xref: /freebsd/sys/vm/swap_pager.c (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/limits.h>
86 #include <sys/lock.h>
87 #include <sys/kernel.h>
88 #include <sys/mount.h>
89 #include <sys/namei.h>
90 #include <sys/malloc.h>
91 #include <sys/pctrie.h>
92 #include <sys/priv.h>
93 #include <sys/proc.h>
94 #include <sys/racct.h>
95 #include <sys/resource.h>
96 #include <sys/resourcevar.h>
97 #include <sys/rwlock.h>
98 #include <sys/sbuf.h>
99 #include <sys/sysctl.h>
100 #include <sys/sysproto.h>
101 #include <sys/systm.h>
102 #include <sys/sx.h>
103 #include <sys/user.h>
104 #include <sys/vmmeter.h>
105 #include <sys/vnode.h>
106 
107 #include <security/mac/mac_framework.h>
108 
109 #include <vm/vm.h>
110 #include <vm/pmap.h>
111 #include <vm/vm_map.h>
112 #include <vm/vm_kern.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/vm_param.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/uma.h>
121 
122 #include <geom/geom.h>
123 
124 /*
125  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
126  * The 64-page limit is due to the radix code (kern/subr_blist.c).
127  */
128 #ifndef MAX_PAGEOUT_CLUSTER
129 #define	MAX_PAGEOUT_CLUSTER	32
130 #endif
131 
132 #if !defined(SWB_NPAGES)
133 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
134 #endif
135 
136 #define	SWAP_META_PAGES		PCTRIE_COUNT
137 
138 /*
139  * A swblk structure maps each page index within a
140  * SWAP_META_PAGES-aligned and sized range to the address of an
141  * on-disk swap block (or SWAPBLK_NONE). The collection of these
142  * mappings for an entire vm object is implemented as a pc-trie.
143  */
144 struct swblk {
145 	vm_pindex_t	p;
146 	daddr_t		d[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156 
157 static __exclusive_cache_line u_long swap_reserved;
158 static u_long swap_total;
159 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
160 
161 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
162     "VM swap stats");
163 
164 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
165     &swap_reserved, 0, sysctl_page_shift, "A",
166     "Amount of swap storage needed to back all allocated anonymous memory.");
167 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
168     &swap_total, 0, sysctl_page_shift, "A",
169     "Total amount of available swap storage.");
170 
171 static int overcommit = 0;
172 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
173     "Configure virtual memory overcommit behavior. See tuning(7) "
174     "for details.");
175 static unsigned long swzone;
176 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
177     "Actual size of swap metadata zone");
178 static unsigned long swap_maxpages;
179 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
180     "Maximum amount of swap supported");
181 
182 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
183 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
184     CTLFLAG_RD, &swap_free_deferred,
185     "Number of pages that deferred freeing swap space");
186 
187 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
188 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
189     CTLFLAG_RD, &swap_free_completed,
190     "Number of deferred frees completed");
191 
192 /* bits from overcommit */
193 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
194 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
195 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
196 
197 static int
198 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
199 {
200 	uint64_t newval;
201 	u_long value = *(u_long *)arg1;
202 
203 	newval = ((uint64_t)value) << PAGE_SHIFT;
204 	return (sysctl_handle_64(oidp, &newval, 0, req));
205 }
206 
207 static bool
208 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
209 {
210 	struct uidinfo *uip;
211 	u_long prev;
212 
213 	uip = cred->cr_ruidinfo;
214 
215 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
216 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
217 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
218 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
219 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
220 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
221 		return (false);
222 	}
223 	return (true);
224 }
225 
226 static void
227 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
228 {
229 	struct uidinfo *uip;
230 #ifdef INVARIANTS
231 	u_long prev;
232 #endif
233 
234 	uip = cred->cr_ruidinfo;
235 
236 #ifdef INVARIANTS
237 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
238 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
239 #else
240 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
241 #endif
242 }
243 
244 static void
245 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
246 {
247 	struct uidinfo *uip;
248 
249 	uip = cred->cr_ruidinfo;
250 	atomic_add_long(&uip->ui_vmsize, pincr);
251 }
252 
253 bool
254 swap_reserve(vm_ooffset_t incr)
255 {
256 
257 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
258 }
259 
260 bool
261 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
262 {
263 	u_long r, s, prev, pincr;
264 #ifdef RACCT
265 	int error;
266 #endif
267 	int oc;
268 	static int curfail;
269 	static struct timeval lastfail;
270 
271 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
272 	    (uintmax_t)incr));
273 
274 #ifdef RACCT
275 	if (RACCT_ENABLED()) {
276 		PROC_LOCK(curproc);
277 		error = racct_add(curproc, RACCT_SWAP, incr);
278 		PROC_UNLOCK(curproc);
279 		if (error != 0)
280 			return (false);
281 	}
282 #endif
283 
284 	pincr = atop(incr);
285 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
286 	r = prev + pincr;
287 	s = swap_total;
288 	oc = atomic_load_int(&overcommit);
289 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
290 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
291 		    vm_wire_count();
292 	}
293 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
294 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
295 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
296 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
297 		goto out_error;
298 	}
299 
300 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
301 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
302 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
303 		goto out_error;
304 	}
305 
306 	return (true);
307 
308 out_error:
309 	if (ppsratecheck(&lastfail, &curfail, 1)) {
310 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
311 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
312 	}
313 #ifdef RACCT
314 	if (RACCT_ENABLED()) {
315 		PROC_LOCK(curproc);
316 		racct_sub(curproc, RACCT_SWAP, incr);
317 		PROC_UNLOCK(curproc);
318 	}
319 #endif
320 
321 	return (false);
322 }
323 
324 void
325 swap_reserve_force(vm_ooffset_t incr)
326 {
327 	u_long pincr;
328 
329 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
330 	    (uintmax_t)incr));
331 
332 #ifdef RACCT
333 	if (RACCT_ENABLED()) {
334 		PROC_LOCK(curproc);
335 		racct_add_force(curproc, RACCT_SWAP, incr);
336 		PROC_UNLOCK(curproc);
337 	}
338 #endif
339 	pincr = atop(incr);
340 	atomic_add_long(&swap_reserved, pincr);
341 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
342 }
343 
344 void
345 swap_release(vm_ooffset_t decr)
346 {
347 	struct ucred *cred;
348 
349 	PROC_LOCK(curproc);
350 	cred = curproc->p_ucred;
351 	swap_release_by_cred(decr, cred);
352 	PROC_UNLOCK(curproc);
353 }
354 
355 void
356 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
357 {
358 	u_long pdecr;
359 #ifdef INVARIANTS
360 	u_long prev;
361 #endif
362 
363 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
364 	    (uintmax_t)decr));
365 
366 	pdecr = atop(decr);
367 #ifdef INVARIANTS
368 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
369 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
370 #else
371 	atomic_subtract_long(&swap_reserved, pdecr);
372 #endif
373 
374 	swap_release_by_cred_rlimit(pdecr, cred);
375 #ifdef RACCT
376 	if (racct_enable)
377 		racct_sub_cred(cred, RACCT_SWAP, decr);
378 #endif
379 }
380 
381 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
382 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
383 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
384 static int nsw_wcount_async;	/* limit async write buffers */
385 static int nsw_wcount_async_max;/* assigned maximum			*/
386 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
387 
388 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
389 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
390     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
391     "Maximum running async swap ops");
392 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
393 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
394     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
395     "Swap Fragmentation Info");
396 
397 static struct sx sw_alloc_sx;
398 
399 /*
400  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
401  * of searching a named list by hashing it just a little.
402  */
403 
404 #define NOBJLISTS		8
405 
406 #define NOBJLIST(handle)	\
407 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
408 
409 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
410 static uma_zone_t swwbuf_zone;
411 static uma_zone_t swrbuf_zone;
412 static uma_zone_t swblk_zone;
413 static uma_zone_t swpctrie_zone;
414 
415 /*
416  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
417  * calls hooked from other parts of the VM system and do not appear here.
418  * (see vm/swap_pager.h).
419  */
420 static vm_object_t
421 		swap_pager_alloc(void *handle, vm_ooffset_t size,
422 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
423 static void	swap_pager_dealloc(vm_object_t object);
424 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
425     int *);
426 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
427     int *, pgo_getpages_iodone_t, void *);
428 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
429 static boolean_t
430 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
431 static void	swap_pager_init(void);
432 static void	swap_pager_unswapped(vm_page_t);
433 static void	swap_pager_swapoff(struct swdevt *sp);
434 static void	swap_pager_update_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 static void	swap_pager_release_writecount(vm_object_t object,
437     vm_offset_t start, vm_offset_t end);
438 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
439     vm_size_t size);
440 
441 const struct pagerops swappagerops = {
442 	.pgo_kvme_type = KVME_TYPE_SWAP,
443 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
444 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
445 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
446 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
447 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
448 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
449 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
450 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
451 	.pgo_update_writecount = swap_pager_update_writecount,
452 	.pgo_release_writecount = swap_pager_release_writecount,
453 	.pgo_freespace = swap_pager_freespace,
454 };
455 
456 /*
457  * swap_*() routines are externally accessible.  swp_*() routines are
458  * internal.
459  */
460 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
461 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
462 
463 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
464     "Maximum size of a swap block in pages");
465 
466 static void	swp_sizecheck(void);
467 static void	swp_pager_async_iodone(struct buf *bp);
468 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
469 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
470 static int	swapongeom(struct vnode *);
471 static int	swaponvp(struct thread *, struct vnode *, u_long);
472 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
473 
474 /*
475  * Swap bitmap functions
476  */
477 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
478 static daddr_t	swp_pager_getswapspace(int *npages);
479 
480 /*
481  * Metadata functions
482  */
483 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
484 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
485 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
486     vm_pindex_t pindex, vm_pindex_t count);
487 static void swp_pager_meta_free_all(vm_object_t);
488 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
489 
490 static void
491 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
492 {
493 
494 	*start = SWAPBLK_NONE;
495 	*num = 0;
496 }
497 
498 static void
499 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
500 {
501 
502 	if (*start + *num == addr) {
503 		(*num)++;
504 	} else {
505 		swp_pager_freeswapspace(*start, *num);
506 		*start = addr;
507 		*num = 1;
508 	}
509 }
510 
511 static void *
512 swblk_trie_alloc(struct pctrie *ptree)
513 {
514 
515 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
516 	    M_USE_RESERVE : 0)));
517 }
518 
519 static void
520 swblk_trie_free(struct pctrie *ptree, void *node)
521 {
522 
523 	uma_zfree(swpctrie_zone, node);
524 }
525 
526 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
527 
528 /*
529  * SWP_SIZECHECK() -	update swap_pager_full indication
530  *
531  *	update the swap_pager_almost_full indication and warn when we are
532  *	about to run out of swap space, using lowat/hiwat hysteresis.
533  *
534  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
535  *
536  *	No restrictions on call
537  *	This routine may not block.
538  */
539 static void
540 swp_sizecheck(void)
541 {
542 
543 	if (swap_pager_avail < nswap_lowat) {
544 		if (swap_pager_almost_full == 0) {
545 			printf("swap_pager: out of swap space\n");
546 			swap_pager_almost_full = 1;
547 		}
548 	} else {
549 		swap_pager_full = 0;
550 		if (swap_pager_avail > nswap_hiwat)
551 			swap_pager_almost_full = 0;
552 	}
553 }
554 
555 /*
556  * SWAP_PAGER_INIT() -	initialize the swap pager!
557  *
558  *	Expected to be started from system init.  NOTE:  This code is run
559  *	before much else so be careful what you depend on.  Most of the VM
560  *	system has yet to be initialized at this point.
561  */
562 static void
563 swap_pager_init(void)
564 {
565 	/*
566 	 * Initialize object lists
567 	 */
568 	int i;
569 
570 	for (i = 0; i < NOBJLISTS; ++i)
571 		TAILQ_INIT(&swap_pager_object_list[i]);
572 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
573 	sx_init(&sw_alloc_sx, "swspsx");
574 	sx_init(&swdev_syscall_lock, "swsysc");
575 }
576 
577 /*
578  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
579  *
580  *	Expected to be started from pageout process once, prior to entering
581  *	its main loop.
582  */
583 void
584 swap_pager_swap_init(void)
585 {
586 	unsigned long n, n2;
587 
588 	/*
589 	 * Number of in-transit swap bp operations.  Don't
590 	 * exhaust the pbufs completely.  Make sure we
591 	 * initialize workable values (0 will work for hysteresis
592 	 * but it isn't very efficient).
593 	 *
594 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
595 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
596 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
597 	 * constrained by the swap device interleave stripe size.
598 	 *
599 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
600 	 * designed to prevent other I/O from having high latencies due to
601 	 * our pageout I/O.  The value 4 works well for one or two active swap
602 	 * devices but is probably a little low if you have more.  Even so,
603 	 * a higher value would probably generate only a limited improvement
604 	 * with three or four active swap devices since the system does not
605 	 * typically have to pageout at extreme bandwidths.   We will want
606 	 * at least 2 per swap devices, and 4 is a pretty good value if you
607 	 * have one NFS swap device due to the command/ack latency over NFS.
608 	 * So it all works out pretty well.
609 	 */
610 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
611 
612 	nsw_wcount_async = 4;
613 	nsw_wcount_async_max = nsw_wcount_async;
614 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
615 
616 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
617 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
618 
619 	/*
620 	 * Initialize our zone, taking the user's requested size or
621 	 * estimating the number we need based on the number of pages
622 	 * in the system.
623 	 */
624 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
625 	    vm_cnt.v_page_count / 2;
626 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
627 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
628 	if (swpctrie_zone == NULL)
629 		panic("failed to create swap pctrie zone.");
630 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
631 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
632 	if (swblk_zone == NULL)
633 		panic("failed to create swap blk zone.");
634 	n2 = n;
635 	do {
636 		if (uma_zone_reserve_kva(swblk_zone, n))
637 			break;
638 		/*
639 		 * if the allocation failed, try a zone two thirds the
640 		 * size of the previous attempt.
641 		 */
642 		n -= ((n + 2) / 3);
643 	} while (n > 0);
644 
645 	/*
646 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
647 	 * requested size.  Account for the difference when
648 	 * calculating swap_maxpages.
649 	 */
650 	n = uma_zone_get_max(swblk_zone);
651 
652 	if (n < n2)
653 		printf("Swap blk zone entries changed from %lu to %lu.\n",
654 		    n2, n);
655 	/* absolute maximum we can handle assuming 100% efficiency */
656 	swap_maxpages = n * SWAP_META_PAGES;
657 	swzone = n * sizeof(struct swblk);
658 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
659 		printf("Cannot reserve swap pctrie zone, "
660 		    "reduce kern.maxswzone.\n");
661 }
662 
663 bool
664 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
665     vm_ooffset_t size, vm_ooffset_t offset)
666 {
667 	if (cred != NULL) {
668 		if (!swap_reserve_by_cred(size, cred))
669 			return (false);
670 		crhold(cred);
671 	}
672 
673 	object->un_pager.swp.writemappings = 0;
674 	object->handle = handle;
675 	if (cred != NULL) {
676 		object->cred = cred;
677 		object->charge = size;
678 	}
679 	return (true);
680 }
681 
682 static vm_object_t
683 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
684     vm_ooffset_t size, vm_ooffset_t offset)
685 {
686 	vm_object_t object;
687 
688 	/*
689 	 * The un_pager.swp.swp_blks trie is initialized by
690 	 * vm_object_allocate() to ensure the correct order of
691 	 * visibility to other threads.
692 	 */
693 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
694 	    PAGE_MASK + size));
695 
696 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
697 		vm_object_deallocate(object);
698 		return (NULL);
699 	}
700 	return (object);
701 }
702 
703 /*
704  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
705  *			its metadata structures.
706  *
707  *	This routine is called from the mmap and fork code to create a new
708  *	OBJT_SWAP object.
709  *
710  *	This routine must ensure that no live duplicate is created for
711  *	the named object request, which is protected against by
712  *	holding the sw_alloc_sx lock in case handle != NULL.
713  */
714 static vm_object_t
715 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
716     vm_ooffset_t offset, struct ucred *cred)
717 {
718 	vm_object_t object;
719 
720 	if (handle != NULL) {
721 		/*
722 		 * Reference existing named region or allocate new one.  There
723 		 * should not be a race here against swp_pager_meta_build()
724 		 * as called from vm_page_remove() in regards to the lookup
725 		 * of the handle.
726 		 */
727 		sx_xlock(&sw_alloc_sx);
728 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
729 		if (object == NULL) {
730 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
731 			    size, offset);
732 			if (object != NULL) {
733 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
734 				    object, pager_object_list);
735 			}
736 		}
737 		sx_xunlock(&sw_alloc_sx);
738 	} else {
739 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
740 		    size, offset);
741 	}
742 	return (object);
743 }
744 
745 /*
746  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
747  *
748  *	The swap backing for the object is destroyed.  The code is
749  *	designed such that we can reinstantiate it later, but this
750  *	routine is typically called only when the entire object is
751  *	about to be destroyed.
752  *
753  *	The object must be locked.
754  */
755 static void
756 swap_pager_dealloc(vm_object_t object)
757 {
758 
759 	VM_OBJECT_ASSERT_WLOCKED(object);
760 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
761 
762 	/*
763 	 * Remove from list right away so lookups will fail if we block for
764 	 * pageout completion.
765 	 */
766 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
767 		VM_OBJECT_WUNLOCK(object);
768 		sx_xlock(&sw_alloc_sx);
769 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
770 		    pager_object_list);
771 		sx_xunlock(&sw_alloc_sx);
772 		VM_OBJECT_WLOCK(object);
773 	}
774 
775 	vm_object_pip_wait(object, "swpdea");
776 
777 	/*
778 	 * Free all remaining metadata.  We only bother to free it from
779 	 * the swap meta data.  We do not attempt to free swapblk's still
780 	 * associated with vm_page_t's for this object.  We do not care
781 	 * if paging is still in progress on some objects.
782 	 */
783 	swp_pager_meta_free_all(object);
784 	object->handle = NULL;
785 	object->type = OBJT_DEAD;
786 	vm_object_clear_flag(object, OBJ_SWAP);
787 }
788 
789 /************************************************************************
790  *			SWAP PAGER BITMAP ROUTINES			*
791  ************************************************************************/
792 
793 /*
794  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
795  *
796  *	Allocate swap for up to the requested number of pages.  The
797  *	starting swap block number (a page index) is returned or
798  *	SWAPBLK_NONE if the allocation failed.
799  *
800  *	Also has the side effect of advising that somebody made a mistake
801  *	when they configured swap and didn't configure enough.
802  *
803  *	This routine may not sleep.
804  *
805  *	We allocate in round-robin fashion from the configured devices.
806  */
807 static daddr_t
808 swp_pager_getswapspace(int *io_npages)
809 {
810 	daddr_t blk;
811 	struct swdevt *sp;
812 	int mpages, npages;
813 
814 	KASSERT(*io_npages >= 1,
815 	    ("%s: npages not positive", __func__));
816 	blk = SWAPBLK_NONE;
817 	mpages = *io_npages;
818 	npages = imin(BLIST_MAX_ALLOC, mpages);
819 	mtx_lock(&sw_dev_mtx);
820 	sp = swdevhd;
821 	while (!TAILQ_EMPTY(&swtailq)) {
822 		if (sp == NULL)
823 			sp = TAILQ_FIRST(&swtailq);
824 		if ((sp->sw_flags & SW_CLOSING) == 0)
825 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
826 		if (blk != SWAPBLK_NONE)
827 			break;
828 		sp = TAILQ_NEXT(sp, sw_list);
829 		if (swdevhd == sp) {
830 			if (npages == 1)
831 				break;
832 			mpages = npages - 1;
833 			npages >>= 1;
834 		}
835 	}
836 	if (blk != SWAPBLK_NONE) {
837 		*io_npages = npages;
838 		blk += sp->sw_first;
839 		sp->sw_used += npages;
840 		swap_pager_avail -= npages;
841 		swp_sizecheck();
842 		swdevhd = TAILQ_NEXT(sp, sw_list);
843 	} else {
844 		if (swap_pager_full != 2) {
845 			printf("swp_pager_getswapspace(%d): failed\n",
846 			    *io_npages);
847 			swap_pager_full = 2;
848 			swap_pager_almost_full = 1;
849 		}
850 		swdevhd = NULL;
851 	}
852 	mtx_unlock(&sw_dev_mtx);
853 	return (blk);
854 }
855 
856 static bool
857 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
858 {
859 
860 	return (blk >= sp->sw_first && blk < sp->sw_end);
861 }
862 
863 static void
864 swp_pager_strategy(struct buf *bp)
865 {
866 	struct swdevt *sp;
867 
868 	mtx_lock(&sw_dev_mtx);
869 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
870 		if (swp_pager_isondev(bp->b_blkno, sp)) {
871 			mtx_unlock(&sw_dev_mtx);
872 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
873 			    unmapped_buf_allowed) {
874 				bp->b_data = unmapped_buf;
875 				bp->b_offset = 0;
876 			} else {
877 				pmap_qenter((vm_offset_t)bp->b_data,
878 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
879 			}
880 			sp->sw_strategy(bp, sp);
881 			return;
882 		}
883 	}
884 	panic("Swapdev not found");
885 }
886 
887 /*
888  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
889  *
890  *	This routine returns the specified swap blocks back to the bitmap.
891  *
892  *	This routine may not sleep.
893  */
894 static void
895 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
896 {
897 	struct swdevt *sp;
898 
899 	if (npages == 0)
900 		return;
901 	mtx_lock(&sw_dev_mtx);
902 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
903 		if (swp_pager_isondev(blk, sp)) {
904 			sp->sw_used -= npages;
905 			/*
906 			 * If we are attempting to stop swapping on
907 			 * this device, we don't want to mark any
908 			 * blocks free lest they be reused.
909 			 */
910 			if ((sp->sw_flags & SW_CLOSING) == 0) {
911 				blist_free(sp->sw_blist, blk - sp->sw_first,
912 				    npages);
913 				swap_pager_avail += npages;
914 				swp_sizecheck();
915 			}
916 			mtx_unlock(&sw_dev_mtx);
917 			return;
918 		}
919 	}
920 	panic("Swapdev not found");
921 }
922 
923 /*
924  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
925  */
926 static int
927 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
928 {
929 	struct sbuf sbuf;
930 	struct swdevt *sp;
931 	const char *devname;
932 	int error;
933 
934 	error = sysctl_wire_old_buffer(req, 0);
935 	if (error != 0)
936 		return (error);
937 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
938 	mtx_lock(&sw_dev_mtx);
939 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
940 		if (vn_isdisk(sp->sw_vp))
941 			devname = devtoname(sp->sw_vp->v_rdev);
942 		else
943 			devname = "[file]";
944 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
945 		blist_stats(sp->sw_blist, &sbuf);
946 	}
947 	mtx_unlock(&sw_dev_mtx);
948 	error = sbuf_finish(&sbuf);
949 	sbuf_delete(&sbuf);
950 	return (error);
951 }
952 
953 /*
954  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
955  *				range within an object.
956  *
957  *	This routine removes swapblk assignments from swap metadata.
958  *
959  *	The external callers of this routine typically have already destroyed
960  *	or renamed vm_page_t's associated with this range in the object so
961  *	we should be ok.
962  *
963  *	The object must be locked.
964  */
965 static void
966 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
967 {
968 
969 	swp_pager_meta_free(object, start, size);
970 }
971 
972 /*
973  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
974  *
975  *	Assigns swap blocks to the specified range within the object.  The
976  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
977  *
978  *	Returns 0 on success, -1 on failure.
979  */
980 int
981 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
982 {
983 	daddr_t addr, blk, n_free, s_free;
984 	vm_pindex_t i, j;
985 	int n;
986 
987 	swp_pager_init_freerange(&s_free, &n_free);
988 	VM_OBJECT_WLOCK(object);
989 	for (i = 0; i < size; i += n) {
990 		n = MIN(size - i, INT_MAX);
991 		blk = swp_pager_getswapspace(&n);
992 		if (blk == SWAPBLK_NONE) {
993 			swp_pager_meta_free(object, start, i);
994 			VM_OBJECT_WUNLOCK(object);
995 			return (-1);
996 		}
997 		for (j = 0; j < n; ++j) {
998 			addr = swp_pager_meta_build(object,
999 			    start + i + j, blk + j);
1000 			if (addr != SWAPBLK_NONE)
1001 				swp_pager_update_freerange(&s_free, &n_free,
1002 				    addr);
1003 		}
1004 	}
1005 	swp_pager_freeswapspace(s_free, n_free);
1006 	VM_OBJECT_WUNLOCK(object);
1007 	return (0);
1008 }
1009 
1010 static bool
1011 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1012     vm_pindex_t pindex, daddr_t addr)
1013 {
1014 	daddr_t dstaddr;
1015 
1016 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1017 	    ("%s: Srcobject not swappable", __func__));
1018 	if ((dstobject->flags & OBJ_SWAP) != 0 &&
1019 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1020 		/* Caller should destroy the source block. */
1021 		return (false);
1022 	}
1023 
1024 	/*
1025 	 * Destination has no swapblk and is not resident, transfer source.
1026 	 * swp_pager_meta_build() can sleep.
1027 	 */
1028 	VM_OBJECT_WUNLOCK(srcobject);
1029 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1030 	KASSERT(dstaddr == SWAPBLK_NONE,
1031 	    ("Unexpected destination swapblk"));
1032 	VM_OBJECT_WLOCK(srcobject);
1033 
1034 	return (true);
1035 }
1036 
1037 /*
1038  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1039  *			and destroy the source.
1040  *
1041  *	Copy any valid swapblks from the source to the destination.  In
1042  *	cases where both the source and destination have a valid swapblk,
1043  *	we keep the destination's.
1044  *
1045  *	This routine is allowed to sleep.  It may sleep allocating metadata
1046  *	indirectly through swp_pager_meta_build().
1047  *
1048  *	The source object contains no vm_page_t's (which is just as well)
1049  *
1050  *	The source object is of type OBJT_SWAP.
1051  *
1052  *	The source and destination objects must be locked.
1053  *	Both object locks may temporarily be released.
1054  */
1055 void
1056 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1057     vm_pindex_t offset, int destroysource)
1058 {
1059 
1060 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1061 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1062 
1063 	/*
1064 	 * If destroysource is set, we remove the source object from the
1065 	 * swap_pager internal queue now.
1066 	 */
1067 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1068 	    srcobject->handle != NULL) {
1069 		VM_OBJECT_WUNLOCK(srcobject);
1070 		VM_OBJECT_WUNLOCK(dstobject);
1071 		sx_xlock(&sw_alloc_sx);
1072 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1073 		    pager_object_list);
1074 		sx_xunlock(&sw_alloc_sx);
1075 		VM_OBJECT_WLOCK(dstobject);
1076 		VM_OBJECT_WLOCK(srcobject);
1077 	}
1078 
1079 	/*
1080 	 * Transfer source to destination.
1081 	 */
1082 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1083 
1084 	/*
1085 	 * Free left over swap blocks in source.
1086 	 *
1087 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1088 	 * double-remove the object from the swap queues.
1089 	 */
1090 	if (destroysource) {
1091 		swp_pager_meta_free_all(srcobject);
1092 		/*
1093 		 * Reverting the type is not necessary, the caller is going
1094 		 * to destroy srcobject directly, but I'm doing it here
1095 		 * for consistency since we've removed the object from its
1096 		 * queues.
1097 		 */
1098 		srcobject->type = OBJT_DEFAULT;
1099 		vm_object_clear_flag(srcobject, OBJ_SWAP);
1100 	}
1101 }
1102 
1103 /*
1104  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1105  *				the requested page.
1106  *
1107  *	We determine whether good backing store exists for the requested
1108  *	page and return TRUE if it does, FALSE if it doesn't.
1109  *
1110  *	If TRUE, we also try to determine how much valid, contiguous backing
1111  *	store exists before and after the requested page.
1112  */
1113 static boolean_t
1114 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1115     int *after)
1116 {
1117 	daddr_t blk, blk0;
1118 	int i;
1119 
1120 	VM_OBJECT_ASSERT_LOCKED(object);
1121 	KASSERT((object->flags & OBJ_SWAP) != 0,
1122 	    ("%s: object not swappable", __func__));
1123 
1124 	/*
1125 	 * do we have good backing store at the requested index ?
1126 	 */
1127 	blk0 = swp_pager_meta_lookup(object, pindex);
1128 	if (blk0 == SWAPBLK_NONE) {
1129 		if (before)
1130 			*before = 0;
1131 		if (after)
1132 			*after = 0;
1133 		return (FALSE);
1134 	}
1135 
1136 	/*
1137 	 * find backwards-looking contiguous good backing store
1138 	 */
1139 	if (before != NULL) {
1140 		for (i = 1; i < SWB_NPAGES; i++) {
1141 			if (i > pindex)
1142 				break;
1143 			blk = swp_pager_meta_lookup(object, pindex - i);
1144 			if (blk != blk0 - i)
1145 				break;
1146 		}
1147 		*before = i - 1;
1148 	}
1149 
1150 	/*
1151 	 * find forward-looking contiguous good backing store
1152 	 */
1153 	if (after != NULL) {
1154 		for (i = 1; i < SWB_NPAGES; i++) {
1155 			blk = swp_pager_meta_lookup(object, pindex + i);
1156 			if (blk != blk0 + i)
1157 				break;
1158 		}
1159 		*after = i - 1;
1160 	}
1161 	return (TRUE);
1162 }
1163 
1164 /*
1165  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1166  *
1167  *	This removes any associated swap backing store, whether valid or
1168  *	not, from the page.
1169  *
1170  *	This routine is typically called when a page is made dirty, at
1171  *	which point any associated swap can be freed.  MADV_FREE also
1172  *	calls us in a special-case situation
1173  *
1174  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1175  *	should make the page dirty before calling this routine.  This routine
1176  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1177  *	depends on it.
1178  *
1179  *	This routine may not sleep.
1180  *
1181  *	The object containing the page may be locked.
1182  */
1183 static void
1184 swap_pager_unswapped(vm_page_t m)
1185 {
1186 	struct swblk *sb;
1187 	vm_object_t obj;
1188 
1189 	/*
1190 	 * Handle enqueing deferred frees first.  If we do not have the
1191 	 * object lock we wait for the page daemon to clear the space.
1192 	 */
1193 	obj = m->object;
1194 	if (!VM_OBJECT_WOWNED(obj)) {
1195 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1196 		/*
1197 		 * The caller is responsible for synchronization but we
1198 		 * will harmlessly handle races.  This is typically provided
1199 		 * by only calling unswapped() when a page transitions from
1200 		 * clean to dirty.
1201 		 */
1202 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1203 		    PGA_SWAP_SPACE) {
1204 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1205 			counter_u64_add(swap_free_deferred, 1);
1206 		}
1207 		return;
1208 	}
1209 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1210 		counter_u64_add(swap_free_completed, 1);
1211 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1212 
1213 	/*
1214 	 * The meta data only exists if the object is OBJT_SWAP
1215 	 * and even then might not be allocated yet.
1216 	 */
1217 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1218 	    ("Free object not swappable"));
1219 
1220 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1221 	    rounddown(m->pindex, SWAP_META_PAGES));
1222 	if (sb == NULL)
1223 		return;
1224 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1225 		return;
1226 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1227 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1228 	swp_pager_free_empty_swblk(m->object, sb);
1229 }
1230 
1231 /*
1232  * swap_pager_getpages() - bring pages in from swap
1233  *
1234  *	Attempt to page in the pages in array "ma" of length "count".  The
1235  *	caller may optionally specify that additional pages preceding and
1236  *	succeeding the specified range be paged in.  The number of such pages
1237  *	is returned in the "rbehind" and "rahead" parameters, and they will
1238  *	be in the inactive queue upon return.
1239  *
1240  *	The pages in "ma" must be busied and will remain busied upon return.
1241  */
1242 static int
1243 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1244     int *rbehind, int *rahead)
1245 {
1246 	struct buf *bp;
1247 	vm_page_t bm, mpred, msucc, p;
1248 	vm_pindex_t pindex;
1249 	daddr_t blk;
1250 	int i, maxahead, maxbehind, reqcount;
1251 
1252 	VM_OBJECT_ASSERT_WLOCKED(object);
1253 	reqcount = count;
1254 
1255 	KASSERT((object->flags & OBJ_SWAP) != 0,
1256 	    ("%s: object not swappable", __func__));
1257 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1258 		VM_OBJECT_WUNLOCK(object);
1259 		return (VM_PAGER_FAIL);
1260 	}
1261 
1262 	KASSERT(reqcount - 1 <= maxahead,
1263 	    ("page count %d extends beyond swap block", reqcount));
1264 
1265 	/*
1266 	 * Do not transfer any pages other than those that are xbusied
1267 	 * when running during a split or collapse operation.  This
1268 	 * prevents clustering from re-creating pages which are being
1269 	 * moved into another object.
1270 	 */
1271 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1272 		maxahead = reqcount - 1;
1273 		maxbehind = 0;
1274 	}
1275 
1276 	/*
1277 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1278 	 */
1279 	if (rahead != NULL) {
1280 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1281 		pindex = ma[reqcount - 1]->pindex;
1282 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1283 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1284 			*rahead = msucc->pindex - pindex - 1;
1285 	}
1286 	if (rbehind != NULL) {
1287 		*rbehind = imin(*rbehind, maxbehind);
1288 		pindex = ma[0]->pindex;
1289 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1290 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1291 			*rbehind = pindex - mpred->pindex - 1;
1292 	}
1293 
1294 	bm = ma[0];
1295 	for (i = 0; i < count; i++)
1296 		ma[i]->oflags |= VPO_SWAPINPROG;
1297 
1298 	/*
1299 	 * Allocate readahead and readbehind pages.
1300 	 */
1301 	if (rbehind != NULL) {
1302 		for (i = 1; i <= *rbehind; i++) {
1303 			p = vm_page_alloc(object, ma[0]->pindex - i,
1304 			    VM_ALLOC_NORMAL);
1305 			if (p == NULL)
1306 				break;
1307 			p->oflags |= VPO_SWAPINPROG;
1308 			bm = p;
1309 		}
1310 		*rbehind = i - 1;
1311 	}
1312 	if (rahead != NULL) {
1313 		for (i = 0; i < *rahead; i++) {
1314 			p = vm_page_alloc(object,
1315 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1316 			if (p == NULL)
1317 				break;
1318 			p->oflags |= VPO_SWAPINPROG;
1319 		}
1320 		*rahead = i;
1321 	}
1322 	if (rbehind != NULL)
1323 		count += *rbehind;
1324 	if (rahead != NULL)
1325 		count += *rahead;
1326 
1327 	vm_object_pip_add(object, count);
1328 
1329 	pindex = bm->pindex;
1330 	blk = swp_pager_meta_lookup(object, pindex);
1331 	KASSERT(blk != SWAPBLK_NONE,
1332 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1333 
1334 	VM_OBJECT_WUNLOCK(object);
1335 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1336 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1337 	/* Pages cannot leave the object while busy. */
1338 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1339 		MPASS(p->pindex == bm->pindex + i);
1340 		bp->b_pages[i] = p;
1341 	}
1342 
1343 	bp->b_flags |= B_PAGING;
1344 	bp->b_iocmd = BIO_READ;
1345 	bp->b_iodone = swp_pager_async_iodone;
1346 	bp->b_rcred = crhold(thread0.td_ucred);
1347 	bp->b_wcred = crhold(thread0.td_ucred);
1348 	bp->b_blkno = blk;
1349 	bp->b_bcount = PAGE_SIZE * count;
1350 	bp->b_bufsize = PAGE_SIZE * count;
1351 	bp->b_npages = count;
1352 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1353 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1354 
1355 	VM_CNT_INC(v_swapin);
1356 	VM_CNT_ADD(v_swappgsin, count);
1357 
1358 	/*
1359 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1360 	 * this point because we automatically release it on completion.
1361 	 * Instead, we look at the one page we are interested in which we
1362 	 * still hold a lock on even through the I/O completion.
1363 	 *
1364 	 * The other pages in our ma[] array are also released on completion,
1365 	 * so we cannot assume they are valid anymore either.
1366 	 *
1367 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1368 	 */
1369 	BUF_KERNPROC(bp);
1370 	swp_pager_strategy(bp);
1371 
1372 	/*
1373 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1374 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1375 	 * is set in the metadata for each page in the request.
1376 	 */
1377 	VM_OBJECT_WLOCK(object);
1378 	/* This could be implemented more efficiently with aflags */
1379 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1380 		ma[0]->oflags |= VPO_SWAPSLEEP;
1381 		VM_CNT_INC(v_intrans);
1382 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1383 		    "swread", hz * 20)) {
1384 			printf(
1385 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1386 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1387 		}
1388 	}
1389 	VM_OBJECT_WUNLOCK(object);
1390 
1391 	/*
1392 	 * If we had an unrecoverable read error pages will not be valid.
1393 	 */
1394 	for (i = 0; i < reqcount; i++)
1395 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1396 			return (VM_PAGER_ERROR);
1397 
1398 	return (VM_PAGER_OK);
1399 
1400 	/*
1401 	 * A final note: in a low swap situation, we cannot deallocate swap
1402 	 * and mark a page dirty here because the caller is likely to mark
1403 	 * the page clean when we return, causing the page to possibly revert
1404 	 * to all-zero's later.
1405 	 */
1406 }
1407 
1408 static int
1409 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1410     int *rbehind, int *rahead)
1411 {
1412 
1413 	VM_OBJECT_WLOCK(object);
1414 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1415 }
1416 
1417 /*
1418  * 	swap_pager_getpages_async():
1419  *
1420  *	Right now this is emulation of asynchronous operation on top of
1421  *	swap_pager_getpages().
1422  */
1423 static int
1424 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1425     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1426 {
1427 	int r, error;
1428 
1429 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1430 	switch (r) {
1431 	case VM_PAGER_OK:
1432 		error = 0;
1433 		break;
1434 	case VM_PAGER_ERROR:
1435 		error = EIO;
1436 		break;
1437 	case VM_PAGER_FAIL:
1438 		error = EINVAL;
1439 		break;
1440 	default:
1441 		panic("unhandled swap_pager_getpages() error %d", r);
1442 	}
1443 	(iodone)(arg, ma, count, error);
1444 
1445 	return (r);
1446 }
1447 
1448 /*
1449  *	swap_pager_putpages:
1450  *
1451  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1452  *
1453  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1454  *	are automatically converted to SWAP objects.
1455  *
1456  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1457  *	vm_page reservation system coupled with properly written VFS devices
1458  *	should ensure that no low-memory deadlock occurs.  This is an area
1459  *	which needs work.
1460  *
1461  *	The parent has N vm_object_pip_add() references prior to
1462  *	calling us and will remove references for rtvals[] that are
1463  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1464  *	completion.
1465  *
1466  *	The parent has soft-busy'd the pages it passes us and will unbusy
1467  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1468  *	We need to unbusy the rest on I/O completion.
1469  */
1470 static void
1471 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1472     int flags, int *rtvals)
1473 {
1474 	struct buf *bp;
1475 	daddr_t addr, blk, n_free, s_free;
1476 	vm_page_t mreq;
1477 	int i, j, n;
1478 	bool async;
1479 
1480 	KASSERT(count == 0 || ma[0]->object == object,
1481 	    ("%s: object mismatch %p/%p",
1482 	    __func__, object, ma[0]->object));
1483 
1484 	/*
1485 	 * Step 1
1486 	 *
1487 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1488 	 */
1489 	if ((object->flags & OBJ_SWAP) == 0) {
1490 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1491 		KASSERT(addr == SWAPBLK_NONE,
1492 		    ("unexpected object swap block"));
1493 	}
1494 	VM_OBJECT_WUNLOCK(object);
1495 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1496 	swp_pager_init_freerange(&s_free, &n_free);
1497 
1498 	/*
1499 	 * Step 2
1500 	 *
1501 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1502 	 * The page is left dirty until the pageout operation completes
1503 	 * successfully.
1504 	 */
1505 	for (i = 0; i < count; i += n) {
1506 		/* Maximum I/O size is limited by maximum swap block size. */
1507 		n = min(count - i, nsw_cluster_max);
1508 
1509 		if (async) {
1510 			mtx_lock(&swbuf_mtx);
1511 			while (nsw_wcount_async == 0)
1512 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1513 				    "swbufa", 0);
1514 			nsw_wcount_async--;
1515 			mtx_unlock(&swbuf_mtx);
1516 		}
1517 
1518 		/* Get a block of swap of size up to size n. */
1519 		VM_OBJECT_WLOCK(object);
1520 		blk = swp_pager_getswapspace(&n);
1521 		if (blk == SWAPBLK_NONE) {
1522 			VM_OBJECT_WUNLOCK(object);
1523 			mtx_lock(&swbuf_mtx);
1524 			if (++nsw_wcount_async == 1)
1525 				wakeup(&nsw_wcount_async);
1526 			mtx_unlock(&swbuf_mtx);
1527 			for (j = 0; j < n; ++j)
1528 				rtvals[i + j] = VM_PAGER_FAIL;
1529 			continue;
1530 		}
1531 		for (j = 0; j < n; ++j) {
1532 			mreq = ma[i + j];
1533 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1534 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1535 			    blk + j);
1536 			if (addr != SWAPBLK_NONE)
1537 				swp_pager_update_freerange(&s_free, &n_free,
1538 				    addr);
1539 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1540 			mreq->oflags |= VPO_SWAPINPROG;
1541 		}
1542 		VM_OBJECT_WUNLOCK(object);
1543 
1544 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1545 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1546 		if (async)
1547 			bp->b_flags |= B_ASYNC;
1548 		bp->b_flags |= B_PAGING;
1549 		bp->b_iocmd = BIO_WRITE;
1550 
1551 		bp->b_rcred = crhold(thread0.td_ucred);
1552 		bp->b_wcred = crhold(thread0.td_ucred);
1553 		bp->b_bcount = PAGE_SIZE * n;
1554 		bp->b_bufsize = PAGE_SIZE * n;
1555 		bp->b_blkno = blk;
1556 		for (j = 0; j < n; j++)
1557 			bp->b_pages[j] = ma[i + j];
1558 		bp->b_npages = n;
1559 
1560 		/*
1561 		 * Must set dirty range for NFS to work.
1562 		 */
1563 		bp->b_dirtyoff = 0;
1564 		bp->b_dirtyend = bp->b_bcount;
1565 
1566 		VM_CNT_INC(v_swapout);
1567 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1568 
1569 		/*
1570 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1571 		 * can call the async completion routine at the end of a
1572 		 * synchronous I/O operation.  Otherwise, our caller would
1573 		 * perform duplicate unbusy and wakeup operations on the page
1574 		 * and object, respectively.
1575 		 */
1576 		for (j = 0; j < n; j++)
1577 			rtvals[i + j] = VM_PAGER_PEND;
1578 
1579 		/*
1580 		 * asynchronous
1581 		 *
1582 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1583 		 */
1584 		if (async) {
1585 			bp->b_iodone = swp_pager_async_iodone;
1586 			BUF_KERNPROC(bp);
1587 			swp_pager_strategy(bp);
1588 			continue;
1589 		}
1590 
1591 		/*
1592 		 * synchronous
1593 		 *
1594 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1595 		 */
1596 		bp->b_iodone = bdone;
1597 		swp_pager_strategy(bp);
1598 
1599 		/*
1600 		 * Wait for the sync I/O to complete.
1601 		 */
1602 		bwait(bp, PVM, "swwrt");
1603 
1604 		/*
1605 		 * Now that we are through with the bp, we can call the
1606 		 * normal async completion, which frees everything up.
1607 		 */
1608 		swp_pager_async_iodone(bp);
1609 	}
1610 	swp_pager_freeswapspace(s_free, n_free);
1611 	VM_OBJECT_WLOCK(object);
1612 }
1613 
1614 /*
1615  *	swp_pager_async_iodone:
1616  *
1617  *	Completion routine for asynchronous reads and writes from/to swap.
1618  *	Also called manually by synchronous code to finish up a bp.
1619  *
1620  *	This routine may not sleep.
1621  */
1622 static void
1623 swp_pager_async_iodone(struct buf *bp)
1624 {
1625 	int i;
1626 	vm_object_t object = NULL;
1627 
1628 	/*
1629 	 * Report error - unless we ran out of memory, in which case
1630 	 * we've already logged it in swapgeom_strategy().
1631 	 */
1632 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1633 		printf(
1634 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1635 			"size %ld, error %d\n",
1636 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1637 		    (long)bp->b_blkno,
1638 		    (long)bp->b_bcount,
1639 		    bp->b_error
1640 		);
1641 	}
1642 
1643 	/*
1644 	 * remove the mapping for kernel virtual
1645 	 */
1646 	if (buf_mapped(bp))
1647 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1648 	else
1649 		bp->b_data = bp->b_kvabase;
1650 
1651 	if (bp->b_npages) {
1652 		object = bp->b_pages[0]->object;
1653 		VM_OBJECT_WLOCK(object);
1654 	}
1655 
1656 	/*
1657 	 * cleanup pages.  If an error occurs writing to swap, we are in
1658 	 * very serious trouble.  If it happens to be a disk error, though,
1659 	 * we may be able to recover by reassigning the swap later on.  So
1660 	 * in this case we remove the m->swapblk assignment for the page
1661 	 * but do not free it in the rlist.  The errornous block(s) are thus
1662 	 * never reallocated as swap.  Redirty the page and continue.
1663 	 */
1664 	for (i = 0; i < bp->b_npages; ++i) {
1665 		vm_page_t m = bp->b_pages[i];
1666 
1667 		m->oflags &= ~VPO_SWAPINPROG;
1668 		if (m->oflags & VPO_SWAPSLEEP) {
1669 			m->oflags &= ~VPO_SWAPSLEEP;
1670 			wakeup(&object->handle);
1671 		}
1672 
1673 		/* We always have space after I/O, successful or not. */
1674 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1675 
1676 		if (bp->b_ioflags & BIO_ERROR) {
1677 			/*
1678 			 * If an error occurs I'd love to throw the swapblk
1679 			 * away without freeing it back to swapspace, so it
1680 			 * can never be used again.  But I can't from an
1681 			 * interrupt.
1682 			 */
1683 			if (bp->b_iocmd == BIO_READ) {
1684 				/*
1685 				 * NOTE: for reads, m->dirty will probably
1686 				 * be overridden by the original caller of
1687 				 * getpages so don't play cute tricks here.
1688 				 */
1689 				vm_page_invalid(m);
1690 			} else {
1691 				/*
1692 				 * If a write error occurs, reactivate page
1693 				 * so it doesn't clog the inactive list,
1694 				 * then finish the I/O.
1695 				 */
1696 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1697 
1698 				/* PQ_UNSWAPPABLE? */
1699 				vm_page_activate(m);
1700 				vm_page_sunbusy(m);
1701 			}
1702 		} else if (bp->b_iocmd == BIO_READ) {
1703 			/*
1704 			 * NOTE: for reads, m->dirty will probably be
1705 			 * overridden by the original caller of getpages so
1706 			 * we cannot set them in order to free the underlying
1707 			 * swap in a low-swap situation.  I don't think we'd
1708 			 * want to do that anyway, but it was an optimization
1709 			 * that existed in the old swapper for a time before
1710 			 * it got ripped out due to precisely this problem.
1711 			 */
1712 			KASSERT(!pmap_page_is_mapped(m),
1713 			    ("swp_pager_async_iodone: page %p is mapped", m));
1714 			KASSERT(m->dirty == 0,
1715 			    ("swp_pager_async_iodone: page %p is dirty", m));
1716 
1717 			vm_page_valid(m);
1718 			if (i < bp->b_pgbefore ||
1719 			    i >= bp->b_npages - bp->b_pgafter)
1720 				vm_page_readahead_finish(m);
1721 		} else {
1722 			/*
1723 			 * For write success, clear the dirty
1724 			 * status, then finish the I/O ( which decrements the
1725 			 * busy count and possibly wakes waiter's up ).
1726 			 * A page is only written to swap after a period of
1727 			 * inactivity.  Therefore, we do not expect it to be
1728 			 * reused.
1729 			 */
1730 			KASSERT(!pmap_page_is_write_mapped(m),
1731 			    ("swp_pager_async_iodone: page %p is not write"
1732 			    " protected", m));
1733 			vm_page_undirty(m);
1734 			vm_page_deactivate_noreuse(m);
1735 			vm_page_sunbusy(m);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * adjust pip.  NOTE: the original parent may still have its own
1741 	 * pip refs on the object.
1742 	 */
1743 	if (object != NULL) {
1744 		vm_object_pip_wakeupn(object, bp->b_npages);
1745 		VM_OBJECT_WUNLOCK(object);
1746 	}
1747 
1748 	/*
1749 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1750 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1751 	 * trigger a KASSERT in relpbuf().
1752 	 */
1753 	if (bp->b_vp) {
1754 		    bp->b_vp = NULL;
1755 		    bp->b_bufobj = NULL;
1756 	}
1757 	/*
1758 	 * release the physical I/O buffer
1759 	 */
1760 	if (bp->b_flags & B_ASYNC) {
1761 		mtx_lock(&swbuf_mtx);
1762 		if (++nsw_wcount_async == 1)
1763 			wakeup(&nsw_wcount_async);
1764 		mtx_unlock(&swbuf_mtx);
1765 	}
1766 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1767 }
1768 
1769 int
1770 swap_pager_nswapdev(void)
1771 {
1772 
1773 	return (nswapdev);
1774 }
1775 
1776 static void
1777 swp_pager_force_dirty(vm_page_t m)
1778 {
1779 
1780 	vm_page_dirty(m);
1781 	swap_pager_unswapped(m);
1782 	vm_page_launder(m);
1783 }
1784 
1785 u_long
1786 swap_pager_swapped_pages(vm_object_t object)
1787 {
1788 	struct swblk *sb;
1789 	vm_pindex_t pi;
1790 	u_long res;
1791 	int i;
1792 
1793 	VM_OBJECT_ASSERT_LOCKED(object);
1794 	if ((object->flags & OBJ_SWAP) == 0)
1795 		return (0);
1796 
1797 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1798 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1799 	    pi = sb->p + SWAP_META_PAGES) {
1800 		for (i = 0; i < SWAP_META_PAGES; i++) {
1801 			if (sb->d[i] != SWAPBLK_NONE)
1802 				res++;
1803 		}
1804 	}
1805 	return (res);
1806 }
1807 
1808 /*
1809  *	swap_pager_swapoff_object:
1810  *
1811  *	Page in all of the pages that have been paged out for an object
1812  *	to a swap device.
1813  */
1814 static void
1815 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1816 {
1817 	struct swblk *sb;
1818 	vm_page_t m;
1819 	vm_pindex_t pi;
1820 	daddr_t blk;
1821 	int i, nv, rahead, rv;
1822 
1823 	KASSERT((object->flags & OBJ_SWAP) != 0,
1824 	    ("%s: Object not swappable", __func__));
1825 
1826 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1827 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1828 		if ((object->flags & OBJ_DEAD) != 0) {
1829 			/*
1830 			 * Make sure that pending writes finish before
1831 			 * returning.
1832 			 */
1833 			vm_object_pip_wait(object, "swpoff");
1834 			swp_pager_meta_free_all(object);
1835 			break;
1836 		}
1837 		for (i = 0; i < SWAP_META_PAGES; i++) {
1838 			/*
1839 			 * Count the number of contiguous valid blocks.
1840 			 */
1841 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1842 				blk = sb->d[i + nv];
1843 				if (!swp_pager_isondev(blk, sp) ||
1844 				    blk == SWAPBLK_NONE)
1845 					break;
1846 			}
1847 			if (nv == 0)
1848 				continue;
1849 
1850 			/*
1851 			 * Look for a page corresponding to the first
1852 			 * valid block and ensure that any pending paging
1853 			 * operations on it are complete.  If the page is valid,
1854 			 * mark it dirty and free the swap block.  Try to batch
1855 			 * this operation since it may cause sp to be freed,
1856 			 * meaning that we must restart the scan.  Avoid busying
1857 			 * valid pages since we may block forever on kernel
1858 			 * stack pages.
1859 			 */
1860 			m = vm_page_lookup(object, sb->p + i);
1861 			if (m == NULL) {
1862 				m = vm_page_alloc(object, sb->p + i,
1863 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1864 				if (m == NULL)
1865 					break;
1866 			} else {
1867 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1868 					m->oflags |= VPO_SWAPSLEEP;
1869 					VM_OBJECT_SLEEP(object, &object->handle,
1870 					    PSWP, "swpoff", 0);
1871 					break;
1872 				}
1873 				if (vm_page_all_valid(m)) {
1874 					do {
1875 						swp_pager_force_dirty(m);
1876 					} while (--nv > 0 &&
1877 					    (m = vm_page_next(m)) != NULL &&
1878 					    vm_page_all_valid(m) &&
1879 					    (m->oflags & VPO_SWAPINPROG) == 0);
1880 					break;
1881 				}
1882 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1883 					break;
1884 			}
1885 
1886 			vm_object_pip_add(object, 1);
1887 			rahead = SWAP_META_PAGES;
1888 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1889 			    &rahead);
1890 			if (rv != VM_PAGER_OK)
1891 				panic("%s: read from swap failed: %d",
1892 				    __func__, rv);
1893 			vm_object_pip_wakeupn(object, 1);
1894 			VM_OBJECT_WLOCK(object);
1895 			vm_page_xunbusy(m);
1896 
1897 			/*
1898 			 * The object lock was dropped so we must restart the
1899 			 * scan of this swap block.  Pages paged in during this
1900 			 * iteration will be marked dirty in a future iteration.
1901 			 */
1902 			break;
1903 		}
1904 		if (i == SWAP_META_PAGES)
1905 			pi = sb->p + SWAP_META_PAGES;
1906 	}
1907 }
1908 
1909 /*
1910  *	swap_pager_swapoff:
1911  *
1912  *	Page in all of the pages that have been paged out to the
1913  *	given device.  The corresponding blocks in the bitmap must be
1914  *	marked as allocated and the device must be flagged SW_CLOSING.
1915  *	There may be no processes swapped out to the device.
1916  *
1917  *	This routine may block.
1918  */
1919 static void
1920 swap_pager_swapoff(struct swdevt *sp)
1921 {
1922 	vm_object_t object;
1923 	int retries;
1924 
1925 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1926 
1927 	retries = 0;
1928 full_rescan:
1929 	mtx_lock(&vm_object_list_mtx);
1930 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1931 		if ((object->flags & OBJ_SWAP) == 0)
1932 			continue;
1933 		mtx_unlock(&vm_object_list_mtx);
1934 		/* Depends on type-stability. */
1935 		VM_OBJECT_WLOCK(object);
1936 
1937 		/*
1938 		 * Dead objects are eventually terminated on their own.
1939 		 */
1940 		if ((object->flags & OBJ_DEAD) != 0)
1941 			goto next_obj;
1942 
1943 		/*
1944 		 * Sync with fences placed after pctrie
1945 		 * initialization.  We must not access pctrie below
1946 		 * unless we checked that our object is swap and not
1947 		 * dead.
1948 		 */
1949 		atomic_thread_fence_acq();
1950 		if ((object->flags & OBJ_SWAP) == 0)
1951 			goto next_obj;
1952 
1953 		swap_pager_swapoff_object(sp, object);
1954 next_obj:
1955 		VM_OBJECT_WUNLOCK(object);
1956 		mtx_lock(&vm_object_list_mtx);
1957 	}
1958 	mtx_unlock(&vm_object_list_mtx);
1959 
1960 	if (sp->sw_used) {
1961 		/*
1962 		 * Objects may be locked or paging to the device being
1963 		 * removed, so we will miss their pages and need to
1964 		 * make another pass.  We have marked this device as
1965 		 * SW_CLOSING, so the activity should finish soon.
1966 		 */
1967 		retries++;
1968 		if (retries > 100) {
1969 			panic("swapoff: failed to locate %d swap blocks",
1970 			    sp->sw_used);
1971 		}
1972 		pause("swpoff", hz / 20);
1973 		goto full_rescan;
1974 	}
1975 	EVENTHANDLER_INVOKE(swapoff, sp);
1976 }
1977 
1978 /************************************************************************
1979  *				SWAP META DATA 				*
1980  ************************************************************************
1981  *
1982  *	These routines manipulate the swap metadata stored in the
1983  *	OBJT_SWAP object.
1984  *
1985  *	Swap metadata is implemented with a global hash and not directly
1986  *	linked into the object.  Instead the object simply contains
1987  *	appropriate tracking counters.
1988  */
1989 
1990 /*
1991  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1992  */
1993 static bool
1994 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1995 {
1996 	int i;
1997 
1998 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1999 	for (i = start; i < limit; i++) {
2000 		if (sb->d[i] != SWAPBLK_NONE)
2001 			return (false);
2002 	}
2003 	return (true);
2004 }
2005 
2006 /*
2007  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2008  *
2009  *  Nothing is done if the block is still in use.
2010  */
2011 static void
2012 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2013 {
2014 
2015 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2016 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2017 		uma_zfree(swblk_zone, sb);
2018 	}
2019 }
2020 
2021 /*
2022  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2023  *
2024  *	We first convert the object to a swap object if it is a default
2025  *	object.
2026  *
2027  *	The specified swapblk is added to the object's swap metadata.  If
2028  *	the swapblk is not valid, it is freed instead.  Any previously
2029  *	assigned swapblk is returned.
2030  */
2031 static daddr_t
2032 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2033 {
2034 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2035 	struct swblk *sb, *sb1;
2036 	vm_pindex_t modpi, rdpi;
2037 	daddr_t prev_swapblk;
2038 	int error, i;
2039 
2040 	VM_OBJECT_ASSERT_WLOCKED(object);
2041 
2042 	/*
2043 	 * Convert default object to swap object if necessary
2044 	 */
2045 	if ((object->flags & OBJ_SWAP) == 0) {
2046 		pctrie_init(&object->un_pager.swp.swp_blks);
2047 
2048 		/*
2049 		 * Ensure that swap_pager_swapoff()'s iteration over
2050 		 * object_list does not see a garbage pctrie.
2051 		 */
2052 		atomic_thread_fence_rel();
2053 
2054 		object->type = OBJT_SWAP;
2055 		vm_object_set_flag(object, OBJ_SWAP);
2056 		object->un_pager.swp.writemappings = 0;
2057 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2058 		    object->handle == NULL,
2059 		    ("default pager %p with handle %p",
2060 		    object, object->handle));
2061 	}
2062 
2063 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2064 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2065 	if (sb == NULL) {
2066 		if (swapblk == SWAPBLK_NONE)
2067 			return (SWAPBLK_NONE);
2068 		for (;;) {
2069 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2070 			    pageproc ? M_USE_RESERVE : 0));
2071 			if (sb != NULL) {
2072 				sb->p = rdpi;
2073 				for (i = 0; i < SWAP_META_PAGES; i++)
2074 					sb->d[i] = SWAPBLK_NONE;
2075 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2076 				    1, 0))
2077 					printf("swblk zone ok\n");
2078 				break;
2079 			}
2080 			VM_OBJECT_WUNLOCK(object);
2081 			if (uma_zone_exhausted(swblk_zone)) {
2082 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2083 				    0, 1))
2084 					printf("swap blk zone exhausted, "
2085 					    "increase kern.maxswzone\n");
2086 				vm_pageout_oom(VM_OOM_SWAPZ);
2087 				pause("swzonxb", 10);
2088 			} else
2089 				uma_zwait(swblk_zone);
2090 			VM_OBJECT_WLOCK(object);
2091 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2092 			    rdpi);
2093 			if (sb != NULL)
2094 				/*
2095 				 * Somebody swapped out a nearby page,
2096 				 * allocating swblk at the rdpi index,
2097 				 * while we dropped the object lock.
2098 				 */
2099 				goto allocated;
2100 		}
2101 		for (;;) {
2102 			error = SWAP_PCTRIE_INSERT(
2103 			    &object->un_pager.swp.swp_blks, sb);
2104 			if (error == 0) {
2105 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2106 				    1, 0))
2107 					printf("swpctrie zone ok\n");
2108 				break;
2109 			}
2110 			VM_OBJECT_WUNLOCK(object);
2111 			if (uma_zone_exhausted(swpctrie_zone)) {
2112 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2113 				    0, 1))
2114 					printf("swap pctrie zone exhausted, "
2115 					    "increase kern.maxswzone\n");
2116 				vm_pageout_oom(VM_OOM_SWAPZ);
2117 				pause("swzonxp", 10);
2118 			} else
2119 				uma_zwait(swpctrie_zone);
2120 			VM_OBJECT_WLOCK(object);
2121 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2122 			    rdpi);
2123 			if (sb1 != NULL) {
2124 				uma_zfree(swblk_zone, sb);
2125 				sb = sb1;
2126 				goto allocated;
2127 			}
2128 		}
2129 	}
2130 allocated:
2131 	MPASS(sb->p == rdpi);
2132 
2133 	modpi = pindex % SWAP_META_PAGES;
2134 	/* Return prior contents of metadata. */
2135 	prev_swapblk = sb->d[modpi];
2136 	/* Enter block into metadata. */
2137 	sb->d[modpi] = swapblk;
2138 
2139 	/*
2140 	 * Free the swblk if we end up with the empty page run.
2141 	 */
2142 	if (swapblk == SWAPBLK_NONE)
2143 		swp_pager_free_empty_swblk(object, sb);
2144 	return (prev_swapblk);
2145 }
2146 
2147 /*
2148  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2149  * metadata, or transfer it into dstobject.
2150  *
2151  *	This routine will free swap metadata structures as they are cleaned
2152  *	out.
2153  */
2154 static void
2155 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2156     vm_pindex_t pindex, vm_pindex_t count)
2157 {
2158 	struct swblk *sb;
2159 	daddr_t n_free, s_free;
2160 	vm_pindex_t offset, last;
2161 	int i, limit, start;
2162 
2163 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2164 	if ((srcobject->flags & OBJ_SWAP) == 0 || count == 0)
2165 		return;
2166 
2167 	swp_pager_init_freerange(&s_free, &n_free);
2168 	offset = pindex;
2169 	last = pindex + count;
2170 	for (;;) {
2171 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2172 		    rounddown(pindex, SWAP_META_PAGES));
2173 		if (sb == NULL || sb->p >= last)
2174 			break;
2175 		start = pindex > sb->p ? pindex - sb->p : 0;
2176 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2177 		    SWAP_META_PAGES;
2178 		for (i = start; i < limit; i++) {
2179 			if (sb->d[i] == SWAPBLK_NONE)
2180 				continue;
2181 			if (dstobject == NULL ||
2182 			    !swp_pager_xfer_source(srcobject, dstobject,
2183 			    sb->p + i - offset, sb->d[i])) {
2184 				swp_pager_update_freerange(&s_free, &n_free,
2185 				    sb->d[i]);
2186 			}
2187 			sb->d[i] = SWAPBLK_NONE;
2188 		}
2189 		pindex = sb->p + SWAP_META_PAGES;
2190 		if (swp_pager_swblk_empty(sb, 0, start) &&
2191 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2192 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2193 			    sb->p);
2194 			uma_zfree(swblk_zone, sb);
2195 		}
2196 	}
2197 	swp_pager_freeswapspace(s_free, n_free);
2198 }
2199 
2200 /*
2201  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2202  *
2203  *	The requested range of blocks is freed, with any associated swap
2204  *	returned to the swap bitmap.
2205  *
2206  *	This routine will free swap metadata structures as they are cleaned
2207  *	out.  This routine does *NOT* operate on swap metadata associated
2208  *	with resident pages.
2209  */
2210 static void
2211 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2212 {
2213 	swp_pager_meta_transfer(object, NULL, pindex, count);
2214 }
2215 
2216 /*
2217  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2218  *
2219  *	This routine locates and destroys all swap metadata associated with
2220  *	an object.
2221  */
2222 static void
2223 swp_pager_meta_free_all(vm_object_t object)
2224 {
2225 	struct swblk *sb;
2226 	daddr_t n_free, s_free;
2227 	vm_pindex_t pindex;
2228 	int i;
2229 
2230 	VM_OBJECT_ASSERT_WLOCKED(object);
2231 	if ((object->flags & OBJ_SWAP) == 0)
2232 		return;
2233 
2234 	swp_pager_init_freerange(&s_free, &n_free);
2235 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2236 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2237 		pindex = sb->p + SWAP_META_PAGES;
2238 		for (i = 0; i < SWAP_META_PAGES; i++) {
2239 			if (sb->d[i] == SWAPBLK_NONE)
2240 				continue;
2241 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2242 		}
2243 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2244 		uma_zfree(swblk_zone, sb);
2245 	}
2246 	swp_pager_freeswapspace(s_free, n_free);
2247 }
2248 
2249 /*
2250  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2251  *
2252  *	This routine is capable of looking up, or removing swapblk
2253  *	assignments in the swap meta data.  It returns the swapblk being
2254  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2255  *
2256  *	When acting on a busy resident page and paging is in progress, we
2257  *	have to wait until paging is complete but otherwise can act on the
2258  *	busy page.
2259  */
2260 static daddr_t
2261 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2262 {
2263 	struct swblk *sb;
2264 
2265 	VM_OBJECT_ASSERT_LOCKED(object);
2266 
2267 	/*
2268 	 * The meta data only exists if the object is OBJT_SWAP
2269 	 * and even then might not be allocated yet.
2270 	 */
2271 	KASSERT((object->flags & OBJ_SWAP) != 0,
2272 	    ("Lookup object not swappable"));
2273 
2274 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2275 	    rounddown(pindex, SWAP_META_PAGES));
2276 	if (sb == NULL)
2277 		return (SWAPBLK_NONE);
2278 	return (sb->d[pindex % SWAP_META_PAGES]);
2279 }
2280 
2281 /*
2282  * Returns the least page index which is greater than or equal to the
2283  * parameter pindex and for which there is a swap block allocated.
2284  * Returns object's size if the object's type is not swap or if there
2285  * are no allocated swap blocks for the object after the requested
2286  * pindex.
2287  */
2288 vm_pindex_t
2289 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2290 {
2291 	struct swblk *sb;
2292 	int i;
2293 
2294 	VM_OBJECT_ASSERT_LOCKED(object);
2295 	if ((object->flags & OBJ_SWAP) == 0)
2296 		return (object->size);
2297 
2298 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2299 	    rounddown(pindex, SWAP_META_PAGES));
2300 	if (sb == NULL)
2301 		return (object->size);
2302 	if (sb->p < pindex) {
2303 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2304 			if (sb->d[i] != SWAPBLK_NONE)
2305 				return (sb->p + i);
2306 		}
2307 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2308 		    roundup(pindex, SWAP_META_PAGES));
2309 		if (sb == NULL)
2310 			return (object->size);
2311 	}
2312 	for (i = 0; i < SWAP_META_PAGES; i++) {
2313 		if (sb->d[i] != SWAPBLK_NONE)
2314 			return (sb->p + i);
2315 	}
2316 
2317 	/*
2318 	 * We get here if a swblk is present in the trie but it
2319 	 * doesn't map any blocks.
2320 	 */
2321 	MPASS(0);
2322 	return (object->size);
2323 }
2324 
2325 /*
2326  * System call swapon(name) enables swapping on device name,
2327  * which must be in the swdevsw.  Return EBUSY
2328  * if already swapping on this device.
2329  */
2330 #ifndef _SYS_SYSPROTO_H_
2331 struct swapon_args {
2332 	char *name;
2333 };
2334 #endif
2335 
2336 /*
2337  * MPSAFE
2338  */
2339 /* ARGSUSED */
2340 int
2341 sys_swapon(struct thread *td, struct swapon_args *uap)
2342 {
2343 	struct vattr attr;
2344 	struct vnode *vp;
2345 	struct nameidata nd;
2346 	int error;
2347 
2348 	error = priv_check(td, PRIV_SWAPON);
2349 	if (error)
2350 		return (error);
2351 
2352 	sx_xlock(&swdev_syscall_lock);
2353 
2354 	/*
2355 	 * Swap metadata may not fit in the KVM if we have physical
2356 	 * memory of >1GB.
2357 	 */
2358 	if (swblk_zone == NULL) {
2359 		error = ENOMEM;
2360 		goto done;
2361 	}
2362 
2363 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2364 	    uap->name, td);
2365 	error = namei(&nd);
2366 	if (error)
2367 		goto done;
2368 
2369 	NDFREE(&nd, NDF_ONLY_PNBUF);
2370 	vp = nd.ni_vp;
2371 
2372 	if (vn_isdisk_error(vp, &error)) {
2373 		error = swapongeom(vp);
2374 	} else if (vp->v_type == VREG &&
2375 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2376 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2377 		/*
2378 		 * Allow direct swapping to NFS regular files in the same
2379 		 * way that nfs_mountroot() sets up diskless swapping.
2380 		 */
2381 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2382 	}
2383 
2384 	if (error)
2385 		vrele(vp);
2386 done:
2387 	sx_xunlock(&swdev_syscall_lock);
2388 	return (error);
2389 }
2390 
2391 /*
2392  * Check that the total amount of swap currently configured does not
2393  * exceed half the theoretical maximum.  If it does, print a warning
2394  * message.
2395  */
2396 static void
2397 swapon_check_swzone(void)
2398 {
2399 
2400 	/* recommend using no more than half that amount */
2401 	if (swap_total > swap_maxpages / 2) {
2402 		printf("warning: total configured swap (%lu pages) "
2403 		    "exceeds maximum recommended amount (%lu pages).\n",
2404 		    swap_total, swap_maxpages / 2);
2405 		printf("warning: increase kern.maxswzone "
2406 		    "or reduce amount of swap.\n");
2407 	}
2408 }
2409 
2410 static void
2411 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2412     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2413 {
2414 	struct swdevt *sp, *tsp;
2415 	daddr_t dvbase;
2416 
2417 	/*
2418 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2419 	 * First chop nblks off to page-align it, then convert.
2420 	 *
2421 	 * sw->sw_nblks is in page-sized chunks now too.
2422 	 */
2423 	nblks &= ~(ctodb(1) - 1);
2424 	nblks = dbtoc(nblks);
2425 
2426 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2427 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2428 	sp->sw_vp = vp;
2429 	sp->sw_id = id;
2430 	sp->sw_dev = dev;
2431 	sp->sw_nblks = nblks;
2432 	sp->sw_used = 0;
2433 	sp->sw_strategy = strategy;
2434 	sp->sw_close = close;
2435 	sp->sw_flags = flags;
2436 
2437 	/*
2438 	 * Do not free the first blocks in order to avoid overwriting
2439 	 * any bsd label at the front of the partition
2440 	 */
2441 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2442 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2443 
2444 	dvbase = 0;
2445 	mtx_lock(&sw_dev_mtx);
2446 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2447 		if (tsp->sw_end >= dvbase) {
2448 			/*
2449 			 * We put one uncovered page between the devices
2450 			 * in order to definitively prevent any cross-device
2451 			 * I/O requests
2452 			 */
2453 			dvbase = tsp->sw_end + 1;
2454 		}
2455 	}
2456 	sp->sw_first = dvbase;
2457 	sp->sw_end = dvbase + nblks;
2458 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2459 	nswapdev++;
2460 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2461 	swap_total += nblks;
2462 	swapon_check_swzone();
2463 	swp_sizecheck();
2464 	mtx_unlock(&sw_dev_mtx);
2465 	EVENTHANDLER_INVOKE(swapon, sp);
2466 }
2467 
2468 /*
2469  * SYSCALL: swapoff(devname)
2470  *
2471  * Disable swapping on the given device.
2472  *
2473  * XXX: Badly designed system call: it should use a device index
2474  * rather than filename as specification.  We keep sw_vp around
2475  * only to make this work.
2476  */
2477 #ifndef _SYS_SYSPROTO_H_
2478 struct swapoff_args {
2479 	char *name;
2480 };
2481 #endif
2482 
2483 /*
2484  * MPSAFE
2485  */
2486 /* ARGSUSED */
2487 int
2488 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2489 {
2490 	struct vnode *vp;
2491 	struct nameidata nd;
2492 	struct swdevt *sp;
2493 	int error;
2494 
2495 	error = priv_check(td, PRIV_SWAPOFF);
2496 	if (error)
2497 		return (error);
2498 
2499 	sx_xlock(&swdev_syscall_lock);
2500 
2501 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2502 	    td);
2503 	error = namei(&nd);
2504 	if (error)
2505 		goto done;
2506 	NDFREE(&nd, NDF_ONLY_PNBUF);
2507 	vp = nd.ni_vp;
2508 
2509 	mtx_lock(&sw_dev_mtx);
2510 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2511 		if (sp->sw_vp == vp)
2512 			break;
2513 	}
2514 	mtx_unlock(&sw_dev_mtx);
2515 	if (sp == NULL) {
2516 		error = EINVAL;
2517 		goto done;
2518 	}
2519 	error = swapoff_one(sp, td->td_ucred);
2520 done:
2521 	sx_xunlock(&swdev_syscall_lock);
2522 	return (error);
2523 }
2524 
2525 static int
2526 swapoff_one(struct swdevt *sp, struct ucred *cred)
2527 {
2528 	u_long nblks;
2529 #ifdef MAC
2530 	int error;
2531 #endif
2532 
2533 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2534 #ifdef MAC
2535 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2536 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2537 	(void) VOP_UNLOCK(sp->sw_vp);
2538 	if (error != 0)
2539 		return (error);
2540 #endif
2541 	nblks = sp->sw_nblks;
2542 
2543 	/*
2544 	 * We can turn off this swap device safely only if the
2545 	 * available virtual memory in the system will fit the amount
2546 	 * of data we will have to page back in, plus an epsilon so
2547 	 * the system doesn't become critically low on swap space.
2548 	 */
2549 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2550 		return (ENOMEM);
2551 
2552 	/*
2553 	 * Prevent further allocations on this device.
2554 	 */
2555 	mtx_lock(&sw_dev_mtx);
2556 	sp->sw_flags |= SW_CLOSING;
2557 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2558 	swap_total -= nblks;
2559 	mtx_unlock(&sw_dev_mtx);
2560 
2561 	/*
2562 	 * Page in the contents of the device and close it.
2563 	 */
2564 	swap_pager_swapoff(sp);
2565 
2566 	sp->sw_close(curthread, sp);
2567 	mtx_lock(&sw_dev_mtx);
2568 	sp->sw_id = NULL;
2569 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2570 	nswapdev--;
2571 	if (nswapdev == 0) {
2572 		swap_pager_full = 2;
2573 		swap_pager_almost_full = 1;
2574 	}
2575 	if (swdevhd == sp)
2576 		swdevhd = NULL;
2577 	mtx_unlock(&sw_dev_mtx);
2578 	blist_destroy(sp->sw_blist);
2579 	free(sp, M_VMPGDATA);
2580 	return (0);
2581 }
2582 
2583 void
2584 swapoff_all(void)
2585 {
2586 	struct swdevt *sp, *spt;
2587 	const char *devname;
2588 	int error;
2589 
2590 	sx_xlock(&swdev_syscall_lock);
2591 
2592 	mtx_lock(&sw_dev_mtx);
2593 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2594 		mtx_unlock(&sw_dev_mtx);
2595 		if (vn_isdisk(sp->sw_vp))
2596 			devname = devtoname(sp->sw_vp->v_rdev);
2597 		else
2598 			devname = "[file]";
2599 		error = swapoff_one(sp, thread0.td_ucred);
2600 		if (error != 0) {
2601 			printf("Cannot remove swap device %s (error=%d), "
2602 			    "skipping.\n", devname, error);
2603 		} else if (bootverbose) {
2604 			printf("Swap device %s removed.\n", devname);
2605 		}
2606 		mtx_lock(&sw_dev_mtx);
2607 	}
2608 	mtx_unlock(&sw_dev_mtx);
2609 
2610 	sx_xunlock(&swdev_syscall_lock);
2611 }
2612 
2613 void
2614 swap_pager_status(int *total, int *used)
2615 {
2616 
2617 	*total = swap_total;
2618 	*used = swap_total - swap_pager_avail -
2619 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2620 }
2621 
2622 int
2623 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2624 {
2625 	struct swdevt *sp;
2626 	const char *tmp_devname;
2627 	int error, n;
2628 
2629 	n = 0;
2630 	error = ENOENT;
2631 	mtx_lock(&sw_dev_mtx);
2632 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2633 		if (n != name) {
2634 			n++;
2635 			continue;
2636 		}
2637 		xs->xsw_version = XSWDEV_VERSION;
2638 		xs->xsw_dev = sp->sw_dev;
2639 		xs->xsw_flags = sp->sw_flags;
2640 		xs->xsw_nblks = sp->sw_nblks;
2641 		xs->xsw_used = sp->sw_used;
2642 		if (devname != NULL) {
2643 			if (vn_isdisk(sp->sw_vp))
2644 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2645 			else
2646 				tmp_devname = "[file]";
2647 			strncpy(devname, tmp_devname, len);
2648 		}
2649 		error = 0;
2650 		break;
2651 	}
2652 	mtx_unlock(&sw_dev_mtx);
2653 	return (error);
2654 }
2655 
2656 #if defined(COMPAT_FREEBSD11)
2657 #define XSWDEV_VERSION_11	1
2658 struct xswdev11 {
2659 	u_int	xsw_version;
2660 	uint32_t xsw_dev;
2661 	int	xsw_flags;
2662 	int	xsw_nblks;
2663 	int     xsw_used;
2664 };
2665 #endif
2666 
2667 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2668 struct xswdev32 {
2669 	u_int	xsw_version;
2670 	u_int	xsw_dev1, xsw_dev2;
2671 	int	xsw_flags;
2672 	int	xsw_nblks;
2673 	int     xsw_used;
2674 };
2675 #endif
2676 
2677 static int
2678 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2679 {
2680 	struct xswdev xs;
2681 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2682 	struct xswdev32 xs32;
2683 #endif
2684 #if defined(COMPAT_FREEBSD11)
2685 	struct xswdev11 xs11;
2686 #endif
2687 	int error;
2688 
2689 	if (arg2 != 1)			/* name length */
2690 		return (EINVAL);
2691 
2692 	memset(&xs, 0, sizeof(xs));
2693 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2694 	if (error != 0)
2695 		return (error);
2696 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2697 	if (req->oldlen == sizeof(xs32)) {
2698 		memset(&xs32, 0, sizeof(xs32));
2699 		xs32.xsw_version = XSWDEV_VERSION;
2700 		xs32.xsw_dev1 = xs.xsw_dev;
2701 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2702 		xs32.xsw_flags = xs.xsw_flags;
2703 		xs32.xsw_nblks = xs.xsw_nblks;
2704 		xs32.xsw_used = xs.xsw_used;
2705 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2706 		return (error);
2707 	}
2708 #endif
2709 #if defined(COMPAT_FREEBSD11)
2710 	if (req->oldlen == sizeof(xs11)) {
2711 		memset(&xs11, 0, sizeof(xs11));
2712 		xs11.xsw_version = XSWDEV_VERSION_11;
2713 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2714 		xs11.xsw_flags = xs.xsw_flags;
2715 		xs11.xsw_nblks = xs.xsw_nblks;
2716 		xs11.xsw_used = xs.xsw_used;
2717 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2718 		return (error);
2719 	}
2720 #endif
2721 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2722 	return (error);
2723 }
2724 
2725 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2726     "Number of swap devices");
2727 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2728     sysctl_vm_swap_info,
2729     "Swap statistics by device");
2730 
2731 /*
2732  * Count the approximate swap usage in pages for a vmspace.  The
2733  * shadowed or not yet copied on write swap blocks are not accounted.
2734  * The map must be locked.
2735  */
2736 long
2737 vmspace_swap_count(struct vmspace *vmspace)
2738 {
2739 	vm_map_t map;
2740 	vm_map_entry_t cur;
2741 	vm_object_t object;
2742 	struct swblk *sb;
2743 	vm_pindex_t e, pi;
2744 	long count;
2745 	int i;
2746 
2747 	map = &vmspace->vm_map;
2748 	count = 0;
2749 
2750 	VM_MAP_ENTRY_FOREACH(cur, map) {
2751 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2752 			continue;
2753 		object = cur->object.vm_object;
2754 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2755 			continue;
2756 		VM_OBJECT_RLOCK(object);
2757 		if ((object->flags & OBJ_SWAP) == 0)
2758 			goto unlock;
2759 		pi = OFF_TO_IDX(cur->offset);
2760 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2761 		for (;; pi = sb->p + SWAP_META_PAGES) {
2762 			sb = SWAP_PCTRIE_LOOKUP_GE(
2763 			    &object->un_pager.swp.swp_blks, pi);
2764 			if (sb == NULL || sb->p >= e)
2765 				break;
2766 			for (i = 0; i < SWAP_META_PAGES; i++) {
2767 				if (sb->p + i < e &&
2768 				    sb->d[i] != SWAPBLK_NONE)
2769 					count++;
2770 			}
2771 		}
2772 unlock:
2773 		VM_OBJECT_RUNLOCK(object);
2774 	}
2775 	return (count);
2776 }
2777 
2778 /*
2779  * GEOM backend
2780  *
2781  * Swapping onto disk devices.
2782  *
2783  */
2784 
2785 static g_orphan_t swapgeom_orphan;
2786 
2787 static struct g_class g_swap_class = {
2788 	.name = "SWAP",
2789 	.version = G_VERSION,
2790 	.orphan = swapgeom_orphan,
2791 };
2792 
2793 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2794 
2795 static void
2796 swapgeom_close_ev(void *arg, int flags)
2797 {
2798 	struct g_consumer *cp;
2799 
2800 	cp = arg;
2801 	g_access(cp, -1, -1, 0);
2802 	g_detach(cp);
2803 	g_destroy_consumer(cp);
2804 }
2805 
2806 /*
2807  * Add a reference to the g_consumer for an inflight transaction.
2808  */
2809 static void
2810 swapgeom_acquire(struct g_consumer *cp)
2811 {
2812 
2813 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2814 	cp->index++;
2815 }
2816 
2817 /*
2818  * Remove a reference from the g_consumer.  Post a close event if all
2819  * references go away, since the function might be called from the
2820  * biodone context.
2821  */
2822 static void
2823 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2824 {
2825 
2826 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2827 	cp->index--;
2828 	if (cp->index == 0) {
2829 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2830 			sp->sw_id = NULL;
2831 	}
2832 }
2833 
2834 static void
2835 swapgeom_done(struct bio *bp2)
2836 {
2837 	struct swdevt *sp;
2838 	struct buf *bp;
2839 	struct g_consumer *cp;
2840 
2841 	bp = bp2->bio_caller2;
2842 	cp = bp2->bio_from;
2843 	bp->b_ioflags = bp2->bio_flags;
2844 	if (bp2->bio_error)
2845 		bp->b_ioflags |= BIO_ERROR;
2846 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2847 	bp->b_error = bp2->bio_error;
2848 	bp->b_caller1 = NULL;
2849 	bufdone(bp);
2850 	sp = bp2->bio_caller1;
2851 	mtx_lock(&sw_dev_mtx);
2852 	swapgeom_release(cp, sp);
2853 	mtx_unlock(&sw_dev_mtx);
2854 	g_destroy_bio(bp2);
2855 }
2856 
2857 static void
2858 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2859 {
2860 	struct bio *bio;
2861 	struct g_consumer *cp;
2862 
2863 	mtx_lock(&sw_dev_mtx);
2864 	cp = sp->sw_id;
2865 	if (cp == NULL) {
2866 		mtx_unlock(&sw_dev_mtx);
2867 		bp->b_error = ENXIO;
2868 		bp->b_ioflags |= BIO_ERROR;
2869 		bufdone(bp);
2870 		return;
2871 	}
2872 	swapgeom_acquire(cp);
2873 	mtx_unlock(&sw_dev_mtx);
2874 	if (bp->b_iocmd == BIO_WRITE)
2875 		bio = g_new_bio();
2876 	else
2877 		bio = g_alloc_bio();
2878 	if (bio == NULL) {
2879 		mtx_lock(&sw_dev_mtx);
2880 		swapgeom_release(cp, sp);
2881 		mtx_unlock(&sw_dev_mtx);
2882 		bp->b_error = ENOMEM;
2883 		bp->b_ioflags |= BIO_ERROR;
2884 		printf("swap_pager: cannot allocate bio\n");
2885 		bufdone(bp);
2886 		return;
2887 	}
2888 
2889 	bp->b_caller1 = bio;
2890 	bio->bio_caller1 = sp;
2891 	bio->bio_caller2 = bp;
2892 	bio->bio_cmd = bp->b_iocmd;
2893 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2894 	bio->bio_length = bp->b_bcount;
2895 	bio->bio_done = swapgeom_done;
2896 	if (!buf_mapped(bp)) {
2897 		bio->bio_ma = bp->b_pages;
2898 		bio->bio_data = unmapped_buf;
2899 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2900 		bio->bio_ma_n = bp->b_npages;
2901 		bio->bio_flags |= BIO_UNMAPPED;
2902 	} else {
2903 		bio->bio_data = bp->b_data;
2904 		bio->bio_ma = NULL;
2905 	}
2906 	g_io_request(bio, cp);
2907 	return;
2908 }
2909 
2910 static void
2911 swapgeom_orphan(struct g_consumer *cp)
2912 {
2913 	struct swdevt *sp;
2914 	int destroy;
2915 
2916 	mtx_lock(&sw_dev_mtx);
2917 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2918 		if (sp->sw_id == cp) {
2919 			sp->sw_flags |= SW_CLOSING;
2920 			break;
2921 		}
2922 	}
2923 	/*
2924 	 * Drop reference we were created with. Do directly since we're in a
2925 	 * special context where we don't have to queue the call to
2926 	 * swapgeom_close_ev().
2927 	 */
2928 	cp->index--;
2929 	destroy = ((sp != NULL) && (cp->index == 0));
2930 	if (destroy)
2931 		sp->sw_id = NULL;
2932 	mtx_unlock(&sw_dev_mtx);
2933 	if (destroy)
2934 		swapgeom_close_ev(cp, 0);
2935 }
2936 
2937 static void
2938 swapgeom_close(struct thread *td, struct swdevt *sw)
2939 {
2940 	struct g_consumer *cp;
2941 
2942 	mtx_lock(&sw_dev_mtx);
2943 	cp = sw->sw_id;
2944 	sw->sw_id = NULL;
2945 	mtx_unlock(&sw_dev_mtx);
2946 
2947 	/*
2948 	 * swapgeom_close() may be called from the biodone context,
2949 	 * where we cannot perform topology changes.  Delegate the
2950 	 * work to the events thread.
2951 	 */
2952 	if (cp != NULL)
2953 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2954 }
2955 
2956 static int
2957 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2958 {
2959 	struct g_provider *pp;
2960 	struct g_consumer *cp;
2961 	static struct g_geom *gp;
2962 	struct swdevt *sp;
2963 	u_long nblks;
2964 	int error;
2965 
2966 	pp = g_dev_getprovider(dev);
2967 	if (pp == NULL)
2968 		return (ENODEV);
2969 	mtx_lock(&sw_dev_mtx);
2970 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2971 		cp = sp->sw_id;
2972 		if (cp != NULL && cp->provider == pp) {
2973 			mtx_unlock(&sw_dev_mtx);
2974 			return (EBUSY);
2975 		}
2976 	}
2977 	mtx_unlock(&sw_dev_mtx);
2978 	if (gp == NULL)
2979 		gp = g_new_geomf(&g_swap_class, "swap");
2980 	cp = g_new_consumer(gp);
2981 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2982 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2983 	g_attach(cp, pp);
2984 	/*
2985 	 * XXX: Every time you think you can improve the margin for
2986 	 * footshooting, somebody depends on the ability to do so:
2987 	 * savecore(8) wants to write to our swapdev so we cannot
2988 	 * set an exclusive count :-(
2989 	 */
2990 	error = g_access(cp, 1, 1, 0);
2991 	if (error != 0) {
2992 		g_detach(cp);
2993 		g_destroy_consumer(cp);
2994 		return (error);
2995 	}
2996 	nblks = pp->mediasize / DEV_BSIZE;
2997 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2998 	    swapgeom_close, dev2udev(dev),
2999 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3000 	return (0);
3001 }
3002 
3003 static int
3004 swapongeom(struct vnode *vp)
3005 {
3006 	int error;
3007 
3008 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3009 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3010 		error = ENOENT;
3011 	} else {
3012 		g_topology_lock();
3013 		error = swapongeom_locked(vp->v_rdev, vp);
3014 		g_topology_unlock();
3015 	}
3016 	VOP_UNLOCK(vp);
3017 	return (error);
3018 }
3019 
3020 /*
3021  * VNODE backend
3022  *
3023  * This is used mainly for network filesystem (read: probably only tested
3024  * with NFS) swapfiles.
3025  *
3026  */
3027 
3028 static void
3029 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3030 {
3031 	struct vnode *vp2;
3032 
3033 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3034 
3035 	vp2 = sp->sw_id;
3036 	vhold(vp2);
3037 	if (bp->b_iocmd == BIO_WRITE) {
3038 		if (bp->b_bufobj)
3039 			bufobj_wdrop(bp->b_bufobj);
3040 		bufobj_wref(&vp2->v_bufobj);
3041 	}
3042 	if (bp->b_bufobj != &vp2->v_bufobj)
3043 		bp->b_bufobj = &vp2->v_bufobj;
3044 	bp->b_vp = vp2;
3045 	bp->b_iooffset = dbtob(bp->b_blkno);
3046 	bstrategy(bp);
3047 	return;
3048 }
3049 
3050 static void
3051 swapdev_close(struct thread *td, struct swdevt *sp)
3052 {
3053 
3054 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3055 	vrele(sp->sw_vp);
3056 }
3057 
3058 static int
3059 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3060 {
3061 	struct swdevt *sp;
3062 	int error;
3063 
3064 	if (nblks == 0)
3065 		return (ENXIO);
3066 	mtx_lock(&sw_dev_mtx);
3067 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3068 		if (sp->sw_id == vp) {
3069 			mtx_unlock(&sw_dev_mtx);
3070 			return (EBUSY);
3071 		}
3072 	}
3073 	mtx_unlock(&sw_dev_mtx);
3074 
3075 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3076 #ifdef MAC
3077 	error = mac_system_check_swapon(td->td_ucred, vp);
3078 	if (error == 0)
3079 #endif
3080 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3081 	(void) VOP_UNLOCK(vp);
3082 	if (error)
3083 		return (error);
3084 
3085 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3086 	    NODEV, 0);
3087 	return (0);
3088 }
3089 
3090 static int
3091 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3092 {
3093 	int error, new, n;
3094 
3095 	new = nsw_wcount_async_max;
3096 	error = sysctl_handle_int(oidp, &new, 0, req);
3097 	if (error != 0 || req->newptr == NULL)
3098 		return (error);
3099 
3100 	if (new > nswbuf / 2 || new < 1)
3101 		return (EINVAL);
3102 
3103 	mtx_lock(&swbuf_mtx);
3104 	while (nsw_wcount_async_max != new) {
3105 		/*
3106 		 * Adjust difference.  If the current async count is too low,
3107 		 * we will need to sqeeze our update slowly in.  Sleep with a
3108 		 * higher priority than getpbuf() to finish faster.
3109 		 */
3110 		n = new - nsw_wcount_async_max;
3111 		if (nsw_wcount_async + n >= 0) {
3112 			nsw_wcount_async += n;
3113 			nsw_wcount_async_max += n;
3114 			wakeup(&nsw_wcount_async);
3115 		} else {
3116 			nsw_wcount_async_max -= nsw_wcount_async;
3117 			nsw_wcount_async = 0;
3118 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3119 			    "swpsysctl", 0);
3120 		}
3121 	}
3122 	mtx_unlock(&swbuf_mtx);
3123 
3124 	return (0);
3125 }
3126 
3127 static void
3128 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3129     vm_offset_t end)
3130 {
3131 
3132 	VM_OBJECT_WLOCK(object);
3133 	KASSERT((object->flags & OBJ_ANON) == 0,
3134 	    ("Splittable object with writecount"));
3135 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3136 	VM_OBJECT_WUNLOCK(object);
3137 }
3138 
3139 static void
3140 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3141     vm_offset_t end)
3142 {
3143 
3144 	VM_OBJECT_WLOCK(object);
3145 	KASSERT((object->flags & OBJ_ANON) == 0,
3146 	    ("Splittable object with writecount"));
3147 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3148 	VM_OBJECT_WUNLOCK(object);
3149 }
3150