1 /* 2 * Copyright (c) 1982, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)fs.h 8.13 (Berkeley) 3/21/95 34 * $Id: fs.h,v 1.11 1997/03/23 20:08:22 guido Exp $ 35 */ 36 37 #ifndef _UFS_FFS_FS_H_ 38 #define _UFS_FFS_FS_H_ 39 40 /* 41 * Each disk drive contains some number of file systems. 42 * A file system consists of a number of cylinder groups. 43 * Each cylinder group has inodes and data. 44 * 45 * A file system is described by its super-block, which in turn 46 * describes the cylinder groups. The super-block is critical 47 * data and is replicated in each cylinder group to protect against 48 * catastrophic loss. This is done at `newfs' time and the critical 49 * super-block data does not change, so the copies need not be 50 * referenced further unless disaster strikes. 51 * 52 * For file system fs, the offsets of the various blocks of interest 53 * are given in the super block as: 54 * [fs->fs_sblkno] Super-block 55 * [fs->fs_cblkno] Cylinder group block 56 * [fs->fs_iblkno] Inode blocks 57 * [fs->fs_dblkno] Data blocks 58 * The beginning of cylinder group cg in fs, is given by 59 * the ``cgbase(fs, cg)'' macro. 60 * 61 * The first boot and super blocks are given in absolute disk addresses. 62 * The byte-offset forms are preferred, as they don't imply a sector size. 63 */ 64 #define BBSIZE 8192 65 #define SBSIZE 8192 66 #define BBOFF ((off_t)(0)) 67 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 68 #define BBLOCK ((ufs_daddr_t)(0)) 69 #define SBLOCK ((ufs_daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 70 71 /* 72 * Addresses stored in inodes are capable of addressing fragments 73 * of `blocks'. File system blocks of at most size MAXBSIZE can 74 * be optionally broken into 2, 4, or 8 pieces, each of which is 75 * addressable; these pieces may be DEV_BSIZE, or some multiple of 76 * a DEV_BSIZE unit. 77 * 78 * Large files consist of exclusively large data blocks. To avoid 79 * undue wasted disk space, the last data block of a small file may be 80 * allocated as only as many fragments of a large block as are 81 * necessary. The file system format retains only a single pointer 82 * to such a fragment, which is a piece of a single large block that 83 * has been divided. The size of such a fragment is determinable from 84 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 85 * 86 * The file system records space availability at the fragment level; 87 * to determine block availability, aligned fragments are examined. 88 */ 89 90 /* 91 * MINBSIZE is the smallest allowable block size. 92 * In order to insure that it is possible to create files of size 93 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 94 * MINBSIZE must be big enough to hold a cylinder group block, 95 * thus changes to (struct cg) must keep its size within MINBSIZE. 96 * Note that super blocks are always of size SBSIZE, 97 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 98 */ 99 #define MINBSIZE 4096 100 101 /* 102 * The path name on which the file system is mounted is maintained 103 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 104 * the super block for this name. 105 */ 106 #define MAXMNTLEN 512 107 108 /* 109 * The limit on the amount of summary information per file system 110 * is defined by MAXCSBUFS. It is currently parameterized for a 111 * size of 128 bytes (2 million cylinder groups on machines with 112 * 32-bit pointers, and 1 million on 64-bit machines). One pointer 113 * is taken away to point to an array of cluster sizes that is 114 * computed as cylinder groups are inspected. 115 */ 116 #define MAXCSBUFS ((128 / sizeof(void *)) - 1) 117 118 /* 119 * A summary of contiguous blocks of various sizes is maintained 120 * in each cylinder group. Normally this is set by the initial 121 * value of fs_maxcontig. To conserve space, a maximum summary size 122 * is set by FS_MAXCONTIG. 123 */ 124 #define FS_MAXCONTIG 16 125 126 /* 127 * MINFREE gives the minimum acceptable percentage of file system 128 * blocks which may be free. If the freelist drops below this level 129 * only the superuser may continue to allocate blocks. This may 130 * be set to 0 if no reserve of free blocks is deemed necessary, 131 * however throughput drops by fifty percent if the file system 132 * is run at between 95% and 100% full; thus the minimum default 133 * value of fs_minfree is 5%. However, to get good clustering 134 * performance, 10% is a better choice. hence we use 10% as our 135 * default value. With 10% free space, fragmentation is not a 136 * problem, so we choose to optimize for time. 137 */ 138 #define MINFREE 8 139 #define DEFAULTOPT FS_OPTTIME 140 141 /* 142 * Per cylinder group information; summarized in blocks allocated 143 * from first cylinder group data blocks. These blocks have to be 144 * read in from fs_csaddr (size fs_cssize) in addition to the 145 * super block. 146 * 147 * N.B. sizeof(struct csum) must be a power of two in order for 148 * the ``fs_cs'' macro to work (see below). 149 */ 150 struct csum { 151 int32_t cs_ndir; /* number of directories */ 152 int32_t cs_nbfree; /* number of free blocks */ 153 int32_t cs_nifree; /* number of free inodes */ 154 int32_t cs_nffree; /* number of free frags */ 155 }; 156 157 /* 158 * Super block for an FFS file system. 159 */ 160 struct fs { 161 int32_t fs_firstfield; /* historic file system linked list, */ 162 int32_t fs_unused_1; /* used for incore super blocks */ 163 ufs_daddr_t fs_sblkno; /* addr of super-block in filesys */ 164 ufs_daddr_t fs_cblkno; /* offset of cyl-block in filesys */ 165 ufs_daddr_t fs_iblkno; /* offset of inode-blocks in filesys */ 166 ufs_daddr_t fs_dblkno; /* offset of first data after cg */ 167 int32_t fs_cgoffset; /* cylinder group offset in cylinder */ 168 int32_t fs_cgmask; /* used to calc mod fs_ntrak */ 169 time_t fs_time; /* last time written */ 170 int32_t fs_size; /* number of blocks in fs */ 171 int32_t fs_dsize; /* number of data blocks in fs */ 172 int32_t fs_ncg; /* number of cylinder groups */ 173 int32_t fs_bsize; /* size of basic blocks in fs */ 174 int32_t fs_fsize; /* size of frag blocks in fs */ 175 int32_t fs_frag; /* number of frags in a block in fs */ 176 /* these are configuration parameters */ 177 int32_t fs_minfree; /* minimum percentage of free blocks */ 178 int32_t fs_rotdelay; /* num of ms for optimal next block */ 179 int32_t fs_rps; /* disk revolutions per second */ 180 /* these fields can be computed from the others */ 181 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ 182 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ 183 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ 184 int32_t fs_fshift; /* ``numfrags'' calc number of frags */ 185 /* these are configuration parameters */ 186 int32_t fs_maxcontig; /* max number of contiguous blks */ 187 int32_t fs_maxbpg; /* max number of blks per cyl group */ 188 /* these fields can be computed from the others */ 189 int32_t fs_fragshift; /* block to frag shift */ 190 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 191 int32_t fs_sbsize; /* actual size of super block */ 192 int32_t fs_csmask; /* csum block offset */ 193 int32_t fs_csshift; /* csum block number */ 194 int32_t fs_nindir; /* value of NINDIR */ 195 int32_t fs_inopb; /* value of INOPB */ 196 int32_t fs_nspf; /* value of NSPF */ 197 /* yet another configuration parameter */ 198 int32_t fs_optim; /* optimization preference, see below */ 199 /* these fields are derived from the hardware */ 200 int32_t fs_npsect; /* # sectors/track including spares */ 201 int32_t fs_interleave; /* hardware sector interleave */ 202 int32_t fs_trackskew; /* sector 0 skew, per track */ 203 /* fs_id takes the space of the unused fs_headswitch and fs_trkseek fields */ 204 int32_t fs_id[2]; /* unique filesystem id */ 205 /* sizes determined by number of cylinder groups and their sizes */ 206 ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */ 207 int32_t fs_cssize; /* size of cyl grp summary area */ 208 int32_t fs_cgsize; /* cylinder group size */ 209 /* these fields are derived from the hardware */ 210 int32_t fs_ntrak; /* tracks per cylinder */ 211 int32_t fs_nsect; /* sectors per track */ 212 int32_t fs_spc; /* sectors per cylinder */ 213 /* this comes from the disk driver partitioning */ 214 int32_t fs_ncyl; /* cylinders in file system */ 215 /* these fields can be computed from the others */ 216 int32_t fs_cpg; /* cylinders per group */ 217 int32_t fs_ipg; /* inodes per group */ 218 int32_t fs_fpg; /* blocks per group * fs_frag */ 219 /* this data must be re-computed after crashes */ 220 struct csum fs_cstotal; /* cylinder summary information */ 221 /* these fields are cleared at mount time */ 222 int8_t fs_fmod; /* super block modified flag */ 223 int8_t fs_clean; /* file system is clean flag */ 224 int8_t fs_ronly; /* mounted read-only flag */ 225 int8_t fs_flags; /* currently unused flag */ 226 u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 227 /* these fields retain the current block allocation info */ 228 int32_t fs_cgrotor; /* last cg searched */ 229 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */ 230 int32_t *fs_maxcluster; /* max cluster in each cyl group */ 231 int32_t fs_cpc; /* cyl per cycle in postbl */ 232 int16_t fs_opostbl[16][8]; /* old rotation block list head */ 233 int32_t fs_sparecon[50]; /* reserved for future constants */ 234 int32_t fs_contigsumsize; /* size of cluster summary array */ 235 int32_t fs_maxsymlinklen; /* max length of an internal symlink */ 236 int32_t fs_inodefmt; /* format of on-disk inodes */ 237 u_int64_t fs_maxfilesize; /* maximum representable file size */ 238 int64_t fs_qbmask; /* ~fs_bmask for use with 64-bit size */ 239 int64_t fs_qfmask; /* ~fs_fmask for use with 64-bit size */ 240 int32_t fs_state; /* validate fs_clean field */ 241 int32_t fs_postblformat; /* format of positional layout tables */ 242 int32_t fs_nrpos; /* number of rotational positions */ 243 int32_t fs_postbloff; /* (u_int16) rotation block list head */ 244 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */ 245 int32_t fs_magic; /* magic number */ 246 u_int8_t fs_space[1]; /* list of blocks for each rotation */ 247 /* actually longer */ 248 }; 249 250 /* 251 * Filesystem identification 252 */ 253 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */ 254 #define FS_OKAY 0x7c269d38 /* superblock checksum */ 255 #define FS_42INODEFMT -1 /* 4.2BSD inode format */ 256 #define FS_44INODEFMT 2 /* 4.4BSD inode format */ 257 /* 258 * Preference for optimization. 259 */ 260 #define FS_OPTTIME 0 /* minimize allocation time */ 261 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 262 263 /* 264 * Rotational layout table format types 265 */ 266 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 267 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 268 /* 269 * Macros for access to superblock array structures 270 */ 271 #define fs_postbl(fs, cylno) \ 272 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 273 ? ((fs)->fs_opostbl[cylno]) \ 274 : ((int16_t *)((u_int8_t *)(fs) + \ 275 (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos)) 276 #define fs_rotbl(fs) \ 277 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 278 ? ((fs)->fs_space) \ 279 : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff))) 280 281 /* 282 * The size of a cylinder group is calculated by CGSIZE. The maximum size 283 * is limited by the fact that cylinder groups are at most one block. 284 * Its size is derived from the size of the maps maintained in the 285 * cylinder group and the (struct cg) size. 286 */ 287 #define CGSIZE(fs) \ 288 /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \ 289 /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \ 290 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \ 291 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 292 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\ 293 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \ 294 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \ 295 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY))) 296 297 /* 298 * Convert cylinder group to base address of its global summary info. 299 * 300 * N.B. This macro assumes that sizeof(struct csum) is a power of two. 301 */ 302 #define fs_cs(fs, indx) \ 303 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask] 304 305 /* 306 * Cylinder group block for a file system. 307 */ 308 #define CG_MAGIC 0x090255 309 struct cg { 310 int32_t cg_firstfield; /* historic cyl groups linked list */ 311 int32_t cg_magic; /* magic number */ 312 time_t cg_time; /* time last written */ 313 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 314 int16_t cg_ncyl; /* number of cyl's this cg */ 315 int16_t cg_niblk; /* number of inode blocks this cg */ 316 int32_t cg_ndblk; /* number of data blocks this cg */ 317 struct csum cg_cs; /* cylinder summary information */ 318 int32_t cg_rotor; /* position of last used block */ 319 int32_t cg_frotor; /* position of last used frag */ 320 int32_t cg_irotor; /* position of last used inode */ 321 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ 322 int32_t cg_btotoff; /* (int32) block totals per cylinder */ 323 int32_t cg_boff; /* (u_int16) free block positions */ 324 int32_t cg_iusedoff; /* (u_int8) used inode map */ 325 int32_t cg_freeoff; /* (u_int8) free block map */ 326 int32_t cg_nextfreeoff; /* (u_int8) next available space */ 327 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */ 328 int32_t cg_clusteroff; /* (u_int8) free cluster map */ 329 int32_t cg_nclusterblks; /* number of clusters this cg */ 330 int32_t cg_sparecon[13]; /* reserved for future use */ 331 u_int8_t cg_space[1]; /* space for cylinder group maps */ 332 /* actually longer */ 333 }; 334 335 /* 336 * Macros for access to cylinder group array structures 337 */ 338 #define cg_blktot(cgp) \ 339 (((cgp)->cg_magic != CG_MAGIC) \ 340 ? (((struct ocg *)(cgp))->cg_btot) \ 341 : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff))) 342 #define cg_blks(fs, cgp, cylno) \ 343 (((cgp)->cg_magic != CG_MAGIC) \ 344 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 345 : ((int16_t *)((u_int8_t *)(cgp) + \ 346 (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos)) 347 #define cg_inosused(cgp) \ 348 (((cgp)->cg_magic != CG_MAGIC) \ 349 ? (((struct ocg *)(cgp))->cg_iused) \ 350 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff))) 351 #define cg_blksfree(cgp) \ 352 (((cgp)->cg_magic != CG_MAGIC) \ 353 ? (((struct ocg *)(cgp))->cg_free) \ 354 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff))) 355 #define cg_chkmagic(cgp) \ 356 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 357 #define cg_clustersfree(cgp) \ 358 ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff)) 359 #define cg_clustersum(cgp) \ 360 ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff)) 361 362 /* 363 * The following structure is defined 364 * for compatibility with old file systems. 365 */ 366 struct ocg { 367 int32_t cg_firstfield; /* historic linked list of cyl groups */ 368 int32_t cg_unused_1; /* used for incore cyl groups */ 369 time_t cg_time; /* time last written */ 370 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 371 int16_t cg_ncyl; /* number of cyl's this cg */ 372 int16_t cg_niblk; /* number of inode blocks this cg */ 373 int32_t cg_ndblk; /* number of data blocks this cg */ 374 struct csum cg_cs; /* cylinder summary information */ 375 int32_t cg_rotor; /* position of last used block */ 376 int32_t cg_frotor; /* position of last used frag */ 377 int32_t cg_irotor; /* position of last used inode */ 378 int32_t cg_frsum[8]; /* counts of available frags */ 379 int32_t cg_btot[32]; /* block totals per cylinder */ 380 int16_t cg_b[32][8]; /* positions of free blocks */ 381 u_int8_t cg_iused[256]; /* used inode map */ 382 int32_t cg_magic; /* magic number */ 383 u_int8_t cg_free[1]; /* free block map */ 384 /* actually longer */ 385 }; 386 387 /* 388 * Turn file system block numbers into disk block addresses. 389 * This maps file system blocks to device size blocks. 390 */ 391 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb) 392 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 393 394 /* 395 * Cylinder group macros to locate things in cylinder groups. 396 * They calc file system addresses of cylinder group data structures. 397 */ 398 #define cgbase(fs, c) ((ufs_daddr_t)((fs)->fs_fpg * (c))) 399 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 400 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 401 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 402 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 403 #define cgstart(fs, c) \ 404 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 405 406 /* 407 * Macros for handling inode numbers: 408 * inode number to file system block offset. 409 * inode number to cylinder group number. 410 * inode number to file system block address. 411 */ 412 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg) 413 #define ino_to_fsba(fs, x) \ 414 ((ufs_daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \ 415 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs)))))) 416 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs)) 417 418 /* 419 * Give cylinder group number for a file system block. 420 * Give cylinder group block number for a file system block. 421 */ 422 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 423 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 424 425 /* 426 * Extract the bits for a block from a map. 427 * Compute the cylinder and rotational position of a cyl block addr. 428 */ 429 #define blkmap(fs, map, loc) \ 430 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag))) 431 #define cbtocylno(fs, bno) \ 432 ((bno) * NSPF(fs) / (fs)->fs_spc) 433 #define cbtorpos(fs, bno) \ 434 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \ 435 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \ 436 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect) 437 438 /* 439 * The following macros optimize certain frequently calculated 440 * quantities by using shifts and masks in place of divisions 441 * modulos and multiplications. 442 */ 443 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 444 ((loc) & (fs)->fs_qbmask) 445 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 446 ((loc) & (fs)->fs_qfmask) 447 #define lblktosize(fs, blk) /* calculates ((off_t)blk * fs->fs_bsize) */ \ 448 ((off_t)(blk) << (fs)->fs_bshift) 449 /* Use this only when `blk' is known to be small, e.g., < NDADDR. */ 450 #define smalllblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \ 451 ((blk) << (fs)->fs_bshift) 452 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 453 ((loc) >> (fs)->fs_bshift) 454 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 455 ((loc) >> (fs)->fs_fshift) 456 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 457 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask) 458 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 459 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask) 460 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 461 ((frags) >> (fs)->fs_fragshift) 462 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 463 ((blks) << (fs)->fs_fragshift) 464 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 465 ((fsb) & ((fs)->fs_frag - 1)) 466 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 467 ((fsb) &~ ((fs)->fs_frag - 1)) 468 469 /* 470 * Determine the number of available frags given a 471 * percentage to hold in reserve. 472 */ 473 #define freespace(fs, percentreserved) \ 474 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 475 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100)) 476 477 /* 478 * Determining the size of a file block in the file system. 479 */ 480 #define blksize(fs, ip, lbn) \ 481 (((lbn) >= NDADDR || (ip)->i_size >= smalllblktosize(fs, (lbn) + 1)) \ 482 ? (fs)->fs_bsize \ 483 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 484 #define dblksize(fs, dip, lbn) \ 485 (((lbn) >= NDADDR || (dip)->di_size >= smalllblktosize(fs, (lbn) + 1)) \ 486 ? (fs)->fs_bsize \ 487 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 488 489 /* 490 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte 491 * sector size. 492 */ 493 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 494 #define NSPF(fs) ((fs)->fs_nspf) 495 496 /* 497 * Number of inodes in a secondary storage block/fragment. 498 */ 499 #define INOPB(fs) ((fs)->fs_inopb) 500 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 501 502 /* 503 * Number of indirects in a file system block. 504 */ 505 #define NINDIR(fs) ((fs)->fs_nindir) 506 507 extern int inside[], around[]; 508 extern u_char *fragtbl[]; 509 510 #endif 511