xref: /freebsd/sys/vm/swap_pager.c (revision 01ded8b942effbbb4d9225c4227f264e499e9698)
1 /*-
2  * Copyright (c) 1998 Matthew Dillon,
3  * Copyright (c) 1994 John S. Dyson
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *				New Swap System
41  *				Matthew Dillon
42  *
43  * Radix Bitmap 'blists'.
44  *
45  *	- The new swapper uses the new radix bitmap code.  This should scale
46  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
47  *	  arbitrary degree of fragmentation.
48  *
49  * Features:
50  *
51  *	- on the fly reallocation of swap during putpages.  The new system
52  *	  does not try to keep previously allocated swap blocks for dirty
53  *	  pages.
54  *
55  *	- on the fly deallocation of swap
56  *
57  *	- No more garbage collection required.  Unnecessarily allocated swap
58  *	  blocks only exist for dirty vm_page_t's now and these are already
59  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
60  *	  removal of invalidated swap blocks when a page is destroyed
61  *	  or renamed.
62  *
63  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
64  *
65  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
66  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include "opt_swap.h"
73 #include "opt_vm.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/conf.h>
78 #include <sys/kernel.h>
79 #include <sys/priv.h>
80 #include <sys/proc.h>
81 #include <sys/bio.h>
82 #include <sys/buf.h>
83 #include <sys/disk.h>
84 #include <sys/fcntl.h>
85 #include <sys/mount.h>
86 #include <sys/namei.h>
87 #include <sys/vnode.h>
88 #include <sys/malloc.h>
89 #include <sys/resource.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysproto.h>
93 #include <sys/blist.h>
94 #include <sys/lock.h>
95 #include <sys/sx.h>
96 #include <sys/vmmeter.h>
97 
98 #include <security/mac/mac_framework.h>
99 
100 #include <vm/vm.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_object.h>
105 #include <vm/vm_page.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_pageout.h>
108 #include <vm/vm_param.h>
109 #include <vm/swap_pager.h>
110 #include <vm/vm_extern.h>
111 #include <vm/uma.h>
112 
113 #include <geom/geom.h>
114 
115 /*
116  * SWB_NPAGES must be a power of 2.  It may be set to 1, 2, 4, 8, or 16
117  * pages per allocation.  We recommend you stick with the default of 8.
118  * The 16-page limit is due to the radix code (kern/subr_blist.c).
119  */
120 #ifndef MAX_PAGEOUT_CLUSTER
121 #define MAX_PAGEOUT_CLUSTER 16
122 #endif
123 
124 #if !defined(SWB_NPAGES)
125 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
126 #endif
127 
128 /*
129  * Piecemeal swap metadata structure.  Swap is stored in a radix tree.
130  *
131  * If SWB_NPAGES is 8 and sizeof(char *) == sizeof(daddr_t), our radix
132  * is basically 8.  Assuming PAGE_SIZE == 4096, one tree level represents
133  * 32K worth of data, two levels represent 256K, three levels represent
134  * 2 MBytes.   This is acceptable.
135  *
136  * Overall memory utilization is about the same as the old swap structure.
137  */
138 #define SWCORRECT(n) (sizeof(void *) * (n) / sizeof(daddr_t))
139 #define SWAP_META_PAGES		(SWB_NPAGES * 2)
140 #define SWAP_META_MASK		(SWAP_META_PAGES - 1)
141 
142 struct swblock {
143 	struct swblock	*swb_hnext;
144 	vm_object_t	swb_object;
145 	vm_pindex_t	swb_index;
146 	int		swb_count;
147 	daddr_t		swb_pages[SWAP_META_PAGES];
148 };
149 
150 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
151 static struct mtx sw_dev_mtx;
152 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
153 static struct swdevt *swdevhd;	/* Allocate from here next */
154 static int nswapdev;		/* Number of swap devices */
155 int swap_pager_avail;
156 static int swdev_syscall_active = 0; /* serialize swap(on|off) */
157 
158 static vm_ooffset_t swap_total;
159 SYSCTL_QUAD(_vm, OID_AUTO, swap_total, CTLFLAG_RD, &swap_total, 0,
160     "Total amount of available swap storage.");
161 static vm_ooffset_t swap_reserved;
162 SYSCTL_QUAD(_vm, OID_AUTO, swap_reserved, CTLFLAG_RD, &swap_reserved, 0,
163     "Amount of swap storage needed to back all allocated anonymous memory.");
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, OID_AUTO, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 
169 /* bits from overcommit */
170 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
171 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
172 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
173 
174 int
175 swap_reserve(vm_ooffset_t incr)
176 {
177 
178 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
179 }
180 
181 int
182 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
183 {
184 	vm_ooffset_t r, s;
185 	int res, error;
186 	static int curfail;
187 	static struct timeval lastfail;
188 	struct uidinfo *uip;
189 
190 	uip = cred->cr_ruidinfo;
191 
192 	if (incr & PAGE_MASK)
193 		panic("swap_reserve: & PAGE_MASK");
194 
195 	res = 0;
196 	mtx_lock(&sw_dev_mtx);
197 	r = swap_reserved + incr;
198 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
199 		s = cnt.v_page_count - cnt.v_free_reserved - cnt.v_wire_count;
200 		s *= PAGE_SIZE;
201 	} else
202 		s = 0;
203 	s += swap_total;
204 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
205 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
206 		res = 1;
207 		swap_reserved = r;
208 	}
209 	mtx_unlock(&sw_dev_mtx);
210 
211 	if (res) {
212 		PROC_LOCK(curproc);
213 		UIDINFO_VMSIZE_LOCK(uip);
214 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
215 		    uip->ui_vmsize + incr > lim_cur(curproc, RLIMIT_SWAP) &&
216 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT))
217 			res = 0;
218 		else
219 			uip->ui_vmsize += incr;
220 		UIDINFO_VMSIZE_UNLOCK(uip);
221 		PROC_UNLOCK(curproc);
222 		if (!res) {
223 			mtx_lock(&sw_dev_mtx);
224 			swap_reserved -= incr;
225 			mtx_unlock(&sw_dev_mtx);
226 		}
227 	}
228 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
229 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
230 		    curproc->p_pid, uip->ui_uid, incr);
231 	}
232 
233 	return (res);
234 }
235 
236 void
237 swap_reserve_force(vm_ooffset_t incr)
238 {
239 	struct uidinfo *uip;
240 
241 	mtx_lock(&sw_dev_mtx);
242 	swap_reserved += incr;
243 	mtx_unlock(&sw_dev_mtx);
244 
245 	uip = curthread->td_ucred->cr_ruidinfo;
246 	PROC_LOCK(curproc);
247 	UIDINFO_VMSIZE_LOCK(uip);
248 	uip->ui_vmsize += incr;
249 	UIDINFO_VMSIZE_UNLOCK(uip);
250 	PROC_UNLOCK(curproc);
251 }
252 
253 void
254 swap_release(vm_ooffset_t decr)
255 {
256 	struct ucred *cred;
257 
258 	PROC_LOCK(curproc);
259 	cred = curthread->td_ucred;
260 	swap_release_by_cred(decr, cred);
261 	PROC_UNLOCK(curproc);
262 }
263 
264 void
265 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
266 {
267  	struct uidinfo *uip;
268 
269 	uip = cred->cr_ruidinfo;
270 
271 	if (decr & PAGE_MASK)
272 		panic("swap_release: & PAGE_MASK");
273 
274 	mtx_lock(&sw_dev_mtx);
275 	if (swap_reserved < decr)
276 		panic("swap_reserved < decr");
277 	swap_reserved -= decr;
278 	mtx_unlock(&sw_dev_mtx);
279 
280 	UIDINFO_VMSIZE_LOCK(uip);
281 	if (uip->ui_vmsize < decr)
282 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
283 	uip->ui_vmsize -= decr;
284 	UIDINFO_VMSIZE_UNLOCK(uip);
285 }
286 
287 static void swapdev_strategy(struct buf *, struct swdevt *sw);
288 
289 #define SWM_FREE	0x02	/* free, period			*/
290 #define SWM_POP		0x04	/* pop out			*/
291 
292 int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
293 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
294 static int nsw_rcount;		/* free read buffers			*/
295 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
296 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
297 static int nsw_wcount_async_max;/* assigned maximum			*/
298 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
299 
300 static struct swblock **swhash;
301 static int swhash_mask;
302 static struct mtx swhash_mtx;
303 
304 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
305 static struct sx sw_alloc_sx;
306 
307 
308 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
309         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
310 
311 /*
312  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
313  * of searching a named list by hashing it just a little.
314  */
315 
316 #define NOBJLISTS		8
317 
318 #define NOBJLIST(handle)	\
319 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
320 
321 static struct mtx sw_alloc_mtx;	/* protect list manipulation */
322 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
323 static uma_zone_t	swap_zone;
324 static struct vm_object	swap_zone_obj;
325 
326 /*
327  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
328  * calls hooked from other parts of the VM system and do not appear here.
329  * (see vm/swap_pager.h).
330  */
331 static vm_object_t
332 		swap_pager_alloc(void *handle, vm_ooffset_t size,
333 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
334 static void	swap_pager_dealloc(vm_object_t object);
335 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int);
336 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
337 static boolean_t
338 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
339 static void	swap_pager_init(void);
340 static void	swap_pager_unswapped(vm_page_t);
341 static void	swap_pager_swapoff(struct swdevt *sp);
342 
343 struct pagerops swappagerops = {
344 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
345 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
346 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
347 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
348 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
349 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
350 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
351 };
352 
353 /*
354  * dmmax is in page-sized chunks with the new swap system.  It was
355  * dev-bsized chunks in the old.  dmmax is always a power of 2.
356  *
357  * swap_*() routines are externally accessible.  swp_*() routines are
358  * internal.
359  */
360 static int dmmax;
361 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
362 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
363 
364 SYSCTL_INT(_vm, OID_AUTO, dmmax,
365 	CTLFLAG_RD, &dmmax, 0, "Maximum size of a swap block");
366 
367 static void	swp_sizecheck(void);
368 static void	swp_pager_async_iodone(struct buf *bp);
369 static int	swapongeom(struct thread *, struct vnode *);
370 static int	swaponvp(struct thread *, struct vnode *, u_long);
371 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
372 
373 /*
374  * Swap bitmap functions
375  */
376 static void	swp_pager_freeswapspace(daddr_t blk, int npages);
377 static daddr_t	swp_pager_getswapspace(int npages);
378 
379 /*
380  * Metadata functions
381  */
382 static struct swblock **swp_pager_hash(vm_object_t object, vm_pindex_t index);
383 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
384 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, daddr_t);
385 static void swp_pager_meta_free_all(vm_object_t);
386 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
387 
388 static void
389 swp_pager_free_nrpage(vm_page_t m)
390 {
391 
392 	vm_page_lock(m);
393 	if (m->wire_count == 0)
394 		vm_page_free(m);
395 	vm_page_unlock(m);
396 }
397 
398 /*
399  * SWP_SIZECHECK() -	update swap_pager_full indication
400  *
401  *	update the swap_pager_almost_full indication and warn when we are
402  *	about to run out of swap space, using lowat/hiwat hysteresis.
403  *
404  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
405  *
406  *	No restrictions on call
407  *	This routine may not block.
408  *	This routine must be called at splvm()
409  */
410 static void
411 swp_sizecheck(void)
412 {
413 
414 	if (swap_pager_avail < nswap_lowat) {
415 		if (swap_pager_almost_full == 0) {
416 			printf("swap_pager: out of swap space\n");
417 			swap_pager_almost_full = 1;
418 		}
419 	} else {
420 		swap_pager_full = 0;
421 		if (swap_pager_avail > nswap_hiwat)
422 			swap_pager_almost_full = 0;
423 	}
424 }
425 
426 /*
427  * SWP_PAGER_HASH() -	hash swap meta data
428  *
429  *	This is an helper function which hashes the swapblk given
430  *	the object and page index.  It returns a pointer to a pointer
431  *	to the object, or a pointer to a NULL pointer if it could not
432  *	find a swapblk.
433  *
434  *	This routine must be called at splvm().
435  */
436 static struct swblock **
437 swp_pager_hash(vm_object_t object, vm_pindex_t index)
438 {
439 	struct swblock **pswap;
440 	struct swblock *swap;
441 
442 	index &= ~(vm_pindex_t)SWAP_META_MASK;
443 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
444 	while ((swap = *pswap) != NULL) {
445 		if (swap->swb_object == object &&
446 		    swap->swb_index == index
447 		) {
448 			break;
449 		}
450 		pswap = &swap->swb_hnext;
451 	}
452 	return (pswap);
453 }
454 
455 /*
456  * SWAP_PAGER_INIT() -	initialize the swap pager!
457  *
458  *	Expected to be started from system init.  NOTE:  This code is run
459  *	before much else so be careful what you depend on.  Most of the VM
460  *	system has yet to be initialized at this point.
461  */
462 static void
463 swap_pager_init(void)
464 {
465 	/*
466 	 * Initialize object lists
467 	 */
468 	int i;
469 
470 	for (i = 0; i < NOBJLISTS; ++i)
471 		TAILQ_INIT(&swap_pager_object_list[i]);
472 	mtx_init(&sw_alloc_mtx, "swap_pager list", NULL, MTX_DEF);
473 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
474 
475 	/*
476 	 * Device Stripe, in PAGE_SIZE'd blocks
477 	 */
478 	dmmax = SWB_NPAGES * 2;
479 }
480 
481 /*
482  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
483  *
484  *	Expected to be started from pageout process once, prior to entering
485  *	its main loop.
486  */
487 void
488 swap_pager_swap_init(void)
489 {
490 	int n, n2;
491 
492 	/*
493 	 * Number of in-transit swap bp operations.  Don't
494 	 * exhaust the pbufs completely.  Make sure we
495 	 * initialize workable values (0 will work for hysteresis
496 	 * but it isn't very efficient).
497 	 *
498 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
499 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
500 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
501 	 * constrained by the swap device interleave stripe size.
502 	 *
503 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
504 	 * designed to prevent other I/O from having high latencies due to
505 	 * our pageout I/O.  The value 4 works well for one or two active swap
506 	 * devices but is probably a little low if you have more.  Even so,
507 	 * a higher value would probably generate only a limited improvement
508 	 * with three or four active swap devices since the system does not
509 	 * typically have to pageout at extreme bandwidths.   We will want
510 	 * at least 2 per swap devices, and 4 is a pretty good value if you
511 	 * have one NFS swap device due to the command/ack latency over NFS.
512 	 * So it all works out pretty well.
513 	 */
514 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
515 
516 	mtx_lock(&pbuf_mtx);
517 	nsw_rcount = (nswbuf + 1) / 2;
518 	nsw_wcount_sync = (nswbuf + 3) / 4;
519 	nsw_wcount_async = 4;
520 	nsw_wcount_async_max = nsw_wcount_async;
521 	mtx_unlock(&pbuf_mtx);
522 
523 	/*
524 	 * Initialize our zone.  Right now I'm just guessing on the number
525 	 * we need based on the number of pages in the system.  Each swblock
526 	 * can hold 16 pages, so this is probably overkill.  This reservation
527 	 * is typically limited to around 32MB by default.
528 	 */
529 	n = cnt.v_page_count / 2;
530 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
531 		n = maxswzone / sizeof(struct swblock);
532 	n2 = n;
533 	swap_zone = uma_zcreate("SWAPMETA", sizeof(struct swblock), NULL, NULL,
534 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
535 	if (swap_zone == NULL)
536 		panic("failed to create swap_zone.");
537 	do {
538 		if (uma_zone_set_obj(swap_zone, &swap_zone_obj, n))
539 			break;
540 		/*
541 		 * if the allocation failed, try a zone two thirds the
542 		 * size of the previous attempt.
543 		 */
544 		n -= ((n + 2) / 3);
545 	} while (n > 0);
546 	if (n2 != n)
547 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
548 	n2 = n;
549 
550 	/*
551 	 * Initialize our meta-data hash table.  The swapper does not need to
552 	 * be quite as efficient as the VM system, so we do not use an
553 	 * oversized hash table.
554 	 *
555 	 * 	n: 		size of hash table, must be power of 2
556 	 *	swhash_mask:	hash table index mask
557 	 */
558 	for (n = 1; n < n2 / 8; n *= 2)
559 		;
560 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK | M_ZERO);
561 	swhash_mask = n - 1;
562 	mtx_init(&swhash_mtx, "swap_pager swhash", NULL, MTX_DEF);
563 }
564 
565 /*
566  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
567  *			its metadata structures.
568  *
569  *	This routine is called from the mmap and fork code to create a new
570  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
571  *	and then converting it with swp_pager_meta_build().
572  *
573  *	This routine may block in vm_object_allocate() and create a named
574  *	object lookup race, so we must interlock.   We must also run at
575  *	splvm() for the object lookup to handle races with interrupts, but
576  *	we do not have to maintain splvm() in between the lookup and the
577  *	add because (I believe) it is not possible to attempt to create
578  *	a new swap object w/handle when a default object with that handle
579  *	already exists.
580  *
581  * MPSAFE
582  */
583 static vm_object_t
584 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
585     vm_ooffset_t offset, struct ucred *cred)
586 {
587 	vm_object_t object;
588 	vm_pindex_t pindex;
589 
590 	pindex = OFF_TO_IDX(offset + PAGE_MASK + size);
591 	if (handle) {
592 		mtx_lock(&Giant);
593 		/*
594 		 * Reference existing named region or allocate new one.  There
595 		 * should not be a race here against swp_pager_meta_build()
596 		 * as called from vm_page_remove() in regards to the lookup
597 		 * of the handle.
598 		 */
599 		sx_xlock(&sw_alloc_sx);
600 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
601 		if (object == NULL) {
602 			if (cred != NULL) {
603 				if (!swap_reserve_by_cred(size, cred)) {
604 					sx_xunlock(&sw_alloc_sx);
605 					mtx_unlock(&Giant);
606 					return (NULL);
607 				}
608 				crhold(cred);
609 			}
610 			object = vm_object_allocate(OBJT_DEFAULT, pindex);
611 			VM_OBJECT_LOCK(object);
612 			object->handle = handle;
613 			if (cred != NULL) {
614 				object->cred = cred;
615 				object->charge = size;
616 			}
617 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
618 			VM_OBJECT_UNLOCK(object);
619 		}
620 		sx_xunlock(&sw_alloc_sx);
621 		mtx_unlock(&Giant);
622 	} else {
623 		if (cred != NULL) {
624 			if (!swap_reserve_by_cred(size, cred))
625 				return (NULL);
626 			crhold(cred);
627 		}
628 		object = vm_object_allocate(OBJT_DEFAULT, pindex);
629 		VM_OBJECT_LOCK(object);
630 		if (cred != NULL) {
631 			object->cred = cred;
632 			object->charge = size;
633 		}
634 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
635 		VM_OBJECT_UNLOCK(object);
636 	}
637 	return (object);
638 }
639 
640 /*
641  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
642  *
643  *	The swap backing for the object is destroyed.  The code is
644  *	designed such that we can reinstantiate it later, but this
645  *	routine is typically called only when the entire object is
646  *	about to be destroyed.
647  *
648  *	This routine may block, but no longer does.
649  *
650  *	The object must be locked or unreferenceable.
651  */
652 static void
653 swap_pager_dealloc(vm_object_t object)
654 {
655 
656 	/*
657 	 * Remove from list right away so lookups will fail if we block for
658 	 * pageout completion.
659 	 */
660 	if (object->handle != NULL) {
661 		mtx_lock(&sw_alloc_mtx);
662 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
663 		mtx_unlock(&sw_alloc_mtx);
664 	}
665 
666 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
667 	vm_object_pip_wait(object, "swpdea");
668 
669 	/*
670 	 * Free all remaining metadata.  We only bother to free it from
671 	 * the swap meta data.  We do not attempt to free swapblk's still
672 	 * associated with vm_page_t's for this object.  We do not care
673 	 * if paging is still in progress on some objects.
674 	 */
675 	swp_pager_meta_free_all(object);
676 }
677 
678 /************************************************************************
679  *			SWAP PAGER BITMAP ROUTINES			*
680  ************************************************************************/
681 
682 /*
683  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
684  *
685  *	Allocate swap for the requested number of pages.  The starting
686  *	swap block number (a page index) is returned or SWAPBLK_NONE
687  *	if the allocation failed.
688  *
689  *	Also has the side effect of advising that somebody made a mistake
690  *	when they configured swap and didn't configure enough.
691  *
692  *	Must be called at splvm() to avoid races with bitmap frees from
693  *	vm_page_remove() aka swap_pager_page_removed().
694  *
695  *	This routine may not block
696  *	This routine must be called at splvm().
697  *
698  *	We allocate in round-robin fashion from the configured devices.
699  */
700 static daddr_t
701 swp_pager_getswapspace(int npages)
702 {
703 	daddr_t blk;
704 	struct swdevt *sp;
705 	int i;
706 
707 	blk = SWAPBLK_NONE;
708 	mtx_lock(&sw_dev_mtx);
709 	sp = swdevhd;
710 	for (i = 0; i < nswapdev; i++) {
711 		if (sp == NULL)
712 			sp = TAILQ_FIRST(&swtailq);
713 		if (!(sp->sw_flags & SW_CLOSING)) {
714 			blk = blist_alloc(sp->sw_blist, npages);
715 			if (blk != SWAPBLK_NONE) {
716 				blk += sp->sw_first;
717 				sp->sw_used += npages;
718 				swap_pager_avail -= npages;
719 				swp_sizecheck();
720 				swdevhd = TAILQ_NEXT(sp, sw_list);
721 				goto done;
722 			}
723 		}
724 		sp = TAILQ_NEXT(sp, sw_list);
725 	}
726 	if (swap_pager_full != 2) {
727 		printf("swap_pager_getswapspace(%d): failed\n", npages);
728 		swap_pager_full = 2;
729 		swap_pager_almost_full = 1;
730 	}
731 	swdevhd = NULL;
732 done:
733 	mtx_unlock(&sw_dev_mtx);
734 	return (blk);
735 }
736 
737 static int
738 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
739 {
740 
741 	return (blk >= sp->sw_first && blk < sp->sw_end);
742 }
743 
744 static void
745 swp_pager_strategy(struct buf *bp)
746 {
747 	struct swdevt *sp;
748 
749 	mtx_lock(&sw_dev_mtx);
750 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
751 		if (bp->b_blkno >= sp->sw_first && bp->b_blkno < sp->sw_end) {
752 			mtx_unlock(&sw_dev_mtx);
753 			sp->sw_strategy(bp, sp);
754 			return;
755 		}
756 	}
757 	panic("Swapdev not found");
758 }
759 
760 
761 /*
762  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
763  *
764  *	This routine returns the specified swap blocks back to the bitmap.
765  *
766  *	Note:  This routine may not block (it could in the old swap code),
767  *	and through the use of the new blist routines it does not block.
768  *
769  *	We must be called at splvm() to avoid races with bitmap frees from
770  *	vm_page_remove() aka swap_pager_page_removed().
771  *
772  *	This routine may not block
773  *	This routine must be called at splvm().
774  */
775 static void
776 swp_pager_freeswapspace(daddr_t blk, int npages)
777 {
778 	struct swdevt *sp;
779 
780 	mtx_lock(&sw_dev_mtx);
781 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
782 		if (blk >= sp->sw_first && blk < sp->sw_end) {
783 			sp->sw_used -= npages;
784 			/*
785 			 * If we are attempting to stop swapping on
786 			 * this device, we don't want to mark any
787 			 * blocks free lest they be reused.
788 			 */
789 			if ((sp->sw_flags & SW_CLOSING) == 0) {
790 				blist_free(sp->sw_blist, blk - sp->sw_first,
791 				    npages);
792 				swap_pager_avail += npages;
793 				swp_sizecheck();
794 			}
795 			mtx_unlock(&sw_dev_mtx);
796 			return;
797 		}
798 	}
799 	panic("Swapdev not found");
800 }
801 
802 /*
803  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
804  *				range within an object.
805  *
806  *	This is a globally accessible routine.
807  *
808  *	This routine removes swapblk assignments from swap metadata.
809  *
810  *	The external callers of this routine typically have already destroyed
811  *	or renamed vm_page_t's associated with this range in the object so
812  *	we should be ok.
813  *
814  *	This routine may be called at any spl.  We up our spl to splvm temporarily
815  *	in order to perform the metadata removal.
816  */
817 void
818 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
819 {
820 
821 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
822 	swp_pager_meta_free(object, start, size);
823 }
824 
825 /*
826  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
827  *
828  *	Assigns swap blocks to the specified range within the object.  The
829  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
830  *
831  *	Returns 0 on success, -1 on failure.
832  */
833 int
834 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
835 {
836 	int n = 0;
837 	daddr_t blk = SWAPBLK_NONE;
838 	vm_pindex_t beg = start;	/* save start index */
839 
840 	VM_OBJECT_LOCK(object);
841 	while (size) {
842 		if (n == 0) {
843 			n = BLIST_MAX_ALLOC;
844 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
845 				n >>= 1;
846 				if (n == 0) {
847 					swp_pager_meta_free(object, beg, start - beg);
848 					VM_OBJECT_UNLOCK(object);
849 					return (-1);
850 				}
851 			}
852 		}
853 		swp_pager_meta_build(object, start, blk);
854 		--size;
855 		++start;
856 		++blk;
857 		--n;
858 	}
859 	swp_pager_meta_free(object, start, n);
860 	VM_OBJECT_UNLOCK(object);
861 	return (0);
862 }
863 
864 /*
865  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
866  *			and destroy the source.
867  *
868  *	Copy any valid swapblks from the source to the destination.  In
869  *	cases where both the source and destination have a valid swapblk,
870  *	we keep the destination's.
871  *
872  *	This routine is allowed to block.  It may block allocating metadata
873  *	indirectly through swp_pager_meta_build() or if paging is still in
874  *	progress on the source.
875  *
876  *	This routine can be called at any spl
877  *
878  *	XXX vm_page_collapse() kinda expects us not to block because we
879  *	supposedly do not need to allocate memory, but for the moment we
880  *	*may* have to get a little memory from the zone allocator, but
881  *	it is taken from the interrupt memory.  We should be ok.
882  *
883  *	The source object contains no vm_page_t's (which is just as well)
884  *
885  *	The source object is of type OBJT_SWAP.
886  *
887  *	The source and destination objects must be locked or
888  *	inaccessible (XXX are they ?)
889  */
890 void
891 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
892     vm_pindex_t offset, int destroysource)
893 {
894 	vm_pindex_t i;
895 
896 	VM_OBJECT_LOCK_ASSERT(srcobject, MA_OWNED);
897 	VM_OBJECT_LOCK_ASSERT(dstobject, MA_OWNED);
898 
899 	/*
900 	 * If destroysource is set, we remove the source object from the
901 	 * swap_pager internal queue now.
902 	 */
903 	if (destroysource) {
904 		if (srcobject->handle != NULL) {
905 			mtx_lock(&sw_alloc_mtx);
906 			TAILQ_REMOVE(
907 			    NOBJLIST(srcobject->handle),
908 			    srcobject,
909 			    pager_object_list
910 			);
911 			mtx_unlock(&sw_alloc_mtx);
912 		}
913 	}
914 
915 	/*
916 	 * transfer source to destination.
917 	 */
918 	for (i = 0; i < dstobject->size; ++i) {
919 		daddr_t dstaddr;
920 
921 		/*
922 		 * Locate (without changing) the swapblk on the destination,
923 		 * unless it is invalid in which case free it silently, or
924 		 * if the destination is a resident page, in which case the
925 		 * source is thrown away.
926 		 */
927 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
928 
929 		if (dstaddr == SWAPBLK_NONE) {
930 			/*
931 			 * Destination has no swapblk and is not resident,
932 			 * copy source.
933 			 */
934 			daddr_t srcaddr;
935 
936 			srcaddr = swp_pager_meta_ctl(
937 			    srcobject,
938 			    i + offset,
939 			    SWM_POP
940 			);
941 
942 			if (srcaddr != SWAPBLK_NONE) {
943 				/*
944 				 * swp_pager_meta_build() can sleep.
945 				 */
946 				vm_object_pip_add(srcobject, 1);
947 				VM_OBJECT_UNLOCK(srcobject);
948 				vm_object_pip_add(dstobject, 1);
949 				swp_pager_meta_build(dstobject, i, srcaddr);
950 				vm_object_pip_wakeup(dstobject);
951 				VM_OBJECT_LOCK(srcobject);
952 				vm_object_pip_wakeup(srcobject);
953 			}
954 		} else {
955 			/*
956 			 * Destination has valid swapblk or it is represented
957 			 * by a resident page.  We destroy the sourceblock.
958 			 */
959 
960 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
961 		}
962 	}
963 
964 	/*
965 	 * Free left over swap blocks in source.
966 	 *
967 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
968 	 * double-remove the object from the swap queues.
969 	 */
970 	if (destroysource) {
971 		swp_pager_meta_free_all(srcobject);
972 		/*
973 		 * Reverting the type is not necessary, the caller is going
974 		 * to destroy srcobject directly, but I'm doing it here
975 		 * for consistency since we've removed the object from its
976 		 * queues.
977 		 */
978 		srcobject->type = OBJT_DEFAULT;
979 	}
980 }
981 
982 /*
983  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
984  *				the requested page.
985  *
986  *	We determine whether good backing store exists for the requested
987  *	page and return TRUE if it does, FALSE if it doesn't.
988  *
989  *	If TRUE, we also try to determine how much valid, contiguous backing
990  *	store exists before and after the requested page within a reasonable
991  *	distance.  We do not try to restrict it to the swap device stripe
992  *	(that is handled in getpages/putpages).  It probably isn't worth
993  *	doing here.
994  */
995 static boolean_t
996 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after)
997 {
998 	daddr_t blk0;
999 
1000 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1001 	/*
1002 	 * do we have good backing store at the requested index ?
1003 	 */
1004 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1005 
1006 	if (blk0 == SWAPBLK_NONE) {
1007 		if (before)
1008 			*before = 0;
1009 		if (after)
1010 			*after = 0;
1011 		return (FALSE);
1012 	}
1013 
1014 	/*
1015 	 * find backwards-looking contiguous good backing store
1016 	 */
1017 	if (before != NULL) {
1018 		int i;
1019 
1020 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1021 			daddr_t blk;
1022 
1023 			if (i > pindex)
1024 				break;
1025 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1026 			if (blk != blk0 - i)
1027 				break;
1028 		}
1029 		*before = (i - 1);
1030 	}
1031 
1032 	/*
1033 	 * find forward-looking contiguous good backing store
1034 	 */
1035 	if (after != NULL) {
1036 		int i;
1037 
1038 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
1039 			daddr_t blk;
1040 
1041 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1042 			if (blk != blk0 + i)
1043 				break;
1044 		}
1045 		*after = (i - 1);
1046 	}
1047 	return (TRUE);
1048 }
1049 
1050 /*
1051  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1052  *
1053  *	This removes any associated swap backing store, whether valid or
1054  *	not, from the page.
1055  *
1056  *	This routine is typically called when a page is made dirty, at
1057  *	which point any associated swap can be freed.  MADV_FREE also
1058  *	calls us in a special-case situation
1059  *
1060  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1061  *	should make the page dirty before calling this routine.  This routine
1062  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1063  *	depends on it.
1064  *
1065  *	This routine may not block
1066  *	This routine must be called at splvm()
1067  */
1068 static void
1069 swap_pager_unswapped(vm_page_t m)
1070 {
1071 
1072 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1073 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
1074 }
1075 
1076 /*
1077  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1078  *
1079  *	Attempt to retrieve (m, count) pages from backing store, but make
1080  *	sure we retrieve at least m[reqpage].  We try to load in as large
1081  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1082  *	belongs to the same object.
1083  *
1084  *	The code is designed for asynchronous operation and
1085  *	immediate-notification of 'reqpage' but tends not to be
1086  *	used that way.  Please do not optimize-out this algorithmic
1087  *	feature, I intend to improve on it in the future.
1088  *
1089  *	The parent has a single vm_object_pip_add() reference prior to
1090  *	calling us and we should return with the same.
1091  *
1092  *	The parent has BUSY'd the pages.  We should return with 'm'
1093  *	left busy, but the others adjusted.
1094  */
1095 static int
1096 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1097 {
1098 	struct buf *bp;
1099 	vm_page_t mreq;
1100 	int i;
1101 	int j;
1102 	daddr_t blk;
1103 
1104 	mreq = m[reqpage];
1105 
1106 	KASSERT(mreq->object == object,
1107 	    ("swap_pager_getpages: object mismatch %p/%p",
1108 	    object, mreq->object));
1109 
1110 	/*
1111 	 * Calculate range to retrieve.  The pages have already been assigned
1112 	 * their swapblks.  We require a *contiguous* range but we know it to
1113 	 * not span devices.   If we do not supply it, bad things
1114 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1115 	 * loops are set up such that the case(s) are handled implicitly.
1116 	 *
1117 	 * The swp_*() calls must be made with the object locked.
1118 	 */
1119 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1120 
1121 	for (i = reqpage - 1; i >= 0; --i) {
1122 		daddr_t iblk;
1123 
1124 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1125 		if (blk != iblk + (reqpage - i))
1126 			break;
1127 	}
1128 	++i;
1129 
1130 	for (j = reqpage + 1; j < count; ++j) {
1131 		daddr_t jblk;
1132 
1133 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1134 		if (blk != jblk - (j - reqpage))
1135 			break;
1136 	}
1137 
1138 	/*
1139 	 * free pages outside our collection range.   Note: we never free
1140 	 * mreq, it must remain busy throughout.
1141 	 */
1142 	if (0 < i || j < count) {
1143 		int k;
1144 
1145 		for (k = 0; k < i; ++k)
1146 			swp_pager_free_nrpage(m[k]);
1147 		for (k = j; k < count; ++k)
1148 			swp_pager_free_nrpage(m[k]);
1149 	}
1150 
1151 	/*
1152 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1153 	 * still busy, but the others unbusied.
1154 	 */
1155 	if (blk == SWAPBLK_NONE)
1156 		return (VM_PAGER_FAIL);
1157 
1158 	/*
1159 	 * Getpbuf() can sleep.
1160 	 */
1161 	VM_OBJECT_UNLOCK(object);
1162 	/*
1163 	 * Get a swap buffer header to perform the IO
1164 	 */
1165 	bp = getpbuf(&nsw_rcount);
1166 	bp->b_flags |= B_PAGING;
1167 
1168 	/*
1169 	 * map our page(s) into kva for input
1170 	 */
1171 	pmap_qenter((vm_offset_t)bp->b_data, m + i, j - i);
1172 
1173 	bp->b_iocmd = BIO_READ;
1174 	bp->b_iodone = swp_pager_async_iodone;
1175 	bp->b_rcred = crhold(thread0.td_ucred);
1176 	bp->b_wcred = crhold(thread0.td_ucred);
1177 	bp->b_blkno = blk - (reqpage - i);
1178 	bp->b_bcount = PAGE_SIZE * (j - i);
1179 	bp->b_bufsize = PAGE_SIZE * (j - i);
1180 	bp->b_pager.pg_reqpage = reqpage - i;
1181 
1182 	VM_OBJECT_LOCK(object);
1183 	{
1184 		int k;
1185 
1186 		for (k = i; k < j; ++k) {
1187 			bp->b_pages[k - i] = m[k];
1188 			m[k]->oflags |= VPO_SWAPINPROG;
1189 		}
1190 	}
1191 	bp->b_npages = j - i;
1192 
1193 	PCPU_INC(cnt.v_swapin);
1194 	PCPU_ADD(cnt.v_swappgsin, bp->b_npages);
1195 
1196 	/*
1197 	 * We still hold the lock on mreq, and our automatic completion routine
1198 	 * does not remove it.
1199 	 */
1200 	vm_object_pip_add(object, bp->b_npages);
1201 	VM_OBJECT_UNLOCK(object);
1202 
1203 	/*
1204 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1205 	 * this point because we automatically release it on completion.
1206 	 * Instead, we look at the one page we are interested in which we
1207 	 * still hold a lock on even through the I/O completion.
1208 	 *
1209 	 * The other pages in our m[] array are also released on completion,
1210 	 * so we cannot assume they are valid anymore either.
1211 	 *
1212 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1213 	 */
1214 	BUF_KERNPROC(bp);
1215 	swp_pager_strategy(bp);
1216 
1217 	/*
1218 	 * wait for the page we want to complete.  VPO_SWAPINPROG is always
1219 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1220 	 * is set in the meta-data.
1221 	 */
1222 	VM_OBJECT_LOCK(object);
1223 	while ((mreq->oflags & VPO_SWAPINPROG) != 0) {
1224 		mreq->oflags |= VPO_WANTED;
1225 		PCPU_INC(cnt.v_intrans);
1226 		if (msleep(mreq, VM_OBJECT_MTX(object), PSWP, "swread", hz*20)) {
1227 			printf(
1228 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1229 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * mreq is left busied after completion, but all the other pages
1235 	 * are freed.  If we had an unrecoverable read error the page will
1236 	 * not be valid.
1237 	 */
1238 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1239 		return (VM_PAGER_ERROR);
1240 	} else {
1241 		return (VM_PAGER_OK);
1242 	}
1243 
1244 	/*
1245 	 * A final note: in a low swap situation, we cannot deallocate swap
1246 	 * and mark a page dirty here because the caller is likely to mark
1247 	 * the page clean when we return, causing the page to possibly revert
1248 	 * to all-zero's later.
1249 	 */
1250 }
1251 
1252 /*
1253  *	swap_pager_putpages:
1254  *
1255  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1256  *
1257  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1258  *	are automatically converted to SWAP objects.
1259  *
1260  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1261  *	vm_page reservation system coupled with properly written VFS devices
1262  *	should ensure that no low-memory deadlock occurs.  This is an area
1263  *	which needs work.
1264  *
1265  *	The parent has N vm_object_pip_add() references prior to
1266  *	calling us and will remove references for rtvals[] that are
1267  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1268  *	completion.
1269  *
1270  *	The parent has soft-busy'd the pages it passes us and will unbusy
1271  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1272  *	We need to unbusy the rest on I/O completion.
1273  */
1274 void
1275 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1276     boolean_t sync, int *rtvals)
1277 {
1278 	int i;
1279 	int n = 0;
1280 
1281 	if (count && m[0]->object != object) {
1282 		panic("swap_pager_putpages: object mismatch %p/%p",
1283 		    object,
1284 		    m[0]->object
1285 		);
1286 	}
1287 
1288 	/*
1289 	 * Step 1
1290 	 *
1291 	 * Turn object into OBJT_SWAP
1292 	 * check for bogus sysops
1293 	 * force sync if not pageout process
1294 	 */
1295 	if (object->type != OBJT_SWAP)
1296 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1297 	VM_OBJECT_UNLOCK(object);
1298 
1299 	if (curproc != pageproc)
1300 		sync = TRUE;
1301 
1302 	/*
1303 	 * Step 2
1304 	 *
1305 	 * Update nsw parameters from swap_async_max sysctl values.
1306 	 * Do not let the sysop crash the machine with bogus numbers.
1307 	 */
1308 	mtx_lock(&pbuf_mtx);
1309 	if (swap_async_max != nsw_wcount_async_max) {
1310 		int n;
1311 
1312 		/*
1313 		 * limit range
1314 		 */
1315 		if ((n = swap_async_max) > nswbuf / 2)
1316 			n = nswbuf / 2;
1317 		if (n < 1)
1318 			n = 1;
1319 		swap_async_max = n;
1320 
1321 		/*
1322 		 * Adjust difference ( if possible ).  If the current async
1323 		 * count is too low, we may not be able to make the adjustment
1324 		 * at this time.
1325 		 */
1326 		n -= nsw_wcount_async_max;
1327 		if (nsw_wcount_async + n >= 0) {
1328 			nsw_wcount_async += n;
1329 			nsw_wcount_async_max += n;
1330 			wakeup(&nsw_wcount_async);
1331 		}
1332 	}
1333 	mtx_unlock(&pbuf_mtx);
1334 
1335 	/*
1336 	 * Step 3
1337 	 *
1338 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1339 	 * The page is left dirty until the pageout operation completes
1340 	 * successfully.
1341 	 */
1342 	for (i = 0; i < count; i += n) {
1343 		int j;
1344 		struct buf *bp;
1345 		daddr_t blk;
1346 
1347 		/*
1348 		 * Maximum I/O size is limited by a number of factors.
1349 		 */
1350 		n = min(BLIST_MAX_ALLOC, count - i);
1351 		n = min(n, nsw_cluster_max);
1352 
1353 		/*
1354 		 * Get biggest block of swap we can.  If we fail, fall
1355 		 * back and try to allocate a smaller block.  Don't go
1356 		 * overboard trying to allocate space if it would overly
1357 		 * fragment swap.
1358 		 */
1359 		while (
1360 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1361 		    n > 4
1362 		) {
1363 			n >>= 1;
1364 		}
1365 		if (blk == SWAPBLK_NONE) {
1366 			for (j = 0; j < n; ++j)
1367 				rtvals[i+j] = VM_PAGER_FAIL;
1368 			continue;
1369 		}
1370 
1371 		/*
1372 		 * All I/O parameters have been satisfied, build the I/O
1373 		 * request and assign the swap space.
1374 		 */
1375 		if (sync == TRUE) {
1376 			bp = getpbuf(&nsw_wcount_sync);
1377 		} else {
1378 			bp = getpbuf(&nsw_wcount_async);
1379 			bp->b_flags = B_ASYNC;
1380 		}
1381 		bp->b_flags |= B_PAGING;
1382 		bp->b_iocmd = BIO_WRITE;
1383 
1384 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1385 
1386 		bp->b_rcred = crhold(thread0.td_ucred);
1387 		bp->b_wcred = crhold(thread0.td_ucred);
1388 		bp->b_bcount = PAGE_SIZE * n;
1389 		bp->b_bufsize = PAGE_SIZE * n;
1390 		bp->b_blkno = blk;
1391 
1392 		VM_OBJECT_LOCK(object);
1393 		for (j = 0; j < n; ++j) {
1394 			vm_page_t mreq = m[i+j];
1395 
1396 			swp_pager_meta_build(
1397 			    mreq->object,
1398 			    mreq->pindex,
1399 			    blk + j
1400 			);
1401 			vm_page_dirty(mreq);
1402 			rtvals[i+j] = VM_PAGER_OK;
1403 
1404 			mreq->oflags |= VPO_SWAPINPROG;
1405 			bp->b_pages[j] = mreq;
1406 		}
1407 		VM_OBJECT_UNLOCK(object);
1408 		bp->b_npages = n;
1409 		/*
1410 		 * Must set dirty range for NFS to work.
1411 		 */
1412 		bp->b_dirtyoff = 0;
1413 		bp->b_dirtyend = bp->b_bcount;
1414 
1415 		PCPU_INC(cnt.v_swapout);
1416 		PCPU_ADD(cnt.v_swappgsout, bp->b_npages);
1417 
1418 		/*
1419 		 * asynchronous
1420 		 *
1421 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1422 		 */
1423 		if (sync == FALSE) {
1424 			bp->b_iodone = swp_pager_async_iodone;
1425 			BUF_KERNPROC(bp);
1426 			swp_pager_strategy(bp);
1427 
1428 			for (j = 0; j < n; ++j)
1429 				rtvals[i+j] = VM_PAGER_PEND;
1430 			/* restart outter loop */
1431 			continue;
1432 		}
1433 
1434 		/*
1435 		 * synchronous
1436 		 *
1437 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1438 		 */
1439 		bp->b_iodone = bdone;
1440 		swp_pager_strategy(bp);
1441 
1442 		/*
1443 		 * Wait for the sync I/O to complete, then update rtvals.
1444 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1445 		 * our async completion routine at the end, thus avoiding a
1446 		 * double-free.
1447 		 */
1448 		bwait(bp, PVM, "swwrt");
1449 		for (j = 0; j < n; ++j)
1450 			rtvals[i+j] = VM_PAGER_PEND;
1451 		/*
1452 		 * Now that we are through with the bp, we can call the
1453 		 * normal async completion, which frees everything up.
1454 		 */
1455 		swp_pager_async_iodone(bp);
1456 	}
1457 	VM_OBJECT_LOCK(object);
1458 }
1459 
1460 /*
1461  *	swp_pager_async_iodone:
1462  *
1463  *	Completion routine for asynchronous reads and writes from/to swap.
1464  *	Also called manually by synchronous code to finish up a bp.
1465  *
1466  *	For READ operations, the pages are VPO_BUSY'd.  For WRITE operations,
1467  *	the pages are vm_page_t->busy'd.  For READ operations, we VPO_BUSY
1468  *	unbusy all pages except the 'main' request page.  For WRITE
1469  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1470  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1471  *
1472  *	This routine may not block.
1473  */
1474 static void
1475 swp_pager_async_iodone(struct buf *bp)
1476 {
1477 	int i;
1478 	vm_object_t object = NULL;
1479 
1480 	/*
1481 	 * report error
1482 	 */
1483 	if (bp->b_ioflags & BIO_ERROR) {
1484 		printf(
1485 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1486 			"size %ld, error %d\n",
1487 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1488 		    (long)bp->b_blkno,
1489 		    (long)bp->b_bcount,
1490 		    bp->b_error
1491 		);
1492 	}
1493 
1494 	/*
1495 	 * remove the mapping for kernel virtual
1496 	 */
1497 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1498 
1499 	if (bp->b_npages) {
1500 		object = bp->b_pages[0]->object;
1501 		VM_OBJECT_LOCK(object);
1502 	}
1503 
1504 	/*
1505 	 * cleanup pages.  If an error occurs writing to swap, we are in
1506 	 * very serious trouble.  If it happens to be a disk error, though,
1507 	 * we may be able to recover by reassigning the swap later on.  So
1508 	 * in this case we remove the m->swapblk assignment for the page
1509 	 * but do not free it in the rlist.  The errornous block(s) are thus
1510 	 * never reallocated as swap.  Redirty the page and continue.
1511 	 */
1512 	for (i = 0; i < bp->b_npages; ++i) {
1513 		vm_page_t m = bp->b_pages[i];
1514 
1515 		m->oflags &= ~VPO_SWAPINPROG;
1516 
1517 		if (bp->b_ioflags & BIO_ERROR) {
1518 			/*
1519 			 * If an error occurs I'd love to throw the swapblk
1520 			 * away without freeing it back to swapspace, so it
1521 			 * can never be used again.  But I can't from an
1522 			 * interrupt.
1523 			 */
1524 			if (bp->b_iocmd == BIO_READ) {
1525 				/*
1526 				 * When reading, reqpage needs to stay
1527 				 * locked for the parent, but all other
1528 				 * pages can be freed.  We still want to
1529 				 * wakeup the parent waiting on the page,
1530 				 * though.  ( also: pg_reqpage can be -1 and
1531 				 * not match anything ).
1532 				 *
1533 				 * We have to wake specifically requested pages
1534 				 * up too because we cleared VPO_SWAPINPROG and
1535 				 * someone may be waiting for that.
1536 				 *
1537 				 * NOTE: for reads, m->dirty will probably
1538 				 * be overridden by the original caller of
1539 				 * getpages so don't play cute tricks here.
1540 				 */
1541 				m->valid = 0;
1542 				if (i != bp->b_pager.pg_reqpage)
1543 					swp_pager_free_nrpage(m);
1544 				else
1545 					vm_page_flash(m);
1546 				/*
1547 				 * If i == bp->b_pager.pg_reqpage, do not wake
1548 				 * the page up.  The caller needs to.
1549 				 */
1550 			} else {
1551 				/*
1552 				 * If a write error occurs, reactivate page
1553 				 * so it doesn't clog the inactive list,
1554 				 * then finish the I/O.
1555 				 */
1556 				vm_page_dirty(m);
1557 				vm_page_lock(m);
1558 				vm_page_activate(m);
1559 				vm_page_unlock(m);
1560 				vm_page_io_finish(m);
1561 			}
1562 		} else if (bp->b_iocmd == BIO_READ) {
1563 			/*
1564 			 * NOTE: for reads, m->dirty will probably be
1565 			 * overridden by the original caller of getpages so
1566 			 * we cannot set them in order to free the underlying
1567 			 * swap in a low-swap situation.  I don't think we'd
1568 			 * want to do that anyway, but it was an optimization
1569 			 * that existed in the old swapper for a time before
1570 			 * it got ripped out due to precisely this problem.
1571 			 *
1572 			 * If not the requested page then deactivate it.
1573 			 *
1574 			 * Note that the requested page, reqpage, is left
1575 			 * busied, but we still have to wake it up.  The
1576 			 * other pages are released (unbusied) by
1577 			 * vm_page_wakeup().
1578 			 */
1579 			KASSERT(!pmap_page_is_mapped(m),
1580 			    ("swp_pager_async_iodone: page %p is mapped", m));
1581 			m->valid = VM_PAGE_BITS_ALL;
1582 			KASSERT(m->dirty == 0,
1583 			    ("swp_pager_async_iodone: page %p is dirty", m));
1584 
1585 			/*
1586 			 * We have to wake specifically requested pages
1587 			 * up too because we cleared VPO_SWAPINPROG and
1588 			 * could be waiting for it in getpages.  However,
1589 			 * be sure to not unbusy getpages specifically
1590 			 * requested page - getpages expects it to be
1591 			 * left busy.
1592 			 */
1593 			if (i != bp->b_pager.pg_reqpage) {
1594 				vm_page_lock(m);
1595 				vm_page_deactivate(m);
1596 				vm_page_unlock(m);
1597 				vm_page_wakeup(m);
1598 			} else
1599 				vm_page_flash(m);
1600 		} else {
1601 			/*
1602 			 * For write success, clear the dirty
1603 			 * status, then finish the I/O ( which decrements the
1604 			 * busy count and possibly wakes waiter's up ).
1605 			 */
1606 			KASSERT((m->flags & PG_WRITEABLE) == 0,
1607 			    ("swp_pager_async_iodone: page %p is not write"
1608 			    " protected", m));
1609 			vm_page_undirty(m);
1610 			vm_page_io_finish(m);
1611 			if (vm_page_count_severe()) {
1612 				vm_page_lock(m);
1613 				vm_page_try_to_cache(m);
1614 				vm_page_unlock(m);
1615 			}
1616 		}
1617 	}
1618 
1619 	/*
1620 	 * adjust pip.  NOTE: the original parent may still have its own
1621 	 * pip refs on the object.
1622 	 */
1623 	if (object != NULL) {
1624 		vm_object_pip_wakeupn(object, bp->b_npages);
1625 		VM_OBJECT_UNLOCK(object);
1626 	}
1627 
1628 	/*
1629 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1630 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1631 	 * trigger a KASSERT in relpbuf().
1632 	 */
1633 	if (bp->b_vp) {
1634 		    bp->b_vp = NULL;
1635 		    bp->b_bufobj = NULL;
1636 	}
1637 	/*
1638 	 * release the physical I/O buffer
1639 	 */
1640 	relpbuf(
1641 	    bp,
1642 	    ((bp->b_iocmd == BIO_READ) ? &nsw_rcount :
1643 		((bp->b_flags & B_ASYNC) ?
1644 		    &nsw_wcount_async :
1645 		    &nsw_wcount_sync
1646 		)
1647 	    )
1648 	);
1649 }
1650 
1651 /*
1652  *	swap_pager_isswapped:
1653  *
1654  *	Return 1 if at least one page in the given object is paged
1655  *	out to the given swap device.
1656  *
1657  *	This routine may not block.
1658  */
1659 int
1660 swap_pager_isswapped(vm_object_t object, struct swdevt *sp)
1661 {
1662 	daddr_t index = 0;
1663 	int bcount;
1664 	int i;
1665 
1666 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1667 	if (object->type != OBJT_SWAP)
1668 		return (0);
1669 
1670 	mtx_lock(&swhash_mtx);
1671 	for (bcount = 0; bcount < object->un_pager.swp.swp_bcount; bcount++) {
1672 		struct swblock *swap;
1673 
1674 		if ((swap = *swp_pager_hash(object, index)) != NULL) {
1675 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1676 				if (swp_pager_isondev(swap->swb_pages[i], sp)) {
1677 					mtx_unlock(&swhash_mtx);
1678 					return (1);
1679 				}
1680 			}
1681 		}
1682 		index += SWAP_META_PAGES;
1683 	}
1684 	mtx_unlock(&swhash_mtx);
1685 	return (0);
1686 }
1687 
1688 /*
1689  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1690  *
1691  *	This routine dissociates the page at the given index within a
1692  *	swap block from its backing store, paging it in if necessary.
1693  *	If the page is paged in, it is placed in the inactive queue,
1694  *	since it had its backing store ripped out from under it.
1695  *	We also attempt to swap in all other pages in the swap block,
1696  *	we only guarantee that the one at the specified index is
1697  *	paged in.
1698  *
1699  *	XXX - The code to page the whole block in doesn't work, so we
1700  *	      revert to the one-by-one behavior for now.  Sigh.
1701  */
1702 static inline void
1703 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1704 {
1705 	vm_page_t m;
1706 
1707 	vm_object_pip_add(object, 1);
1708 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL|VM_ALLOC_RETRY);
1709 	if (m->valid == VM_PAGE_BITS_ALL) {
1710 		vm_object_pip_subtract(object, 1);
1711 		vm_page_dirty(m);
1712 		vm_page_lock(m);
1713 		vm_page_activate(m);
1714 		vm_page_unlock(m);
1715 		vm_page_wakeup(m);
1716 		vm_pager_page_unswapped(m);
1717 		return;
1718 	}
1719 
1720 	if (swap_pager_getpages(object, &m, 1, 0) != VM_PAGER_OK)
1721 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1722 	vm_object_pip_subtract(object, 1);
1723 	vm_page_dirty(m);
1724 	vm_page_lock(m);
1725 	vm_page_deactivate(m);
1726 	vm_page_unlock(m);
1727 	vm_page_wakeup(m);
1728 	vm_pager_page_unswapped(m);
1729 }
1730 
1731 /*
1732  *	swap_pager_swapoff:
1733  *
1734  *	Page in all of the pages that have been paged out to the
1735  *	given device.  The corresponding blocks in the bitmap must be
1736  *	marked as allocated and the device must be flagged SW_CLOSING.
1737  *	There may be no processes swapped out to the device.
1738  *
1739  *	This routine may block.
1740  */
1741 static void
1742 swap_pager_swapoff(struct swdevt *sp)
1743 {
1744 	struct swblock *swap;
1745 	int i, j, retries;
1746 
1747 	GIANT_REQUIRED;
1748 
1749 	retries = 0;
1750 full_rescan:
1751 	mtx_lock(&swhash_mtx);
1752 	for (i = 0; i <= swhash_mask; i++) { /* '<=' is correct here */
1753 restart:
1754 		for (swap = swhash[i]; swap != NULL; swap = swap->swb_hnext) {
1755 			vm_object_t object = swap->swb_object;
1756 			vm_pindex_t pindex = swap->swb_index;
1757                         for (j = 0; j < SWAP_META_PAGES; ++j) {
1758                                 if (swp_pager_isondev(swap->swb_pages[j], sp)) {
1759 					/* avoid deadlock */
1760 					if (!VM_OBJECT_TRYLOCK(object)) {
1761 						break;
1762 					} else {
1763 						mtx_unlock(&swhash_mtx);
1764 						swp_pager_force_pagein(object,
1765 						    pindex + j);
1766 						VM_OBJECT_UNLOCK(object);
1767 						mtx_lock(&swhash_mtx);
1768 						goto restart;
1769 					}
1770 				}
1771                         }
1772 		}
1773 	}
1774 	mtx_unlock(&swhash_mtx);
1775 	if (sp->sw_used) {
1776 		/*
1777 		 * Objects may be locked or paging to the device being
1778 		 * removed, so we will miss their pages and need to
1779 		 * make another pass.  We have marked this device as
1780 		 * SW_CLOSING, so the activity should finish soon.
1781 		 */
1782 		retries++;
1783 		if (retries > 100) {
1784 			panic("swapoff: failed to locate %d swap blocks",
1785 			    sp->sw_used);
1786 		}
1787 		pause("swpoff", hz / 20);
1788 		goto full_rescan;
1789 	}
1790 }
1791 
1792 /************************************************************************
1793  *				SWAP META DATA 				*
1794  ************************************************************************
1795  *
1796  *	These routines manipulate the swap metadata stored in the
1797  *	OBJT_SWAP object.  All swp_*() routines must be called at
1798  *	splvm() because swap can be freed up by the low level vm_page
1799  *	code which might be called from interrupts beyond what splbio() covers.
1800  *
1801  *	Swap metadata is implemented with a global hash and not directly
1802  *	linked into the object.  Instead the object simply contains
1803  *	appropriate tracking counters.
1804  */
1805 
1806 /*
1807  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1808  *
1809  *	We first convert the object to a swap object if it is a default
1810  *	object.
1811  *
1812  *	The specified swapblk is added to the object's swap metadata.  If
1813  *	the swapblk is not valid, it is freed instead.  Any previously
1814  *	assigned swapblk is freed.
1815  *
1816  *	This routine must be called at splvm(), except when used to convert
1817  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1818  */
1819 static void
1820 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1821 {
1822 	struct swblock *swap;
1823 	struct swblock **pswap;
1824 	int idx;
1825 
1826 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1827 	/*
1828 	 * Convert default object to swap object if necessary
1829 	 */
1830 	if (object->type != OBJT_SWAP) {
1831 		object->type = OBJT_SWAP;
1832 		object->un_pager.swp.swp_bcount = 0;
1833 
1834 		if (object->handle != NULL) {
1835 			mtx_lock(&sw_alloc_mtx);
1836 			TAILQ_INSERT_TAIL(
1837 			    NOBJLIST(object->handle),
1838 			    object,
1839 			    pager_object_list
1840 			);
1841 			mtx_unlock(&sw_alloc_mtx);
1842 		}
1843 	}
1844 
1845 	/*
1846 	 * Locate hash entry.  If not found create, but if we aren't adding
1847 	 * anything just return.  If we run out of space in the map we wait
1848 	 * and, since the hash table may have changed, retry.
1849 	 */
1850 retry:
1851 	mtx_lock(&swhash_mtx);
1852 	pswap = swp_pager_hash(object, pindex);
1853 
1854 	if ((swap = *pswap) == NULL) {
1855 		int i;
1856 
1857 		if (swapblk == SWAPBLK_NONE)
1858 			goto done;
1859 
1860 		swap = *pswap = uma_zalloc(swap_zone, M_NOWAIT);
1861 		if (swap == NULL) {
1862 			mtx_unlock(&swhash_mtx);
1863 			VM_OBJECT_UNLOCK(object);
1864 			if (uma_zone_exhausted(swap_zone)) {
1865 				printf("swap zone exhausted, increase kern.maxswzone\n");
1866 				vm_pageout_oom(VM_OOM_SWAPZ);
1867 				pause("swzonex", 10);
1868 			} else
1869 				VM_WAIT;
1870 			VM_OBJECT_LOCK(object);
1871 			goto retry;
1872 		}
1873 
1874 		swap->swb_hnext = NULL;
1875 		swap->swb_object = object;
1876 		swap->swb_index = pindex & ~(vm_pindex_t)SWAP_META_MASK;
1877 		swap->swb_count = 0;
1878 
1879 		++object->un_pager.swp.swp_bcount;
1880 
1881 		for (i = 0; i < SWAP_META_PAGES; ++i)
1882 			swap->swb_pages[i] = SWAPBLK_NONE;
1883 	}
1884 
1885 	/*
1886 	 * Delete prior contents of metadata
1887 	 */
1888 	idx = pindex & SWAP_META_MASK;
1889 
1890 	if (swap->swb_pages[idx] != SWAPBLK_NONE) {
1891 		swp_pager_freeswapspace(swap->swb_pages[idx], 1);
1892 		--swap->swb_count;
1893 	}
1894 
1895 	/*
1896 	 * Enter block into metadata
1897 	 */
1898 	swap->swb_pages[idx] = swapblk;
1899 	if (swapblk != SWAPBLK_NONE)
1900 		++swap->swb_count;
1901 done:
1902 	mtx_unlock(&swhash_mtx);
1903 }
1904 
1905 /*
1906  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1907  *
1908  *	The requested range of blocks is freed, with any associated swap
1909  *	returned to the swap bitmap.
1910  *
1911  *	This routine will free swap metadata structures as they are cleaned
1912  *	out.  This routine does *NOT* operate on swap metadata associated
1913  *	with resident pages.
1914  *
1915  *	This routine must be called at splvm()
1916  */
1917 static void
1918 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1919 {
1920 
1921 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1922 	if (object->type != OBJT_SWAP)
1923 		return;
1924 
1925 	while (count > 0) {
1926 		struct swblock **pswap;
1927 		struct swblock *swap;
1928 
1929 		mtx_lock(&swhash_mtx);
1930 		pswap = swp_pager_hash(object, index);
1931 
1932 		if ((swap = *pswap) != NULL) {
1933 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1934 
1935 			if (v != SWAPBLK_NONE) {
1936 				swp_pager_freeswapspace(v, 1);
1937 				swap->swb_pages[index & SWAP_META_MASK] =
1938 					SWAPBLK_NONE;
1939 				if (--swap->swb_count == 0) {
1940 					*pswap = swap->swb_hnext;
1941 					uma_zfree(swap_zone, swap);
1942 					--object->un_pager.swp.swp_bcount;
1943 				}
1944 			}
1945 			--count;
1946 			++index;
1947 		} else {
1948 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1949 			count -= n;
1950 			index += n;
1951 		}
1952 		mtx_unlock(&swhash_mtx);
1953 	}
1954 }
1955 
1956 /*
1957  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1958  *
1959  *	This routine locates and destroys all swap metadata associated with
1960  *	an object.
1961  *
1962  *	This routine must be called at splvm()
1963  */
1964 static void
1965 swp_pager_meta_free_all(vm_object_t object)
1966 {
1967 	daddr_t index = 0;
1968 
1969 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1970 	if (object->type != OBJT_SWAP)
1971 		return;
1972 
1973 	while (object->un_pager.swp.swp_bcount) {
1974 		struct swblock **pswap;
1975 		struct swblock *swap;
1976 
1977 		mtx_lock(&swhash_mtx);
1978 		pswap = swp_pager_hash(object, index);
1979 		if ((swap = *pswap) != NULL) {
1980 			int i;
1981 
1982 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1983 				daddr_t v = swap->swb_pages[i];
1984 				if (v != SWAPBLK_NONE) {
1985 					--swap->swb_count;
1986 					swp_pager_freeswapspace(v, 1);
1987 				}
1988 			}
1989 			if (swap->swb_count != 0)
1990 				panic("swap_pager_meta_free_all: swb_count != 0");
1991 			*pswap = swap->swb_hnext;
1992 			uma_zfree(swap_zone, swap);
1993 			--object->un_pager.swp.swp_bcount;
1994 		}
1995 		mtx_unlock(&swhash_mtx);
1996 		index += SWAP_META_PAGES;
1997 	}
1998 }
1999 
2000 /*
2001  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2002  *
2003  *	This routine is capable of looking up, popping, or freeing
2004  *	swapblk assignments in the swap meta data or in the vm_page_t.
2005  *	The routine typically returns the swapblk being looked-up, or popped,
2006  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2007  *	was invalid.  This routine will automatically free any invalid
2008  *	meta-data swapblks.
2009  *
2010  *	It is not possible to store invalid swapblks in the swap meta data
2011  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2012  *
2013  *	When acting on a busy resident page and paging is in progress, we
2014  *	have to wait until paging is complete but otherwise can act on the
2015  *	busy page.
2016  *
2017  *	This routine must be called at splvm().
2018  *
2019  *	SWM_FREE	remove and free swap block from metadata
2020  *	SWM_POP		remove from meta data but do not free.. pop it out
2021  */
2022 static daddr_t
2023 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2024 {
2025 	struct swblock **pswap;
2026 	struct swblock *swap;
2027 	daddr_t r1;
2028 	int idx;
2029 
2030 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2031 	/*
2032 	 * The meta data only exists of the object is OBJT_SWAP
2033 	 * and even then might not be allocated yet.
2034 	 */
2035 	if (object->type != OBJT_SWAP)
2036 		return (SWAPBLK_NONE);
2037 
2038 	r1 = SWAPBLK_NONE;
2039 	mtx_lock(&swhash_mtx);
2040 	pswap = swp_pager_hash(object, pindex);
2041 
2042 	if ((swap = *pswap) != NULL) {
2043 		idx = pindex & SWAP_META_MASK;
2044 		r1 = swap->swb_pages[idx];
2045 
2046 		if (r1 != SWAPBLK_NONE) {
2047 			if (flags & SWM_FREE) {
2048 				swp_pager_freeswapspace(r1, 1);
2049 				r1 = SWAPBLK_NONE;
2050 			}
2051 			if (flags & (SWM_FREE|SWM_POP)) {
2052 				swap->swb_pages[idx] = SWAPBLK_NONE;
2053 				if (--swap->swb_count == 0) {
2054 					*pswap = swap->swb_hnext;
2055 					uma_zfree(swap_zone, swap);
2056 					--object->un_pager.swp.swp_bcount;
2057 				}
2058 			}
2059 		}
2060 	}
2061 	mtx_unlock(&swhash_mtx);
2062 	return (r1);
2063 }
2064 
2065 /*
2066  * System call swapon(name) enables swapping on device name,
2067  * which must be in the swdevsw.  Return EBUSY
2068  * if already swapping on this device.
2069  */
2070 #ifndef _SYS_SYSPROTO_H_
2071 struct swapon_args {
2072 	char *name;
2073 };
2074 #endif
2075 
2076 /*
2077  * MPSAFE
2078  */
2079 /* ARGSUSED */
2080 int
2081 swapon(struct thread *td, struct swapon_args *uap)
2082 {
2083 	struct vattr attr;
2084 	struct vnode *vp;
2085 	struct nameidata nd;
2086 	int error;
2087 
2088 	error = priv_check(td, PRIV_SWAPON);
2089 	if (error)
2090 		return (error);
2091 
2092 	mtx_lock(&Giant);
2093 	while (swdev_syscall_active)
2094 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0);
2095 	swdev_syscall_active = 1;
2096 
2097 	/*
2098 	 * Swap metadata may not fit in the KVM if we have physical
2099 	 * memory of >1GB.
2100 	 */
2101 	if (swap_zone == NULL) {
2102 		error = ENOMEM;
2103 		goto done;
2104 	}
2105 
2106 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2107 	    uap->name, td);
2108 	error = namei(&nd);
2109 	if (error)
2110 		goto done;
2111 
2112 	NDFREE(&nd, NDF_ONLY_PNBUF);
2113 	vp = nd.ni_vp;
2114 
2115 	if (vn_isdisk(vp, &error)) {
2116 		error = swapongeom(td, vp);
2117 	} else if (vp->v_type == VREG &&
2118 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2119 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2120 		/*
2121 		 * Allow direct swapping to NFS regular files in the same
2122 		 * way that nfs_mountroot() sets up diskless swapping.
2123 		 */
2124 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2125 	}
2126 
2127 	if (error)
2128 		vrele(vp);
2129 done:
2130 	swdev_syscall_active = 0;
2131 	wakeup_one(&swdev_syscall_active);
2132 	mtx_unlock(&Giant);
2133 	return (error);
2134 }
2135 
2136 static void
2137 swaponsomething(struct vnode *vp, void *id, u_long nblks, sw_strategy_t *strategy, sw_close_t *close, dev_t dev)
2138 {
2139 	struct swdevt *sp, *tsp;
2140 	swblk_t dvbase;
2141 	u_long mblocks;
2142 
2143 	/*
2144 	 * If we go beyond this, we get overflows in the radix
2145 	 * tree bitmap code.
2146 	 */
2147 	mblocks = 0x40000000 / BLIST_META_RADIX;
2148 	if (nblks > mblocks) {
2149 		printf("WARNING: reducing size to maximum of %lu blocks per swap unit\n",
2150 			mblocks);
2151 		nblks = mblocks;
2152 	}
2153 	/*
2154 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2155 	 * First chop nblks off to page-align it, then convert.
2156 	 *
2157 	 * sw->sw_nblks is in page-sized chunks now too.
2158 	 */
2159 	nblks &= ~(ctodb(1) - 1);
2160 	nblks = dbtoc(nblks);
2161 
2162 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2163 	sp->sw_vp = vp;
2164 	sp->sw_id = id;
2165 	sp->sw_dev = dev;
2166 	sp->sw_flags = 0;
2167 	sp->sw_nblks = nblks;
2168 	sp->sw_used = 0;
2169 	sp->sw_strategy = strategy;
2170 	sp->sw_close = close;
2171 
2172 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2173 	/*
2174 	 * Do not free the first two block in order to avoid overwriting
2175 	 * any bsd label at the front of the partition
2176 	 */
2177 	blist_free(sp->sw_blist, 2, nblks - 2);
2178 
2179 	dvbase = 0;
2180 	mtx_lock(&sw_dev_mtx);
2181 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2182 		if (tsp->sw_end >= dvbase) {
2183 			/*
2184 			 * We put one uncovered page between the devices
2185 			 * in order to definitively prevent any cross-device
2186 			 * I/O requests
2187 			 */
2188 			dvbase = tsp->sw_end + 1;
2189 		}
2190 	}
2191 	sp->sw_first = dvbase;
2192 	sp->sw_end = dvbase + nblks;
2193 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2194 	nswapdev++;
2195 	swap_pager_avail += nblks;
2196 	swap_total += (vm_ooffset_t)nblks * PAGE_SIZE;
2197 	swp_sizecheck();
2198 	mtx_unlock(&sw_dev_mtx);
2199 }
2200 
2201 /*
2202  * SYSCALL: swapoff(devname)
2203  *
2204  * Disable swapping on the given device.
2205  *
2206  * XXX: Badly designed system call: it should use a device index
2207  * rather than filename as specification.  We keep sw_vp around
2208  * only to make this work.
2209  */
2210 #ifndef _SYS_SYSPROTO_H_
2211 struct swapoff_args {
2212 	char *name;
2213 };
2214 #endif
2215 
2216 /*
2217  * MPSAFE
2218  */
2219 /* ARGSUSED */
2220 int
2221 swapoff(struct thread *td, struct swapoff_args *uap)
2222 {
2223 	struct vnode *vp;
2224 	struct nameidata nd;
2225 	struct swdevt *sp;
2226 	int error;
2227 
2228 	error = priv_check(td, PRIV_SWAPOFF);
2229 	if (error)
2230 		return (error);
2231 
2232 	mtx_lock(&Giant);
2233 	while (swdev_syscall_active)
2234 	    tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2235 	swdev_syscall_active = 1;
2236 
2237 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2238 	    td);
2239 	error = namei(&nd);
2240 	if (error)
2241 		goto done;
2242 	NDFREE(&nd, NDF_ONLY_PNBUF);
2243 	vp = nd.ni_vp;
2244 
2245 	mtx_lock(&sw_dev_mtx);
2246 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2247 		if (sp->sw_vp == vp)
2248 			break;
2249 	}
2250 	mtx_unlock(&sw_dev_mtx);
2251 	if (sp == NULL) {
2252 		error = EINVAL;
2253 		goto done;
2254 	}
2255 	error = swapoff_one(sp, td->td_ucred);
2256 done:
2257 	swdev_syscall_active = 0;
2258 	wakeup_one(&swdev_syscall_active);
2259 	mtx_unlock(&Giant);
2260 	return (error);
2261 }
2262 
2263 static int
2264 swapoff_one(struct swdevt *sp, struct ucred *cred)
2265 {
2266 	u_long nblks, dvbase;
2267 #ifdef MAC
2268 	int error;
2269 #endif
2270 
2271 	mtx_assert(&Giant, MA_OWNED);
2272 #ifdef MAC
2273 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2274 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2275 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2276 	if (error != 0)
2277 		return (error);
2278 #endif
2279 	nblks = sp->sw_nblks;
2280 
2281 	/*
2282 	 * We can turn off this swap device safely only if the
2283 	 * available virtual memory in the system will fit the amount
2284 	 * of data we will have to page back in, plus an epsilon so
2285 	 * the system doesn't become critically low on swap space.
2286 	 */
2287 	if (cnt.v_free_count + cnt.v_cache_count + swap_pager_avail <
2288 	    nblks + nswap_lowat) {
2289 		return (ENOMEM);
2290 	}
2291 
2292 	/*
2293 	 * Prevent further allocations on this device.
2294 	 */
2295 	mtx_lock(&sw_dev_mtx);
2296 	sp->sw_flags |= SW_CLOSING;
2297 	for (dvbase = 0; dvbase < sp->sw_end; dvbase += dmmax) {
2298 		swap_pager_avail -= blist_fill(sp->sw_blist,
2299 		     dvbase, dmmax);
2300 	}
2301 	swap_total -= (vm_ooffset_t)nblks * PAGE_SIZE;
2302 	mtx_unlock(&sw_dev_mtx);
2303 
2304 	/*
2305 	 * Page in the contents of the device and close it.
2306 	 */
2307 	swap_pager_swapoff(sp);
2308 
2309 	sp->sw_close(curthread, sp);
2310 	sp->sw_id = NULL;
2311 	mtx_lock(&sw_dev_mtx);
2312 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2313 	nswapdev--;
2314 	if (nswapdev == 0) {
2315 		swap_pager_full = 2;
2316 		swap_pager_almost_full = 1;
2317 	}
2318 	if (swdevhd == sp)
2319 		swdevhd = NULL;
2320 	mtx_unlock(&sw_dev_mtx);
2321 	blist_destroy(sp->sw_blist);
2322 	free(sp, M_VMPGDATA);
2323 	return (0);
2324 }
2325 
2326 void
2327 swapoff_all(void)
2328 {
2329 	struct swdevt *sp, *spt;
2330 	const char *devname;
2331 	int error;
2332 
2333 	mtx_lock(&Giant);
2334 	while (swdev_syscall_active)
2335 		tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0);
2336 	swdev_syscall_active = 1;
2337 
2338 	mtx_lock(&sw_dev_mtx);
2339 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2340 		mtx_unlock(&sw_dev_mtx);
2341 		if (vn_isdisk(sp->sw_vp, NULL))
2342 			devname = sp->sw_vp->v_rdev->si_name;
2343 		else
2344 			devname = "[file]";
2345 		error = swapoff_one(sp, thread0.td_ucred);
2346 		if (error != 0) {
2347 			printf("Cannot remove swap device %s (error=%d), "
2348 			    "skipping.\n", devname, error);
2349 		} else if (bootverbose) {
2350 			printf("Swap device %s removed.\n", devname);
2351 		}
2352 		mtx_lock(&sw_dev_mtx);
2353 	}
2354 	mtx_unlock(&sw_dev_mtx);
2355 
2356 	swdev_syscall_active = 0;
2357 	wakeup_one(&swdev_syscall_active);
2358 	mtx_unlock(&Giant);
2359 }
2360 
2361 void
2362 swap_pager_status(int *total, int *used)
2363 {
2364 	struct swdevt *sp;
2365 
2366 	*total = 0;
2367 	*used = 0;
2368 	mtx_lock(&sw_dev_mtx);
2369 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2370 		*total += sp->sw_nblks;
2371 		*used += sp->sw_used;
2372 	}
2373 	mtx_unlock(&sw_dev_mtx);
2374 }
2375 
2376 static int
2377 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2378 {
2379 	int	*name = (int *)arg1;
2380 	int	error, n;
2381 	struct xswdev xs;
2382 	struct swdevt *sp;
2383 
2384 	if (arg2 != 1) /* name length */
2385 		return (EINVAL);
2386 
2387 	n = 0;
2388 	mtx_lock(&sw_dev_mtx);
2389 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2390 		if (n == *name) {
2391 			mtx_unlock(&sw_dev_mtx);
2392 			xs.xsw_version = XSWDEV_VERSION;
2393 			xs.xsw_dev = sp->sw_dev;
2394 			xs.xsw_flags = sp->sw_flags;
2395 			xs.xsw_nblks = sp->sw_nblks;
2396 			xs.xsw_used = sp->sw_used;
2397 
2398 			error = SYSCTL_OUT(req, &xs, sizeof(xs));
2399 			return (error);
2400 		}
2401 		n++;
2402 	}
2403 	mtx_unlock(&sw_dev_mtx);
2404 	return (ENOENT);
2405 }
2406 
2407 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2408     "Number of swap devices");
2409 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info,
2410     "Swap statistics by device");
2411 
2412 /*
2413  * vmspace_swap_count() - count the approximate swap usage in pages for a
2414  *			  vmspace.
2415  *
2416  *	The map must be locked.
2417  *
2418  *	Swap usage is determined by taking the proportional swap used by
2419  *	VM objects backing the VM map.  To make up for fractional losses,
2420  *	if the VM object has any swap use at all the associated map entries
2421  *	count for at least 1 swap page.
2422  */
2423 long
2424 vmspace_swap_count(struct vmspace *vmspace)
2425 {
2426 	vm_map_t map;
2427 	vm_map_entry_t cur;
2428 	vm_object_t object;
2429 	long count, n;
2430 
2431 	map = &vmspace->vm_map;
2432 	count = 0;
2433 
2434 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2435 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2436 		    (object = cur->object.vm_object) != NULL) {
2437 			VM_OBJECT_LOCK(object);
2438 			if (object->type == OBJT_SWAP &&
2439 			    object->un_pager.swp.swp_bcount != 0) {
2440 				n = (cur->end - cur->start) / PAGE_SIZE;
2441 				count += object->un_pager.swp.swp_bcount *
2442 				    SWAP_META_PAGES * n / object->size + 1;
2443 			}
2444 			VM_OBJECT_UNLOCK(object);
2445 		}
2446 	}
2447 	return (count);
2448 }
2449 
2450 /*
2451  * GEOM backend
2452  *
2453  * Swapping onto disk devices.
2454  *
2455  */
2456 
2457 static g_orphan_t swapgeom_orphan;
2458 
2459 static struct g_class g_swap_class = {
2460 	.name = "SWAP",
2461 	.version = G_VERSION,
2462 	.orphan = swapgeom_orphan,
2463 };
2464 
2465 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2466 
2467 
2468 static void
2469 swapgeom_done(struct bio *bp2)
2470 {
2471 	struct buf *bp;
2472 
2473 	bp = bp2->bio_caller2;
2474 	bp->b_ioflags = bp2->bio_flags;
2475 	if (bp2->bio_error)
2476 		bp->b_ioflags |= BIO_ERROR;
2477 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2478 	bp->b_error = bp2->bio_error;
2479 	bufdone(bp);
2480 	g_destroy_bio(bp2);
2481 }
2482 
2483 static void
2484 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2485 {
2486 	struct bio *bio;
2487 	struct g_consumer *cp;
2488 
2489 	cp = sp->sw_id;
2490 	if (cp == NULL) {
2491 		bp->b_error = ENXIO;
2492 		bp->b_ioflags |= BIO_ERROR;
2493 		bufdone(bp);
2494 		return;
2495 	}
2496 	if (bp->b_iocmd == BIO_WRITE)
2497 		bio = g_new_bio();
2498 	else
2499 		bio = g_alloc_bio();
2500 	if (bio == NULL) {
2501 		bp->b_error = ENOMEM;
2502 		bp->b_ioflags |= BIO_ERROR;
2503 		bufdone(bp);
2504 		return;
2505 	}
2506 
2507 	bio->bio_caller2 = bp;
2508 	bio->bio_cmd = bp->b_iocmd;
2509 	bio->bio_data = bp->b_data;
2510 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2511 	bio->bio_length = bp->b_bcount;
2512 	bio->bio_done = swapgeom_done;
2513 	g_io_request(bio, cp);
2514 	return;
2515 }
2516 
2517 static void
2518 swapgeom_orphan(struct g_consumer *cp)
2519 {
2520 	struct swdevt *sp;
2521 
2522 	mtx_lock(&sw_dev_mtx);
2523 	TAILQ_FOREACH(sp, &swtailq, sw_list)
2524 		if (sp->sw_id == cp)
2525 			sp->sw_id = NULL;
2526 	mtx_unlock(&sw_dev_mtx);
2527 }
2528 
2529 static void
2530 swapgeom_close_ev(void *arg, int flags)
2531 {
2532 	struct g_consumer *cp;
2533 
2534 	cp = arg;
2535 	g_access(cp, -1, -1, 0);
2536 	g_detach(cp);
2537 	g_destroy_consumer(cp);
2538 }
2539 
2540 static void
2541 swapgeom_close(struct thread *td, struct swdevt *sw)
2542 {
2543 
2544 	/* XXX: direct call when Giant untangled */
2545 	g_waitfor_event(swapgeom_close_ev, sw->sw_id, M_WAITOK, NULL);
2546 }
2547 
2548 
2549 struct swh0h0 {
2550 	struct cdev *dev;
2551 	struct vnode *vp;
2552 	int	error;
2553 };
2554 
2555 static void
2556 swapongeom_ev(void *arg, int flags)
2557 {
2558 	struct swh0h0 *swh;
2559 	struct g_provider *pp;
2560 	struct g_consumer *cp;
2561 	static struct g_geom *gp;
2562 	struct swdevt *sp;
2563 	u_long nblks;
2564 	int error;
2565 
2566 	swh = arg;
2567 	swh->error = 0;
2568 	pp = g_dev_getprovider(swh->dev);
2569 	if (pp == NULL) {
2570 		swh->error = ENODEV;
2571 		return;
2572 	}
2573 	mtx_lock(&sw_dev_mtx);
2574 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2575 		cp = sp->sw_id;
2576 		if (cp != NULL && cp->provider == pp) {
2577 			mtx_unlock(&sw_dev_mtx);
2578 			swh->error = EBUSY;
2579 			return;
2580 		}
2581 	}
2582 	mtx_unlock(&sw_dev_mtx);
2583 	if (gp == NULL)
2584 		gp = g_new_geomf(&g_swap_class, "swap", NULL);
2585 	cp = g_new_consumer(gp);
2586 	g_attach(cp, pp);
2587 	/*
2588 	 * XXX: Everytime you think you can improve the margin for
2589 	 * footshooting, somebody depends on the ability to do so:
2590 	 * savecore(8) wants to write to our swapdev so we cannot
2591 	 * set an exclusive count :-(
2592 	 */
2593 	error = g_access(cp, 1, 1, 0);
2594 	if (error) {
2595 		g_detach(cp);
2596 		g_destroy_consumer(cp);
2597 		swh->error = error;
2598 		return;
2599 	}
2600 	nblks = pp->mediasize / DEV_BSIZE;
2601 	swaponsomething(swh->vp, cp, nblks, swapgeom_strategy,
2602 	    swapgeom_close, dev2udev(swh->dev));
2603 	swh->error = 0;
2604 	return;
2605 }
2606 
2607 static int
2608 swapongeom(struct thread *td, struct vnode *vp)
2609 {
2610 	int error;
2611 	struct swh0h0 swh;
2612 
2613 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2614 
2615 	swh.dev = vp->v_rdev;
2616 	swh.vp = vp;
2617 	swh.error = 0;
2618 	/* XXX: direct call when Giant untangled */
2619 	error = g_waitfor_event(swapongeom_ev, &swh, M_WAITOK, NULL);
2620 	if (!error)
2621 		error = swh.error;
2622 	VOP_UNLOCK(vp, 0);
2623 	return (error);
2624 }
2625 
2626 /*
2627  * VNODE backend
2628  *
2629  * This is used mainly for network filesystem (read: probably only tested
2630  * with NFS) swapfiles.
2631  *
2632  */
2633 
2634 static void
2635 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2636 {
2637 	struct vnode *vp2;
2638 
2639 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2640 
2641 	vp2 = sp->sw_id;
2642 	vhold(vp2);
2643 	if (bp->b_iocmd == BIO_WRITE) {
2644 		if (bp->b_bufobj)
2645 			bufobj_wdrop(bp->b_bufobj);
2646 		bufobj_wref(&vp2->v_bufobj);
2647 	}
2648 	if (bp->b_bufobj != &vp2->v_bufobj)
2649 		bp->b_bufobj = &vp2->v_bufobj;
2650 	bp->b_vp = vp2;
2651 	bp->b_iooffset = dbtob(bp->b_blkno);
2652 	bstrategy(bp);
2653 	return;
2654 }
2655 
2656 static void
2657 swapdev_close(struct thread *td, struct swdevt *sp)
2658 {
2659 
2660 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2661 	vrele(sp->sw_vp);
2662 }
2663 
2664 
2665 static int
2666 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2667 {
2668 	struct swdevt *sp;
2669 	int error;
2670 
2671 	if (nblks == 0)
2672 		return (ENXIO);
2673 	mtx_lock(&sw_dev_mtx);
2674 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2675 		if (sp->sw_id == vp) {
2676 			mtx_unlock(&sw_dev_mtx);
2677 			return (EBUSY);
2678 		}
2679 	}
2680 	mtx_unlock(&sw_dev_mtx);
2681 
2682 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2683 #ifdef MAC
2684 	error = mac_system_check_swapon(td->td_ucred, vp);
2685 	if (error == 0)
2686 #endif
2687 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2688 	(void) VOP_UNLOCK(vp, 0);
2689 	if (error)
2690 		return (error);
2691 
2692 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2693 	    NODEV);
2694 	return (0);
2695 }
2696