xref: /freebsd/sys/vm/swap_pager.c (revision 00a3fe968b840ee197c32dfe4107dab730bd9915)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/disklabel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/fcntl.h>
85 #include <sys/lock.h>
86 #include <sys/kernel.h>
87 #include <sys/mount.h>
88 #include <sys/namei.h>
89 #include <sys/malloc.h>
90 #include <sys/pctrie.h>
91 #include <sys/priv.h>
92 #include <sys/proc.h>
93 #include <sys/racct.h>
94 #include <sys/resource.h>
95 #include <sys/resourcevar.h>
96 #include <sys/rwlock.h>
97 #include <sys/sbuf.h>
98 #include <sys/sysctl.h>
99 #include <sys/sysproto.h>
100 #include <sys/systm.h>
101 #include <sys/sx.h>
102 #include <sys/user.h>
103 #include <sys/vmmeter.h>
104 #include <sys/vnode.h>
105 
106 #include <security/mac/mac_framework.h>
107 
108 #include <vm/vm.h>
109 #include <vm/pmap.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <vm/vm_object.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pager.h>
115 #include <vm/vm_pageout.h>
116 #include <vm/vm_param.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/uma.h>
120 
121 #include <geom/geom.h>
122 
123 /*
124  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
125  * The 64-page limit is due to the radix code (kern/subr_blist.c).
126  */
127 #ifndef MAX_PAGEOUT_CLUSTER
128 #define	MAX_PAGEOUT_CLUSTER	32
129 #endif
130 
131 #if !defined(SWB_NPAGES)
132 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
133 #endif
134 
135 #define	SWAP_META_PAGES		PCTRIE_COUNT
136 
137 /*
138  * A swblk structure maps each page index within a
139  * SWAP_META_PAGES-aligned and sized range to the address of an
140  * on-disk swap block (or SWAPBLK_NONE). The collection of these
141  * mappings for an entire vm object is implemented as a pc-trie.
142  */
143 struct swblk {
144 	vm_pindex_t	p;
145 	daddr_t		d[SWAP_META_PAGES];
146 };
147 
148 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
149 static struct mtx sw_dev_mtx;
150 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
151 static struct swdevt *swdevhd;	/* Allocate from here next */
152 static int nswapdev;		/* Number of swap devices */
153 int swap_pager_avail;
154 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
155 
156 static __exclusive_cache_line u_long swap_reserved;
157 static u_long swap_total;
158 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
159 
160 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
161     "VM swap stats");
162 
163 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
164     &swap_reserved, 0, sysctl_page_shift, "A",
165     "Amount of swap storage needed to back all allocated anonymous memory.");
166 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
167     &swap_total, 0, sysctl_page_shift, "A",
168     "Total amount of available swap storage.");
169 
170 static int overcommit = 0;
171 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
172     "Configure virtual memory overcommit behavior. See tuning(7) "
173     "for details.");
174 static unsigned long swzone;
175 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
176     "Actual size of swap metadata zone");
177 static unsigned long swap_maxpages;
178 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
179     "Maximum amount of swap supported");
180 
181 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
182 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
183     CTLFLAG_RD, &swap_free_deferred,
184     "Number of pages that deferred freeing swap space");
185 
186 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
187 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
188     CTLFLAG_RD, &swap_free_completed,
189     "Number of deferred frees completed");
190 
191 /* bits from overcommit */
192 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
193 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
194 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
195 
196 static int
197 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
198 {
199 	uint64_t newval;
200 	u_long value = *(u_long *)arg1;
201 
202 	newval = ((uint64_t)value) << PAGE_SHIFT;
203 	return (sysctl_handle_64(oidp, &newval, 0, req));
204 }
205 
206 static bool
207 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
208 {
209 	struct uidinfo *uip;
210 	u_long prev;
211 
212 	uip = cred->cr_ruidinfo;
213 
214 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
215 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
216 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
217 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
218 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
219 		KASSERT(prev >= pincr, ("negative vmsize for uid = %d\n", uip->ui_uid));
220 		return (false);
221 	}
222 	return (true);
223 }
224 
225 static void
226 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
227 {
228 	struct uidinfo *uip;
229 #ifdef INVARIANTS
230 	u_long prev;
231 #endif
232 
233 	uip = cred->cr_ruidinfo;
234 
235 #ifdef INVARIANTS
236 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
237 	KASSERT(prev >= pdecr, ("negative vmsize for uid = %d\n", uip->ui_uid));
238 #else
239 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
240 #endif
241 }
242 
243 static void
244 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
245 {
246 	struct uidinfo *uip;
247 
248 	uip = cred->cr_ruidinfo;
249 	atomic_add_long(&uip->ui_vmsize, pincr);
250 }
251 
252 bool
253 swap_reserve(vm_ooffset_t incr)
254 {
255 
256 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
257 }
258 
259 bool
260 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
261 {
262 	u_long r, s, prev, pincr;
263 #ifdef RACCT
264 	int error;
265 #endif
266 	int oc;
267 	static int curfail;
268 	static struct timeval lastfail;
269 
270 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
271 	    (uintmax_t)incr));
272 
273 #ifdef RACCT
274 	if (RACCT_ENABLED()) {
275 		PROC_LOCK(curproc);
276 		error = racct_add(curproc, RACCT_SWAP, incr);
277 		PROC_UNLOCK(curproc);
278 		if (error != 0)
279 			return (false);
280 	}
281 #endif
282 
283 	pincr = atop(incr);
284 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
285 	r = prev + pincr;
286 	s = swap_total;
287 	oc = atomic_load_int(&overcommit);
288 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
289 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
290 		    vm_wire_count();
291 	}
292 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
293 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
294 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
295 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
296 		goto out_error;
297 	}
298 
299 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
300 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
301 		KASSERT(prev >= pincr, ("swap_reserved < incr on overcommit fail"));
302 		goto out_error;
303 	}
304 
305 	return (true);
306 
307 out_error:
308 	if (ppsratecheck(&lastfail, &curfail, 1)) {
309 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
310 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
311 	}
312 #ifdef RACCT
313 	if (RACCT_ENABLED()) {
314 		PROC_LOCK(curproc);
315 		racct_sub(curproc, RACCT_SWAP, incr);
316 		PROC_UNLOCK(curproc);
317 	}
318 #endif
319 
320 	return (false);
321 }
322 
323 void
324 swap_reserve_force(vm_ooffset_t incr)
325 {
326 	u_long pincr;
327 
328 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
329 	    (uintmax_t)incr));
330 
331 #ifdef RACCT
332 	if (RACCT_ENABLED()) {
333 		PROC_LOCK(curproc);
334 		racct_add_force(curproc, RACCT_SWAP, incr);
335 		PROC_UNLOCK(curproc);
336 	}
337 #endif
338 	pincr = atop(incr);
339 	atomic_add_long(&swap_reserved, pincr);
340 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
341 }
342 
343 void
344 swap_release(vm_ooffset_t decr)
345 {
346 	struct ucred *cred;
347 
348 	PROC_LOCK(curproc);
349 	cred = curproc->p_ucred;
350 	swap_release_by_cred(decr, cred);
351 	PROC_UNLOCK(curproc);
352 }
353 
354 void
355 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
356 {
357 	u_long pdecr;
358 #ifdef INVARIANTS
359 	u_long prev;
360 #endif
361 
362 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
363 	    (uintmax_t)decr));
364 
365 	pdecr = atop(decr);
366 #ifdef INVARIANTS
367 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
368 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
369 #else
370 	atomic_subtract_long(&swap_reserved, pdecr);
371 #endif
372 
373 	swap_release_by_cred_rlimit(pdecr, cred);
374 #ifdef RACCT
375 	if (racct_enable)
376 		racct_sub_cred(cred, RACCT_SWAP, decr);
377 #endif
378 }
379 
380 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
381 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
382 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
383 static int nsw_wcount_async;	/* limit async write buffers */
384 static int nsw_wcount_async_max;/* assigned maximum			*/
385 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
386 
387 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
388 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
389     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
390     "Maximum running async swap ops");
391 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
392 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
393     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
394     "Swap Fragmentation Info");
395 
396 static struct sx sw_alloc_sx;
397 
398 /*
399  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
400  * of searching a named list by hashing it just a little.
401  */
402 
403 #define NOBJLISTS		8
404 
405 #define NOBJLIST(handle)	\
406 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
407 
408 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
409 static uma_zone_t swwbuf_zone;
410 static uma_zone_t swrbuf_zone;
411 static uma_zone_t swblk_zone;
412 static uma_zone_t swpctrie_zone;
413 
414 /*
415  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
416  * calls hooked from other parts of the VM system and do not appear here.
417  * (see vm/swap_pager.h).
418  */
419 static vm_object_t
420 		swap_pager_alloc(void *handle, vm_ooffset_t size,
421 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
422 static vm_object_t
423 		swap_tmpfs_pager_alloc(void *handle, vm_ooffset_t size,
424 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
425 static void	swap_pager_dealloc(vm_object_t object);
426 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
427     int *);
428 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
429     int *, pgo_getpages_iodone_t, void *);
430 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
431 static boolean_t
432 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
433 static void	swap_pager_init(void);
434 static void	swap_pager_unswapped(vm_page_t);
435 static void	swap_pager_swapoff(struct swdevt *sp);
436 static void	swap_pager_update_writecount(vm_object_t object,
437     vm_offset_t start, vm_offset_t end);
438 static void	swap_pager_release_writecount(vm_object_t object,
439     vm_offset_t start, vm_offset_t end);
440 static void	swap_tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp,
441     bool *vp_heldp);
442 static void	swap_pager_freespace(vm_object_t object, vm_pindex_t start,
443     vm_size_t size);
444 
445 const struct pagerops swappagerops = {
446 	.pgo_kvme_type = KVME_TYPE_SWAP,
447 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
448 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
449 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
450 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
451 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
452 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
453 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
454 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
455 	.pgo_update_writecount = swap_pager_update_writecount,
456 	.pgo_release_writecount = swap_pager_release_writecount,
457 	.pgo_freespace = swap_pager_freespace,
458 };
459 
460 const struct pagerops swaptmpfspagerops = {
461 	.pgo_kvme_type = KVME_TYPE_VNODE,
462 	.pgo_alloc =	swap_tmpfs_pager_alloc,
463 	.pgo_dealloc =	swap_pager_dealloc,
464 	.pgo_getpages =	swap_pager_getpages,
465 	.pgo_getpages_async = swap_pager_getpages_async,
466 	.pgo_putpages =	swap_pager_putpages,
467 	.pgo_haspage =	swap_pager_haspage,
468 	.pgo_pageunswapped = swap_pager_unswapped,
469 	.pgo_update_writecount = swap_pager_update_writecount,
470 	.pgo_release_writecount = swap_pager_release_writecount,
471 	.pgo_set_writeable_dirty = vm_object_set_writeable_dirty_,
472 	.pgo_mightbedirty = vm_object_mightbedirty_,
473 	.pgo_getvp = swap_tmpfs_pager_getvp,
474 	.pgo_freespace = swap_pager_freespace,
475 };
476 
477 /*
478  * swap_*() routines are externally accessible.  swp_*() routines are
479  * internal.
480  */
481 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
482 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
483 
484 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
485     "Maximum size of a swap block in pages");
486 
487 static void	swp_sizecheck(void);
488 static void	swp_pager_async_iodone(struct buf *bp);
489 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
490 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
491 static int	swapongeom(struct vnode *);
492 static int	swaponvp(struct thread *, struct vnode *, u_long);
493 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
494 
495 /*
496  * Swap bitmap functions
497  */
498 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
499 static daddr_t	swp_pager_getswapspace(int *npages);
500 
501 /*
502  * Metadata functions
503  */
504 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
505 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
506 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
507     vm_pindex_t pindex, vm_pindex_t count);
508 static void swp_pager_meta_free_all(vm_object_t);
509 static daddr_t swp_pager_meta_lookup(vm_object_t, vm_pindex_t);
510 
511 static void
512 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
513 {
514 
515 	*start = SWAPBLK_NONE;
516 	*num = 0;
517 }
518 
519 static void
520 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
521 {
522 
523 	if (*start + *num == addr) {
524 		(*num)++;
525 	} else {
526 		swp_pager_freeswapspace(*start, *num);
527 		*start = addr;
528 		*num = 1;
529 	}
530 }
531 
532 static void *
533 swblk_trie_alloc(struct pctrie *ptree)
534 {
535 
536 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
537 	    M_USE_RESERVE : 0)));
538 }
539 
540 static void
541 swblk_trie_free(struct pctrie *ptree, void *node)
542 {
543 
544 	uma_zfree(swpctrie_zone, node);
545 }
546 
547 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
548 
549 /*
550  * SWP_SIZECHECK() -	update swap_pager_full indication
551  *
552  *	update the swap_pager_almost_full indication and warn when we are
553  *	about to run out of swap space, using lowat/hiwat hysteresis.
554  *
555  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
556  *
557  *	No restrictions on call
558  *	This routine may not block.
559  */
560 static void
561 swp_sizecheck(void)
562 {
563 
564 	if (swap_pager_avail < nswap_lowat) {
565 		if (swap_pager_almost_full == 0) {
566 			printf("swap_pager: out of swap space\n");
567 			swap_pager_almost_full = 1;
568 		}
569 	} else {
570 		swap_pager_full = 0;
571 		if (swap_pager_avail > nswap_hiwat)
572 			swap_pager_almost_full = 0;
573 	}
574 }
575 
576 /*
577  * SWAP_PAGER_INIT() -	initialize the swap pager!
578  *
579  *	Expected to be started from system init.  NOTE:  This code is run
580  *	before much else so be careful what you depend on.  Most of the VM
581  *	system has yet to be initialized at this point.
582  */
583 static void
584 swap_pager_init(void)
585 {
586 	/*
587 	 * Initialize object lists
588 	 */
589 	int i;
590 
591 	for (i = 0; i < NOBJLISTS; ++i)
592 		TAILQ_INIT(&swap_pager_object_list[i]);
593 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
594 	sx_init(&sw_alloc_sx, "swspsx");
595 	sx_init(&swdev_syscall_lock, "swsysc");
596 }
597 
598 /*
599  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
600  *
601  *	Expected to be started from pageout process once, prior to entering
602  *	its main loop.
603  */
604 void
605 swap_pager_swap_init(void)
606 {
607 	unsigned long n, n2;
608 
609 	/*
610 	 * Number of in-transit swap bp operations.  Don't
611 	 * exhaust the pbufs completely.  Make sure we
612 	 * initialize workable values (0 will work for hysteresis
613 	 * but it isn't very efficient).
614 	 *
615 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
616 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
617 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
618 	 * constrained by the swap device interleave stripe size.
619 	 *
620 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
621 	 * designed to prevent other I/O from having high latencies due to
622 	 * our pageout I/O.  The value 4 works well for one or two active swap
623 	 * devices but is probably a little low if you have more.  Even so,
624 	 * a higher value would probably generate only a limited improvement
625 	 * with three or four active swap devices since the system does not
626 	 * typically have to pageout at extreme bandwidths.   We will want
627 	 * at least 2 per swap devices, and 4 is a pretty good value if you
628 	 * have one NFS swap device due to the command/ack latency over NFS.
629 	 * So it all works out pretty well.
630 	 */
631 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
632 
633 	nsw_wcount_async = 4;
634 	nsw_wcount_async_max = nsw_wcount_async;
635 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
636 
637 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
638 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
639 
640 	/*
641 	 * Initialize our zone, taking the user's requested size or
642 	 * estimating the number we need based on the number of pages
643 	 * in the system.
644 	 */
645 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
646 	    vm_cnt.v_page_count / 2;
647 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
648 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
649 	if (swpctrie_zone == NULL)
650 		panic("failed to create swap pctrie zone.");
651 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
652 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
653 	if (swblk_zone == NULL)
654 		panic("failed to create swap blk zone.");
655 	n2 = n;
656 	do {
657 		if (uma_zone_reserve_kva(swblk_zone, n))
658 			break;
659 		/*
660 		 * if the allocation failed, try a zone two thirds the
661 		 * size of the previous attempt.
662 		 */
663 		n -= ((n + 2) / 3);
664 	} while (n > 0);
665 
666 	/*
667 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
668 	 * requested size.  Account for the difference when
669 	 * calculating swap_maxpages.
670 	 */
671 	n = uma_zone_get_max(swblk_zone);
672 
673 	if (n < n2)
674 		printf("Swap blk zone entries changed from %lu to %lu.\n",
675 		    n2, n);
676 	/* absolute maximum we can handle assuming 100% efficiency */
677 	swap_maxpages = n * SWAP_META_PAGES;
678 	swzone = n * sizeof(struct swblk);
679 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
680 		printf("Cannot reserve swap pctrie zone, "
681 		    "reduce kern.maxswzone.\n");
682 }
683 
684 static vm_object_t
685 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
686     vm_ooffset_t size, vm_ooffset_t offset)
687 {
688 	vm_object_t object;
689 
690 	if (cred != NULL) {
691 		if (!swap_reserve_by_cred(size, cred))
692 			return (NULL);
693 		crhold(cred);
694 	}
695 
696 	/*
697 	 * The un_pager.swp.swp_blks trie is initialized by
698 	 * vm_object_allocate() to ensure the correct order of
699 	 * visibility to other threads.
700 	 */
701 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
702 	    PAGE_MASK + size));
703 
704 	object->un_pager.swp.writemappings = 0;
705 	object->handle = handle;
706 	if (cred != NULL) {
707 		object->cred = cred;
708 		object->charge = size;
709 	}
710 	return (object);
711 }
712 
713 /*
714  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
715  *			its metadata structures.
716  *
717  *	This routine is called from the mmap and fork code to create a new
718  *	OBJT_SWAP object.
719  *
720  *	This routine must ensure that no live duplicate is created for
721  *	the named object request, which is protected against by
722  *	holding the sw_alloc_sx lock in case handle != NULL.
723  */
724 static vm_object_t
725 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
726     vm_ooffset_t offset, struct ucred *cred)
727 {
728 	vm_object_t object;
729 
730 	if (handle != NULL) {
731 		/*
732 		 * Reference existing named region or allocate new one.  There
733 		 * should not be a race here against swp_pager_meta_build()
734 		 * as called from vm_page_remove() in regards to the lookup
735 		 * of the handle.
736 		 */
737 		sx_xlock(&sw_alloc_sx);
738 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
739 		if (object == NULL) {
740 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
741 			    size, offset);
742 			if (object != NULL) {
743 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
744 				    object, pager_object_list);
745 			}
746 		}
747 		sx_xunlock(&sw_alloc_sx);
748 	} else {
749 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
750 		    size, offset);
751 	}
752 	return (object);
753 }
754 
755 static vm_object_t
756 swap_tmpfs_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
757     vm_ooffset_t offset, struct ucred *cred)
758 {
759 	vm_object_t object;
760 
761 	MPASS(handle == NULL);
762 	object = swap_pager_alloc_init(OBJT_SWAP_TMPFS, handle, cred,
763 	    size, offset);
764 	return (object);
765 }
766 
767 /*
768  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
769  *
770  *	The swap backing for the object is destroyed.  The code is
771  *	designed such that we can reinstantiate it later, but this
772  *	routine is typically called only when the entire object is
773  *	about to be destroyed.
774  *
775  *	The object must be locked.
776  */
777 static void
778 swap_pager_dealloc(vm_object_t object)
779 {
780 
781 	VM_OBJECT_ASSERT_WLOCKED(object);
782 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
783 
784 	/*
785 	 * Remove from list right away so lookups will fail if we block for
786 	 * pageout completion.
787 	 */
788 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
789 		VM_OBJECT_WUNLOCK(object);
790 		sx_xlock(&sw_alloc_sx);
791 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
792 		    pager_object_list);
793 		sx_xunlock(&sw_alloc_sx);
794 		VM_OBJECT_WLOCK(object);
795 	}
796 
797 	vm_object_pip_wait(object, "swpdea");
798 
799 	/*
800 	 * Free all remaining metadata.  We only bother to free it from
801 	 * the swap meta data.  We do not attempt to free swapblk's still
802 	 * associated with vm_page_t's for this object.  We do not care
803 	 * if paging is still in progress on some objects.
804 	 */
805 	swp_pager_meta_free_all(object);
806 	object->handle = NULL;
807 	object->type = OBJT_DEAD;
808 	vm_object_clear_flag(object, OBJ_SWAP);
809 }
810 
811 /************************************************************************
812  *			SWAP PAGER BITMAP ROUTINES			*
813  ************************************************************************/
814 
815 /*
816  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
817  *
818  *	Allocate swap for up to the requested number of pages.  The
819  *	starting swap block number (a page index) is returned or
820  *	SWAPBLK_NONE if the allocation failed.
821  *
822  *	Also has the side effect of advising that somebody made a mistake
823  *	when they configured swap and didn't configure enough.
824  *
825  *	This routine may not sleep.
826  *
827  *	We allocate in round-robin fashion from the configured devices.
828  */
829 static daddr_t
830 swp_pager_getswapspace(int *io_npages)
831 {
832 	daddr_t blk;
833 	struct swdevt *sp;
834 	int mpages, npages;
835 
836 	KASSERT(*io_npages >= 1,
837 	    ("%s: npages not positive", __func__));
838 	blk = SWAPBLK_NONE;
839 	mpages = *io_npages;
840 	npages = imin(BLIST_MAX_ALLOC, mpages);
841 	mtx_lock(&sw_dev_mtx);
842 	sp = swdevhd;
843 	while (!TAILQ_EMPTY(&swtailq)) {
844 		if (sp == NULL)
845 			sp = TAILQ_FIRST(&swtailq);
846 		if ((sp->sw_flags & SW_CLOSING) == 0)
847 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
848 		if (blk != SWAPBLK_NONE)
849 			break;
850 		sp = TAILQ_NEXT(sp, sw_list);
851 		if (swdevhd == sp) {
852 			if (npages == 1)
853 				break;
854 			mpages = npages - 1;
855 			npages >>= 1;
856 		}
857 	}
858 	if (blk != SWAPBLK_NONE) {
859 		*io_npages = npages;
860 		blk += sp->sw_first;
861 		sp->sw_used += npages;
862 		swap_pager_avail -= npages;
863 		swp_sizecheck();
864 		swdevhd = TAILQ_NEXT(sp, sw_list);
865 	} else {
866 		if (swap_pager_full != 2) {
867 			printf("swp_pager_getswapspace(%d): failed\n",
868 			    *io_npages);
869 			swap_pager_full = 2;
870 			swap_pager_almost_full = 1;
871 		}
872 		swdevhd = NULL;
873 	}
874 	mtx_unlock(&sw_dev_mtx);
875 	return (blk);
876 }
877 
878 static bool
879 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
880 {
881 
882 	return (blk >= sp->sw_first && blk < sp->sw_end);
883 }
884 
885 static void
886 swp_pager_strategy(struct buf *bp)
887 {
888 	struct swdevt *sp;
889 
890 	mtx_lock(&sw_dev_mtx);
891 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
892 		if (swp_pager_isondev(bp->b_blkno, sp)) {
893 			mtx_unlock(&sw_dev_mtx);
894 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
895 			    unmapped_buf_allowed) {
896 				bp->b_data = unmapped_buf;
897 				bp->b_offset = 0;
898 			} else {
899 				pmap_qenter((vm_offset_t)bp->b_data,
900 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
901 			}
902 			sp->sw_strategy(bp, sp);
903 			return;
904 		}
905 	}
906 	panic("Swapdev not found");
907 }
908 
909 /*
910  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
911  *
912  *	This routine returns the specified swap blocks back to the bitmap.
913  *
914  *	This routine may not sleep.
915  */
916 static void
917 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
918 {
919 	struct swdevt *sp;
920 
921 	if (npages == 0)
922 		return;
923 	mtx_lock(&sw_dev_mtx);
924 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
925 		if (swp_pager_isondev(blk, sp)) {
926 			sp->sw_used -= npages;
927 			/*
928 			 * If we are attempting to stop swapping on
929 			 * this device, we don't want to mark any
930 			 * blocks free lest they be reused.
931 			 */
932 			if ((sp->sw_flags & SW_CLOSING) == 0) {
933 				blist_free(sp->sw_blist, blk - sp->sw_first,
934 				    npages);
935 				swap_pager_avail += npages;
936 				swp_sizecheck();
937 			}
938 			mtx_unlock(&sw_dev_mtx);
939 			return;
940 		}
941 	}
942 	panic("Swapdev not found");
943 }
944 
945 /*
946  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
947  */
948 static int
949 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
950 {
951 	struct sbuf sbuf;
952 	struct swdevt *sp;
953 	const char *devname;
954 	int error;
955 
956 	error = sysctl_wire_old_buffer(req, 0);
957 	if (error != 0)
958 		return (error);
959 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
960 	mtx_lock(&sw_dev_mtx);
961 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
962 		if (vn_isdisk(sp->sw_vp))
963 			devname = devtoname(sp->sw_vp->v_rdev);
964 		else
965 			devname = "[file]";
966 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
967 		blist_stats(sp->sw_blist, &sbuf);
968 	}
969 	mtx_unlock(&sw_dev_mtx);
970 	error = sbuf_finish(&sbuf);
971 	sbuf_delete(&sbuf);
972 	return (error);
973 }
974 
975 /*
976  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
977  *				range within an object.
978  *
979  *	This routine removes swapblk assignments from swap metadata.
980  *
981  *	The external callers of this routine typically have already destroyed
982  *	or renamed vm_page_t's associated with this range in the object so
983  *	we should be ok.
984  *
985  *	The object must be locked.
986  */
987 static void
988 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
989 {
990 
991 	swp_pager_meta_free(object, start, size);
992 }
993 
994 /*
995  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
996  *
997  *	Assigns swap blocks to the specified range within the object.  The
998  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
999  *
1000  *	Returns 0 on success, -1 on failure.
1001  */
1002 int
1003 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
1004 {
1005 	daddr_t addr, blk, n_free, s_free;
1006 	int i, j, n;
1007 
1008 	swp_pager_init_freerange(&s_free, &n_free);
1009 	VM_OBJECT_WLOCK(object);
1010 	for (i = 0; i < size; i += n) {
1011 		n = size - i;
1012 		blk = swp_pager_getswapspace(&n);
1013 		if (blk == SWAPBLK_NONE) {
1014 			swp_pager_meta_free(object, start, i);
1015 			VM_OBJECT_WUNLOCK(object);
1016 			return (-1);
1017 		}
1018 		for (j = 0; j < n; ++j) {
1019 			addr = swp_pager_meta_build(object,
1020 			    start + i + j, blk + j);
1021 			if (addr != SWAPBLK_NONE)
1022 				swp_pager_update_freerange(&s_free, &n_free,
1023 				    addr);
1024 		}
1025 	}
1026 	swp_pager_freeswapspace(s_free, n_free);
1027 	VM_OBJECT_WUNLOCK(object);
1028 	return (0);
1029 }
1030 
1031 static bool
1032 swp_pager_xfer_source(vm_object_t srcobject, vm_object_t dstobject,
1033     vm_pindex_t pindex, daddr_t addr)
1034 {
1035 	daddr_t dstaddr;
1036 
1037 	KASSERT((srcobject->flags & OBJ_SWAP) != 0,
1038 	    ("%s: Srcobject not swappable", __func__));
1039 	if ((dstobject->flags & OBJ_SWAP) != 0 &&
1040 	    swp_pager_meta_lookup(dstobject, pindex) != SWAPBLK_NONE) {
1041 		/* Caller should destroy the source block. */
1042 		return (false);
1043 	}
1044 
1045 	/*
1046 	 * Destination has no swapblk and is not resident, transfer source.
1047 	 * swp_pager_meta_build() can sleep.
1048 	 */
1049 	VM_OBJECT_WUNLOCK(srcobject);
1050 	dstaddr = swp_pager_meta_build(dstobject, pindex, addr);
1051 	KASSERT(dstaddr == SWAPBLK_NONE,
1052 	    ("Unexpected destination swapblk"));
1053 	VM_OBJECT_WLOCK(srcobject);
1054 
1055 	return (true);
1056 }
1057 
1058 /*
1059  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1060  *			and destroy the source.
1061  *
1062  *	Copy any valid swapblks from the source to the destination.  In
1063  *	cases where both the source and destination have a valid swapblk,
1064  *	we keep the destination's.
1065  *
1066  *	This routine is allowed to sleep.  It may sleep allocating metadata
1067  *	indirectly through swp_pager_meta_build().
1068  *
1069  *	The source object contains no vm_page_t's (which is just as well)
1070  *
1071  *	The source object is of type OBJT_SWAP.
1072  *
1073  *	The source and destination objects must be locked.
1074  *	Both object locks may temporarily be released.
1075  */
1076 void
1077 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1078     vm_pindex_t offset, int destroysource)
1079 {
1080 
1081 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1082 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1083 
1084 	/*
1085 	 * If destroysource is set, we remove the source object from the
1086 	 * swap_pager internal queue now.
1087 	 */
1088 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1089 	    srcobject->handle != NULL) {
1090 		VM_OBJECT_WUNLOCK(srcobject);
1091 		VM_OBJECT_WUNLOCK(dstobject);
1092 		sx_xlock(&sw_alloc_sx);
1093 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1094 		    pager_object_list);
1095 		sx_xunlock(&sw_alloc_sx);
1096 		VM_OBJECT_WLOCK(dstobject);
1097 		VM_OBJECT_WLOCK(srcobject);
1098 	}
1099 
1100 	/*
1101 	 * Transfer source to destination.
1102 	 */
1103 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1104 
1105 	/*
1106 	 * Free left over swap blocks in source.
1107 	 *
1108 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1109 	 * double-remove the object from the swap queues.
1110 	 */
1111 	if (destroysource) {
1112 		swp_pager_meta_free_all(srcobject);
1113 		/*
1114 		 * Reverting the type is not necessary, the caller is going
1115 		 * to destroy srcobject directly, but I'm doing it here
1116 		 * for consistency since we've removed the object from its
1117 		 * queues.
1118 		 */
1119 		srcobject->type = OBJT_DEFAULT;
1120 		vm_object_clear_flag(srcobject, OBJ_SWAP);
1121 	}
1122 }
1123 
1124 /*
1125  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1126  *				the requested page.
1127  *
1128  *	We determine whether good backing store exists for the requested
1129  *	page and return TRUE if it does, FALSE if it doesn't.
1130  *
1131  *	If TRUE, we also try to determine how much valid, contiguous backing
1132  *	store exists before and after the requested page.
1133  */
1134 static boolean_t
1135 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1136     int *after)
1137 {
1138 	daddr_t blk, blk0;
1139 	int i;
1140 
1141 	VM_OBJECT_ASSERT_LOCKED(object);
1142 	KASSERT((object->flags & OBJ_SWAP) != 0,
1143 	    ("%s: object not swappable", __func__));
1144 
1145 	/*
1146 	 * do we have good backing store at the requested index ?
1147 	 */
1148 	blk0 = swp_pager_meta_lookup(object, pindex);
1149 	if (blk0 == SWAPBLK_NONE) {
1150 		if (before)
1151 			*before = 0;
1152 		if (after)
1153 			*after = 0;
1154 		return (FALSE);
1155 	}
1156 
1157 	/*
1158 	 * find backwards-looking contiguous good backing store
1159 	 */
1160 	if (before != NULL) {
1161 		for (i = 1; i < SWB_NPAGES; i++) {
1162 			if (i > pindex)
1163 				break;
1164 			blk = swp_pager_meta_lookup(object, pindex - i);
1165 			if (blk != blk0 - i)
1166 				break;
1167 		}
1168 		*before = i - 1;
1169 	}
1170 
1171 	/*
1172 	 * find forward-looking contiguous good backing store
1173 	 */
1174 	if (after != NULL) {
1175 		for (i = 1; i < SWB_NPAGES; i++) {
1176 			blk = swp_pager_meta_lookup(object, pindex + i);
1177 			if (blk != blk0 + i)
1178 				break;
1179 		}
1180 		*after = i - 1;
1181 	}
1182 	return (TRUE);
1183 }
1184 
1185 /*
1186  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1187  *
1188  *	This removes any associated swap backing store, whether valid or
1189  *	not, from the page.
1190  *
1191  *	This routine is typically called when a page is made dirty, at
1192  *	which point any associated swap can be freed.  MADV_FREE also
1193  *	calls us in a special-case situation
1194  *
1195  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1196  *	should make the page dirty before calling this routine.  This routine
1197  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1198  *	depends on it.
1199  *
1200  *	This routine may not sleep.
1201  *
1202  *	The object containing the page may be locked.
1203  */
1204 static void
1205 swap_pager_unswapped(vm_page_t m)
1206 {
1207 	struct swblk *sb;
1208 	vm_object_t obj;
1209 
1210 	/*
1211 	 * Handle enqueing deferred frees first.  If we do not have the
1212 	 * object lock we wait for the page daemon to clear the space.
1213 	 */
1214 	obj = m->object;
1215 	if (!VM_OBJECT_WOWNED(obj)) {
1216 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1217 		/*
1218 		 * The caller is responsible for synchronization but we
1219 		 * will harmlessly handle races.  This is typically provided
1220 		 * by only calling unswapped() when a page transitions from
1221 		 * clean to dirty.
1222 		 */
1223 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1224 		    PGA_SWAP_SPACE) {
1225 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1226 			counter_u64_add(swap_free_deferred, 1);
1227 		}
1228 		return;
1229 	}
1230 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1231 		counter_u64_add(swap_free_completed, 1);
1232 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1233 
1234 	/*
1235 	 * The meta data only exists if the object is OBJT_SWAP
1236 	 * and even then might not be allocated yet.
1237 	 */
1238 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1239 	    ("Free object not swappable"));
1240 
1241 	sb = SWAP_PCTRIE_LOOKUP(&m->object->un_pager.swp.swp_blks,
1242 	    rounddown(m->pindex, SWAP_META_PAGES));
1243 	if (sb == NULL)
1244 		return;
1245 	if (sb->d[m->pindex % SWAP_META_PAGES] == SWAPBLK_NONE)
1246 		return;
1247 	swp_pager_freeswapspace(sb->d[m->pindex % SWAP_META_PAGES], 1);
1248 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1249 	swp_pager_free_empty_swblk(m->object, sb);
1250 }
1251 
1252 /*
1253  * swap_pager_getpages() - bring pages in from swap
1254  *
1255  *	Attempt to page in the pages in array "ma" of length "count".  The
1256  *	caller may optionally specify that additional pages preceding and
1257  *	succeeding the specified range be paged in.  The number of such pages
1258  *	is returned in the "rbehind" and "rahead" parameters, and they will
1259  *	be in the inactive queue upon return.
1260  *
1261  *	The pages in "ma" must be busied and will remain busied upon return.
1262  */
1263 static int
1264 swap_pager_getpages_locked(vm_object_t object, vm_page_t *ma, int count,
1265     int *rbehind, int *rahead)
1266 {
1267 	struct buf *bp;
1268 	vm_page_t bm, mpred, msucc, p;
1269 	vm_pindex_t pindex;
1270 	daddr_t blk;
1271 	int i, maxahead, maxbehind, reqcount;
1272 
1273 	VM_OBJECT_ASSERT_WLOCKED(object);
1274 	reqcount = count;
1275 
1276 	KASSERT((object->flags & OBJ_SWAP) != 0,
1277 	    ("%s: object not swappable", __func__));
1278 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) {
1279 		VM_OBJECT_WUNLOCK(object);
1280 		return (VM_PAGER_FAIL);
1281 	}
1282 
1283 	KASSERT(reqcount - 1 <= maxahead,
1284 	    ("page count %d extends beyond swap block", reqcount));
1285 
1286 	/*
1287 	 * Do not transfer any pages other than those that are xbusied
1288 	 * when running during a split or collapse operation.  This
1289 	 * prevents clustering from re-creating pages which are being
1290 	 * moved into another object.
1291 	 */
1292 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1293 		maxahead = reqcount - 1;
1294 		maxbehind = 0;
1295 	}
1296 
1297 	/*
1298 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1299 	 */
1300 	if (rahead != NULL) {
1301 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1302 		pindex = ma[reqcount - 1]->pindex;
1303 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1304 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1305 			*rahead = msucc->pindex - pindex - 1;
1306 	}
1307 	if (rbehind != NULL) {
1308 		*rbehind = imin(*rbehind, maxbehind);
1309 		pindex = ma[0]->pindex;
1310 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1311 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1312 			*rbehind = pindex - mpred->pindex - 1;
1313 	}
1314 
1315 	bm = ma[0];
1316 	for (i = 0; i < count; i++)
1317 		ma[i]->oflags |= VPO_SWAPINPROG;
1318 
1319 	/*
1320 	 * Allocate readahead and readbehind pages.
1321 	 */
1322 	if (rbehind != NULL) {
1323 		for (i = 1; i <= *rbehind; i++) {
1324 			p = vm_page_alloc(object, ma[0]->pindex - i,
1325 			    VM_ALLOC_NORMAL);
1326 			if (p == NULL)
1327 				break;
1328 			p->oflags |= VPO_SWAPINPROG;
1329 			bm = p;
1330 		}
1331 		*rbehind = i - 1;
1332 	}
1333 	if (rahead != NULL) {
1334 		for (i = 0; i < *rahead; i++) {
1335 			p = vm_page_alloc(object,
1336 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1337 			if (p == NULL)
1338 				break;
1339 			p->oflags |= VPO_SWAPINPROG;
1340 		}
1341 		*rahead = i;
1342 	}
1343 	if (rbehind != NULL)
1344 		count += *rbehind;
1345 	if (rahead != NULL)
1346 		count += *rahead;
1347 
1348 	vm_object_pip_add(object, count);
1349 
1350 	pindex = bm->pindex;
1351 	blk = swp_pager_meta_lookup(object, pindex);
1352 	KASSERT(blk != SWAPBLK_NONE,
1353 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1354 
1355 	VM_OBJECT_WUNLOCK(object);
1356 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1357 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1358 	/* Pages cannot leave the object while busy. */
1359 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1360 		MPASS(p->pindex == bm->pindex + i);
1361 		bp->b_pages[i] = p;
1362 	}
1363 
1364 	bp->b_flags |= B_PAGING;
1365 	bp->b_iocmd = BIO_READ;
1366 	bp->b_iodone = swp_pager_async_iodone;
1367 	bp->b_rcred = crhold(thread0.td_ucred);
1368 	bp->b_wcred = crhold(thread0.td_ucred);
1369 	bp->b_blkno = blk;
1370 	bp->b_bcount = PAGE_SIZE * count;
1371 	bp->b_bufsize = PAGE_SIZE * count;
1372 	bp->b_npages = count;
1373 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1374 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1375 
1376 	VM_CNT_INC(v_swapin);
1377 	VM_CNT_ADD(v_swappgsin, count);
1378 
1379 	/*
1380 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1381 	 * this point because we automatically release it on completion.
1382 	 * Instead, we look at the one page we are interested in which we
1383 	 * still hold a lock on even through the I/O completion.
1384 	 *
1385 	 * The other pages in our ma[] array are also released on completion,
1386 	 * so we cannot assume they are valid anymore either.
1387 	 *
1388 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1389 	 */
1390 	BUF_KERNPROC(bp);
1391 	swp_pager_strategy(bp);
1392 
1393 	/*
1394 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1395 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1396 	 * is set in the metadata for each page in the request.
1397 	 */
1398 	VM_OBJECT_WLOCK(object);
1399 	/* This could be implemented more efficiently with aflags */
1400 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1401 		ma[0]->oflags |= VPO_SWAPSLEEP;
1402 		VM_CNT_INC(v_intrans);
1403 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1404 		    "swread", hz * 20)) {
1405 			printf(
1406 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1407 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1408 		}
1409 	}
1410 	VM_OBJECT_WUNLOCK(object);
1411 
1412 	/*
1413 	 * If we had an unrecoverable read error pages will not be valid.
1414 	 */
1415 	for (i = 0; i < reqcount; i++)
1416 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1417 			return (VM_PAGER_ERROR);
1418 
1419 	return (VM_PAGER_OK);
1420 
1421 	/*
1422 	 * A final note: in a low swap situation, we cannot deallocate swap
1423 	 * and mark a page dirty here because the caller is likely to mark
1424 	 * the page clean when we return, causing the page to possibly revert
1425 	 * to all-zero's later.
1426 	 */
1427 }
1428 
1429 static int
1430 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1431     int *rbehind, int *rahead)
1432 {
1433 
1434 	VM_OBJECT_WLOCK(object);
1435 	return (swap_pager_getpages_locked(object, ma, count, rbehind, rahead));
1436 }
1437 
1438 /*
1439  * 	swap_pager_getpages_async():
1440  *
1441  *	Right now this is emulation of asynchronous operation on top of
1442  *	swap_pager_getpages().
1443  */
1444 static int
1445 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1446     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1447 {
1448 	int r, error;
1449 
1450 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1451 	switch (r) {
1452 	case VM_PAGER_OK:
1453 		error = 0;
1454 		break;
1455 	case VM_PAGER_ERROR:
1456 		error = EIO;
1457 		break;
1458 	case VM_PAGER_FAIL:
1459 		error = EINVAL;
1460 		break;
1461 	default:
1462 		panic("unhandled swap_pager_getpages() error %d", r);
1463 	}
1464 	(iodone)(arg, ma, count, error);
1465 
1466 	return (r);
1467 }
1468 
1469 /*
1470  *	swap_pager_putpages:
1471  *
1472  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1473  *
1474  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1475  *	are automatically converted to SWAP objects.
1476  *
1477  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1478  *	vm_page reservation system coupled with properly written VFS devices
1479  *	should ensure that no low-memory deadlock occurs.  This is an area
1480  *	which needs work.
1481  *
1482  *	The parent has N vm_object_pip_add() references prior to
1483  *	calling us and will remove references for rtvals[] that are
1484  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1485  *	completion.
1486  *
1487  *	The parent has soft-busy'd the pages it passes us and will unbusy
1488  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1489  *	We need to unbusy the rest on I/O completion.
1490  */
1491 static void
1492 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1493     int flags, int *rtvals)
1494 {
1495 	struct buf *bp;
1496 	daddr_t addr, blk, n_free, s_free;
1497 	vm_page_t mreq;
1498 	int i, j, n;
1499 	bool async;
1500 
1501 	KASSERT(count == 0 || ma[0]->object == object,
1502 	    ("%s: object mismatch %p/%p",
1503 	    __func__, object, ma[0]->object));
1504 
1505 	/*
1506 	 * Step 1
1507 	 *
1508 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1509 	 */
1510 	if ((object->flags & OBJ_SWAP) == 0) {
1511 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1512 		KASSERT(addr == SWAPBLK_NONE,
1513 		    ("unexpected object swap block"));
1514 	}
1515 	VM_OBJECT_WUNLOCK(object);
1516 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1517 	swp_pager_init_freerange(&s_free, &n_free);
1518 
1519 	/*
1520 	 * Step 2
1521 	 *
1522 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1523 	 * The page is left dirty until the pageout operation completes
1524 	 * successfully.
1525 	 */
1526 	for (i = 0; i < count; i += n) {
1527 		/* Maximum I/O size is limited by maximum swap block size. */
1528 		n = min(count - i, nsw_cluster_max);
1529 
1530 		if (async) {
1531 			mtx_lock(&swbuf_mtx);
1532 			while (nsw_wcount_async == 0)
1533 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1534 				    "swbufa", 0);
1535 			nsw_wcount_async--;
1536 			mtx_unlock(&swbuf_mtx);
1537 		}
1538 
1539 		/* Get a block of swap of size up to size n. */
1540 		VM_OBJECT_WLOCK(object);
1541 		blk = swp_pager_getswapspace(&n);
1542 		if (blk == SWAPBLK_NONE) {
1543 			VM_OBJECT_WUNLOCK(object);
1544 			mtx_lock(&swbuf_mtx);
1545 			if (++nsw_wcount_async == 1)
1546 				wakeup(&nsw_wcount_async);
1547 			mtx_unlock(&swbuf_mtx);
1548 			for (j = 0; j < n; ++j)
1549 				rtvals[i + j] = VM_PAGER_FAIL;
1550 			continue;
1551 		}
1552 		for (j = 0; j < n; ++j) {
1553 			mreq = ma[i + j];
1554 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1555 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1556 			    blk + j);
1557 			if (addr != SWAPBLK_NONE)
1558 				swp_pager_update_freerange(&s_free, &n_free,
1559 				    addr);
1560 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1561 			mreq->oflags |= VPO_SWAPINPROG;
1562 		}
1563 		VM_OBJECT_WUNLOCK(object);
1564 
1565 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1566 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1567 		if (async)
1568 			bp->b_flags |= B_ASYNC;
1569 		bp->b_flags |= B_PAGING;
1570 		bp->b_iocmd = BIO_WRITE;
1571 
1572 		bp->b_rcred = crhold(thread0.td_ucred);
1573 		bp->b_wcred = crhold(thread0.td_ucred);
1574 		bp->b_bcount = PAGE_SIZE * n;
1575 		bp->b_bufsize = PAGE_SIZE * n;
1576 		bp->b_blkno = blk;
1577 		for (j = 0; j < n; j++)
1578 			bp->b_pages[j] = ma[i + j];
1579 		bp->b_npages = n;
1580 
1581 		/*
1582 		 * Must set dirty range for NFS to work.
1583 		 */
1584 		bp->b_dirtyoff = 0;
1585 		bp->b_dirtyend = bp->b_bcount;
1586 
1587 		VM_CNT_INC(v_swapout);
1588 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1589 
1590 		/*
1591 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1592 		 * can call the async completion routine at the end of a
1593 		 * synchronous I/O operation.  Otherwise, our caller would
1594 		 * perform duplicate unbusy and wakeup operations on the page
1595 		 * and object, respectively.
1596 		 */
1597 		for (j = 0; j < n; j++)
1598 			rtvals[i + j] = VM_PAGER_PEND;
1599 
1600 		/*
1601 		 * asynchronous
1602 		 *
1603 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1604 		 */
1605 		if (async) {
1606 			bp->b_iodone = swp_pager_async_iodone;
1607 			BUF_KERNPROC(bp);
1608 			swp_pager_strategy(bp);
1609 			continue;
1610 		}
1611 
1612 		/*
1613 		 * synchronous
1614 		 *
1615 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1616 		 */
1617 		bp->b_iodone = bdone;
1618 		swp_pager_strategy(bp);
1619 
1620 		/*
1621 		 * Wait for the sync I/O to complete.
1622 		 */
1623 		bwait(bp, PVM, "swwrt");
1624 
1625 		/*
1626 		 * Now that we are through with the bp, we can call the
1627 		 * normal async completion, which frees everything up.
1628 		 */
1629 		swp_pager_async_iodone(bp);
1630 	}
1631 	swp_pager_freeswapspace(s_free, n_free);
1632 	VM_OBJECT_WLOCK(object);
1633 }
1634 
1635 /*
1636  *	swp_pager_async_iodone:
1637  *
1638  *	Completion routine for asynchronous reads and writes from/to swap.
1639  *	Also called manually by synchronous code to finish up a bp.
1640  *
1641  *	This routine may not sleep.
1642  */
1643 static void
1644 swp_pager_async_iodone(struct buf *bp)
1645 {
1646 	int i;
1647 	vm_object_t object = NULL;
1648 
1649 	/*
1650 	 * Report error - unless we ran out of memory, in which case
1651 	 * we've already logged it in swapgeom_strategy().
1652 	 */
1653 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1654 		printf(
1655 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1656 			"size %ld, error %d\n",
1657 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1658 		    (long)bp->b_blkno,
1659 		    (long)bp->b_bcount,
1660 		    bp->b_error
1661 		);
1662 	}
1663 
1664 	/*
1665 	 * remove the mapping for kernel virtual
1666 	 */
1667 	if (buf_mapped(bp))
1668 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1669 	else
1670 		bp->b_data = bp->b_kvabase;
1671 
1672 	if (bp->b_npages) {
1673 		object = bp->b_pages[0]->object;
1674 		VM_OBJECT_WLOCK(object);
1675 	}
1676 
1677 	/*
1678 	 * cleanup pages.  If an error occurs writing to swap, we are in
1679 	 * very serious trouble.  If it happens to be a disk error, though,
1680 	 * we may be able to recover by reassigning the swap later on.  So
1681 	 * in this case we remove the m->swapblk assignment for the page
1682 	 * but do not free it in the rlist.  The errornous block(s) are thus
1683 	 * never reallocated as swap.  Redirty the page and continue.
1684 	 */
1685 	for (i = 0; i < bp->b_npages; ++i) {
1686 		vm_page_t m = bp->b_pages[i];
1687 
1688 		m->oflags &= ~VPO_SWAPINPROG;
1689 		if (m->oflags & VPO_SWAPSLEEP) {
1690 			m->oflags &= ~VPO_SWAPSLEEP;
1691 			wakeup(&object->handle);
1692 		}
1693 
1694 		/* We always have space after I/O, successful or not. */
1695 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1696 
1697 		if (bp->b_ioflags & BIO_ERROR) {
1698 			/*
1699 			 * If an error occurs I'd love to throw the swapblk
1700 			 * away without freeing it back to swapspace, so it
1701 			 * can never be used again.  But I can't from an
1702 			 * interrupt.
1703 			 */
1704 			if (bp->b_iocmd == BIO_READ) {
1705 				/*
1706 				 * NOTE: for reads, m->dirty will probably
1707 				 * be overridden by the original caller of
1708 				 * getpages so don't play cute tricks here.
1709 				 */
1710 				vm_page_invalid(m);
1711 			} else {
1712 				/*
1713 				 * If a write error occurs, reactivate page
1714 				 * so it doesn't clog the inactive list,
1715 				 * then finish the I/O.
1716 				 */
1717 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1718 
1719 				/* PQ_UNSWAPPABLE? */
1720 				vm_page_activate(m);
1721 				vm_page_sunbusy(m);
1722 			}
1723 		} else if (bp->b_iocmd == BIO_READ) {
1724 			/*
1725 			 * NOTE: for reads, m->dirty will probably be
1726 			 * overridden by the original caller of getpages so
1727 			 * we cannot set them in order to free the underlying
1728 			 * swap in a low-swap situation.  I don't think we'd
1729 			 * want to do that anyway, but it was an optimization
1730 			 * that existed in the old swapper for a time before
1731 			 * it got ripped out due to precisely this problem.
1732 			 */
1733 			KASSERT(!pmap_page_is_mapped(m),
1734 			    ("swp_pager_async_iodone: page %p is mapped", m));
1735 			KASSERT(m->dirty == 0,
1736 			    ("swp_pager_async_iodone: page %p is dirty", m));
1737 
1738 			vm_page_valid(m);
1739 			if (i < bp->b_pgbefore ||
1740 			    i >= bp->b_npages - bp->b_pgafter)
1741 				vm_page_readahead_finish(m);
1742 		} else {
1743 			/*
1744 			 * For write success, clear the dirty
1745 			 * status, then finish the I/O ( which decrements the
1746 			 * busy count and possibly wakes waiter's up ).
1747 			 * A page is only written to swap after a period of
1748 			 * inactivity.  Therefore, we do not expect it to be
1749 			 * reused.
1750 			 */
1751 			KASSERT(!pmap_page_is_write_mapped(m),
1752 			    ("swp_pager_async_iodone: page %p is not write"
1753 			    " protected", m));
1754 			vm_page_undirty(m);
1755 			vm_page_deactivate_noreuse(m);
1756 			vm_page_sunbusy(m);
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * adjust pip.  NOTE: the original parent may still have its own
1762 	 * pip refs on the object.
1763 	 */
1764 	if (object != NULL) {
1765 		vm_object_pip_wakeupn(object, bp->b_npages);
1766 		VM_OBJECT_WUNLOCK(object);
1767 	}
1768 
1769 	/*
1770 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1771 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1772 	 * trigger a KASSERT in relpbuf().
1773 	 */
1774 	if (bp->b_vp) {
1775 		    bp->b_vp = NULL;
1776 		    bp->b_bufobj = NULL;
1777 	}
1778 	/*
1779 	 * release the physical I/O buffer
1780 	 */
1781 	if (bp->b_flags & B_ASYNC) {
1782 		mtx_lock(&swbuf_mtx);
1783 		if (++nsw_wcount_async == 1)
1784 			wakeup(&nsw_wcount_async);
1785 		mtx_unlock(&swbuf_mtx);
1786 	}
1787 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1788 }
1789 
1790 int
1791 swap_pager_nswapdev(void)
1792 {
1793 
1794 	return (nswapdev);
1795 }
1796 
1797 static void
1798 swp_pager_force_dirty(vm_page_t m)
1799 {
1800 
1801 	vm_page_dirty(m);
1802 	swap_pager_unswapped(m);
1803 	vm_page_launder(m);
1804 }
1805 
1806 u_long
1807 swap_pager_swapped_pages(vm_object_t object)
1808 {
1809 	struct swblk *sb;
1810 	vm_pindex_t pi;
1811 	u_long res;
1812 	int i;
1813 
1814 	VM_OBJECT_ASSERT_LOCKED(object);
1815 	if ((object->flags & OBJ_SWAP) == 0)
1816 		return (0);
1817 
1818 	for (res = 0, pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1819 	    &object->un_pager.swp.swp_blks, pi)) != NULL;
1820 	    pi = sb->p + SWAP_META_PAGES) {
1821 		for (i = 0; i < SWAP_META_PAGES; i++) {
1822 			if (sb->d[i] != SWAPBLK_NONE)
1823 				res++;
1824 		}
1825 	}
1826 	return (res);
1827 }
1828 
1829 /*
1830  *	swap_pager_swapoff_object:
1831  *
1832  *	Page in all of the pages that have been paged out for an object
1833  *	to a swap device.
1834  */
1835 static void
1836 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1837 {
1838 	struct swblk *sb;
1839 	vm_page_t m;
1840 	vm_pindex_t pi;
1841 	daddr_t blk;
1842 	int i, nv, rahead, rv;
1843 
1844 	KASSERT((object->flags & OBJ_SWAP) != 0,
1845 	    ("%s: Object not swappable", __func__));
1846 
1847 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1848 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1849 		if ((object->flags & OBJ_DEAD) != 0) {
1850 			/*
1851 			 * Make sure that pending writes finish before
1852 			 * returning.
1853 			 */
1854 			vm_object_pip_wait(object, "swpoff");
1855 			swp_pager_meta_free_all(object);
1856 			break;
1857 		}
1858 		for (i = 0; i < SWAP_META_PAGES; i++) {
1859 			/*
1860 			 * Count the number of contiguous valid blocks.
1861 			 */
1862 			for (nv = 0; nv < SWAP_META_PAGES - i; nv++) {
1863 				blk = sb->d[i + nv];
1864 				if (!swp_pager_isondev(blk, sp) ||
1865 				    blk == SWAPBLK_NONE)
1866 					break;
1867 			}
1868 			if (nv == 0)
1869 				continue;
1870 
1871 			/*
1872 			 * Look for a page corresponding to the first
1873 			 * valid block and ensure that any pending paging
1874 			 * operations on it are complete.  If the page is valid,
1875 			 * mark it dirty and free the swap block.  Try to batch
1876 			 * this operation since it may cause sp to be freed,
1877 			 * meaning that we must restart the scan.  Avoid busying
1878 			 * valid pages since we may block forever on kernel
1879 			 * stack pages.
1880 			 */
1881 			m = vm_page_lookup(object, sb->p + i);
1882 			if (m == NULL) {
1883 				m = vm_page_alloc(object, sb->p + i,
1884 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
1885 				if (m == NULL)
1886 					break;
1887 			} else {
1888 				if ((m->oflags & VPO_SWAPINPROG) != 0) {
1889 					m->oflags |= VPO_SWAPSLEEP;
1890 					VM_OBJECT_SLEEP(object, &object->handle,
1891 					    PSWP, "swpoff", 0);
1892 					break;
1893 				}
1894 				if (vm_page_all_valid(m)) {
1895 					do {
1896 						swp_pager_force_dirty(m);
1897 					} while (--nv > 0 &&
1898 					    (m = vm_page_next(m)) != NULL &&
1899 					    vm_page_all_valid(m) &&
1900 					    (m->oflags & VPO_SWAPINPROG) == 0);
1901 					break;
1902 				}
1903 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1904 					break;
1905 			}
1906 
1907 			vm_object_pip_add(object, 1);
1908 			rahead = SWAP_META_PAGES;
1909 			rv = swap_pager_getpages_locked(object, &m, 1, NULL,
1910 			    &rahead);
1911 			if (rv != VM_PAGER_OK)
1912 				panic("%s: read from swap failed: %d",
1913 				    __func__, rv);
1914 			vm_object_pip_wakeupn(object, 1);
1915 			VM_OBJECT_WLOCK(object);
1916 			vm_page_xunbusy(m);
1917 
1918 			/*
1919 			 * The object lock was dropped so we must restart the
1920 			 * scan of this swap block.  Pages paged in during this
1921 			 * iteration will be marked dirty in a future iteration.
1922 			 */
1923 			break;
1924 		}
1925 		if (i == SWAP_META_PAGES)
1926 			pi = sb->p + SWAP_META_PAGES;
1927 	}
1928 }
1929 
1930 /*
1931  *	swap_pager_swapoff:
1932  *
1933  *	Page in all of the pages that have been paged out to the
1934  *	given device.  The corresponding blocks in the bitmap must be
1935  *	marked as allocated and the device must be flagged SW_CLOSING.
1936  *	There may be no processes swapped out to the device.
1937  *
1938  *	This routine may block.
1939  */
1940 static void
1941 swap_pager_swapoff(struct swdevt *sp)
1942 {
1943 	vm_object_t object;
1944 	int retries;
1945 
1946 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1947 
1948 	retries = 0;
1949 full_rescan:
1950 	mtx_lock(&vm_object_list_mtx);
1951 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1952 		if ((object->flags & OBJ_SWAP) == 0)
1953 			continue;
1954 		mtx_unlock(&vm_object_list_mtx);
1955 		/* Depends on type-stability. */
1956 		VM_OBJECT_WLOCK(object);
1957 
1958 		/*
1959 		 * Dead objects are eventually terminated on their own.
1960 		 */
1961 		if ((object->flags & OBJ_DEAD) != 0)
1962 			goto next_obj;
1963 
1964 		/*
1965 		 * Sync with fences placed after pctrie
1966 		 * initialization.  We must not access pctrie below
1967 		 * unless we checked that our object is swap and not
1968 		 * dead.
1969 		 */
1970 		atomic_thread_fence_acq();
1971 		if ((object->flags & OBJ_SWAP) == 0)
1972 			goto next_obj;
1973 
1974 		swap_pager_swapoff_object(sp, object);
1975 next_obj:
1976 		VM_OBJECT_WUNLOCK(object);
1977 		mtx_lock(&vm_object_list_mtx);
1978 	}
1979 	mtx_unlock(&vm_object_list_mtx);
1980 
1981 	if (sp->sw_used) {
1982 		/*
1983 		 * Objects may be locked or paging to the device being
1984 		 * removed, so we will miss their pages and need to
1985 		 * make another pass.  We have marked this device as
1986 		 * SW_CLOSING, so the activity should finish soon.
1987 		 */
1988 		retries++;
1989 		if (retries > 100) {
1990 			panic("swapoff: failed to locate %d swap blocks",
1991 			    sp->sw_used);
1992 		}
1993 		pause("swpoff", hz / 20);
1994 		goto full_rescan;
1995 	}
1996 	EVENTHANDLER_INVOKE(swapoff, sp);
1997 }
1998 
1999 /************************************************************************
2000  *				SWAP META DATA 				*
2001  ************************************************************************
2002  *
2003  *	These routines manipulate the swap metadata stored in the
2004  *	OBJT_SWAP object.
2005  *
2006  *	Swap metadata is implemented with a global hash and not directly
2007  *	linked into the object.  Instead the object simply contains
2008  *	appropriate tracking counters.
2009  */
2010 
2011 /*
2012  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
2013  */
2014 static bool
2015 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
2016 {
2017 	int i;
2018 
2019 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2020 	for (i = start; i < limit; i++) {
2021 		if (sb->d[i] != SWAPBLK_NONE)
2022 			return (false);
2023 	}
2024 	return (true);
2025 }
2026 
2027 /*
2028  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2029  *
2030  *  Nothing is done if the block is still in use.
2031  */
2032 static void
2033 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2034 {
2035 
2036 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2037 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2038 		uma_zfree(swblk_zone, sb);
2039 	}
2040 }
2041 
2042 /*
2043  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2044  *
2045  *	We first convert the object to a swap object if it is a default
2046  *	object.
2047  *
2048  *	The specified swapblk is added to the object's swap metadata.  If
2049  *	the swapblk is not valid, it is freed instead.  Any previously
2050  *	assigned swapblk is returned.
2051  */
2052 static daddr_t
2053 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
2054 {
2055 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2056 	struct swblk *sb, *sb1;
2057 	vm_pindex_t modpi, rdpi;
2058 	daddr_t prev_swapblk;
2059 	int error, i;
2060 
2061 	VM_OBJECT_ASSERT_WLOCKED(object);
2062 
2063 	/*
2064 	 * Convert default object to swap object if necessary
2065 	 */
2066 	if ((object->flags & OBJ_SWAP) == 0) {
2067 		pctrie_init(&object->un_pager.swp.swp_blks);
2068 
2069 		/*
2070 		 * Ensure that swap_pager_swapoff()'s iteration over
2071 		 * object_list does not see a garbage pctrie.
2072 		 */
2073 		atomic_thread_fence_rel();
2074 
2075 		object->type = OBJT_SWAP;
2076 		vm_object_set_flag(object, OBJ_SWAP);
2077 		object->un_pager.swp.writemappings = 0;
2078 		KASSERT((object->flags & OBJ_ANON) != 0 ||
2079 		    object->handle == NULL,
2080 		    ("default pager %p with handle %p",
2081 		    object, object->handle));
2082 	}
2083 
2084 	rdpi = rounddown(pindex, SWAP_META_PAGES);
2085 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
2086 	if (sb == NULL) {
2087 		if (swapblk == SWAPBLK_NONE)
2088 			return (SWAPBLK_NONE);
2089 		for (;;) {
2090 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2091 			    pageproc ? M_USE_RESERVE : 0));
2092 			if (sb != NULL) {
2093 				sb->p = rdpi;
2094 				for (i = 0; i < SWAP_META_PAGES; i++)
2095 					sb->d[i] = SWAPBLK_NONE;
2096 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2097 				    1, 0))
2098 					printf("swblk zone ok\n");
2099 				break;
2100 			}
2101 			VM_OBJECT_WUNLOCK(object);
2102 			if (uma_zone_exhausted(swblk_zone)) {
2103 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2104 				    0, 1))
2105 					printf("swap blk zone exhausted, "
2106 					    "increase kern.maxswzone\n");
2107 				vm_pageout_oom(VM_OOM_SWAPZ);
2108 				pause("swzonxb", 10);
2109 			} else
2110 				uma_zwait(swblk_zone);
2111 			VM_OBJECT_WLOCK(object);
2112 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2113 			    rdpi);
2114 			if (sb != NULL)
2115 				/*
2116 				 * Somebody swapped out a nearby page,
2117 				 * allocating swblk at the rdpi index,
2118 				 * while we dropped the object lock.
2119 				 */
2120 				goto allocated;
2121 		}
2122 		for (;;) {
2123 			error = SWAP_PCTRIE_INSERT(
2124 			    &object->un_pager.swp.swp_blks, sb);
2125 			if (error == 0) {
2126 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2127 				    1, 0))
2128 					printf("swpctrie zone ok\n");
2129 				break;
2130 			}
2131 			VM_OBJECT_WUNLOCK(object);
2132 			if (uma_zone_exhausted(swpctrie_zone)) {
2133 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2134 				    0, 1))
2135 					printf("swap pctrie zone exhausted, "
2136 					    "increase kern.maxswzone\n");
2137 				vm_pageout_oom(VM_OOM_SWAPZ);
2138 				pause("swzonxp", 10);
2139 			} else
2140 				uma_zwait(swpctrie_zone);
2141 			VM_OBJECT_WLOCK(object);
2142 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2143 			    rdpi);
2144 			if (sb1 != NULL) {
2145 				uma_zfree(swblk_zone, sb);
2146 				sb = sb1;
2147 				goto allocated;
2148 			}
2149 		}
2150 	}
2151 allocated:
2152 	MPASS(sb->p == rdpi);
2153 
2154 	modpi = pindex % SWAP_META_PAGES;
2155 	/* Return prior contents of metadata. */
2156 	prev_swapblk = sb->d[modpi];
2157 	/* Enter block into metadata. */
2158 	sb->d[modpi] = swapblk;
2159 
2160 	/*
2161 	 * Free the swblk if we end up with the empty page run.
2162 	 */
2163 	if (swapblk == SWAPBLK_NONE)
2164 		swp_pager_free_empty_swblk(object, sb);
2165 	return (prev_swapblk);
2166 }
2167 
2168 /*
2169  * SWP_PAGER_META_TRANSFER() - free a range of blocks in the srcobject's swap
2170  * metadata, or transfer it into dstobject.
2171  *
2172  *	This routine will free swap metadata structures as they are cleaned
2173  *	out.
2174  */
2175 static void
2176 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2177     vm_pindex_t pindex, vm_pindex_t count)
2178 {
2179 	struct swblk *sb;
2180 	daddr_t n_free, s_free;
2181 	vm_pindex_t offset, last;
2182 	int i, limit, start;
2183 
2184 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2185 	if ((srcobject->flags & OBJ_SWAP) == 0 || count == 0)
2186 		return;
2187 
2188 	swp_pager_init_freerange(&s_free, &n_free);
2189 	offset = pindex;
2190 	last = pindex + count;
2191 	for (;;) {
2192 		sb = SWAP_PCTRIE_LOOKUP_GE(&srcobject->un_pager.swp.swp_blks,
2193 		    rounddown(pindex, SWAP_META_PAGES));
2194 		if (sb == NULL || sb->p >= last)
2195 			break;
2196 		start = pindex > sb->p ? pindex - sb->p : 0;
2197 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2198 		    SWAP_META_PAGES;
2199 		for (i = start; i < limit; i++) {
2200 			if (sb->d[i] == SWAPBLK_NONE)
2201 				continue;
2202 			if (dstobject == NULL ||
2203 			    !swp_pager_xfer_source(srcobject, dstobject,
2204 			    sb->p + i - offset, sb->d[i])) {
2205 				swp_pager_update_freerange(&s_free, &n_free,
2206 				    sb->d[i]);
2207 			}
2208 			sb->d[i] = SWAPBLK_NONE;
2209 		}
2210 		pindex = sb->p + SWAP_META_PAGES;
2211 		if (swp_pager_swblk_empty(sb, 0, start) &&
2212 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2213 			SWAP_PCTRIE_REMOVE(&srcobject->un_pager.swp.swp_blks,
2214 			    sb->p);
2215 			uma_zfree(swblk_zone, sb);
2216 		}
2217 	}
2218 	swp_pager_freeswapspace(s_free, n_free);
2219 }
2220 
2221 /*
2222  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2223  *
2224  *	The requested range of blocks is freed, with any associated swap
2225  *	returned to the swap bitmap.
2226  *
2227  *	This routine will free swap metadata structures as they are cleaned
2228  *	out.  This routine does *NOT* operate on swap metadata associated
2229  *	with resident pages.
2230  */
2231 static void
2232 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2233 {
2234 	swp_pager_meta_transfer(object, NULL, pindex, count);
2235 }
2236 
2237 /*
2238  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2239  *
2240  *	This routine locates and destroys all swap metadata associated with
2241  *	an object.
2242  */
2243 static void
2244 swp_pager_meta_free_all(vm_object_t object)
2245 {
2246 	struct swblk *sb;
2247 	daddr_t n_free, s_free;
2248 	vm_pindex_t pindex;
2249 	int i;
2250 
2251 	VM_OBJECT_ASSERT_WLOCKED(object);
2252 	if ((object->flags & OBJ_SWAP) == 0)
2253 		return;
2254 
2255 	swp_pager_init_freerange(&s_free, &n_free);
2256 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2257 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2258 		pindex = sb->p + SWAP_META_PAGES;
2259 		for (i = 0; i < SWAP_META_PAGES; i++) {
2260 			if (sb->d[i] == SWAPBLK_NONE)
2261 				continue;
2262 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2263 		}
2264 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2265 		uma_zfree(swblk_zone, sb);
2266 	}
2267 	swp_pager_freeswapspace(s_free, n_free);
2268 }
2269 
2270 /*
2271  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2272  *
2273  *	This routine is capable of looking up, or removing swapblk
2274  *	assignments in the swap meta data.  It returns the swapblk being
2275  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2276  *
2277  *	When acting on a busy resident page and paging is in progress, we
2278  *	have to wait until paging is complete but otherwise can act on the
2279  *	busy page.
2280  */
2281 static daddr_t
2282 swp_pager_meta_lookup(vm_object_t object, vm_pindex_t pindex)
2283 {
2284 	struct swblk *sb;
2285 
2286 	VM_OBJECT_ASSERT_LOCKED(object);
2287 
2288 	/*
2289 	 * The meta data only exists if the object is OBJT_SWAP
2290 	 * and even then might not be allocated yet.
2291 	 */
2292 	KASSERT((object->flags & OBJ_SWAP) != 0,
2293 	    ("Lookup object not swappable"));
2294 
2295 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2296 	    rounddown(pindex, SWAP_META_PAGES));
2297 	if (sb == NULL)
2298 		return (SWAPBLK_NONE);
2299 	return (sb->d[pindex % SWAP_META_PAGES]);
2300 }
2301 
2302 /*
2303  * Returns the least page index which is greater than or equal to the
2304  * parameter pindex and for which there is a swap block allocated.
2305  * Returns object's size if the object's type is not swap or if there
2306  * are no allocated swap blocks for the object after the requested
2307  * pindex.
2308  */
2309 vm_pindex_t
2310 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2311 {
2312 	struct swblk *sb;
2313 	int i;
2314 
2315 	VM_OBJECT_ASSERT_LOCKED(object);
2316 	if ((object->flags & OBJ_SWAP) == 0)
2317 		return (object->size);
2318 
2319 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2320 	    rounddown(pindex, SWAP_META_PAGES));
2321 	if (sb == NULL)
2322 		return (object->size);
2323 	if (sb->p < pindex) {
2324 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2325 			if (sb->d[i] != SWAPBLK_NONE)
2326 				return (sb->p + i);
2327 		}
2328 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2329 		    roundup(pindex, SWAP_META_PAGES));
2330 		if (sb == NULL)
2331 			return (object->size);
2332 	}
2333 	for (i = 0; i < SWAP_META_PAGES; i++) {
2334 		if (sb->d[i] != SWAPBLK_NONE)
2335 			return (sb->p + i);
2336 	}
2337 
2338 	/*
2339 	 * We get here if a swblk is present in the trie but it
2340 	 * doesn't map any blocks.
2341 	 */
2342 	MPASS(0);
2343 	return (object->size);
2344 }
2345 
2346 /*
2347  * System call swapon(name) enables swapping on device name,
2348  * which must be in the swdevsw.  Return EBUSY
2349  * if already swapping on this device.
2350  */
2351 #ifndef _SYS_SYSPROTO_H_
2352 struct swapon_args {
2353 	char *name;
2354 };
2355 #endif
2356 
2357 /*
2358  * MPSAFE
2359  */
2360 /* ARGSUSED */
2361 int
2362 sys_swapon(struct thread *td, struct swapon_args *uap)
2363 {
2364 	struct vattr attr;
2365 	struct vnode *vp;
2366 	struct nameidata nd;
2367 	int error;
2368 
2369 	error = priv_check(td, PRIV_SWAPON);
2370 	if (error)
2371 		return (error);
2372 
2373 	sx_xlock(&swdev_syscall_lock);
2374 
2375 	/*
2376 	 * Swap metadata may not fit in the KVM if we have physical
2377 	 * memory of >1GB.
2378 	 */
2379 	if (swblk_zone == NULL) {
2380 		error = ENOMEM;
2381 		goto done;
2382 	}
2383 
2384 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2385 	    uap->name, td);
2386 	error = namei(&nd);
2387 	if (error)
2388 		goto done;
2389 
2390 	NDFREE(&nd, NDF_ONLY_PNBUF);
2391 	vp = nd.ni_vp;
2392 
2393 	if (vn_isdisk_error(vp, &error)) {
2394 		error = swapongeom(vp);
2395 	} else if (vp->v_type == VREG &&
2396 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2397 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2398 		/*
2399 		 * Allow direct swapping to NFS regular files in the same
2400 		 * way that nfs_mountroot() sets up diskless swapping.
2401 		 */
2402 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2403 	}
2404 
2405 	if (error)
2406 		vrele(vp);
2407 done:
2408 	sx_xunlock(&swdev_syscall_lock);
2409 	return (error);
2410 }
2411 
2412 /*
2413  * Check that the total amount of swap currently configured does not
2414  * exceed half the theoretical maximum.  If it does, print a warning
2415  * message.
2416  */
2417 static void
2418 swapon_check_swzone(void)
2419 {
2420 
2421 	/* recommend using no more than half that amount */
2422 	if (swap_total > swap_maxpages / 2) {
2423 		printf("warning: total configured swap (%lu pages) "
2424 		    "exceeds maximum recommended amount (%lu pages).\n",
2425 		    swap_total, swap_maxpages / 2);
2426 		printf("warning: increase kern.maxswzone "
2427 		    "or reduce amount of swap.\n");
2428 	}
2429 }
2430 
2431 static void
2432 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2433     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2434 {
2435 	struct swdevt *sp, *tsp;
2436 	daddr_t dvbase;
2437 
2438 	/*
2439 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2440 	 * First chop nblks off to page-align it, then convert.
2441 	 *
2442 	 * sw->sw_nblks is in page-sized chunks now too.
2443 	 */
2444 	nblks &= ~(ctodb(1) - 1);
2445 	nblks = dbtoc(nblks);
2446 
2447 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2448 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2449 	sp->sw_vp = vp;
2450 	sp->sw_id = id;
2451 	sp->sw_dev = dev;
2452 	sp->sw_nblks = nblks;
2453 	sp->sw_used = 0;
2454 	sp->sw_strategy = strategy;
2455 	sp->sw_close = close;
2456 	sp->sw_flags = flags;
2457 
2458 	/*
2459 	 * Do not free the first blocks in order to avoid overwriting
2460 	 * any bsd label at the front of the partition
2461 	 */
2462 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2463 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2464 
2465 	dvbase = 0;
2466 	mtx_lock(&sw_dev_mtx);
2467 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2468 		if (tsp->sw_end >= dvbase) {
2469 			/*
2470 			 * We put one uncovered page between the devices
2471 			 * in order to definitively prevent any cross-device
2472 			 * I/O requests
2473 			 */
2474 			dvbase = tsp->sw_end + 1;
2475 		}
2476 	}
2477 	sp->sw_first = dvbase;
2478 	sp->sw_end = dvbase + nblks;
2479 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2480 	nswapdev++;
2481 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2482 	swap_total += nblks;
2483 	swapon_check_swzone();
2484 	swp_sizecheck();
2485 	mtx_unlock(&sw_dev_mtx);
2486 	EVENTHANDLER_INVOKE(swapon, sp);
2487 }
2488 
2489 /*
2490  * SYSCALL: swapoff(devname)
2491  *
2492  * Disable swapping on the given device.
2493  *
2494  * XXX: Badly designed system call: it should use a device index
2495  * rather than filename as specification.  We keep sw_vp around
2496  * only to make this work.
2497  */
2498 #ifndef _SYS_SYSPROTO_H_
2499 struct swapoff_args {
2500 	char *name;
2501 };
2502 #endif
2503 
2504 /*
2505  * MPSAFE
2506  */
2507 /* ARGSUSED */
2508 int
2509 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2510 {
2511 	struct vnode *vp;
2512 	struct nameidata nd;
2513 	struct swdevt *sp;
2514 	int error;
2515 
2516 	error = priv_check(td, PRIV_SWAPOFF);
2517 	if (error)
2518 		return (error);
2519 
2520 	sx_xlock(&swdev_syscall_lock);
2521 
2522 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2523 	    td);
2524 	error = namei(&nd);
2525 	if (error)
2526 		goto done;
2527 	NDFREE(&nd, NDF_ONLY_PNBUF);
2528 	vp = nd.ni_vp;
2529 
2530 	mtx_lock(&sw_dev_mtx);
2531 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2532 		if (sp->sw_vp == vp)
2533 			break;
2534 	}
2535 	mtx_unlock(&sw_dev_mtx);
2536 	if (sp == NULL) {
2537 		error = EINVAL;
2538 		goto done;
2539 	}
2540 	error = swapoff_one(sp, td->td_ucred);
2541 done:
2542 	sx_xunlock(&swdev_syscall_lock);
2543 	return (error);
2544 }
2545 
2546 static int
2547 swapoff_one(struct swdevt *sp, struct ucred *cred)
2548 {
2549 	u_long nblks;
2550 #ifdef MAC
2551 	int error;
2552 #endif
2553 
2554 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2555 #ifdef MAC
2556 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2557 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2558 	(void) VOP_UNLOCK(sp->sw_vp);
2559 	if (error != 0)
2560 		return (error);
2561 #endif
2562 	nblks = sp->sw_nblks;
2563 
2564 	/*
2565 	 * We can turn off this swap device safely only if the
2566 	 * available virtual memory in the system will fit the amount
2567 	 * of data we will have to page back in, plus an epsilon so
2568 	 * the system doesn't become critically low on swap space.
2569 	 */
2570 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2571 		return (ENOMEM);
2572 
2573 	/*
2574 	 * Prevent further allocations on this device.
2575 	 */
2576 	mtx_lock(&sw_dev_mtx);
2577 	sp->sw_flags |= SW_CLOSING;
2578 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2579 	swap_total -= nblks;
2580 	mtx_unlock(&sw_dev_mtx);
2581 
2582 	/*
2583 	 * Page in the contents of the device and close it.
2584 	 */
2585 	swap_pager_swapoff(sp);
2586 
2587 	sp->sw_close(curthread, sp);
2588 	mtx_lock(&sw_dev_mtx);
2589 	sp->sw_id = NULL;
2590 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2591 	nswapdev--;
2592 	if (nswapdev == 0) {
2593 		swap_pager_full = 2;
2594 		swap_pager_almost_full = 1;
2595 	}
2596 	if (swdevhd == sp)
2597 		swdevhd = NULL;
2598 	mtx_unlock(&sw_dev_mtx);
2599 	blist_destroy(sp->sw_blist);
2600 	free(sp, M_VMPGDATA);
2601 	return (0);
2602 }
2603 
2604 void
2605 swapoff_all(void)
2606 {
2607 	struct swdevt *sp, *spt;
2608 	const char *devname;
2609 	int error;
2610 
2611 	sx_xlock(&swdev_syscall_lock);
2612 
2613 	mtx_lock(&sw_dev_mtx);
2614 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2615 		mtx_unlock(&sw_dev_mtx);
2616 		if (vn_isdisk(sp->sw_vp))
2617 			devname = devtoname(sp->sw_vp->v_rdev);
2618 		else
2619 			devname = "[file]";
2620 		error = swapoff_one(sp, thread0.td_ucred);
2621 		if (error != 0) {
2622 			printf("Cannot remove swap device %s (error=%d), "
2623 			    "skipping.\n", devname, error);
2624 		} else if (bootverbose) {
2625 			printf("Swap device %s removed.\n", devname);
2626 		}
2627 		mtx_lock(&sw_dev_mtx);
2628 	}
2629 	mtx_unlock(&sw_dev_mtx);
2630 
2631 	sx_xunlock(&swdev_syscall_lock);
2632 }
2633 
2634 void
2635 swap_pager_status(int *total, int *used)
2636 {
2637 
2638 	*total = swap_total;
2639 	*used = swap_total - swap_pager_avail -
2640 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2641 }
2642 
2643 int
2644 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2645 {
2646 	struct swdevt *sp;
2647 	const char *tmp_devname;
2648 	int error, n;
2649 
2650 	n = 0;
2651 	error = ENOENT;
2652 	mtx_lock(&sw_dev_mtx);
2653 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2654 		if (n != name) {
2655 			n++;
2656 			continue;
2657 		}
2658 		xs->xsw_version = XSWDEV_VERSION;
2659 		xs->xsw_dev = sp->sw_dev;
2660 		xs->xsw_flags = sp->sw_flags;
2661 		xs->xsw_nblks = sp->sw_nblks;
2662 		xs->xsw_used = sp->sw_used;
2663 		if (devname != NULL) {
2664 			if (vn_isdisk(sp->sw_vp))
2665 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2666 			else
2667 				tmp_devname = "[file]";
2668 			strncpy(devname, tmp_devname, len);
2669 		}
2670 		error = 0;
2671 		break;
2672 	}
2673 	mtx_unlock(&sw_dev_mtx);
2674 	return (error);
2675 }
2676 
2677 #if defined(COMPAT_FREEBSD11)
2678 #define XSWDEV_VERSION_11	1
2679 struct xswdev11 {
2680 	u_int	xsw_version;
2681 	uint32_t xsw_dev;
2682 	int	xsw_flags;
2683 	int	xsw_nblks;
2684 	int     xsw_used;
2685 };
2686 #endif
2687 
2688 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2689 struct xswdev32 {
2690 	u_int	xsw_version;
2691 	u_int	xsw_dev1, xsw_dev2;
2692 	int	xsw_flags;
2693 	int	xsw_nblks;
2694 	int     xsw_used;
2695 };
2696 #endif
2697 
2698 static int
2699 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2700 {
2701 	struct xswdev xs;
2702 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2703 	struct xswdev32 xs32;
2704 #endif
2705 #if defined(COMPAT_FREEBSD11)
2706 	struct xswdev11 xs11;
2707 #endif
2708 	int error;
2709 
2710 	if (arg2 != 1)			/* name length */
2711 		return (EINVAL);
2712 
2713 	memset(&xs, 0, sizeof(xs));
2714 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2715 	if (error != 0)
2716 		return (error);
2717 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2718 	if (req->oldlen == sizeof(xs32)) {
2719 		memset(&xs32, 0, sizeof(xs32));
2720 		xs32.xsw_version = XSWDEV_VERSION;
2721 		xs32.xsw_dev1 = xs.xsw_dev;
2722 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2723 		xs32.xsw_flags = xs.xsw_flags;
2724 		xs32.xsw_nblks = xs.xsw_nblks;
2725 		xs32.xsw_used = xs.xsw_used;
2726 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2727 		return (error);
2728 	}
2729 #endif
2730 #if defined(COMPAT_FREEBSD11)
2731 	if (req->oldlen == sizeof(xs11)) {
2732 		memset(&xs11, 0, sizeof(xs11));
2733 		xs11.xsw_version = XSWDEV_VERSION_11;
2734 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2735 		xs11.xsw_flags = xs.xsw_flags;
2736 		xs11.xsw_nblks = xs.xsw_nblks;
2737 		xs11.xsw_used = xs.xsw_used;
2738 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2739 		return (error);
2740 	}
2741 #endif
2742 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2743 	return (error);
2744 }
2745 
2746 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2747     "Number of swap devices");
2748 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2749     sysctl_vm_swap_info,
2750     "Swap statistics by device");
2751 
2752 /*
2753  * Count the approximate swap usage in pages for a vmspace.  The
2754  * shadowed or not yet copied on write swap blocks are not accounted.
2755  * The map must be locked.
2756  */
2757 long
2758 vmspace_swap_count(struct vmspace *vmspace)
2759 {
2760 	vm_map_t map;
2761 	vm_map_entry_t cur;
2762 	vm_object_t object;
2763 	struct swblk *sb;
2764 	vm_pindex_t e, pi;
2765 	long count;
2766 	int i;
2767 
2768 	map = &vmspace->vm_map;
2769 	count = 0;
2770 
2771 	VM_MAP_ENTRY_FOREACH(cur, map) {
2772 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2773 			continue;
2774 		object = cur->object.vm_object;
2775 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
2776 			continue;
2777 		VM_OBJECT_RLOCK(object);
2778 		if ((object->flags & OBJ_SWAP) == 0)
2779 			goto unlock;
2780 		pi = OFF_TO_IDX(cur->offset);
2781 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2782 		for (;; pi = sb->p + SWAP_META_PAGES) {
2783 			sb = SWAP_PCTRIE_LOOKUP_GE(
2784 			    &object->un_pager.swp.swp_blks, pi);
2785 			if (sb == NULL || sb->p >= e)
2786 				break;
2787 			for (i = 0; i < SWAP_META_PAGES; i++) {
2788 				if (sb->p + i < e &&
2789 				    sb->d[i] != SWAPBLK_NONE)
2790 					count++;
2791 			}
2792 		}
2793 unlock:
2794 		VM_OBJECT_RUNLOCK(object);
2795 	}
2796 	return (count);
2797 }
2798 
2799 /*
2800  * GEOM backend
2801  *
2802  * Swapping onto disk devices.
2803  *
2804  */
2805 
2806 static g_orphan_t swapgeom_orphan;
2807 
2808 static struct g_class g_swap_class = {
2809 	.name = "SWAP",
2810 	.version = G_VERSION,
2811 	.orphan = swapgeom_orphan,
2812 };
2813 
2814 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2815 
2816 static void
2817 swapgeom_close_ev(void *arg, int flags)
2818 {
2819 	struct g_consumer *cp;
2820 
2821 	cp = arg;
2822 	g_access(cp, -1, -1, 0);
2823 	g_detach(cp);
2824 	g_destroy_consumer(cp);
2825 }
2826 
2827 /*
2828  * Add a reference to the g_consumer for an inflight transaction.
2829  */
2830 static void
2831 swapgeom_acquire(struct g_consumer *cp)
2832 {
2833 
2834 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2835 	cp->index++;
2836 }
2837 
2838 /*
2839  * Remove a reference from the g_consumer.  Post a close event if all
2840  * references go away, since the function might be called from the
2841  * biodone context.
2842  */
2843 static void
2844 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2845 {
2846 
2847 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2848 	cp->index--;
2849 	if (cp->index == 0) {
2850 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2851 			sp->sw_id = NULL;
2852 	}
2853 }
2854 
2855 static void
2856 swapgeom_done(struct bio *bp2)
2857 {
2858 	struct swdevt *sp;
2859 	struct buf *bp;
2860 	struct g_consumer *cp;
2861 
2862 	bp = bp2->bio_caller2;
2863 	cp = bp2->bio_from;
2864 	bp->b_ioflags = bp2->bio_flags;
2865 	if (bp2->bio_error)
2866 		bp->b_ioflags |= BIO_ERROR;
2867 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2868 	bp->b_error = bp2->bio_error;
2869 	bp->b_caller1 = NULL;
2870 	bufdone(bp);
2871 	sp = bp2->bio_caller1;
2872 	mtx_lock(&sw_dev_mtx);
2873 	swapgeom_release(cp, sp);
2874 	mtx_unlock(&sw_dev_mtx);
2875 	g_destroy_bio(bp2);
2876 }
2877 
2878 static void
2879 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2880 {
2881 	struct bio *bio;
2882 	struct g_consumer *cp;
2883 
2884 	mtx_lock(&sw_dev_mtx);
2885 	cp = sp->sw_id;
2886 	if (cp == NULL) {
2887 		mtx_unlock(&sw_dev_mtx);
2888 		bp->b_error = ENXIO;
2889 		bp->b_ioflags |= BIO_ERROR;
2890 		bufdone(bp);
2891 		return;
2892 	}
2893 	swapgeom_acquire(cp);
2894 	mtx_unlock(&sw_dev_mtx);
2895 	if (bp->b_iocmd == BIO_WRITE)
2896 		bio = g_new_bio();
2897 	else
2898 		bio = g_alloc_bio();
2899 	if (bio == NULL) {
2900 		mtx_lock(&sw_dev_mtx);
2901 		swapgeom_release(cp, sp);
2902 		mtx_unlock(&sw_dev_mtx);
2903 		bp->b_error = ENOMEM;
2904 		bp->b_ioflags |= BIO_ERROR;
2905 		printf("swap_pager: cannot allocate bio\n");
2906 		bufdone(bp);
2907 		return;
2908 	}
2909 
2910 	bp->b_caller1 = bio;
2911 	bio->bio_caller1 = sp;
2912 	bio->bio_caller2 = bp;
2913 	bio->bio_cmd = bp->b_iocmd;
2914 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2915 	bio->bio_length = bp->b_bcount;
2916 	bio->bio_done = swapgeom_done;
2917 	if (!buf_mapped(bp)) {
2918 		bio->bio_ma = bp->b_pages;
2919 		bio->bio_data = unmapped_buf;
2920 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2921 		bio->bio_ma_n = bp->b_npages;
2922 		bio->bio_flags |= BIO_UNMAPPED;
2923 	} else {
2924 		bio->bio_data = bp->b_data;
2925 		bio->bio_ma = NULL;
2926 	}
2927 	g_io_request(bio, cp);
2928 	return;
2929 }
2930 
2931 static void
2932 swapgeom_orphan(struct g_consumer *cp)
2933 {
2934 	struct swdevt *sp;
2935 	int destroy;
2936 
2937 	mtx_lock(&sw_dev_mtx);
2938 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2939 		if (sp->sw_id == cp) {
2940 			sp->sw_flags |= SW_CLOSING;
2941 			break;
2942 		}
2943 	}
2944 	/*
2945 	 * Drop reference we were created with. Do directly since we're in a
2946 	 * special context where we don't have to queue the call to
2947 	 * swapgeom_close_ev().
2948 	 */
2949 	cp->index--;
2950 	destroy = ((sp != NULL) && (cp->index == 0));
2951 	if (destroy)
2952 		sp->sw_id = NULL;
2953 	mtx_unlock(&sw_dev_mtx);
2954 	if (destroy)
2955 		swapgeom_close_ev(cp, 0);
2956 }
2957 
2958 static void
2959 swapgeom_close(struct thread *td, struct swdevt *sw)
2960 {
2961 	struct g_consumer *cp;
2962 
2963 	mtx_lock(&sw_dev_mtx);
2964 	cp = sw->sw_id;
2965 	sw->sw_id = NULL;
2966 	mtx_unlock(&sw_dev_mtx);
2967 
2968 	/*
2969 	 * swapgeom_close() may be called from the biodone context,
2970 	 * where we cannot perform topology changes.  Delegate the
2971 	 * work to the events thread.
2972 	 */
2973 	if (cp != NULL)
2974 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2975 }
2976 
2977 static int
2978 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2979 {
2980 	struct g_provider *pp;
2981 	struct g_consumer *cp;
2982 	static struct g_geom *gp;
2983 	struct swdevt *sp;
2984 	u_long nblks;
2985 	int error;
2986 
2987 	pp = g_dev_getprovider(dev);
2988 	if (pp == NULL)
2989 		return (ENODEV);
2990 	mtx_lock(&sw_dev_mtx);
2991 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2992 		cp = sp->sw_id;
2993 		if (cp != NULL && cp->provider == pp) {
2994 			mtx_unlock(&sw_dev_mtx);
2995 			return (EBUSY);
2996 		}
2997 	}
2998 	mtx_unlock(&sw_dev_mtx);
2999 	if (gp == NULL)
3000 		gp = g_new_geomf(&g_swap_class, "swap");
3001 	cp = g_new_consumer(gp);
3002 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
3003 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
3004 	g_attach(cp, pp);
3005 	/*
3006 	 * XXX: Every time you think you can improve the margin for
3007 	 * footshooting, somebody depends on the ability to do so:
3008 	 * savecore(8) wants to write to our swapdev so we cannot
3009 	 * set an exclusive count :-(
3010 	 */
3011 	error = g_access(cp, 1, 1, 0);
3012 	if (error != 0) {
3013 		g_detach(cp);
3014 		g_destroy_consumer(cp);
3015 		return (error);
3016 	}
3017 	nblks = pp->mediasize / DEV_BSIZE;
3018 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
3019 	    swapgeom_close, dev2udev(dev),
3020 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3021 	return (0);
3022 }
3023 
3024 static int
3025 swapongeom(struct vnode *vp)
3026 {
3027 	int error;
3028 
3029 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3030 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3031 		error = ENOENT;
3032 	} else {
3033 		g_topology_lock();
3034 		error = swapongeom_locked(vp->v_rdev, vp);
3035 		g_topology_unlock();
3036 	}
3037 	VOP_UNLOCK(vp);
3038 	return (error);
3039 }
3040 
3041 /*
3042  * VNODE backend
3043  *
3044  * This is used mainly for network filesystem (read: probably only tested
3045  * with NFS) swapfiles.
3046  *
3047  */
3048 
3049 static void
3050 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3051 {
3052 	struct vnode *vp2;
3053 
3054 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3055 
3056 	vp2 = sp->sw_id;
3057 	vhold(vp2);
3058 	if (bp->b_iocmd == BIO_WRITE) {
3059 		if (bp->b_bufobj)
3060 			bufobj_wdrop(bp->b_bufobj);
3061 		bufobj_wref(&vp2->v_bufobj);
3062 	}
3063 	if (bp->b_bufobj != &vp2->v_bufobj)
3064 		bp->b_bufobj = &vp2->v_bufobj;
3065 	bp->b_vp = vp2;
3066 	bp->b_iooffset = dbtob(bp->b_blkno);
3067 	bstrategy(bp);
3068 	return;
3069 }
3070 
3071 static void
3072 swapdev_close(struct thread *td, struct swdevt *sp)
3073 {
3074 
3075 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
3076 	vrele(sp->sw_vp);
3077 }
3078 
3079 static int
3080 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3081 {
3082 	struct swdevt *sp;
3083 	int error;
3084 
3085 	if (nblks == 0)
3086 		return (ENXIO);
3087 	mtx_lock(&sw_dev_mtx);
3088 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3089 		if (sp->sw_id == vp) {
3090 			mtx_unlock(&sw_dev_mtx);
3091 			return (EBUSY);
3092 		}
3093 	}
3094 	mtx_unlock(&sw_dev_mtx);
3095 
3096 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3097 #ifdef MAC
3098 	error = mac_system_check_swapon(td->td_ucred, vp);
3099 	if (error == 0)
3100 #endif
3101 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3102 	(void) VOP_UNLOCK(vp);
3103 	if (error)
3104 		return (error);
3105 
3106 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3107 	    NODEV, 0);
3108 	return (0);
3109 }
3110 
3111 static int
3112 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3113 {
3114 	int error, new, n;
3115 
3116 	new = nsw_wcount_async_max;
3117 	error = sysctl_handle_int(oidp, &new, 0, req);
3118 	if (error != 0 || req->newptr == NULL)
3119 		return (error);
3120 
3121 	if (new > nswbuf / 2 || new < 1)
3122 		return (EINVAL);
3123 
3124 	mtx_lock(&swbuf_mtx);
3125 	while (nsw_wcount_async_max != new) {
3126 		/*
3127 		 * Adjust difference.  If the current async count is too low,
3128 		 * we will need to sqeeze our update slowly in.  Sleep with a
3129 		 * higher priority than getpbuf() to finish faster.
3130 		 */
3131 		n = new - nsw_wcount_async_max;
3132 		if (nsw_wcount_async + n >= 0) {
3133 			nsw_wcount_async += n;
3134 			nsw_wcount_async_max += n;
3135 			wakeup(&nsw_wcount_async);
3136 		} else {
3137 			nsw_wcount_async_max -= nsw_wcount_async;
3138 			nsw_wcount_async = 0;
3139 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3140 			    "swpsysctl", 0);
3141 		}
3142 	}
3143 	mtx_unlock(&swbuf_mtx);
3144 
3145 	return (0);
3146 }
3147 
3148 static void
3149 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3150     vm_offset_t end)
3151 {
3152 
3153 	VM_OBJECT_WLOCK(object);
3154 	KASSERT((object->flags & OBJ_ANON) == 0,
3155 	    ("Splittable object with writecount"));
3156 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3157 	VM_OBJECT_WUNLOCK(object);
3158 }
3159 
3160 static void
3161 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3162     vm_offset_t end)
3163 {
3164 
3165 	VM_OBJECT_WLOCK(object);
3166 	KASSERT((object->flags & OBJ_ANON) == 0,
3167 	    ("Splittable object with writecount"));
3168 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3169 	VM_OBJECT_WUNLOCK(object);
3170 }
3171 
3172 static void
3173 swap_tmpfs_pager_getvp(vm_object_t object, struct vnode **vpp, bool *vp_heldp)
3174 {
3175 	struct vnode *vp;
3176 
3177 	/*
3178 	 * Tmpfs VREG node, which was reclaimed, has OBJT_SWAP_TMPFS
3179 	 * type, but not OBJ_TMPFS flag.  In this case there is no
3180 	 * v_writecount to adjust.
3181 	 */
3182 	if (vp_heldp != NULL)
3183 		VM_OBJECT_RLOCK(object);
3184 	else
3185 		VM_OBJECT_ASSERT_LOCKED(object);
3186 	if ((object->flags & OBJ_TMPFS) != 0) {
3187 		vp = object->un_pager.swp.swp_tmpfs;
3188 		if (vp != NULL) {
3189 			*vpp = vp;
3190 			if (vp_heldp != NULL) {
3191 				vhold(vp);
3192 				*vp_heldp = true;
3193 			}
3194 		}
3195 	}
3196 	if (vp_heldp != NULL)
3197 		VM_OBJECT_RUNLOCK(object);
3198 }
3199