 2226 2227 /* 2228 * We can turn off this swap device safely only if the 2229 * available virtual memory in the system will fit the amount 2230 * of data we will have to page back in, plus an epsilon so 2231 * the system doesn't become critically low on swap space. 2232 */ 2233 if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail < 2234 nblks + nswap_lowat) { 2235 return (ENOMEM); 2236 } 2237 2238 /* 2239 * Prevent further allocations on this device. 2240 */ 2241 mtx_lock(&sw_dev_mtx); 2242 sp->sw_flags |= SW_CLOSING; 2243 for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) { 2244 swap_pager_avail -= blist_fill(sp->sw_blist, 2245 dvbase, dmmax); 2246 } 2247 swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE; 2248 mtx_unlock(&sw_dev_mtx); 2249 2250 /* 2251 * Page in the contents of the device and close it. 2252 */ 2253 swap_pager_swapoff(sp); 2254 2255 sp->sw_close(curthread, sp); 2256 mtx_lock(&sw_dev_mtx); 2257 sp->sw_id = NULL; 2258 TAILQ_REMOVE(&swtailq, sp, sw_list); 2259 nswapdev--; 2260 if (nswapdev == 0) { 2261 swap_pager_full = 2; 2262 swap_pager_almost_full = 1; 2263 } 2264 if (swdevhd == sp) 2265 swdevhd = NULL; 2266 mtx_unlock(&sw_dev_mtx); 2267 blist_destroy(sp->sw_blist); 2268 free(sp, M_VMPGDATA); 2269 return (0); 2270 } 2271 2272 void 2273 swapoff_all(void) 2274 { 2275 struct swdevt *sp, *spt; 2276 const char *devname; 2277 int error; 2278 2279 mtx_lock(&Giant); 2280 while (swdev_syscall_active) 2281 tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); 2282 swdev_syscall_active = 1; 2283 2284 mtx_lock(&sw_dev_mtx); 2285 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2286 mtx_unlock(&sw_dev_mtx); 2287 if (vn_isdisk(sp->sw_vp, NULL)) 2288 devname = devtoname(sp->sw_vp->v_rdev); 2289 else 2290 devname = "[file]"; 2291 error = swapoff_one(sp, thread0.td_ucred); 2292 if (error != 0) { 2293 printf("Cannot remove swap device %s (error=%d), " 2294 "skipping.\n", devname, error); 2295 } else if (bootverbose) { 2296 printf("Swap device %s removed.\n", devname); 2297 } 2298 mtx_lock(&sw_dev_mtx); 2299 } 2300 mtx_unlock(&sw_dev_mtx); 2301 2302 swdev_syscall_active = 0; 2303 wakeup_one(&swdev_syscall_active); 2304 mtx_unlock(&Giant); 2305 } 2306 2307 void 2308 swap_pager_status(int *total, int *used) 2309 { 2310 struct swdevt *sp; 2311 2312 *total = 0; 2313 *used = 0; 2314 mtx_lock(&sw_dev_mtx); 2315 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2316 *total += sp->sw_nblks; 2317 *used += sp->sw_used; 2318 } 2319 mtx_unlock(&sw_dev_mtx); 2320 } 2321 2322 int 2323 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2324 { 2325 struct swdevt *sp; 2326 const char *tmp_devname; 2327 int error, n; 2328 2329 n = 0; 2330 error = ENOENT; 2331 mtx_lock(&sw_dev_mtx); 2332 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2333 if (n != name) { 2334 n++; 2335 continue; 2336 } 2337 xs->xsw_version = XSWDEV_VERSION; 2338 xs->xsw_dev = sp->sw_dev; 2339 xs->xsw_flags = sp->sw_flags; 2340 xs->xsw_nblks = sp->sw_nblks; 2341 xs->xsw_used = sp->sw_used; 2342 if (devname != NULL) { 2343 if (vn_isdisk(sp->sw_vp, NULL)) 2344 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2345 else 2346 tmp_devname = "[file]"; 2347 strncpy(devname, tmp_devname, len); 2348 } 2349 error = 0; 2350 break; 2351 } 2352 mtx_unlock(&sw_dev_mtx); 2353 return (error); 2354 } 2355 2356 static int 2357 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2358 { 2359 struct xswdev xs; 2360 int error; 2361 2362 if (arg2 != 1) /* name length */ 2363 return (EINVAL); 2364 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2365 if (error != 0) 2366 return (error); 2367 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2368 return (error); 2369 } 2370 2371 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2372 "Number of swap devices"); 2373 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, 2374 "Swap statistics by device"); 2375 2376 /* 2377 * vmspace_swap_count() - count the approximate swap usage in pages for a 2378 * vmspace. 2379 * 2380 * The map must be locked. 2381 * 2382 * Swap usage is determined by taking the proportional swap used by 2383 * VM objects backing the VM map. To make up for fractional losses, 2384 * if the VM object has any swap use at all the associated map entries 2385 * count for at least 1 swap page. 2386 */ 2387 long 2388 vmspace_swap_count(struct vmspace *vmspace) 2389 { 2390 vm_map_t map; 2391 vm_map_entry_t cur; 2392 vm_object_t object; 2393 long count, n; 2394 2395 map = &vmspace->vm_map; 2396 count = 0; 2397 2398 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2399 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2400 (object = cur->object.vm_object) != NULL) { 2401 VM_OBJECT_WLOCK(object); 2402 if (object->type == OBJT_SWAP && 2403 object->un_pager.swp.swp_bcount != 0) { 2404 n = (cur->end - cur->start) / PAGE_SIZE; 2405 count += object->un_pager.swp.swp_bcount * 2406 SWAP_META_PAGES * n / object->size + 1; 2407 } 2408 VM_OBJECT_WUNLOCK(object); 2409 } 2410 } 2411 return (count); 2412 } 2413 2414 /* 2415 * GEOM backend 2416 * 2417 * Swapping onto disk devices. 2418 * 2419 */ 2420 2421 static g_orphan_t swapgeom_orphan; 2422 2423 static struct g_class g_swap_class = { 2424 .name = "SWAP", 2425 .version = G_VERSION, 2426 .orphan = swapgeom_orphan, 2427 }; 2428 2429 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2430 2431 2432 static void 2433 swapgeom_close_ev(void *arg, int flags) 2434 { 2435 struct g_consumer *cp; 2436 2437 cp = arg; 2438 g_access(cp, -1, -1, 0); 2439 g_detach(cp); 2440 g_destroy_consumer(cp); 2441 } 2442 2443 /* 2444 * Add a reference to the g_consumer for an inflight transaction. 2445 */ 2446 static void 2447 swapgeom_acquire(struct g_consumer *cp) 2448 { 2449 2450 mtx_assert(&sw_dev_mtx, MA_OWNED); 2451 cp->index++; 2452 } 2453 2454 /* 2455 * Remove a reference from the g_consumer. Post a close event if 2456 * all referneces go away. 2457 */ 2458 static void 2459 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2460 { 2461 2462 mtx_assert(&sw_dev_mtx, MA_OWNED); 2463 cp->index--; 2464 if (cp->index == 0) { 2465 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2466 sp->sw_id = NULL; 2467 } 2468 } 2469 2470 static void 2471 swapgeom_done(struct bio *bp2) 2472 { 2473 struct swdevt *sp; 2474 struct buf *bp; 2475 struct g_consumer *cp; 2476 2477 bp = bp2->bio_caller2; 2478 cp = bp2->bio_from; 2479 bp->b_ioflags = bp2->bio_flags; 2480 if (bp2->bio_error) 2481 bp->b_ioflags |= BIO_ERROR; 2482 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2483 bp->b_error = bp2->bio_error; 2484 bufdone(bp); 2485 sp = bp2->bio_caller1; 2486 mtx_lock(&sw_dev_mtx); 2487 swapgeom_release(cp, sp); 2488 mtx_unlock(&sw_dev_mtx); 2489 g_destroy_bio(bp2); 2490 } 2491 2492 static void 2493 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2494 { 2495 struct bio *bio; 2496 struct g_consumer *cp; 2497 2498 mtx_lock(&sw_dev_mtx); 2499 cp = sp->sw_id; 2500 if (cp == NULL) { 2501 mtx_unlock(&sw_dev_mtx); 2502 bp->b_error = ENXIO; 2503 bp->b_ioflags |= BIO_ERROR; 2504 bufdone(bp); 2505 return; 2506 } 2507 swapgeom_acquire(cp); 2508 mtx_unlock(&sw_dev_mtx); 2509 if (bp->b_iocmd == BIO_WRITE) 2510 bio = g_new_bio(); 2511 else 2512 bio = g_alloc_bio(); 2513 if (bio == NULL) { 2514 mtx_lock(&sw_dev_mtx); 2515 swapgeom_release(cp, sp); 2516 mtx_unlock(&sw_dev_mtx); 2517 bp->b_error = ENOMEM; 2518 bp->b_ioflags |= BIO_ERROR; 2519 bufdone(bp); 2520 return; 2521 } 2522 2523 bio->bio_caller1 = sp; 2524 bio->bio_caller2 = bp; 2525 bio->bio_cmd = bp->b_iocmd; 2526 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2527 bio->bio_length = bp->b_bcount; 2528 bio->bio_done = swapgeom_done; 2529 if (!buf_mapped(bp)) { 2530 bio->bio_ma = bp->b_pages; 2531 bio->bio_data = unmapped_buf; 2532 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2533 bio->bio_ma_n = bp->b_npages; 2534 bio->bio_flags |= BIO_UNMAPPED; 2535 } else { 2536 bio->bio_data = bp->b_data; 2537 bio->bio_ma = NULL; 2538 } 2539 g_io_request(bio, cp); 2540 return; 2541 } 2542 2543 static void 2544 swapgeom_orphan(struct g_consumer *cp) 2545 { 2546 struct swdevt *sp; 2547 int destroy; 2548 2549 mtx_lock(&sw_dev_mtx); 2550 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2551 if (sp->sw_id == cp) { 2552 sp->sw_flags |= SW_CLOSING; 2553 break; 2554 } 2555 } 2556 /* 2557 * Drop reference we were created with. Do directly since we're in a 2558 * special context where we don't have to queue the call to 2559 * swapgeom_close_ev(). 2560 */ 2561 cp->index--; 2562 destroy = ((sp != NULL) && (cp->index == 0)); 2563 if (destroy) 2564 sp->sw_id = NULL; 2565 mtx_unlock(&sw_dev_mtx); 2566 if (destroy) 2567 swapgeom_close_ev(cp, 0); 2568 } 2569 2570 static void 2571 swapgeom_close(struct thread *td, struct swdevt *sw) 2572 { 2573 struct g_consumer *cp; 2574 2575 mtx_lock(&sw_dev_mtx); 2576 cp = sw->sw_id; 2577 sw->sw_id = NULL; 2578 mtx_unlock(&sw_dev_mtx); 2579 /* XXX: direct call when Giant untangled */ 2580 if (cp != NULL) 2581 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2582 } 2583 2584 2585 struct swh0h0 { 2586 struct cdev *dev; 2587 struct vnode *vp; 2588 int error; 2589 }; 2590 2591 static void 2592 swapongeom_ev(void *arg, int flags) 2593 { 2594 struct swh0h0 *swh; 2595 struct g_provider *pp; 2596 struct g_consumer *cp; 2597 static struct g_geom *gp; 2598 struct swdevt *sp; 2599 u_long nblks; 2600 int error; 2601 2602 swh = arg; 2603 swh->error = 0; 2604 pp = g_dev_getprovider(swh->dev); 2605 if (pp == NULL) { 2606 swh->error = ENODEV; 2607 return; 2608 } 2609 mtx_lock(&sw_dev_mtx); 2610 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2611 cp = sp->sw_id; 2612 if (cp != NULL && cp->provider == pp) { 2613 mtx_unlock(&sw_dev_mtx); 2614 swh->error = EBUSY; 2615 return; 2616 } 2617 } 2618 mtx_unlock(&sw_dev_mtx); 2619 if (gp == NULL) 2620 gp = g_new_geomf(&g_swap_class, "swap"); 2621 cp = g_new_consumer(gp); 2622 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2623 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2624 g_attach(cp, pp); 2625 /* 2626 * XXX: Everytime you think you can improve the margin for 2627 * footshooting, somebody depends on the ability to do so: 2628 * savecore(8) wants to write to our swapdev so we cannot 2629 * set an exclusive count :-( 2630 */ 2631 error = g_access(cp, 1, 1, 0); 2632 if (error) { 2633 g_detach(cp); 2634 g_destroy_consumer(cp); 2635 swh->error = error; 2636 return; 2637 } 2638 nblks = pp->mediasize / DEV_BSIZE; 2639 swaponsomething(swh->vp, cp, nblks, swapgeom_strategy, 2640 swapgeom_close, dev2udev(swh->dev), 2641 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2642 swh->error = 0; 2643 } 2644 2645 static int 2646 swapongeom(struct thread *td, struct vnode *vp) 2647 { 2648 int error; 2649 struct swh0h0 swh; 2650 2651 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2652 2653 swh.dev = vp->v_rdev; 2654 swh.vp = vp; 2655 swh.error = 0; 2656 /* XXX: direct call when Giant untangled */ 2657 error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL); 2658 if (!error) 2659 error = swh.error; 2660 VOP_UNLOCK(vp, 0); 2661 return (error); 2662 } 2663 2664 /* 2665 * VNODE backend 2666 * 2667 * This is used mainly for network filesystem (read: probably only tested 2668 * with NFS) swapfiles. 2669 * 2670 */ 2671 2672 static void 2673 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2674 { 2675 struct vnode *vp2; 2676 2677 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2678 2679 vp2 = sp->sw_id; 2680 vhold(vp2); 2681 if (bp->b_iocmd == BIO_WRITE) { 2682 if (bp->b_bufobj) 2683 bufobj_wdrop(bp->b_bufobj); 2684 bufobj_wref(&vp2->v_bufobj); 2685 } 2686 if (bp->b_bufobj != &vp2->v_bufobj) 2687 bp->b_bufobj = &vp2->v_bufobj; 2688 bp->b_vp = vp2; 2689 bp->b_iooffset = dbtob(bp->b_blkno); 2690 bstrategy(bp); 2691 return; 2692 } 2693 2694 static void 2695 swapdev_close(struct thread *td, struct swdevt *sp) 2696 { 2697 2698 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2699 vrele(sp->sw_vp); 2700 } 2701 2702 2703 static int 2704 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2705 { 2706 struct swdevt *sp; 2707 int error; 2708 2709 if (nblks == 0) 2710 return (ENXIO); 2711 mtx_lock(&sw_dev_mtx); 2712 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2713 if (sp->sw_id == vp) { 2714 mtx_unlock(&sw_dev_mtx); 2715 return (EBUSY); 2716 } 2717 } 2718 mtx_unlock(&sw_dev_mtx); 2719 2720 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2721 #ifdef MAC 2722 error = mac_system_check_swapon(td->td_ucred, vp); 2723 if (error == 0) 2724 #endif 2725 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2726 (void) VOP_UNLOCK(vp, 0); 2727 if (error) 2728 return (error); 2729 2730 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2731 NODEV, 0); 2732 return (0); 2733 } 2734 2735 static int 2736 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2737 { 2738 int error, new, n; 2739 2740 new = nsw_wcount_async_max; 2741 error = sysctl_handle_int(oidp, &new, 0, req); 2742 if (error != 0 || req->newptr == NULL) 2743 return (error); 2744 2745 if (new > nswbuf / 2 || new < 1) 2746 return (EINVAL); 2747 2748 mtx_lock(&pbuf_mtx); 2749 while (nsw_wcount_async_max != new) { 2750 /* 2751 * Adjust difference. If the current async count is too low, 2752 * we will need to sqeeze our update slowly in. Sleep with a 2753 * higher priority than getpbuf() to finish faster. 2754 */ 2755 n = new - nsw_wcount_async_max; 2756 if (nsw_wcount_async + n >= 0) { 2757 nsw_wcount_async += n; 2758 nsw_wcount_async_max += n; 2759 wakeup(&nsw_wcount_async); 2760 } else { 2761 nsw_wcount_async_max -= nsw_wcount_async; 2762 nsw_wcount_async = 0; 2763 msleep(&nsw_wcount_async, &pbuf_mtx, PSWP, 2764 "swpsysctl", 0); 2765 } 2766 } 2767 mtx_unlock(&pbuf_mtx); 2768 2769 return (0); 2770 } 2771