xref: /freebsd/sys/vm/memguard.c (revision 6574b8ed19b093f0af09501d2c9676c28993cb97)
1 /*-
2  * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
3  * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * MemGuard is a simple replacement allocator for debugging only
33  * which provides ElectricFence-style memory barrier protection on
34  * objects being allocated, and is used to detect tampering-after-free
35  * scenarios.
36  *
37  * See the memguard(9) man page for more information on using MemGuard.
38  */
39 
40 #include "opt_vm.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/types.h>
46 #include <sys/queue.h>
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/vmem.h>
52 
53 #include <vm/vm.h>
54 #include <vm/uma.h>
55 #include <vm/vm_param.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_extern.h>
61 #include <vm/uma_int.h>
62 #include <vm/memguard.h>
63 
64 static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW, NULL, "MemGuard data");
65 /*
66  * The vm_memguard_divisor variable controls how much of kmem_map should be
67  * reserved for MemGuard.
68  */
69 static u_int vm_memguard_divisor;
70 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
71     &vm_memguard_divisor,
72     0, "(kmem_size/memguard_divisor) == memguard submap size");
73 
74 /*
75  * Short description (ks_shortdesc) of memory type to monitor.
76  */
77 static char vm_memguard_desc[128] = "";
78 static struct malloc_type *vm_memguard_mtype = NULL;
79 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
80 static int
81 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
82 {
83 	char desc[sizeof(vm_memguard_desc)];
84 	int error;
85 
86 	strlcpy(desc, vm_memguard_desc, sizeof(desc));
87 	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
88 	if (error != 0 || req->newptr == NULL)
89 		return (error);
90 
91 	mtx_lock(&malloc_mtx);
92 	/*
93 	 * If mtp is NULL, it will be initialized in memguard_cmp().
94 	 */
95 	vm_memguard_mtype = malloc_desc2type(desc);
96 	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
97 	mtx_unlock(&malloc_mtx);
98 	return (error);
99 }
100 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
101     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
102     memguard_sysctl_desc, "A", "Short description of memory type to monitor");
103 
104 static vm_offset_t memguard_cursor;
105 static vm_offset_t memguard_base;
106 static vm_size_t memguard_mapsize;
107 static vm_size_t memguard_physlimit;
108 static u_long memguard_wasted;
109 static u_long memguard_wrap;
110 static u_long memguard_succ;
111 static u_long memguard_fail_kva;
112 static u_long memguard_fail_pgs;
113 
114 SYSCTL_ULONG(_vm_memguard, OID_AUTO, cursor, CTLFLAG_RD,
115     &memguard_cursor, 0, "MemGuard cursor");
116 SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
117     &memguard_mapsize, 0, "MemGuard private arena size");
118 SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
119     &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
120 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
121     &memguard_wasted, 0, "Excess memory used through page promotion");
122 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wrapcnt, CTLFLAG_RD,
123     &memguard_wrap, 0, "MemGuard cursor wrap count");
124 SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
125     &memguard_succ, 0, "Count of successful MemGuard allocations");
126 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
127     &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
128 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
129     &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
130 
131 #define MG_GUARD_AROUND		0x001
132 #define MG_GUARD_ALLLARGE	0x002
133 #define MG_GUARD_NOFREE		0x004
134 static int memguard_options = MG_GUARD_AROUND;
135 SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
136     &memguard_options, 0,
137     "MemGuard options:\n"
138     "\t0x001 - add guard pages around each allocation\n"
139     "\t0x002 - always use MemGuard for allocations over a page\n"
140     "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
141 
142 static u_int memguard_minsize;
143 static u_long memguard_minsize_reject;
144 SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
145     &memguard_minsize, 0, "Minimum size for page promotion");
146 SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
147     &memguard_minsize_reject, 0, "# times rejected for size");
148 
149 static u_int memguard_frequency;
150 static u_long memguard_frequency_hits;
151 SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
152     &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
153 SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
154     &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
155 
156 
157 /*
158  * Return a fudged value to be used for vm_kmem_size for allocating
159  * the kmem_map.  The memguard memory will be a submap.
160  */
161 unsigned long
162 memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
163 {
164 	u_long mem_pgs, parent_size;
165 
166 	vm_memguard_divisor = 10;
167 	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
168 
169 	parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
170 	    PAGE_SIZE;
171 	/* Pick a conservative value if provided value sucks. */
172 	if ((vm_memguard_divisor <= 0) ||
173 	    ((parent_size / vm_memguard_divisor) == 0))
174 		vm_memguard_divisor = 10;
175 	/*
176 	 * Limit consumption of physical pages to
177 	 * 1/vm_memguard_divisor of system memory.  If the KVA is
178 	 * smaller than this then the KVA limit comes into play first.
179 	 * This prevents memguard's page promotions from completely
180 	 * using up memory, since most malloc(9) calls are sub-page.
181 	 */
182 	mem_pgs = vm_cnt.v_page_count;
183 	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
184 	/*
185 	 * We want as much KVA as we can take safely.  Use at most our
186 	 * allotted fraction of the parent map's size.  Limit this to
187 	 * twice the physical memory to avoid using too much memory as
188 	 * pagetable pages (size must be multiple of PAGE_SIZE).
189 	 */
190 	memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
191 	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
192 		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
193 	if (km_size + memguard_mapsize > parent_size)
194 		memguard_mapsize = 0;
195 	return (km_size + memguard_mapsize);
196 }
197 
198 /*
199  * Initialize the MemGuard mock allocator.  All objects from MemGuard come
200  * out of a single VM map (contiguous chunk of address space).
201  */
202 void
203 memguard_init(vmem_t *parent)
204 {
205 	vm_offset_t base;
206 
207 	vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
208 	vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
209 	    PAGE_SIZE, 0, M_WAITOK);
210 	memguard_cursor = base;
211 	memguard_base = base;
212 
213 	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
214 	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
215 	printf("\tMEMGUARD map size: %jd KBytes\n",
216 	    (uintmax_t)memguard_mapsize >> 10);
217 }
218 
219 /*
220  * Run things that can't be done as early as memguard_init().
221  */
222 static void
223 memguard_sysinit(void)
224 {
225 	struct sysctl_oid_list *parent;
226 
227 	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
228 
229 	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapstart", CTLFLAG_RD,
230 	    &memguard_base, "MemGuard KVA base");
231 	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "maplimit", CTLFLAG_RD,
232 	    &memguard_mapsize, "MemGuard KVA size");
233 #if 0
234 	SYSCTL_ADD_ULONG(NULL, parent, OID_AUTO, "mapused", CTLFLAG_RD,
235 	    &memguard_map->size, "MemGuard KVA used");
236 #endif
237 }
238 SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
239 
240 /*
241  * v2sizep() converts a virtual address of the first page allocated for
242  * an item to a pointer to u_long recording the size of the original
243  * allocation request.
244  *
245  * This routine is very similar to those defined by UMA in uma_int.h.
246  * The difference is that this routine stores the originally allocated
247  * size in one of the page's fields that is unused when the page is
248  * wired rather than the object field, which is used.
249  */
250 static u_long *
251 v2sizep(vm_offset_t va)
252 {
253 	vm_paddr_t pa;
254 	struct vm_page *p;
255 
256 	pa = pmap_kextract(va);
257 	if (pa == 0)
258 		panic("MemGuard detected double-free of %p", (void *)va);
259 	p = PHYS_TO_VM_PAGE(pa);
260 	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
261 	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
262 	return (&p->plinks.memguard.p);
263 }
264 
265 static u_long *
266 v2sizev(vm_offset_t va)
267 {
268 	vm_paddr_t pa;
269 	struct vm_page *p;
270 
271 	pa = pmap_kextract(va);
272 	if (pa == 0)
273 		panic("MemGuard detected double-free of %p", (void *)va);
274 	p = PHYS_TO_VM_PAGE(pa);
275 	KASSERT(p->wire_count != 0 && p->queue == PQ_NONE,
276 	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
277 	return (&p->plinks.memguard.v);
278 }
279 
280 /*
281  * Allocate a single object of specified size with specified flags
282  * (either M_WAITOK or M_NOWAIT).
283  */
284 void *
285 memguard_alloc(unsigned long req_size, int flags)
286 {
287 	vm_offset_t addr;
288 	u_long size_p, size_v;
289 	int do_guard, rv;
290 
291 	size_p = round_page(req_size);
292 	if (size_p == 0)
293 		return (NULL);
294 	/*
295 	 * To ensure there are holes on both sides of the allocation,
296 	 * request 2 extra pages of KVA.  We will only actually add a
297 	 * vm_map_entry and get pages for the original request.  Save
298 	 * the value of memguard_options so we have a consistent
299 	 * value.
300 	 */
301 	size_v = size_p;
302 	do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
303 	if (do_guard)
304 		size_v += 2 * PAGE_SIZE;
305 
306 	/*
307 	 * When we pass our memory limit, reject sub-page allocations.
308 	 * Page-size and larger allocations will use the same amount
309 	 * of physical memory whether we allocate or hand off to
310 	 * uma_large_alloc(), so keep those.
311 	 */
312 	if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
313 	    req_size < PAGE_SIZE) {
314 		addr = (vm_offset_t)NULL;
315 		memguard_fail_pgs++;
316 		goto out;
317 	}
318 	/*
319 	 * Keep a moving cursor so we don't recycle KVA as long as
320 	 * possible.  It's not perfect, since we don't know in what
321 	 * order previous allocations will be free'd, but it's simple
322 	 * and fast, and requires O(1) additional storage if guard
323 	 * pages are not used.
324 	 *
325 	 * XXX This scheme will lead to greater fragmentation of the
326 	 * map, unless vm_map_findspace() is tweaked.
327 	 */
328 	for (;;) {
329 		if (vmem_xalloc(memguard_arena, size_v, 0, 0, 0,
330 		    memguard_cursor, VMEM_ADDR_MAX,
331 		    M_BESTFIT | M_NOWAIT, &addr) == 0)
332 			break;
333 		/*
334 		 * The map has no space.  This may be due to
335 		 * fragmentation, or because the cursor is near the
336 		 * end of the map.
337 		 */
338 		if (memguard_cursor == memguard_base) {
339 			memguard_fail_kva++;
340 			addr = (vm_offset_t)NULL;
341 			goto out;
342 		}
343 		memguard_wrap++;
344 		memguard_cursor = memguard_base;
345 	}
346 	if (do_guard)
347 		addr += PAGE_SIZE;
348 	rv = kmem_back(kmem_object, addr, size_p, flags);
349 	if (rv != KERN_SUCCESS) {
350 		vmem_xfree(memguard_arena, addr, size_v);
351 		memguard_fail_pgs++;
352 		addr = (vm_offset_t)NULL;
353 		goto out;
354 	}
355 	memguard_cursor = addr + size_v;
356 	*v2sizep(trunc_page(addr)) = req_size;
357 	*v2sizev(trunc_page(addr)) = size_v;
358 	memguard_succ++;
359 	if (req_size < PAGE_SIZE) {
360 		memguard_wasted += (PAGE_SIZE - req_size);
361 		if (do_guard) {
362 			/*
363 			 * Align the request to 16 bytes, and return
364 			 * an address near the end of the page, to
365 			 * better detect array overrun.
366 			 */
367 			req_size = roundup2(req_size, 16);
368 			addr += (PAGE_SIZE - req_size);
369 		}
370 	}
371 out:
372 	return ((void *)addr);
373 }
374 
375 int
376 is_memguard_addr(void *addr)
377 {
378 	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
379 
380 	return (a >= memguard_base && a < memguard_base + memguard_mapsize);
381 }
382 
383 /*
384  * Free specified single object.
385  */
386 void
387 memguard_free(void *ptr)
388 {
389 	vm_offset_t addr;
390 	u_long req_size, size, sizev;
391 	char *temp;
392 	int i;
393 
394 	addr = trunc_page((uintptr_t)ptr);
395 	req_size = *v2sizep(addr);
396 	sizev = *v2sizev(addr);
397 	size = round_page(req_size);
398 
399 	/*
400 	 * Page should not be guarded right now, so force a write.
401 	 * The purpose of this is to increase the likelihood of
402 	 * catching a double-free, but not necessarily a
403 	 * tamper-after-free (the second thread freeing might not
404 	 * write before freeing, so this forces it to and,
405 	 * subsequently, trigger a fault).
406 	 */
407 	temp = ptr;
408 	for (i = 0; i < size; i += PAGE_SIZE)
409 		temp[i] = 'M';
410 
411 	/*
412 	 * This requires carnal knowledge of the implementation of
413 	 * kmem_free(), but since we've already replaced kmem_malloc()
414 	 * above, it's not really any worse.  We want to use the
415 	 * vm_map lock to serialize updates to memguard_wasted, since
416 	 * we had the lock at increment.
417 	 */
418 	kmem_unback(kmem_object, addr, size);
419 	if (sizev > size)
420 		addr -= PAGE_SIZE;
421 	vmem_xfree(memguard_arena, addr, sizev);
422 	if (req_size < PAGE_SIZE)
423 		memguard_wasted -= (PAGE_SIZE - req_size);
424 }
425 
426 /*
427  * Re-allocate an allocation that was originally guarded.
428  */
429 void *
430 memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
431     int flags)
432 {
433 	void *newaddr;
434 	u_long old_size;
435 
436 	/*
437 	 * Allocate the new block.  Force the allocation to be guarded
438 	 * as the original may have been guarded through random
439 	 * chance, and that should be preserved.
440 	 */
441 	if ((newaddr = memguard_alloc(size, flags)) == NULL)
442 		return (NULL);
443 
444 	/* Copy over original contents. */
445 	old_size = *v2sizep(trunc_page((uintptr_t)addr));
446 	bcopy(addr, newaddr, min(size, old_size));
447 	memguard_free(addr);
448 	return (newaddr);
449 }
450 
451 static int
452 memguard_cmp(unsigned long size)
453 {
454 
455 	if (size < memguard_minsize) {
456 		memguard_minsize_reject++;
457 		return (0);
458 	}
459 	if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
460 		return (1);
461 	if (memguard_frequency > 0 &&
462 	    (random() % 100000) < memguard_frequency) {
463 		memguard_frequency_hits++;
464 		return (1);
465 	}
466 
467 	return (0);
468 }
469 
470 int
471 memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
472 {
473 
474 	if (memguard_cmp(size))
475 		return(1);
476 
477 #if 1
478 	/*
479 	 * The safest way of comparsion is to always compare short description
480 	 * string of memory type, but it is also the slowest way.
481 	 */
482 	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
483 #else
484 	/*
485 	 * If we compare pointers, there are two possible problems:
486 	 * 1. Memory type was unloaded and new memory type was allocated at the
487 	 *    same address.
488 	 * 2. Memory type was unloaded and loaded again, but allocated at a
489 	 *    different address.
490 	 */
491 	if (vm_memguard_mtype != NULL)
492 		return (mtp == vm_memguard_mtype);
493 	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
494 		vm_memguard_mtype = mtp;
495 		return (1);
496 	}
497 	return (0);
498 #endif
499 }
500 
501 int
502 memguard_cmp_zone(uma_zone_t zone)
503 {
504 
505 	 if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
506 	    zone->uz_flags & UMA_ZONE_NOFREE)
507 		return (0);
508 
509 	if (memguard_cmp(zone->uz_size))
510 		return (1);
511 
512 	/*
513 	 * The safest way of comparsion is to always compare zone name,
514 	 * but it is also the slowest way.
515 	 */
516 	return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
517 }
518