xref: /freebsd/sys/vm/swap_pager.c (revision 06fd1dab305c3e522c8dcc785fe206c0ca995b77)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sysctl.h>
94 #include <sys/sysproto.h>
95 #include <sys/blist.h>
96 #include <sys/lock.h>
97 #include <sys/sx.h>
98 #include <sys/vmmeter.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 #include <vm/vm.h>
103 #include <vm/pmap.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pager.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_param.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114 
115 #include <geom/geom.h>
116 
117 /*
118  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, 16
119  * or 32 pages per allocation.
120  * The 32-page limit is due to the radix code (kern/subr_blist.c).
121  */
122 #ifndef MAX_PAGEOUT_CLUSTER
123 #define MAX_PAGEOUT_CLUSTER 16
124 #endif
125 
126 #if !defined(SWB_NPAGES)
127 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
128 #endif
129 
130 /*
131  * The swblock structure maps an object and a small, fixed-size range
132  * of page indices to disk addresses within a swap area.
133  * The collection of these mappings is implemented as a hash table.
134  * Unused disk addresses within a swap area are allocated and managed
135  * using a blist.
136  */
137 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
138 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
139 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
140 
141 struct swblock {
142 	struct swblock	*swb_hnext;
143 	vm_object_t	swb_object;
144 	vm_pindex_t	swb_index;
145 	int		swb_count;
146 	daddr_t		swb_pages[SWAP_META_PAGES];
147 };
148 
149 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
150 static struct mtx sw_dev_mtx;
151 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
152 static struct swdevt *swdevhd;	/* Allocate from here next */
153 static int nswapdev;		/* Number of swap devices */
154 int swap_pager_avail;
155 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
156 
157 static vm_ooffset_t swap_total;
158 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
159     "Total amount of available swap storage.");
160 static vm_ooffset_t swap_reserved;
161 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
162     "Amount of swap storage needed to back all allocated anonymous memory.");
163 static int overcommit = 0;
164 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
165     "Configure virtual memory overcommit behavior. See tuning(7) "
166     "for details.");
167 static unsigned long swzone;
168 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
169     "Actual size of swap metadata zone");
170 static unsigned long swap_maxpages;
171 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
172     "Maximum amount of swap supported");
173 
174 /* bits from overcommit */
175 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
176 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
177 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
178 
179 int
180 swap_reserve(vm_ooffset_t incr)
181 {
182 
183 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
184 }
185 
186 int
187 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
188 {
189 	vm_ooffset_t r, s;
190 	int res, error;
191 	static int curfail;
192 	static struct timeval lastfail;
193 	struct uidinfo *uip;
194 
195 	uip = cred->cr_ruidinfo;
196 
197 	if (incr & PAGE_MASK)
198 		panic("swap_reserve: & PAGE_MASK");
199 
200 #ifdef RACCT
201 	if (racct_enable) {
202 		PROC_LOCK(curproc);
203 		error = racct_add(curproc, RACCT_SWAP, incr);
204 		PROC_UNLOCK(curproc);
205 		if (error != 0)
206 			return (0);
207 	}
208 #endif
209 
210 	res = 0;
211 	mtx_lock(&sw_dev_mtx);
212 	r = swap_reserved + incr;
213 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
214 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - vm_cnt.v_wire_count;
215 		s *= PAGE_SIZE;
216 	} else
217 		s = 0;
218 	s += swap_total;
219 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
220 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
221 		res = 1;
222 		swap_reserved = r;
223 	}
224 	mtx_unlock(&sw_dev_mtx);
225 
226 	if (res) {
227 		UIDINFO_VMSIZE_LOCK(uip);
228 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
229 		    uip->ui_vmsize + incr > lim_cur(curthread, RLIMIT_SWAP) &&
230 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
231 			res = 0;
232 		else
233 			uip->ui_vmsize += incr;
234 		UIDINFO_VMSIZE_UNLOCK(uip);
235 		if (!res) {
236 			mtx_lock(&sw_dev_mtx);
237 			swap_reserved -= incr;
238 			mtx_unlock(&sw_dev_mtx);
239 		}
240 	}
241 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
242 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
243 		    uip->ui_uid, curproc->p_pid, incr);
244 	}
245 
246 #ifdef RACCT
247 	if (!res) {
248 		PROC_LOCK(curproc);
249 		racct_sub(curproc, RACCT_SWAP, incr);
250 		PROC_UNLOCK(curproc);
251 	}
252 #endif
253 
254 	return (res);
255 }
256 
257 void
258 swap_reserve_force(vm_ooffset_t incr)
259 {
260 	struct uidinfo *uip;
261 
262 	mtx_lock(&sw_dev_mtx);
263 	swap_reserved += incr;
264 	mtx_unlock(&sw_dev_mtx);
265 
266 #ifdef RACCT
267 	PROC_LOCK(curproc);
268 	racct_add_force(curproc, RACCT_SWAP, incr);
269 	PROC_UNLOCK(curproc);
270 #endif
271 
272 	uip = curthread->td_ucred->cr_ruidinfo;
273 	PROC_LOCK(curproc);
274 	UIDINFO_VMSIZE_LOCK(uip);
275 	uip->ui_vmsize += incr;
276 	UIDINFO_VMSIZE_UNLOCK(uip);
277 	PROC_UNLOCK(curproc);
278 }
279 
280 void
281 swap_release(vm_ooffset_t decr)
282 {
283 	struct ucred *cred;
284 
285 	PROC_LOCK(curproc);
286 	cred = curthread->td_ucred;
287 	swap_release_by_cred(decr, cred);
288 	PROC_UNLOCK(curproc);
289 }
290 
291 void
292 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
293 {
294  	struct uidinfo *uip;
295 
296 	uip = cred->cr_ruidinfo;
297 
298 	if (decr & PAGE_MASK)
299 		panic("swap_release: & PAGE_MASK");
300 
301 	mtx_lock(&sw_dev_mtx);
302 	if (swap_reserved < decr)
303 		panic("swap_reserved < decr");
304 	swap_reserved -= decr;
305 	mtx_unlock(&sw_dev_mtx);
306 
307 	UIDINFO_VMSIZE_LOCK(uip);
308 	if (uip->ui_vmsize < decr)
309 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
310 	uip->ui_vmsize -= decr;
311 	UIDINFO_VMSIZE_UNLOCK(uip);
312 
313 	racct_sub_cred(cred, RACCT_SWAP, decr);
314 }
315 
316 #define SWM_FREE	0x02	/* free, period			*/
317 #define SWM_POP		0x04	/* pop out			*/
318 
319 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
320 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
321 static int nsw_rcount;		/* free read buffers			*/
322 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
323 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
324 static int nsw_wcount_async_max;/* assigned maximum			*/
325 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
326 
327 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
328 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
329     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
330     "Maximum running async swap ops");
331 
332 static struct swblock **swhash;
333 static int swhash_mask;
334 static struct mtx swhash_mtx;
335 
336 static struct sx sw_alloc_sx;
337 
338 /*
339  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
340  * of searching a named list by hashing it just a little.
341  */
342 
343 #define NOBJLISTS		8
344 
345 #define NOBJLIST(handle)	\
346 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
347 
348 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
349 static uma_zone_t	swap_zone;
350 
351 /*
352  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
353  * calls hooked from other parts of the VM system and do not appear here.
354  * (see vm/swap_pager.h).
355  */
356 static vm_object_t
357 		swap_pager_alloc(void *handle, vm_ooffset_t size,
358 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
359 static void	swap_pager_dealloc(vm_object_t object);
360 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
361     int *);
362 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
363     int *, pgo_getpages_iodone_t, void *);
364 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
365 static boolean_t
366 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
367 static void	swap_pager_init(void);
368 static void	swap_pager_unswapped(vm_page_t);
369 static void	swap_pager_swapoff(struct swdevt *sp);
370 
371 struct pagerops swappagerops = {
372 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
373 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
374 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
375 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
376 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
377 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
378 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
379 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
380 };
381 
382 /*
383  * dmmax is in page-sized chunks with the new swap system.  It was
384  * dev-bsized chunks in the old.  dmmax is always a power of 2.
385  *
386  * swap_*() routines are externally accessible.  swp_*() routines are
387  * internal.
388  */
389 static int dmmax;
390 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
391 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
392 
393 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &dmmax, 0,
394     "Maximum size of a swap block");
395 
396 static void	swp_sizecheck(void);
397 static void	swp_pager_async_iodone(struct buf *bp);
398 static int	swapongeom(struct vnode *);
399 static int	swaponvp(struct thread *, struct vnode *, u_long);
400 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
401 
402 /*
403  * Swap bitmap functions
404  */
405 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
406 static daddr_t	swp_pager_getswapspace(int npages);
407 
408 /*
409  * Metadata functions
410  */
411 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
412 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
413 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
414 static void swp_pager_meta_free_all(vm_object_t);
415 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
416 
417 /*
418  * SWP_SIZECHECK() -	update swap_pager_full indication
419  *
420  *	update the swap_pager_almost_full indication and warn when we are
421  *	about to run out of swap space, using lowat/hiwat hysteresis.
422  *
423  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
424  *
425  *	No restrictions on call
426  *	This routine may not block.
427  */
428 static void
429 swp_sizecheck(void)
430 {
431 
432 	if (swap_pager_avail < nswap_lowat) {
433 		if (swap_pager_almost_full == 0) {
434 			printf("swap_pager: out of swap space\n");
435 			swap_pager_almost_full = 1;
436 		}
437 	} else {
438 		swap_pager_full = 0;
439 		if (swap_pager_avail > nswap_hiwat)
440 			swap_pager_almost_full = 0;
441 	}
442 }
443 
444 /*
445  * SWP_PAGER_HASH() -	hash swap meta data
446  *
447  *	This is an helper function which hashes the swapblk given
448  *	the object and page index.  It returns a pointer to a pointer
449  *	to the object, or a pointer to a NULL pointer if it could not
450  *	find a swapblk.
451  */
452 static struct swblock **
453 swp_pager_hash(vm_object_t object, vm_pindex_t index)
454 {
455 	struct swblock **pswap;
456 	struct swblock *swap;
457 
458 	index &= ~(vm_pindex_t)SWAP_META_MASK;
459 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
460 	while ((swap = *pswap) != NULL) {
461 		if (swap->swb_object == object &&
462 		    swap->swb_index == index
463 		) {
464 			break;
465 		}
466 		pswap = &swap->swb_hnext;
467 	}
468 	return (pswap);
469 }
470 
471 /*
472  * SWAP_PAGER_INIT() -	initialize the swap pager!
473  *
474  *	Expected to be started from system init.  NOTE:  This code is run
475  *	before much else so be careful what you depend on.  Most of the VM
476  *	system has yet to be initialized at this point.
477  */
478 static void
479 swap_pager_init(void)
480 {
481 	/*
482 	 * Initialize object lists
483 	 */
484 	int i;
485 
486 	for (i = 0; i < NOBJLISTS; ++i)
487 		TAILQ_INIT(&swap_pager_object_list[i]);
488 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
489 	sx_init(&sw_alloc_sx, "swspsx");
490 	sx_init(&swdev_syscall_lock, "swsysc");
491 
492 	/*
493 	 * Device Stripe, in PAGE_SIZE'd blocks
494 	 */
495 	dmmax = SWB_NPAGES * 2;
496 }
497 
498 /*
499  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
500  *
501  *	Expected to be started from pageout process once, prior to entering
502  *	its main loop.
503  */
504 void
505 swap_pager_swap_init(void)
506 {
507 	unsigned long n, n2;
508 
509 	/*
510 	 * Number of in-transit swap bp operations.  Don't
511 	 * exhaust the pbufs completely.  Make sure we
512 	 * initialize workable values (0 will work for hysteresis
513 	 * but it isn't very efficient).
514 	 *
515 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
516 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
517 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
518 	 * constrained by the swap device interleave stripe size.
519 	 *
520 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
521 	 * designed to prevent other I/O from having high latencies due to
522 	 * our pageout I/O.  The value 4 works well for one or two active swap
523 	 * devices but is probably a little low if you have more.  Even so,
524 	 * a higher value would probably generate only a limited improvement
525 	 * with three or four active swap devices since the system does not
526 	 * typically have to pageout at extreme bandwidths.   We will want
527 	 * at least 2 per swap devices, and 4 is a pretty good value if you
528 	 * have one NFS swap device due to the command/ack latency over NFS.
529 	 * So it all works out pretty well.
530 	 */
531 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
532 
533 	mtx_lock(&pbuf_mtx);
534 	nsw_rcount = (nswbuf + 1) / 2;
535 	nsw_wcount_sync = (nswbuf + 3) / 4;
536 	nsw_wcount_async = 4;
537 	nsw_wcount_async_max = nsw_wcount_async;
538 	mtx_unlock(&pbuf_mtx);
539 
540 	/*
541 	 * Initialize our zone.  Right now I'm just guessing on the number
542 	 * we need based on the number of pages in the system.  Each swblock
543 	 * can hold 32 pages, so this is probably overkill.  This reservation
544 	 * is typically limited to around 32MB by default.
545 	 */
546 	n = vm_cnt.v_page_count / 2;
547 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
548 		n = maxswzone / sizeof(struct swblock);
549 	n2 = n;
550 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
551 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
552 	if (swap_zone == NULL)
553 		panic("failed to create swap_zone.");
554 	do {
555 		if (uma_zone_reserve_kva(swap_zone, n))
556 			break;
557 		/*
558 		 * if the allocation failed, try a zone two thirds the
559 		 * size of the previous attempt.
560 		 */
561 		n -= ((n + 2) / 3);
562 	} while (n > 0);
563 	if (n2 != n)
564 		printf("Swap zone entries reduced from %lu to %lu.\n", n2, n);
565 	swap_maxpages = n * SWAP_META_PAGES;
566 	swzone = n * sizeof(struct swblock);
567 	n2 = n;
568 
569 	/*
570 	 * Initialize our meta-data hash table.  The swapper does not need to
571 	 * be quite as efficient as the VM system, so we do not use an
572 	 * oversized hash table.
573 	 *
574 	 * 	n: 		size of hash table, must be power of 2
575 	 *	swhash_mask:	hash table index mask
576 	 */
577 	for (n = 1; n < n2 / 8; n *= 2)
578 		;
579 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
580 	swhash_mask = n - 1;
581 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
582 }
583 
584 static vm_object_t
585 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
586     vm_ooffset_t offset)
587 {
588 	vm_object_t object;
589 
590 	if (cred != NULL) {
591 		if (!swap_reserve_by_cred(size, cred))
592 			return (NULL);
593 		crhold(cred);
594 	}
595 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
596 	    PAGE_MASK + size));
597 	object->handle = handle;
598 	if (cred != NULL) {
599 		object->cred = cred;
600 		object->charge = size;
601 	}
602 	object->un_pager.swp.swp_bcount = 0;
603 	return (object);
604 }
605 
606 /*
607  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
608  *			its metadata structures.
609  *
610  *	This routine is called from the mmap and fork code to create a new
611  *	OBJT_SWAP object.
612  *
613  *	This routine must ensure that no live duplicate is created for
614  *	the named object request, which is protected against by
615  *	holding the sw_alloc_sx lock in case handle != NULL.
616  */
617 static vm_object_t
618 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
619     vm_ooffset_t offset, struct ucred *cred)
620 {
621 	vm_object_t object;
622 
623 	if (handle != NULL) {
624 		/*
625 		 * Reference existing named region or allocate new one.  There
626 		 * should not be a race here against swp_pager_meta_build()
627 		 * as called from vm_page_remove() in regards to the lookup
628 		 * of the handle.
629 		 */
630 		sx_xlock(&sw_alloc_sx);
631 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
632 		if (object == NULL) {
633 			object = swap_pager_alloc_init(handle, cred, size,
634 			    offset);
635 			if (object != NULL) {
636 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
637 				    object, pager_object_list);
638 			}
639 		}
640 		sx_xunlock(&sw_alloc_sx);
641 	} else {
642 		object = swap_pager_alloc_init(handle, cred, size, offset);
643 	}
644 	return (object);
645 }
646 
647 /*
648  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
649  *
650  *	The swap backing for the object is destroyed.  The code is
651  *	designed such that we can reinstantiate it later, but this
652  *	routine is typically called only when the entire object is
653  *	about to be destroyed.
654  *
655  *	The object must be locked.
656  */
657 static void
658 swap_pager_dealloc(vm_object_t object)
659 {
660 
661 	VM_OBJECT_ASSERT_WLOCKED(object);
662 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
663 
664 	/*
665 	 * Remove from list right away so lookups will fail if we block for
666 	 * pageout completion.
667 	 */
668 	if (object->handle != NULL) {
669 		VM_OBJECT_WUNLOCK(object);
670 		sx_xlock(&sw_alloc_sx);
671 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
672 		    pager_object_list);
673 		sx_xunlock(&sw_alloc_sx);
674 		VM_OBJECT_WLOCK(object);
675 	}
676 
677 	vm_object_pip_wait(object, "swpdea");
678 
679 	/*
680 	 * Free all remaining metadata.  We only bother to free it from
681 	 * the swap meta data.  We do not attempt to free swapblk's still
682 	 * associated with vm_page_t's for this object.  We do not care
683 	 * if paging is still in progress on some objects.
684 	 */
685 	swp_pager_meta_free_all(object);
686 	object->handle = NULL;
687 	object->type = OBJT_DEAD;
688 }
689 
690 /************************************************************************
691  *			SWAP PAGER BITMAP ROUTINES			*
692  ************************************************************************/
693 
694 /*
695  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
696  *
697  *	Allocate swap for the requested number of pages.  The starting
698  *	swap block number (a page index) is returned or SWAPBLK_NONE
699  *	if the allocation failed.
700  *
701  *	Also has the side effect of advising that somebody made a mistake
702  *	when they configured swap and didn't configure enough.
703  *
704  *	This routine may not sleep.
705  *
706  *	We allocate in round-robin fashion from the configured devices.
707  */
708 static daddr_t
709 swp_pager_getswapspace(int npages)
710 {
711 	daddr_t blk;
712 	struct swdevt *sp;
713 	int i;
714 
715 	blk = SWAPBLK_NONE;
716 	mtx_lock(&sw_dev_mtx);
717 	sp = swdevhd;
718 	for (i = 0; i < nswapdev; i++) {
719 		if (sp == NULL)
720 			sp = TAILQ_FIRST(&swtailq);
721 		if (!(sp->sw_flags & SW_CLOSING)) {
722 			blk = blist_alloc(sp->sw_blist, npages);
723 			if (blk != SWAPBLK_NONE) {
724 				blk += sp->sw_first;
725 				sp->sw_used += npages;
726 				swap_pager_avail -= npages;
727 				swp_sizecheck();
728 				swdevhd = TAILQ_NEXT(sp, sw_list);
729 				goto done;
730 			}
731 		}
732 		sp = TAILQ_NEXT(sp, sw_list);
733 	}
734 	if (swap_pager_full != 2) {
735 		printf("swap_pager_getswapspace(%d): failed\n", npages);
736 		swap_pager_full = 2;
737 		swap_pager_almost_full = 1;
738 	}
739 	swdevhd = NULL;
740 done:
741 	mtx_unlock(&sw_dev_mtx);
742 	return (blk);
743 }
744 
745 static int
746 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
747 {
748 
749 	return (blk >= sp->sw_first && blk < sp->sw_end);
750 }
751 
752 static void
753 swp_pager_strategy(struct buf *bp)
754 {
755 	struct swdevt *sp;
756 
757 	mtx_lock(&sw_dev_mtx);
758 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
759 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
760 			mtx_unlock(&sw_dev_mtx);
761 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
762 			    unmapped_buf_allowed) {
763 				bp->b_data = unmapped_buf;
764 				bp->b_offset = 0;
765 			} else {
766 				pmap_qenter((vm_offset_t)bp->b_data,
767 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
768 			}
769 			sp->sw_strategy(bp, sp);
770 			return;
771 		}
772 	}
773 	panic("Swapdev not found");
774 }
775 
776 
777 /*
778  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
779  *
780  *	This routine returns the specified swap blocks back to the bitmap.
781  *
782  *	This routine may not sleep.
783  */
784 static void
785 swp_pager_freeswapspace(daddr_t blk, int npages)
786 {
787 	struct swdevt *sp;
788 
789 	mtx_lock(&sw_dev_mtx);
790 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
791 		if (blk >= sp->sw_first && blk < sp->sw_end) {
792 			sp->sw_used -= npages;
793 			/*
794 			 * If we are attempting to stop swapping on
795 			 * this device, we don't want to mark any
796 			 * blocks free lest they be reused.
797 			 */
798 			if ((sp->sw_flags & SW_CLOSING) == 0) {
799 				blist_free(sp->sw_blist, blk - sp->sw_first,
800 				    npages);
801 				swap_pager_avail += npages;
802 				swp_sizecheck();
803 			}
804 			mtx_unlock(&sw_dev_mtx);
805 			return;
806 		}
807 	}
808 	panic("Swapdev not found");
809 }
810 
811 /*
812  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
813  *				range within an object.
814  *
815  *	This is a globally accessible routine.
816  *
817  *	This routine removes swapblk assignments from swap metadata.
818  *
819  *	The external callers of this routine typically have already destroyed
820  *	or renamed vm_page_t's associated with this range in the object so
821  *	we should be ok.
822  *
823  *	The object must be locked.
824  */
825 void
826 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
827 {
828 
829 	swp_pager_meta_free(object, start, size);
830 }
831 
832 /*
833  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
834  *
835  *	Assigns swap blocks to the specified range within the object.  The
836  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
837  *
838  *	Returns 0 on success, -1 on failure.
839  */
840 int
841 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
842 {
843 	int n = 0;
844 	daddr_t blk = SWAPBLK_NONE;
845 	vm_pindex_t beg = start;	/* save start index */
846 
847 	VM_OBJECT_WLOCK(object);
848 	while (size) {
849 		if (n == 0) {
850 			n = BLIST_MAX_ALLOC;
851 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
852 				n >>= 1;
853 				if (n == 0) {
854 					swp_pager_meta_free(object, beg, start - beg);
855 					VM_OBJECT_WUNLOCK(object);
856 					return (-1);
857 				}
858 			}
859 		}
860 		swp_pager_meta_build(object, start, blk);
861 		--size;
862 		++start;
863 		++blk;
864 		--n;
865 	}
866 	swp_pager_meta_free(object, start, n);
867 	VM_OBJECT_WUNLOCK(object);
868 	return (0);
869 }
870 
871 /*
872  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
873  *			and destroy the source.
874  *
875  *	Copy any valid swapblks from the source to the destination.  In
876  *	cases where both the source and destination have a valid swapblk,
877  *	we keep the destination's.
878  *
879  *	This routine is allowed to sleep.  It may sleep allocating metadata
880  *	indirectly through swp_pager_meta_build() or if paging is still in
881  *	progress on the source.
882  *
883  *	The source object contains no vm_page_t's (which is just as well)
884  *
885  *	The source object is of type OBJT_SWAP.
886  *
887  *	The source and destination objects must be locked.
888  *	Both object locks may temporarily be released.
889  */
890 void
891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
892     vm_pindex_t offset, int destroysource)
893 {
894 	vm_pindex_t i;
895 
896 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
897 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
898 
899 	/*
900 	 * If destroysource is set, we remove the source object from the
901 	 * swap_pager internal queue now.
902 	 */
903 	if (destroysource && srcobject->handle != NULL) {
904 		vm_object_pip_add(srcobject, 1);
905 		VM_OBJECT_WUNLOCK(srcobject);
906 		vm_object_pip_add(dstobject, 1);
907 		VM_OBJECT_WUNLOCK(dstobject);
908 		sx_xlock(&sw_alloc_sx);
909 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
910 		    pager_object_list);
911 		sx_xunlock(&sw_alloc_sx);
912 		VM_OBJECT_WLOCK(dstobject);
913 		vm_object_pip_wakeup(dstobject);
914 		VM_OBJECT_WLOCK(srcobject);
915 		vm_object_pip_wakeup(srcobject);
916 	}
917 
918 	/*
919 	 * transfer source to destination.
920 	 */
921 	for (i = 0; i < dstobject->size; ++i) {
922 		daddr_t dstaddr;
923 
924 		/*
925 		 * Locate (without changing) the swapblk on the destination,
926 		 * unless it is invalid in which case free it silently, or
927 		 * if the destination is a resident page, in which case the
928 		 * source is thrown away.
929 		 */
930 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
931 
932 		if (dstaddr == SWAPBLK_NONE) {
933 			/*
934 			 * Destination has no swapblk and is not resident,
935 			 * copy source.
936 			 */
937 			daddr_t srcaddr;
938 
939 			srcaddr = swp_pager_meta_ctl(
940 			    srcobject,
941 			    i + offset,
942 			    SWM_POP
943 			);
944 
945 			if (srcaddr != SWAPBLK_NONE) {
946 				/*
947 				 * swp_pager_meta_build() can sleep.
948 				 */
949 				vm_object_pip_add(srcobject, 1);
950 				VM_OBJECT_WUNLOCK(srcobject);
951 				vm_object_pip_add(dstobject, 1);
952 				swp_pager_meta_build(dstobject, i, srcaddr);
953 				vm_object_pip_wakeup(dstobject);
954 				VM_OBJECT_WLOCK(srcobject);
955 				vm_object_pip_wakeup(srcobject);
956 			}
957 		} else {
958 			/*
959 			 * Destination has valid swapblk or it is represented
960 			 * by a resident page.  We destroy the sourceblock.
961 			 */
962 
963 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
964 		}
965 	}
966 
967 	/*
968 	 * Free left over swap blocks in source.
969 	 *
970 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
971 	 * double-remove the object from the swap queues.
972 	 */
973 	if (destroysource) {
974 		swp_pager_meta_free_all(srcobject);
975 		/*
976 		 * Reverting the type is not necessary, the caller is going
977 		 * to destroy srcobject directly, but I'm doing it here
978 		 * for consistency since we've removed the object from its
979 		 * queues.
980 		 */
981 		srcobject->type = OBJT_DEFAULT;
982 	}
983 }
984 
985 /*
986  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
987  *				the requested page.
988  *
989  *	We determine whether good backing store exists for the requested
990  *	page and return TRUE if it does, FALSE if it doesn't.
991  *
992  *	If TRUE, we also try to determine how much valid, contiguous backing
993  *	store exists before and after the requested page within a reasonable
994  *	distance.  We do not try to restrict it to the swap device stripe
995  *	(that is handled in getpages/putpages).  It probably isn't worth
996  *	doing here.
997  */
998 static boolean_t
999 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
1000 {
1001 	daddr_t blk0;
1002 
1003 	VM_OBJECT_ASSERT_LOCKED(object);
1004 	/*
1005 	 * do we have good backing store at the requested index ?
1006 	 */
1007 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1008 
1009 	if (blk0 == SWAPBLK_NONE) {
1010 		if (before)
1011 			*before = 0;
1012 		if (after)
1013 			*after = 0;
1014 		return (FALSE);
1015 	}
1016 
1017 	/*
1018 	 * find backwards-looking contiguous good backing store
1019 	 */
1020 	if (before != NULL) {
1021 		int i;
1022 
1023 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1024 			daddr_t blk;
1025 
1026 			if (i > pindex)
1027 				break;
1028 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1029 			if (blk != blk0 - i)
1030 				break;
1031 		}
1032 		*before = (i - 1);
1033 	}
1034 
1035 	/*
1036 	 * find forward-looking contiguous good backing store
1037 	 */
1038 	if (after != NULL) {
1039 		int i;
1040 
1041 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1042 			daddr_t blk;
1043 
1044 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1045 			if (blk != blk0 + i)
1046 				break;
1047 		}
1048 		*after = (i - 1);
1049 	}
1050 	return (TRUE);
1051 }
1052 
1053 /*
1054  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1055  *
1056  *	This removes any associated swap backing store, whether valid or
1057  *	not, from the page.
1058  *
1059  *	This routine is typically called when a page is made dirty, at
1060  *	which point any associated swap can be freed.  MADV_FREE also
1061  *	calls us in a special-case situation
1062  *
1063  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1064  *	should make the page dirty before calling this routine.  This routine
1065  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1066  *	depends on it.
1067  *
1068  *	This routine may not sleep.
1069  *
1070  *	The object containing the page must be locked.
1071  */
1072 static void
1073 swap_pager_unswapped(vm_page_t m)
1074 {
1075 
1076 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1077 }
1078 
1079 /*
1080  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1081  *
1082  *	Attempt to retrieve (m, count) pages from backing store, but make
1083  *	sure we retrieve at least m[reqpage].  We try to load in as large
1084  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1085  *	belongs to the same object.
1086  *
1087  *	The code is designed for asynchronous operation and
1088  *	immediate-notification of 'reqpage' but tends not to be
1089  *	used that way.  Please do not optimize-out this algorithmic
1090  *	feature, I intend to improve on it in the future.
1091  *
1092  *	The parent has a single vm_object_pip_add() reference prior to
1093  *	calling us and we should return with the same.
1094  *
1095  *	The parent has BUSY'd the pages.  We should return with 'm'
1096  *	left busy, but the others adjusted.
1097  */
1098 static int
1099 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int *rbehind,
1100     int *rahead)
1101 {
1102 	struct buf *bp;
1103 	daddr_t blk;
1104 
1105 	/*
1106 	 * Calculate range to retrieve.  The pages have already been assigned
1107 	 * their swapblks.  We require a *contiguous* range but we know it to
1108 	 * not span devices.   If we do not supply it, bad things
1109 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1110 	 * loops are set up such that the case(s) are handled implicitly.
1111 	 *
1112 	 * The swp_*() calls must be made with the object locked.
1113 	 */
1114 	blk = swp_pager_meta_ctl(m[0]->object, m[0]->pindex, 0);
1115 
1116 	if (blk == SWAPBLK_NONE)
1117 		return (VM_PAGER_FAIL);
1118 
1119 #ifdef INVARIANTS
1120 	for (int i = 0; i < count; i++)
1121 		KASSERT(blk + i ==
1122 		    swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0),
1123 		    ("%s: range is not contiguous", __func__));
1124 #endif
1125 
1126 	/*
1127 	 * Getpbuf() can sleep.
1128 	 */
1129 	VM_OBJECT_WUNLOCK(object);
1130 	/*
1131 	 * Get a swap buffer header to perform the IO
1132 	 */
1133 	bp = getpbuf(&nsw_rcount);
1134 	bp->b_flags |= B_PAGING;
1135 
1136 	bp->b_iocmd = BIO_READ;
1137 	bp->b_iodone = swp_pager_async_iodone;
1138 	bp->b_rcred = crhold(thread0.td_ucred);
1139 	bp->b_wcred = crhold(thread0.td_ucred);
1140 	bp->b_blkno = blk;
1141 	bp->b_bcount = PAGE_SIZE * count;
1142 	bp->b_bufsize = PAGE_SIZE * count;
1143 	bp->b_npages = count;
1144 
1145 	VM_OBJECT_WLOCK(object);
1146 	for (int i = 0; i < count; i++) {
1147 		bp->b_pages[i] = m[i];
1148 		m[i]->oflags |= VPO_SWAPINPROG;
1149 	}
1150 
1151 	PCPU_INC(cnt.v_swapin);
1152 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1153 
1154 	/*
1155 	 * We still hold the lock on mreq, and our automatic completion routine
1156 	 * does not remove it.
1157 	 */
1158 	vm_object_pip_add(object, bp->b_npages);
1159 	VM_OBJECT_WUNLOCK(object);
1160 
1161 	/*
1162 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1163 	 * this point because we automatically release it on completion.
1164 	 * Instead, we look at the one page we are interested in which we
1165 	 * still hold a lock on even through the I/O completion.
1166 	 *
1167 	 * The other pages in our m[] array are also released on completion,
1168 	 * so we cannot assume they are valid anymore either.
1169 	 *
1170 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1171 	 */
1172 	BUF_KERNPROC(bp);
1173 	swp_pager_strategy(bp);
1174 
1175 	/*
1176 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1177 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1178 	 * is set in the meta-data.
1179 	 */
1180 	VM_OBJECT_WLOCK(object);
1181 	while ((m[0]->oflags & VPO_SWAPINPROG) != 0) {
1182 		m[0]->oflags |= VPO_SWAPSLEEP;
1183 		PCPU_INC(cnt.v_intrans);
1184 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1185 		    "swread", hz * 20)) {
1186 			printf(
1187 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1188 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * If we had an unrecoverable read error pages will not be valid.
1194 	 */
1195 	for (int i = 0; i < count; i++)
1196 		if (m[i]->valid != VM_PAGE_BITS_ALL)
1197 			return (VM_PAGER_ERROR);
1198 
1199 	if (rbehind)
1200 		*rbehind = 0;
1201 	if (rahead)
1202 		*rahead = 0;
1203 
1204 	return (VM_PAGER_OK);
1205 
1206 	/*
1207 	 * A final note: in a low swap situation, we cannot deallocate swap
1208 	 * and mark a page dirty here because the caller is likely to mark
1209 	 * the page clean when we return, causing the page to possibly revert
1210 	 * to all-zero's later.
1211 	 */
1212 }
1213 
1214 /*
1215  * 	swap_pager_getpages_async():
1216  *
1217  *	Right now this is emulation of asynchronous operation on top of
1218  *	swap_pager_getpages().
1219  */
1220 static int
1221 swap_pager_getpages_async(vm_object_t object, vm_page_t *m, int count,
1222     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1223 {
1224 	int r, error;
1225 
1226 	r = swap_pager_getpages(object, m, count, rbehind, rahead);
1227 	VM_OBJECT_WUNLOCK(object);
1228 	switch (r) {
1229 	case VM_PAGER_OK:
1230 		error = 0;
1231 		break;
1232 	case VM_PAGER_ERROR:
1233 		error = EIO;
1234 		break;
1235 	case VM_PAGER_FAIL:
1236 		error = EINVAL;
1237 		break;
1238 	default:
1239 		panic("unhandled swap_pager_getpages() error %d", r);
1240 	}
1241 	(iodone)(arg, m, count, error);
1242 	VM_OBJECT_WLOCK(object);
1243 
1244 	return (r);
1245 }
1246 
1247 /*
1248  *	swap_pager_putpages:
1249  *
1250  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1251  *
1252  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1253  *	are automatically converted to SWAP objects.
1254  *
1255  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1256  *	vm_page reservation system coupled with properly written VFS devices
1257  *	should ensure that no low-memory deadlock occurs.  This is an area
1258  *	which needs work.
1259  *
1260  *	The parent has N vm_object_pip_add() references prior to
1261  *	calling us and will remove references for rtvals[] that are
1262  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1263  *	completion.
1264  *
1265  *	The parent has soft-busy'd the pages it passes us and will unbusy
1266  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1267  *	We need to unbusy the rest on I/O completion.
1268  */
1269 static void
1270 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1271     int flags, int *rtvals)
1272 {
1273 	int i, n;
1274 	boolean_t sync;
1275 
1276 	if (count && m[0]->object != object) {
1277 		panic("swap_pager_putpages: object mismatch %p/%p",
1278 		    object,
1279 		    m[0]->object
1280 		);
1281 	}
1282 
1283 	/*
1284 	 * Step 1
1285 	 *
1286 	 * Turn object into OBJT_SWAP
1287 	 * check for bogus sysops
1288 	 * force sync if not pageout process
1289 	 */
1290 	if (object->type != OBJT_SWAP)
1291 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1292 	VM_OBJECT_WUNLOCK(object);
1293 
1294 	n = 0;
1295 	if (curproc != pageproc)
1296 		sync = TRUE;
1297 	else
1298 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1299 
1300 	/*
1301 	 * Step 2
1302 	 *
1303 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1304 	 * The page is left dirty until the pageout operation completes
1305 	 * successfully.
1306 	 */
1307 	for (i = 0; i < count; i += n) {
1308 		int j;
1309 		struct buf *bp;
1310 		daddr_t blk;
1311 
1312 		/*
1313 		 * Maximum I/O size is limited by a number of factors.
1314 		 */
1315 		n = min(BLIST_MAX_ALLOC, count - i);
1316 		n = min(n, nsw_cluster_max);
1317 
1318 		/*
1319 		 * Get biggest block of swap we can.  If we fail, fall
1320 		 * back and try to allocate a smaller block.  Don't go
1321 		 * overboard trying to allocate space if it would overly
1322 		 * fragment swap.
1323 		 */
1324 		while (
1325 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1326 		    n > 4
1327 		) {
1328 			n >>= 1;
1329 		}
1330 		if (blk == SWAPBLK_NONE) {
1331 			for (j = 0; j < n; ++j)
1332 				rtvals[i+j] = VM_PAGER_FAIL;
1333 			continue;
1334 		}
1335 
1336 		/*
1337 		 * All I/O parameters have been satisfied, build the I/O
1338 		 * request and assign the swap space.
1339 		 */
1340 		if (sync == TRUE) {
1341 			bp = getpbuf(&nsw_wcount_sync);
1342 		} else {
1343 			bp = getpbuf(&nsw_wcount_async);
1344 			bp->b_flags = B_ASYNC;
1345 		}
1346 		bp->b_flags |= B_PAGING;
1347 		bp->b_iocmd = BIO_WRITE;
1348 
1349 		bp->b_rcred = crhold(thread0.td_ucred);
1350 		bp->b_wcred = crhold(thread0.td_ucred);
1351 		bp->b_bcount = PAGE_SIZE * n;
1352 		bp->b_bufsize = PAGE_SIZE * n;
1353 		bp->b_blkno = blk;
1354 
1355 		VM_OBJECT_WLOCK(object);
1356 		for (j = 0; j < n; ++j) {
1357 			vm_page_t mreq = m[i+j];
1358 
1359 			swp_pager_meta_build(
1360 			    mreq->object,
1361 			    mreq->pindex,
1362 			    blk + j
1363 			);
1364 			vm_page_dirty(mreq);
1365 			mreq->oflags |= VPO_SWAPINPROG;
1366 			bp->b_pages[j] = mreq;
1367 		}
1368 		VM_OBJECT_WUNLOCK(object);
1369 		bp->b_npages = n;
1370 		/*
1371 		 * Must set dirty range for NFS to work.
1372 		 */
1373 		bp->b_dirtyoff = 0;
1374 		bp->b_dirtyend = bp->b_bcount;
1375 
1376 		PCPU_INC(cnt.v_swapout);
1377 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1378 
1379 		/*
1380 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1381 		 * can call the async completion routine at the end of a
1382 		 * synchronous I/O operation.  Otherwise, our caller would
1383 		 * perform duplicate unbusy and wakeup operations on the page
1384 		 * and object, respectively.
1385 		 */
1386 		for (j = 0; j < n; j++)
1387 			rtvals[i + j] = VM_PAGER_PEND;
1388 
1389 		/*
1390 		 * asynchronous
1391 		 *
1392 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1393 		 */
1394 		if (sync == FALSE) {
1395 			bp->b_iodone = swp_pager_async_iodone;
1396 			BUF_KERNPROC(bp);
1397 			swp_pager_strategy(bp);
1398 			continue;
1399 		}
1400 
1401 		/*
1402 		 * synchronous
1403 		 *
1404 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1405 		 */
1406 		bp->b_iodone = bdone;
1407 		swp_pager_strategy(bp);
1408 
1409 		/*
1410 		 * Wait for the sync I/O to complete.
1411 		 */
1412 		bwait(bp, PVM, "swwrt");
1413 
1414 		/*
1415 		 * Now that we are through with the bp, we can call the
1416 		 * normal async completion, which frees everything up.
1417 		 */
1418 		swp_pager_async_iodone(bp);
1419 	}
1420 	VM_OBJECT_WLOCK(object);
1421 }
1422 
1423 /*
1424  *	swp_pager_async_iodone:
1425  *
1426  *	Completion routine for asynchronous reads and writes from/to swap.
1427  *	Also called manually by synchronous code to finish up a bp.
1428  *
1429  *	This routine may not sleep.
1430  */
1431 static void
1432 swp_pager_async_iodone(struct buf *bp)
1433 {
1434 	int i;
1435 	vm_object_t object = NULL;
1436 
1437 	/*
1438 	 * report error
1439 	 */
1440 	if (bp->b_ioflags & BIO_ERROR) {
1441 		printf(
1442 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1443 			"size %ld, error %d\n",
1444 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1445 		    (long)bp->b_blkno,
1446 		    (long)bp->b_bcount,
1447 		    bp->b_error
1448 		);
1449 	}
1450 
1451 	/*
1452 	 * remove the mapping for kernel virtual
1453 	 */
1454 	if (buf_mapped(bp))
1455 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1456 	else
1457 		bp->b_data = bp->b_kvabase;
1458 
1459 	if (bp->b_npages) {
1460 		object = bp->b_pages[0]->object;
1461 		VM_OBJECT_WLOCK(object);
1462 	}
1463 
1464 	/*
1465 	 * cleanup pages.  If an error occurs writing to swap, we are in
1466 	 * very serious trouble.  If it happens to be a disk error, though,
1467 	 * we may be able to recover by reassigning the swap later on.  So
1468 	 * in this case we remove the m->swapblk assignment for the page
1469 	 * but do not free it in the rlist.  The errornous block(s) are thus
1470 	 * never reallocated as swap.  Redirty the page and continue.
1471 	 */
1472 	for (i = 0; i < bp->b_npages; ++i) {
1473 		vm_page_t m = bp->b_pages[i];
1474 
1475 		m->oflags &= ~VPO_SWAPINPROG;
1476 		if (m->oflags & VPO_SWAPSLEEP) {
1477 			m->oflags &= ~VPO_SWAPSLEEP;
1478 			wakeup(&object->paging_in_progress);
1479 		}
1480 
1481 		if (bp->b_ioflags & BIO_ERROR) {
1482 			/*
1483 			 * If an error occurs I'd love to throw the swapblk
1484 			 * away without freeing it back to swapspace, so it
1485 			 * can never be used again.  But I can't from an
1486 			 * interrupt.
1487 			 */
1488 			if (bp->b_iocmd == BIO_READ) {
1489 				/*
1490 				 * NOTE: for reads, m->dirty will probably
1491 				 * be overridden by the original caller of
1492 				 * getpages so don't play cute tricks here.
1493 				 */
1494 				m->valid = 0;
1495 			} else {
1496 				/*
1497 				 * If a write error occurs, reactivate page
1498 				 * so it doesn't clog the inactive list,
1499 				 * then finish the I/O.
1500 				 */
1501 				vm_page_dirty(m);
1502 				vm_page_lock(m);
1503 				vm_page_activate(m);
1504 				vm_page_unlock(m);
1505 				vm_page_sunbusy(m);
1506 			}
1507 		} else if (bp->b_iocmd == BIO_READ) {
1508 			/*
1509 			 * NOTE: for reads, m->dirty will probably be
1510 			 * overridden by the original caller of getpages so
1511 			 * we cannot set them in order to free the underlying
1512 			 * swap in a low-swap situation.  I don't think we'd
1513 			 * want to do that anyway, but it was an optimization
1514 			 * that existed in the old swapper for a time before
1515 			 * it got ripped out due to precisely this problem.
1516 			 */
1517 			KASSERT(!pmap_page_is_mapped(m),
1518 			    ("swp_pager_async_iodone: page %p is mapped", m));
1519 			KASSERT(m->dirty == 0,
1520 			    ("swp_pager_async_iodone: page %p is dirty", m));
1521 			m->valid = VM_PAGE_BITS_ALL;
1522 		} else {
1523 			/*
1524 			 * For write success, clear the dirty
1525 			 * status, then finish the I/O ( which decrements the
1526 			 * busy count and possibly wakes waiter's up ).
1527 			 */
1528 			KASSERT(!pmap_page_is_write_mapped(m),
1529 			    ("swp_pager_async_iodone: page %p is not write"
1530 			    " protected", m));
1531 			vm_page_undirty(m);
1532 			vm_page_sunbusy(m);
1533 			if (vm_page_count_severe()) {
1534 				vm_page_lock(m);
1535 				vm_page_try_to_cache(m);
1536 				vm_page_unlock(m);
1537 			}
1538 		}
1539 	}
1540 
1541 	/*
1542 	 * adjust pip.  NOTE: the original parent may still have its own
1543 	 * pip refs on the object.
1544 	 */
1545 	if (object != NULL) {
1546 		vm_object_pip_wakeupn(object, bp->b_npages);
1547 		VM_OBJECT_WUNLOCK(object);
1548 	}
1549 
1550 	/*
1551 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1552 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1553 	 * trigger a KASSERT in relpbuf().
1554 	 */
1555 	if (bp->b_vp) {
1556 		    bp->b_vp = NULL;
1557 		    bp->b_bufobj = NULL;
1558 	}
1559 	/*
1560 	 * release the physical I/O buffer
1561 	 */
1562 	relpbuf(
1563 	    bp,
1564 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1565 		((bp->b_flags & B_ASYNC) ?
1566 		    &nsw_wcount_async :
1567 		    &nsw_wcount_sync
1568 		)
1569 	    )
1570 	);
1571 }
1572 
1573 /*
1574  *	swap_pager_isswapped:
1575  *
1576  *	Return 1 if at least one page in the given object is paged
1577  *	out to the given swap device.
1578  *
1579  *	This routine may not sleep.
1580  */
1581 int
1582 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1583 {
1584 	daddr_t index = 0;
1585 	int bcount;
1586 	int i;
1587 
1588 	VM_OBJECT_ASSERT_WLOCKED(object);
1589 	if (object->type != OBJT_SWAP)
1590 		return (0);
1591 
1592 	mtx_lock(&swhash_mtx);
1593 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1594 		struct swblock *swap;
1595 
1596 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1597 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1598 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1599 					mtx_unlock(&swhash_mtx);
1600 					return (1);
1601 				}
1602 			}
1603 		}
1604 		index += SWAP_META_PAGES;
1605 	}
1606 	mtx_unlock(&swhash_mtx);
1607 	return (0);
1608 }
1609 
1610 /*
1611  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1612  *
1613  *	This routine dissociates the page at the given index within a
1614  *	swap block from its backing store, paging it in if necessary.
1615  *	If the page is paged in, it is placed in the inactive queue,
1616  *	since it had its backing store ripped out from under it.
1617  *	We also attempt to swap in all other pages in the swap block,
1618  *	we only guarantee that the one at the specified index is
1619  *	paged in.
1620  *
1621  *	XXX - The code to page the whole block in doesn't work, so we
1622  *	      revert to the one-by-one behavior for now.  Sigh.
1623  */
1624 static inline void
1625 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1626 {
1627 	vm_page_t m;
1628 
1629 	vm_object_pip_add(object, 1);
1630 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1631 	if (m->valid == VM_PAGE_BITS_ALL) {
1632 		vm_object_pip_wakeup(object);
1633 		vm_page_dirty(m);
1634 		vm_page_lock(m);
1635 		vm_page_activate(m);
1636 		vm_page_unlock(m);
1637 		vm_page_xunbusy(m);
1638 		vm_pager_page_unswapped(m);
1639 		return;
1640 	}
1641 
1642 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1643 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1644 	vm_object_pip_wakeup(object);
1645 	vm_page_dirty(m);
1646 	vm_page_lock(m);
1647 	vm_page_deactivate(m);
1648 	vm_page_unlock(m);
1649 	vm_page_xunbusy(m);
1650 	vm_pager_page_unswapped(m);
1651 }
1652 
1653 /*
1654  *	swap_pager_swapoff:
1655  *
1656  *	Page in all of the pages that have been paged out to the
1657  *	given device.  The corresponding blocks in the bitmap must be
1658  *	marked as allocated and the device must be flagged SW_CLOSING.
1659  *	There may be no processes swapped out to the device.
1660  *
1661  *	This routine may block.
1662  */
1663 static void
1664 swap_pager_swapoff(struct swdevt *sp)
1665 {
1666 	struct swblock *swap;
1667 	int i, j, retries;
1668 
1669 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1670 
1671 	retries = 0;
1672 full_rescan:
1673 	mtx_lock(&swhash_mtx);
1674 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1675 restart:
1676 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1677 			vm_object_t object = swap->swb_object;
1678 			vm_pindex_t pindex = swap->swb_index;
1679 			for (j = 0; j < SWAP_META_PAGES; ++j) {
1680 				if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1681 					/* avoid deadlock */
1682 					if (!VM_OBJECT_TRYWLOCK(object)) {
1683 						break;
1684 					} else {
1685 						mtx_unlock(&swhash_mtx);
1686 						swp_pager_force_pagein(object,
1687 						    pindex + j);
1688 						VM_OBJECT_WUNLOCK(object);
1689 						mtx_lock(&swhash_mtx);
1690 						goto restart;
1691 					}
1692 				}
1693 			}
1694 		}
1695 	}
1696 	mtx_unlock(&swhash_mtx);
1697 	if (sp->sw_used) {
1698 		/*
1699 		 * Objects may be locked or paging to the device being
1700 		 * removed, so we will miss their pages and need to
1701 		 * make another pass.  We have marked this device as
1702 		 * SW_CLOSING, so the activity should finish soon.
1703 		 */
1704 		retries++;
1705 		if (retries > 100) {
1706 			panic("swapoff: failed to locate %d swap blocks",
1707 			    sp->sw_used);
1708 		}
1709 		pause("swpoff", hz / 20);
1710 		goto full_rescan;
1711 	}
1712 }
1713 
1714 /************************************************************************
1715  *				SWAP META DATA 				*
1716  ************************************************************************
1717  *
1718  *	These routines manipulate the swap metadata stored in the
1719  *	OBJT_SWAP object.
1720  *
1721  *	Swap metadata is implemented with a global hash and not directly
1722  *	linked into the object.  Instead the object simply contains
1723  *	appropriate tracking counters.
1724  */
1725 
1726 /*
1727  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1728  *
1729  *	We first convert the object to a swap object if it is a default
1730  *	object.
1731  *
1732  *	The specified swapblk is added to the object's swap metadata.  If
1733  *	the swapblk is not valid, it is freed instead.  Any previously
1734  *	assigned swapblk is freed.
1735  */
1736 static void
1737 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1738 {
1739 	static volatile int exhausted;
1740 	struct swblock *swap;
1741 	struct swblock **pswap;
1742 	int idx;
1743 
1744 	VM_OBJECT_ASSERT_WLOCKED(object);
1745 	/*
1746 	 * Convert default object to swap object if necessary
1747 	 */
1748 	if (object->type != OBJT_SWAP) {
1749 		object->type = OBJT_SWAP;
1750 		object->un_pager.swp.swp_bcount = 0;
1751 		KASSERT(object->handle == NULL, ("default pager with handle"));
1752 	}
1753 
1754 	/*
1755 	 * Locate hash entry.  If not found create, but if we aren't adding
1756 	 * anything just return.  If we run out of space in the map we wait
1757 	 * and, since the hash table may have changed, retry.
1758 	 */
1759 retry:
1760 	mtx_lock(&swhash_mtx);
1761 	pswap = swp_pager_hash(object, pindex);
1762 
1763 	if ((swap = *pswap) == NULL) {
1764 		int i;
1765 
1766 		if (swapblk == SWAPBLK_NONE)
1767 			goto done;
1768 
1769 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT |
1770 		    (curproc == pageproc ? M_USE_RESERVE : 0));
1771 		if (swap == NULL) {
1772 			mtx_unlock(&swhash_mtx);
1773 			VM_OBJECT_WUNLOCK(object);
1774 			if (uma_zone_exhausted(swap_zone)) {
1775 				if (atomic_cmpset_int(&exhausted, 0, 1))
1776 					printf("swap zone exhausted, "
1777 					    "increase kern.maxswzone\n");
1778 				vm_pageout_oom(VM_OOM_SWAPZ);
1779 				pause("swzonex", 10);
1780 			} else
1781 				VM_WAIT;
1782 			VM_OBJECT_WLOCK(object);
1783 			goto retry;
1784 		}
1785 
1786 		if (atomic_cmpset_int(&exhausted, 1, 0))
1787 			printf("swap zone ok\n");
1788 
1789 		swap->swb_hnext = NULL;
1790 		swap->swb_object = object;
1791 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1792 		swap->swb_count = 0;
1793 
1794 		++object->un_pager.swp.swp_bcount;
1795 
1796 		for (i = 0; i < SWAP_META_PAGES; ++i)
1797 			swap->swb_pages[i] = SWAPBLK_NONE;
1798 	}
1799 
1800 	/*
1801 	 * Delete prior contents of metadata
1802 	 */
1803 	idx = pindex & SWAP_META_MASK;
1804 
1805 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1806 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1807 		--swap->swb_count;
1808 	}
1809 
1810 	/*
1811 	 * Enter block into metadata
1812 	 */
1813 	swap->swb_pages[idx] = swapblk;
1814 	if (swapblk != SWAPBLK_NONE)
1815 		++swap->swb_count;
1816 done:
1817 	mtx_unlock(&swhash_mtx);
1818 }
1819 
1820 /*
1821  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1822  *
1823  *	The requested range of blocks is freed, with any associated swap
1824  *	returned to the swap bitmap.
1825  *
1826  *	This routine will free swap metadata structures as they are cleaned
1827  *	out.  This routine does *NOT* operate on swap metadata associated
1828  *	with resident pages.
1829  */
1830 static void
1831 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1832 {
1833 
1834 	VM_OBJECT_ASSERT_LOCKED(object);
1835 	if (object->type != OBJT_SWAP)
1836 		return;
1837 
1838 	while (count > 0) {
1839 		struct swblock **pswap;
1840 		struct swblock *swap;
1841 
1842 		mtx_lock(&swhash_mtx);
1843 		pswap = swp_pager_hash(object, index);
1844 
1845 		if ((swap = *pswap) != NULL) {
1846 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1847 
1848 			if (v != SWAPBLK_NONE) {
1849 				swp_pager_freeswapspace(v, 1);
1850 				swap->swb_pages[index & SWAP_META_MASK] =
1851 					SWAPBLK_NONE;
1852 				if (--swap->swb_count == 0) {
1853 					*pswap = swap->swb_hnext;
1854 					uma_zfree(swap_zone, swap);
1855 					--object->un_pager.swp.swp_bcount;
1856 				}
1857 			}
1858 			--count;
1859 			++index;
1860 		} else {
1861 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1862 			count -= n;
1863 			index += n;
1864 		}
1865 		mtx_unlock(&swhash_mtx);
1866 	}
1867 }
1868 
1869 /*
1870  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1871  *
1872  *	This routine locates and destroys all swap metadata associated with
1873  *	an object.
1874  */
1875 static void
1876 swp_pager_meta_free_all(vm_object_t object)
1877 {
1878 	daddr_t index = 0;
1879 
1880 	VM_OBJECT_ASSERT_WLOCKED(object);
1881 	if (object->type != OBJT_SWAP)
1882 		return;
1883 
1884 	while (object->un_pager.swp.swp_bcount) {
1885 		struct swblock **pswap;
1886 		struct swblock *swap;
1887 
1888 		mtx_lock(&swhash_mtx);
1889 		pswap = swp_pager_hash(object, index);
1890 		if ((swap = *pswap) != NULL) {
1891 			int i;
1892 
1893 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1894 				daddr_t v = swap->swb_pages[i];
1895 				if (v != SWAPBLK_NONE) {
1896 					--swap->swb_count;
1897 					swp_pager_freeswapspace(v, 1);
1898 				}
1899 			}
1900 			if (swap->swb_count != 0)
1901 				panic("swap_pager_meta_free_all: swb_count != 0");
1902 			*pswap = swap->swb_hnext;
1903 			uma_zfree(swap_zone, swap);
1904 			--object->un_pager.swp.swp_bcount;
1905 		}
1906 		mtx_unlock(&swhash_mtx);
1907 		index += SWAP_META_PAGES;
1908 	}
1909 }
1910 
1911 /*
1912  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1913  *
1914  *	This routine is capable of looking up, popping, or freeing
1915  *	swapblk assignments in the swap meta data or in the vm_page_t.
1916  *	The routine typically returns the swapblk being looked-up, or popped,
1917  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1918  *	was invalid.  This routine will automatically free any invalid
1919  *	meta-data swapblks.
1920  *
1921  *	It is not possible to store invalid swapblks in the swap meta data
1922  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1923  *
1924  *	When acting on a busy resident page and paging is in progress, we
1925  *	have to wait until paging is complete but otherwise can act on the
1926  *	busy page.
1927  *
1928  *	SWM_FREE	remove and free swap block from metadata
1929  *	SWM_POP		remove from meta data but do not free.. pop it out
1930  */
1931 static daddr_t
1932 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
1933 {
1934 	struct swblock **pswap;
1935 	struct swblock *swap;
1936 	daddr_t r1;
1937 	int idx;
1938 
1939 	VM_OBJECT_ASSERT_LOCKED(object);
1940 	/*
1941 	 * The meta data only exists of the object is OBJT_SWAP
1942 	 * and even then might not be allocated yet.
1943 	 */
1944 	if (object->type != OBJT_SWAP)
1945 		return (SWAPBLK_NONE);
1946 
1947 	r1 = SWAPBLK_NONE;
1948 	mtx_lock(&swhash_mtx);
1949 	pswap = swp_pager_hash(object, pindex);
1950 
1951 	if ((swap = *pswap) != NULL) {
1952 		idx = pindex & SWAP_META_MASK;
1953 		r1 = swap->swb_pages[idx];
1954 
1955 		if (r1 != SWAPBLK_NONE) {
1956 			if (flags & SWM_FREE) {
1957 				swp_pager_freeswapspace(r1, 1);
1958 				r1 = SWAPBLK_NONE;
1959 			}
1960 			if (flags & (SWM_FREE|SWM_POP)) {
1961 				swap->swb_pages[idx] = SWAPBLK_NONE;
1962 				if (--swap->swb_count == 0) {
1963 					*pswap = swap->swb_hnext;
1964 					uma_zfree(swap_zone, swap);
1965 					--object->un_pager.swp.swp_bcount;
1966 				}
1967 			}
1968 		}
1969 	}
1970 	mtx_unlock(&swhash_mtx);
1971 	return (r1);
1972 }
1973 
1974 /*
1975  * System call swapon(name) enables swapping on device name,
1976  * which must be in the swdevsw.  Return EBUSY
1977  * if already swapping on this device.
1978  */
1979 #ifndef _SYS_SYSPROTO_H_
1980 struct swapon_args {
1981 	char *name;
1982 };
1983 #endif
1984 
1985 /*
1986  * MPSAFE
1987  */
1988 /* ARGSUSED */
1989 int
1990 sys_swapon(struct thread *td, struct swapon_args *uap)
1991 {
1992 	struct vattr attr;
1993 	struct vnode *vp;
1994 	struct nameidata nd;
1995 	int error;
1996 
1997 	error = priv_check(td, PRIV_SWAPON);
1998 	if (error)
1999 		return (error);
2000 
2001 	sx_xlock(&swdev_syscall_lock);
2002 
2003 	/*
2004 	 * Swap metadata may not fit in the KVM if we have physical
2005 	 * memory of >1GB.
2006 	 */
2007 	if (swap_zone == NULL) {
2008 		error = ENOMEM;
2009 		goto done;
2010 	}
2011 
2012 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2013 	    uap->name, td);
2014 	error = namei(&nd);
2015 	if (error)
2016 		goto done;
2017 
2018 	NDFREE(&nd, NDF_ONLY_PNBUF);
2019 	vp = nd.ni_vp;
2020 
2021 	if (vn_isdisk(vp, &error)) {
2022 		error = swapongeom(vp);
2023 	} else if (vp->v_type == VREG &&
2024 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2025 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2026 		/*
2027 		 * Allow direct swapping to NFS regular files in the same
2028 		 * way that nfs_mountroot() sets up diskless swapping.
2029 		 */
2030 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2031 	}
2032 
2033 	if (error)
2034 		vrele(vp);
2035 done:
2036 	sx_xunlock(&swdev_syscall_lock);
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Check that the total amount of swap currently configured does not
2042  * exceed half the theoretical maximum.  If it does, print a warning
2043  * message and return -1; otherwise, return 0.
2044  */
2045 static int
2046 swapon_check_swzone(unsigned long npages)
2047 {
2048 	unsigned long maxpages;
2049 
2050 	/* absolute maximum we can handle assuming 100% efficiency */
2051 	maxpages = uma_zone_get_max(swap_zone) * SWAP_META_PAGES;
2052 
2053 	/* recommend using no more than half that amount */
2054 	if (npages > maxpages / 2) {
2055 		printf("warning: total configured swap (%lu pages) "
2056 		    "exceeds maximum recommended amount (%lu pages).\n",
2057 		    npages, maxpages / 2);
2058 		printf("warning: increase kern.maxswzone "
2059 		    "or reduce amount of swap.\n");
2060 		return (-1);
2061 	}
2062 	return (0);
2063 }
2064 
2065 static void
2066 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2067     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2068 {
2069 	struct swdevt *sp, *tsp;
2070 	swblk_t dvbase;
2071 	u_long mblocks;
2072 
2073 	/*
2074 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2075 	 * First chop nblks off to page-align it, then convert.
2076 	 *
2077 	 * sw->sw_nblks is in page-sized chunks now too.
2078 	 */
2079 	nblks &= ~(ctodb(1) - 1);
2080 	nblks = dbtoc(nblks);
2081 
2082 	/*
2083 	 * If we go beyond this, we get overflows in the radix
2084 	 * tree bitmap code.
2085 	 */
2086 	mblocks = 0x40000000 / BLIST_META_RADIX;
2087 	if (nblks > mblocks) {
2088 		printf(
2089     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2090 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2091 		nblks = mblocks;
2092 	}
2093 
2094 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2095 	sp->sw_vp = vp;
2096 	sp->sw_id = id;
2097 	sp->sw_dev = dev;
2098 	sp->sw_flags = 0;
2099 	sp->sw_nblks = nblks;
2100 	sp->sw_used = 0;
2101 	sp->sw_strategy = strategy;
2102 	sp->sw_close = close;
2103 	sp->sw_flags = flags;
2104 
2105 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2106 	/*
2107 	 * Do not free the first two block in order to avoid overwriting
2108 	 * any bsd label at the front of the partition
2109 	 */
2110 	blist_free(sp->sw_blist, 2, nblks - 2);
2111 
2112 	dvbase = 0;
2113 	mtx_lock(&sw_dev_mtx);
2114 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2115 		if (tsp->sw_end >= dvbase) {
2116 			/*
2117 			 * We put one uncovered page between the devices
2118 			 * in order to definitively prevent any cross-device
2119 			 * I/O requests
2120 			 */
2121 			dvbase = tsp->sw_end + 1;
2122 		}
2123 	}
2124 	sp->sw_first = dvbase;
2125 	sp->sw_end = dvbase + nblks;
2126 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2127 	nswapdev++;
2128 	swap_pager_avail += nblks;
2129 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2130 	swapon_check_swzone(swap_total / PAGE_SIZE);
2131 	swp_sizecheck();
2132 	mtx_unlock(&sw_dev_mtx);
2133 }
2134 
2135 /*
2136  * SYSCALL: swapoff(devname)
2137  *
2138  * Disable swapping on the given device.
2139  *
2140  * XXX: Badly designed system call: it should use a device index
2141  * rather than filename as specification.  We keep sw_vp around
2142  * only to make this work.
2143  */
2144 #ifndef _SYS_SYSPROTO_H_
2145 struct swapoff_args {
2146 	char *name;
2147 };
2148 #endif
2149 
2150 /*
2151  * MPSAFE
2152  */
2153 /* ARGSUSED */
2154 int
2155 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2156 {
2157 	struct vnode *vp;
2158 	struct nameidata nd;
2159 	struct swdevt *sp;
2160 	int error;
2161 
2162 	error = priv_check(td, PRIV_SWAPOFF);
2163 	if (error)
2164 		return (error);
2165 
2166 	sx_xlock(&swdev_syscall_lock);
2167 
2168 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2169 	    td);
2170 	error = namei(&nd);
2171 	if (error)
2172 		goto done;
2173 	NDFREE(&nd, NDF_ONLY_PNBUF);
2174 	vp = nd.ni_vp;
2175 
2176 	mtx_lock(&sw_dev_mtx);
2177 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2178 		if (sp->sw_vp == vp)
2179 			break;
2180 	}
2181 	mtx_unlock(&sw_dev_mtx);
2182 	if (sp == NULL) {
2183 		error = EINVAL;
2184 		goto done;
2185 	}
2186 	error = swapoff_one(sp, td->td_ucred);
2187 done:
2188 	sx_xunlock(&swdev_syscall_lock);
2189 	return (error);
2190 }
2191 
2192 static int
2193 swapoff_one(struct swdevt *sp, struct ucred *cred)
2194 {
2195 	u_long nblks, dvbase;
2196 #ifdef MAC
2197 	int error;
2198 #endif
2199 
2200 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2201 #ifdef MAC
2202 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2203 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2204 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2205 	if (error != 0)
2206 		return (error);
2207 #endif
2208 	nblks = sp->sw_nblks;
2209 
2210 	/*
2211 	 * We can turn off this swap device safely only if the
2212 	 * available virtual memory in the system will fit the amount
2213 	 * of data we will have to page back in, plus an epsilon so
2214 	 * the system doesn't become critically low on swap space.
2215 	 */
2216 	if (vm_cnt.v_free_count + vm_cnt.v_cache_count + swap_pager_avail <
2217 	    nblks + nswap_lowat) {
2218 		return (ENOMEM);
2219 	}
2220 
2221 	/*
2222 	 * Prevent further allocations on this device.
2223 	 */
2224 	mtx_lock(&sw_dev_mtx);
2225 	sp->sw_flags |= SW_CLOSING;
2226 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2227 		swap_pager_avail -= blist_fill(sp->sw_blist,
2228 		     dvbase, dmmax);
2229 	}
2230 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2231 	mtx_unlock(&sw_dev_mtx);
2232 
2233 	/*
2234 	 * Page in the contents of the device and close it.
2235 	 */
2236 	swap_pager_swapoff(sp);
2237 
2238 	sp->sw_close(curthread, sp);
2239 	mtx_lock(&sw_dev_mtx);
2240 	sp->sw_id = NULL;
2241 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2242 	nswapdev--;
2243 	if (nswapdev == 0) {
2244 		swap_pager_full = 2;
2245 		swap_pager_almost_full = 1;
2246 	}
2247 	if (swdevhd == sp)
2248 		swdevhd = NULL;
2249 	mtx_unlock(&sw_dev_mtx);
2250 	blist_destroy(sp->sw_blist);
2251 	free(sp, M_VMPGDATA);
2252 	return (0);
2253 }
2254 
2255 void
2256 swapoff_all(void)
2257 {
2258 	struct swdevt *sp, *spt;
2259 	const char *devname;
2260 	int error;
2261 
2262 	sx_xlock(&swdev_syscall_lock);
2263 
2264 	mtx_lock(&sw_dev_mtx);
2265 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2266 		mtx_unlock(&sw_dev_mtx);
2267 		if (vn_isdisk(sp->sw_vp, NULL))
2268 			devname = devtoname(sp->sw_vp->v_rdev);
2269 		else
2270 			devname = "[file]";
2271 		error = swapoff_one(sp, thread0.td_ucred);
2272 		if (error != 0) {
2273 			printf("Cannot remove swap device %s (error=%d), "
2274 			    "skipping.\n", devname, error);
2275 		} else if (bootverbose) {
2276 			printf("Swap device %s removed.\n", devname);
2277 		}
2278 		mtx_lock(&sw_dev_mtx);
2279 	}
2280 	mtx_unlock(&sw_dev_mtx);
2281 
2282 	sx_xunlock(&swdev_syscall_lock);
2283 }
2284 
2285 void
2286 swap_pager_status(int *total, int *used)
2287 {
2288 	struct swdevt *sp;
2289 
2290 	*total = 0;
2291 	*used = 0;
2292 	mtx_lock(&sw_dev_mtx);
2293 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2294 		*total += sp->sw_nblks;
2295 		*used += sp->sw_used;
2296 	}
2297 	mtx_unlock(&sw_dev_mtx);
2298 }
2299 
2300 int
2301 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2302 {
2303 	struct swdevt *sp;
2304 	const char *tmp_devname;
2305 	int error, n;
2306 
2307 	n = 0;
2308 	error = ENOENT;
2309 	mtx_lock(&sw_dev_mtx);
2310 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2311 		if (n != name) {
2312 			n++;
2313 			continue;
2314 		}
2315 		xs->xsw_version = XSWDEV_VERSION;
2316 		xs->xsw_dev = sp->sw_dev;
2317 		xs->xsw_flags = sp->sw_flags;
2318 		xs->xsw_nblks = sp->sw_nblks;
2319 		xs->xsw_used = sp->sw_used;
2320 		if (devname != NULL) {
2321 			if (vn_isdisk(sp->sw_vp, NULL))
2322 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2323 			else
2324 				tmp_devname = "[file]";
2325 			strncpy(devname, tmp_devname, len);
2326 		}
2327 		error = 0;
2328 		break;
2329 	}
2330 	mtx_unlock(&sw_dev_mtx);
2331 	return (error);
2332 }
2333 
2334 static int
2335 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2336 {
2337 	struct xswdev xs;
2338 	int error;
2339 
2340 	if (arg2 != 1)			/* name length */
2341 		return (EINVAL);
2342 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2343 	if (error != 0)
2344 		return (error);
2345 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2346 	return (error);
2347 }
2348 
2349 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2350     "Number of swap devices");
2351 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2352     sysctl_vm_swap_info,
2353     "Swap statistics by device");
2354 
2355 /*
2356  * vmspace_swap_count() - count the approximate swap usage in pages for a
2357  *			  vmspace.
2358  *
2359  *	The map must be locked.
2360  *
2361  *	Swap usage is determined by taking the proportional swap used by
2362  *	VM objects backing the VM map.  To make up for fractional losses,
2363  *	if the VM object has any swap use at all the associated map entries
2364  *	count for at least 1 swap page.
2365  */
2366 long
2367 vmspace_swap_count(struct vmspace *vmspace)
2368 {
2369 	vm_map_t map;
2370 	vm_map_entry_t cur;
2371 	vm_object_t object;
2372 	long count, n;
2373 
2374 	map = &vmspace->vm_map;
2375 	count = 0;
2376 
2377 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2378 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2379 		    (object = cur->object.vm_object) != NULL) {
2380 			VM_OBJECT_WLOCK(object);
2381 			if (object->type == OBJT_SWAP &&
2382 			    object->un_pager.swp.swp_bcount != 0) {
2383 				n = (cur->end - cur->start) / PAGE_SIZE;
2384 				count += object->un_pager.swp.swp_bcount *
2385 				    SWAP_META_PAGES * n / object->size + 1;
2386 			}
2387 			VM_OBJECT_WUNLOCK(object);
2388 		}
2389 	}
2390 	return (count);
2391 }
2392 
2393 /*
2394  * GEOM backend
2395  *
2396  * Swapping onto disk devices.
2397  *
2398  */
2399 
2400 static g_orphan_t swapgeom_orphan;
2401 
2402 static struct g_class g_swap_class = {
2403 	.name = "SWAP",
2404 	.version = G_VERSION,
2405 	.orphan = swapgeom_orphan,
2406 };
2407 
2408 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2409 
2410 
2411 static void
2412 swapgeom_close_ev(void *arg, int flags)
2413 {
2414 	struct g_consumer *cp;
2415 
2416 	cp = arg;
2417 	g_access(cp, -1, -1, 0);
2418 	g_detach(cp);
2419 	g_destroy_consumer(cp);
2420 }
2421 
2422 /*
2423  * Add a reference to the g_consumer for an inflight transaction.
2424  */
2425 static void
2426 swapgeom_acquire(struct g_consumer *cp)
2427 {
2428 
2429 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2430 	cp->index++;
2431 }
2432 
2433 /*
2434  * Remove a reference from the g_consumer.  Post a close event if all
2435  * references go away, since the function might be called from the
2436  * biodone context.
2437  */
2438 static void
2439 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2440 {
2441 
2442 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2443 	cp->index--;
2444 	if (cp->index == 0) {
2445 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2446 			sp->sw_id = NULL;
2447 	}
2448 }
2449 
2450 static void
2451 swapgeom_done(struct bio *bp2)
2452 {
2453 	struct swdevt *sp;
2454 	struct buf *bp;
2455 	struct g_consumer *cp;
2456 
2457 	bp = bp2->bio_caller2;
2458 	cp = bp2->bio_from;
2459 	bp->b_ioflags = bp2->bio_flags;
2460 	if (bp2->bio_error)
2461 		bp->b_ioflags |= BIO_ERROR;
2462 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2463 	bp->b_error = bp2->bio_error;
2464 	bufdone(bp);
2465 	sp = bp2->bio_caller1;
2466 	mtx_lock(&sw_dev_mtx);
2467 	swapgeom_release(cp, sp);
2468 	mtx_unlock(&sw_dev_mtx);
2469 	g_destroy_bio(bp2);
2470 }
2471 
2472 static void
2473 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2474 {
2475 	struct bio *bio;
2476 	struct g_consumer *cp;
2477 
2478 	mtx_lock(&sw_dev_mtx);
2479 	cp = sp->sw_id;
2480 	if (cp == NULL) {
2481 		mtx_unlock(&sw_dev_mtx);
2482 		bp->b_error = ENXIO;
2483 		bp->b_ioflags |= BIO_ERROR;
2484 		bufdone(bp);
2485 		return;
2486 	}
2487 	swapgeom_acquire(cp);
2488 	mtx_unlock(&sw_dev_mtx);
2489 	if (bp->b_iocmd == BIO_WRITE)
2490 		bio = g_new_bio();
2491 	else
2492 		bio = g_alloc_bio();
2493 	if (bio == NULL) {
2494 		mtx_lock(&sw_dev_mtx);
2495 		swapgeom_release(cp, sp);
2496 		mtx_unlock(&sw_dev_mtx);
2497 		bp->b_error = ENOMEM;
2498 		bp->b_ioflags |= BIO_ERROR;
2499 		bufdone(bp);
2500 		return;
2501 	}
2502 
2503 	bio->bio_caller1 = sp;
2504 	bio->bio_caller2 = bp;
2505 	bio->bio_cmd = bp->b_iocmd;
2506 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2507 	bio->bio_length = bp->b_bcount;
2508 	bio->bio_done = swapgeom_done;
2509 	if (!buf_mapped(bp)) {
2510 		bio->bio_ma = bp->b_pages;
2511 		bio->bio_data = unmapped_buf;
2512 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2513 		bio->bio_ma_n = bp->b_npages;
2514 		bio->bio_flags |= BIO_UNMAPPED;
2515 	} else {
2516 		bio->bio_data = bp->b_data;
2517 		bio->bio_ma = NULL;
2518 	}
2519 	g_io_request(bio, cp);
2520 	return;
2521 }
2522 
2523 static void
2524 swapgeom_orphan(struct g_consumer *cp)
2525 {
2526 	struct swdevt *sp;
2527 	int destroy;
2528 
2529 	mtx_lock(&sw_dev_mtx);
2530 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2531 		if (sp->sw_id == cp) {
2532 			sp->sw_flags |= SW_CLOSING;
2533 			break;
2534 		}
2535 	}
2536 	/*
2537 	 * Drop reference we were created with. Do directly since we're in a
2538 	 * special context where we don't have to queue the call to
2539 	 * swapgeom_close_ev().
2540 	 */
2541 	cp->index--;
2542 	destroy = ((sp != NULL) && (cp->index == 0));
2543 	if (destroy)
2544 		sp->sw_id = NULL;
2545 	mtx_unlock(&sw_dev_mtx);
2546 	if (destroy)
2547 		swapgeom_close_ev(cp, 0);
2548 }
2549 
2550 static void
2551 swapgeom_close(struct thread *td, struct swdevt *sw)
2552 {
2553 	struct g_consumer *cp;
2554 
2555 	mtx_lock(&sw_dev_mtx);
2556 	cp = sw->sw_id;
2557 	sw->sw_id = NULL;
2558 	mtx_unlock(&sw_dev_mtx);
2559 
2560 	/*
2561 	 * swapgeom_close() may be called from the biodone context,
2562 	 * where we cannot perform topology changes.  Delegate the
2563 	 * work to the events thread.
2564 	 */
2565 	if (cp != NULL)
2566 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2567 }
2568 
2569 static int
2570 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2571 {
2572 	struct g_provider *pp;
2573 	struct g_consumer *cp;
2574 	static struct g_geom *gp;
2575 	struct swdevt *sp;
2576 	u_long nblks;
2577 	int error;
2578 
2579 	pp = g_dev_getprovider(dev);
2580 	if (pp == NULL)
2581 		return (ENODEV);
2582 	mtx_lock(&sw_dev_mtx);
2583 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2584 		cp = sp->sw_id;
2585 		if (cp != NULL && cp->provider == pp) {
2586 			mtx_unlock(&sw_dev_mtx);
2587 			return (EBUSY);
2588 		}
2589 	}
2590 	mtx_unlock(&sw_dev_mtx);
2591 	if (gp == NULL)
2592 		gp = g_new_geomf(&g_swap_class, "swap");
2593 	cp = g_new_consumer(gp);
2594 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2595 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2596 	g_attach(cp, pp);
2597 	/*
2598 	 * XXX: Every time you think you can improve the margin for
2599 	 * footshooting, somebody depends on the ability to do so:
2600 	 * savecore(8) wants to write to our swapdev so we cannot
2601 	 * set an exclusive count :-(
2602 	 */
2603 	error = g_access(cp, 1, 1, 0);
2604 	if (error != 0) {
2605 		g_detach(cp);
2606 		g_destroy_consumer(cp);
2607 		return (error);
2608 	}
2609 	nblks = pp->mediasize / DEV_BSIZE;
2610 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2611 	    swapgeom_close, dev2udev(dev),
2612 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2613 	return (0);
2614 }
2615 
2616 static int
2617 swapongeom(struct vnode *vp)
2618 {
2619 	int error;
2620 
2621 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2622 	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2623 		error = ENOENT;
2624 	} else {
2625 		g_topology_lock();
2626 		error = swapongeom_locked(vp->v_rdev, vp);
2627 		g_topology_unlock();
2628 	}
2629 	VOP_UNLOCK(vp, 0);
2630 	return (error);
2631 }
2632 
2633 /*
2634  * VNODE backend
2635  *
2636  * This is used mainly for network filesystem (read: probably only tested
2637  * with NFS) swapfiles.
2638  *
2639  */
2640 
2641 static void
2642 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2643 {
2644 	struct vnode *vp2;
2645 
2646 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2647 
2648 	vp2 = sp->sw_id;
2649 	vhold(vp2);
2650 	if (bp->b_iocmd == BIO_WRITE) {
2651 		if (bp->b_bufobj)
2652 			bufobj_wdrop(bp->b_bufobj);
2653 		bufobj_wref(&vp2->v_bufobj);
2654 	}
2655 	if (bp->b_bufobj != &vp2->v_bufobj)
2656 		bp->b_bufobj = &vp2->v_bufobj;
2657 	bp->b_vp = vp2;
2658 	bp->b_iooffset = dbtob(bp->b_blkno);
2659 	bstrategy(bp);
2660 	return;
2661 }
2662 
2663 static void
2664 swapdev_close(struct thread *td, struct swdevt *sp)
2665 {
2666 
2667 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2668 	vrele(sp->sw_vp);
2669 }
2670 
2671 
2672 static int
2673 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2674 {
2675 	struct swdevt *sp;
2676 	int error;
2677 
2678 	if (nblks == 0)
2679 		return (ENXIO);
2680 	mtx_lock(&sw_dev_mtx);
2681 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2682 		if (sp->sw_id == vp) {
2683 			mtx_unlock(&sw_dev_mtx);
2684 			return (EBUSY);
2685 		}
2686 	}
2687 	mtx_unlock(&sw_dev_mtx);
2688 
2689 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2690 #ifdef MAC
2691 	error = mac_system_check_swapon(td->td_ucred, vp);
2692 	if (error == 0)
2693 #endif
2694 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2695 	(void) VOP_UNLOCK(vp, 0);
2696 	if (error)
2697 		return (error);
2698 
2699 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2700 	    NODEV, 0);
2701 	return (0);
2702 }
2703 
2704 static int
2705 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2706 {
2707 	int error, new, n;
2708 
2709 	new = nsw_wcount_async_max;
2710 	error = sysctl_handle_int(oidp, &new, 0, req);
2711 	if (error != 0 || req->newptr == NULL)
2712 		return (error);
2713 
2714 	if (new > nswbuf / 2 || new < 1)
2715 		return (EINVAL);
2716 
2717 	mtx_lock(&pbuf_mtx);
2718 	while (nsw_wcount_async_max != new) {
2719 		/*
2720 		 * Adjust difference.  If the current async count is too low,
2721 		 * we will need to sqeeze our update slowly in.  Sleep with a
2722 		 * higher priority than getpbuf() to finish faster.
2723 		 */
2724 		n = new - nsw_wcount_async_max;
2725 		if (nsw_wcount_async + n >= 0) {
2726 			nsw_wcount_async += n;
2727 			nsw_wcount_async_max += n;
2728 			wakeup(&nsw_wcount_async);
2729 		} else {
2730 			nsw_wcount_async_max -= nsw_wcount_async;
2731 			nsw_wcount_async = 0;
2732 			msleep(&nsw_wcount_async, &pbuf_mtx, PSWP,
2733 			    "swpsysctl", 0);
2734 		}
2735 	}
2736 	mtx_unlock(&pbuf_mtx);
2737 
2738 	return (0);
2739 }
2740