xref: /freebsd/sys/vm/swap_pager.c (revision 1bee2ec756f2ea5255f9f68dd58c1ceae1a2f56c)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sysctl.h>
93 #include <sys/sysproto.h>
94 #include <sys/blist.h>
95 #include <sys/lock.h>
96 #include <sys/sx.h>
97 #include <sys/vmmeter.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 #include <vm/vm.h>
102 #include <vm/pmap.h>
103 #include <vm/vm_map.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_param.h>
110 #include <vm/swap_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/uma.h>
113 
114 #include <geom/geom.h>
115 
116 /*
117  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
118  * pages per allocation.  We recommend you stick with the default of 8.
119  * The 16-page limit is due to the radix code (kern/subr_blist.c).
120  */
121 #ifndef MAX_PAGEOUT_CLUSTER
122 #define MAX_PAGEOUT_CLUSTER 16
123 #endif
124 
125 #if !defined(SWB_NPAGES)
126 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
127 #endif
128 
129 /*
130  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
131  *
132  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
133  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
134  * 32K worth of data, two levels represent 256K, three levels represent
135  * 2 MBytes.   This is acceptable.
136  *
137  * Overall memory utilization is about the same as the old swap structure.
138  */
139 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
140 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
141 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
142 
143 struct swblock {
144 	struct swblock	*swb_hnext;
145 	vm_object_t	swb_object;
146 	vm_pindex_t	swb_index;
147 	int		swb_count;
148 	daddr_t		swb_pages[SWAP_META_PAGES];
149 };
150 
151 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
152 static struct mtx sw_dev_mtx;
153 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
154 static struct swdevt *swdevhd;	/* Allocate from here next */
155 static int nswapdev;		/* Number of swap devices */
156 int swap_pager_avail;
157 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
158 
159 static vm_ooffset_t swap_total;
160 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
161     "Total amount of available swap storage.");
162 static vm_ooffset_t swap_reserved;
163 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 static int overcommit = 0;
166 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
167     "Configure virtual memory overcommit behavior. See tuning(7) "
168     "for details.");
169 
170 /* bits from overcommit */
171 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
172 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
173 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
174 
175 int
176 swap_reserve(vm_ooffset_t incr)
177 {
178 
179 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
180 }
181 
182 int
183 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
184 {
185 	vm_ooffset_t r, s;
186 	int res, error;
187 	static int curfail;
188 	static struct timeval lastfail;
189 	struct uidinfo *uip;
190 
191 	uip = cred->cr_ruidinfo;
192 
193 	if (incr & PAGE_MASK)
194 		panic("swap_reserve: & PAGE_MASK");
195 
196 #ifdef RACCT
197 	PROC_LOCK(curproc);
198 	error = racct_add(curproc, RACCT_SWAP, incr);
199 	PROC_UNLOCK(curproc);
200 	if (error != 0)
201 		return (0);
202 #endif
203 
204 	res = 0;
205 	mtx_lock(&sw_dev_mtx);
206 	r = swap_reserved + incr;
207 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
208 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
209 		s *= PAGE_SIZE;
210 	} else
211 		s = 0;
212 	s += swap_total;
213 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
214 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
215 		res = 1;
216 		swap_reserved = r;
217 	}
218 	mtx_unlock(&sw_dev_mtx);
219 
220 	if (res) {
221 		PROC_LOCK(curproc);
222 		UIDINFO_VMSIZE_LOCK(uip);
223 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
224 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
225 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
226 			res = 0;
227 		else
228 			uip->ui_vmsize += incr;
229 		UIDINFO_VMSIZE_UNLOCK(uip);
230 		PROC_UNLOCK(curproc);
231 		if (!res) {
232 			mtx_lock(&sw_dev_mtx);
233 			swap_reserved -= incr;
234 			mtx_unlock(&sw_dev_mtx);
235 		}
236 	}
237 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
238 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
239 		    curproc->p_pid, uip->ui_uid, incr);
240 	}
241 
242 #ifdef RACCT
243 	if (!res) {
244 		PROC_LOCK(curproc);
245 		racct_sub(curproc, RACCT_SWAP, incr);
246 		PROC_UNLOCK(curproc);
247 	}
248 #endif
249 
250 	return (res);
251 }
252 
253 void
254 swap_reserve_force(vm_ooffset_t incr)
255 {
256 	struct uidinfo *uip;
257 
258 	mtx_lock(&sw_dev_mtx);
259 	swap_reserved += incr;
260 	mtx_unlock(&sw_dev_mtx);
261 
262 #ifdef RACCT
263 	PROC_LOCK(curproc);
264 	racct_add_force(curproc, RACCT_SWAP, incr);
265 	PROC_UNLOCK(curproc);
266 #endif
267 
268 	uip = curthread->td_ucred->cr_ruidinfo;
269 	PROC_LOCK(curproc);
270 	UIDINFO_VMSIZE_LOCK(uip);
271 	uip->ui_vmsize += incr;
272 	UIDINFO_VMSIZE_UNLOCK(uip);
273 	PROC_UNLOCK(curproc);
274 }
275 
276 void
277 swap_release(vm_ooffset_t decr)
278 {
279 	struct ucred *cred;
280 
281 	PROC_LOCK(curproc);
282 	cred = curthread->td_ucred;
283 	swap_release_by_cred(decr, cred);
284 	PROC_UNLOCK(curproc);
285 }
286 
287 void
288 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
289 {
290  	struct uidinfo *uip;
291 
292 	uip = cred->cr_ruidinfo;
293 
294 	if (decr & PAGE_MASK)
295 		panic("swap_release: & PAGE_MASK");
296 
297 	mtx_lock(&sw_dev_mtx);
298 	if (swap_reserved < decr)
299 		panic("swap_reserved < decr");
300 	swap_reserved -= decr;
301 	mtx_unlock(&sw_dev_mtx);
302 
303 	UIDINFO_VMSIZE_LOCK(uip);
304 	if (uip->ui_vmsize < decr)
305 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
306 	uip->ui_vmsize -= decr;
307 	UIDINFO_VMSIZE_UNLOCK(uip);
308 
309 	racct_sub_cred(cred, RACCT_SWAP, decr);
310 }
311 
312 static void swapdev_strategy(struct buf *, struct swdevt *sw);
313 
314 #define SWM_FREE	0x02	/* free, period			*/
315 #define SWM_POP		0x04	/* pop out			*/
316 
317 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
318 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
319 static int nsw_rcount;		/* free read buffers			*/
320 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
321 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
322 static int nsw_wcount_async_max;/* assigned maximum			*/
323 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
324 
325 static struct swblock **swhash;
326 static int swhash_mask;
327 static struct mtx swhash_mtx;
328 
329 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
330 static struct sx sw_alloc_sx;
331 
332 
333 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
334         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
335 
336 /*
337  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
338  * of searching a named list by hashing it just a little.
339  */
340 
341 #define NOBJLISTS		8
342 
343 #define NOBJLIST(handle)	\
344 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
345 
346 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
347 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
348 static uma_zone_t	swap_zone;
349 static struct vm_object	swap_zone_obj;
350 
351 /*
352  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
353  * calls hooked from other parts of the VM system and do not appear here.
354  * (see vm/swap_pager.h).
355  */
356 static vm_object_t
357 		swap_pager_alloc(void *handle, vm_ooffset_t size,
358 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
359 static void	swap_pager_dealloc(vm_object_t object);
360 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
361 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
362 static boolean_t
363 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
364 static void	swap_pager_init(void);
365 static void	swap_pager_unswapped(vm_page_t);
366 static void	swap_pager_swapoff(struct swdevt *sp);
367 
368 struct pagerops swappagerops = {
369 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
370 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
371 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
372 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
373 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
374 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
375 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
376 };
377 
378 /*
379  * dmmax is in page-sized chunks with the new swap system.  It was
380  * dev-bsized chunks in the old.  dmmax is always a power of 2.
381  *
382  * swap_*() routines are externally accessible.  swp_*() routines are
383  * internal.
384  */
385 static int dmmax;
386 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
387 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
388 
389 SYSCTL_INT(_vm, OID_AUTO, dmmax,
390 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
391 
392 static void	swp_sizecheck(void);
393 static void	swp_pager_async_iodone(struct buf *bp);
394 static int	swapongeom(struct thread *, struct vnode *);
395 static int	swaponvp(struct thread *, struct vnode *, u_long);
396 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
397 
398 /*
399  * Swap bitmap functions
400  */
401 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
402 static daddr_t	swp_pager_getswapspace(int npages);
403 
404 /*
405  * Metadata functions
406  */
407 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
408 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
409 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
410 static void swp_pager_meta_free_all(vm_object_t);
411 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
412 
413 static void
414 swp_pager_free_nrpage(vm_page_t m)
415 {
416 
417 	vm_page_lock(m);
418 	if (m->wire_count == 0)
419 		vm_page_free(m);
420 	vm_page_unlock(m);
421 }
422 
423 /*
424  * SWP_SIZECHECK() -	update swap_pager_full indication
425  *
426  *	update the swap_pager_almost_full indication and warn when we are
427  *	about to run out of swap space, using lowat/hiwat hysteresis.
428  *
429  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
430  *
431  *	No restrictions on call
432  *	This routine may not block.
433  */
434 static void
435 swp_sizecheck(void)
436 {
437 
438 	if (swap_pager_avail < nswap_lowat) {
439 		if (swap_pager_almost_full == 0) {
440 			printf("swap_pager: out of swap space\n");
441 			swap_pager_almost_full = 1;
442 		}
443 	} else {
444 		swap_pager_full = 0;
445 		if (swap_pager_avail > nswap_hiwat)
446 			swap_pager_almost_full = 0;
447 	}
448 }
449 
450 /*
451  * SWP_PAGER_HASH() -	hash swap meta data
452  *
453  *	This is an helper function which hashes the swapblk given
454  *	the object and page index.  It returns a pointer to a pointer
455  *	to the object, or a pointer to a NULL pointer if it could not
456  *	find a swapblk.
457  */
458 static struct swblock **
459 swp_pager_hash(vm_object_t object, vm_pindex_t index)
460 {
461 	struct swblock **pswap;
462 	struct swblock *swap;
463 
464 	index &= ~(vm_pindex_t)SWAP_META_MASK;
465 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
466 	while ((swap = *pswap) != NULL) {
467 		if (swap->swb_object == object &&
468 		    swap->swb_index == index
469 		) {
470 			break;
471 		}
472 		pswap = &swap->swb_hnext;
473 	}
474 	return (pswap);
475 }
476 
477 /*
478  * SWAP_PAGER_INIT() -	initialize the swap pager!
479  *
480  *	Expected to be started from system init.  NOTE:  This code is run
481  *	before much else so be careful what you depend on.  Most of the VM
482  *	system has yet to be initialized at this point.
483  */
484 static void
485 swap_pager_init(void)
486 {
487 	/*
488 	 * Initialize object lists
489 	 */
490 	int i;
491 
492 	for (i = 0; i < NOBJLISTS; ++i)
493 		TAILQ_INIT(&swap_pager_object_list[i]);
494 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
495 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
496 
497 	/*
498 	 * Device Stripe, in PAGE_SIZE'd blocks
499 	 */
500 	dmmax = SWB_NPAGES * 2;
501 }
502 
503 /*
504  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
505  *
506  *	Expected to be started from pageout process once, prior to entering
507  *	its main loop.
508  */
509 void
510 swap_pager_swap_init(void)
511 {
512 	int n, n2;
513 
514 	/*
515 	 * Number of in-transit swap bp operations.  Don't
516 	 * exhaust the pbufs completely.  Make sure we
517 	 * initialize workable values (0 will work for hysteresis
518 	 * but it isn't very efficient).
519 	 *
520 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
521 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
522 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
523 	 * constrained by the swap device interleave stripe size.
524 	 *
525 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
526 	 * designed to prevent other I/O from having high latencies due to
527 	 * our pageout I/O.  The value 4 works well for one or two active swap
528 	 * devices but is probably a little low if you have more.  Even so,
529 	 * a higher value would probably generate only a limited improvement
530 	 * with three or four active swap devices since the system does not
531 	 * typically have to pageout at extreme bandwidths.   We will want
532 	 * at least 2 per swap devices, and 4 is a pretty good value if you
533 	 * have one NFS swap device due to the command/ack latency over NFS.
534 	 * So it all works out pretty well.
535 	 */
536 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
537 
538 	mtx_lock(&pbuf_mtx);
539 	nsw_rcount = (nswbuf + 1) / 2;
540 	nsw_wcount_sync = (nswbuf + 3) / 4;
541 	nsw_wcount_async = 4;
542 	nsw_wcount_async_max = nsw_wcount_async;
543 	mtx_unlock(&pbuf_mtx);
544 
545 	/*
546 	 * Initialize our zone.  Right now I'm just guessing on the number
547 	 * we need based on the number of pages in the system.  Each swblock
548 	 * can hold 16 pages, so this is probably overkill.  This reservation
549 	 * is typically limited to around 32MB by default.
550 	 */
551 	n = cnt.v_page_count / 2;
552 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
553 		n = maxswzone / sizeof(struct swblock);
554 	n2 = n;
555 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
556 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
557 	if (swap_zone == NULL)
558 		panic("failed to create swap_zone.");
559 	do {
560 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
561 			break;
562 		/*
563 		 * if the allocation failed, try a zone two thirds the
564 		 * size of the previous attempt.
565 		 */
566 		n -= ((n + 2) / 3);
567 	} while (n > 0);
568 	if (n2 != n)
569 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
570 	n2 = n;
571 
572 	/*
573 	 * Initialize our meta-data hash table.  The swapper does not need to
574 	 * be quite as efficient as the VM system, so we do not use an
575 	 * oversized hash table.
576 	 *
577 	 * 	n: 		size of hash table, must be power of 2
578 	 *	swhash_mask:	hash table index mask
579 	 */
580 	for (n = 1; n < n2 / 8; n *= 2)
581 		;
582 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
583 	swhash_mask = n - 1;
584 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
585 }
586 
587 /*
588  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
589  *			its metadata structures.
590  *
591  *	This routine is called from the mmap and fork code to create a new
592  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
593  *	and then converting it with swp_pager_meta_build().
594  *
595  *	This routine may block in vm_object_allocate() and create a named
596  *	object lookup race, so we must interlock.
597  *
598  * MPSAFE
599  */
600 static vm_object_t
601 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
602     vm_ooffset_t offset, struct ucred *cred)
603 {
604 	vm_object_t object;
605 	vm_pindex_t pindex;
606 
607 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
608 	if (handle) {
609 		mtx_lock(&Giant);
610 		/*
611 		 * Reference existing named region or allocate new one.  There
612 		 * should not be a race here against swp_pager_meta_build()
613 		 * as called from vm_page_remove() in regards to the lookup
614 		 * of the handle.
615 		 */
616 		sx_xlock(&sw_alloc_sx);
617 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
618 		if (object == NULL) {
619 			if (cred != NULL) {
620 				if (!swap_reserve_by_cred(size, cred)) {
621 					sx_xunlock(&sw_alloc_sx);
622 					mtx_unlock(&Giant);
623 					return (NULL);
624 				}
625 				crhold(cred);
626 			}
627 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
628 			VM_OBJECT_LOCK(object);
629 			object->handle = handle;
630 			if (cred != NULL) {
631 				object->cred = cred;
632 				object->charge = size;
633 			}
634 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
635 			VM_OBJECT_UNLOCK(object);
636 		}
637 		sx_xunlock(&sw_alloc_sx);
638 		mtx_unlock(&Giant);
639 	} else {
640 		if (cred != NULL) {
641 			if (!swap_reserve_by_cred(size, cred))
642 				return (NULL);
643 			crhold(cred);
644 		}
645 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
646 		VM_OBJECT_LOCK(object);
647 		if (cred != NULL) {
648 			object->cred = cred;
649 			object->charge = size;
650 		}
651 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
652 		VM_OBJECT_UNLOCK(object);
653 	}
654 	return (object);
655 }
656 
657 /*
658  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
659  *
660  *	The swap backing for the object is destroyed.  The code is
661  *	designed such that we can reinstantiate it later, but this
662  *	routine is typically called only when the entire object is
663  *	about to be destroyed.
664  *
665  *	This routine may block, but no longer does.
666  *
667  *	The object must be locked or unreferenceable.
668  */
669 static void
670 swap_pager_dealloc(vm_object_t object)
671 {
672 
673 	/*
674 	 * Remove from list right away so lookups will fail if we block for
675 	 * pageout completion.
676 	 */
677 	if (object->handle != NULL) {
678 		mtx_lock(&sw_alloc_mtx);
679 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
680 		mtx_unlock(&sw_alloc_mtx);
681 	}
682 
683 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
684 	vm_object_pip_wait(object, "swpdea");
685 
686 	/*
687 	 * Free all remaining metadata.  We only bother to free it from
688 	 * the swap meta data.  We do not attempt to free swapblk's still
689 	 * associated with vm_page_t's for this object.  We do not care
690 	 * if paging is still in progress on some objects.
691 	 */
692 	swp_pager_meta_free_all(object);
693 }
694 
695 /************************************************************************
696  *			SWAP PAGER BITMAP ROUTINES			*
697  ************************************************************************/
698 
699 /*
700  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
701  *
702  *	Allocate swap for the requested number of pages.  The starting
703  *	swap block number (a page index) is returned or SWAPBLK_NONE
704  *	if the allocation failed.
705  *
706  *	Also has the side effect of advising that somebody made a mistake
707  *	when they configured swap and didn't configure enough.
708  *
709  *	This routine may not block
710  *
711  *	We allocate in round-robin fashion from the configured devices.
712  */
713 static daddr_t
714 swp_pager_getswapspace(int npages)
715 {
716 	daddr_t blk;
717 	struct swdevt *sp;
718 	int i;
719 
720 	blk = SWAPBLK_NONE;
721 	mtx_lock(&sw_dev_mtx);
722 	sp = swdevhd;
723 	for (i = 0; i < nswapdev; i++) {
724 		if (sp == NULL)
725 			sp = TAILQ_FIRST(&swtailq);
726 		if (!(sp->sw_flags & SW_CLOSING)) {
727 			blk = blist_alloc(sp->sw_blist, npages);
728 			if (blk != SWAPBLK_NONE) {
729 				blk += sp->sw_first;
730 				sp->sw_used += npages;
731 				swap_pager_avail -= npages;
732 				swp_sizecheck();
733 				swdevhd = TAILQ_NEXT(sp, sw_list);
734 				goto done;
735 			}
736 		}
737 		sp = TAILQ_NEXT(sp, sw_list);
738 	}
739 	if (swap_pager_full != 2) {
740 		printf("swap_pager_getswapspace(%d): failed\n", npages);
741 		swap_pager_full = 2;
742 		swap_pager_almost_full = 1;
743 	}
744 	swdevhd = NULL;
745 done:
746 	mtx_unlock(&sw_dev_mtx);
747 	return (blk);
748 }
749 
750 static int
751 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
752 {
753 
754 	return (blk >= sp->sw_first && blk < sp->sw_end);
755 }
756 
757 static void
758 swp_pager_strategy(struct buf *bp)
759 {
760 	struct swdevt *sp;
761 
762 	mtx_lock(&sw_dev_mtx);
763 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
764 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
765 			mtx_unlock(&sw_dev_mtx);
766 			sp->sw_strategy(bp, sp);
767 			return;
768 		}
769 	}
770 	panic("Swapdev not found");
771 }
772 
773 
774 /*
775  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
776  *
777  *	This routine returns the specified swap blocks back to the bitmap.
778  *
779  *	Note:  This routine may not block (it could in the old swap code),
780  *	and through the use of the new blist routines it does not block.
781  *
782  *	This routine may not block
783  */
784 static void
785 swp_pager_freeswapspace(daddr_t blk, int npages)
786 {
787 	struct swdevt *sp;
788 
789 	mtx_lock(&sw_dev_mtx);
790 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
791 		if (blk >= sp->sw_first && blk < sp->sw_end) {
792 			sp->sw_used -= npages;
793 			/*
794 			 * If we are attempting to stop swapping on
795 			 * this device, we don't want to mark any
796 			 * blocks free lest they be reused.
797 			 */
798 			if ((sp->sw_flags & SW_CLOSING) == 0) {
799 				blist_free(sp->sw_blist, blk - sp->sw_first,
800 				    npages);
801 				swap_pager_avail += npages;
802 				swp_sizecheck();
803 			}
804 			mtx_unlock(&sw_dev_mtx);
805 			return;
806 		}
807 	}
808 	panic("Swapdev not found");
809 }
810 
811 /*
812  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
813  *				range within an object.
814  *
815  *	This is a globally accessible routine.
816  *
817  *	This routine removes swapblk assignments from swap metadata.
818  *
819  *	The external callers of this routine typically have already destroyed
820  *	or renamed vm_page_t's associated with this range in the object so
821  *	we should be ok.
822  */
823 void
824 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
825 {
826 
827 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
828 	swp_pager_meta_free(object, start, size);
829 }
830 
831 /*
832  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
833  *
834  *	Assigns swap blocks to the specified range within the object.  The
835  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
836  *
837  *	Returns 0 on success, -1 on failure.
838  */
839 int
840 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
841 {
842 	int n = 0;
843 	daddr_t blk = SWAPBLK_NONE;
844 	vm_pindex_t beg = start;	/* save start index */
845 
846 	VM_OBJECT_LOCK(object);
847 	while (size) {
848 		if (n == 0) {
849 			n = BLIST_MAX_ALLOC;
850 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
851 				n >>= 1;
852 				if (n == 0) {
853 					swp_pager_meta_free(object, beg, start - beg);
854 					VM_OBJECT_UNLOCK(object);
855 					return (-1);
856 				}
857 			}
858 		}
859 		swp_pager_meta_build(object, start, blk);
860 		--size;
861 		++start;
862 		++blk;
863 		--n;
864 	}
865 	swp_pager_meta_free(object, start, n);
866 	VM_OBJECT_UNLOCK(object);
867 	return (0);
868 }
869 
870 /*
871  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
872  *			and destroy the source.
873  *
874  *	Copy any valid swapblks from the source to the destination.  In
875  *	cases where both the source and destination have a valid swapblk,
876  *	we keep the destination's.
877  *
878  *	This routine is allowed to block.  It may block allocating metadata
879  *	indirectly through swp_pager_meta_build() or if paging is still in
880  *	progress on the source.
881  *
882  *	XXX vm_page_collapse() kinda expects us not to block because we
883  *	supposedly do not need to allocate memory, but for the moment we
884  *	*may* have to get a little memory from the zone allocator, but
885  *	it is taken from the interrupt memory.  We should be ok.
886  *
887  *	The source object contains no vm_page_t's (which is just as well)
888  *
889  *	The source object is of type OBJT_SWAP.
890  *
891  *	The source and destination objects must be locked or
892  *	inaccessible (XXX are they ?)
893  */
894 void
895 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
896     vm_pindex_t offset, int destroysource)
897 {
898 	vm_pindex_t i;
899 
900 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
901 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
902 
903 	/*
904 	 * If destroysource is set, we remove the source object from the
905 	 * swap_pager internal queue now.
906 	 */
907 	if (destroysource) {
908 		if (srcobject->handle != NULL) {
909 			mtx_lock(&sw_alloc_mtx);
910 			TAILQ_REMOVE(
911 			    NOBJLIST(srcobject->handle),
912 			    srcobject,
913 			    pager_object_list
914 			);
915 			mtx_unlock(&sw_alloc_mtx);
916 		}
917 	}
918 
919 	/*
920 	 * transfer source to destination.
921 	 */
922 	for (i = 0; i < dstobject->size; ++i) {
923 		daddr_t dstaddr;
924 
925 		/*
926 		 * Locate (without changing) the swapblk on the destination,
927 		 * unless it is invalid in which case free it silently, or
928 		 * if the destination is a resident page, in which case the
929 		 * source is thrown away.
930 		 */
931 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
932 
933 		if (dstaddr == SWAPBLK_NONE) {
934 			/*
935 			 * Destination has no swapblk and is not resident,
936 			 * copy source.
937 			 */
938 			daddr_t srcaddr;
939 
940 			srcaddr = swp_pager_meta_ctl(
941 			    srcobject,
942 			    i + offset,
943 			    SWM_POP
944 			);
945 
946 			if (srcaddr != SWAPBLK_NONE) {
947 				/*
948 				 * swp_pager_meta_build() can sleep.
949 				 */
950 				vm_object_pip_add(srcobject, 1);
951 				VM_OBJECT_UNLOCK(srcobject);
952 				vm_object_pip_add(dstobject, 1);
953 				swp_pager_meta_build(dstobject, i, srcaddr);
954 				vm_object_pip_wakeup(dstobject);
955 				VM_OBJECT_LOCK(srcobject);
956 				vm_object_pip_wakeup(srcobject);
957 			}
958 		} else {
959 			/*
960 			 * Destination has valid swapblk or it is represented
961 			 * by a resident page.  We destroy the sourceblock.
962 			 */
963 
964 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
965 		}
966 	}
967 
968 	/*
969 	 * Free left over swap blocks in source.
970 	 *
971 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
972 	 * double-remove the object from the swap queues.
973 	 */
974 	if (destroysource) {
975 		swp_pager_meta_free_all(srcobject);
976 		/*
977 		 * Reverting the type is not necessary, the caller is going
978 		 * to destroy srcobject directly, but I'm doing it here
979 		 * for consistency since we've removed the object from its
980 		 * queues.
981 		 */
982 		srcobject->type = OBJT_DEFAULT;
983 	}
984 }
985 
986 /*
987  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
988  *				the requested page.
989  *
990  *	We determine whether good backing store exists for the requested
991  *	page and return TRUE if it does, FALSE if it doesn't.
992  *
993  *	If TRUE, we also try to determine how much valid, contiguous backing
994  *	store exists before and after the requested page within a reasonable
995  *	distance.  We do not try to restrict it to the swap device stripe
996  *	(that is handled in getpages/putpages).  It probably isn't worth
997  *	doing here.
998  */
999 static boolean_t
1000 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1001 {
1002 	daddr_t blk0;
1003 
1004 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1005 	/*
1006 	 * do we have good backing store at the requested index ?
1007 	 */
1008 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1009 
1010 	if (blk0 == SWAPBLK_NONE) {
1011 		if (before)
1012 			*before = 0;
1013 		if (after)
1014 			*after = 0;
1015 		return (FALSE);
1016 	}
1017 
1018 	/*
1019 	 * find backwards-looking contiguous good backing store
1020 	 */
1021 	if (before != NULL) {
1022 		int i;
1023 
1024 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1025 			daddr_t blk;
1026 
1027 			if (i > pindex)
1028 				break;
1029 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1030 			if (blk != blk0 - i)
1031 				break;
1032 		}
1033 		*before = (i - 1);
1034 	}
1035 
1036 	/*
1037 	 * find forward-looking contiguous good backing store
1038 	 */
1039 	if (after != NULL) {
1040 		int i;
1041 
1042 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1043 			daddr_t blk;
1044 
1045 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1046 			if (blk != blk0 + i)
1047 				break;
1048 		}
1049 		*after = (i - 1);
1050 	}
1051 	return (TRUE);
1052 }
1053 
1054 /*
1055  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1056  *
1057  *	This removes any associated swap backing store, whether valid or
1058  *	not, from the page.
1059  *
1060  *	This routine is typically called when a page is made dirty, at
1061  *	which point any associated swap can be freed.  MADV_FREE also
1062  *	calls us in a special-case situation
1063  *
1064  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1065  *	should make the page dirty before calling this routine.  This routine
1066  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1067  *	depends on it.
1068  *
1069  *	This routine may not block
1070  */
1071 static void
1072 swap_pager_unswapped(vm_page_t m)
1073 {
1074 
1075 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1076 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1077 }
1078 
1079 /*
1080  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1081  *
1082  *	Attempt to retrieve (m, count) pages from backing store, but make
1083  *	sure we retrieve at least m[reqpage].  We try to load in as large
1084  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1085  *	belongs to the same object.
1086  *
1087  *	The code is designed for asynchronous operation and
1088  *	immediate-notification of 'reqpage' but tends not to be
1089  *	used that way.  Please do not optimize-out this algorithmic
1090  *	feature, I intend to improve on it in the future.
1091  *
1092  *	The parent has a single vm_object_pip_add() reference prior to
1093  *	calling us and we should return with the same.
1094  *
1095  *	The parent has BUSY'd the pages.  We should return with 'm'
1096  *	left busy, but the others adjusted.
1097  */
1098 static int
1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1100 {
1101 	struct buf *bp;
1102 	vm_page_t mreq;
1103 	int i;
1104 	int j;
1105 	daddr_t blk;
1106 
1107 	mreq = m[reqpage];
1108 
1109 	KASSERT(mreq->object == object,
1110 	    ("swap_pager_getpages: object mismatch %p/%p",
1111 	    object, mreq->object));
1112 
1113 	/*
1114 	 * Calculate range to retrieve.  The pages have already been assigned
1115 	 * their swapblks.  We require a *contiguous* range but we know it to
1116 	 * not span devices.   If we do not supply it, bad things
1117 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1118 	 * loops are set up such that the case(s) are handled implicitly.
1119 	 *
1120 	 * The swp_*() calls must be made with the object locked.
1121 	 */
1122 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1123 
1124 	for (i = reqpage - 1; i >= 0; --i) {
1125 		daddr_t iblk;
1126 
1127 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1128 		if (blk != iblk + (reqpage - i))
1129 			break;
1130 	}
1131 	++i;
1132 
1133 	for (j = reqpage + 1; j < count; ++j) {
1134 		daddr_t jblk;
1135 
1136 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1137 		if (blk != jblk - (j - reqpage))
1138 			break;
1139 	}
1140 
1141 	/*
1142 	 * free pages outside our collection range.   Note: we never free
1143 	 * mreq, it must remain busy throughout.
1144 	 */
1145 	if (0 < i || j < count) {
1146 		int k;
1147 
1148 		for (k = 0; k < i; ++k)
1149 			swp_pager_free_nrpage(m[k]);
1150 		for (k = j; k < count; ++k)
1151 			swp_pager_free_nrpage(m[k]);
1152 	}
1153 
1154 	/*
1155 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1156 	 * still busy, but the others unbusied.
1157 	 */
1158 	if (blk == SWAPBLK_NONE)
1159 		return (VM_PAGER_FAIL);
1160 
1161 	/*
1162 	 * Getpbuf() can sleep.
1163 	 */
1164 	VM_OBJECT_UNLOCK(object);
1165 	/*
1166 	 * Get a swap buffer header to perform the IO
1167 	 */
1168 	bp = getpbuf(&nsw_rcount);
1169 	bp->b_flags |= B_PAGING;
1170 
1171 	/*
1172 	 * map our page(s) into kva for input
1173 	 */
1174 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1175 
1176 	bp->b_iocmd = BIO_READ;
1177 	bp->b_iodone = swp_pager_async_iodone;
1178 	bp->b_rcred = crhold(thread0.td_ucred);
1179 	bp->b_wcred = crhold(thread0.td_ucred);
1180 	bp->b_blkno = blk - (reqpage - i);
1181 	bp->b_bcount = PAGE_SIZE * (j - i);
1182 	bp->b_bufsize = PAGE_SIZE * (j - i);
1183 	bp->b_pager.pg_reqpage = reqpage - i;
1184 
1185 	VM_OBJECT_LOCK(object);
1186 	{
1187 		int k;
1188 
1189 		for (k = i; k < j; ++k) {
1190 			bp->b_pages[k - i] = m[k];
1191 			m[k]->oflags |= VPO_SWAPINPROG;
1192 		}
1193 	}
1194 	bp->b_npages = j - i;
1195 
1196 	PCPU_INC(cnt.v_swapin);
1197 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1198 
1199 	/*
1200 	 * We still hold the lock on mreq, and our automatic completion routine
1201 	 * does not remove it.
1202 	 */
1203 	vm_object_pip_add(object, bp->b_npages);
1204 	VM_OBJECT_UNLOCK(object);
1205 
1206 	/*
1207 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1208 	 * this point because we automatically release it on completion.
1209 	 * Instead, we look at the one page we are interested in which we
1210 	 * still hold a lock on even through the I/O completion.
1211 	 *
1212 	 * The other pages in our m[] array are also released on completion,
1213 	 * so we cannot assume they are valid anymore either.
1214 	 *
1215 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1216 	 */
1217 	BUF_KERNPROC(bp);
1218 	swp_pager_strategy(bp);
1219 
1220 	/*
1221 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1222 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1223 	 * is set in the meta-data.
1224 	 */
1225 	VM_OBJECT_LOCK(object);
1226 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1227 		mreq->oflags |= VPO_WANTED;
1228 		PCPU_INC(cnt.v_intrans);
1229 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1230 			printf(
1231 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1232 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * mreq is left busied after completion, but all the other pages
1238 	 * are freed.  If we had an unrecoverable read error the page will
1239 	 * not be valid.
1240 	 */
1241 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1242 		return (VM_PAGER_ERROR);
1243 	} else {
1244 		return (VM_PAGER_OK);
1245 	}
1246 
1247 	/*
1248 	 * A final note: in a low swap situation, we cannot deallocate swap
1249 	 * and mark a page dirty here because the caller is likely to mark
1250 	 * the page clean when we return, causing the page to possibly revert
1251 	 * to all-zero's later.
1252 	 */
1253 }
1254 
1255 /*
1256  *	swap_pager_putpages:
1257  *
1258  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1259  *
1260  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1261  *	are automatically converted to SWAP objects.
1262  *
1263  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1264  *	vm_page reservation system coupled with properly written VFS devices
1265  *	should ensure that no low-memory deadlock occurs.  This is an area
1266  *	which needs work.
1267  *
1268  *	The parent has N vm_object_pip_add() references prior to
1269  *	calling us and will remove references for rtvals[] that are
1270  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1271  *	completion.
1272  *
1273  *	The parent has soft-busy'd the pages it passes us and will unbusy
1274  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1275  *	We need to unbusy the rest on I/O completion.
1276  */
1277 void
1278 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1279     boolean_t sync, int *rtvals)
1280 {
1281 	int i;
1282 	int n = 0;
1283 
1284 	if (count && m[0]->object != object) {
1285 		panic("swap_pager_putpages: object mismatch %p/%p",
1286 		    object,
1287 		    m[0]->object
1288 		);
1289 	}
1290 
1291 	/*
1292 	 * Step 1
1293 	 *
1294 	 * Turn object into OBJT_SWAP
1295 	 * check for bogus sysops
1296 	 * force sync if not pageout process
1297 	 */
1298 	if (object->type != OBJT_SWAP)
1299 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1300 	VM_OBJECT_UNLOCK(object);
1301 
1302 	if (curproc != pageproc)
1303 		sync = TRUE;
1304 
1305 	/*
1306 	 * Step 2
1307 	 *
1308 	 * Update nsw parameters from swap_async_max sysctl values.
1309 	 * Do not let the sysop crash the machine with bogus numbers.
1310 	 */
1311 	mtx_lock(&pbuf_mtx);
1312 	if (swap_async_max != nsw_wcount_async_max) {
1313 		int n;
1314 
1315 		/*
1316 		 * limit range
1317 		 */
1318 		if ((n = swap_async_max) > nswbuf / 2)
1319 			n = nswbuf / 2;
1320 		if (n < 1)
1321 			n = 1;
1322 		swap_async_max = n;
1323 
1324 		/*
1325 		 * Adjust difference ( if possible ).  If the current async
1326 		 * count is too low, we may not be able to make the adjustment
1327 		 * at this time.
1328 		 */
1329 		n -= nsw_wcount_async_max;
1330 		if (nsw_wcount_async + n >= 0) {
1331 			nsw_wcount_async += n;
1332 			nsw_wcount_async_max += n;
1333 			wakeup(&nsw_wcount_async);
1334 		}
1335 	}
1336 	mtx_unlock(&pbuf_mtx);
1337 
1338 	/*
1339 	 * Step 3
1340 	 *
1341 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1342 	 * The page is left dirty until the pageout operation completes
1343 	 * successfully.
1344 	 */
1345 	for (i = 0; i < count; i += n) {
1346 		int j;
1347 		struct buf *bp;
1348 		daddr_t blk;
1349 
1350 		/*
1351 		 * Maximum I/O size is limited by a number of factors.
1352 		 */
1353 		n = min(BLIST_MAX_ALLOC, count - i);
1354 		n = min(n, nsw_cluster_max);
1355 
1356 		/*
1357 		 * Get biggest block of swap we can.  If we fail, fall
1358 		 * back and try to allocate a smaller block.  Don't go
1359 		 * overboard trying to allocate space if it would overly
1360 		 * fragment swap.
1361 		 */
1362 		while (
1363 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1364 		    n > 4
1365 		) {
1366 			n >>= 1;
1367 		}
1368 		if (blk == SWAPBLK_NONE) {
1369 			for (j = 0; j < n; ++j)
1370 				rtvals[i+j] = VM_PAGER_FAIL;
1371 			continue;
1372 		}
1373 
1374 		/*
1375 		 * All I/O parameters have been satisfied, build the I/O
1376 		 * request and assign the swap space.
1377 		 */
1378 		if (sync == TRUE) {
1379 			bp = getpbuf(&nsw_wcount_sync);
1380 		} else {
1381 			bp = getpbuf(&nsw_wcount_async);
1382 			bp->b_flags = B_ASYNC;
1383 		}
1384 		bp->b_flags |= B_PAGING;
1385 		bp->b_iocmd = BIO_WRITE;
1386 
1387 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1388 
1389 		bp->b_rcred = crhold(thread0.td_ucred);
1390 		bp->b_wcred = crhold(thread0.td_ucred);
1391 		bp->b_bcount = PAGE_SIZE * n;
1392 		bp->b_bufsize = PAGE_SIZE * n;
1393 		bp->b_blkno = blk;
1394 
1395 		VM_OBJECT_LOCK(object);
1396 		for (j = 0; j < n; ++j) {
1397 			vm_page_t mreq = m[i+j];
1398 
1399 			swp_pager_meta_build(
1400 			    mreq->object,
1401 			    mreq->pindex,
1402 			    blk + j
1403 			);
1404 			vm_page_dirty(mreq);
1405 			rtvals[i+j] = VM_PAGER_OK;
1406 
1407 			mreq->oflags |= VPO_SWAPINPROG;
1408 			bp->b_pages[j] = mreq;
1409 		}
1410 		VM_OBJECT_UNLOCK(object);
1411 		bp->b_npages = n;
1412 		/*
1413 		 * Must set dirty range for NFS to work.
1414 		 */
1415 		bp->b_dirtyoff = 0;
1416 		bp->b_dirtyend = bp->b_bcount;
1417 
1418 		PCPU_INC(cnt.v_swapout);
1419 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1420 
1421 		/*
1422 		 * asynchronous
1423 		 *
1424 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1425 		 */
1426 		if (sync == FALSE) {
1427 			bp->b_iodone = swp_pager_async_iodone;
1428 			BUF_KERNPROC(bp);
1429 			swp_pager_strategy(bp);
1430 
1431 			for (j = 0; j < n; ++j)
1432 				rtvals[i+j] = VM_PAGER_PEND;
1433 			/* restart outter loop */
1434 			continue;
1435 		}
1436 
1437 		/*
1438 		 * synchronous
1439 		 *
1440 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1441 		 */
1442 		bp->b_iodone = bdone;
1443 		swp_pager_strategy(bp);
1444 
1445 		/*
1446 		 * Wait for the sync I/O to complete, then update rtvals.
1447 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1448 		 * our async completion routine at the end, thus avoiding a
1449 		 * double-free.
1450 		 */
1451 		bwait(bp, PVM, "swwrt");
1452 		for (j = 0; j < n; ++j)
1453 			rtvals[i+j] = VM_PAGER_PEND;
1454 		/*
1455 		 * Now that we are through with the bp, we can call the
1456 		 * normal async completion, which frees everything up.
1457 		 */
1458 		swp_pager_async_iodone(bp);
1459 	}
1460 	VM_OBJECT_LOCK(object);
1461 }
1462 
1463 /*
1464  *	swp_pager_async_iodone:
1465  *
1466  *	Completion routine for asynchronous reads and writes from/to swap.
1467  *	Also called manually by synchronous code to finish up a bp.
1468  *
1469  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1470  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1471  *	unbusy all pages except the 'main' request page.  For WRITE
1472  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1473  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1474  *
1475  *	This routine may not block.
1476  */
1477 static void
1478 swp_pager_async_iodone(struct buf *bp)
1479 {
1480 	int i;
1481 	vm_object_t object = NULL;
1482 
1483 	/*
1484 	 * report error
1485 	 */
1486 	if (bp->b_ioflags & BIO_ERROR) {
1487 		printf(
1488 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1489 			"size %ld, error %d\n",
1490 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1491 		    (long)bp->b_blkno,
1492 		    (long)bp->b_bcount,
1493 		    bp->b_error
1494 		);
1495 	}
1496 
1497 	/*
1498 	 * remove the mapping for kernel virtual
1499 	 */
1500 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1501 
1502 	if (bp->b_npages) {
1503 		object = bp->b_pages[0]->object;
1504 		VM_OBJECT_LOCK(object);
1505 	}
1506 
1507 	/*
1508 	 * cleanup pages.  If an error occurs writing to swap, we are in
1509 	 * very serious trouble.  If it happens to be a disk error, though,
1510 	 * we may be able to recover by reassigning the swap later on.  So
1511 	 * in this case we remove the m->swapblk assignment for the page
1512 	 * but do not free it in the rlist.  The errornous block(s) are thus
1513 	 * never reallocated as swap.  Redirty the page and continue.
1514 	 */
1515 	for (i = 0; i < bp->b_npages; ++i) {
1516 		vm_page_t m = bp->b_pages[i];
1517 
1518 		m->oflags &= ~VPO_SWAPINPROG;
1519 
1520 		if (bp->b_ioflags & BIO_ERROR) {
1521 			/*
1522 			 * If an error occurs I'd love to throw the swapblk
1523 			 * away without freeing it back to swapspace, so it
1524 			 * can never be used again.  But I can't from an
1525 			 * interrupt.
1526 			 */
1527 			if (bp->b_iocmd == BIO_READ) {
1528 				/*
1529 				 * When reading, reqpage needs to stay
1530 				 * locked for the parent, but all other
1531 				 * pages can be freed.  We still want to
1532 				 * wakeup the parent waiting on the page,
1533 				 * though.  ( also: pg_reqpage can be -1 and
1534 				 * not match anything ).
1535 				 *
1536 				 * We have to wake specifically requested pages
1537 				 * up too because we cleared VPO_SWAPINPROG and
1538 				 * someone may be waiting for that.
1539 				 *
1540 				 * NOTE: for reads, m->dirty will probably
1541 				 * be overridden by the original caller of
1542 				 * getpages so don't play cute tricks here.
1543 				 */
1544 				m->valid = 0;
1545 				if (i != bp->b_pager.pg_reqpage)
1546 					swp_pager_free_nrpage(m);
1547 				else
1548 					vm_page_flash(m);
1549 				/*
1550 				 * If i == bp->b_pager.pg_reqpage, do not wake
1551 				 * the page up.  The caller needs to.
1552 				 */
1553 			} else {
1554 				/*
1555 				 * If a write error occurs, reactivate page
1556 				 * so it doesn't clog the inactive list,
1557 				 * then finish the I/O.
1558 				 */
1559 				vm_page_dirty(m);
1560 				vm_page_lock(m);
1561 				vm_page_activate(m);
1562 				vm_page_unlock(m);
1563 				vm_page_io_finish(m);
1564 			}
1565 		} else if (bp->b_iocmd == BIO_READ) {
1566 			/*
1567 			 * NOTE: for reads, m->dirty will probably be
1568 			 * overridden by the original caller of getpages so
1569 			 * we cannot set them in order to free the underlying
1570 			 * swap in a low-swap situation.  I don't think we'd
1571 			 * want to do that anyway, but it was an optimization
1572 			 * that existed in the old swapper for a time before
1573 			 * it got ripped out due to precisely this problem.
1574 			 *
1575 			 * If not the requested page then deactivate it.
1576 			 *
1577 			 * Note that the requested page, reqpage, is left
1578 			 * busied, but we still have to wake it up.  The
1579 			 * other pages are released (unbusied) by
1580 			 * vm_page_wakeup().
1581 			 */
1582 			KASSERT(!pmap_page_is_mapped(m),
1583 			    ("swp_pager_async_iodone: page %p is mapped", m));
1584 			m->valid = VM_PAGE_BITS_ALL;
1585 			KASSERT(m->dirty == 0,
1586 			    ("swp_pager_async_iodone: page %p is dirty", m));
1587 
1588 			/*
1589 			 * We have to wake specifically requested pages
1590 			 * up too because we cleared VPO_SWAPINPROG and
1591 			 * could be waiting for it in getpages.  However,
1592 			 * be sure to not unbusy getpages specifically
1593 			 * requested page - getpages expects it to be
1594 			 * left busy.
1595 			 */
1596 			if (i != bp->b_pager.pg_reqpage) {
1597 				vm_page_lock(m);
1598 				vm_page_deactivate(m);
1599 				vm_page_unlock(m);
1600 				vm_page_wakeup(m);
1601 			} else
1602 				vm_page_flash(m);
1603 		} else {
1604 			/*
1605 			 * For write success, clear the dirty
1606 			 * status, then finish the I/O ( which decrements the
1607 			 * busy count and possibly wakes waiter's up ).
1608 			 */
1609 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1610 			    ("swp_pager_async_iodone: page %p is not write"
1611 			    " protected", m));
1612 			vm_page_undirty(m);
1613 			vm_page_io_finish(m);
1614 			if (vm_page_count_severe()) {
1615 				vm_page_lock(m);
1616 				vm_page_try_to_cache(m);
1617 				vm_page_unlock(m);
1618 			}
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * adjust pip.  NOTE: the original parent may still have its own
1624 	 * pip refs on the object.
1625 	 */
1626 	if (object != NULL) {
1627 		vm_object_pip_wakeupn(object, bp->b_npages);
1628 		VM_OBJECT_UNLOCK(object);
1629 	}
1630 
1631 	/*
1632 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1633 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1634 	 * trigger a KASSERT in relpbuf().
1635 	 */
1636 	if (bp->b_vp) {
1637 		    bp->b_vp = NULL;
1638 		    bp->b_bufobj = NULL;
1639 	}
1640 	/*
1641 	 * release the physical I/O buffer
1642 	 */
1643 	relpbuf(
1644 	    bp,
1645 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1646 		((bp->b_flags & B_ASYNC) ?
1647 		    &nsw_wcount_async :
1648 		    &nsw_wcount_sync
1649 		)
1650 	    )
1651 	);
1652 }
1653 
1654 /*
1655  *	swap_pager_isswapped:
1656  *
1657  *	Return 1 if at least one page in the given object is paged
1658  *	out to the given swap device.
1659  *
1660  *	This routine may not block.
1661  */
1662 int
1663 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1664 {
1665 	daddr_t index = 0;
1666 	int bcount;
1667 	int i;
1668 
1669 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1670 	if (object->type != OBJT_SWAP)
1671 		return (0);
1672 
1673 	mtx_lock(&swhash_mtx);
1674 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1675 		struct swblock *swap;
1676 
1677 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1678 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1679 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1680 					mtx_unlock(&swhash_mtx);
1681 					return (1);
1682 				}
1683 			}
1684 		}
1685 		index += SWAP_META_PAGES;
1686 	}
1687 	mtx_unlock(&swhash_mtx);
1688 	return (0);
1689 }
1690 
1691 /*
1692  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1693  *
1694  *	This routine dissociates the page at the given index within a
1695  *	swap block from its backing store, paging it in if necessary.
1696  *	If the page is paged in, it is placed in the inactive queue,
1697  *	since it had its backing store ripped out from under it.
1698  *	We also attempt to swap in all other pages in the swap block,
1699  *	we only guarantee that the one at the specified index is
1700  *	paged in.
1701  *
1702  *	XXX - The code to page the whole block in doesn't work, so we
1703  *	      revert to the one-by-one behavior for now.  Sigh.
1704  */
1705 static inline void
1706 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1707 {
1708 	vm_page_t m;
1709 
1710 	vm_object_pip_add(object, 1);
1711 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1712 	if (m->valid == VM_PAGE_BITS_ALL) {
1713 		vm_object_pip_subtract(object, 1);
1714 		vm_page_dirty(m);
1715 		vm_page_lock(m);
1716 		vm_page_activate(m);
1717 		vm_page_unlock(m);
1718 		vm_page_wakeup(m);
1719 		vm_pager_page_unswapped(m);
1720 		return;
1721 	}
1722 
1723 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1724 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1725 	vm_object_pip_subtract(object, 1);
1726 	vm_page_dirty(m);
1727 	vm_page_lock(m);
1728 	vm_page_deactivate(m);
1729 	vm_page_unlock(m);
1730 	vm_page_wakeup(m);
1731 	vm_pager_page_unswapped(m);
1732 }
1733 
1734 /*
1735  *	swap_pager_swapoff:
1736  *
1737  *	Page in all of the pages that have been paged out to the
1738  *	given device.  The corresponding blocks in the bitmap must be
1739  *	marked as allocated and the device must be flagged SW_CLOSING.
1740  *	There may be no processes swapped out to the device.
1741  *
1742  *	This routine may block.
1743  */
1744 static void
1745 swap_pager_swapoff(struct swdevt *sp)
1746 {
1747 	struct swblock *swap;
1748 	int i, j, retries;
1749 
1750 	GIANT_REQUIRED;
1751 
1752 	retries = 0;
1753 full_rescan:
1754 	mtx_lock(&swhash_mtx);
1755 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1756 restart:
1757 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1758 			vm_object_t object = swap->swb_object;
1759 			vm_pindex_t pindex = swap->swb_index;
1760                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1761                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1762 					/* avoid deadlock */
1763 					if (!VM_OBJECT_TRYLOCK(object)) {
1764 						break;
1765 					} else {
1766 						mtx_unlock(&swhash_mtx);
1767 						swp_pager_force_pagein(object,
1768 						    pindex + j);
1769 						VM_OBJECT_UNLOCK(object);
1770 						mtx_lock(&swhash_mtx);
1771 						goto restart;
1772 					}
1773 				}
1774                         }
1775 		}
1776 	}
1777 	mtx_unlock(&swhash_mtx);
1778 	if (sp->sw_used) {
1779 		/*
1780 		 * Objects may be locked or paging to the device being
1781 		 * removed, so we will miss their pages and need to
1782 		 * make another pass.  We have marked this device as
1783 		 * SW_CLOSING, so the activity should finish soon.
1784 		 */
1785 		retries++;
1786 		if (retries > 100) {
1787 			panic("swapoff: failed to locate %d swap blocks",
1788 			    sp->sw_used);
1789 		}
1790 		pause("swpoff", hz / 20);
1791 		goto full_rescan;
1792 	}
1793 }
1794 
1795 /************************************************************************
1796  *				SWAP META DATA 				*
1797  ************************************************************************
1798  *
1799  *	These routines manipulate the swap metadata stored in the
1800  *	OBJT_SWAP object.
1801  *
1802  *	Swap metadata is implemented with a global hash and not directly
1803  *	linked into the object.  Instead the object simply contains
1804  *	appropriate tracking counters.
1805  */
1806 
1807 /*
1808  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1809  *
1810  *	We first convert the object to a swap object if it is a default
1811  *	object.
1812  *
1813  *	The specified swapblk is added to the object's swap metadata.  If
1814  *	the swapblk is not valid, it is freed instead.  Any previously
1815  *	assigned swapblk is freed.
1816  */
1817 static void
1818 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1819 {
1820 	struct swblock *swap;
1821 	struct swblock **pswap;
1822 	int idx;
1823 
1824 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1825 	/*
1826 	 * Convert default object to swap object if necessary
1827 	 */
1828 	if (object->type != OBJT_SWAP) {
1829 		object->type = OBJT_SWAP;
1830 		object->un_pager.swp.swp_bcount = 0;
1831 
1832 		if (object->handle != NULL) {
1833 			mtx_lock(&sw_alloc_mtx);
1834 			TAILQ_INSERT_TAIL(
1835 			    NOBJLIST(object->handle),
1836 			    object,
1837 			    pager_object_list
1838 			);
1839 			mtx_unlock(&sw_alloc_mtx);
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * Locate hash entry.  If not found create, but if we aren't adding
1845 	 * anything just return.  If we run out of space in the map we wait
1846 	 * and, since the hash table may have changed, retry.
1847 	 */
1848 retry:
1849 	mtx_lock(&swhash_mtx);
1850 	pswap = swp_pager_hash(object, pindex);
1851 
1852 	if ((swap = *pswap) == NULL) {
1853 		int i;
1854 
1855 		if (swapblk == SWAPBLK_NONE)
1856 			goto done;
1857 
1858 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1859 		if (swap == NULL) {
1860 			mtx_unlock(&swhash_mtx);
1861 			VM_OBJECT_UNLOCK(object);
1862 			if (uma_zone_exhausted(swap_zone)) {
1863 				printf("swap zone exhausted, increase kern.maxswzone\n");
1864 				vm_pageout_oom(VM_OOM_SWAPZ);
1865 				pause("swzonex", 10);
1866 			} else
1867 				VM_WAIT;
1868 			VM_OBJECT_LOCK(object);
1869 			goto retry;
1870 		}
1871 
1872 		swap->swb_hnext = NULL;
1873 		swap->swb_object = object;
1874 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1875 		swap->swb_count = 0;
1876 
1877 		++object->un_pager.swp.swp_bcount;
1878 
1879 		for (i = 0; i < SWAP_META_PAGES; ++i)
1880 			swap->swb_pages[i] = SWAPBLK_NONE;
1881 	}
1882 
1883 	/*
1884 	 * Delete prior contents of metadata
1885 	 */
1886 	idx = pindex & SWAP_META_MASK;
1887 
1888 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1889 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1890 		--swap->swb_count;
1891 	}
1892 
1893 	/*
1894 	 * Enter block into metadata
1895 	 */
1896 	swap->swb_pages[idx] = swapblk;
1897 	if (swapblk != SWAPBLK_NONE)
1898 		++swap->swb_count;
1899 done:
1900 	mtx_unlock(&swhash_mtx);
1901 }
1902 
1903 /*
1904  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1905  *
1906  *	The requested range of blocks is freed, with any associated swap
1907  *	returned to the swap bitmap.
1908  *
1909  *	This routine will free swap metadata structures as they are cleaned
1910  *	out.  This routine does *NOT* operate on swap metadata associated
1911  *	with resident pages.
1912  */
1913 static void
1914 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1915 {
1916 
1917 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1918 	if (object->type != OBJT_SWAP)
1919 		return;
1920 
1921 	while (count > 0) {
1922 		struct swblock **pswap;
1923 		struct swblock *swap;
1924 
1925 		mtx_lock(&swhash_mtx);
1926 		pswap = swp_pager_hash(object, index);
1927 
1928 		if ((swap = *pswap) != NULL) {
1929 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1930 
1931 			if (v != SWAPBLK_NONE) {
1932 				swp_pager_freeswapspace(v, 1);
1933 				swap->swb_pages[index & SWAP_META_MASK] =
1934 					SWAPBLK_NONE;
1935 				if (--swap->swb_count == 0) {
1936 					*pswap = swap->swb_hnext;
1937 					uma_zfree(swap_zone, swap);
1938 					--object->un_pager.swp.swp_bcount;
1939 				}
1940 			}
1941 			--count;
1942 			++index;
1943 		} else {
1944 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1945 			count -= n;
1946 			index += n;
1947 		}
1948 		mtx_unlock(&swhash_mtx);
1949 	}
1950 }
1951 
1952 /*
1953  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1954  *
1955  *	This routine locates and destroys all swap metadata associated with
1956  *	an object.
1957  */
1958 static void
1959 swp_pager_meta_free_all(vm_object_t object)
1960 {
1961 	daddr_t index = 0;
1962 
1963 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1964 	if (object->type != OBJT_SWAP)
1965 		return;
1966 
1967 	while (object->un_pager.swp.swp_bcount) {
1968 		struct swblock **pswap;
1969 		struct swblock *swap;
1970 
1971 		mtx_lock(&swhash_mtx);
1972 		pswap = swp_pager_hash(object, index);
1973 		if ((swap = *pswap) != NULL) {
1974 			int i;
1975 
1976 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1977 				daddr_t v = swap->swb_pages[i];
1978 				if (v != SWAPBLK_NONE) {
1979 					--swap->swb_count;
1980 					swp_pager_freeswapspace(v, 1);
1981 				}
1982 			}
1983 			if (swap->swb_count != 0)
1984 				panic("swap_pager_meta_free_all: swb_count != 0");
1985 			*pswap = swap->swb_hnext;
1986 			uma_zfree(swap_zone, swap);
1987 			--object->un_pager.swp.swp_bcount;
1988 		}
1989 		mtx_unlock(&swhash_mtx);
1990 		index += SWAP_META_PAGES;
1991 	}
1992 }
1993 
1994 /*
1995  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1996  *
1997  *	This routine is capable of looking up, popping, or freeing
1998  *	swapblk assignments in the swap meta data or in the vm_page_t.
1999  *	The routine typically returns the swapblk being looked-up, or popped,
2000  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2001  *	was invalid.  This routine will automatically free any invalid
2002  *	meta-data swapblks.
2003  *
2004  *	It is not possible to store invalid swapblks in the swap meta data
2005  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2006  *
2007  *	When acting on a busy resident page and paging is in progress, we
2008  *	have to wait until paging is complete but otherwise can act on the
2009  *	busy page.
2010  *
2011  *	SWM_FREE	remove and free swap block from metadata
2012  *	SWM_POP		remove from meta data but do not free.. pop it out
2013  */
2014 static daddr_t
2015 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2016 {
2017 	struct swblock **pswap;
2018 	struct swblock *swap;
2019 	daddr_t r1;
2020 	int idx;
2021 
2022 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2023 	/*
2024 	 * The meta data only exists of the object is OBJT_SWAP
2025 	 * and even then might not be allocated yet.
2026 	 */
2027 	if (object->type != OBJT_SWAP)
2028 		return (SWAPBLK_NONE);
2029 
2030 	r1 = SWAPBLK_NONE;
2031 	mtx_lock(&swhash_mtx);
2032 	pswap = swp_pager_hash(object, pindex);
2033 
2034 	if ((swap = *pswap) != NULL) {
2035 		idx = pindex & SWAP_META_MASK;
2036 		r1 = swap->swb_pages[idx];
2037 
2038 		if (r1 != SWAPBLK_NONE) {
2039 			if (flags & SWM_FREE) {
2040 				swp_pager_freeswapspace(r1, 1);
2041 				r1 = SWAPBLK_NONE;
2042 			}
2043 			if (flags & (SWM_FREE|SWM_POP)) {
2044 				swap->swb_pages[idx] = SWAPBLK_NONE;
2045 				if (--swap->swb_count == 0) {
2046 					*pswap = swap->swb_hnext;
2047 					uma_zfree(swap_zone, swap);
2048 					--object->un_pager.swp.swp_bcount;
2049 				}
2050 			}
2051 		}
2052 	}
2053 	mtx_unlock(&swhash_mtx);
2054 	return (r1);
2055 }
2056 
2057 /*
2058  * System call swapon(name) enables swapping on device name,
2059  * which must be in the swdevsw.  Return EBUSY
2060  * if already swapping on this device.
2061  */
2062 #ifndef _SYS_SYSPROTO_H_
2063 struct swapon_args {
2064 	char *name;
2065 };
2066 #endif
2067 
2068 /*
2069  * MPSAFE
2070  */
2071 /* ARGSUSED */
2072 int
2073 swapon(struct thread *td, struct swapon_args *uap)
2074 {
2075 	struct vattr attr;
2076 	struct vnode *vp;
2077 	struct nameidata nd;
2078 	int error;
2079 
2080 	error = priv_check(td, PRIV_SWAPON);
2081 	if (error)
2082 		return (error);
2083 
2084 	mtx_lock(&Giant);
2085 	while (swdev_syscall_active)
2086 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2087 	swdev_syscall_active = 1;
2088 
2089 	/*
2090 	 * Swap metadata may not fit in the KVM if we have physical
2091 	 * memory of >1GB.
2092 	 */
2093 	if (swap_zone == NULL) {
2094 		error = ENOMEM;
2095 		goto done;
2096 	}
2097 
2098 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2099 	    uap->name, td);
2100 	error = namei(&nd);
2101 	if (error)
2102 		goto done;
2103 
2104 	NDFREE(&nd, NDF_ONLY_PNBUF);
2105 	vp = nd.ni_vp;
2106 
2107 	if (vn_isdisk(vp, &error)) {
2108 		error = swapongeom(td, vp);
2109 	} else if (vp->v_type == VREG &&
2110 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2111 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2112 		/*
2113 		 * Allow direct swapping to NFS regular files in the same
2114 		 * way that nfs_mountroot() sets up diskless swapping.
2115 		 */
2116 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2117 	}
2118 
2119 	if (error)
2120 		vrele(vp);
2121 done:
2122 	swdev_syscall_active = 0;
2123 	wakeup_one(&swdev_syscall_active);
2124 	mtx_unlock(&Giant);
2125 	return (error);
2126 }
2127 
2128 static void
2129 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2130 {
2131 	struct swdevt *sp, *tsp;
2132 	swblk_t dvbase;
2133 	u_long mblocks;
2134 
2135 	/*
2136 	 * If we go beyond this, we get overflows in the radix
2137 	 * tree bitmap code.
2138 	 */
2139 	mblocks = 0x40000000 / BLIST_META_RADIX;
2140 	if (nblks > mblocks) {
2141 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2142 			mblocks);
2143 		nblks = mblocks;
2144 	}
2145 	/*
2146 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2147 	 * First chop nblks off to page-align it, then convert.
2148 	 *
2149 	 * sw->sw_nblks is in page-sized chunks now too.
2150 	 */
2151 	nblks &= ~(ctodb(1) - 1);
2152 	nblks = dbtoc(nblks);
2153 
2154 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2155 	sp->sw_vp = vp;
2156 	sp->sw_id = id;
2157 	sp->sw_dev = dev;
2158 	sp->sw_flags = 0;
2159 	sp->sw_nblks = nblks;
2160 	sp->sw_used = 0;
2161 	sp->sw_strategy = strategy;
2162 	sp->sw_close = close;
2163 
2164 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2165 	/*
2166 	 * Do not free the first two block in order to avoid overwriting
2167 	 * any bsd label at the front of the partition
2168 	 */
2169 	blist_free(sp->sw_blist, 2, nblks - 2);
2170 
2171 	dvbase = 0;
2172 	mtx_lock(&sw_dev_mtx);
2173 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2174 		if (tsp->sw_end >= dvbase) {
2175 			/*
2176 			 * We put one uncovered page between the devices
2177 			 * in order to definitively prevent any cross-device
2178 			 * I/O requests
2179 			 */
2180 			dvbase = tsp->sw_end + 1;
2181 		}
2182 	}
2183 	sp->sw_first = dvbase;
2184 	sp->sw_end = dvbase + nblks;
2185 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2186 	nswapdev++;
2187 	swap_pager_avail += nblks;
2188 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2189 	swp_sizecheck();
2190 	mtx_unlock(&sw_dev_mtx);
2191 }
2192 
2193 /*
2194  * SYSCALL: swapoff(devname)
2195  *
2196  * Disable swapping on the given device.
2197  *
2198  * XXX: Badly designed system call: it should use a device index
2199  * rather than filename as specification.  We keep sw_vp around
2200  * only to make this work.
2201  */
2202 #ifndef _SYS_SYSPROTO_H_
2203 struct swapoff_args {
2204 	char *name;
2205 };
2206 #endif
2207 
2208 /*
2209  * MPSAFE
2210  */
2211 /* ARGSUSED */
2212 int
2213 swapoff(struct thread *td, struct swapoff_args *uap)
2214 {
2215 	struct vnode *vp;
2216 	struct nameidata nd;
2217 	struct swdevt *sp;
2218 	int error;
2219 
2220 	error = priv_check(td, PRIV_SWAPOFF);
2221 	if (error)
2222 		return (error);
2223 
2224 	mtx_lock(&Giant);
2225 	while (swdev_syscall_active)
2226 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2227 	swdev_syscall_active = 1;
2228 
2229 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2230 	    td);
2231 	error = namei(&nd);
2232 	if (error)
2233 		goto done;
2234 	NDFREE(&nd, NDF_ONLY_PNBUF);
2235 	vp = nd.ni_vp;
2236 
2237 	mtx_lock(&sw_dev_mtx);
2238 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2239 		if (sp->sw_vp == vp)
2240 			break;
2241 	}
2242 	mtx_unlock(&sw_dev_mtx);
2243 	if (sp == NULL) {
2244 		error = EINVAL;
2245 		goto done;
2246 	}
2247 	error = swapoff_one(sp, td->td_ucred);
2248 done:
2249 	swdev_syscall_active = 0;
2250 	wakeup_one(&swdev_syscall_active);
2251 	mtx_unlock(&Giant);
2252 	return (error);
2253 }
2254 
2255 static int
2256 swapoff_one(struct swdevt *sp, struct ucred *cred)
2257 {
2258 	u_long nblks, dvbase;
2259 #ifdef MAC
2260 	int error;
2261 #endif
2262 
2263 	mtx_assert(&Giant, MA_OWNED);
2264 #ifdef MAC
2265 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2266 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2267 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2268 	if (error != 0)
2269 		return (error);
2270 #endif
2271 	nblks = sp->sw_nblks;
2272 
2273 	/*
2274 	 * We can turn off this swap device safely only if the
2275 	 * available virtual memory in the system will fit the amount
2276 	 * of data we will have to page back in, plus an epsilon so
2277 	 * the system doesn't become critically low on swap space.
2278 	 */
2279 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2280 	    nblks + nswap_lowat) {
2281 		return (ENOMEM);
2282 	}
2283 
2284 	/*
2285 	 * Prevent further allocations on this device.
2286 	 */
2287 	mtx_lock(&sw_dev_mtx);
2288 	sp->sw_flags |= SW_CLOSING;
2289 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2290 		swap_pager_avail -= blist_fill(sp->sw_blist,
2291 		     dvbase, dmmax);
2292 	}
2293 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2294 	mtx_unlock(&sw_dev_mtx);
2295 
2296 	/*
2297 	 * Page in the contents of the device and close it.
2298 	 */
2299 	swap_pager_swapoff(sp);
2300 
2301 	sp->sw_close(curthread, sp);
2302 	sp->sw_id = NULL;
2303 	mtx_lock(&sw_dev_mtx);
2304 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2305 	nswapdev--;
2306 	if (nswapdev == 0) {
2307 		swap_pager_full = 2;
2308 		swap_pager_almost_full = 1;
2309 	}
2310 	if (swdevhd == sp)
2311 		swdevhd = NULL;
2312 	mtx_unlock(&sw_dev_mtx);
2313 	blist_destroy(sp->sw_blist);
2314 	free(sp, M_VMPGDATA);
2315 	return (0);
2316 }
2317 
2318 void
2319 swapoff_all(void)
2320 {
2321 	struct swdevt *sp, *spt;
2322 	const char *devname;
2323 	int error;
2324 
2325 	mtx_lock(&Giant);
2326 	while (swdev_syscall_active)
2327 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2328 	swdev_syscall_active = 1;
2329 
2330 	mtx_lock(&sw_dev_mtx);
2331 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2332 		mtx_unlock(&sw_dev_mtx);
2333 		if (vn_isdisk(sp->sw_vp, NULL))
2334 			devname = sp->sw_vp->v_rdev->si_name;
2335 		else
2336 			devname = "[file]";
2337 		error = swapoff_one(sp, thread0.td_ucred);
2338 		if (error != 0) {
2339 			printf("Cannot remove swap device %s (error=%d), "
2340 			    "skipping.\n", devname, error);
2341 		} else if (bootverbose) {
2342 			printf("Swap device %s removed.\n", devname);
2343 		}
2344 		mtx_lock(&sw_dev_mtx);
2345 	}
2346 	mtx_unlock(&sw_dev_mtx);
2347 
2348 	swdev_syscall_active = 0;
2349 	wakeup_one(&swdev_syscall_active);
2350 	mtx_unlock(&Giant);
2351 }
2352 
2353 void
2354 swap_pager_status(int *total, int *used)
2355 {
2356 	struct swdevt *sp;
2357 
2358 	*total = 0;
2359 	*used = 0;
2360 	mtx_lock(&sw_dev_mtx);
2361 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2362 		*total += sp->sw_nblks;
2363 		*used += sp->sw_used;
2364 	}
2365 	mtx_unlock(&sw_dev_mtx);
2366 }
2367 
2368 static int
2369 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2370 {
2371 	int	*name = (int *)arg1;
2372 	int	error, n;
2373 	struct xswdev xs;
2374 	struct swdevt *sp;
2375 
2376 	if (arg2 != 1) /* name length */
2377 		return (EINVAL);
2378 
2379 	n = 0;
2380 	mtx_lock(&sw_dev_mtx);
2381 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2382 		if (n == *name) {
2383 			mtx_unlock(&sw_dev_mtx);
2384 			xs.xsw_version = XSWDEV_VERSION;
2385 			xs.xsw_dev = sp->sw_dev;
2386 			xs.xsw_flags = sp->sw_flags;
2387 			xs.xsw_nblks = sp->sw_nblks;
2388 			xs.xsw_used = sp->sw_used;
2389 
2390 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2391 			return (error);
2392 		}
2393 		n++;
2394 	}
2395 	mtx_unlock(&sw_dev_mtx);
2396 	return (ENOENT);
2397 }
2398 
2399 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2400     "Number of swap devices");
2401 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2402     "Swap statistics by device");
2403 
2404 /*
2405  * vmspace_swap_count() - count the approximate swap usage in pages for a
2406  *			  vmspace.
2407  *
2408  *	The map must be locked.
2409  *
2410  *	Swap usage is determined by taking the proportional swap used by
2411  *	VM objects backing the VM map.  To make up for fractional losses,
2412  *	if the VM object has any swap use at all the associated map entries
2413  *	count for at least 1 swap page.
2414  */
2415 long
2416 vmspace_swap_count(struct vmspace *vmspace)
2417 {
2418 	vm_map_t map;
2419 	vm_map_entry_t cur;
2420 	vm_object_t object;
2421 	long count, n;
2422 
2423 	map = &vmspace->vm_map;
2424 	count = 0;
2425 
2426 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2427 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2428 		    (object = cur->object.vm_object) != NULL) {
2429 			VM_OBJECT_LOCK(object);
2430 			if (object->type == OBJT_SWAP &&
2431 			    object->un_pager.swp.swp_bcount != 0) {
2432 				n = (cur->end - cur->start) / PAGE_SIZE;
2433 				count += object->un_pager.swp.swp_bcount *
2434 				    SWAP_META_PAGES * n / object->size + 1;
2435 			}
2436 			VM_OBJECT_UNLOCK(object);
2437 		}
2438 	}
2439 	return (count);
2440 }
2441 
2442 /*
2443  * GEOM backend
2444  *
2445  * Swapping onto disk devices.
2446  *
2447  */
2448 
2449 static g_orphan_t swapgeom_orphan;
2450 
2451 static struct g_class g_swap_class = {
2452 	.name = "SWAP",
2453 	.version = G_VERSION,
2454 	.orphan = swapgeom_orphan,
2455 };
2456 
2457 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2458 
2459 
2460 static void
2461 swapgeom_done(struct bio *bp2)
2462 {
2463 	struct buf *bp;
2464 
2465 	bp = bp2->bio_caller2;
2466 	bp->b_ioflags = bp2->bio_flags;
2467 	if (bp2->bio_error)
2468 		bp->b_ioflags |= BIO_ERROR;
2469 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2470 	bp->b_error = bp2->bio_error;
2471 	bufdone(bp);
2472 	g_destroy_bio(bp2);
2473 }
2474 
2475 static void
2476 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2477 {
2478 	struct bio *bio;
2479 	struct g_consumer *cp;
2480 
2481 	cp = sp->sw_id;
2482 	if (cp == NULL) {
2483 		bp->b_error = ENXIO;
2484 		bp->b_ioflags |= BIO_ERROR;
2485 		bufdone(bp);
2486 		return;
2487 	}
2488 	if (bp->b_iocmd == BIO_WRITE)
2489 		bio = g_new_bio();
2490 	else
2491 		bio = g_alloc_bio();
2492 	if (bio == NULL) {
2493 		bp->b_error = ENOMEM;
2494 		bp->b_ioflags |= BIO_ERROR;
2495 		bufdone(bp);
2496 		return;
2497 	}
2498 
2499 	bio->bio_caller2 = bp;
2500 	bio->bio_cmd = bp->b_iocmd;
2501 	bio->bio_data = bp->b_data;
2502 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2503 	bio->bio_length = bp->b_bcount;
2504 	bio->bio_done = swapgeom_done;
2505 	g_io_request(bio, cp);
2506 	return;
2507 }
2508 
2509 static void
2510 swapgeom_orphan(struct g_consumer *cp)
2511 {
2512 	struct swdevt *sp;
2513 
2514 	mtx_lock(&sw_dev_mtx);
2515 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2516 		if (sp->sw_id == cp)
2517 			sp->sw_id = NULL;
2518 	mtx_unlock(&sw_dev_mtx);
2519 }
2520 
2521 static void
2522 swapgeom_close_ev(void *arg, int flags)
2523 {
2524 	struct g_consumer *cp;
2525 
2526 	cp = arg;
2527 	g_access(cp, -1, -1, 0);
2528 	g_detach(cp);
2529 	g_destroy_consumer(cp);
2530 }
2531 
2532 static void
2533 swapgeom_close(struct thread *td, struct swdevt *sw)
2534 {
2535 
2536 	/* XXX: direct call when Giant untangled */
2537 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2538 }
2539 
2540 
2541 struct swh0h0 {
2542 	struct cdev *dev;
2543 	struct vnode *vp;
2544 	int	error;
2545 };
2546 
2547 static void
2548 swapongeom_ev(void *arg, int flags)
2549 {
2550 	struct swh0h0 *swh;
2551 	struct g_provider *pp;
2552 	struct g_consumer *cp;
2553 	static struct g_geom *gp;
2554 	struct swdevt *sp;
2555 	u_long nblks;
2556 	int error;
2557 
2558 	swh = arg;
2559 	swh->error = 0;
2560 	pp = g_dev_getprovider(swh->dev);
2561 	if (pp == NULL) {
2562 		swh->error = ENODEV;
2563 		return;
2564 	}
2565 	mtx_lock(&sw_dev_mtx);
2566 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2567 		cp = sp->sw_id;
2568 		if (cp != NULL && cp->provider == pp) {
2569 			mtx_unlock(&sw_dev_mtx);
2570 			swh->error = EBUSY;
2571 			return;
2572 		}
2573 	}
2574 	mtx_unlock(&sw_dev_mtx);
2575 	if (gp == NULL)
2576 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2577 	cp = g_new_consumer(gp);
2578 	g_attach(cp, pp);
2579 	/*
2580 	 * XXX: Everytime you think you can improve the margin for
2581 	 * footshooting, somebody depends on the ability to do so:
2582 	 * savecore(8) wants to write to our swapdev so we cannot
2583 	 * set an exclusive count :-(
2584 	 */
2585 	error = g_access(cp, 1, 1, 0);
2586 	if (error) {
2587 		g_detach(cp);
2588 		g_destroy_consumer(cp);
2589 		swh->error = error;
2590 		return;
2591 	}
2592 	nblks = pp->mediasize / DEV_BSIZE;
2593 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2594 	    swapgeom_close, dev2udev(swh->dev));
2595 	swh->error = 0;
2596 	return;
2597 }
2598 
2599 static int
2600 swapongeom(struct thread *td, struct vnode *vp)
2601 {
2602 	int error;
2603 	struct swh0h0 swh;
2604 
2605 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2606 
2607 	swh.dev = vp->v_rdev;
2608 	swh.vp = vp;
2609 	swh.error = 0;
2610 	/* XXX: direct call when Giant untangled */
2611 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2612 	if (!error)
2613 		error = swh.error;
2614 	VOP_UNLOCK(vp, 0);
2615 	return (error);
2616 }
2617 
2618 /*
2619  * VNODE backend
2620  *
2621  * This is used mainly for network filesystem (read: probably only tested
2622  * with NFS) swapfiles.
2623  *
2624  */
2625 
2626 static void
2627 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2628 {
2629 	struct vnode *vp2;
2630 
2631 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2632 
2633 	vp2 = sp->sw_id;
2634 	vhold(vp2);
2635 	if (bp->b_iocmd == BIO_WRITE) {
2636 		if (bp->b_bufobj)
2637 			bufobj_wdrop(bp->b_bufobj);
2638 		bufobj_wref(&vp2->v_bufobj);
2639 	}
2640 	if (bp->b_bufobj != &vp2->v_bufobj)
2641 		bp->b_bufobj = &vp2->v_bufobj;
2642 	bp->b_vp = vp2;
2643 	bp->b_iooffset = dbtob(bp->b_blkno);
2644 	bstrategy(bp);
2645 	return;
2646 }
2647 
2648 static void
2649 swapdev_close(struct thread *td, struct swdevt *sp)
2650 {
2651 
2652 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2653 	vrele(sp->sw_vp);
2654 }
2655 
2656 
2657 static int
2658 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2659 {
2660 	struct swdevt *sp;
2661 	int error;
2662 
2663 	if (nblks == 0)
2664 		return (ENXIO);
2665 	mtx_lock(&sw_dev_mtx);
2666 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2667 		if (sp->sw_id == vp) {
2668 			mtx_unlock(&sw_dev_mtx);
2669 			return (EBUSY);
2670 		}
2671 	}
2672 	mtx_unlock(&sw_dev_mtx);
2673 
2674 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2675 #ifdef MAC
2676 	error = mac_system_check_swapon(td->td_ucred, vp);
2677 	if (error == 0)
2678 #endif
2679 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2680 	(void) VOP_UNLOCK(vp, 0);
2681 	if (error)
2682 		return (error);
2683 
2684 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2685 	    NODEV);
2686 	return (0);
2687 }
2688