1 /* 2 * Copyright (c) 1982, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)fs.h 8.7 (Berkeley) 4/19/94 34 * $Id: fs.h,v 1.6 1996/01/30 23:02:01 mpp Exp $ 35 */ 36 37 #ifndef _UFS_FFS_FS_H_ 38 #define _UFS_FFS_FS_H_ 39 40 /* 41 * Each disk drive contains some number of file systems. 42 * A file system consists of a number of cylinder groups. 43 * Each cylinder group has inodes and data. 44 * 45 * A file system is described by its super-block, which in turn 46 * describes the cylinder groups. The super-block is critical 47 * data and is replicated in each cylinder group to protect against 48 * catastrophic loss. This is done at `newfs' time and the critical 49 * super-block data does not change, so the copies need not be 50 * referenced further unless disaster strikes. 51 * 52 * For file system fs, the offsets of the various blocks of interest 53 * are given in the super block as: 54 * [fs->fs_sblkno] Super-block 55 * [fs->fs_cblkno] Cylinder group block 56 * [fs->fs_iblkno] Inode blocks 57 * [fs->fs_dblkno] Data blocks 58 * The beginning of cylinder group cg in fs, is given by 59 * the ``cgbase(fs, cg)'' macro. 60 * 61 * The first boot and super blocks are given in absolute disk addresses. 62 * The byte-offset forms are preferred, as they don't imply a sector size. 63 */ 64 #define BBSIZE 8192 65 #define SBSIZE 8192 66 #define BBOFF ((off_t)(0)) 67 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 68 #define BBLOCK ((daddr_t)(0)) 69 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 70 71 /* 72 * Addresses stored in inodes are capable of addressing fragments 73 * of `blocks'. File system blocks of at most size MAXBSIZE can 74 * be optionally broken into 2, 4, or 8 pieces, each of which is 75 * addressable; these pieces may be DEV_BSIZE, or some multiple of 76 * a DEV_BSIZE unit. 77 * 78 * Large files consist of exclusively large data blocks. To avoid 79 * undue wasted disk space, the last data block of a small file may be 80 * allocated as only as many fragments of a large block as are 81 * necessary. The file system format retains only a single pointer 82 * to such a fragment, which is a piece of a single large block that 83 * has been divided. The size of such a fragment is determinable from 84 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 85 * 86 * The file system records space availability at the fragment level; 87 * to determine block availability, aligned fragments are examined. 88 */ 89 90 /* 91 * MINBSIZE is the smallest allowable block size. 92 * In order to insure that it is possible to create files of size 93 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 94 * MINBSIZE must be big enough to hold a cylinder group block, 95 * thus changes to (struct cg) must keep its size within MINBSIZE. 96 * Note that super blocks are always of size SBSIZE, 97 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 98 */ 99 #define MINBSIZE 4096 100 101 /* 102 * The path name on which the file system is mounted is maintained 103 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 104 * the super block for this name. 105 * The limit on the amount of summary information per file system 106 * is defined by MAXCSBUFS. It is currently parameterized for a 107 * maximum of two million cylinders. 108 */ 109 #define MAXMNTLEN 512 110 #define MAXCSBUFS 32 111 112 /* 113 * A summary of contiguous blocks of various sizes is maintained 114 * in each cylinder group. Normally this is set by the initial 115 * value of fs_maxcontig. To conserve space, a maximum summary size 116 * is set by FS_MAXCONTIG. 117 */ 118 #define FS_MAXCONTIG 16 119 120 /* 121 * MINFREE gives the minimum acceptable percentage of file system 122 * blocks which may be free. If the freelist drops below this level 123 * only the superuser may continue to allocate blocks. This may 124 * be set to 0 if no reserve of free blocks is deemed necessary, 125 * however throughput drops by fifty percent if the file system 126 * is run at between 95% and 100% full; thus the minimum default 127 * value of fs_minfree is 5%. However, to get good clustering 128 * performance, 10% is a better choice. hence we use 10% as our 129 * default value. With 10% free space, fragmentation is not a 130 * problem, so we choose to optimize for time. 131 */ 132 #define MINFREE 8 133 #define DEFAULTOPT FS_OPTTIME 134 135 /* 136 * Per cylinder group information; summarized in blocks allocated 137 * from first cylinder group data blocks. These blocks have to be 138 * read in from fs_csaddr (size fs_cssize) in addition to the 139 * super block. 140 * 141 * N.B. sizeof(struct csum) must be a power of two in order for 142 * the ``fs_cs'' macro to work (see below). 143 */ 144 struct csum { 145 long cs_ndir; /* number of directories */ 146 long cs_nbfree; /* number of free blocks */ 147 long cs_nifree; /* number of free inodes */ 148 long cs_nffree; /* number of free frags */ 149 }; 150 151 /* 152 * Super block for a file system. 153 */ 154 struct fs { 155 struct fs *fs_link; /* linked list of file systems */ 156 struct fs *fs_rlink; /* used for incore super blocks */ 157 daddr_t fs_sblkno; /* addr of super-block in filesys */ 158 daddr_t fs_cblkno; /* offset of cyl-block in filesys */ 159 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */ 160 daddr_t fs_dblkno; /* offset of first data after cg */ 161 long fs_cgoffset; /* cylinder group offset in cylinder */ 162 long fs_cgmask; /* used to calc mod fs_ntrak */ 163 time_t fs_time; /* last time written */ 164 long fs_size; /* number of blocks in fs */ 165 long fs_dsize; /* number of data blocks in fs */ 166 long fs_ncg; /* number of cylinder groups */ 167 long fs_bsize; /* size of basic blocks in fs */ 168 long fs_fsize; /* size of frag blocks in fs */ 169 long fs_frag; /* number of frags in a block in fs */ 170 /* these are configuration parameters */ 171 long fs_minfree; /* minimum percentage of free blocks */ 172 long fs_rotdelay; /* num of ms for optimal next block */ 173 long fs_rps; /* disk revolutions per second */ 174 /* these fields can be computed from the others */ 175 long fs_bmask; /* ``blkoff'' calc of blk offsets */ 176 long fs_fmask; /* ``fragoff'' calc of frag offsets */ 177 long fs_bshift; /* ``lblkno'' calc of logical blkno */ 178 long fs_fshift; /* ``numfrags'' calc number of frags */ 179 /* these are configuration parameters */ 180 long fs_maxcontig; /* max number of contiguous blks */ 181 long fs_maxbpg; /* max number of blks per cyl group */ 182 /* these fields can be computed from the others */ 183 long fs_fragshift; /* block to frag shift */ 184 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 185 long fs_sbsize; /* actual size of super block */ 186 long fs_csmask; /* csum block offset */ 187 long fs_csshift; /* csum block number */ 188 long fs_nindir; /* value of NINDIR */ 189 long fs_inopb; /* value of INOPB */ 190 long fs_nspf; /* value of NSPF */ 191 /* yet another configuration parameter */ 192 long fs_optim; /* optimization preference, see below */ 193 /* these fields are derived from the hardware */ 194 long fs_npsect; /* # sectors/track including spares */ 195 long fs_interleave; /* hardware sector interleave */ 196 long fs_trackskew; /* sector 0 skew, per track */ 197 long fs_headswitch; /* head switch time, usec */ 198 long fs_trkseek; /* track-to-track seek, usec */ 199 /* sizes determined by number of cylinder groups and their sizes */ 200 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */ 201 long fs_cssize; /* size of cyl grp summary area */ 202 long fs_cgsize; /* cylinder group size */ 203 /* these fields are derived from the hardware */ 204 long fs_ntrak; /* tracks per cylinder */ 205 long fs_nsect; /* sectors per track */ 206 long fs_spc; /* sectors per cylinder */ 207 /* this comes from the disk driver partitioning */ 208 long fs_ncyl; /* cylinders in file system */ 209 /* these fields can be computed from the others */ 210 long fs_cpg; /* cylinders per group */ 211 long fs_ipg; /* inodes per group */ 212 long fs_fpg; /* blocks per group * fs_frag */ 213 /* this data must be re-computed after crashes */ 214 struct csum fs_cstotal; /* cylinder summary information */ 215 /* these fields are cleared at mount time */ 216 char fs_fmod; /* super block modified flag */ 217 char fs_clean; /* file system is clean flag */ 218 char fs_ronly; /* mounted read-only flag */ 219 char fs_flags; /* currently unused flag */ 220 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 221 /* these fields retain the current block allocation info */ 222 long fs_cgrotor; /* last cg searched */ 223 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */ 224 long fs_cpc; /* cyl per cycle in postbl */ 225 short fs_opostbl[16][8]; /* old rotation block list head */ 226 long fs_sparecon[50]; /* reserved for future constants */ 227 long fs_contigsumsize; /* size of cluster summary array */ 228 long fs_maxsymlinklen; /* max length of an internal symlink */ 229 long fs_inodefmt; /* format of on-disk inodes */ 230 u_quad_t fs_maxfilesize; /* maximum representable file size */ 231 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */ 232 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */ 233 long fs_state; /* validate fs_clean field */ 234 long fs_postblformat; /* format of positional layout tables */ 235 long fs_nrpos; /* number of rotational positions */ 236 long fs_postbloff; /* (short) rotation block list head */ 237 long fs_rotbloff; /* (u_char) blocks for each rotation */ 238 long fs_magic; /* magic number */ 239 u_char fs_space[1]; /* list of blocks for each rotation */ 240 /* actually longer */ 241 }; 242 /* 243 * Filesystem identification 244 */ 245 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */ 246 #define FS_OKAY 0x7c269d38 /* superblock checksum */ 247 #define FS_42INODEFMT -1 /* 4.2BSD inode format */ 248 #define FS_44INODEFMT 2 /* 4.4BSD inode format */ 249 /* 250 * Preference for optimization. 251 */ 252 #define FS_OPTTIME 0 /* minimize allocation time */ 253 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 254 255 /* 256 * Rotational layout table format types 257 */ 258 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 259 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 260 /* 261 * Macros for access to superblock array structures 262 */ 263 #define fs_postbl(fs, cylno) \ 264 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 265 ? ((fs)->fs_opostbl[cylno]) \ 266 : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos)) 267 #define fs_rotbl(fs) \ 268 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 269 ? ((fs)->fs_space) \ 270 : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff))) 271 272 /* 273 * The size of a cylinder group is calculated by CGSIZE. The maximum size 274 * is limited by the fact that cylinder groups are at most one block. 275 * Its size is derived from the size of the maps maintained in the 276 * cylinder group and the (struct cg) size. 277 */ 278 #define CGSIZE(fs) \ 279 /* base cg */ (sizeof(struct cg) + sizeof(long) + \ 280 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \ 281 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \ 282 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 283 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\ 284 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \ 285 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(long) + \ 286 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY))) 287 288 /* 289 * Convert cylinder group to base address of its global summary info. 290 * 291 * N.B. This macro assumes that sizeof(struct csum) is a power of two. 292 */ 293 #define fs_cs(fs, indx) \ 294 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask] 295 296 /* 297 * Cylinder group block for a file system. 298 */ 299 #define CG_MAGIC 0x090255 300 struct cg { 301 struct cg *cg_link; /* linked list of cyl groups */ 302 long cg_magic; /* magic number */ 303 time_t cg_time; /* time last written */ 304 long cg_cgx; /* we are the cgx'th cylinder group */ 305 short cg_ncyl; /* number of cyl's this cg */ 306 short cg_niblk; /* number of inode blocks this cg */ 307 long cg_ndblk; /* number of data blocks this cg */ 308 struct csum cg_cs; /* cylinder summary information */ 309 long cg_rotor; /* position of last used block */ 310 long cg_frotor; /* position of last used frag */ 311 long cg_irotor; /* position of last used inode */ 312 long cg_frsum[MAXFRAG]; /* counts of available frags */ 313 long cg_btotoff; /* (long) block totals per cylinder */ 314 long cg_boff; /* (short) free block positions */ 315 long cg_iusedoff; /* (char) used inode map */ 316 long cg_freeoff; /* (u_char) free block map */ 317 long cg_nextfreeoff; /* (u_char) next available space */ 318 long cg_clustersumoff; /* (long) counts of avail clusters */ 319 long cg_clusteroff; /* (char) free cluster map */ 320 long cg_nclusterblks; /* number of clusters this cg */ 321 long cg_sparecon[13]; /* reserved for future use */ 322 u_char cg_space[1]; /* space for cylinder group maps */ 323 /* actually longer */ 324 }; 325 /* 326 * Macros for access to cylinder group array structures 327 */ 328 #define cg_blktot(cgp) \ 329 (((cgp)->cg_magic != CG_MAGIC) \ 330 ? (((struct ocg *)(cgp))->cg_btot) \ 331 : ((long *)((char *)(cgp) + (cgp)->cg_btotoff))) 332 #define cg_blks(fs, cgp, cylno) \ 333 (((cgp)->cg_magic != CG_MAGIC) \ 334 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 335 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos)) 336 #define cg_inosused(cgp) \ 337 (((cgp)->cg_magic != CG_MAGIC) \ 338 ? (((struct ocg *)(cgp))->cg_iused) \ 339 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff))) 340 #define cg_blksfree(cgp) \ 341 (((cgp)->cg_magic != CG_MAGIC) \ 342 ? (((struct ocg *)(cgp))->cg_free) \ 343 : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff))) 344 #define cg_chkmagic(cgp) \ 345 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 346 #define cg_clustersfree(cgp) \ 347 ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff)) 348 #define cg_clustersum(cgp) \ 349 ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff)) 350 351 /* 352 * The following structure is defined 353 * for compatibility with old file systems. 354 */ 355 struct ocg { 356 struct ocg *cg_link; /* linked list of cyl groups */ 357 struct ocg *cg_rlink; /* used for incore cyl groups */ 358 time_t cg_time; /* time last written */ 359 long cg_cgx; /* we are the cgx'th cylinder group */ 360 short cg_ncyl; /* number of cyl's this cg */ 361 short cg_niblk; /* number of inode blocks this cg */ 362 long cg_ndblk; /* number of data blocks this cg */ 363 struct csum cg_cs; /* cylinder summary information */ 364 long cg_rotor; /* position of last used block */ 365 long cg_frotor; /* position of last used frag */ 366 long cg_irotor; /* position of last used inode */ 367 long cg_frsum[8]; /* counts of available frags */ 368 long cg_btot[32]; /* block totals per cylinder */ 369 short cg_b[32][8]; /* positions of free blocks */ 370 char cg_iused[256]; /* used inode map */ 371 long cg_magic; /* magic number */ 372 u_char cg_free[1]; /* free block map */ 373 /* actually longer */ 374 }; 375 376 /* 377 * Turn file system block numbers into disk block addresses. 378 * This maps file system blocks to device size blocks. 379 */ 380 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb) 381 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 382 383 /* 384 * Cylinder group macros to locate things in cylinder groups. 385 * They calc file system addresses of cylinder group data structures. 386 */ 387 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c))) 388 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 389 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 390 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 391 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 392 #define cgstart(fs, c) \ 393 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 394 395 /* 396 * Macros for handling inode numbers: 397 * inode number to file system block offset. 398 * inode number to cylinder group number. 399 * inode number to file system block address. 400 */ 401 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg) 402 #define ino_to_fsba(fs, x) \ 403 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \ 404 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs)))))) 405 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs)) 406 407 /* 408 * Give cylinder group number for a file system block. 409 * Give cylinder group block number for a file system block. 410 */ 411 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 412 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 413 414 /* 415 * Extract the bits for a block from a map. 416 * Compute the cylinder and rotational position of a cyl block addr. 417 */ 418 #define blkmap(fs, map, loc) \ 419 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag))) 420 #define cbtocylno(fs, bno) \ 421 ((bno) * NSPF(fs) / (fs)->fs_spc) 422 #define cbtorpos(fs, bno) \ 423 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \ 424 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \ 425 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect) 426 427 /* 428 * The following macros optimize certain frequently calculated 429 * quantities by using shifts and masks in place of divisions 430 * modulos and multiplications. 431 */ 432 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 433 ((loc) & (fs)->fs_qbmask) 434 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 435 ((loc) & (fs)->fs_qfmask) 436 #define lblktosize(fs, blk) /* calculates ((off_t)blk * fs->fs_bsize) */ \ 437 ((off_t)(blk) << (fs)->fs_bshift) 438 /* Use this only when `blk' is known to be small, e.g., < NDADDR. */ 439 #define smalllblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \ 440 ((blk) << (fs)->fs_bshift) 441 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 442 ((loc) >> (fs)->fs_bshift) 443 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 444 ((loc) >> (fs)->fs_fshift) 445 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 446 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask) 447 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 448 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask) 449 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 450 ((frags) >> (fs)->fs_fragshift) 451 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 452 ((blks) << (fs)->fs_fragshift) 453 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 454 ((fsb) & ((fs)->fs_frag - 1)) 455 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 456 ((fsb) &~ ((fs)->fs_frag - 1)) 457 458 /* 459 * Determine the number of available frags given a 460 * percentage to hold in reserve 461 */ 462 #define freespace(fs, percentreserved) \ 463 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 464 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100)) 465 466 /* 467 * Determining the size of a file block in the file system. 468 */ 469 #define blksize(fs, ip, lbn) \ 470 (((lbn) >= NDADDR || (ip)->i_size >= smalllblktosize(fs, (lbn) + 1)) \ 471 ? (fs)->fs_bsize \ 472 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 473 #define dblksize(fs, dip, lbn) \ 474 (((lbn) >= NDADDR || (dip)->di_size >= smalllblktosize(fs, (lbn) + 1)) \ 475 ? (fs)->fs_bsize \ 476 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 477 478 /* 479 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size. 480 */ 481 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 482 #define NSPF(fs) ((fs)->fs_nspf) 483 484 /* 485 * INOPB is the number of inodes in a secondary storage block. 486 */ 487 #define INOPB(fs) ((fs)->fs_inopb) 488 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 489 490 /* 491 * NINDIR is the number of indirects in a file system block. 492 */ 493 #define NINDIR(fs) ((fs)->fs_nindir) 494 495 extern int inside[], around[]; 496 extern u_char *fragtbl[]; 497 498 #endif 499