1 /* 2 * Copyright (c) 1998 Matthew Dillon, 3 * Copyright (c) 1994 John S. Dyson 4 * Copyright (c) 1990 University of Utah. 5 * Copyright (c) 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * the Systems Programming Group of the University of Utah Computer 10 * Science Department. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * New Swap System 41 * Matthew Dillon 42 * 43 * Radix Bitmap 'blists'. 44 * 45 * - The new swapper uses the new radix bitmap code. This should scale 46 * to arbitrarily small or arbitrarily large swap spaces and an almost 47 * arbitrary degree of fragmentation. 48 * 49 * Features: 50 * 51 * - on the fly reallocation of swap during putpages. The new system 52 * does not try to keep previously allocated swap blocks for dirty 53 * pages. 54 * 55 * - on the fly deallocation of swap 56 * 57 * - No more garbage collection required. Unnecessarily allocated swap 58 * blocks only exist for dirty vm_page_t's now and these are already 59 * cycled (in a high-load system) by the pager. We also do on-the-fly 60 * removal of invalidated swap blocks when a page is destroyed 61 * or renamed. 62 * 63 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 64 * 65 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 66 * 67 * $FreeBSD$ 68 */ 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/conf.h> 73 #include <sys/kernel.h> 74 #include <sys/proc.h> 75 #include <sys/bio.h> 76 #include <sys/buf.h> 77 #include <sys/vnode.h> 78 #include <sys/malloc.h> 79 #include <sys/vmmeter.h> 80 #include <sys/sysctl.h> 81 #include <sys/blist.h> 82 #include <sys/lock.h> 83 #include <sys/vmmeter.h> 84 85 #ifndef MAX_PAGEOUT_CLUSTER 86 #define MAX_PAGEOUT_CLUSTER 16 87 #endif 88 89 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 90 91 #include "opt_swap.h" 92 #include <vm/vm.h> 93 #include <vm/pmap.h> 94 #include <vm/vm_map.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vm_pageout.h> 100 #include <vm/vm_zone.h> 101 #include <vm/swap_pager.h> 102 #include <vm/vm_extern.h> 103 104 #define SWM_FREE 0x02 /* free, period */ 105 #define SWM_POP 0x04 /* pop out */ 106 107 /* 108 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 109 * in the old system. 110 */ 111 112 extern int vm_swap_size; /* number of free swap blocks, in pages */ 113 114 int swap_pager_full; /* swap space exhaustion (task killing) */ 115 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 116 static int nsw_rcount; /* free read buffers */ 117 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 118 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 119 static int nsw_wcount_async_max;/* assigned maximum */ 120 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 121 static int sw_alloc_interlock; /* swap pager allocation interlock */ 122 123 struct blist *swapblist; 124 static struct swblock **swhash; 125 static int swhash_mask; 126 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 127 128 /* from vm_swap.c */ 129 extern struct vnode *swapdev_vp; 130 extern struct swdevt *swdevt; 131 extern int nswdev; 132 133 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 134 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 135 136 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 137 138 /* 139 * "named" and "unnamed" anon region objects. Try to reduce the overhead 140 * of searching a named list by hashing it just a little. 141 */ 142 143 #define NOBJLISTS 8 144 145 #define NOBJLIST(handle) \ 146 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 147 148 static struct mtx sw_alloc_mtx; /* protect list manipulation */ 149 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 150 struct pagerlst swap_pager_un_object_list; 151 vm_zone_t swap_zone; 152 153 /* 154 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 155 * calls hooked from other parts of the VM system and do not appear here. 156 * (see vm/swap_pager.h). 157 */ 158 159 static vm_object_t 160 swap_pager_alloc __P((void *handle, vm_ooffset_t size, 161 vm_prot_t prot, vm_ooffset_t offset)); 162 static void swap_pager_dealloc __P((vm_object_t object)); 163 static int swap_pager_getpages __P((vm_object_t, vm_page_t *, int, int)); 164 static void swap_pager_init __P((void)); 165 static void swap_pager_unswapped __P((vm_page_t)); 166 static void swap_pager_strategy __P((vm_object_t, struct bio *)); 167 168 struct pagerops swappagerops = { 169 swap_pager_init, /* early system initialization of pager */ 170 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 171 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 172 swap_pager_getpages, /* pagein */ 173 swap_pager_putpages, /* pageout */ 174 swap_pager_haspage, /* get backing store status for page */ 175 swap_pager_unswapped, /* remove swap related to page */ 176 swap_pager_strategy /* pager strategy call */ 177 }; 178 179 static struct buf *getchainbuf(struct bio *bp, struct vnode *vp, int flags); 180 static void flushchainbuf(struct buf *nbp); 181 static void waitchainbuf(struct bio *bp, int count, int done); 182 183 /* 184 * dmmax is in page-sized chunks with the new swap system. It was 185 * dev-bsized chunks in the old. dmmax is always a power of 2. 186 * 187 * swap_*() routines are externally accessible. swp_*() routines are 188 * internal. 189 */ 190 191 int dmmax; 192 static int dmmax_mask; 193 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 194 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 195 196 SYSCTL_INT(_vm, OID_AUTO, dmmax, 197 CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block"); 198 199 static __inline void swp_sizecheck __P((void)); 200 static void swp_pager_sync_iodone __P((struct buf *bp)); 201 static void swp_pager_async_iodone __P((struct buf *bp)); 202 203 /* 204 * Swap bitmap functions 205 */ 206 207 static __inline void swp_pager_freeswapspace __P((daddr_t blk, int npages)); 208 static __inline daddr_t swp_pager_getswapspace __P((int npages)); 209 210 /* 211 * Metadata functions 212 */ 213 214 static void swp_pager_meta_build __P((vm_object_t, vm_pindex_t, daddr_t)); 215 static void swp_pager_meta_free __P((vm_object_t, vm_pindex_t, daddr_t)); 216 static void swp_pager_meta_free_all __P((vm_object_t)); 217 static daddr_t swp_pager_meta_ctl __P((vm_object_t, vm_pindex_t, int)); 218 219 /* 220 * SWP_SIZECHECK() - update swap_pager_full indication 221 * 222 * update the swap_pager_almost_full indication and warn when we are 223 * about to run out of swap space, using lowat/hiwat hysteresis. 224 * 225 * Clear swap_pager_full ( task killing ) indication when lowat is met. 226 * 227 * No restrictions on call 228 * This routine may not block. 229 * This routine must be called at splvm() 230 */ 231 232 static __inline void 233 swp_sizecheck() 234 { 235 236 mtx_assert(&vm_mtx, MA_OWNED); 237 if (vm_swap_size < nswap_lowat) { 238 if (swap_pager_almost_full == 0) { 239 printf("swap_pager: out of swap space\n"); 240 swap_pager_almost_full = 1; 241 } 242 } else { 243 swap_pager_full = 0; 244 if (vm_swap_size > nswap_hiwat) 245 swap_pager_almost_full = 0; 246 } 247 } 248 249 /* 250 * SWAP_PAGER_INIT() - initialize the swap pager! 251 * 252 * Expected to be started from system init. NOTE: This code is run 253 * before much else so be careful what you depend on. Most of the VM 254 * system has yet to be initialized at this point. 255 */ 256 257 static void 258 swap_pager_init() 259 { 260 /* 261 * Initialize object lists 262 */ 263 int i; 264 265 for (i = 0; i < NOBJLISTS; ++i) 266 TAILQ_INIT(&swap_pager_object_list[i]); 267 TAILQ_INIT(&swap_pager_un_object_list); 268 mtx_init(&sw_alloc_mtx, "swap_pager list", MTX_DEF); 269 270 /* 271 * Device Stripe, in PAGE_SIZE'd blocks 272 */ 273 274 dmmax = SWB_NPAGES * 2; 275 dmmax_mask = ~(dmmax - 1); 276 } 277 278 /* 279 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 280 * 281 * Expected to be started from pageout process once, prior to entering 282 * its main loop. 283 */ 284 285 void 286 swap_pager_swap_init() 287 { 288 int n, n2; 289 290 /* 291 * Number of in-transit swap bp operations. Don't 292 * exhaust the pbufs completely. Make sure we 293 * initialize workable values (0 will work for hysteresis 294 * but it isn't very efficient). 295 * 296 * The nsw_cluster_max is constrained by the bp->b_pages[] 297 * array (MAXPHYS/PAGE_SIZE) and our locally defined 298 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 299 * constrained by the swap device interleave stripe size. 300 * 301 * Currently we hardwire nsw_wcount_async to 4. This limit is 302 * designed to prevent other I/O from having high latencies due to 303 * our pageout I/O. The value 4 works well for one or two active swap 304 * devices but is probably a little low if you have more. Even so, 305 * a higher value would probably generate only a limited improvement 306 * with three or four active swap devices since the system does not 307 * typically have to pageout at extreme bandwidths. We will want 308 * at least 2 per swap devices, and 4 is a pretty good value if you 309 * have one NFS swap device due to the command/ack latency over NFS. 310 * So it all works out pretty well. 311 */ 312 313 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 314 315 mtx_lock(&pbuf_mtx); 316 nsw_rcount = (nswbuf + 1) / 2; 317 nsw_wcount_sync = (nswbuf + 3) / 4; 318 nsw_wcount_async = 4; 319 nsw_wcount_async_max = nsw_wcount_async; 320 mtx_unlock(&pbuf_mtx); 321 322 /* 323 * Initialize our zone. Right now I'm just guessing on the number 324 * we need based on the number of pages in the system. Each swblock 325 * can hold 16 pages, so this is probably overkill. 326 */ 327 328 n = min(cnt.v_page_count, (kernel_map->max_offset - kernel_map->min_offset) / PAGE_SIZE) * 2; 329 n2 = n; 330 331 while (n > 0 332 && (swap_zone = zinit( 333 "SWAPMETA", 334 sizeof(struct swblock), 335 n, 336 ZONE_INTERRUPT, 337 1 338 )) == NULL) 339 n >>= 1; 340 if (swap_zone == NULL) 341 printf("WARNING: failed to init swap_zone!\n"); 342 if (n2 != n) 343 printf("Swap zone entries reduced to %d.\n", n); 344 n2 = n; 345 346 /* 347 * Initialize our meta-data hash table. The swapper does not need to 348 * be quite as efficient as the VM system, so we do not use an 349 * oversized hash table. 350 * 351 * n: size of hash table, must be power of 2 352 * swhash_mask: hash table index mask 353 */ 354 355 for (n = 1; n < n2 ; n <<= 1) 356 ; 357 358 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO); 359 360 swhash_mask = n - 1; 361 } 362 363 /* 364 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 365 * its metadata structures. 366 * 367 * This routine is called from the mmap and fork code to create a new 368 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 369 * and then converting it with swp_pager_meta_build(). 370 * 371 * This routine may block in vm_object_allocate() and create a named 372 * object lookup race, so we must interlock. We must also run at 373 * splvm() for the object lookup to handle races with interrupts, but 374 * we do not have to maintain splvm() in between the lookup and the 375 * add because (I believe) it is not possible to attempt to create 376 * a new swap object w/handle when a default object with that handle 377 * already exists. 378 */ 379 380 static vm_object_t 381 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 382 vm_ooffset_t offset) 383 { 384 vm_object_t object; 385 386 mtx_assert(&vm_mtx, MA_OWNED); 387 if (handle) { 388 /* 389 * Reference existing named region or allocate new one. There 390 * should not be a race here against swp_pager_meta_build() 391 * as called from vm_page_remove() in regards to the lookup 392 * of the handle. 393 */ 394 395 while (sw_alloc_interlock) { 396 sw_alloc_interlock = -1; 397 msleep(&sw_alloc_interlock, &vm_mtx, PVM, "swpalc", 0); 398 } 399 sw_alloc_interlock = 1; 400 401 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 402 403 if (object != NULL) { 404 vm_object_reference(object); 405 } else { 406 object = vm_object_allocate(OBJT_DEFAULT, 407 OFF_TO_IDX(offset + PAGE_MASK + size)); 408 object->handle = handle; 409 410 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 411 } 412 413 if (sw_alloc_interlock == -1) 414 wakeup(&sw_alloc_interlock); 415 sw_alloc_interlock = 0; 416 } else { 417 object = vm_object_allocate(OBJT_DEFAULT, 418 OFF_TO_IDX(offset + PAGE_MASK + size)); 419 420 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 421 } 422 423 return (object); 424 } 425 426 /* 427 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 428 * 429 * The swap backing for the object is destroyed. The code is 430 * designed such that we can reinstantiate it later, but this 431 * routine is typically called only when the entire object is 432 * about to be destroyed. 433 * 434 * This routine may block, but no longer does. 435 * 436 * The object must be locked or unreferenceable. 437 */ 438 439 static void 440 swap_pager_dealloc(object) 441 vm_object_t object; 442 { 443 int s; 444 445 mtx_assert(&vm_mtx, MA_OWNED); 446 /* 447 * Remove from list right away so lookups will fail if we block for 448 * pageout completion. 449 */ 450 451 mtx_lock(&sw_alloc_mtx); 452 if (object->handle == NULL) { 453 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 454 } else { 455 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 456 } 457 mtx_unlock(&sw_alloc_mtx); 458 459 vm_object_pip_wait(object, "swpdea"); 460 461 /* 462 * Free all remaining metadata. We only bother to free it from 463 * the swap meta data. We do not attempt to free swapblk's still 464 * associated with vm_page_t's for this object. We do not care 465 * if paging is still in progress on some objects. 466 */ 467 s = splvm(); 468 swp_pager_meta_free_all(object); 469 splx(s); 470 } 471 472 /************************************************************************ 473 * SWAP PAGER BITMAP ROUTINES * 474 ************************************************************************/ 475 476 /* 477 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 478 * 479 * Allocate swap for the requested number of pages. The starting 480 * swap block number (a page index) is returned or SWAPBLK_NONE 481 * if the allocation failed. 482 * 483 * Also has the side effect of advising that somebody made a mistake 484 * when they configured swap and didn't configure enough. 485 * 486 * Must be called at splvm() to avoid races with bitmap frees from 487 * vm_page_remove() aka swap_pager_page_removed(). 488 * 489 * This routine may not block 490 * This routine must be called at splvm(). 491 * vm_mtx should be held 492 */ 493 494 static __inline daddr_t 495 swp_pager_getswapspace(npages) 496 int npages; 497 { 498 daddr_t blk; 499 500 mtx_assert(&vm_mtx, MA_OWNED); 501 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 502 if (swap_pager_full != 2) { 503 printf("swap_pager_getswapspace: failed\n"); 504 swap_pager_full = 2; 505 swap_pager_almost_full = 1; 506 } 507 } else { 508 vm_swap_size -= npages; 509 /* per-swap area stats */ 510 swdevt[BLK2DEVIDX(blk)].sw_used += npages; 511 swp_sizecheck(); 512 } 513 return(blk); 514 } 515 516 /* 517 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 518 * 519 * This routine returns the specified swap blocks back to the bitmap. 520 * 521 * Note: This routine may not block (it could in the old swap code), 522 * and through the use of the new blist routines it does not block. 523 * 524 * We must be called at splvm() to avoid races with bitmap frees from 525 * vm_page_remove() aka swap_pager_page_removed(). 526 * 527 * This routine may not block 528 * This routine must be called at splvm(). 529 * vm_mtx should be held 530 */ 531 532 static __inline void 533 swp_pager_freeswapspace(blk, npages) 534 daddr_t blk; 535 int npages; 536 { 537 538 mtx_assert(&vm_mtx, MA_OWNED); 539 blist_free(swapblist, blk, npages); 540 vm_swap_size += npages; 541 /* per-swap area stats */ 542 swdevt[BLK2DEVIDX(blk)].sw_used -= npages; 543 swp_sizecheck(); 544 } 545 546 /* 547 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 548 * range within an object. 549 * 550 * This is a globally accessible routine. 551 * 552 * This routine removes swapblk assignments from swap metadata. 553 * 554 * The external callers of this routine typically have already destroyed 555 * or renamed vm_page_t's associated with this range in the object so 556 * we should be ok. 557 * 558 * This routine may be called at any spl. We up our spl to splvm temporarily 559 * in order to perform the metadata removal. 560 */ 561 562 void 563 swap_pager_freespace(object, start, size) 564 vm_object_t object; 565 vm_pindex_t start; 566 vm_size_t size; 567 { 568 int s = splvm(); 569 570 mtx_assert(&vm_mtx, MA_OWNED); 571 572 swp_pager_meta_free(object, start, size); 573 splx(s); 574 } 575 576 /* 577 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 578 * 579 * Assigns swap blocks to the specified range within the object. The 580 * swap blocks are not zerod. Any previous swap assignment is destroyed. 581 * 582 * Returns 0 on success, -1 on failure. 583 */ 584 585 int 586 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 587 { 588 int s; 589 int n = 0; 590 daddr_t blk = SWAPBLK_NONE; 591 vm_pindex_t beg = start; /* save start index */ 592 593 s = splvm(); 594 while (size) { 595 if (n == 0) { 596 n = BLIST_MAX_ALLOC; 597 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 598 n >>= 1; 599 if (n == 0) { 600 swp_pager_meta_free(object, beg, start - beg); 601 splx(s); 602 return(-1); 603 } 604 } 605 } 606 swp_pager_meta_build(object, start, blk); 607 --size; 608 ++start; 609 ++blk; 610 --n; 611 } 612 swp_pager_meta_free(object, start, n); 613 splx(s); 614 return(0); 615 } 616 617 /* 618 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 619 * and destroy the source. 620 * 621 * Copy any valid swapblks from the source to the destination. In 622 * cases where both the source and destination have a valid swapblk, 623 * we keep the destination's. 624 * 625 * This routine is allowed to block. It may block allocating metadata 626 * indirectly through swp_pager_meta_build() or if paging is still in 627 * progress on the source. 628 * 629 * This routine can be called at any spl 630 * 631 * XXX vm_page_collapse() kinda expects us not to block because we 632 * supposedly do not need to allocate memory, but for the moment we 633 * *may* have to get a little memory from the zone allocator, but 634 * it is taken from the interrupt memory. We should be ok. 635 * 636 * The source object contains no vm_page_t's (which is just as well) 637 * 638 * The source object is of type OBJT_SWAP. 639 * 640 * The source and destination objects must be locked or 641 * inaccessible (XXX are they ?) 642 */ 643 644 void 645 swap_pager_copy(srcobject, dstobject, offset, destroysource) 646 vm_object_t srcobject; 647 vm_object_t dstobject; 648 vm_pindex_t offset; 649 int destroysource; 650 { 651 vm_pindex_t i; 652 int s; 653 654 s = splvm(); 655 656 mtx_assert(&vm_mtx, MA_OWNED); 657 658 /* 659 * If destroysource is set, we remove the source object from the 660 * swap_pager internal queue now. 661 */ 662 663 if (destroysource) { 664 mtx_lock(&sw_alloc_mtx); 665 if (srcobject->handle == NULL) { 666 TAILQ_REMOVE( 667 &swap_pager_un_object_list, 668 srcobject, 669 pager_object_list 670 ); 671 } else { 672 TAILQ_REMOVE( 673 NOBJLIST(srcobject->handle), 674 srcobject, 675 pager_object_list 676 ); 677 } 678 mtx_unlock(&sw_alloc_mtx); 679 } 680 681 /* 682 * transfer source to destination. 683 */ 684 685 for (i = 0; i < dstobject->size; ++i) { 686 daddr_t dstaddr; 687 688 /* 689 * Locate (without changing) the swapblk on the destination, 690 * unless it is invalid in which case free it silently, or 691 * if the destination is a resident page, in which case the 692 * source is thrown away. 693 */ 694 695 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 696 697 if (dstaddr == SWAPBLK_NONE) { 698 /* 699 * Destination has no swapblk and is not resident, 700 * copy source. 701 */ 702 daddr_t srcaddr; 703 704 srcaddr = swp_pager_meta_ctl( 705 srcobject, 706 i + offset, 707 SWM_POP 708 ); 709 710 if (srcaddr != SWAPBLK_NONE) 711 swp_pager_meta_build(dstobject, i, srcaddr); 712 } else { 713 /* 714 * Destination has valid swapblk or it is represented 715 * by a resident page. We destroy the sourceblock. 716 */ 717 718 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 719 } 720 } 721 722 /* 723 * Free left over swap blocks in source. 724 * 725 * We have to revert the type to OBJT_DEFAULT so we do not accidently 726 * double-remove the object from the swap queues. 727 */ 728 729 if (destroysource) { 730 swp_pager_meta_free_all(srcobject); 731 /* 732 * Reverting the type is not necessary, the caller is going 733 * to destroy srcobject directly, but I'm doing it here 734 * for consistency since we've removed the object from its 735 * queues. 736 */ 737 srcobject->type = OBJT_DEFAULT; 738 } 739 splx(s); 740 } 741 742 /* 743 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 744 * the requested page. 745 * 746 * We determine whether good backing store exists for the requested 747 * page and return TRUE if it does, FALSE if it doesn't. 748 * 749 * If TRUE, we also try to determine how much valid, contiguous backing 750 * store exists before and after the requested page within a reasonable 751 * distance. We do not try to restrict it to the swap device stripe 752 * (that is handled in getpages/putpages). It probably isn't worth 753 * doing here. 754 */ 755 756 boolean_t 757 swap_pager_haspage(object, pindex, before, after) 758 vm_object_t object; 759 vm_pindex_t pindex; 760 int *before; 761 int *after; 762 { 763 daddr_t blk0; 764 int s; 765 766 /* 767 * do we have good backing store at the requested index ? 768 */ 769 770 s = splvm(); 771 blk0 = swp_pager_meta_ctl(object, pindex, 0); 772 773 if (blk0 == SWAPBLK_NONE) { 774 splx(s); 775 if (before) 776 *before = 0; 777 if (after) 778 *after = 0; 779 return (FALSE); 780 } 781 782 /* 783 * find backwards-looking contiguous good backing store 784 */ 785 786 if (before != NULL) { 787 int i; 788 789 for (i = 1; i < (SWB_NPAGES/2); ++i) { 790 daddr_t blk; 791 792 if (i > pindex) 793 break; 794 blk = swp_pager_meta_ctl(object, pindex - i, 0); 795 if (blk != blk0 - i) 796 break; 797 } 798 *before = (i - 1); 799 } 800 801 /* 802 * find forward-looking contiguous good backing store 803 */ 804 805 if (after != NULL) { 806 int i; 807 808 for (i = 1; i < (SWB_NPAGES/2); ++i) { 809 daddr_t blk; 810 811 blk = swp_pager_meta_ctl(object, pindex + i, 0); 812 if (blk != blk0 + i) 813 break; 814 } 815 *after = (i - 1); 816 } 817 splx(s); 818 return (TRUE); 819 } 820 821 /* 822 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 823 * 824 * This removes any associated swap backing store, whether valid or 825 * not, from the page. 826 * 827 * This routine is typically called when a page is made dirty, at 828 * which point any associated swap can be freed. MADV_FREE also 829 * calls us in a special-case situation 830 * 831 * NOTE!!! If the page is clean and the swap was valid, the caller 832 * should make the page dirty before calling this routine. This routine 833 * does NOT change the m->dirty status of the page. Also: MADV_FREE 834 * depends on it. 835 * 836 * This routine may not block 837 * This routine must be called at splvm() 838 */ 839 840 static void 841 swap_pager_unswapped(m) 842 vm_page_t m; 843 { 844 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 845 } 846 847 /* 848 * SWAP_PAGER_STRATEGY() - read, write, free blocks 849 * 850 * This implements the vm_pager_strategy() interface to swap and allows 851 * other parts of the system to directly access swap as backing store 852 * through vm_objects of type OBJT_SWAP. This is intended to be a 853 * cacheless interface ( i.e. caching occurs at higher levels ). 854 * Therefore we do not maintain any resident pages. All I/O goes 855 * directly to and from the swap device. 856 * 857 * Note that b_blkno is scaled for PAGE_SIZE 858 * 859 * We currently attempt to run I/O synchronously or asynchronously as 860 * the caller requests. This isn't perfect because we loose error 861 * sequencing when we run multiple ops in parallel to satisfy a request. 862 * But this is swap, so we let it all hang out. 863 */ 864 865 static void 866 swap_pager_strategy(vm_object_t object, struct bio *bp) 867 { 868 vm_pindex_t start; 869 int count; 870 int s; 871 char *data; 872 struct buf *nbp = NULL; 873 874 mtx_assert(&Giant, MA_OWNED); 875 mtx_assert(&vm_mtx, MA_NOTOWNED); 876 /* XXX: KASSERT instead ? */ 877 if (bp->bio_bcount & PAGE_MASK) { 878 biofinish(bp, NULL, EINVAL); 879 printf("swap_pager_strategy: bp %p blk %d size %d, not page bounded\n", bp, (int)bp->bio_pblkno, (int)bp->bio_bcount); 880 return; 881 } 882 883 /* 884 * Clear error indication, initialize page index, count, data pointer. 885 */ 886 887 bp->bio_error = 0; 888 bp->bio_flags &= ~BIO_ERROR; 889 bp->bio_resid = bp->bio_bcount; 890 891 start = bp->bio_pblkno; 892 count = howmany(bp->bio_bcount, PAGE_SIZE); 893 data = bp->bio_data; 894 895 s = splvm(); 896 897 /* 898 * Deal with BIO_DELETE 899 */ 900 901 if (bp->bio_cmd == BIO_DELETE) { 902 /* 903 * FREE PAGE(s) - destroy underlying swap that is no longer 904 * needed. 905 */ 906 mtx_lock(&vm_mtx); 907 swp_pager_meta_free(object, start, count); 908 mtx_unlock(&vm_mtx); 909 splx(s); 910 bp->bio_resid = 0; 911 biodone(bp); 912 return; 913 } 914 915 /* 916 * Execute read or write 917 */ 918 919 mtx_lock(&vm_mtx); 920 while (count > 0) { 921 daddr_t blk; 922 923 /* 924 * Obtain block. If block not found and writing, allocate a 925 * new block and build it into the object. 926 */ 927 928 blk = swp_pager_meta_ctl(object, start, 0); 929 if ((blk == SWAPBLK_NONE) && (bp->bio_cmd == BIO_WRITE)) { 930 blk = swp_pager_getswapspace(1); 931 if (blk == SWAPBLK_NONE) { 932 bp->bio_error = ENOMEM; 933 bp->bio_flags |= BIO_ERROR; 934 break; 935 } 936 swp_pager_meta_build(object, start, blk); 937 } 938 939 /* 940 * Do we have to flush our current collection? Yes if: 941 * 942 * - no swap block at this index 943 * - swap block is not contiguous 944 * - we cross a physical disk boundry in the 945 * stripe. 946 */ 947 948 if ( 949 nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk || 950 ((nbp->b_blkno ^ blk) & dmmax_mask) 951 ) 952 ) { 953 splx(s); 954 if (bp->bio_cmd == BIO_READ) { 955 ++cnt.v_swapin; 956 cnt.v_swappgsin += btoc(nbp->b_bcount); 957 } else { 958 ++cnt.v_swapout; 959 cnt.v_swappgsout += btoc(nbp->b_bcount); 960 nbp->b_dirtyend = nbp->b_bcount; 961 } 962 mtx_unlock(&vm_mtx); 963 flushchainbuf(nbp); 964 mtx_lock(&vm_mtx); 965 s = splvm(); 966 nbp = NULL; 967 } 968 969 /* 970 * Add new swapblk to nbp, instantiating nbp if necessary. 971 * Zero-fill reads are able to take a shortcut. 972 */ 973 974 if (blk == SWAPBLK_NONE) { 975 /* 976 * We can only get here if we are reading. Since 977 * we are at splvm() we can safely modify b_resid, 978 * even if chain ops are in progress. 979 */ 980 bzero(data, PAGE_SIZE); 981 bp->bio_resid -= PAGE_SIZE; 982 } else { 983 if (nbp == NULL) { 984 mtx_unlock(&vm_mtx); 985 nbp = getchainbuf(bp, swapdev_vp, B_ASYNC); 986 mtx_lock(&vm_mtx); 987 nbp->b_blkno = blk; 988 nbp->b_bcount = 0; 989 nbp->b_data = data; 990 } 991 nbp->b_bcount += PAGE_SIZE; 992 } 993 --count; 994 ++start; 995 data += PAGE_SIZE; 996 } 997 998 /* 999 * Flush out last buffer 1000 */ 1001 1002 splx(s); 1003 1004 if (nbp) { 1005 if (nbp->b_iocmd == BIO_READ) { 1006 ++cnt.v_swapin; 1007 cnt.v_swappgsin += btoc(nbp->b_bcount); 1008 } else { 1009 ++cnt.v_swapout; 1010 cnt.v_swappgsout += btoc(nbp->b_bcount); 1011 nbp->b_dirtyend = nbp->b_bcount; 1012 } 1013 mtx_unlock(&vm_mtx); 1014 flushchainbuf(nbp); 1015 /* nbp = NULL; */ 1016 } else 1017 mtx_unlock(&vm_mtx); 1018 /* 1019 * Wait for completion. 1020 */ 1021 1022 waitchainbuf(bp, 0, 1); 1023 } 1024 1025 /* 1026 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1027 * 1028 * Attempt to retrieve (m, count) pages from backing store, but make 1029 * sure we retrieve at least m[reqpage]. We try to load in as large 1030 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1031 * belongs to the same object. 1032 * 1033 * The code is designed for asynchronous operation and 1034 * immediate-notification of 'reqpage' but tends not to be 1035 * used that way. Please do not optimize-out this algorithmic 1036 * feature, I intend to improve on it in the future. 1037 * 1038 * The parent has a single vm_object_pip_add() reference prior to 1039 * calling us and we should return with the same. 1040 * 1041 * The parent has BUSY'd the pages. We should return with 'm' 1042 * left busy, but the others adjusted. 1043 */ 1044 1045 static int 1046 swap_pager_getpages(object, m, count, reqpage) 1047 vm_object_t object; 1048 vm_page_t *m; 1049 int count, reqpage; 1050 { 1051 struct buf *bp; 1052 vm_page_t mreq; 1053 int s; 1054 int i; 1055 int j; 1056 daddr_t blk; 1057 vm_offset_t kva; 1058 vm_pindex_t lastpindex; 1059 1060 mtx_assert(&Giant, MA_OWNED); 1061 mreq = m[reqpage]; 1062 1063 if (mreq->object != object) { 1064 panic("swap_pager_getpages: object mismatch %p/%p", 1065 object, 1066 mreq->object 1067 ); 1068 } 1069 /* 1070 * Calculate range to retrieve. The pages have already been assigned 1071 * their swapblks. We require a *contiguous* range that falls entirely 1072 * within a single device stripe. If we do not supply it, bad things 1073 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1074 * loops are set up such that the case(s) are handled implicitly. 1075 * 1076 * The swp_*() calls must be made at splvm(). vm_page_free() does 1077 * not need to be, but it will go a little faster if it is. 1078 */ 1079 1080 s = splvm(); 1081 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1082 1083 for (i = reqpage - 1; i >= 0; --i) { 1084 daddr_t iblk; 1085 1086 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1087 if (blk != iblk + (reqpage - i)) 1088 break; 1089 if ((blk ^ iblk) & dmmax_mask) 1090 break; 1091 } 1092 ++i; 1093 1094 for (j = reqpage + 1; j < count; ++j) { 1095 daddr_t jblk; 1096 1097 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1098 if (blk != jblk - (j - reqpage)) 1099 break; 1100 if ((blk ^ jblk) & dmmax_mask) 1101 break; 1102 } 1103 1104 /* 1105 * free pages outside our collection range. Note: we never free 1106 * mreq, it must remain busy throughout. 1107 */ 1108 1109 { 1110 int k; 1111 1112 for (k = 0; k < i; ++k) 1113 vm_page_free(m[k]); 1114 for (k = j; k < count; ++k) 1115 vm_page_free(m[k]); 1116 } 1117 splx(s); 1118 1119 1120 /* 1121 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1122 * still busy, but the others unbusied. 1123 */ 1124 1125 if (blk == SWAPBLK_NONE) 1126 return(VM_PAGER_FAIL); 1127 1128 /* 1129 * Get a swap buffer header to perform the IO 1130 */ 1131 1132 bp = getpbuf(&nsw_rcount); 1133 kva = (vm_offset_t) bp->b_data; 1134 1135 /* 1136 * map our page(s) into kva for input 1137 * 1138 * NOTE: B_PAGING is set by pbgetvp() 1139 */ 1140 1141 pmap_qenter(kva, m + i, j - i); 1142 1143 bp->b_iocmd = BIO_READ; 1144 bp->b_iodone = swp_pager_async_iodone; 1145 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1146 bp->b_data = (caddr_t) kva; 1147 crhold(bp->b_rcred); 1148 crhold(bp->b_wcred); 1149 bp->b_blkno = blk - (reqpage - i); 1150 bp->b_bcount = PAGE_SIZE * (j - i); 1151 bp->b_bufsize = PAGE_SIZE * (j - i); 1152 bp->b_pager.pg_reqpage = reqpage - i; 1153 1154 { 1155 int k; 1156 1157 for (k = i; k < j; ++k) { 1158 bp->b_pages[k - i] = m[k]; 1159 vm_page_flag_set(m[k], PG_SWAPINPROG); 1160 } 1161 } 1162 bp->b_npages = j - i; 1163 1164 pbgetvp(swapdev_vp, bp); 1165 1166 cnt.v_swapin++; 1167 cnt.v_swappgsin += bp->b_npages; 1168 1169 /* 1170 * We still hold the lock on mreq, and our automatic completion routine 1171 * does not remove it. 1172 */ 1173 1174 vm_object_pip_add(mreq->object, bp->b_npages); 1175 lastpindex = m[j-1]->pindex; 1176 1177 /* 1178 * perform the I/O. NOTE!!! bp cannot be considered valid after 1179 * this point because we automatically release it on completion. 1180 * Instead, we look at the one page we are interested in which we 1181 * still hold a lock on even through the I/O completion. 1182 * 1183 * The other pages in our m[] array are also released on completion, 1184 * so we cannot assume they are valid anymore either. 1185 * 1186 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1187 */ 1188 mtx_unlock(&vm_mtx); 1189 BUF_KERNPROC(bp); 1190 BUF_STRATEGY(bp); 1191 mtx_lock(&vm_mtx); 1192 1193 /* 1194 * wait for the page we want to complete. PG_SWAPINPROG is always 1195 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1196 * is set in the meta-data. 1197 */ 1198 1199 s = splvm(); 1200 1201 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1202 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1203 cnt.v_intrans++; 1204 if (msleep(mreq, &vm_mtx, PSWP, "swread", hz*20)) { 1205 printf( 1206 "swap_pager: indefinite wait buffer: device:" 1207 " %s, blkno: %ld, size: %ld\n", 1208 devtoname(bp->b_dev), (long)bp->b_blkno, 1209 bp->b_bcount 1210 ); 1211 } 1212 } 1213 1214 splx(s); 1215 1216 /* 1217 * mreq is left bussied after completion, but all the other pages 1218 * are freed. If we had an unrecoverable read error the page will 1219 * not be valid. 1220 */ 1221 1222 if (mreq->valid != VM_PAGE_BITS_ALL) { 1223 return(VM_PAGER_ERROR); 1224 } else { 1225 return(VM_PAGER_OK); 1226 } 1227 1228 /* 1229 * A final note: in a low swap situation, we cannot deallocate swap 1230 * and mark a page dirty here because the caller is likely to mark 1231 * the page clean when we return, causing the page to possibly revert 1232 * to all-zero's later. 1233 */ 1234 } 1235 1236 /* 1237 * swap_pager_putpages: 1238 * 1239 * Assign swap (if necessary) and initiate I/O on the specified pages. 1240 * 1241 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1242 * are automatically converted to SWAP objects. 1243 * 1244 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1245 * vm_page reservation system coupled with properly written VFS devices 1246 * should ensure that no low-memory deadlock occurs. This is an area 1247 * which needs work. 1248 * 1249 * The parent has N vm_object_pip_add() references prior to 1250 * calling us and will remove references for rtvals[] that are 1251 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1252 * completion. 1253 * 1254 * The parent has soft-busy'd the pages it passes us and will unbusy 1255 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1256 * We need to unbusy the rest on I/O completion. 1257 */ 1258 1259 void 1260 swap_pager_putpages(object, m, count, sync, rtvals) 1261 vm_object_t object; 1262 vm_page_t *m; 1263 int count; 1264 boolean_t sync; 1265 int *rtvals; 1266 { 1267 int i; 1268 int n = 0; 1269 1270 mtx_assert(&Giant, MA_OWNED); 1271 if (count && m[0]->object != object) { 1272 panic("swap_pager_getpages: object mismatch %p/%p", 1273 object, 1274 m[0]->object 1275 ); 1276 } 1277 /* 1278 * Step 1 1279 * 1280 * Turn object into OBJT_SWAP 1281 * check for bogus sysops 1282 * force sync if not pageout process 1283 */ 1284 1285 if (object->type != OBJT_SWAP) 1286 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1287 1288 if (curproc != pageproc) 1289 sync = TRUE; 1290 1291 /* 1292 * Step 2 1293 * 1294 * Update nsw parameters from swap_async_max sysctl values. 1295 * Do not let the sysop crash the machine with bogus numbers. 1296 */ 1297 1298 mtx_lock(&pbuf_mtx); 1299 if (swap_async_max != nsw_wcount_async_max) { 1300 int n; 1301 int s; 1302 1303 /* 1304 * limit range 1305 */ 1306 if ((n = swap_async_max) > nswbuf / 2) 1307 n = nswbuf / 2; 1308 if (n < 1) 1309 n = 1; 1310 swap_async_max = n; 1311 1312 /* 1313 * Adjust difference ( if possible ). If the current async 1314 * count is too low, we may not be able to make the adjustment 1315 * at this time. 1316 */ 1317 s = splvm(); 1318 n -= nsw_wcount_async_max; 1319 if (nsw_wcount_async + n >= 0) { 1320 nsw_wcount_async += n; 1321 nsw_wcount_async_max += n; 1322 wakeup(&nsw_wcount_async); 1323 } 1324 splx(s); 1325 } 1326 mtx_unlock(&pbuf_mtx); 1327 1328 /* 1329 * Step 3 1330 * 1331 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1332 * The page is left dirty until the pageout operation completes 1333 * successfully. 1334 */ 1335 1336 for (i = 0; i < count; i += n) { 1337 int s; 1338 int j; 1339 struct buf *bp; 1340 daddr_t blk; 1341 1342 /* 1343 * Maximum I/O size is limited by a number of factors. 1344 */ 1345 1346 n = min(BLIST_MAX_ALLOC, count - i); 1347 n = min(n, nsw_cluster_max); 1348 1349 s = splvm(); 1350 1351 /* 1352 * Get biggest block of swap we can. If we fail, fall 1353 * back and try to allocate a smaller block. Don't go 1354 * overboard trying to allocate space if it would overly 1355 * fragment swap. 1356 */ 1357 while ( 1358 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1359 n > 4 1360 ) { 1361 n >>= 1; 1362 } 1363 if (blk == SWAPBLK_NONE) { 1364 for (j = 0; j < n; ++j) 1365 rtvals[i+j] = VM_PAGER_FAIL; 1366 splx(s); 1367 continue; 1368 } 1369 1370 /* 1371 * The I/O we are constructing cannot cross a physical 1372 * disk boundry in the swap stripe. Note: we are still 1373 * at splvm(). 1374 */ 1375 if ((blk ^ (blk + n)) & dmmax_mask) { 1376 j = ((blk + dmmax) & dmmax_mask) - blk; 1377 swp_pager_freeswapspace(blk + j, n - j); 1378 n = j; 1379 } 1380 1381 /* 1382 * All I/O parameters have been satisfied, build the I/O 1383 * request and assign the swap space. 1384 * 1385 * NOTE: B_PAGING is set by pbgetvp() 1386 */ 1387 1388 if (sync == TRUE) { 1389 bp = getpbuf(&nsw_wcount_sync); 1390 } else { 1391 bp = getpbuf(&nsw_wcount_async); 1392 bp->b_flags = B_ASYNC; 1393 } 1394 bp->b_iocmd = BIO_WRITE; 1395 bp->b_spc = NULL; /* not used, but NULL-out anyway */ 1396 1397 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1398 1399 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1400 bp->b_bcount = PAGE_SIZE * n; 1401 bp->b_bufsize = PAGE_SIZE * n; 1402 bp->b_blkno = blk; 1403 1404 crhold(bp->b_rcred); 1405 crhold(bp->b_wcred); 1406 1407 pbgetvp(swapdev_vp, bp); 1408 1409 for (j = 0; j < n; ++j) { 1410 vm_page_t mreq = m[i+j]; 1411 1412 swp_pager_meta_build( 1413 mreq->object, 1414 mreq->pindex, 1415 blk + j 1416 ); 1417 vm_page_dirty(mreq); 1418 rtvals[i+j] = VM_PAGER_OK; 1419 1420 vm_page_flag_set(mreq, PG_SWAPINPROG); 1421 bp->b_pages[j] = mreq; 1422 } 1423 bp->b_npages = n; 1424 /* 1425 * Must set dirty range for NFS to work. 1426 */ 1427 bp->b_dirtyoff = 0; 1428 bp->b_dirtyend = bp->b_bcount; 1429 1430 cnt.v_swapout++; 1431 cnt.v_swappgsout += bp->b_npages; 1432 swapdev_vp->v_numoutput++; 1433 1434 splx(s); 1435 mtx_unlock(&vm_mtx); 1436 1437 /* 1438 * asynchronous 1439 * 1440 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1441 */ 1442 1443 if (sync == FALSE) { 1444 bp->b_iodone = swp_pager_async_iodone; 1445 BUF_KERNPROC(bp); 1446 BUF_STRATEGY(bp); 1447 mtx_lock(&vm_mtx); 1448 1449 for (j = 0; j < n; ++j) 1450 rtvals[i+j] = VM_PAGER_PEND; 1451 /* restart outter loop */ 1452 continue; 1453 } 1454 1455 /* 1456 * synchronous 1457 * 1458 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY 1459 */ 1460 1461 bp->b_iodone = swp_pager_sync_iodone; 1462 BUF_STRATEGY(bp); 1463 1464 /* 1465 * Wait for the sync I/O to complete, then update rtvals. 1466 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1467 * our async completion routine at the end, thus avoiding a 1468 * double-free. 1469 */ 1470 s = splbio(); 1471 1472 while ((bp->b_flags & B_DONE) == 0) { 1473 tsleep(bp, PVM, "swwrt", 0); 1474 } 1475 1476 for (j = 0; j < n; ++j) 1477 rtvals[i+j] = VM_PAGER_PEND; 1478 1479 /* 1480 * Now that we are through with the bp, we can call the 1481 * normal async completion, which frees everything up. 1482 */ 1483 1484 swp_pager_async_iodone(bp); 1485 mtx_lock(&vm_mtx); 1486 1487 splx(s); 1488 } 1489 } 1490 1491 /* 1492 * swap_pager_sync_iodone: 1493 * 1494 * Completion routine for synchronous reads and writes from/to swap. 1495 * We just mark the bp is complete and wake up anyone waiting on it. 1496 * 1497 * This routine may not block. This routine is called at splbio() or better. 1498 */ 1499 1500 static void 1501 swp_pager_sync_iodone(bp) 1502 struct buf *bp; 1503 { 1504 bp->b_flags |= B_DONE; 1505 bp->b_flags &= ~B_ASYNC; 1506 wakeup(bp); 1507 } 1508 1509 /* 1510 * swp_pager_async_iodone: 1511 * 1512 * Completion routine for asynchronous reads and writes from/to swap. 1513 * Also called manually by synchronous code to finish up a bp. 1514 * 1515 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1516 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1517 * unbusy all pages except the 'main' request page. For WRITE 1518 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1519 * because we marked them all VM_PAGER_PEND on return from putpages ). 1520 * 1521 * This routine may not block. 1522 * This routine is called at splbio() or better 1523 * 1524 * We up ourselves to splvm() as required for various vm_page related 1525 * calls. 1526 */ 1527 1528 static void 1529 swp_pager_async_iodone(bp) 1530 register struct buf *bp; 1531 { 1532 int s; 1533 int i; 1534 vm_object_t object = NULL; 1535 1536 mtx_assert(&vm_mtx, MA_NOTOWNED); 1537 bp->b_flags |= B_DONE; 1538 1539 /* 1540 * report error 1541 */ 1542 1543 if (bp->b_ioflags & BIO_ERROR) { 1544 printf( 1545 "swap_pager: I/O error - %s failed; blkno %ld," 1546 "size %ld, error %d\n", 1547 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1548 (long)bp->b_blkno, 1549 (long)bp->b_bcount, 1550 bp->b_error 1551 ); 1552 } 1553 1554 /* 1555 * set object, raise to splvm(). 1556 */ 1557 1558 if (bp->b_npages) 1559 object = bp->b_pages[0]->object; 1560 s = splvm(); 1561 1562 /* 1563 * remove the mapping for kernel virtual 1564 */ 1565 mtx_lock(&vm_mtx); 1566 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1567 1568 /* 1569 * cleanup pages. If an error occurs writing to swap, we are in 1570 * very serious trouble. If it happens to be a disk error, though, 1571 * we may be able to recover by reassigning the swap later on. So 1572 * in this case we remove the m->swapblk assignment for the page 1573 * but do not free it in the rlist. The errornous block(s) are thus 1574 * never reallocated as swap. Redirty the page and continue. 1575 */ 1576 1577 for (i = 0; i < bp->b_npages; ++i) { 1578 vm_page_t m = bp->b_pages[i]; 1579 1580 vm_page_flag_clear(m, PG_SWAPINPROG); 1581 1582 if (bp->b_ioflags & BIO_ERROR) { 1583 /* 1584 * If an error occurs I'd love to throw the swapblk 1585 * away without freeing it back to swapspace, so it 1586 * can never be used again. But I can't from an 1587 * interrupt. 1588 */ 1589 1590 if (bp->b_iocmd == BIO_READ) { 1591 /* 1592 * When reading, reqpage needs to stay 1593 * locked for the parent, but all other 1594 * pages can be freed. We still want to 1595 * wakeup the parent waiting on the page, 1596 * though. ( also: pg_reqpage can be -1 and 1597 * not match anything ). 1598 * 1599 * We have to wake specifically requested pages 1600 * up too because we cleared PG_SWAPINPROG and 1601 * someone may be waiting for that. 1602 * 1603 * NOTE: for reads, m->dirty will probably 1604 * be overridden by the original caller of 1605 * getpages so don't play cute tricks here. 1606 * 1607 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1608 * AS THIS MESSES WITH object->memq, and it is 1609 * not legal to mess with object->memq from an 1610 * interrupt. 1611 */ 1612 1613 m->valid = 0; 1614 vm_page_flag_clear(m, PG_ZERO); 1615 1616 if (i != bp->b_pager.pg_reqpage) 1617 vm_page_free(m); 1618 else 1619 vm_page_flash(m); 1620 /* 1621 * If i == bp->b_pager.pg_reqpage, do not wake 1622 * the page up. The caller needs to. 1623 */ 1624 } else { 1625 /* 1626 * If a write error occurs, reactivate page 1627 * so it doesn't clog the inactive list, 1628 * then finish the I/O. 1629 */ 1630 vm_page_dirty(m); 1631 vm_page_activate(m); 1632 vm_page_io_finish(m); 1633 } 1634 } else if (bp->b_iocmd == BIO_READ) { 1635 /* 1636 * For read success, clear dirty bits. Nobody should 1637 * have this page mapped but don't take any chances, 1638 * make sure the pmap modify bits are also cleared. 1639 * 1640 * NOTE: for reads, m->dirty will probably be 1641 * overridden by the original caller of getpages so 1642 * we cannot set them in order to free the underlying 1643 * swap in a low-swap situation. I don't think we'd 1644 * want to do that anyway, but it was an optimization 1645 * that existed in the old swapper for a time before 1646 * it got ripped out due to precisely this problem. 1647 * 1648 * clear PG_ZERO in page. 1649 * 1650 * If not the requested page then deactivate it. 1651 * 1652 * Note that the requested page, reqpage, is left 1653 * busied, but we still have to wake it up. The 1654 * other pages are released (unbusied) by 1655 * vm_page_wakeup(). We do not set reqpage's 1656 * valid bits here, it is up to the caller. 1657 */ 1658 1659 pmap_clear_modify(m); 1660 m->valid = VM_PAGE_BITS_ALL; 1661 vm_page_undirty(m); 1662 vm_page_flag_clear(m, PG_ZERO); 1663 1664 /* 1665 * We have to wake specifically requested pages 1666 * up too because we cleared PG_SWAPINPROG and 1667 * could be waiting for it in getpages. However, 1668 * be sure to not unbusy getpages specifically 1669 * requested page - getpages expects it to be 1670 * left busy. 1671 */ 1672 if (i != bp->b_pager.pg_reqpage) { 1673 vm_page_deactivate(m); 1674 vm_page_wakeup(m); 1675 } else { 1676 vm_page_flash(m); 1677 } 1678 } else { 1679 /* 1680 * For write success, clear the modify and dirty 1681 * status, then finish the I/O ( which decrements the 1682 * busy count and possibly wakes waiter's up ). 1683 */ 1684 pmap_clear_modify(m); 1685 vm_page_undirty(m); 1686 vm_page_io_finish(m); 1687 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1688 vm_page_protect(m, VM_PROT_READ); 1689 } 1690 } 1691 1692 /* 1693 * adjust pip. NOTE: the original parent may still have its own 1694 * pip refs on the object. 1695 */ 1696 1697 if (object) 1698 vm_object_pip_wakeupn(object, bp->b_npages); 1699 1700 mtx_unlock(&vm_mtx); 1701 /* 1702 * release the physical I/O buffer 1703 */ 1704 1705 relpbuf( 1706 bp, 1707 ((bp->b_iocmd == BIO_READ) ? &nsw_rcount : 1708 ((bp->b_flags & B_ASYNC) ? 1709 &nsw_wcount_async : 1710 &nsw_wcount_sync 1711 ) 1712 ) 1713 ); 1714 splx(s); 1715 } 1716 1717 /************************************************************************ 1718 * SWAP META DATA * 1719 ************************************************************************ 1720 * 1721 * These routines manipulate the swap metadata stored in the 1722 * OBJT_SWAP object. All swp_*() routines must be called at 1723 * splvm() because swap can be freed up by the low level vm_page 1724 * code which might be called from interrupts beyond what splbio() covers. 1725 * 1726 * Swap metadata is implemented with a global hash and not directly 1727 * linked into the object. Instead the object simply contains 1728 * appropriate tracking counters. 1729 */ 1730 1731 /* 1732 * SWP_PAGER_HASH() - hash swap meta data 1733 * 1734 * This is an inline helper function which hashes the swapblk given 1735 * the object and page index. It returns a pointer to a pointer 1736 * to the object, or a pointer to a NULL pointer if it could not 1737 * find a swapblk. 1738 * 1739 * This routine must be called at splvm(). 1740 */ 1741 1742 static __inline struct swblock ** 1743 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1744 { 1745 struct swblock **pswap; 1746 struct swblock *swap; 1747 1748 index &= ~SWAP_META_MASK; 1749 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1750 1751 while ((swap = *pswap) != NULL) { 1752 if (swap->swb_object == object && 1753 swap->swb_index == index 1754 ) { 1755 break; 1756 } 1757 pswap = &swap->swb_hnext; 1758 } 1759 return(pswap); 1760 } 1761 1762 /* 1763 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1764 * 1765 * We first convert the object to a swap object if it is a default 1766 * object. 1767 * 1768 * The specified swapblk is added to the object's swap metadata. If 1769 * the swapblk is not valid, it is freed instead. Any previously 1770 * assigned swapblk is freed. 1771 * 1772 * This routine must be called at splvm(), except when used to convert 1773 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1774 * 1775 * Requires vm_mtx. 1776 */ 1777 1778 static void 1779 swp_pager_meta_build( 1780 vm_object_t object, 1781 vm_pindex_t index, 1782 daddr_t swapblk 1783 ) { 1784 struct swblock *swap; 1785 struct swblock **pswap; 1786 1787 mtx_assert(&vm_mtx, MA_OWNED); 1788 /* 1789 * Convert default object to swap object if necessary 1790 */ 1791 1792 if (object->type != OBJT_SWAP) { 1793 object->type = OBJT_SWAP; 1794 object->un_pager.swp.swp_bcount = 0; 1795 1796 mtx_lock(&sw_alloc_mtx); 1797 if (object->handle != NULL) { 1798 TAILQ_INSERT_TAIL( 1799 NOBJLIST(object->handle), 1800 object, 1801 pager_object_list 1802 ); 1803 } else { 1804 TAILQ_INSERT_TAIL( 1805 &swap_pager_un_object_list, 1806 object, 1807 pager_object_list 1808 ); 1809 } 1810 mtx_unlock(&sw_alloc_mtx); 1811 } 1812 1813 /* 1814 * Locate hash entry. If not found create, but if we aren't adding 1815 * anything just return. If we run out of space in the map we wait 1816 * and, since the hash table may have changed, retry. 1817 */ 1818 1819 retry: 1820 pswap = swp_pager_hash(object, index); 1821 1822 if ((swap = *pswap) == NULL) { 1823 int i; 1824 1825 if (swapblk == SWAPBLK_NONE) 1826 return; 1827 1828 swap = *pswap = zalloc(swap_zone); 1829 if (swap == NULL) { 1830 VM_WAIT; 1831 goto retry; 1832 } 1833 swap->swb_hnext = NULL; 1834 swap->swb_object = object; 1835 swap->swb_index = index & ~SWAP_META_MASK; 1836 swap->swb_count = 0; 1837 1838 ++object->un_pager.swp.swp_bcount; 1839 1840 for (i = 0; i < SWAP_META_PAGES; ++i) 1841 swap->swb_pages[i] = SWAPBLK_NONE; 1842 } 1843 1844 /* 1845 * Delete prior contents of metadata 1846 */ 1847 1848 index &= SWAP_META_MASK; 1849 1850 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1851 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1852 --swap->swb_count; 1853 } 1854 1855 /* 1856 * Enter block into metadata 1857 */ 1858 1859 swap->swb_pages[index] = swapblk; 1860 if (swapblk != SWAPBLK_NONE) 1861 ++swap->swb_count; 1862 } 1863 1864 /* 1865 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1866 * 1867 * The requested range of blocks is freed, with any associated swap 1868 * returned to the swap bitmap. 1869 * 1870 * This routine will free swap metadata structures as they are cleaned 1871 * out. This routine does *NOT* operate on swap metadata associated 1872 * with resident pages. 1873 * 1874 * vm_mtx must be held 1875 * This routine must be called at splvm() 1876 */ 1877 1878 static void 1879 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1880 { 1881 1882 mtx_assert(&vm_mtx, MA_OWNED); 1883 1884 if (object->type != OBJT_SWAP) 1885 return; 1886 1887 while (count > 0) { 1888 struct swblock **pswap; 1889 struct swblock *swap; 1890 1891 pswap = swp_pager_hash(object, index); 1892 1893 if ((swap = *pswap) != NULL) { 1894 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1895 1896 if (v != SWAPBLK_NONE) { 1897 swp_pager_freeswapspace(v, 1); 1898 swap->swb_pages[index & SWAP_META_MASK] = 1899 SWAPBLK_NONE; 1900 if (--swap->swb_count == 0) { 1901 *pswap = swap->swb_hnext; 1902 zfree(swap_zone, swap); 1903 --object->un_pager.swp.swp_bcount; 1904 } 1905 } 1906 --count; 1907 ++index; 1908 } else { 1909 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1910 count -= n; 1911 index += n; 1912 } 1913 } 1914 } 1915 1916 /* 1917 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1918 * 1919 * This routine locates and destroys all swap metadata associated with 1920 * an object. 1921 * 1922 * This routine must be called at splvm() 1923 * Requires vm_mtx. 1924 */ 1925 1926 static void 1927 swp_pager_meta_free_all(vm_object_t object) 1928 { 1929 daddr_t index = 0; 1930 1931 mtx_assert(&vm_mtx, MA_OWNED); 1932 1933 if (object->type != OBJT_SWAP) 1934 return; 1935 1936 while (object->un_pager.swp.swp_bcount) { 1937 struct swblock **pswap; 1938 struct swblock *swap; 1939 1940 pswap = swp_pager_hash(object, index); 1941 if ((swap = *pswap) != NULL) { 1942 int i; 1943 1944 for (i = 0; i < SWAP_META_PAGES; ++i) { 1945 daddr_t v = swap->swb_pages[i]; 1946 if (v != SWAPBLK_NONE) { 1947 --swap->swb_count; 1948 swp_pager_freeswapspace(v, 1); 1949 } 1950 } 1951 if (swap->swb_count != 0) 1952 panic("swap_pager_meta_free_all: swb_count != 0"); 1953 *pswap = swap->swb_hnext; 1954 zfree(swap_zone, swap); 1955 --object->un_pager.swp.swp_bcount; 1956 } 1957 index += SWAP_META_PAGES; 1958 if (index > 0x20000000) 1959 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 1960 } 1961 } 1962 1963 /* 1964 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 1965 * 1966 * This routine is capable of looking up, popping, or freeing 1967 * swapblk assignments in the swap meta data or in the vm_page_t. 1968 * The routine typically returns the swapblk being looked-up, or popped, 1969 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 1970 * was invalid. This routine will automatically free any invalid 1971 * meta-data swapblks. 1972 * 1973 * It is not possible to store invalid swapblks in the swap meta data 1974 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 1975 * 1976 * When acting on a busy resident page and paging is in progress, we 1977 * have to wait until paging is complete but otherwise can act on the 1978 * busy page. 1979 * 1980 * This routine must be called at splvm(). 1981 * Requires vm_mtx. 1982 * 1983 * SWM_FREE remove and free swap block from metadata 1984 * SWM_POP remove from meta data but do not free.. pop it out 1985 */ 1986 1987 static daddr_t 1988 swp_pager_meta_ctl( 1989 vm_object_t object, 1990 vm_pindex_t index, 1991 int flags 1992 ) { 1993 struct swblock **pswap; 1994 struct swblock *swap; 1995 daddr_t r1; 1996 1997 mtx_assert(&vm_mtx, MA_OWNED); 1998 /* 1999 * The meta data only exists of the object is OBJT_SWAP 2000 * and even then might not be allocated yet. 2001 */ 2002 2003 if (object->type != OBJT_SWAP) 2004 return(SWAPBLK_NONE); 2005 2006 r1 = SWAPBLK_NONE; 2007 pswap = swp_pager_hash(object, index); 2008 2009 if ((swap = *pswap) != NULL) { 2010 index &= SWAP_META_MASK; 2011 r1 = swap->swb_pages[index]; 2012 2013 if (r1 != SWAPBLK_NONE) { 2014 if (flags & SWM_FREE) { 2015 swp_pager_freeswapspace(r1, 1); 2016 r1 = SWAPBLK_NONE; 2017 } 2018 if (flags & (SWM_FREE|SWM_POP)) { 2019 swap->swb_pages[index] = SWAPBLK_NONE; 2020 if (--swap->swb_count == 0) { 2021 *pswap = swap->swb_hnext; 2022 zfree(swap_zone, swap); 2023 --object->un_pager.swp.swp_bcount; 2024 } 2025 } 2026 } 2027 } 2028 return(r1); 2029 } 2030 2031 /******************************************************** 2032 * CHAINING FUNCTIONS * 2033 ******************************************************** 2034 * 2035 * These functions support recursion of I/O operations 2036 * on bp's, typically by chaining one or more 'child' bp's 2037 * to the parent. Synchronous, asynchronous, and semi-synchronous 2038 * chaining is possible. 2039 */ 2040 2041 /* 2042 * vm_pager_chain_iodone: 2043 * 2044 * io completion routine for child bp. Currently we fudge a bit 2045 * on dealing with b_resid. Since users of these routines may issue 2046 * multiple children simultaneously, sequencing of the error can be lost. 2047 */ 2048 2049 static void 2050 vm_pager_chain_iodone(struct buf *nbp) 2051 { 2052 struct bio *bp; 2053 u_int *count; 2054 2055 bp = nbp->b_caller1; 2056 count = (u_int *)&(bp->bio_caller1); 2057 if (bp != NULL) { 2058 if (nbp->b_ioflags & BIO_ERROR) { 2059 bp->bio_flags |= BIO_ERROR; 2060 bp->bio_error = nbp->b_error; 2061 } else if (nbp->b_resid != 0) { 2062 bp->bio_flags |= BIO_ERROR; 2063 bp->bio_error = EINVAL; 2064 } else { 2065 bp->bio_resid -= nbp->b_bcount; 2066 } 2067 nbp->b_caller1 = NULL; 2068 --(*count); 2069 if (bp->bio_flags & BIO_FLAG1) { 2070 bp->bio_flags &= ~BIO_FLAG1; 2071 wakeup(bp); 2072 } 2073 } 2074 nbp->b_flags |= B_DONE; 2075 nbp->b_flags &= ~B_ASYNC; 2076 relpbuf(nbp, NULL); 2077 } 2078 2079 /* 2080 * getchainbuf: 2081 * 2082 * Obtain a physical buffer and chain it to its parent buffer. When 2083 * I/O completes, the parent buffer will be B_SIGNAL'd. Errors are 2084 * automatically propagated to the parent 2085 * 2086 * vm_mtx can't be held 2087 */ 2088 2089 struct buf * 2090 getchainbuf(struct bio *bp, struct vnode *vp, int flags) 2091 { 2092 struct buf *nbp; 2093 u_int *count; 2094 2095 mtx_assert(&vm_mtx, MA_NOTOWNED); 2096 mtx_assert(&Giant, MA_OWNED); 2097 nbp = getpbuf(NULL); 2098 count = (u_int *)&(bp->bio_caller1); 2099 2100 nbp->b_caller1 = bp; 2101 ++(*count); 2102 2103 if (*count > 4) 2104 waitchainbuf(bp, 4, 0); 2105 2106 nbp->b_iocmd = bp->bio_cmd; 2107 nbp->b_ioflags = bp->bio_flags & BIO_ORDERED; 2108 nbp->b_flags = flags; 2109 nbp->b_rcred = nbp->b_wcred = proc0.p_ucred; 2110 nbp->b_iodone = vm_pager_chain_iodone; 2111 2112 crhold(nbp->b_rcred); 2113 crhold(nbp->b_wcred); 2114 2115 if (vp) 2116 pbgetvp(vp, nbp); 2117 return(nbp); 2118 } 2119 2120 void 2121 flushchainbuf(struct buf *nbp) 2122 { 2123 2124 mtx_assert(&vm_mtx, MA_NOTOWNED); 2125 mtx_assert(&Giant, MA_OWNED); 2126 if (nbp->b_bcount) { 2127 nbp->b_bufsize = nbp->b_bcount; 2128 if (nbp->b_iocmd == BIO_WRITE) 2129 nbp->b_dirtyend = nbp->b_bcount; 2130 BUF_KERNPROC(nbp); 2131 BUF_STRATEGY(nbp); 2132 } else { 2133 bufdone(nbp); 2134 } 2135 } 2136 2137 static void 2138 waitchainbuf(struct bio *bp, int limit, int done) 2139 { 2140 int s; 2141 u_int *count; 2142 2143 mtx_assert(&vm_mtx, MA_NOTOWNED); 2144 mtx_assert(&Giant, MA_OWNED); 2145 count = (u_int *)&(bp->bio_caller1); 2146 s = splbio(); 2147 while (*count > limit) { 2148 bp->bio_flags |= BIO_FLAG1; 2149 tsleep(bp, PRIBIO + 4, "bpchain", 0); 2150 } 2151 if (done) { 2152 if (bp->bio_resid != 0 && !(bp->bio_flags & BIO_ERROR)) { 2153 bp->bio_flags |= BIO_ERROR; 2154 bp->bio_error = EINVAL; 2155 } 2156 biodone(bp); 2157 } 2158 splx(s); 2159 } 2160 2161