xref: /freebsd/sys/vm/swap_pager.c (revision 1390a5cbeb1828b11584783c53f50b9679379651)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/vmmeter.h>
103 #include <sys/vnode.h>
104 
105 #include <security/mac/mac_framework.h>
106 
107 #include <vm/vm.h>
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_object.h>
112 #include <vm/vm_page.h>
113 #include <vm/vm_pager.h>
114 #include <vm/vm_pageout.h>
115 #include <vm/vm_param.h>
116 #include <vm/swap_pager.h>
117 #include <vm/vm_extern.h>
118 #include <vm/uma.h>
119 
120 #include <geom/geom.h>
121 
122 /*
123  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
124  * The 64-page limit is due to the radix code (kern/subr_blist.c).
125  */
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define	MAX_PAGEOUT_CLUSTER	32
128 #endif
129 
130 #if !defined(SWB_NPAGES)
131 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
132 #endif
133 
134 #define	SWAP_META_PAGES		PCTRIE_COUNT
135 
136 /*
137  * A swblk structure maps each page index within a
138  * SWAP_META_PAGES-aligned and sized range to the address of an
139  * on-disk swap block (or SWAPBLK_NONE). The collection of these
140  * mappings for an entire vm object is implemented as a pc-trie.
141  */
142 struct swblk {
143 	vm_pindex_t	p;
144 	daddr_t		d[SWAP_META_PAGES];
145 };
146 
147 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
148 static struct mtx sw_dev_mtx;
149 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
150 static struct swdevt *swdevhd;	/* Allocate from here next */
151 static int nswapdev;		/* Number of swap devices */
152 int swap_pager_avail;
153 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
154 
155 static __exclusive_cache_line u_long swap_reserved;
156 static u_long swap_total;
157 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
158 
159 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
160     "VM swap stats");
161 
162 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
163     &swap_reserved, 0, sysctl_page_shift, "A",
164     "Amount of swap storage needed to back all allocated anonymous memory.");
165 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
166     &swap_total, 0, sysctl_page_shift, "A",
167     "Total amount of available swap storage.");
168 
169 static int overcommit = 0;
170 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
171     "Configure virtual memory overcommit behavior. See tuning(7) "
172     "for details.");
173 static unsigned long swzone;
174 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
175     "Actual size of swap metadata zone");
176 static unsigned long swap_maxpages;
177 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
178     "Maximum amount of swap supported");
179 
180 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
181 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
182     CTLFLAG_RD, &swap_free_deferred,
183     "Number of pages that deferred freeing swap space");
184 
185 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
186 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
187     CTLFLAG_RD, &swap_free_completed,
188     "Number of deferred frees completed");
189 
190 /* bits from overcommit */
191 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
192 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
193 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
194 
195 static int
196 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
197 {
198 	uint64_t newval;
199 	u_long value = *(u_long *)arg1;
200 
201 	newval = ((uint64_t)value) << PAGE_SHIFT;
202 	return (sysctl_handle_64(oidp, &newval, 0, req));
203 }
204 
205 static bool
206 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
207 {
208 	struct uidinfo *uip;
209 	u_long prev;
210 
211 	uip = cred->cr_ruidinfo;
212 
213 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
214 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
216 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
217 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
218 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
219 		return (false);
220 	}
221 	return (true);
222 }
223 
224 static void
225 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
226 {
227 	struct uidinfo *uip;
228 #ifdef INVARIANTS
229 	u_long prev;
230 #endif
231 
232 	uip = cred->cr_ruidinfo;
233 
234 #ifdef INVARIANTS
235 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
236 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
237 #else
238 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
239 #endif
240 }
241 
242 static void
243 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
244 {
245 	struct uidinfo *uip;
246 
247 	uip = cred->cr_ruidinfo;
248 	atomic_add_long(&uip->ui_vmsize, pincr);
249 }
250 
251 bool
252 swap_reserve(vm_ooffset_t incr)
253 {
254 
255 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
256 }
257 
258 bool
259 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
260 {
261 	u_long r, s, prev, pincr;
262 #ifdef RACCT
263 	int error;
264 #endif
265 	int oc;
266 	static int curfail;
267 	static struct timeval lastfail;
268 
269 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
270 	    (uintmax_t)incr));
271 
272 #ifdef RACCT
273 	if (RACCT_ENABLED()) {
274 		PROC_LOCK(curproc);
275 		error = racct_add(curproc, RACCT_SWAP, incr);
276 		PROC_UNLOCK(curproc);
277 		if (error != 0)
278 			return (false);
279 	}
280 #endif
281 
282 	pincr = atop(incr);
283 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
284 	r = prev + pincr;
285 	s = swap_total;
286 	oc = atomic_load_int(&overcommit);
287 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
288 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
289 		    vm_wire_count();
290 	}
291 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
292 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
293 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
294 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
295 		goto out_error;
296 	}
297 
298 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
299 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
300 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
301 		goto out_error;
302 	}
303 
304 	return (true);
305 
306 out_error:
307 	if (ppsratecheck(&lastfail, &curfail, 1)) {
308 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
309 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
310 	}
311 #ifdef RACCT
312 	if (RACCT_ENABLED()) {
313 		PROC_LOCK(curproc);
314 		racct_sub(curproc, RACCT_SWAP, incr);
315 		PROC_UNLOCK(curproc);
316 	}
317 #endif
318 
319 	return (false);
320 }
321 
322 void
323 swap_reserve_force(vm_ooffset_t incr)
324 {
325 	u_long pincr;
326 
327 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
328 	    (uintmax_t)incr));
329 
330 #ifdef RACCT
331 	if (RACCT_ENABLED()) {
332 		PROC_LOCK(curproc);
333 		racct_add_force(curproc, RACCT_SWAP, incr);
334 		PROC_UNLOCK(curproc);
335 	}
336 #endif
337 	pincr = atop(incr);
338 	atomic_add_long(&swap_reserved, pincr);
339 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
340 }
341 
342 void
343 swap_release(vm_ooffset_t decr)
344 {
345 	struct ucred *cred;
346 
347 	PROC_LOCK(curproc);
348 	cred = curproc->p_ucred;
349 	swap_release_by_cred(decr, cred);
350 	PROC_UNLOCK(curproc);
351 }
352 
353 void
354 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
355 {
356 	u_long pdecr;
357 #ifdef INVARIANTS
358 	u_long prev;
359 #endif
360 
361 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
362 	    (uintmax_t)decr));
363 
364 	pdecr = atop(decr);
365 #ifdef INVARIANTS
366 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
367 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
368 #else
369 	atomic_subtract_long(&swap_reserved, pdecr);
370 #endif
371 
372 	swap_release_by_cred_rlimit(pdecr, cred);
373 #ifdef RACCT
374 	if (racct_enable)
375 		racct_sub_cred(cred, RACCT_SWAP, decr);
376 #endif
377 }
378 
379 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
380 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
381 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
382 static int nsw_wcount_async;	/* limit async write buffers */
383 static int nsw_wcount_async_max;/* assigned maximum			*/
384 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
385 
386 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
387 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
388     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
389     "Maximum running async swap ops");
390 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
391 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
392     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
393     "Swap Fragmentation Info");
394 
395 static struct sx sw_alloc_sx;
396 
397 /*
398  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
399  * of searching a named list by hashing it just a little.
400  */
401 
402 #define NOBJLISTS		8
403 
404 #define NOBJLIST(handle)	\
405 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
406 
407 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
408 static uma_zone_t swwbuf_zone;
409 static uma_zone_t swrbuf_zone;
410 static uma_zone_t swblk_zone;
411 static uma_zone_t swpctrie_zone;
412 
413 /*
414  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
415  * calls hooked from other parts of the VM system and do not appear here.
416  * (see vm/swap_pager.h).
417  */
418 static vm_object_t
419 		swap_pager_alloc(void *handle, vm_ooffset_t size,
420 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
421 static void	swap_pager_dealloc(vm_object_t object);
422 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
423     int *);
424 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
425     int *, pgo_getpages_iodone_t, void *);
426 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
427 static boolean_t
428 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
429 static void	swap_pager_init(void);
430 static void	swap_pager_unswapped(vm_page_t);
431 static void	swap_pager_swapoff(struct swdevt *sp);
432 static void	swap_pager_update_writecount(vm_object_t object,
433     vm_offset_t start, vm_offset_t end);
434 static void	swap_pager_release_writecount(vm_object_t object,
435     vm_offset_t start, vm_offset_t end);
436 static void	swap_pager_set_writeable_dirty(vm_object_t object);
437 static bool	swap_pager_mightbedirty(vm_object_t object);
438 static void	swap_pager_getvp(vm_object_t object, struct vnode **vpp,
439     bool *vp_heldp);
440 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
441     vm_size_t size);
442 
443 struct pagerops swappagerops = {
444 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
445 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
446 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
447 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
448 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
449 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
450 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
451 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
452 	.pgo_update_writecount = swap_pager_update_writecount,
453 	.pgo_release_writecount = swap_pager_release_writecount,
454 	.pgo_set_writeable_dirty = swap_pager_set_writeable_dirty,
455 	.pgo_mightbedirty = swap_pager_mightbedirty,
456 	.pgo_getvp = swap_pager_getvp,
457 	.pgo_freespace = swap_pager_freespace,
458 };
459 
460 /*
461  * swap_*() routines are externally accessible.  swp_*() routines are
462  * internal.
463  */
464 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
465 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
466 
467 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
468     "Maximum size of a swap block in pages");
469 
470 static void	swp_sizecheck(void);
471 static void	swp_pager_async_iodone(struct buf *bp);
472 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
473 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
474 static int	swapongeom(struct vnode *);
475 static int	swaponvp(struct thread *, struct vnode *, u_long);
476 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
477 
478 /*
479  * Swap bitmap functions
480  */
481 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
482 static daddr_t	swp_pager_getswapspace(int *npages);
483 
484 /*
485  * Metadata functions
486  */
487 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
488 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
489 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
490     vm_pindex_t pindex, vm_pindex_t count);
491 static void swp_pager_meta_free_all(vm_object_t);
492 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
493 
494 static void
495 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
496 {
497 
498 	*start = SWAPBLK_NONE;
499 	*num = 0;
500 }
501 
502 static void
503 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
504 {
505 
506 	if (*start + *num == addr) {
507 		(*num)++;
508 	} else {
509 		swp_pager_freeswapspace(*start, *num);
510 		*start = addr;
511 		*num = 1;
512 	}
513 }
514 
515 static void *
516 swblk_trie_alloc(struct pctrie *ptree)
517 {
518 
519 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
520 	    M_USE_RESERVE : 0)));
521 }
522 
523 static void
524 swblk_trie_free(struct pctrie *ptree, void *node)
525 {
526 
527 	uma_zfree(swpctrie_zone, node);
528 }
529 
530 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
531 
532 /*
533  * SWP_SIZECHECK() -	update swap_pager_full indication
534  *
535  *	update the swap_pager_almost_full indication and warn when we are
536  *	about to run out of swap space, using lowat/hiwat hysteresis.
537  *
538  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
539  *
540  *	No restrictions on call
541  *	This routine may not block.
542  */
543 static void
544 swp_sizecheck(void)
545 {
546 
547 	if (swap_pager_avail < nswap_lowat) {
548 		if (swap_pager_almost_full == 0) {
549 			printf("swap_pager: out of swap space\n");
550 			swap_pager_almost_full = 1;
551 		}
552 	} else {
553 		swap_pager_full = 0;
554 		if (swap_pager_avail > nswap_hiwat)
555 			swap_pager_almost_full = 0;
556 	}
557 }
558 
559 /*
560  * SWAP_PAGER_INIT() -	initialize the swap pager!
561  *
562  *	Expected to be started from system init.  NOTE:  This code is run
563  *	before much else so be careful what you depend on.  Most of the VM
564  *	system has yet to be initialized at this point.
565  */
566 static void
567 swap_pager_init(void)
568 {
569 	/*
570 	 * Initialize object lists
571 	 */
572 	int i;
573 
574 	for (i = 0; i < NOBJLISTS; ++i)
575 		TAILQ_INIT(&swap_pager_object_list[i]);
576 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
577 	sx_init(&sw_alloc_sx, "swspsx");
578 	sx_init(&swdev_syscall_lock, "swsysc");
579 }
580 
581 /*
582  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
583  *
584  *	Expected to be started from pageout process once, prior to entering
585  *	its main loop.
586  */
587 void
588 swap_pager_swap_init(void)
589 {
590 	unsigned long n, n2;
591 
592 	/*
593 	 * Number of in-transit swap bp operations.  Don't
594 	 * exhaust the pbufs completely.  Make sure we
595 	 * initialize workable values (0 will work for hysteresis
596 	 * but it isn't very efficient).
597 	 *
598 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
599 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
600 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
601 	 * constrained by the swap device interleave stripe size.
602 	 *
603 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
604 	 * designed to prevent other I/O from having high latencies due to
605 	 * our pageout I/O.  The value 4 works well for one or two active swap
606 	 * devices but is probably a little low if you have more.  Even so,
607 	 * a higher value would probably generate only a limited improvement
608 	 * with three or four active swap devices since the system does not
609 	 * typically have to pageout at extreme bandwidths.   We will want
610 	 * at least 2 per swap devices, and 4 is a pretty good value if you
611 	 * have one NFS swap device due to the command/ack latency over NFS.
612 	 * So it all works out pretty well.
613 	 */
614 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
615 
616 	nsw_wcount_async = 4;
617 	nsw_wcount_async_max = nsw_wcount_async;
618 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
619 
620 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
621 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
622 
623 	/*
624 	 * Initialize our zone, taking the user's requested size or
625 	 * estimating the number we need based on the number of pages
626 	 * in the system.
627 	 */
628 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
629 	    vm_cnt.v_page_count / 2;
630 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
631 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
632 	if (swpctrie_zone == NULL)
633 		panic("failed to create swap pctrie zone.");
634 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
635 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
636 	if (swblk_zone == NULL)
637 		panic("failed to create swap blk zone.");
638 	n2 = n;
639 	do {
640 		if (uma_zone_reserve_kva(swblk_zone, n))
641 			break;
642 		/*
643 		 * if the allocation failed, try a zone two thirds the
644 		 * size of the previous attempt.
645 		 */
646 		n -= ((n + 2) / 3);
647 	} while (n > 0);
648 
649 	/*
650 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
651 	 * requested size.  Account for the difference when
652 	 * calculating swap_maxpages.
653 	 */
654 	n = uma_zone_get_max(swblk_zone);
655 
656 	if (n < n2)
657 		printf("Swap blk zone entries changed from %lu to %lu.\n",
658 		    n2, n);
659 	/* absolute maximum we can handle assuming 100% efficiency */
660 	swap_maxpages = n * SWAP_META_PAGES;
661 	swzone = n * sizeof(struct swblk);
662 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
663 		printf("Cannot reserve swap pctrie zone, "
664 		    "reduce kern.maxswzone.\n");
665 }
666 
667 static vm_object_t
668 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
669     vm_ooffset_t offset)
670 {
671 	vm_object_t object;
672 
673 	if (cred != NULL) {
674 		if (!swap_reserve_by_cred(size, cred))
675 			return (NULL);
676 		crhold(cred);
677 	}
678 
679 	/*
680 	 * The un_pager.swp.swp_blks trie is initialized by
681 	 * vm_object_allocate() to ensure the correct order of
682 	 * visibility to other threads.
683 	 */
684 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
685 	    PAGE_MASK + size));
686 
687 	object->un_pager.swp.writemappings = 0;
688 	object->handle = handle;
689 	if (cred != NULL) {
690 		object->cred = cred;
691 		object->charge = size;
692 	}
693 	return (object);
694 }
695 
696 /*
697  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
698  *			its metadata structures.
699  *
700  *	This routine is called from the mmap and fork code to create a new
701  *	OBJT_SWAP object.
702  *
703  *	This routine must ensure that no live duplicate is created for
704  *	the named object request, which is protected against by
705  *	holding the sw_alloc_sx lock in case handle != NULL.
706  */
707 static vm_object_t
708 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
709     vm_ooffset_t offset, struct ucred *cred)
710 {
711 	vm_object_t object;
712 
713 	if (handle != NULL) {
714 		/*
715 		 * Reference existing named region or allocate new one.  There
716 		 * should not be a race here against swp_pager_meta_build()
717 		 * as called from vm_page_remove() in regards to the lookup
718 		 * of the handle.
719 		 */
720 		sx_xlock(&sw_alloc_sx);
721 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
722 		if (object == NULL) {
723 			object = swap_pager_alloc_init(handle, cred, size,
724 			    offset);
725 			if (object != NULL) {
726 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
727 				    object, pager_object_list);
728 			}
729 		}
730 		sx_xunlock(&sw_alloc_sx);
731 	} else {
732 		object = swap_pager_alloc_init(handle, cred, size, offset);
733 	}
734 	return (object);
735 }
736 
737 /*
738  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
739  *
740  *	The swap backing for the object is destroyed.  The code is
741  *	designed such that we can reinstantiate it later, but this
742  *	routine is typically called only when the entire object is
743  *	about to be destroyed.
744  *
745  *	The object must be locked.
746  */
747 static void
748 swap_pager_dealloc(vm_object_t object)
749 {
750 
751 	VM_OBJECT_ASSERT_WLOCKED(object);
752 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
753 
754 	/*
755 	 * Remove from list right away so lookups will fail if we block for
756 	 * pageout completion.
757 	 */
758 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
759 		VM_OBJECT_WUNLOCK(object);
760 		sx_xlock(&sw_alloc_sx);
761 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
762 		    pager_object_list);
763 		sx_xunlock(&sw_alloc_sx);
764 		VM_OBJECT_WLOCK(object);
765 	}
766 
767 	vm_object_pip_wait(object, "swpdea");
768 
769 	/*
770 	 * Free all remaining metadata.  We only bother to free it from
771 	 * the swap meta data.  We do not attempt to free swapblk's still
772 	 * associated with vm_page_t's for this object.  We do not care
773 	 * if paging is still in progress on some objects.
774 	 */
775 	swp_pager_meta_free_all(object);
776 	object->handle = NULL;
777 	object->type = OBJT_DEAD;
778 }
779 
780 /************************************************************************
781  *			SWAP PAGER BITMAP ROUTINES			*
782  ************************************************************************/
783 
784 /*
785  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
786  *
787  *	Allocate swap for up to the requested number of pages.  The
788  *	starting swap block number (a page index) is returned or
789  *	SWAPBLK_NONE if the allocation failed.
790  *
791  *	Also has the side effect of advising that somebody made a mistake
792  *	when they configured swap and didn't configure enough.
793  *
794  *	This routine may not sleep.
795  *
796  *	We allocate in round-robin fashion from the configured devices.
797  */
798 static daddr_t
799 swp_pager_getswapspace(int *io_npages)
800 {
801 	daddr_t blk;
802 	struct swdevt *sp;
803 	int mpages, npages;
804 
805 	KASSERT(*io_npages >= 1,
806 	    ("%s: npages not positive", __func__));
807 	blk = SWAPBLK_NONE;
808 	mpages = *io_npages;
809 	npages = imin(BLIST_MAX_ALLOC, mpages);
810 	mtx_lock(&sw_dev_mtx);
811 	sp = swdevhd;
812 	while (!TAILQ_EMPTY(&swtailq)) {
813 		if (sp == NULL)
814 			sp = TAILQ_FIRST(&swtailq);
815 		if ((sp->sw_flags & SW_CLOSING) == 0)
816 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
817 		if (blk != SWAPBLK_NONE)
818 			break;
819 		sp = TAILQ_NEXT(sp, sw_list);
820 		if (swdevhd == sp) {
821 			if (npages == 1)
822 				break;
823 			mpages = npages - 1;
824 			npages >>= 1;
825 		}
826 	}
827 	if (blk != SWAPBLK_NONE) {
828 		*io_npages = npages;
829 		blk += sp->sw_first;
830 		sp->sw_used += npages;
831 		swap_pager_avail -= npages;
832 		swp_sizecheck();
833 		swdevhd = TAILQ_NEXT(sp, sw_list);
834 	} else {
835 		if (swap_pager_full != 2) {
836 			printf("swp_pager_getswapspace(%d): failed\n",
837 			    *io_npages);
838 			swap_pager_full = 2;
839 			swap_pager_almost_full = 1;
840 		}
841 		swdevhd = NULL;
842 	}
843 	mtx_unlock(&sw_dev_mtx);
844 	return (blk);
845 }
846 
847 static bool
848 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
849 {
850 
851 	return (blk >= sp->sw_first && blk < sp->sw_end);
852 }
853 
854 static void
855 swp_pager_strategy(struct buf *bp)
856 {
857 	struct swdevt *sp;
858 
859 	mtx_lock(&sw_dev_mtx);
860 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
861 		if (swp_pager_isondev(bp->b_blkno, sp)) {
862 			mtx_unlock(&sw_dev_mtx);
863 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
864 			    unmapped_buf_allowed) {
865 				bp->b_data = unmapped_buf;
866 				bp->b_offset = 0;
867 			} else {
868 				pmap_qenter((vm_offset_t)bp->b_data,
869 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
870 			}
871 			sp->sw_strategy(bp, sp);
872 			return;
873 		}
874 	}
875 	panic("Swapdev not found");
876 }
877 
878 /*
879  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
880  *
881  *	This routine returns the specified swap blocks back to the bitmap.
882  *
883  *	This routine may not sleep.
884  */
885 static void
886 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
887 {
888 	struct swdevt *sp;
889 
890 	if (npages == 0)
891 		return;
892 	mtx_lock(&sw_dev_mtx);
893 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
894 		if (swp_pager_isondev(blk, sp)) {
895 			sp->sw_used -= npages;
896 			/*
897 			 * If we are attempting to stop swapping on
898 			 * this device, we don't want to mark any
899 			 * blocks free lest they be reused.
900 			 */
901 			if ((sp->sw_flags & SW_CLOSING) == 0) {
902 				blist_free(sp->sw_blist, blk - sp->sw_first,
903 				    npages);
904 				swap_pager_avail += npages;
905 				swp_sizecheck();
906 			}
907 			mtx_unlock(&sw_dev_mtx);
908 			return;
909 		}
910 	}
911 	panic("Swapdev not found");
912 }
913 
914 /*
915  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
916  */
917 static int
918 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
919 {
920 	struct sbuf sbuf;
921 	struct swdevt *sp;
922 	const char *devname;
923 	int error;
924 
925 	error = sysctl_wire_old_buffer(req, 0);
926 	if (error != 0)
927 		return (error);
928 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
929 	mtx_lock(&sw_dev_mtx);
930 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
931 		if (vn_isdisk(sp->sw_vp))
932 			devname = devtoname(sp->sw_vp->v_rdev);
933 		else
934 			devname = "[file]";
935 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
936 		blist_stats(sp->sw_blist, &sbuf);
937 	}
938 	mtx_unlock(&sw_dev_mtx);
939 	error = sbuf_finish(&sbuf);
940 	sbuf_delete(&sbuf);
941 	return (error);
942 }
943 
944 /*
945  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
946  *				range within an object.
947  *
948  *	This routine removes swapblk assignments from swap metadata.
949  *
950  *	The external callers of this routine typically have already destroyed
951  *	or renamed vm_page_t's associated with this range in the object so
952  *	we should be ok.
953  *
954  *	The object must be locked.
955  */
956 static void
957 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
958 {
959 
960 	swp_pager_meta_free(object, start, size);
961 }
962 
963 /*
964  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
965  *
966  *	Assigns swap blocks to the specified range within the object.  The
967  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
968  *
969  *	Returns 0 on success, -1 on failure.
970  */
971 int
972 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
973 {
974 	daddr_t addr, blk, n_free, s_free;
975 	int i, j, n;
976 
977 	swp_pager_init_freerange(&s_free, &n_free);
978 	VM_OBJECT_WLOCK(object);
979 	for (i = 0; i < size; i += n) {
980 		n = size - i;
981 		blk = swp_pager_getswapspace(&n);
982 		if (blk == SWAPBLK_NONE) {
983 			swp_pager_meta_free(object, start, i);
984 			VM_OBJECT_WUNLOCK(object);
985 			return (-1);
986 		}
987 		for (j = 0; j < n; ++j) {
988 			addr = swp_pager_meta_build(object,
989 			    start + i + j, blk + j);
990 			if (addr != SWAPBLK_NONE)
991 				swp_pager_update_freerange(&s_free, &n_free,
992 				    addr);
993 		}
994 	}
995 	swp_pager_freeswapspace(s_free, n_free);
996 	VM_OBJECT_WUNLOCK(object);
997 	return (0);
998 }
999 
1000 static bool
1001 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1002     vm_pindex_t pindex, daddr_t addr)
1003 {
1004 	daddr_t dstaddr;
1005 
1006 	KASSERT(srcobject->type == OBJT_SWAP,
1007 	    ("%s: Srcobject not swappable", __func__));
1008 	if (dstobject->type == OBJT_SWAP &&
1009 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1010 		/* Caller should destroy the source block. */
1011 		return (false);
1012 	}
1013 
1014 	/*
1015 	 * Destination has no swapblk and is not resident, transfer source.
1016 	 * swp_pager_meta_build() can sleep.
1017 	 */
1018 	VM_OBJECT_WUNLOCK(srcobject);
1019 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1020 	KASSERT(dstaddr == SWAPBLK_NONE,
1021 	    ("Unexpected destination swapblk"));
1022 	VM_OBJECT_WLOCK(srcobject);
1023 
1024 	return (true);
1025 }
1026 
1027 /*
1028  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1029  *			and destroy the source.
1030  *
1031  *	Copy any valid swapblks from the source to the destination.  In
1032  *	cases where both the source and destination have a valid swapblk,
1033  *	we keep the destination's.
1034  *
1035  *	This routine is allowed to sleep.  It may sleep allocating metadata
1036  *	indirectly through swp_pager_meta_build().
1037  *
1038  *	The source object contains no vm_page_t's (which is just as well)
1039  *
1040  *	The source object is of type OBJT_SWAP.
1041  *
1042  *	The source and destination objects must be locked.
1043  *	Both object locks may temporarily be released.
1044  */
1045 void
1046 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1047     vm_pindex_t offset, int destroysource)
1048 {
1049 
1050 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1051 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1052 
1053 	/*
1054 	 * If destroysource is set, we remove the source object from the
1055 	 * swap_pager internal queue now.
1056 	 */
1057 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1058 	    srcobject->handle != NULL) {
1059 		VM_OBJECT_WUNLOCK(srcobject);
1060 		VM_OBJECT_WUNLOCK(dstobject);
1061 		sx_xlock(&sw_alloc_sx);
1062 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1063 		    pager_object_list);
1064 		sx_xunlock(&sw_alloc_sx);
1065 		VM_OBJECT_WLOCK(dstobject);
1066 		VM_OBJECT_WLOCK(srcobject);
1067 	}
1068 
1069 	/*
1070 	 * Transfer source to destination.
1071 	 */
1072 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1073 
1074 	/*
1075 	 * Free left over swap blocks in source.
1076 	 *
1077 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1078 	 * double-remove the object from the swap queues.
1079 	 */
1080 	if (destroysource) {
1081 		swp_pager_meta_free_all(srcobject);
1082 		/*
1083 		 * Reverting the type is not necessary, the caller is going
1084 		 * to destroy srcobject directly, but I'm doing it here
1085 		 * for consistency since we've removed the object from its
1086 		 * queues.
1087 		 */
1088 		srcobject->type = OBJT_DEFAULT;
1089 	}
1090 }
1091 
1092 /*
1093  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1094  *				the requested page.
1095  *
1096  *	We determine whether good backing store exists for the requested
1097  *	page and return TRUE if it does, FALSE if it doesn't.
1098  *
1099  *	If TRUE, we also try to determine how much valid, contiguous backing
1100  *	store exists before and after the requested page.
1101  */
1102 static boolean_t
1103 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1104     int *after)
1105 {
1106 	daddr_t blk, blk0;
1107 	int i;
1108 
1109 	VM_OBJECT_ASSERT_LOCKED(object);
1110 	KASSERT(object->type == OBJT_SWAP,
1111 	    ("%s: object not swappable", __func__));
1112 
1113 	/*
1114 	 * do we have good backing store at the requested index ?
1115 	 */
1116 	blk0 = swp_pager_meta_lookup(object, pindex);
1117 	if (blk0 == SWAPBLK_NONE) {
1118 		if (before)
1119 			*before = 0;
1120 		if (after)
1121 			*after = 0;
1122 		return (FALSE);
1123 	}
1124 
1125 	/*
1126 	 * find backwards-looking contiguous good backing store
1127 	 */
1128 	if (before != NULL) {
1129 		for (i = 1; i < SWB_NPAGES; i++) {
1130 			if (i > pindex)
1131 				break;
1132 			blk = swp_pager_meta_lookup(object, pindex - i);
1133 			if (blk != blk0 - i)
1134 				break;
1135 		}
1136 		*before = i - 1;
1137 	}
1138 
1139 	/*
1140 	 * find forward-looking contiguous good backing store
1141 	 */
1142 	if (after != NULL) {
1143 		for (i = 1; i < SWB_NPAGES; i++) {
1144 			blk = swp_pager_meta_lookup(object, pindex + i);
1145 			if (blk != blk0 + i)
1146 				break;
1147 		}
1148 		*after = i - 1;
1149 	}
1150 	return (TRUE);
1151 }
1152 
1153 /*
1154  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1155  *
1156  *	This removes any associated swap backing store, whether valid or
1157  *	not, from the page.
1158  *
1159  *	This routine is typically called when a page is made dirty, at
1160  *	which point any associated swap can be freed.  MADV_FREE also
1161  *	calls us in a special-case situation
1162  *
1163  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1164  *	should make the page dirty before calling this routine.  This routine
1165  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1166  *	depends on it.
1167  *
1168  *	This routine may not sleep.
1169  *
1170  *	The object containing the page may be locked.
1171  */
1172 static void
1173 swap_pager_unswapped(vm_page_t m)
1174 {
1175 	struct swblk *sb;
1176 	vm_object_t obj;
1177 
1178 	/*
1179 	 * Handle enqueing deferred frees first.  If we do not have the
1180 	 * object lock we wait for the page daemon to clear the space.
1181 	 */
1182 	obj = m->object;
1183 	if (!VM_OBJECT_WOWNED(obj)) {
1184 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1185 		/*
1186 		 * The caller is responsible for synchronization but we
1187 		 * will harmlessly handle races.  This is typically provided
1188 		 * by only calling unswapped() when a page transitions from
1189 		 * clean to dirty.
1190 		 */
1191 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1192 		    PGA_SWAP_SPACE) {
1193 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1194 			counter_u64_add(swap_free_deferred, 1);
1195 		}
1196 		return;
1197 	}
1198 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1199 		counter_u64_add(swap_free_completed, 1);
1200 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1201 
1202 	/*
1203 	 * The meta data only exists if the object is OBJT_SWAP
1204 	 * and even then might not be allocated yet.
1205 	 */
1206 	KASSERT(m->object->type == OBJT_SWAP,
1207 	    ("Free object not swappable"));
1208 
1209 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1210 	    rounddown(m->pindex, SWAP_META_PAGES));
1211 	if (sb == NULL)
1212 		return;
1213 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1214 		return;
1215 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1216 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1217 	swp_pager_free_empty_swblk(m->object, sb);
1218 }
1219 
1220 /*
1221  * swap_pager_getpages() - bring pages in from swap
1222  *
1223  *	Attempt to page in the pages in array "ma" of length "count".  The
1224  *	caller may optionally specify that additional pages preceding and
1225  *	succeeding the specified range be paged in.  The number of such pages
1226  *	is returned in the "rbehind" and "rahead" parameters, and they will
1227  *	be in the inactive queue upon return.
1228  *
1229  *	The pages in "ma" must be busied and will remain busied upon return.
1230  */
1231 static int
1232 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1233     int *rbehind, int *rahead)
1234 {
1235 	struct buf *bp;
1236 	vm_page_t bm, mpred, msucc, p;
1237 	vm_pindex_t pindex;
1238 	daddr_t blk;
1239 	int i, maxahead, maxbehind, reqcount;
1240 
1241 	VM_OBJECT_ASSERT_WLOCKED(object);
1242 	reqcount = count;
1243 
1244 	KASSERT(object->type == OBJT_SWAP,
1245 	    ("%s: object not swappable", __func__));
1246 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1247 		VM_OBJECT_WUNLOCK(object);
1248 		return (VM_PAGER_FAIL);
1249 	}
1250 
1251 	KASSERT(reqcount - 1 <= maxahead,
1252 	    ("page count %d extends beyond swap block", reqcount));
1253 
1254 	/*
1255 	 * Do not transfer any pages other than those that are xbusied
1256 	 * when running during a split or collapse operation.  This
1257 	 * prevents clustering from re-creating pages which are being
1258 	 * moved into another object.
1259 	 */
1260 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1261 		maxahead = reqcount - 1;
1262 		maxbehind = 0;
1263 	}
1264 
1265 	/*
1266 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1267 	 */
1268 	if (rahead != NULL) {
1269 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1270 		pindex = ma[reqcount - 1]->pindex;
1271 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1272 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1273 			*rahead = msucc->pindex - pindex - 1;
1274 	}
1275 	if (rbehind != NULL) {
1276 		*rbehind = imin(*rbehind, maxbehind);
1277 		pindex = ma[0]->pindex;
1278 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1279 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1280 			*rbehind = pindex - mpred->pindex - 1;
1281 	}
1282 
1283 	bm = ma[0];
1284 	for (i = 0; i < count; i++)
1285 		ma[i]->oflags |= VPO_SWAPINPROG;
1286 
1287 	/*
1288 	 * Allocate readahead and readbehind pages.
1289 	 */
1290 	if (rbehind != NULL) {
1291 		for (i = 1; i <= *rbehind; i++) {
1292 			p = vm_page_alloc(object, ma[0]->pindex - i,
1293 			    VM_ALLOC_NORMAL);
1294 			if (p == NULL)
1295 				break;
1296 			p->oflags |= VPO_SWAPINPROG;
1297 			bm = p;
1298 		}
1299 		*rbehind = i - 1;
1300 	}
1301 	if (rahead != NULL) {
1302 		for (i = 0; i < *rahead; i++) {
1303 			p = vm_page_alloc(object,
1304 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1305 			if (p == NULL)
1306 				break;
1307 			p->oflags |= VPO_SWAPINPROG;
1308 		}
1309 		*rahead = i;
1310 	}
1311 	if (rbehind != NULL)
1312 		count += *rbehind;
1313 	if (rahead != NULL)
1314 		count += *rahead;
1315 
1316 	vm_object_pip_add(object, count);
1317 
1318 	pindex = bm->pindex;
1319 	blk = swp_pager_meta_lookup(object, pindex);
1320 	KASSERT(blk != SWAPBLK_NONE,
1321 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1322 
1323 	VM_OBJECT_WUNLOCK(object);
1324 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1325 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1326 	/* Pages cannot leave the object while busy. */
1327 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1328 		MPASS(p->pindex == bm->pindex + i);
1329 		bp->b_pages[i] = p;
1330 	}
1331 
1332 	bp->b_flags |= B_PAGING;
1333 	bp->b_iocmd = BIO_READ;
1334 	bp->b_iodone = swp_pager_async_iodone;
1335 	bp->b_rcred = crhold(thread0.td_ucred);
1336 	bp->b_wcred = crhold(thread0.td_ucred);
1337 	bp->b_blkno = blk;
1338 	bp->b_bcount = PAGE_SIZE * count;
1339 	bp->b_bufsize = PAGE_SIZE * count;
1340 	bp->b_npages = count;
1341 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1342 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1343 
1344 	VM_CNT_INC(v_swapin);
1345 	VM_CNT_ADD(v_swappgsin, count);
1346 
1347 	/*
1348 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1349 	 * this point because we automatically release it on completion.
1350 	 * Instead, we look at the one page we are interested in which we
1351 	 * still hold a lock on even through the I/O completion.
1352 	 *
1353 	 * The other pages in our ma[] array are also released on completion,
1354 	 * so we cannot assume they are valid anymore either.
1355 	 *
1356 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1357 	 */
1358 	BUF_KERNPROC(bp);
1359 	swp_pager_strategy(bp);
1360 
1361 	/*
1362 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1363 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1364 	 * is set in the metadata for each page in the request.
1365 	 */
1366 	VM_OBJECT_WLOCK(object);
1367 	/* This could be implemented more efficiently with aflags */
1368 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1369 		ma[0]->oflags |= VPO_SWAPSLEEP;
1370 		VM_CNT_INC(v_intrans);
1371 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1372 		    "swread", hz * 20)) {
1373 			printf(
1374 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1375 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1376 		}
1377 	}
1378 	VM_OBJECT_WUNLOCK(object);
1379 
1380 	/*
1381 	 * If we had an unrecoverable read error pages will not be valid.
1382 	 */
1383 	for (i = 0; i < reqcount; i++)
1384 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1385 			return (VM_PAGER_ERROR);
1386 
1387 	return (VM_PAGER_OK);
1388 
1389 	/*
1390 	 * A final note: in a low swap situation, we cannot deallocate swap
1391 	 * and mark a page dirty here because the caller is likely to mark
1392 	 * the page clean when we return, causing the page to possibly revert
1393 	 * to all-zero's later.
1394 	 */
1395 }
1396 
1397 static int
1398 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1399     int *rbehind, int *rahead)
1400 {
1401 
1402 	VM_OBJECT_WLOCK(object);
1403 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1404 }
1405 
1406 /*
1407  * 	swap_pager_getpages_async():
1408  *
1409  *	Right now this is emulation of asynchronous operation on top of
1410  *	swap_pager_getpages().
1411  */
1412 static int
1413 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1414     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1415 {
1416 	int r, error;
1417 
1418 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1419 	switch (r) {
1420 	case VM_PAGER_OK:
1421 		error = 0;
1422 		break;
1423 	case VM_PAGER_ERROR:
1424 		error = EIO;
1425 		break;
1426 	case VM_PAGER_FAIL:
1427 		error = EINVAL;
1428 		break;
1429 	default:
1430 		panic("unhandled swap_pager_getpages() error %d", r);
1431 	}
1432 	(iodone)(arg, ma, count, error);
1433 
1434 	return (r);
1435 }
1436 
1437 /*
1438  *	swap_pager_putpages:
1439  *
1440  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1441  *
1442  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1443  *	are automatically converted to SWAP objects.
1444  *
1445  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1446  *	vm_page reservation system coupled with properly written VFS devices
1447  *	should ensure that no low-memory deadlock occurs.  This is an area
1448  *	which needs work.
1449  *
1450  *	The parent has N vm_object_pip_add() references prior to
1451  *	calling us and will remove references for rtvals[] that are
1452  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1453  *	completion.
1454  *
1455  *	The parent has soft-busy'd the pages it passes us and will unbusy
1456  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1457  *	We need to unbusy the rest on I/O completion.
1458  */
1459 static void
1460 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1461     int flags, int *rtvals)
1462 {
1463 	struct buf *bp;
1464 	daddr_t addr, blk, n_free, s_free;
1465 	vm_page_t mreq;
1466 	int i, j, n;
1467 	bool async;
1468 
1469 	KASSERT(count == 0 || ma[0]->object == object,
1470 	    ("%s: object mismatch %p/%p",
1471 	    __func__, object, ma[0]->object));
1472 
1473 	/*
1474 	 * Step 1
1475 	 *
1476 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1477 	 */
1478 	if (object->type != OBJT_SWAP) {
1479 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1480 		KASSERT(addr == SWAPBLK_NONE,
1481 		    ("unexpected object swap block"));
1482 	}
1483 	VM_OBJECT_WUNLOCK(object);
1484 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1485 	swp_pager_init_freerange(&s_free, &n_free);
1486 
1487 	/*
1488 	 * Step 2
1489 	 *
1490 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1491 	 * The page is left dirty until the pageout operation completes
1492 	 * successfully.
1493 	 */
1494 	for (i = 0; i < count; i += n) {
1495 		/* Maximum I/O size is limited by maximum swap block size. */
1496 		n = min(count - i, nsw_cluster_max);
1497 
1498 		if (async) {
1499 			mtx_lock(&swbuf_mtx);
1500 			while (nsw_wcount_async == 0)
1501 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1502 				    "swbufa", 0);
1503 			nsw_wcount_async--;
1504 			mtx_unlock(&swbuf_mtx);
1505 		}
1506 
1507 		/* Get a block of swap of size up to size n. */
1508 		VM_OBJECT_WLOCK(object);
1509 		blk = swp_pager_getswapspace(&n);
1510 		if (blk == SWAPBLK_NONE) {
1511 			VM_OBJECT_WUNLOCK(object);
1512 			mtx_lock(&swbuf_mtx);
1513 			if (++nsw_wcount_async == 1)
1514 				wakeup(&nsw_wcount_async);
1515 			mtx_unlock(&swbuf_mtx);
1516 			for (j = 0; j < n; ++j)
1517 				rtvals[i + j] = VM_PAGER_FAIL;
1518 			continue;
1519 		}
1520 		for (j = 0; j < n; ++j) {
1521 			mreq = ma[i + j];
1522 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1523 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1524 			    blk + j);
1525 			if (addr != SWAPBLK_NONE)
1526 				swp_pager_update_freerange(&s_free, &n_free,
1527 				    addr);
1528 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1529 			mreq->oflags |= VPO_SWAPINPROG;
1530 		}
1531 		VM_OBJECT_WUNLOCK(object);
1532 
1533 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1534 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1535 		if (async)
1536 			bp->b_flags |= B_ASYNC;
1537 		bp->b_flags |= B_PAGING;
1538 		bp->b_iocmd = BIO_WRITE;
1539 
1540 		bp->b_rcred = crhold(thread0.td_ucred);
1541 		bp->b_wcred = crhold(thread0.td_ucred);
1542 		bp->b_bcount = PAGE_SIZE * n;
1543 		bp->b_bufsize = PAGE_SIZE * n;
1544 		bp->b_blkno = blk;
1545 		for (j = 0; j < n; j++)
1546 			bp->b_pages[j] = ma[i + j];
1547 		bp->b_npages = n;
1548 
1549 		/*
1550 		 * Must set dirty range for NFS to work.
1551 		 */
1552 		bp->b_dirtyoff = 0;
1553 		bp->b_dirtyend = bp->b_bcount;
1554 
1555 		VM_CNT_INC(v_swapout);
1556 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1557 
1558 		/*
1559 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1560 		 * can call the async completion routine at the end of a
1561 		 * synchronous I/O operation.  Otherwise, our caller would
1562 		 * perform duplicate unbusy and wakeup operations on the page
1563 		 * and object, respectively.
1564 		 */
1565 		for (j = 0; j < n; j++)
1566 			rtvals[i + j] = VM_PAGER_PEND;
1567 
1568 		/*
1569 		 * asynchronous
1570 		 *
1571 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1572 		 */
1573 		if (async) {
1574 			bp->b_iodone = swp_pager_async_iodone;
1575 			BUF_KERNPROC(bp);
1576 			swp_pager_strategy(bp);
1577 			continue;
1578 		}
1579 
1580 		/*
1581 		 * synchronous
1582 		 *
1583 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1584 		 */
1585 		bp->b_iodone = bdone;
1586 		swp_pager_strategy(bp);
1587 
1588 		/*
1589 		 * Wait for the sync I/O to complete.
1590 		 */
1591 		bwait(bp, PVM, "swwrt");
1592 
1593 		/*
1594 		 * Now that we are through with the bp, we can call the
1595 		 * normal async completion, which frees everything up.
1596 		 */
1597 		swp_pager_async_iodone(bp);
1598 	}
1599 	swp_pager_freeswapspace(s_free, n_free);
1600 	VM_OBJECT_WLOCK(object);
1601 }
1602 
1603 /*
1604  *	swp_pager_async_iodone:
1605  *
1606  *	Completion routine for asynchronous reads and writes from/to swap.
1607  *	Also called manually by synchronous code to finish up a bp.
1608  *
1609  *	This routine may not sleep.
1610  */
1611 static void
1612 swp_pager_async_iodone(struct buf *bp)
1613 {
1614 	int i;
1615 	vm_object_t object = NULL;
1616 
1617 	/*
1618 	 * Report error - unless we ran out of memory, in which case
1619 	 * we've already logged it in swapgeom_strategy().
1620 	 */
1621 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1622 		printf(
1623 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1624 			"size %ld, error %d\n",
1625 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1626 		    (long)bp->b_blkno,
1627 		    (long)bp->b_bcount,
1628 		    bp->b_error
1629 		);
1630 	}
1631 
1632 	/*
1633 	 * remove the mapping for kernel virtual
1634 	 */
1635 	if (buf_mapped(bp))
1636 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1637 	else
1638 		bp->b_data = bp->b_kvabase;
1639 
1640 	if (bp->b_npages) {
1641 		object = bp->b_pages[0]->object;
1642 		VM_OBJECT_WLOCK(object);
1643 	}
1644 
1645 	/*
1646 	 * cleanup pages.  If an error occurs writing to swap, we are in
1647 	 * very serious trouble.  If it happens to be a disk error, though,
1648 	 * we may be able to recover by reassigning the swap later on.  So
1649 	 * in this case we remove the m->swapblk assignment for the page
1650 	 * but do not free it in the rlist.  The errornous block(s) are thus
1651 	 * never reallocated as swap.  Redirty the page and continue.
1652 	 */
1653 	for (i = 0; i < bp->b_npages; ++i) {
1654 		vm_page_t m = bp->b_pages[i];
1655 
1656 		m->oflags &= ~VPO_SWAPINPROG;
1657 		if (m->oflags & VPO_SWAPSLEEP) {
1658 			m->oflags &= ~VPO_SWAPSLEEP;
1659 			wakeup(&object->handle);
1660 		}
1661 
1662 		/* We always have space after I/O, successful or not. */
1663 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1664 
1665 		if (bp->b_ioflags & BIO_ERROR) {
1666 			/*
1667 			 * If an error occurs I'd love to throw the swapblk
1668 			 * away without freeing it back to swapspace, so it
1669 			 * can never be used again.  But I can't from an
1670 			 * interrupt.
1671 			 */
1672 			if (bp->b_iocmd == BIO_READ) {
1673 				/*
1674 				 * NOTE: for reads, m->dirty will probably
1675 				 * be overridden by the original caller of
1676 				 * getpages so don't play cute tricks here.
1677 				 */
1678 				vm_page_invalid(m);
1679 			} else {
1680 				/*
1681 				 * If a write error occurs, reactivate page
1682 				 * so it doesn't clog the inactive list,
1683 				 * then finish the I/O.
1684 				 */
1685 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1686 
1687 				/* PQ_UNSWAPPABLE? */
1688 				vm_page_activate(m);
1689 				vm_page_sunbusy(m);
1690 			}
1691 		} else if (bp->b_iocmd == BIO_READ) {
1692 			/*
1693 			 * NOTE: for reads, m->dirty will probably be
1694 			 * overridden by the original caller of getpages so
1695 			 * we cannot set them in order to free the underlying
1696 			 * swap in a low-swap situation.  I don't think we'd
1697 			 * want to do that anyway, but it was an optimization
1698 			 * that existed in the old swapper for a time before
1699 			 * it got ripped out due to precisely this problem.
1700 			 */
1701 			KASSERT(!pmap_page_is_mapped(m),
1702 			    ("swp_pager_async_iodone: page %p is mapped", m));
1703 			KASSERT(m->dirty == 0,
1704 			    ("swp_pager_async_iodone: page %p is dirty", m));
1705 
1706 			vm_page_valid(m);
1707 			if (i < bp->b_pgbefore ||
1708 			    i >= bp->b_npages - bp->b_pgafter)
1709 				vm_page_readahead_finish(m);
1710 		} else {
1711 			/*
1712 			 * For write success, clear the dirty
1713 			 * status, then finish the I/O ( which decrements the
1714 			 * busy count and possibly wakes waiter's up ).
1715 			 * A page is only written to swap after a period of
1716 			 * inactivity.  Therefore, we do not expect it to be
1717 			 * reused.
1718 			 */
1719 			KASSERT(!pmap_page_is_write_mapped(m),
1720 			    ("swp_pager_async_iodone: page %p is not write"
1721 			    " protected", m));
1722 			vm_page_undirty(m);
1723 			vm_page_deactivate_noreuse(m);
1724 			vm_page_sunbusy(m);
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * adjust pip.  NOTE: the original parent may still have its own
1730 	 * pip refs on the object.
1731 	 */
1732 	if (object != NULL) {
1733 		vm_object_pip_wakeupn(object, bp->b_npages);
1734 		VM_OBJECT_WUNLOCK(object);
1735 	}
1736 
1737 	/*
1738 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1739 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1740 	 * trigger a KASSERT in relpbuf().
1741 	 */
1742 	if (bp->b_vp) {
1743 		    bp->b_vp = NULL;
1744 		    bp->b_bufobj = NULL;
1745 	}
1746 	/*
1747 	 * release the physical I/O buffer
1748 	 */
1749 	if (bp->b_flags & B_ASYNC) {
1750 		mtx_lock(&swbuf_mtx);
1751 		if (++nsw_wcount_async == 1)
1752 			wakeup(&nsw_wcount_async);
1753 		mtx_unlock(&swbuf_mtx);
1754 	}
1755 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1756 }
1757 
1758 int
1759 swap_pager_nswapdev(void)
1760 {
1761 
1762 	return (nswapdev);
1763 }
1764 
1765 static void
1766 swp_pager_force_dirty(vm_page_t m)
1767 {
1768 
1769 	vm_page_dirty(m);
1770 	swap_pager_unswapped(m);
1771 	vm_page_launder(m);
1772 }
1773 
1774 u_long
1775 swap_pager_swapped_pages(vm_object_t object)
1776 {
1777 	struct swblk *sb;
1778 	vm_pindex_t pi;
1779 	u_long res;
1780 	int i;
1781 
1782 	VM_OBJECT_ASSERT_LOCKED(object);
1783 	if (object->type != OBJT_SWAP)
1784 		return (0);
1785 
1786 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1787 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1788 	    pi = sb->p + SWAP_META_PAGES) {
1789 		for (i = 0; i < SWAP_META_PAGES; i++) {
1790 			if (sb->d[i] != SWAPBLK_NONE)
1791 				res++;
1792 		}
1793 	}
1794 	return (res);
1795 }
1796 
1797 /*
1798  *	swap_pager_swapoff_object:
1799  *
1800  *	Page in all of the pages that have been paged out for an object
1801  *	to a swap device.
1802  */
1803 static void
1804 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1805 {
1806 	struct swblk *sb;
1807 	vm_page_t m;
1808 	vm_pindex_t pi;
1809 	daddr_t blk;
1810 	int i, nv, rahead, rv;
1811 
1812 	KASSERT(object->type == OBJT_SWAP,
1813 	    ("%s: Object not swappable", __func__));
1814 
1815 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1816 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1817 		if ((object->flags & OBJ_DEAD) != 0) {
1818 			/*
1819 			 * Make sure that pending writes finish before
1820 			 * returning.
1821 			 */
1822 			vm_object_pip_wait(object, "swpoff");
1823 			swp_pager_meta_free_all(object);
1824 			break;
1825 		}
1826 		for (i = 0; i < SWAP_META_PAGES; i++) {
1827 			/*
1828 			 * Count the number of contiguous valid blocks.
1829 			 */
1830 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1831 				blk = sb->d[i + nv];
1832 				if (!swp_pager_isondev(blk, sp) ||
1833 				    blk == SWAPBLK_NONE)
1834 					break;
1835 			}
1836 			if (nv == 0)
1837 				continue;
1838 
1839 			/*
1840 			 * Look for a page corresponding to the first
1841 			 * valid block and ensure that any pending paging
1842 			 * operations on it are complete.  If the page is valid,
1843 			 * mark it dirty and free the swap block.  Try to batch
1844 			 * this operation since it may cause sp to be freed,
1845 			 * meaning that we must restart the scan.  Avoid busying
1846 			 * valid pages since we may block forever on kernel
1847 			 * stack pages.
1848 			 */
1849 			m = vm_page_lookup(object, sb->p + i);
1850 			if (m == NULL) {
1851 				m = vm_page_alloc(object, sb->p + i,
1852 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1853 				if (m == NULL)
1854 					break;
1855 			} else {
1856 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1857 					m->oflags |= VPO_SWAPSLEEP;
1858 					VM_OBJECT_SLEEP(object, &object->handle,
1859 					    PSWP, "swpoff", 0);
1860 					break;
1861 				}
1862 				if (vm_page_all_valid(m)) {
1863 					do {
1864 						swp_pager_force_dirty(m);
1865 					} while (--nv > 0 &&
1866 					    (m = vm_page_next(m)) != NULL &&
1867 					    vm_page_all_valid(m) &&
1868 					    (m->oflags & VPO_SWAPINPROG) == 0);
1869 					break;
1870 				}
1871 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1872 					break;
1873 			}
1874 
1875 			vm_object_pip_add(object, 1);
1876 			rahead = SWAP_META_PAGES;
1877 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1878 			    &rahead);
1879 			if (rv != VM_PAGER_OK)
1880 				panic("%s: read from swap failed: %d",
1881 				    __func__, rv);
1882 			vm_object_pip_wakeupn(object, 1);
1883 			VM_OBJECT_WLOCK(object);
1884 			vm_page_xunbusy(m);
1885 
1886 			/*
1887 			 * The object lock was dropped so we must restart the
1888 			 * scan of this swap block.  Pages paged in during this
1889 			 * iteration will be marked dirty in a future iteration.
1890 			 */
1891 			break;
1892 		}
1893 		if (i == SWAP_META_PAGES)
1894 			pi = sb->p + SWAP_META_PAGES;
1895 	}
1896 }
1897 
1898 /*
1899  *	swap_pager_swapoff:
1900  *
1901  *	Page in all of the pages that have been paged out to the
1902  *	given device.  The corresponding blocks in the bitmap must be
1903  *	marked as allocated and the device must be flagged SW_CLOSING.
1904  *	There may be no processes swapped out to the device.
1905  *
1906  *	This routine may block.
1907  */
1908 static void
1909 swap_pager_swapoff(struct swdevt *sp)
1910 {
1911 	vm_object_t object;
1912 	int retries;
1913 
1914 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1915 
1916 	retries = 0;
1917 full_rescan:
1918 	mtx_lock(&vm_object_list_mtx);
1919 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1920 		if (object->type != OBJT_SWAP)
1921 			continue;
1922 		mtx_unlock(&vm_object_list_mtx);
1923 		/* Depends on type-stability. */
1924 		VM_OBJECT_WLOCK(object);
1925 
1926 		/*
1927 		 * Dead objects are eventually terminated on their own.
1928 		 */
1929 		if ((object->flags & OBJ_DEAD) != 0)
1930 			goto next_obj;
1931 
1932 		/*
1933 		 * Sync with fences placed after pctrie
1934 		 * initialization.  We must not access pctrie below
1935 		 * unless we checked that our object is swap and not
1936 		 * dead.
1937 		 */
1938 		atomic_thread_fence_acq();
1939 		if (object->type != OBJT_SWAP)
1940 			goto next_obj;
1941 
1942 		swap_pager_swapoff_object(sp, object);
1943 next_obj:
1944 		VM_OBJECT_WUNLOCK(object);
1945 		mtx_lock(&vm_object_list_mtx);
1946 	}
1947 	mtx_unlock(&vm_object_list_mtx);
1948 
1949 	if (sp->sw_used) {
1950 		/*
1951 		 * Objects may be locked or paging to the device being
1952 		 * removed, so we will miss their pages and need to
1953 		 * make another pass.  We have marked this device as
1954 		 * SW_CLOSING, so the activity should finish soon.
1955 		 */
1956 		retries++;
1957 		if (retries > 100) {
1958 			panic("swapoff: failed to locate %d swap blocks",
1959 			    sp->sw_used);
1960 		}
1961 		pause("swpoff", hz / 20);
1962 		goto full_rescan;
1963 	}
1964 	EVENTHANDLER_INVOKE(swapoff, sp);
1965 }
1966 
1967 /************************************************************************
1968  *				SWAP META DATA 				*
1969  ************************************************************************
1970  *
1971  *	These routines manipulate the swap metadata stored in the
1972  *	OBJT_SWAP object.
1973  *
1974  *	Swap metadata is implemented with a global hash and not directly
1975  *	linked into the object.  Instead the object simply contains
1976  *	appropriate tracking counters.
1977  */
1978 
1979 /*
1980  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1981  */
1982 static bool
1983 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1984 {
1985 	int i;
1986 
1987 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1988 	for (i = start; i < limit; i++) {
1989 		if (sb->d[i] != SWAPBLK_NONE)
1990 			return (false);
1991 	}
1992 	return (true);
1993 }
1994 
1995 /*
1996  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
1997  *
1998  *  Nothing is done if the block is still in use.
1999  */
2000 static void
2001 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2002 {
2003 
2004 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2005 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2006 		uma_zfree(swblk_zone, sb);
2007 	}
2008 }
2009 
2010 /*
2011  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2012  *
2013  *	We first convert the object to a swap object if it is a default
2014  *	object.
2015  *
2016  *	The specified swapblk is added to the object's swap metadata.  If
2017  *	the swapblk is not valid, it is freed instead.  Any previously
2018  *	assigned swapblk is returned.
2019  */
2020 static daddr_t
2021 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2022 {
2023 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2024 	struct swblk *sb, *sb1;
2025 	vm_pindex_t modpi, rdpi;
2026 	daddr_t prev_swapblk;
2027 	int error, i;
2028 
2029 	VM_OBJECT_ASSERT_WLOCKED(object);
2030 
2031 	/*
2032 	 * Convert default object to swap object if necessary
2033 	 */
2034 	if (object->type != OBJT_SWAP) {
2035 		pctrie_init(&object->un_pager.swp.swp_blks);
2036 
2037 		/*
2038 		 * Ensure that swap_pager_swapoff()'s iteration over
2039 		 * object_list does not see a garbage pctrie.
2040 		 */
2041 		atomic_thread_fence_rel();
2042 
2043 		object->type = OBJT_SWAP;
2044 		object->un_pager.swp.writemappings = 0;
2045 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2046 		    object->handle == NULL,
2047 		    ("default pager %p with handle %p",
2048 		    object, object->handle));
2049 	}
2050 
2051 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2052 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2053 	if (sb == NULL) {
2054 		if (swapblk == SWAPBLK_NONE)
2055 			return (SWAPBLK_NONE);
2056 		for (;;) {
2057 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2058 			    pageproc ? M_USE_RESERVE : 0));
2059 			if (sb != NULL) {
2060 				sb->p = rdpi;
2061 				for (i = 0; i < SWAP_META_PAGES; i++)
2062 					sb->d[i] = SWAPBLK_NONE;
2063 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2064 				    1, 0))
2065 					printf("swblk zone ok\n");
2066 				break;
2067 			}
2068 			VM_OBJECT_WUNLOCK(object);
2069 			if (uma_zone_exhausted(swblk_zone)) {
2070 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2071 				    0, 1))
2072 					printf("swap blk zone exhausted, "
2073 					    "increase kern.maxswzone\n");
2074 				vm_pageout_oom(VM_OOM_SWAPZ);
2075 				pause("swzonxb", 10);
2076 			} else
2077 				uma_zwait(swblk_zone);
2078 			VM_OBJECT_WLOCK(object);
2079 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2080 			    rdpi);
2081 			if (sb != NULL)
2082 				/*
2083 				 * Somebody swapped out a nearby page,
2084 				 * allocating swblk at the rdpi index,
2085 				 * while we dropped the object lock.
2086 				 */
2087 				goto allocated;
2088 		}
2089 		for (;;) {
2090 			error = SWAP_PCTRIE_INSERT(
2091 			    &object->un_pager.swp.swp_blks, sb);
2092 			if (error == 0) {
2093 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2094 				    1, 0))
2095 					printf("swpctrie zone ok\n");
2096 				break;
2097 			}
2098 			VM_OBJECT_WUNLOCK(object);
2099 			if (uma_zone_exhausted(swpctrie_zone)) {
2100 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2101 				    0, 1))
2102 					printf("swap pctrie zone exhausted, "
2103 					    "increase kern.maxswzone\n");
2104 				vm_pageout_oom(VM_OOM_SWAPZ);
2105 				pause("swzonxp", 10);
2106 			} else
2107 				uma_zwait(swpctrie_zone);
2108 			VM_OBJECT_WLOCK(object);
2109 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2110 			    rdpi);
2111 			if (sb1 != NULL) {
2112 				uma_zfree(swblk_zone, sb);
2113 				sb = sb1;
2114 				goto allocated;
2115 			}
2116 		}
2117 	}
2118 allocated:
2119 	MPASS(sb->p == rdpi);
2120 
2121 	modpi = pindex % SWAP_META_PAGES;
2122 	/* Return prior contents of metadata. */
2123 	prev_swapblk = sb->d[modpi];
2124 	/* Enter block into metadata. */
2125 	sb->d[modpi] = swapblk;
2126 
2127 	/*
2128 	 * Free the swblk if we end up with the empty page run.
2129 	 */
2130 	if (swapblk == SWAPBLK_NONE)
2131 		swp_pager_free_empty_swblk(object, sb);
2132 	return (prev_swapblk);
2133 }
2134 
2135 /*
2136  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2137  * metadata, or transfer it into dstobject.
2138  *
2139  *	This routine will free swap metadata structures as they are cleaned
2140  *	out.
2141  */
2142 static void
2143 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2144     vm_pindex_t pindex, vm_pindex_t count)
2145 {
2146 	struct swblk *sb;
2147 	daddr_t n_free, s_free;
2148 	vm_pindex_t offset, last;
2149 	int i, limit, start;
2150 
2151 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2152 	if (srcobject->type != OBJT_SWAP || count == 0)
2153 		return;
2154 
2155 	swp_pager_init_freerange(&s_free, &n_free);
2156 	offset = pindex;
2157 	last = pindex + count;
2158 	for (;;) {
2159 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2160 		    rounddown(pindex, SWAP_META_PAGES));
2161 		if (sb == NULL || sb->p >= last)
2162 			break;
2163 		start = pindex > sb->p ? pindex - sb->p : 0;
2164 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2165 		    SWAP_META_PAGES;
2166 		for (i = start; i < limit; i++) {
2167 			if (sb->d[i] == SWAPBLK_NONE)
2168 				continue;
2169 			if (dstobject == NULL ||
2170 			    !swp_pager_xfer_source(srcobject, dstobject,
2171 			    sb->p + i - offset, sb->d[i])) {
2172 				swp_pager_update_freerange(&s_free, &n_free,
2173 				    sb->d[i]);
2174 			}
2175 			sb->d[i] = SWAPBLK_NONE;
2176 		}
2177 		pindex = sb->p + SWAP_META_PAGES;
2178 		if (swp_pager_swblk_empty(sb, 0, start) &&
2179 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2180 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2181 			    sb->p);
2182 			uma_zfree(swblk_zone, sb);
2183 		}
2184 	}
2185 	swp_pager_freeswapspace(s_free, n_free);
2186 }
2187 
2188 /*
2189  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2190  *
2191  *	The requested range of blocks is freed, with any associated swap
2192  *	returned to the swap bitmap.
2193  *
2194  *	This routine will free swap metadata structures as they are cleaned
2195  *	out.  This routine does *NOT* operate on swap metadata associated
2196  *	with resident pages.
2197  */
2198 static void
2199 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2200 {
2201 	swp_pager_meta_transfer(object, NULL, pindex, count);
2202 }
2203 
2204 /*
2205  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2206  *
2207  *	This routine locates and destroys all swap metadata associated with
2208  *	an object.
2209  */
2210 static void
2211 swp_pager_meta_free_all(vm_object_t object)
2212 {
2213 	struct swblk *sb;
2214 	daddr_t n_free, s_free;
2215 	vm_pindex_t pindex;
2216 	int i;
2217 
2218 	VM_OBJECT_ASSERT_WLOCKED(object);
2219 	if (object->type != OBJT_SWAP)
2220 		return;
2221 
2222 	swp_pager_init_freerange(&s_free, &n_free);
2223 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2224 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2225 		pindex = sb->p + SWAP_META_PAGES;
2226 		for (i = 0; i < SWAP_META_PAGES; i++) {
2227 			if (sb->d[i] == SWAPBLK_NONE)
2228 				continue;
2229 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2230 		}
2231 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2232 		uma_zfree(swblk_zone, sb);
2233 	}
2234 	swp_pager_freeswapspace(s_free, n_free);
2235 }
2236 
2237 /*
2238  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2239  *
2240  *	This routine is capable of looking up, or removing swapblk
2241  *	assignments in the swap meta data.  It returns the swapblk being
2242  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2243  *
2244  *	When acting on a busy resident page and paging is in progress, we
2245  *	have to wait until paging is complete but otherwise can act on the
2246  *	busy page.
2247  */
2248 static daddr_t
2249 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2250 {
2251 	struct swblk *sb;
2252 
2253 	VM_OBJECT_ASSERT_LOCKED(object);
2254 
2255 	/*
2256 	 * The meta data only exists if the object is OBJT_SWAP
2257 	 * and even then might not be allocated yet.
2258 	 */
2259 	KASSERT(object->type == OBJT_SWAP,
2260 	    ("Lookup object not swappable"));
2261 
2262 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2263 	    rounddown(pindex, SWAP_META_PAGES));
2264 	if (sb == NULL)
2265 		return (SWAPBLK_NONE);
2266 	return (sb->d[pindex % SWAP_META_PAGES]);
2267 }
2268 
2269 /*
2270  * Returns the least page index which is greater than or equal to the
2271  * parameter pindex and for which there is a swap block allocated.
2272  * Returns object's size if the object's type is not swap or if there
2273  * are no allocated swap blocks for the object after the requested
2274  * pindex.
2275  */
2276 vm_pindex_t
2277 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2278 {
2279 	struct swblk *sb;
2280 	int i;
2281 
2282 	VM_OBJECT_ASSERT_LOCKED(object);
2283 	if (object->type != OBJT_SWAP)
2284 		return (object->size);
2285 
2286 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2287 	    rounddown(pindex, SWAP_META_PAGES));
2288 	if (sb == NULL)
2289 		return (object->size);
2290 	if (sb->p < pindex) {
2291 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2292 			if (sb->d[i] != SWAPBLK_NONE)
2293 				return (sb->p + i);
2294 		}
2295 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2296 		    roundup(pindex, SWAP_META_PAGES));
2297 		if (sb == NULL)
2298 			return (object->size);
2299 	}
2300 	for (i = 0; i < SWAP_META_PAGES; i++) {
2301 		if (sb->d[i] != SWAPBLK_NONE)
2302 			return (sb->p + i);
2303 	}
2304 
2305 	/*
2306 	 * We get here if a swblk is present in the trie but it
2307 	 * doesn't map any blocks.
2308 	 */
2309 	MPASS(0);
2310 	return (object->size);
2311 }
2312 
2313 /*
2314  * System call swapon(name) enables swapping on device name,
2315  * which must be in the swdevsw.  Return EBUSY
2316  * if already swapping on this device.
2317  */
2318 #ifndef _SYS_SYSPROTO_H_
2319 struct swapon_args {
2320 	char *name;
2321 };
2322 #endif
2323 
2324 /*
2325  * MPSAFE
2326  */
2327 /* ARGSUSED */
2328 int
2329 sys_swapon(struct thread *td, struct swapon_args *uap)
2330 {
2331 	struct vattr attr;
2332 	struct vnode *vp;
2333 	struct nameidata nd;
2334 	int error;
2335 
2336 	error = priv_check(td, PRIV_SWAPON);
2337 	if (error)
2338 		return (error);
2339 
2340 	sx_xlock(&swdev_syscall_lock);
2341 
2342 	/*
2343 	 * Swap metadata may not fit in the KVM if we have physical
2344 	 * memory of >1GB.
2345 	 */
2346 	if (swblk_zone == NULL) {
2347 		error = ENOMEM;
2348 		goto done;
2349 	}
2350 
2351 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2352 	    uap->name, td);
2353 	error = namei(&nd);
2354 	if (error)
2355 		goto done;
2356 
2357 	NDFREE(&nd, NDF_ONLY_PNBUF);
2358 	vp = nd.ni_vp;
2359 
2360 	if (vn_isdisk_error(vp, &error)) {
2361 		error = swapongeom(vp);
2362 	} else if (vp->v_type == VREG &&
2363 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2364 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2365 		/*
2366 		 * Allow direct swapping to NFS regular files in the same
2367 		 * way that nfs_mountroot() sets up diskless swapping.
2368 		 */
2369 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2370 	}
2371 
2372 	if (error)
2373 		vrele(vp);
2374 done:
2375 	sx_xunlock(&swdev_syscall_lock);
2376 	return (error);
2377 }
2378 
2379 /*
2380  * Check that the total amount of swap currently configured does not
2381  * exceed half the theoretical maximum.  If it does, print a warning
2382  * message.
2383  */
2384 static void
2385 swapon_check_swzone(void)
2386 {
2387 
2388 	/* recommend using no more than half that amount */
2389 	if (swap_total > swap_maxpages / 2) {
2390 		printf("warning: total configured swap (%lu pages) "
2391 		    "exceeds maximum recommended amount (%lu pages).\n",
2392 		    swap_total, swap_maxpages / 2);
2393 		printf("warning: increase kern.maxswzone "
2394 		    "or reduce amount of swap.\n");
2395 	}
2396 }
2397 
2398 static void
2399 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2400     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2401 {
2402 	struct swdevt *sp, *tsp;
2403 	daddr_t dvbase;
2404 
2405 	/*
2406 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2407 	 * First chop nblks off to page-align it, then convert.
2408 	 *
2409 	 * sw->sw_nblks is in page-sized chunks now too.
2410 	 */
2411 	nblks &= ~(ctodb(1) - 1);
2412 	nblks = dbtoc(nblks);
2413 
2414 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2415 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2416 	sp->sw_vp = vp;
2417 	sp->sw_id = id;
2418 	sp->sw_dev = dev;
2419 	sp->sw_nblks = nblks;
2420 	sp->sw_used = 0;
2421 	sp->sw_strategy = strategy;
2422 	sp->sw_close = close;
2423 	sp->sw_flags = flags;
2424 
2425 	/*
2426 	 * Do not free the first blocks in order to avoid overwriting
2427 	 * any bsd label at the front of the partition
2428 	 */
2429 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2430 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2431 
2432 	dvbase = 0;
2433 	mtx_lock(&sw_dev_mtx);
2434 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2435 		if (tsp->sw_end >= dvbase) {
2436 			/*
2437 			 * We put one uncovered page between the devices
2438 			 * in order to definitively prevent any cross-device
2439 			 * I/O requests
2440 			 */
2441 			dvbase = tsp->sw_end + 1;
2442 		}
2443 	}
2444 	sp->sw_first = dvbase;
2445 	sp->sw_end = dvbase + nblks;
2446 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2447 	nswapdev++;
2448 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2449 	swap_total += nblks;
2450 	swapon_check_swzone();
2451 	swp_sizecheck();
2452 	mtx_unlock(&sw_dev_mtx);
2453 	EVENTHANDLER_INVOKE(swapon, sp);
2454 }
2455 
2456 /*
2457  * SYSCALL: swapoff(devname)
2458  *
2459  * Disable swapping on the given device.
2460  *
2461  * XXX: Badly designed system call: it should use a device index
2462  * rather than filename as specification.  We keep sw_vp around
2463  * only to make this work.
2464  */
2465 #ifndef _SYS_SYSPROTO_H_
2466 struct swapoff_args {
2467 	char *name;
2468 };
2469 #endif
2470 
2471 /*
2472  * MPSAFE
2473  */
2474 /* ARGSUSED */
2475 int
2476 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2477 {
2478 	struct vnode *vp;
2479 	struct nameidata nd;
2480 	struct swdevt *sp;
2481 	int error;
2482 
2483 	error = priv_check(td, PRIV_SWAPOFF);
2484 	if (error)
2485 		return (error);
2486 
2487 	sx_xlock(&swdev_syscall_lock);
2488 
2489 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2490 	    td);
2491 	error = namei(&nd);
2492 	if (error)
2493 		goto done;
2494 	NDFREE(&nd, NDF_ONLY_PNBUF);
2495 	vp = nd.ni_vp;
2496 
2497 	mtx_lock(&sw_dev_mtx);
2498 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2499 		if (sp->sw_vp == vp)
2500 			break;
2501 	}
2502 	mtx_unlock(&sw_dev_mtx);
2503 	if (sp == NULL) {
2504 		error = EINVAL;
2505 		goto done;
2506 	}
2507 	error = swapoff_one(sp, td->td_ucred);
2508 done:
2509 	sx_xunlock(&swdev_syscall_lock);
2510 	return (error);
2511 }
2512 
2513 static int
2514 swapoff_one(struct swdevt *sp, struct ucred *cred)
2515 {
2516 	u_long nblks;
2517 #ifdef MAC
2518 	int error;
2519 #endif
2520 
2521 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2522 #ifdef MAC
2523 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2524 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2525 	(void) VOP_UNLOCK(sp->sw_vp);
2526 	if (error != 0)
2527 		return (error);
2528 #endif
2529 	nblks = sp->sw_nblks;
2530 
2531 	/*
2532 	 * We can turn off this swap device safely only if the
2533 	 * available virtual memory in the system will fit the amount
2534 	 * of data we will have to page back in, plus an epsilon so
2535 	 * the system doesn't become critically low on swap space.
2536 	 */
2537 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2538 		return (ENOMEM);
2539 
2540 	/*
2541 	 * Prevent further allocations on this device.
2542 	 */
2543 	mtx_lock(&sw_dev_mtx);
2544 	sp->sw_flags |= SW_CLOSING;
2545 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2546 	swap_total -= nblks;
2547 	mtx_unlock(&sw_dev_mtx);
2548 
2549 	/*
2550 	 * Page in the contents of the device and close it.
2551 	 */
2552 	swap_pager_swapoff(sp);
2553 
2554 	sp->sw_close(curthread, sp);
2555 	mtx_lock(&sw_dev_mtx);
2556 	sp->sw_id = NULL;
2557 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2558 	nswapdev--;
2559 	if (nswapdev == 0) {
2560 		swap_pager_full = 2;
2561 		swap_pager_almost_full = 1;
2562 	}
2563 	if (swdevhd == sp)
2564 		swdevhd = NULL;
2565 	mtx_unlock(&sw_dev_mtx);
2566 	blist_destroy(sp->sw_blist);
2567 	free(sp, M_VMPGDATA);
2568 	return (0);
2569 }
2570 
2571 void
2572 swapoff_all(void)
2573 {
2574 	struct swdevt *sp, *spt;
2575 	const char *devname;
2576 	int error;
2577 
2578 	sx_xlock(&swdev_syscall_lock);
2579 
2580 	mtx_lock(&sw_dev_mtx);
2581 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2582 		mtx_unlock(&sw_dev_mtx);
2583 		if (vn_isdisk(sp->sw_vp))
2584 			devname = devtoname(sp->sw_vp->v_rdev);
2585 		else
2586 			devname = "[file]";
2587 		error = swapoff_one(sp, thread0.td_ucred);
2588 		if (error != 0) {
2589 			printf("Cannot remove swap device %s (error=%d), "
2590 			    "skipping.\n", devname, error);
2591 		} else if (bootverbose) {
2592 			printf("Swap device %s removed.\n", devname);
2593 		}
2594 		mtx_lock(&sw_dev_mtx);
2595 	}
2596 	mtx_unlock(&sw_dev_mtx);
2597 
2598 	sx_xunlock(&swdev_syscall_lock);
2599 }
2600 
2601 void
2602 swap_pager_status(int *total, int *used)
2603 {
2604 
2605 	*total = swap_total;
2606 	*used = swap_total - swap_pager_avail -
2607 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2608 }
2609 
2610 int
2611 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2612 {
2613 	struct swdevt *sp;
2614 	const char *tmp_devname;
2615 	int error, n;
2616 
2617 	n = 0;
2618 	error = ENOENT;
2619 	mtx_lock(&sw_dev_mtx);
2620 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2621 		if (n != name) {
2622 			n++;
2623 			continue;
2624 		}
2625 		xs->xsw_version = XSWDEV_VERSION;
2626 		xs->xsw_dev = sp->sw_dev;
2627 		xs->xsw_flags = sp->sw_flags;
2628 		xs->xsw_nblks = sp->sw_nblks;
2629 		xs->xsw_used = sp->sw_used;
2630 		if (devname != NULL) {
2631 			if (vn_isdisk(sp->sw_vp))
2632 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2633 			else
2634 				tmp_devname = "[file]";
2635 			strncpy(devname, tmp_devname, len);
2636 		}
2637 		error = 0;
2638 		break;
2639 	}
2640 	mtx_unlock(&sw_dev_mtx);
2641 	return (error);
2642 }
2643 
2644 #if defined(COMPAT_FREEBSD11)
2645 #define XSWDEV_VERSION_11	1
2646 struct xswdev11 {
2647 	u_int	xsw_version;
2648 	uint32_t xsw_dev;
2649 	int	xsw_flags;
2650 	int	xsw_nblks;
2651 	int     xsw_used;
2652 };
2653 #endif
2654 
2655 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2656 struct xswdev32 {
2657 	u_int	xsw_version;
2658 	u_int	xsw_dev1, xsw_dev2;
2659 	int	xsw_flags;
2660 	int	xsw_nblks;
2661 	int     xsw_used;
2662 };
2663 #endif
2664 
2665 static int
2666 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2667 {
2668 	struct xswdev xs;
2669 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2670 	struct xswdev32 xs32;
2671 #endif
2672 #if defined(COMPAT_FREEBSD11)
2673 	struct xswdev11 xs11;
2674 #endif
2675 	int error;
2676 
2677 	if (arg2 != 1)			/* name length */
2678 		return (EINVAL);
2679 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2680 	if (error != 0)
2681 		return (error);
2682 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2683 	if (req->oldlen == sizeof(xs32)) {
2684 		xs32.xsw_version = XSWDEV_VERSION;
2685 		xs32.xsw_dev1 = xs.xsw_dev;
2686 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2687 		xs32.xsw_flags = xs.xsw_flags;
2688 		xs32.xsw_nblks = xs.xsw_nblks;
2689 		xs32.xsw_used = xs.xsw_used;
2690 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2691 		return (error);
2692 	}
2693 #endif
2694 #if defined(COMPAT_FREEBSD11)
2695 	if (req->oldlen == sizeof(xs11)) {
2696 		xs11.xsw_version = XSWDEV_VERSION_11;
2697 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2698 		xs11.xsw_flags = xs.xsw_flags;
2699 		xs11.xsw_nblks = xs.xsw_nblks;
2700 		xs11.xsw_used = xs.xsw_used;
2701 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2702 		return (error);
2703 	}
2704 #endif
2705 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2706 	return (error);
2707 }
2708 
2709 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2710     "Number of swap devices");
2711 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2712     sysctl_vm_swap_info,
2713     "Swap statistics by device");
2714 
2715 /*
2716  * Count the approximate swap usage in pages for a vmspace.  The
2717  * shadowed or not yet copied on write swap blocks are not accounted.
2718  * The map must be locked.
2719  */
2720 long
2721 vmspace_swap_count(struct vmspace *vmspace)
2722 {
2723 	vm_map_t map;
2724 	vm_map_entry_t cur;
2725 	vm_object_t object;
2726 	struct swblk *sb;
2727 	vm_pindex_t e, pi;
2728 	long count;
2729 	int i;
2730 
2731 	map = &vmspace->vm_map;
2732 	count = 0;
2733 
2734 	VM_MAP_ENTRY_FOREACH(cur, map) {
2735 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2736 			continue;
2737 		object = cur->object.vm_object;
2738 		if (object == NULL || object->type != OBJT_SWAP)
2739 			continue;
2740 		VM_OBJECT_RLOCK(object);
2741 		if (object->type != OBJT_SWAP)
2742 			goto unlock;
2743 		pi = OFF_TO_IDX(cur->offset);
2744 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2745 		for (;; pi = sb->p + SWAP_META_PAGES) {
2746 			sb = SWAP_PCTRIE_LOOKUP_GE(
2747 			    &object->un_pager.swp.swp_blks, pi);
2748 			if (sb == NULL || sb->p >= e)
2749 				break;
2750 			for (i = 0; i < SWAP_META_PAGES; i++) {
2751 				if (sb->p + i < e &&
2752 				    sb->d[i] != SWAPBLK_NONE)
2753 					count++;
2754 			}
2755 		}
2756 unlock:
2757 		VM_OBJECT_RUNLOCK(object);
2758 	}
2759 	return (count);
2760 }
2761 
2762 /*
2763  * GEOM backend
2764  *
2765  * Swapping onto disk devices.
2766  *
2767  */
2768 
2769 static g_orphan_t swapgeom_orphan;
2770 
2771 static struct g_class g_swap_class = {
2772 	.name = "SWAP",
2773 	.version = G_VERSION,
2774 	.orphan = swapgeom_orphan,
2775 };
2776 
2777 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2778 
2779 static void
2780 swapgeom_close_ev(void *arg, int flags)
2781 {
2782 	struct g_consumer *cp;
2783 
2784 	cp = arg;
2785 	g_access(cp, -1, -1, 0);
2786 	g_detach(cp);
2787 	g_destroy_consumer(cp);
2788 }
2789 
2790 /*
2791  * Add a reference to the g_consumer for an inflight transaction.
2792  */
2793 static void
2794 swapgeom_acquire(struct g_consumer *cp)
2795 {
2796 
2797 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2798 	cp->index++;
2799 }
2800 
2801 /*
2802  * Remove a reference from the g_consumer.  Post a close event if all
2803  * references go away, since the function might be called from the
2804  * biodone context.
2805  */
2806 static void
2807 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2808 {
2809 
2810 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2811 	cp->index--;
2812 	if (cp->index == 0) {
2813 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2814 			sp->sw_id = NULL;
2815 	}
2816 }
2817 
2818 static void
2819 swapgeom_done(struct bio *bp2)
2820 {
2821 	struct swdevt *sp;
2822 	struct buf *bp;
2823 	struct g_consumer *cp;
2824 
2825 	bp = bp2->bio_caller2;
2826 	cp = bp2->bio_from;
2827 	bp->b_ioflags = bp2->bio_flags;
2828 	if (bp2->bio_error)
2829 		bp->b_ioflags |= BIO_ERROR;
2830 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2831 	bp->b_error = bp2->bio_error;
2832 	bp->b_caller1 = NULL;
2833 	bufdone(bp);
2834 	sp = bp2->bio_caller1;
2835 	mtx_lock(&sw_dev_mtx);
2836 	swapgeom_release(cp, sp);
2837 	mtx_unlock(&sw_dev_mtx);
2838 	g_destroy_bio(bp2);
2839 }
2840 
2841 static void
2842 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2843 {
2844 	struct bio *bio;
2845 	struct g_consumer *cp;
2846 
2847 	mtx_lock(&sw_dev_mtx);
2848 	cp = sp->sw_id;
2849 	if (cp == NULL) {
2850 		mtx_unlock(&sw_dev_mtx);
2851 		bp->b_error = ENXIO;
2852 		bp->b_ioflags |= BIO_ERROR;
2853 		bufdone(bp);
2854 		return;
2855 	}
2856 	swapgeom_acquire(cp);
2857 	mtx_unlock(&sw_dev_mtx);
2858 	if (bp->b_iocmd == BIO_WRITE)
2859 		bio = g_new_bio();
2860 	else
2861 		bio = g_alloc_bio();
2862 	if (bio == NULL) {
2863 		mtx_lock(&sw_dev_mtx);
2864 		swapgeom_release(cp, sp);
2865 		mtx_unlock(&sw_dev_mtx);
2866 		bp->b_error = ENOMEM;
2867 		bp->b_ioflags |= BIO_ERROR;
2868 		printf("swap_pager: cannot allocate bio\n");
2869 		bufdone(bp);
2870 		return;
2871 	}
2872 
2873 	bp->b_caller1 = bio;
2874 	bio->bio_caller1 = sp;
2875 	bio->bio_caller2 = bp;
2876 	bio->bio_cmd = bp->b_iocmd;
2877 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2878 	bio->bio_length = bp->b_bcount;
2879 	bio->bio_done = swapgeom_done;
2880 	if (!buf_mapped(bp)) {
2881 		bio->bio_ma = bp->b_pages;
2882 		bio->bio_data = unmapped_buf;
2883 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2884 		bio->bio_ma_n = bp->b_npages;
2885 		bio->bio_flags |= BIO_UNMAPPED;
2886 	} else {
2887 		bio->bio_data = bp->b_data;
2888 		bio->bio_ma = NULL;
2889 	}
2890 	g_io_request(bio, cp);
2891 	return;
2892 }
2893 
2894 static void
2895 swapgeom_orphan(struct g_consumer *cp)
2896 {
2897 	struct swdevt *sp;
2898 	int destroy;
2899 
2900 	mtx_lock(&sw_dev_mtx);
2901 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2902 		if (sp->sw_id == cp) {
2903 			sp->sw_flags |= SW_CLOSING;
2904 			break;
2905 		}
2906 	}
2907 	/*
2908 	 * Drop reference we were created with. Do directly since we're in a
2909 	 * special context where we don't have to queue the call to
2910 	 * swapgeom_close_ev().
2911 	 */
2912 	cp->index--;
2913 	destroy = ((sp != NULL) && (cp->index == 0));
2914 	if (destroy)
2915 		sp->sw_id = NULL;
2916 	mtx_unlock(&sw_dev_mtx);
2917 	if (destroy)
2918 		swapgeom_close_ev(cp, 0);
2919 }
2920 
2921 static void
2922 swapgeom_close(struct thread *td, struct swdevt *sw)
2923 {
2924 	struct g_consumer *cp;
2925 
2926 	mtx_lock(&sw_dev_mtx);
2927 	cp = sw->sw_id;
2928 	sw->sw_id = NULL;
2929 	mtx_unlock(&sw_dev_mtx);
2930 
2931 	/*
2932 	 * swapgeom_close() may be called from the biodone context,
2933 	 * where we cannot perform topology changes.  Delegate the
2934 	 * work to the events thread.
2935 	 */
2936 	if (cp != NULL)
2937 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2938 }
2939 
2940 static int
2941 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2942 {
2943 	struct g_provider *pp;
2944 	struct g_consumer *cp;
2945 	static struct g_geom *gp;
2946 	struct swdevt *sp;
2947 	u_long nblks;
2948 	int error;
2949 
2950 	pp = g_dev_getprovider(dev);
2951 	if (pp == NULL)
2952 		return (ENODEV);
2953 	mtx_lock(&sw_dev_mtx);
2954 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2955 		cp = sp->sw_id;
2956 		if (cp != NULL && cp->provider == pp) {
2957 			mtx_unlock(&sw_dev_mtx);
2958 			return (EBUSY);
2959 		}
2960 	}
2961 	mtx_unlock(&sw_dev_mtx);
2962 	if (gp == NULL)
2963 		gp = g_new_geomf(&g_swap_class, "swap");
2964 	cp = g_new_consumer(gp);
2965 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2966 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2967 	g_attach(cp, pp);
2968 	/*
2969 	 * XXX: Every time you think you can improve the margin for
2970 	 * footshooting, somebody depends on the ability to do so:
2971 	 * savecore(8) wants to write to our swapdev so we cannot
2972 	 * set an exclusive count :-(
2973 	 */
2974 	error = g_access(cp, 1, 1, 0);
2975 	if (error != 0) {
2976 		g_detach(cp);
2977 		g_destroy_consumer(cp);
2978 		return (error);
2979 	}
2980 	nblks = pp->mediasize / DEV_BSIZE;
2981 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2982 	    swapgeom_close, dev2udev(dev),
2983 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2984 	return (0);
2985 }
2986 
2987 static int
2988 swapongeom(struct vnode *vp)
2989 {
2990 	int error;
2991 
2992 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2993 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
2994 		error = ENOENT;
2995 	} else {
2996 		g_topology_lock();
2997 		error = swapongeom_locked(vp->v_rdev, vp);
2998 		g_topology_unlock();
2999 	}
3000 	VOP_UNLOCK(vp);
3001 	return (error);
3002 }
3003 
3004 /*
3005  * VNODE backend
3006  *
3007  * This is used mainly for network filesystem (read: probably only tested
3008  * with NFS) swapfiles.
3009  *
3010  */
3011 
3012 static void
3013 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3014 {
3015 	struct vnode *vp2;
3016 
3017 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3018 
3019 	vp2 = sp->sw_id;
3020 	vhold(vp2);
3021 	if (bp->b_iocmd == BIO_WRITE) {
3022 		if (bp->b_bufobj)
3023 			bufobj_wdrop(bp->b_bufobj);
3024 		bufobj_wref(&vp2->v_bufobj);
3025 	}
3026 	if (bp->b_bufobj != &vp2->v_bufobj)
3027 		bp->b_bufobj = &vp2->v_bufobj;
3028 	bp->b_vp = vp2;
3029 	bp->b_iooffset = dbtob(bp->b_blkno);
3030 	bstrategy(bp);
3031 	return;
3032 }
3033 
3034 static void
3035 swapdev_close(struct thread *td, struct swdevt *sp)
3036 {
3037 
3038 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3039 	vrele(sp->sw_vp);
3040 }
3041 
3042 static int
3043 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3044 {
3045 	struct swdevt *sp;
3046 	int error;
3047 
3048 	if (nblks == 0)
3049 		return (ENXIO);
3050 	mtx_lock(&sw_dev_mtx);
3051 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3052 		if (sp->sw_id == vp) {
3053 			mtx_unlock(&sw_dev_mtx);
3054 			return (EBUSY);
3055 		}
3056 	}
3057 	mtx_unlock(&sw_dev_mtx);
3058 
3059 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3060 #ifdef MAC
3061 	error = mac_system_check_swapon(td->td_ucred, vp);
3062 	if (error == 0)
3063 #endif
3064 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3065 	(void) VOP_UNLOCK(vp);
3066 	if (error)
3067 		return (error);
3068 
3069 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3070 	    NODEV, 0);
3071 	return (0);
3072 }
3073 
3074 static int
3075 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3076 {
3077 	int error, new, n;
3078 
3079 	new = nsw_wcount_async_max;
3080 	error = sysctl_handle_int(oidp, &new, 0, req);
3081 	if (error != 0 || req->newptr == NULL)
3082 		return (error);
3083 
3084 	if (new > nswbuf / 2 || new < 1)
3085 		return (EINVAL);
3086 
3087 	mtx_lock(&swbuf_mtx);
3088 	while (nsw_wcount_async_max != new) {
3089 		/*
3090 		 * Adjust difference.  If the current async count is too low,
3091 		 * we will need to sqeeze our update slowly in.  Sleep with a
3092 		 * higher priority than getpbuf() to finish faster.
3093 		 */
3094 		n = new - nsw_wcount_async_max;
3095 		if (nsw_wcount_async + n >= 0) {
3096 			nsw_wcount_async += n;
3097 			nsw_wcount_async_max += n;
3098 			wakeup(&nsw_wcount_async);
3099 		} else {
3100 			nsw_wcount_async_max -= nsw_wcount_async;
3101 			nsw_wcount_async = 0;
3102 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3103 			    "swpsysctl", 0);
3104 		}
3105 	}
3106 	mtx_unlock(&swbuf_mtx);
3107 
3108 	return (0);
3109 }
3110 
3111 static void
3112 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3113     vm_offset_t end)
3114 {
3115 
3116 	VM_OBJECT_WLOCK(object);
3117 	KASSERT((object->flags & OBJ_ANON) == 0,
3118 	    ("Splittable object with writecount"));
3119 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3120 	VM_OBJECT_WUNLOCK(object);
3121 }
3122 
3123 static void
3124 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3125     vm_offset_t end)
3126 {
3127 
3128 	VM_OBJECT_WLOCK(object);
3129 	KASSERT((object->flags & OBJ_ANON) == 0,
3130 	    ("Splittable object with writecount"));
3131 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3132 	VM_OBJECT_WUNLOCK(object);
3133 }
3134 
3135 static void
3136 swap_pager_set_writeable_dirty(vm_object_t object)
3137 {
3138 	if ((object->flags & OBJ_TMPFS_NODE) != 0)
3139 		vm_object_set_writeable_dirty_(object);
3140 }
3141 
3142 static bool
3143 swap_pager_mightbedirty(vm_object_t object)
3144 {
3145 	if ((object->flags & OBJ_TMPFS_NODE) != 0)
3146 		return (vm_object_mightbedirty_(object));
3147 	return (false);
3148 }
3149 
3150 static void
3151 swap_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
3152 {
3153 	struct vnode *vp;
3154 
3155 	KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
3156 	    ("swap_pager_getvp: swap and !TMPFS obj %p", object));
3157 
3158 	/*
3159 	 * Tmpfs VREG node, which was reclaimed, has
3160 	 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
3161 	 * this case there is no v_writecount to adjust.
3162 	 */
3163 	VM_OBJECT_RLOCK(object);
3164 	if ((object->flags & OBJ_TMPFS) != 0) {
3165 		vp = object->un_pager.swp.swp_tmpfs;
3166 		if (vp != NULL) {
3167 			vhold(vp);
3168 			*vpp = vp;
3169 			*vp_heldp = true;
3170 		}
3171 	}
3172 	VM_OBJECT_RUNLOCK(object);
3173 }
3174