xref: /freebsd/sys/vm/memguard.c (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2005, Bosko Milekic <bmilekic@FreeBSD.org>.
5  * Copyright (c) 2010 Isilon Systems, Inc. (http://www.isilon.com/)
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * MemGuard is a simple replacement allocator for debugging only
35  * which provides ElectricFence-style memory barrier protection on
36  * objects being allocated, and is used to detect tampering-after-free
37  * scenarios.
38  *
39  * See the memguard(9) man page for more information on using MemGuard.
40  */
41 
42 #include "opt_vm.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/types.h>
48 #include <sys/queue.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/malloc.h>
52 #include <sys/sysctl.h>
53 #include <sys/vmem.h>
54 #include <sys/vmmeter.h>
55 
56 #include <vm/vm.h>
57 #include <vm/uma.h>
58 #include <vm/vm_param.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_object.h>
62 #include <vm/vm_kern.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma_int.h>
65 #include <vm/memguard.h>
66 
67 static SYSCTL_NODE(_vm, OID_AUTO, memguard, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
68     "MemGuard data");
69 /*
70  * The vm_memguard_divisor variable controls how much of kernel_arena should be
71  * reserved for MemGuard.
72  */
73 static u_int vm_memguard_divisor;
74 SYSCTL_UINT(_vm_memguard, OID_AUTO, divisor, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
75     &vm_memguard_divisor,
76     0, "(kmem_size/memguard_divisor) == memguard submap size");
77 
78 /*
79  * Short description (ks_shortdesc) of memory type to monitor.
80  */
81 static char vm_memguard_desc[128] = "";
82 static struct malloc_type *vm_memguard_mtype = NULL;
83 TUNABLE_STR("vm.memguard.desc", vm_memguard_desc, sizeof(vm_memguard_desc));
84 static int
85 memguard_sysctl_desc(SYSCTL_HANDLER_ARGS)
86 {
87 	char desc[sizeof(vm_memguard_desc)];
88 	int error;
89 
90 	strlcpy(desc, vm_memguard_desc, sizeof(desc));
91 	error = sysctl_handle_string(oidp, desc, sizeof(desc), req);
92 	if (error != 0 || req->newptr == NULL)
93 		return (error);
94 
95 	mtx_lock(&malloc_mtx);
96 	/* If mtp is NULL, it will be initialized in memguard_cmp() */
97 	vm_memguard_mtype = malloc_desc2type(desc);
98 	strlcpy(vm_memguard_desc, desc, sizeof(vm_memguard_desc));
99 	mtx_unlock(&malloc_mtx);
100 	return (error);
101 }
102 SYSCTL_PROC(_vm_memguard, OID_AUTO, desc,
103     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
104     memguard_sysctl_desc, "A", "Short description of memory type to monitor");
105 
106 static int
107 memguard_sysctl_mapused(SYSCTL_HANDLER_ARGS)
108 {
109 	vmem_size_t size;
110 
111 	size = vmem_size(memguard_arena, VMEM_ALLOC);
112 	return (sysctl_handle_long(oidp, &size, sizeof(size), req));
113 }
114 
115 static vm_offset_t memguard_base;
116 static vm_size_t memguard_mapsize;
117 static vm_size_t memguard_physlimit;
118 static u_long memguard_wasted;
119 static u_long memguard_succ;
120 static u_long memguard_fail_kva;
121 static u_long memguard_fail_pgs;
122 
123 SYSCTL_ULONG(_vm_memguard, OID_AUTO, mapsize, CTLFLAG_RD,
124     &memguard_mapsize, 0, "MemGuard private arena size");
125 SYSCTL_ULONG(_vm_memguard, OID_AUTO, phys_limit, CTLFLAG_RD,
126     &memguard_physlimit, 0, "Limit on MemGuard memory consumption");
127 SYSCTL_ULONG(_vm_memguard, OID_AUTO, wasted, CTLFLAG_RD,
128     &memguard_wasted, 0, "Excess memory used through page promotion");
129 SYSCTL_ULONG(_vm_memguard, OID_AUTO, numalloc, CTLFLAG_RD,
130     &memguard_succ, 0, "Count of successful MemGuard allocations");
131 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_kva, CTLFLAG_RD,
132     &memguard_fail_kva, 0, "MemGuard failures due to lack of KVA");
133 SYSCTL_ULONG(_vm_memguard, OID_AUTO, fail_pgs, CTLFLAG_RD,
134     &memguard_fail_pgs, 0, "MemGuard failures due to lack of pages");
135 
136 #define MG_GUARD_AROUND		0x001
137 #define MG_GUARD_ALLLARGE	0x002
138 #define MG_GUARD_NOFREE		0x004
139 static int memguard_options = MG_GUARD_AROUND;
140 SYSCTL_INT(_vm_memguard, OID_AUTO, options, CTLFLAG_RWTUN,
141     &memguard_options, 0,
142     "MemGuard options:\n"
143     "\t0x001 - add guard pages around each allocation\n"
144     "\t0x002 - always use MemGuard for allocations over a page\n"
145     "\t0x004 - guard uma(9) zones with UMA_ZONE_NOFREE flag");
146 
147 static u_int memguard_minsize;
148 static u_long memguard_minsize_reject;
149 SYSCTL_UINT(_vm_memguard, OID_AUTO, minsize, CTLFLAG_RW,
150     &memguard_minsize, 0, "Minimum size for page promotion");
151 SYSCTL_ULONG(_vm_memguard, OID_AUTO, minsize_reject, CTLFLAG_RD,
152     &memguard_minsize_reject, 0, "# times rejected for size");
153 
154 static u_int memguard_frequency;
155 static u_long memguard_frequency_hits;
156 SYSCTL_UINT(_vm_memguard, OID_AUTO, frequency, CTLFLAG_RWTUN,
157     &memguard_frequency, 0, "Times in 100000 that MemGuard will randomly run");
158 SYSCTL_ULONG(_vm_memguard, OID_AUTO, frequency_hits, CTLFLAG_RD,
159     &memguard_frequency_hits, 0, "# times MemGuard randomly chose");
160 
161 /*
162  * Return a fudged value to be used for vm_kmem_size for allocating
163  * the kernel_arena.
164  */
165 unsigned long
166 memguard_fudge(unsigned long km_size, const struct vm_map *parent_map)
167 {
168 	u_long mem_pgs, parent_size;
169 
170 	vm_memguard_divisor = 10;
171 	/* CTFLAG_RDTUN doesn't work during the early boot process. */
172 	TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
173 
174 	parent_size = vm_map_max(parent_map) - vm_map_min(parent_map) +
175 	    PAGE_SIZE;
176 	/* Pick a conservative value if provided value sucks. */
177 	if ((vm_memguard_divisor <= 0) ||
178 	    ((parent_size / vm_memguard_divisor) == 0))
179 		vm_memguard_divisor = 10;
180 	/*
181 	 * Limit consumption of physical pages to
182 	 * 1/vm_memguard_divisor of system memory.  If the KVA is
183 	 * smaller than this then the KVA limit comes into play first.
184 	 * This prevents memguard's page promotions from completely
185 	 * using up memory, since most malloc(9) calls are sub-page.
186 	 */
187 	mem_pgs = vm_cnt.v_page_count;
188 	memguard_physlimit = (mem_pgs / vm_memguard_divisor) * PAGE_SIZE;
189 	/*
190 	 * We want as much KVA as we can take safely.  Use at most our
191 	 * allotted fraction of the parent map's size.  Limit this to
192 	 * twice the physical memory to avoid using too much memory as
193 	 * pagetable pages (size must be multiple of PAGE_SIZE).
194 	 */
195 	memguard_mapsize = round_page(parent_size / vm_memguard_divisor);
196 	if (memguard_mapsize / (2 * PAGE_SIZE) > mem_pgs)
197 		memguard_mapsize = mem_pgs * 2 * PAGE_SIZE;
198 	if (km_size + memguard_mapsize > parent_size)
199 		memguard_mapsize = 0;
200 	return (km_size + memguard_mapsize);
201 }
202 
203 /*
204  * Initialize the MemGuard mock allocator.  All objects from MemGuard come
205  * out of a single contiguous chunk of kernel address space that is managed
206  * by a vmem arena.
207  */
208 void
209 memguard_init(vmem_t *parent)
210 {
211 	vm_offset_t base;
212 
213 	vmem_alloc(parent, memguard_mapsize, M_BESTFIT | M_WAITOK, &base);
214 	vmem_init(memguard_arena, "memguard arena", base, memguard_mapsize,
215 	    PAGE_SIZE, 0, M_WAITOK);
216 	memguard_base = base;
217 
218 	printf("MEMGUARD DEBUGGING ALLOCATOR INITIALIZED:\n");
219 	printf("\tMEMGUARD map base: 0x%lx\n", (u_long)base);
220 	printf("\tMEMGUARD map size: %jd KBytes\n",
221 	    (uintmax_t)memguard_mapsize >> 10);
222 }
223 
224 /*
225  * Run things that can't be done as early as memguard_init().
226  */
227 static void
228 memguard_sysinit(void)
229 {
230 	struct sysctl_oid_list *parent;
231 
232 	parent = SYSCTL_STATIC_CHILDREN(_vm_memguard);
233 	SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "mapstart",
234 	    CTLFLAG_RD, &memguard_base,
235 	    "MemGuard KVA base");
236 	SYSCTL_ADD_UAUTO(NULL, parent, OID_AUTO, "maplimit",
237 	    CTLFLAG_RD, &memguard_mapsize,
238 	    "MemGuard KVA size");
239 	SYSCTL_ADD_PROC(NULL, parent, OID_AUTO, "mapused",
240 	    CTLFLAG_RD | CTLFLAG_MPSAFE | CTLTYPE_ULONG, NULL, 0, memguard_sysctl_mapused, "LU",
241 	    "MemGuard KVA used");
242 }
243 SYSINIT(memguard, SI_SUB_KLD, SI_ORDER_ANY, memguard_sysinit, NULL);
244 
245 /*
246  * v2sizep() converts a virtual address of the first page allocated for
247  * an item to a pointer to u_long recording the size of the original
248  * allocation request.
249  *
250  * This routine is very similar to those defined by UMA in uma_int.h.
251  * The difference is that this routine stores the originally allocated
252  * size in one of the page's fields that is unused when the page is
253  * wired rather than the object field, which is used.
254  */
255 static u_long *
256 v2sizep(vm_offset_t va)
257 {
258 	vm_paddr_t pa;
259 	struct vm_page *p;
260 
261 	pa = pmap_kextract(va);
262 	if (pa == 0)
263 		panic("MemGuard detected double-free of %p", (void *)va);
264 	p = PHYS_TO_VM_PAGE(pa);
265 	KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
266 	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
267 	return (&p->plinks.memguard.p);
268 }
269 
270 static u_long *
271 v2sizev(vm_offset_t va)
272 {
273 	vm_paddr_t pa;
274 	struct vm_page *p;
275 
276 	pa = pmap_kextract(va);
277 	if (pa == 0)
278 		panic("MemGuard detected double-free of %p", (void *)va);
279 	p = PHYS_TO_VM_PAGE(pa);
280 	KASSERT(vm_page_wired(p) && p->a.queue == PQ_NONE,
281 	    ("MEMGUARD: Expected wired page %p in vtomgfifo!", p));
282 	return (&p->plinks.memguard.v);
283 }
284 
285 /*
286  * Allocate a single object of specified size with specified flags
287  * (either M_WAITOK or M_NOWAIT).
288  */
289 void *
290 memguard_alloc(unsigned long req_size, int flags)
291 {
292 	vm_offset_t addr, origaddr;
293 	u_long size_p, size_v;
294 	int do_guard, error, rv;
295 
296 	size_p = round_page(req_size);
297 	if (size_p == 0)
298 		return (NULL);
299 
300 	/*
301 	 * To ensure there are holes on both sides of the allocation,
302 	 * request 2 extra pages of KVA.  Save the value of memguard_options
303 	 * so that we use a consistent value throughout this function.
304 	 */
305 	size_v = size_p;
306 	do_guard = (memguard_options & MG_GUARD_AROUND) != 0;
307 	if (do_guard)
308 		size_v += 2 * PAGE_SIZE;
309 
310 	/*
311 	 * When we pass our memory limit, reject sub-page allocations.
312 	 * Page-size and larger allocations will use the same amount
313 	 * of physical memory whether we allocate or hand off to
314 	 * malloc_large(), so keep those.
315 	 */
316 	if (vmem_size(memguard_arena, VMEM_ALLOC) >= memguard_physlimit &&
317 	    req_size < PAGE_SIZE) {
318 		addr = (vm_offset_t)NULL;
319 		memguard_fail_pgs++;
320 		goto out;
321 	}
322 
323 	/*
324 	 * Attempt to avoid address reuse for as long as possible, to increase
325 	 * the likelihood of catching a use-after-free.
326 	 */
327 	error = vmem_alloc(memguard_arena, size_v, M_NEXTFIT | M_NOWAIT,
328 	    &origaddr);
329 	if (error != 0) {
330 		memguard_fail_kva++;
331 		addr = (vm_offset_t)NULL;
332 		goto out;
333 	}
334 	addr = origaddr;
335 	if (do_guard)
336 		addr += PAGE_SIZE;
337 	rv = kmem_back(kernel_object, addr, size_p, flags);
338 	if (rv != KERN_SUCCESS) {
339 		vmem_xfree(memguard_arena, origaddr, size_v);
340 		memguard_fail_pgs++;
341 		addr = (vm_offset_t)NULL;
342 		goto out;
343 	}
344 	*v2sizep(trunc_page(addr)) = req_size;
345 	*v2sizev(trunc_page(addr)) = size_v;
346 	memguard_succ++;
347 	if (req_size < PAGE_SIZE) {
348 		memguard_wasted += (PAGE_SIZE - req_size);
349 		if (do_guard) {
350 			/*
351 			 * Align the request to 16 bytes, and return
352 			 * an address near the end of the page, to
353 			 * better detect array overrun.
354 			 */
355 			req_size = roundup2(req_size, 16);
356 			addr += (PAGE_SIZE - req_size);
357 		}
358 	}
359 out:
360 	return ((void *)addr);
361 }
362 
363 int
364 is_memguard_addr(void *addr)
365 {
366 	vm_offset_t a = (vm_offset_t)(uintptr_t)addr;
367 
368 	return (a >= memguard_base && a < memguard_base + memguard_mapsize);
369 }
370 
371 /*
372  * Free specified single object.
373  */
374 void
375 memguard_free(void *ptr)
376 {
377 	vm_offset_t addr;
378 	u_long req_size, size, sizev;
379 	char *temp;
380 	int i;
381 
382 	addr = trunc_page((uintptr_t)ptr);
383 	req_size = *v2sizep(addr);
384 	sizev = *v2sizev(addr);
385 	size = round_page(req_size);
386 
387 	/*
388 	 * Page should not be guarded right now, so force a write.
389 	 * The purpose of this is to increase the likelihood of
390 	 * catching a double-free, but not necessarily a
391 	 * tamper-after-free (the second thread freeing might not
392 	 * write before freeing, so this forces it to and,
393 	 * subsequently, trigger a fault).
394 	 */
395 	temp = ptr;
396 	for (i = 0; i < size; i += PAGE_SIZE)
397 		temp[i] = 'M';
398 
399 	/*
400 	 * This requires carnal knowledge of the implementation of
401 	 * kmem_free(), but since we've already replaced kmem_malloc()
402 	 * above, it's not really any worse.  We want to use the
403 	 * vm_map lock to serialize updates to memguard_wasted, since
404 	 * we had the lock at increment.
405 	 */
406 	kmem_unback(kernel_object, addr, size);
407 	if (sizev > size)
408 		addr -= PAGE_SIZE;
409 	vmem_xfree(memguard_arena, addr, sizev);
410 	if (req_size < PAGE_SIZE)
411 		memguard_wasted -= (PAGE_SIZE - req_size);
412 }
413 
414 /*
415  * Re-allocate an allocation that was originally guarded.
416  */
417 void *
418 memguard_realloc(void *addr, unsigned long size, struct malloc_type *mtp,
419     int flags)
420 {
421 	void *newaddr;
422 	u_long old_size;
423 
424 	/*
425 	 * Allocate the new block.  Force the allocation to be guarded
426 	 * as the original may have been guarded through random
427 	 * chance, and that should be preserved.
428 	 */
429 	if ((newaddr = memguard_alloc(size, flags)) == NULL)
430 		return (NULL);
431 
432 	/* Copy over original contents. */
433 	old_size = *v2sizep(trunc_page((uintptr_t)addr));
434 	bcopy(addr, newaddr, min(size, old_size));
435 	memguard_free(addr);
436 	return (newaddr);
437 }
438 
439 static int
440 memguard_cmp(unsigned long size)
441 {
442 
443 	if (size < memguard_minsize) {
444 		memguard_minsize_reject++;
445 		return (0);
446 	}
447 	if ((memguard_options & MG_GUARD_ALLLARGE) != 0 && size >= PAGE_SIZE)
448 		return (1);
449 	if (memguard_frequency > 0 &&
450 	    (random() % 100000) < memguard_frequency) {
451 		memguard_frequency_hits++;
452 		return (1);
453 	}
454 
455 	return (0);
456 }
457 
458 int
459 memguard_cmp_mtp(struct malloc_type *mtp, unsigned long size)
460 {
461 
462 	if (memguard_cmp(size))
463 		return(1);
464 
465 #if 1
466 	/*
467 	 * The safest way of comparison is to always compare short description
468 	 * string of memory type, but it is also the slowest way.
469 	 */
470 	return (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0);
471 #else
472 	/*
473 	 * If we compare pointers, there are two possible problems:
474 	 * 1. Memory type was unloaded and new memory type was allocated at the
475 	 *    same address.
476 	 * 2. Memory type was unloaded and loaded again, but allocated at a
477 	 *    different address.
478 	 */
479 	if (vm_memguard_mtype != NULL)
480 		return (mtp == vm_memguard_mtype);
481 	if (strcmp(mtp->ks_shortdesc, vm_memguard_desc) == 0) {
482 		vm_memguard_mtype = mtp;
483 		return (1);
484 	}
485 	return (0);
486 #endif
487 }
488 
489 int
490 memguard_cmp_zone(uma_zone_t zone)
491 {
492 
493 	if ((memguard_options & MG_GUARD_NOFREE) == 0 &&
494 	    zone->uz_flags & UMA_ZONE_NOFREE)
495 		return (0);
496 
497 	if (memguard_cmp(zone->uz_size))
498 		return (1);
499 
500 	/*
501 	 * The safest way of comparison is to always compare zone name,
502 	 * but it is also the slowest way.
503 	 */
504 	return (strcmp(zone->uz_name, vm_memguard_desc) == 0);
505 }
506 
507 unsigned long
508 memguard_get_req_size(const void *addr)
509 {
510 	return (*v2sizep(trunc_page((uintptr_t)addr)));
511 }
512