1 /* 2 * Copyright (c) 1982, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)fs.h 8.7 (Berkeley) 4/19/94 34 */ 35 36 /* 37 * Each disk drive contains some number of file systems. 38 * A file system consists of a number of cylinder groups. 39 * Each cylinder group has inodes and data. 40 * 41 * A file system is described by its super-block, which in turn 42 * describes the cylinder groups. The super-block is critical 43 * data and is replicated in each cylinder group to protect against 44 * catastrophic loss. This is done at `newfs' time and the critical 45 * super-block data does not change, so the copies need not be 46 * referenced further unless disaster strikes. 47 * 48 * For file system fs, the offsets of the various blocks of interest 49 * are given in the super block as: 50 * [fs->fs_sblkno] Super-block 51 * [fs->fs_cblkno] Cylinder group block 52 * [fs->fs_iblkno] Inode blocks 53 * [fs->fs_dblkno] Data blocks 54 * The beginning of cylinder group cg in fs, is given by 55 * the ``cgbase(fs, cg)'' macro. 56 * 57 * The first boot and super blocks are given in absolute disk addresses. 58 * The byte-offset forms are preferred, as they don't imply a sector size. 59 */ 60 #define BBSIZE 8192 61 #define SBSIZE 8192 62 #define BBOFF ((off_t)(0)) 63 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 64 #define BBLOCK ((daddr_t)(0)) 65 #define SBLOCK ((daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 66 67 /* 68 * Addresses stored in inodes are capable of addressing fragments 69 * of `blocks'. File system blocks of at most size MAXBSIZE can 70 * be optionally broken into 2, 4, or 8 pieces, each of which is 71 * addressible; these pieces may be DEV_BSIZE, or some multiple of 72 * a DEV_BSIZE unit. 73 * 74 * Large files consist of exclusively large data blocks. To avoid 75 * undue wasted disk space, the last data block of a small file may be 76 * allocated as only as many fragments of a large block as are 77 * necessary. The file system format retains only a single pointer 78 * to such a fragment, which is a piece of a single large block that 79 * has been divided. The size of such a fragment is determinable from 80 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 81 * 82 * The file system records space availability at the fragment level; 83 * to determine block availability, aligned fragments are examined. 84 */ 85 86 /* 87 * MINBSIZE is the smallest allowable block size. 88 * In order to insure that it is possible to create files of size 89 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 90 * MINBSIZE must be big enough to hold a cylinder group block, 91 * thus changes to (struct cg) must keep its size within MINBSIZE. 92 * Note that super blocks are always of size SBSIZE, 93 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 94 */ 95 #define MINBSIZE 4096 96 97 /* 98 * The path name on which the file system is mounted is maintained 99 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 100 * the super block for this name. 101 * The limit on the amount of summary information per file system 102 * is defined by MAXCSBUFS. It is currently parameterized for a 103 * maximum of two million cylinders. 104 */ 105 #define MAXMNTLEN 512 106 #define MAXCSBUFS 32 107 108 /* 109 * A summary of contiguous blocks of various sizes is maintained 110 * in each cylinder group. Normally this is set by the initial 111 * value of fs_maxcontig. To conserve space, a maximum summary size 112 * is set by FS_MAXCONTIG. 113 */ 114 #define FS_MAXCONTIG 16 115 116 /* 117 * MINFREE gives the minimum acceptable percentage of file system 118 * blocks which may be free. If the freelist drops below this level 119 * only the superuser may continue to allocate blocks. This may 120 * be set to 0 if no reserve of free blocks is deemed necessary, 121 * however throughput drops by fifty percent if the file system 122 * is run at between 95% and 100% full; thus the minimum default 123 * value of fs_minfree is 5%. However, to get good clustering 124 * performance, 10% is a better choice. hence we use 10% as our 125 * default value. With 10% free space, fragmentation is not a 126 * problem, so we choose to optimize for time. 127 */ 128 #define MINFREE 5 129 #define DEFAULTOPT FS_OPTTIME 130 131 /* 132 * Per cylinder group information; summarized in blocks allocated 133 * from first cylinder group data blocks. These blocks have to be 134 * read in from fs_csaddr (size fs_cssize) in addition to the 135 * super block. 136 * 137 * N.B. sizeof(struct csum) must be a power of two in order for 138 * the ``fs_cs'' macro to work (see below). 139 */ 140 struct csum { 141 long cs_ndir; /* number of directories */ 142 long cs_nbfree; /* number of free blocks */ 143 long cs_nifree; /* number of free inodes */ 144 long cs_nffree; /* number of free frags */ 145 }; 146 147 /* 148 * Super block for a file system. 149 */ 150 struct fs { 151 struct fs *fs_link; /* linked list of file systems */ 152 struct fs *fs_rlink; /* used for incore super blocks */ 153 daddr_t fs_sblkno; /* addr of super-block in filesys */ 154 daddr_t fs_cblkno; /* offset of cyl-block in filesys */ 155 daddr_t fs_iblkno; /* offset of inode-blocks in filesys */ 156 daddr_t fs_dblkno; /* offset of first data after cg */ 157 long fs_cgoffset; /* cylinder group offset in cylinder */ 158 long fs_cgmask; /* used to calc mod fs_ntrak */ 159 time_t fs_time; /* last time written */ 160 long fs_size; /* number of blocks in fs */ 161 long fs_dsize; /* number of data blocks in fs */ 162 long fs_ncg; /* number of cylinder groups */ 163 long fs_bsize; /* size of basic blocks in fs */ 164 long fs_fsize; /* size of frag blocks in fs */ 165 long fs_frag; /* number of frags in a block in fs */ 166 /* these are configuration parameters */ 167 long fs_minfree; /* minimum percentage of free blocks */ 168 long fs_rotdelay; /* num of ms for optimal next block */ 169 long fs_rps; /* disk revolutions per second */ 170 /* these fields can be computed from the others */ 171 long fs_bmask; /* ``blkoff'' calc of blk offsets */ 172 long fs_fmask; /* ``fragoff'' calc of frag offsets */ 173 long fs_bshift; /* ``lblkno'' calc of logical blkno */ 174 long fs_fshift; /* ``numfrags'' calc number of frags */ 175 /* these are configuration parameters */ 176 long fs_maxcontig; /* max number of contiguous blks */ 177 long fs_maxbpg; /* max number of blks per cyl group */ 178 /* these fields can be computed from the others */ 179 long fs_fragshift; /* block to frag shift */ 180 long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 181 long fs_sbsize; /* actual size of super block */ 182 long fs_csmask; /* csum block offset */ 183 long fs_csshift; /* csum block number */ 184 long fs_nindir; /* value of NINDIR */ 185 long fs_inopb; /* value of INOPB */ 186 long fs_nspf; /* value of NSPF */ 187 /* yet another configuration parameter */ 188 long fs_optim; /* optimization preference, see below */ 189 /* these fields are derived from the hardware */ 190 long fs_npsect; /* # sectors/track including spares */ 191 long fs_interleave; /* hardware sector interleave */ 192 long fs_trackskew; /* sector 0 skew, per track */ 193 long fs_headswitch; /* head switch time, usec */ 194 long fs_trkseek; /* track-to-track seek, usec */ 195 /* sizes determined by number of cylinder groups and their sizes */ 196 daddr_t fs_csaddr; /* blk addr of cyl grp summary area */ 197 long fs_cssize; /* size of cyl grp summary area */ 198 long fs_cgsize; /* cylinder group size */ 199 /* these fields are derived from the hardware */ 200 long fs_ntrak; /* tracks per cylinder */ 201 long fs_nsect; /* sectors per track */ 202 long fs_spc; /* sectors per cylinder */ 203 /* this comes from the disk driver partitioning */ 204 long fs_ncyl; /* cylinders in file system */ 205 /* these fields can be computed from the others */ 206 long fs_cpg; /* cylinders per group */ 207 long fs_ipg; /* inodes per group */ 208 long fs_fpg; /* blocks per group * fs_frag */ 209 /* this data must be re-computed after crashes */ 210 struct csum fs_cstotal; /* cylinder summary information */ 211 /* these fields are cleared at mount time */ 212 char fs_fmod; /* super block modified flag */ 213 char fs_clean; /* file system is clean flag */ 214 char fs_ronly; /* mounted read-only flag */ 215 char fs_flags; /* currently unused flag */ 216 char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 217 /* these fields retain the current block allocation info */ 218 long fs_cgrotor; /* last cg searched */ 219 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */ 220 long fs_cpc; /* cyl per cycle in postbl */ 221 short fs_opostbl[16][8]; /* old rotation block list head */ 222 long fs_sparecon[50]; /* reserved for future constants */ 223 long fs_contigsumsize; /* size of cluster summary array */ 224 long fs_maxsymlinklen; /* max length of an internal symlink */ 225 long fs_inodefmt; /* format of on-disk inodes */ 226 u_quad_t fs_maxfilesize; /* maximum representable file size */ 227 quad_t fs_qbmask; /* ~fs_bmask - for use with quad size */ 228 quad_t fs_qfmask; /* ~fs_fmask - for use with quad size */ 229 long fs_state; /* validate fs_clean field */ 230 long fs_postblformat; /* format of positional layout tables */ 231 long fs_nrpos; /* number of rotational positions */ 232 long fs_postbloff; /* (short) rotation block list head */ 233 long fs_rotbloff; /* (u_char) blocks for each rotation */ 234 long fs_magic; /* magic number */ 235 u_char fs_space[1]; /* list of blocks for each rotation */ 236 /* actually longer */ 237 }; 238 /* 239 * Filesystem idetification 240 */ 241 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */ 242 #define FS_OKAY 0x7c269d38 /* superblock checksum */ 243 #define FS_42INODEFMT -1 /* 4.2BSD inode format */ 244 #define FS_44INODEFMT 2 /* 4.4BSD inode format */ 245 /* 246 * Preference for optimization. 247 */ 248 #define FS_OPTTIME 0 /* minimize allocation time */ 249 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 250 251 /* 252 * Rotational layout table format types 253 */ 254 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 255 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 256 /* 257 * Macros for access to superblock array structures 258 */ 259 #define fs_postbl(fs, cylno) \ 260 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 261 ? ((fs)->fs_opostbl[cylno]) \ 262 : ((short *)((char *)(fs) + (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos)) 263 #define fs_rotbl(fs) \ 264 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 265 ? ((fs)->fs_space) \ 266 : ((u_char *)((char *)(fs) + (fs)->fs_rotbloff))) 267 268 /* 269 * The size of a cylinder group is calculated by CGSIZE. The maximum size 270 * is limited by the fact that cylinder groups are at most one block. 271 * Its size is derived from the size of the maps maintained in the 272 * cylinder group and the (struct cg) size. 273 */ 274 #define CGSIZE(fs) \ 275 /* base cg */ (sizeof(struct cg) + sizeof(long) + \ 276 /* blktot size */ (fs)->fs_cpg * sizeof(long) + \ 277 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(short) + \ 278 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 279 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\ 280 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \ 281 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(long) + \ 282 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY))) 283 284 /* 285 * Convert cylinder group to base address of its global summary info. 286 * 287 * N.B. This macro assumes that sizeof(struct csum) is a power of two. 288 */ 289 #define fs_cs(fs, indx) \ 290 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask] 291 292 /* 293 * Cylinder group block for a file system. 294 */ 295 #define CG_MAGIC 0x090255 296 struct cg { 297 struct cg *cg_link; /* linked list of cyl groups */ 298 long cg_magic; /* magic number */ 299 time_t cg_time; /* time last written */ 300 long cg_cgx; /* we are the cgx'th cylinder group */ 301 short cg_ncyl; /* number of cyl's this cg */ 302 short cg_niblk; /* number of inode blocks this cg */ 303 long cg_ndblk; /* number of data blocks this cg */ 304 struct csum cg_cs; /* cylinder summary information */ 305 long cg_rotor; /* position of last used block */ 306 long cg_frotor; /* position of last used frag */ 307 long cg_irotor; /* position of last used inode */ 308 long cg_frsum[MAXFRAG]; /* counts of available frags */ 309 long cg_btotoff; /* (long) block totals per cylinder */ 310 long cg_boff; /* (short) free block positions */ 311 long cg_iusedoff; /* (char) used inode map */ 312 long cg_freeoff; /* (u_char) free block map */ 313 long cg_nextfreeoff; /* (u_char) next available space */ 314 long cg_clustersumoff; /* (long) counts of avail clusters */ 315 long cg_clusteroff; /* (char) free cluster map */ 316 long cg_nclusterblks; /* number of clusters this cg */ 317 long cg_sparecon[13]; /* reserved for future use */ 318 u_char cg_space[1]; /* space for cylinder group maps */ 319 /* actually longer */ 320 }; 321 /* 322 * Macros for access to cylinder group array structures 323 */ 324 #define cg_blktot(cgp) \ 325 (((cgp)->cg_magic != CG_MAGIC) \ 326 ? (((struct ocg *)(cgp))->cg_btot) \ 327 : ((long *)((char *)(cgp) + (cgp)->cg_btotoff))) 328 #define cg_blks(fs, cgp, cylno) \ 329 (((cgp)->cg_magic != CG_MAGIC) \ 330 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 331 : ((short *)((char *)(cgp) + (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos)) 332 #define cg_inosused(cgp) \ 333 (((cgp)->cg_magic != CG_MAGIC) \ 334 ? (((struct ocg *)(cgp))->cg_iused) \ 335 : ((char *)((char *)(cgp) + (cgp)->cg_iusedoff))) 336 #define cg_blksfree(cgp) \ 337 (((cgp)->cg_magic != CG_MAGIC) \ 338 ? (((struct ocg *)(cgp))->cg_free) \ 339 : ((u_char *)((char *)(cgp) + (cgp)->cg_freeoff))) 340 #define cg_chkmagic(cgp) \ 341 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 342 #define cg_clustersfree(cgp) \ 343 ((u_char *)((char *)(cgp) + (cgp)->cg_clusteroff)) 344 #define cg_clustersum(cgp) \ 345 ((long *)((char *)(cgp) + (cgp)->cg_clustersumoff)) 346 347 /* 348 * The following structure is defined 349 * for compatibility with old file systems. 350 */ 351 struct ocg { 352 struct ocg *cg_link; /* linked list of cyl groups */ 353 struct ocg *cg_rlink; /* used for incore cyl groups */ 354 time_t cg_time; /* time last written */ 355 long cg_cgx; /* we are the cgx'th cylinder group */ 356 short cg_ncyl; /* number of cyl's this cg */ 357 short cg_niblk; /* number of inode blocks this cg */ 358 long cg_ndblk; /* number of data blocks this cg */ 359 struct csum cg_cs; /* cylinder summary information */ 360 long cg_rotor; /* position of last used block */ 361 long cg_frotor; /* position of last used frag */ 362 long cg_irotor; /* position of last used inode */ 363 long cg_frsum[8]; /* counts of available frags */ 364 long cg_btot[32]; /* block totals per cylinder */ 365 short cg_b[32][8]; /* positions of free blocks */ 366 char cg_iused[256]; /* used inode map */ 367 long cg_magic; /* magic number */ 368 u_char cg_free[1]; /* free block map */ 369 /* actually longer */ 370 }; 371 372 /* 373 * Turn file system block numbers into disk block addresses. 374 * This maps file system blocks to device size blocks. 375 */ 376 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb) 377 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 378 379 /* 380 * Cylinder group macros to locate things in cylinder groups. 381 * They calc file system addresses of cylinder group data structures. 382 */ 383 #define cgbase(fs, c) ((daddr_t)((fs)->fs_fpg * (c))) 384 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 385 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 386 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 387 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 388 #define cgstart(fs, c) \ 389 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 390 391 /* 392 * Macros for handling inode numbers: 393 * inode number to file system block offset. 394 * inode number to cylinder group number. 395 * inode number to file system block address. 396 */ 397 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg) 398 #define ino_to_fsba(fs, x) \ 399 ((daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \ 400 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs)))))) 401 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs)) 402 403 /* 404 * Give cylinder group number for a file system block. 405 * Give cylinder group block number for a file system block. 406 */ 407 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 408 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 409 410 /* 411 * Extract the bits for a block from a map. 412 * Compute the cylinder and rotational position of a cyl block addr. 413 */ 414 #define blkmap(fs, map, loc) \ 415 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag))) 416 #define cbtocylno(fs, bno) \ 417 ((bno) * NSPF(fs) / (fs)->fs_spc) 418 #define cbtorpos(fs, bno) \ 419 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \ 420 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \ 421 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect) 422 423 /* 424 * The following macros optimize certain frequently calculated 425 * quantities by using shifts and masks in place of divisions 426 * modulos and multiplications. 427 */ 428 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 429 ((loc) & (fs)->fs_qbmask) 430 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 431 ((loc) & (fs)->fs_qfmask) 432 #define lblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \ 433 ((blk) << (fs)->fs_bshift) 434 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 435 ((loc) >> (fs)->fs_bshift) 436 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 437 ((loc) >> (fs)->fs_fshift) 438 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 439 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask) 440 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 441 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask) 442 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 443 ((frags) >> (fs)->fs_fragshift) 444 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 445 ((blks) << (fs)->fs_fragshift) 446 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 447 ((fsb) & ((fs)->fs_frag - 1)) 448 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 449 ((fsb) &~ ((fs)->fs_frag - 1)) 450 451 /* 452 * Determine the number of available frags given a 453 * percentage to hold in reserve 454 */ 455 #define freespace(fs, percentreserved) \ 456 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 457 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100)) 458 459 /* 460 * Determining the size of a file block in the file system. 461 */ 462 #define blksize(fs, ip, lbn) \ 463 (((lbn) >= NDADDR || (ip)->i_size >= ((lbn) + 1) << (fs)->fs_bshift) \ 464 ? (fs)->fs_bsize \ 465 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 466 #define dblksize(fs, dip, lbn) \ 467 (((lbn) >= NDADDR || (dip)->di_size >= ((lbn) + 1) << (fs)->fs_bshift) \ 468 ? (fs)->fs_bsize \ 469 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 470 471 /* 472 * Number of disk sectors per block; assumes DEV_BSIZE byte sector size. 473 */ 474 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 475 #define NSPF(fs) ((fs)->fs_nspf) 476 477 /* 478 * INOPB is the number of inodes in a secondary storage block. 479 */ 480 #define INOPB(fs) ((fs)->fs_inopb) 481 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 482 483 /* 484 * NINDIR is the number of indirects in a file system block. 485 */ 486 #define NINDIR(fs) ((fs)->fs_nindir) 487 488 extern int inside[], around[]; 489 extern u_char *fragtbl[]; 490